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Abstract

Microvascular cell fate decisions are hallmarks o f  the microvascular cell response 

to injury and play a crucial role in the pathogenesis o f retinal disease Abnormalities in 

retinal blood flow play a critical role in remodeling o f the retinal vasculature by altering 

microvascular endothelial and pericyte cell fate (proliferation, apoptosis and migration) 

Retinal blood flow is controlled locally by vasodilators such as nitric oxide, prostacyclin 

and the vasoconstrictor endothelin-1 , with considerable evidence linking retinal 

pathologies such as Normal Tension Glaucoma and Diabetic Retinopathy to altered 

retinal blood flow Shear stress has previously been shown to modulate EC production o f  

these vasoactive agents in macrovascular cells Therefore, using a perfused transcapillary 

coculture o f bovine microvascular retinal endothelial cells (BRECs) and bovine retinal 

pericytes (BRPs), we examined the acute and chronic effect o f pulsatile flow on the 

release o f these vasoactive mediators and their subsequent role in modulating retinal 

vascular cell fate

Acute exposure to pulsatile flow increased BREC NO, PGI2  & ET-1 formation and 

release Similarly, chronic exposure to pulsatile flow enhanced NO and PGI2 release 

while concomitantly inhibiting ET-1 in these cells In parallel studies, there was an 

increase in BRP apoptosis following exposure to high pulsatile flow, whereas BREC 

apoptosis decreased Furthermore, the pulsatile flow-induced increases in BRP apoptosis 

is dependent on increased PGI2 , whereas both ET-1 and NO mediate the protective effect 

of increased flow on BRECs survival

Notch receptor-hgand interactions and the Hedgehog signalling pathway have been 

strongly implicated in vascular morphogenesis and remodelling of the embryonic 

vasculature, with Hedgehog acting upstream o f Notch signalling during development We 

therefore tested the hypothesis that Hedgehog (Hh) and Notch pathway interact to 

promote changes in vascular cell fate in BRECs and BRPs in vitro in response to 

changes in pulsatile flow
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There was a potent anti-apoptotic effect of increased Hh signalling in BRECs 

exposed to increased flow rates, via increases in Notch signalling and the Bcl-2 family o f  

apoptosis related proteins, in favour o f survival In contrast, BRP Notch and Hh 

signalling components decreased at high flow, concomitant with an increase in BRP 

apoptosis, similarly via modulation of the Bcl-2 proteins Exogenous addition of 

recombinant Sonic Hedgehog (Shh) confirmed the potent anti-apoptotic pro-proliferative 

effect o f Shh in BRPs while concomitantly increasing BRP Notch mRNA levels m these 

cells The importance of these changes was confirmed by validating the presence o f  

Notch and Hh pathway components in the retinal microvasculature o f normal and 

glaucomatous human retina These results demonstrate a significant role for Notch and 

Hh in controlling microvascular cell fate in response to changes in pulsatile flow

Collectively, these studies suggest that changes in microvascular cell fate in 

response to flow play a crucial role in the pathogenesis of retinal disease Moreover, 

changes in retinal blood flow alter microvascular endothelial and pericyte cell fate in part 

through a Notch/Hh axis and the release o f vasoactive substances from the microvascular 

endothelium The identification o f the mechanisms by which pulsatile flow regulates 

remodelling of the retinal vasculature may lead to possible new drug targets that can 

promote or inhibit remodelling in disease
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Chapter 1 

Introduction



I

1 0 Introduction 

1 1 Retinal blood supply

Blood supply to the eye is through the ophthalmic artery, which leads into 

the ciliary arteries feeding the choroidal/uveal circulation, and also the central retinal 

artery which feeds into the retinal circulation (Hayreh, 2001) (Figure 1 1) The uveal 

vessels include the vascular beds of the ins, the ciliary body, and the choroid The 

retinal vessels nourish the inner layers of the retina, whereas the outer retinal layers 

including the photoreceptors are nourished by the choroid

The retinal vasculature is anatomically and physiologically specialized to 

distribute oxygen and nutrients to areas of metabolic need within a tissue that must 

also be translucent One adaptation that minimizes interference with passing light is 

the low density of retinal capillaries (Wu et a l , 2003) Perfusion of a capillary must 

be tightly matched to the metabolic needs of nearby retinal neurons Local control ofi

retinal blood flow is unique in three distinct aspects when compared to other 

microvascular beds firstly, autonomic innervation is absent (Ye et a l , 1990), 

secondly, a tight endothelial barrier restricts the effects of circulating vasoactive 

molecules, and thirdly, precapillary smooth muscle sphincters, which control local 

perfusion in most other tissues, are absent (Pannarale et a l , 1996) Taken together, 

these suggest an essential role in local autoregulation of blood flow, whereby a 

relatively constant blood flow, capillary pressure, and nutrient supply is maintained 

in spite of changes in perfusion pressure (Hayreh, 2001)

The retinal circulation has m general, two capillary beds, one feeding into the 

nerve fibre/ganglion cell layer and the other feeding the middle retinal layers 

including the inner nuclear layer and plexiform layer (Figure 1 2) The outer layers 

of the retina, including the photoreceptors of the eye, are avascular and nourished by 

diffusion from the outer choroidal circulation An avascular zone enabling light to 

reach the central photoreceptors without encountering a single blood vessel is 

centrally located in the fovea -  the centremost point of the macula (Figure 1 3 & 

1 1A)
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A

B

Figure 1.1: Schematic diagram of a horizontal section of the human
eye (A) and ONH (B). At the optic nerve head (ONH), retinal vessels enter 
& exit the eye, and also ganglion cell axons exit to the brain (The impact of 
ocular blood flow in Glaucoma - J Flammer (2002))
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Figure 1.2: The human Retina. Low Power histological picture of the human 
retina, demonstrating the layered structure of the retinal nerve tissue (left), and a 
schematic diagram of the cell types in each layer (rigjit) 
http://thalamus.wustl.edu/course/eyeret.html
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Figure 1.3: Fundus photograph of the human retina taken through 
the lens. The periphery, macula, fovea and optic nerve are detailed, 
http ://www.st lukeseye.com/images/
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I l l  Microvasculature

Mature capillaries and postcapillary venules are comprised of two cell types 

endothelial cells (ECs) and pericytes The ECs are surrounded by a basement 

membrane, within which there are a large number of intramural pericytes Pericytes 

exist in intimate association with ECs, forming a single layer that covers varying 

amounts of the abluminal EC surface This arrangement, which is unique to small 

vessels, is characterized by frequent sites of contact between the ECs and pericytes 

(Figure 1 4)

Figure 1 4 (A) Schematic diagram of the sheath of penctyes surrounding the 
endothelial tube of capillaries (B) Pericytes are embedded in a basement membrane 
Electron micrograph of the rat retinal capillary adjacent to internal limiting membrane 
(arrow) (C) Endothelial cell nucleus (E) and pericyte cell body and nucleus (P) The 
pericyte is ensheathed by basal lamina (small arrows) (Chakravarthy et al 1999)
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1 1 1 1  Endothelial Cells

Endothelial cells (ECs) were once thought to be an inert lining to the 

vasculature However their strategic location provides the endothelium with the 

unique opportunity to monitor biochemical and biomechanical stimuli from systemic 

and local origin As a result, the endothelial cell can adapt its function as required to 

maintain homeostasis Endothelial cells are thus strategically located between the 

circulating blood and underlying mural cells, that is vascular smooth muscle cells 

(VSMCs) in large vessels, and pericytes of the micro vasculature

The endothelium provides a semipermeable barrier that allows specific 

substances to move between the blood and the interstitium With the larger vessels 

serving as conduits, the exchange of water, gases, solutes and in some instances 

cells, occurs primarily across the capillaries and postcapillary venules The 

endothelium also serves to regulate vascular tone and to maintain a relatively 

constant perfusion pressure in the case of the retinal circulation

To maintain normal blood flow, a balance must exist between the activation 

and inhibition of coagulation within the circulation There is a dynamic ongoing 

interaction between the vascular endothelium, blood cells, plasma coagulation 

factors, fibrinolytic factors, and their inhibitors Under normal conditions, the 

endothelium slightly favors anticoagulant mechanisms to maintain blood fluidity In 

times of vascular damage or disease, prothrombotic mechanisms predominate 

Several in vivo and in vitro observations also demonstrate biomechanical force 

modulation of endothelial cell structure and function
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1 1 1 2  Pericyte Cells

Microvascular mural cells are referred to as pericytes They can be 

distinguished from other perivascular cell types by their location within the 

microvascular basement membrane Pericytes, similar to VSMCs, are mesenchymal 

cells of presumed mesodermal or neuroectodermal origin (Bondjers et a l , 2003)

Pericytes are stellar cells which envelop the endothelial cell layer Retinal 

trypsin digests have shown a ratio of pericytes to ECs equaled to 1, whereas ECs 

outnumber pericytes in other microvascular beds by as much as 10 to 1 (Stewart and 

Tuor, 1994) ECs outnumber pericytes by 4 to 1 in brain microvessels, which have 

similar EC barrier properties to retinal vessels (Stewart and Tuor, 1994) 

Discontinuities in capillary mural layer enable endothelial cells to contact the glial 

basement membrane, a distinct morphological difference from VSMCs in small 

arterioles (Chakravarthy and Gardiner, 1999)

By contracting and relaxing, pericytes may regulate lumen size and thereby 

control capillary perfusion The high ratio of pericytes to endothelial cells reflects 

the likely importance of pericytes in regulating retinal blood flow, more so than in 

any other vascular bed The evidence of a vasoregulatory role is also strongly 

supported by the presence of the muscle isoforms of actin, myosin, tropomyosin and 

calponin Although the degree of expression of these contractile proteins is lower 

than that found in VSMCs, only diminutive changes in the caliber of the capillary 

are required to modulate blood flow

Poiseuille’s equation is a description of how flow is related to perfusion 

pressure, radius, length, and viscosity

A V ^ bR4(R ,-P 2) 
At 8rjL

The relationship clearly shows the dominant influence of vessel radius on 

resistance and flow, and therefore serves as an important concept to understand how 

physiological changes (e g vascular tone) and pathological changes (e g vascular 

stenosis) in vessel radius affect flow For example, a two-fold increase in vessel
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radius results in a sixteen-fold increase in blood flow, assuming all other parameters 

remain equal
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1.2 Blood Flow

Blood vessels are exposed to two types of mechanical forces a) shear stress, 

a frictional force acting longitudinally at the blood/endothelium interface, which is 

related to the velocity of blood flow (Figure 1.5) (Patrick and Mclntire, 1995, 

Davies, 1995) and b) cyclic circumferential stretch/strain acting tangentially on the 

vascular wall, which is directly related to blood pressure and dimensions of the 

vessel. Both of these factors are essential for the maintenance of a healthy vessel.

Figure 1.5: Schematic diagram of a blood vessel and the mechanical forces 
in the vessel wall: Cyclic circumferential strain (stretch) due to the pulsatile 
nature of blood flow and shear stress due to blood flow.

Blood pressure creates strain on the vessel wall in a direction perpendicular 

to the endoluminal surface and is the major determinant of vessel stretch via 

rhythmic distension of the vessel wall. The magnitude of this circumferential force is 

dependent on vessel geometry, and position within the vessel wall (Lehoux and 

Tedgui, 2003). The latter is particularly relevant in larger vessels where several 

layers of VSMCs may be present.
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Blood flow also exerts a frictional force on the luminal surface o f the 

endothelium This frictional drag is referred to as shear stress and is defined in terms 

of blood viscosity and velocity Laminar blood flow within a vessel can be described 

by the equation x = 4|laQ / j i t 3, where t  i s  shear stress, is blood viscosity, Q is flow 

rate and r is the vessel radius It is worth noting that the term r is raised to the third 

power thus where Q is constant a small change in r will result in a large change in x 

(Lehoux and Tedgui, 2003)

Ophthalmic circulation is disturbed in many retinal diseases such as 

proliferative and non-proliferative diabetic retinopathy (Savage et a l , 2004), 

primary open angle glaucoma, normal tension glaucoma (Harris et a l , 1998), and 

also in age-related macular degeneration (Grunwald et a l , 2005) The contribution 

of variable blood flow in causing each of these conditions is as yet unknown, 

however the changes in local shear stresses and cyclic strains are certainly 

contributors to remodelling of the micro vasculature
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12 1 Shear Stress

Under normal physiological conditions the endothelium is continuously 

exposed to mechanical shear stress due to blood flow Shear stress modulates 

cellular structure, function and gene expression (Lehoux and Tedgui, 2003, Chiu et 

a l , 2004, Bartling et a l , 2000) For example, shear stress regulates gene expression 

of various proteins, including vasoactive substances (e g  nitric oxide synthase and 

endothelin-1 ) (Kuchan and Frangos, 1993), growth factors (e g  transforming growth 

factor-pi and platelet-derived growth factor) (Negishi et a l , 2001, Resnick et a l , 

1993), adhesion and chemoattractant molecules (e g  intercellular adhesion 

molecule-1 , vascular cellular adhesion molecule-1 , and monocyte chemoattractant 

protein-1 ) (Chiu et a l , 2004, Cheng et a l , 1996), coagulation factors (e g  tissue 

factor) (Lin et a l , 1997), proto-oncogenes (Bartling et a l , 2000), and antioxidant 

enzymes (e g  superoxide dismutase) (Wung et a l , 2001) Furthermore, shear stress 

inhibits apoptosis o f macrovascular ECs in response to various stimuli, 

demonstrating a potent atheroprotective effect At certain positions such as 

bifurcations in the vessel or points of extreme curvature, the vessel may be exposed 

to turbulent flow, oscillatory shear stress and eddy currents, all o f which can 

abrogate the protective effects of laminar shear, hence atherosclerotic plaques tend 

to form at these points The mechanisms by which haemodynamic forces such as 

shear stresses are transduced into cellular signalling are still not fully known

In vitro studies in which endothelial monolayers have been subjected to 

defined levels of shear stress have been essential to our understanding o f shear stress 

related molecular responses The complexity o f the shear stress response is only now 

being elucidated and some of the best-characterized responses include, 

reorganization o f act in containing stress fibers, alterations in metabolic activities and 

changes in cell cycle kinetics (Davies, 1995, Davies and Tripathi, 1993) Shear 

related effects can be broadly categorized into two responses, a) reorganization or 

regulation o f pre-existing proteins and b) de novo protein synthesis and gene 

expression, the latter is usually associated with delayed or chronic shear-mediated 

responses
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As described previously, exposure of the endothelium to fluid mechanical 

forces may alter the rate of transcription o f a specific subset of genes Investigation 

of the promoter regions o f these genes has identified the presence o f a cis-element, 

which is inducible by shear stress The identity o f this shear stress response element 

(SSRE) as GAGACC was achieved by a series o f transfections involving deletion 

mutants o f the PDGF-B promoter (Resmck et a l , 1993) Other examples o f SSREs 

include a divergent transcriptional response element (TRE) in the promoter region o f 

MCP-1 with the sequence TGACTCC, necessary for shear inducibility (Shyy e t a l , 

1995) Functional analysis o f the tissue factor (TF) gene has identified a GC-rich 

region containing three copies o f the transcription factors Egr-1 and Sp-1 Deletion 

of the Sp-1 but not the Egr-1 attenuates shear stress activation of this gene (Lin e t 

a l , 1997) Thus it can be seen that multiple cis-elements may regulate shear stress 

responsiveness in different genes

EC gene expression in response to shear stress is known to be a function o f  

the magnitude o f the force For example, t-PA expression is only increased at shear 

stresses above 5dynes/cm (Diamond e t a l , 1990), whereas secretion o f the 

vasoconstrictor endothelin- 1  (ET-1) is increased in HUVECs at shear stresses less 

than 5 dynes/cm2 (Kuchan and Frangos, 1993) This may be explained by the fact 

that the magnitude o f shear stress may vary depending on the location within the 

vasculature Therefore in situations where shear stresses may be low increases in 

ET-1 will promote vasoconstriction to increase blood flow rate through that section 

of the vessel The use o f DNA microarray technology has permitted analysis o f  

extensive differential gene expression in response to haemodynamic forces Fifty- 

two flow sensitive genes have recently been identified in HUVECs with 

prostaglandin and cytochrome p450 the most strongly up-regulated and ET-1 and 

MCP-1 the most strongly down-regulated (McCormick e t a l , 2001) 143 genes have 

been identified in HUVECs, which are differentially expressed in the presence o f  

static, laminar, or turbulent flow (Garcia-Cardena et a l , 2001) In  v ivo , the 

expression of a number of genes, such as transforming growth factor-P (TGF-0) 

(Negishi e t a l , 2001), PDGF-A, PDGF-B (Tulis and Prewitt, 1998), and urokinase 

plasminogen activator (uPA) have been found to be shear sensitive Further studies
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involving microarray technology may lead to a more complete elucidation o f cellular 

responses to mechanical forces by identifying the cellular participants in regulating 

cell function in haemodynamic environments Although there may be some 

discrepancies between using vein and artery preparations or between in vitro and in 

vivo models these studies clearly indicate the importance o f mechanical forces to 

gene regulation within the vasculature

1 2  2 Cyclic Strain

In 1893, Thoma observed that blood vessel diameter was regulated by the 

magnitude o f blood flow while vessel thickness was dependent on blood pressure 

(Figure 1 6 ) This observation was confirmed by comparing the thickness of the 

pulmonary artery and aorta pre and post birth In utero, both vessels experience 

similar pressures and are almost identical in size, however, after birth the aorta 

thickens proportionally to increases in systemic pressure while the pulmonary artery 

undergoes atrophy following the fall in pressure post partum (Leung et a l , 1977)
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Figure 1 6 Photomicrographs of intimai lesion formation in ligated mouse 
carotid arteries (A) Cross section of a normal vessel, (B) longitudinal section of the 
proximal mouse carotid artery 4 weeks after ligation near the carotid bifurcation The 
aortic arch is at the left Note the increased intimai thickening distal to the arch (C) 
Cross section of a central segment of mouse carotid artery 4 weeks after ligation, 
showing a thick intimai lesion, reduced vessel diameter, and narrowed lumen 
Arrowheads indicate the Internal elastic lamina Counterstained with hematoxylin 
(original magnification x200) Kumar et al 1997
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The relationship between circumferential stress and the structure of the wall 

has been well established in macrovascular cell types. Increases in arterial pressure 

are associated with VSMC hypertrophy and increases in extracellular matrix (ECM) 

production. Conversely decreases in arterial pressure result in vessel atrophy 

(Bomberger et al., 1980). In a cultured rabbit aorta model of low intraluminal 

pressure, VSMC markers such as, h-caldesmon and filamin were dramatically 

decreased compared to aortas maintained under normal intraluminal pressure 

(Birukov et al., 1998). Continual mechanical stimulation appears to be essential to 

maintaining a contractile phenotype in SMC. Whilst a certain level of stretching may 

be essential for VSMC maintenance, over stretching may initiate adaptive processes 

(Lehoux and Tedgui, 1998). Mechanical stretch is a strong determinant of vascular 

structure in conjunction with autocrine and paracrine factors (Tedgui et al., 1992). It 

has also been observed that sustained hypertension leads to thickening of the arterial 

wall due to SMC hypertrophy, hyperplasia and changes in matrix proteins leading to 

altered arterial function (Levy et al., 1988) (Figure 1.6).

The fact that endothelial cells are the principal recipients of shear stress does 

not imply that cyclic strain has no influence on the endothelium. Cyclic stretch 

increases EC sensitivity to shear stress resulting in a lowered threshold level 

required to provoke structural changes and ultimately both cyclic stretch and shear 

stress are required to produce maximal responses in the vessel (Zhao et al., 1995).

Studies from in vitro experiments demonstrate that cyclic strain increases EC 

expression of nitric oxide synthase (NOS), matrix metalloproteinase-2 (MMP-2), 

matrix metalloproteinase-14 (MMP-14), monocyte chemotactic protein-1 (MCP-I), 

platelet derived growth factor-BB (PDGF-BB), endothelin-1 (ET-1), intracellular 

adhesion molecule-1 (ICAM-I), and plasminogen activator inhibitor-1 (PAI-1) 

(Awolesi et al., 1995, Cheng et al., 1996, de Jonge et al., 2002, Wang et al., 2003a, 

Wung et al., 2001). The complexity of these cyclic strain-induced events have not 

been completely elucidated but the ability of cells to respond to cyclic strain is 

believed to play a role in a number of pathologies including atherosclerosis, 

hypertension or restenosis following balloon angioplasty (Li and Xu, 2000, Zou et 

al., 1998) and retinal pathologies such as diabetic retinopathy (Schmetterer and
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Wolzt, 1999) Intracellularly, cyclic strain is responsible for the recruitment of a 

variety of signalling molecules Yano et al reported that cyclic strain increases the 

tyrosine phosphorylation of focal adhesion kinase (FAK) and paxilhn in ECs with a 

concurrent cell elongation and the alignment of F-actin, FAK, and paxilhn (Yano et 

a l , 1996) Cyclic strain has also been found to activate extracellular signal-regulated 

kinase (ERK), c-jun N-terminal kinases (JNK), and p38 (Wung et a l , 1999, Kito et 

a l , 2000)

Chien et al demonstrated mechanical strain is a potent stimulator of 

endothelial cell gene expression (Chien et a l , 1998) Following exposure to cyclic 

strain for half an hour, 237 genes were found to have altered gene expression These 

genes included cell receptors, protein kinases, cell growth/differentiation factors, 

extracellular matrix (ECM) proteins, lipid metabolism, protein metabolism, 

transcription factors, binding proteins and water channels

DNA microarray analysis o f human vascular SMC showed that COX-1, PAI- 

1 and tenascin where all upregulated in response to cyclic strain while MMP-1 and 

thrombomodulin were down-regulated which suggests a response of defense against 

excessive deformation (Cui et a l , 2004, Feng et a l , 1999) The changes in secretion 

of vasoactive compounds, signalling molecules and gene expression observed in 

response to cyclic strain result in changes in cell phenotype

Cyclic strain is a powerful stimulus and can also regulate cell fate decisions 

Exposure o f vascular smooth muscle to cyclic strain leads to apoptosis via a p53 

dependent pathway, conversely, cyclic strain can suppress EC apoptosis via Akt 

phosphorylation (Mayr et a l , 2002, Persoon-Rothert et a l , 2002, Haga et a l , 2003) 

Similarly cyclic strain has been linked to inhibition of proliferation in addition to 

increases in angiogenesis associated with TGF-|3, MMP-2 and VEGF (Rivilis et a l , 

2002, Zheng et a l , 1999, Vailhe and Tranqui, 1996, Banai et a l , 1994) These 

studies clearly demonstrate the importance of cyclic strain in coordinating and 

regulating cell function by mediating changes in gene transcription, signalling 

molecules activation and release of vasoactive compounds
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1.2.3 Mechanotransduction

Vascular cells respond to mechanical forces namely cyclic strain and shear 

stress by altering gene expression, which results in changes in cellular structure and 

function (Okada et al., 1998, Wung et al., 2001, Garcia-Cardena et al., 2001, 

Awolesi et al., 1995). Before a vascular cell can respond to a haemodynamic 

stimulus however, it must first of all be able to detect them. This is facilitated by 

mechanically sensitive receptors. These receptors, which fall into a number of 

categories, can then elicit a signalling pathway, which culminates in the recruitment 

of effector molecules to mediate a cellular response (Figure 1.7). Mechanical forces 

initiate complex signal transduction cascades leading to functional changes in the 

cell, often triggered by receptors such as G-proteins, integrins, or protein tyrosine 

kinases (PTKs).

Mechanical Force, 
Cyclic Strain/Shear Stress

Figure 1.7: An overview of transduction of a mechanical force from cell 
membrane to nuclear transcription.
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12  31  G-proteins

G-protein signalling represents a highly sophisticated molecular system with 

the ability to receive, integrate, and process information from extracellular stimuli 

The components o f the G-protein signalling machinery include a G-protein coupled 

receptor (GPCR), a heterotrimeric G-protein complex itself, and effector proteins, in 

addition to the more recently identified regulators o f G-protein signalling (RGS- 

proteins) and activators of G-protein signalling (AGS-proteins) (Offermanns, 2003) 

G-protein signalling is known to play a pivotal role in cardiovascular signalling

All of these receptors have seven membrane spanning elements that use 

intracellular loops and their C-terminal tails for interaction with heterotrimeric G- 

proteins, which consist o f a , p and y subunits The p and y subunit forms an 

undissociable complex which represents a functional subunit Ligand activated 

receptors catalyse the GDP/GTP exchange at the a  subunit of a coupled G-protein 

and promote dissociation of the a  and Py components (Wieland and Mittmann,

2003) The duration of a G-protein activation is controlled by the intrinsic GTPase 

activity of Ga Following GTP hydrolysis the Ga subunit returns to the GDP-bound 

conformation and reassociates with the Gpy subunit

1 2 3 2 Integnns

Integrins comprise a large family of heterodimeric cell surface receptors 

most widely known for their role as receptors for extracellular matrix proteins The 

heterodimer comprises of one o f eighteen a  and one o f eight p subunits not 

including splice variants Each possible combination of subunits has its own binding 

specificity and signalling properties (Giancotti and Ruoslahti, 1999) These subunits 

can form twenty-four different integrins Sixteen of the known integrins are 

reportedly involved in the vasculature, with seven expressed in endothelial cells 

(Rupp and Little, 2001) The cytoplasmic tail o f integnns is generally devoid o f  

enzymatic activity As a result of this, integrins transduce signals via adaptor
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proteins which connect the integrin to the cytoskeleton, cytoplasmic kinases and 

transmembrane growth factors (Giancotti and Ruoslahti, 1999)

1 2  3 3 Protein Tyrosine Kinases (PTKs)

The initiation of signal transduction events by “shear-stress-sensitive 

receptors” leads to a cascade of downstream signalling events many o f which are 

mediated by protein tyrosine kinases PTKs are crucial in the shear stress regulation 

of cell shape and stress fibers This can be demonstrated by inhibition o f shear stress 

induced ERK and JNK activation by genistein, a PTK inhibitor Once the kinases are 

activated they relay signals downstream by phosphorylating other protein kinases 

and transcription factors These kinases are turned off by activation o f specific 

phosphatases Mitogen activated protein kinases (MAPKs) are the most well studied 

kinases in response to haemodynamic forces, and they were first identified as 

microtubule associated kinases, due to their involvement with the cytoskeleton (Berk 

et a l, 1995)

1 2  3 4 Ion channels

In addition to being regulated by G-proteins, some ion channels function as 

receptor molecules themselves Two different mechano-sensitive channels have been 

identified in vascular cells shear stress activated potassium channels and stretch 

activated cationic channels Inhibition o f ion channel activation can attenuate strain 

induced smooth muscle cell proliferation (Sweeney et a l , 2002) Stretch activated 

phospholipase C activity was found to involve the influx of calcium via gadolinium 

sensitive channels Similarly, Ang II activation o f mitogen activated protein kinases 

is calcium dependent in VSMC (Lehoux and Tedgui, 1998) The exact mechanisms 

by which mechanical forces regulate ion channel conformation remains vague, 

though deformation of the cytoskeleton is thought to be an important contributor in 

this regulation
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12  3 5 Role of Mitogen activated protein kinases

The mitogen-activated protein kinase (MAPK) signalling cascade is an 

important pathway whose activation can lead to or stimulate gene transcription 

and/or protein synthesis The MAPK super-family is comprised o f three main and 

distinct signalling pathways the extracellular signal-regulated protein kinase (ERK), 

the c-jun N-terminal kinases or stress-activated protein kinases (JNK/SAPK), and 

the p38 family o f kinases Each o f the MAPK modules operates as a three-tier 

system The MAPK module is activated by a MAPK kinase (MAPKK), which is a 

dual-specific kinase, which phosphorylates ERK, JNK and p38 at both Ser/Thr and 

Tyr sites The MAPKK is activated by a MAPKK kinase (MAPKKK), which 

receives its stimulus from receptors on the cell surface MAPK have a key role in the 

regulation of many genes because the end targets o f these cascades are often nuclear 

proteins or transcription factors (Cowan and Storey, 2003)
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12  2 Autoregulation of Blood Flow

Blood flow through the human retina varies from -5 0  to 80 [xl/min (Garcia et 

a l , 2002), with a mean retinal circulation time o f 4 to 5 seconds (Hickam et a l , 

1959) Hayreh described a formula to calculate blood flow in the optic nerve head or 

retina

Flow = Perfusion pressure / resistance to flow

Perfusion pressure is defined as the difference between arterial and venous 

pressure, with venous pressure equal to or slightly higher than intra ocular pressure 

(IOP) in the eye Local resistance in turn is controlled by the size of the vessels, 

which as is the case in most microvascular beds, are ‘autoregulated’ Vessels 

regulate local resistance to flow via alterations in vessel tone and thus, diameter For 

example, a decrease in perfusion pressure results in vasodilation and a resulting 

increase m blood flow, whereas an increase in perfusion pressure results in 

vasconstnction, in order to return blood flow to its ‘normal’ level (Figure 1 8 ) ECs 

can ‘detect’ local alterations in blood flow via membrane bound ‘mechanosensors’ 

and thus alter production o f vasoactive mediators such nitric oxide, prostacyclin or 

endothehn- 1

Therefore autoregulation is defined as the abdity to maintain a relatively 

constant blood flow , capillary pressure and nutrient supply, in spite o f changes in 

perfusion pressure (Hayreh, 2001)
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endothelium

attentuabon

pressure & blood flow
permeability

Figure 1 8 Schematic diagram of pericyte contraction (left) or relaxation (right)
http //www udel edu/Biology/Wags/histopage/illuspage/

Autoregulation has been demonstrated in the vascular beds of cats, pigs, 

rabbits and humans However, terminal arterioles are physically limited in terms of 

how much they can relax or contract, and as such, can only autoregulate within a 

certain range o f perfusion pressure In some studies the upper limit for 

autoregulation o f the retinal blood flow is suggested as 30 mmHg, with a lower limit 

of 15 mmHg (Hayreh, 2001) Chronic exposure to pressures outside of this critical 

range (which will have large inter-individual variation) is likely to result in 

pathological alterations For example, such a mechanism has been observed in the 

human eye with BP elevations of 40% above baseline, with corresponding increases 

in retinal blood flow (Robinson et a l , 1986) Such increases may also be responsible 

for the clinical lesions of hypertensive retinopathy and why in conjunction with 

diabetes mellitus, there exists clinical evidence o f accelerated retinopathy It is 

known that the ability of the diabetic’s circulation to distribute blood is affected, 

especially during increased blood flow In most tissues this causes no serious 

burden, but three tissues are usually susceptible to disturbance They are the retina, 

renal cortex, and peripheral nerves (Lam et a l , 2003)

Along with impaired autoregulation outside the manageable range o f  

perfusion pressures, endothelial dysfunction is also considered a factor impairing 

retinal blood flow Endothelial dysfunction can result in altered basal EC secretion
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of vasoactive mediators such as NO, PGI2 and ET- 1  or impaired secretion in 

response to changes in blood flow Interestingly, chronic alterations in blood flow 

can lead to endothelial dysfunction
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1 2  2 1 Vasodilators 

1 2  2 1 1  NO

The recognition that nitric oxide (NO) is a critical signalling molecule 

mediating a broad variety o f physiologic and pathophysiologic events has prompted 

the rapid growth of investigations in NO biology Along with prostacyclin, NO is 

responsible for endothelium derived tonic relaxation of all types o f blood vessels by 

stimulating soluble guanylate cyclase and increasing cGMP in smooth 

muscle/pericyte cell, counteracting endothelium derived vasoconstrictor effects o f  

endothelin and thromboxane A2 The increase in intracellular cGMP concentration 

leads to a relaxation via a decrease in intracellular Ca2+ (most likely by increasing 

Ca2+ efflux and reuptake into intracellular stores) and dephosphorylation of myosin 

light chains (Luscher et a l , 1990a) NO also functions as a neurotransmitter in the 

central and peripheral nervous system, and contributes to the antimicrobial activity 

of macrophages as well as to hormone release and platelet inhibition Thus, NO is 

formed within neural, cardiovascular and immune system

NO is a unique bioactive mediator because it is a gas with no known storage 

mechanism and is the lowest molecular weight o f any human cell secretory product 

Dissolved in cellular fluids, lipophilic NO can easily cross membranes by diffusion 

NO is highly reactive and extremely labile, with a biological half-life o f only a few 

seconds, and is oxidized to stable nitrite and nitrate Therefore, NO action is very 

transient and directly controlled by the generation of NO

NO is generated from the metabolism o f L-arginine by a family of enzymes, 

the nitric oxide synthases (NOSs) The NOS enzymes were first identified and 

described in 1989 and the three major isoforms were cloned and purified between 

1991 and 1994 (Alderton et a l , 2001) The three isoforms o f NOS are neuronal 

NOS (nNOS), iNOS and eNOS (also called NOS-1, NOS-2 and NOS-3, 

respectively) iNOS is controlled by inflammatory mediators and cytokines and 

produces large, unregulated quantities of NO, whereas nNOS and eNOS produce 

low amounts o f NO eNOS and nNOS are generally referred to as constitutively 

expressed, Ca2+-dependent enzymes, although eNOS can also be activated in a Ca2+-
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independent manner (Ayajiki et a l , 1997) The enzymes have a bi-domain structure 

in which the N-terminal, oxygenase domain contains binding sites for heme, 

tetrahydrobiopterin (BH4) and L-arginine This is linked by a calmodulin(CaM) 

binding domain to a C-terminal reductase domain that contains binding sites for 

flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and NADPH All 

NOSs have approximately 60% amino acid homology, with very similar structures

The physiological importance of this endothelium-derived vasodilator is 

reflected by the significant increase in vascular resistance that is induced in animals 

and humans exposed to pharmacological antagonists o f nitric oxide synthase 

(Vallance et a l , 1989) Endothelium-derived nitric oxide also inhibits platelet and 

leukocyte adherence to the vessel wall (Kubes et a l , 1991) This effect of nitric 

oxide is mediated in part by the activation o f cGMP and phosphorylation o f  

intracellular signalling proteins, such as vasodilator stimulated phosphoprotein 

(Smolenski et a l , 1998) In addition, nitric oxide suppresses the expression of 

adhesion molecules and chemokines regulating endothelial interaction with 

circulating blood elements (Spiecker et a l , 1998) Finally, endothelium-derived 

nitric oxide also inhibits vascular smooth muscle cell proliferation (Garg and Hassid, 

1989), in part mediated by an increase in vascular smooth muscle cell apoptosis 

(Weidinger et a l , 1990) In contrast, nitric oxide is a survival factor for endothelial 

cells (Dimmeler et a l , 1997) These observations are consistent with the view that 

nitric oxide is an endogenous antiatherogenic molecule Impairment of endothelial 

NOS contributes to the pathological alterations in vascular reactivity and structure 

that are observed in atherosclerosis (Cooke and Dzau, 1997) Pharmacological 

inhibition or genetic deficiency o f NOS inhibits endothelium-dependent 

vasodilation, impairs tissue blood flow, and raises blood pressure (Cooke and Dzau, 

1997) Furthermore, nitric oxide deficiency promotes the adherence and intimal 

accumulation o f mononuclear cells and accelerates lesion formation in animal 

models o f atherosclerosis (Cooke and Dzau, 1997, Gimbrone et a l , 1995) By 

contrast, enhancing nitric oxide production in the vessel wall slows or even reverses 

atherogenesis or restenosis (T e n to lo u r is  e t alM 2000)
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Regulation o f NO is reported at several levels transcriptional and post- 

transcriptional regulation o f RNA, enzyme phosphorylation and availability o f  

enzyme substrate (L-argimne) and co-factors (Ca++, calmodulin, NADPH, BH4, 

FAD, FMN and heme) Additionally, eNOS is activated and deactivated via 

phosphorylation at serine residue 1177 and threonine residue 495, respectively 

eNOS phosphorylation at serine1179 increases activity o f the enzyme, possible via an 

increase in electron flux through the reductase domain eNOS phosphorylation by 

protein kinase Akt is promoted by VEGF (Fulton et a l , 1999), fluid shear stress and 

stretch (Dimmeler et a l , 1999, Gallis et a l , 1999) NO production in response to 

short-term VEGF exposure is mediated by the activation o f tyrosine kinases and 

PI3K, whereas longterm exposure to VEGF augments NO release through increased 

expression o f eNOS protein Moreover, NO mediates a proliferative and angiogenic 

response to VEGF in vitro (Papapetropoulos et a l , 1997) Lastly, several protein- 

protein interactions with a number of partners can also activate or inhibit the enzyme 

e g  HSP90, Akt, caveolin-1 and protein inhibitor o f NOS (Alderton et a l, 2001, 

Balligand, 2002)
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1.2 2 1 2 PGI2

In addition to NO, endothelial and pericyte cells produce prostacyclin (PGh), 

a critical modulator o f vascular tone in both physiological and pathophysiological 

conditions (Davidge, 2 0 0 1 ) PGI2 activates adenylcyclase, causing an increase in 

intracellular production of cyclic adenosine 3’,5’-monophosphate (cAMP), resulting 

in pericyte vasodilation

Production o f PGI2 is regulated by the availability o f arachidonic acid and 

also the activity of COX enzyme (Smith et a l , 2000c) Liberation o f arachidonate 

from membrane phospholipids is mediated through phospholipases Once 

arachidonate is released, COX converts it to PGI2 COX is a rate-limiting enzyme 

that exhibits a cyclooxygenase activity and a peroxidase activity There are two 

known isoforms, COX-1 and COX-2 COX-1 is generally termed the constitutive 

isoform, and COX-2 the inducible isoform (Smith et a l , 2000b) While this is the 

case in many tissues, these terms are not exclusive COX-1 can be induced in some 

situations and COX-2 is constitutive in the brain and in other tissues Also, recent 

evidence suggests that in addition to constitutive endothelial COX-1, COX-2 is a 

major source o f circulating prostacyclin (McAdam et a l , 1999) COX-1 and COX-2 

have approximately 60-65% sequence homology within the same species, and 80- 

95% homology of the individual isoforms across different species The tertiary 

structures o f each are almost identical, with each existing as homodimers

Both the endothelium and smooth muscle cell contain COX, however, 

endothelial cells contain up to 2 0  times more enzyme With regard to sub-cellular 

localization, lmmunogold-labeling microscopy has demonstrated that both COX1 

and COX2 are present in equal proportions in the luminal surface of endoplasmic 

reticulum and in the inner and outer membranes of the nuclear envelope in human 

umbilical vein endothelial cells (Spencer et a l , 1998) There does not appear to be a 

different sub cellular localization of COX1 versus COX2

Similar to NOS enzymes, COX enzymes are also regulated by mechanical 

forces cyclic strain and shear stress Most studies demonstrate COX2 induction with 

cyclic strain or shear stress (Dancu et a l , 2004, Okahara et a l , 1998, Inoue et a l ,
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2002, Hendrickson et a l , 1999) and no change in COX1 (Inoue et a l , 2002) Some 

investigators have however demonstrated induction o f COX1 with cyclic strain or 

shear stress (Okahara et a l , 1998) These discrepancies can be explained by several 

variables apparatus type, magnitude of force, duration, culture media, force type 

(e g laminar, oscillatory or pulsatile shear stress), and finally, whether the cells are 

derived from micro- or macro-vascular vessels
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1 2 2 2 Vasoconstrictors 

1 2  2 2 1 Endothelin-1

Endothelin-1 (ET-1), which was initially isolated and identified in 1988 from 

conditioned medium o f cultured porcine endothelial cells, is a potent 

vasoconstrictive peptide comprising 21 amino acid residues (Masaki, 2004) 

Analysis o f human genomic DNA revealed the existence o f three distinct ET-related 

genomic loci encoding three similar but distinct sequences of ET These three have 

been designated ET-1, ET-2 and ET-3, though ET-1 is the only isoform transcribed 

in the vasculature (i e endothelial cells)

ET-1 causes an increase in intracellular Ca2+ and initiates a signalling 

cascade that will lead to contraction via actin-myosin interaction The first step in 

this pathway is activation of calmodulin (CaM), a widely distributed 17kDa 

intracellular protein CaM can then activate myosin light chain kinase, a 

serine/threonine kinase, which catalyses the phosphorylation of myosin, allowing the 

actin-myosin interaction to occur, resulting in force production

The physiological importance of endogenous ET-1 in the maintenance o f  

basal vascular tone and blood pressure in humans has been demonstrated by local 

and systemic vasodilation in response to inhibitors of the endothelin system 

(Verhaar et a l , 1998) The plasma half-life of ET-1 is 4 to 7 minutes, and as such, 

vascular endothelial cells can rapidly adjust production as required for the regulation 

of vascular tone The translation o f pre-proendothelin mRNA results in the 

formation of a 203 amino acid pre-proendothelin peptide, which is cleaved by a furin 

convertase to a 38 amino acid peptide big ET-1 Once formed, big ET-1 is processed 

to ET-1 through cleavage o f the Try21-Val22 bond by ET-converting enzyme (ECE- 

1) (Luscher and Barton, 2000) 75% of ET-1 is released on the abluminal side, 

demonstrating a paracrine rather than endocrine effect Plasma concentrations are 

nevertheless clinically useful, since plasma concentrations have been found to 

correlate well with severity of some diseases, such as congestive heart failure 

(D'Orleans-Juste et a l , 2002, Dschietzig et a l , 2001)
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ET-1 mediates its action via two G-protein coupled receptor subtypes, the 

endothelin type A receptor (ETa) and type B receptor (ETB) (Wackenfors et a l ,

2004) Both ETa and ETb receptors are present on VSMCs and pericytes, with ETA 

the predominant subtype, whereas endothelial cells are reported to have ETb only 

receptors Activation o f endothelin receptors on VSMCs is known to cause 

vasoconstriction via a transient increase in intracellular Ca2+ ions through the 

phospholipase C pathway, and also via a sustained increase from Ca2+ influx from 

the extracellular space (Masaki, 2004) On the other hand, endothelial cell activation 

of ETb promotes the release of nitric oxide and prostacyclin, thereby potentially 

limiting an excessive ETA and/or ETb mediated VSMC stimulation by ET-1 Thus 

far, it is not clear whether the receptors in endothelial cells and VSMCs represent the 

same or subtypes of ETb
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12  3 Endothelial Dysfunction

Endothelial dysfunction was initially identified as impaired vasodilation in 

response to specific stimuli such as acetylcholine or bradykimn (Chand and Altura, 

1981) A broader understanding of the term would include not only a shift of the 

actions of the endothelium toward reduced vasodilation, but also an increased 

proinflammatory and prothrombic state (Endemann and Schiffrin, 2004) Such 

pathophysiologic alterations in endothelial structure and/or function are associated 

with most forms of cardiovascular disease, such as hypertension, coronary artery 

disease, chronic heart failure, peripheral artery disease, diabetes, and chronic renal 

failure (Endemann and Schiffrin, 2004)

Vascular pressure, exogenous and endogenous vasoactive substances, and 

metabolic activity each influence blood flow either by acting directly on mural cells 

or by influencing vascular endothelial cell release of vasodilators or 

vasoconstrictors Secretion of these vasoactive substances is finely balanced and 

generally tilted towards vasodilatation The regulatory function of the endothelium is 

altered by cardiovascular risk factors or disorders such as smoking, 

hypercholesterolemia and hyperglycaemia, thus disrupting the balance of 

vasodilators/vasoconstrictors A plethora of studies have shown mechanical forces 

associated with blood flow (shear stress and cyclic strain) modulate both production 

and release of MO (Gallis et a l , 1999, Hendrickson et a l , 1999), PGh (Doroudi et 

a l , 2000, Inoue et a l , 2002, Hendrickson et a l , 1999) and ET-1 (Yoshizumi et a l , 

1989, Morita et a l , 1993, Sharefkin et a l , 1991, Malek and Izumo, 1992, Kuchan 

and Frangos, 1993), however chronic alterations in mechanical forces associated 

with blood flow may damage this flow-induced response For example, in animal 

models of disease, poor dilatation in response to flow has been reported in isolated 

arterioles from hypertensive rats (Koller and Huang, 1994, Koller and Huang, 1999), 

in the coronary circulation of atherosclerotic pigs (Kuo et a l , 1992), and also 

impaired myocardial contractility in patients with left ventricular hypertension 

(Palmieri et a l , 2005)
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Endothelial dysfunction in the retinal circulation results in either inadequate 

constriction (vasospasm) or dilation when needed, thus reducing the autoregulatory 

capacity o f these vessels Due to the large number o f symptoms caused by 

vasospasms, the term vasospasm or vasospastic syndrome is often used rather than 

endothelial dysfunction Vasospastic syndrome is often characterized by a tendency 

towards cold hands and feet, low blood pressure, higher incidences o f  migraine and 

Raynauds-like micro vascular circulation (Flammer et a l , 2001)

Attempts to determine a role o f endothelial dysfunction in disease has focused 

on disturbance of the local and/or circulating balance o f vasoactive factors - NO, 

PGh and ET-1 (Drexler and Hornig, 1999, Nicolela et a l , 2003) Healthy circulation 

maintains a balance tilted towards an excess of vasodilators over vasoconstrictors 

Several mechanisms may be involved in such a disturbance o f this balance and thus 

cause vasospasm o f vessels reduced synthesis or release of vasodilators, enhanced 

inactivation after their release, or increased amounts of circulating vasoconstrictors 

For example, plasma levels o f asymmetric dimethylarginme (ADMA), an 

endogenously produced inhibitor o f nitric oxide synthase (NOS), are elevated in 

disorders characterized by endothelial dysfunction - hyperhomocysteinemia(Boger 

et a l , 2000, Boger et a l , 2001), hypercholesterolemia (Boger et a l , 2000), 

atherosclerosis (Miyazaki et a l , 1999), diabetes (Asagami et a l , 2002) and coronary 

artery disease (Maas et a l , 2005) Additionally, in a canine model of microvascular 

renal failure, endothelial dysfunction was attributed to inhibition of NO production 

by elevated ADMA (Okubo et a l , 2005)

The crucial role of NO in maintaining vascular homeostasis is also apparent 

with the association o f eNOS polymorphisms with disorders that have in common a 

dysfunctional endothelium coronary heart disease, ischemic stroke, hypertension 

and Fabry’s disease (Wilcox et a l , 1997, Heltianu et a l , 2005, Abe et a l , 2005, 

Howard et a l , 2005) Similarly, systemic factors such as hypercholesterolemia and 

hyperglycaemia are thought to impair endothelial NO signalling via oxidative stress 

damage Oxidative stress manifests as an imbalance between the levels o f NO and 

reactive oxygen species (ROS) such as the superoxide anion (SO) (Miller et a l , 

2005, Napoli et al.* 2001) Studies on various animal models o f diabetes have
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showed that administration of scavengers of ROS such a superoxide dismutase 

(SOD) and catalase (CAT) improved or normalised the agonist induced endothelium 

dependent dilation o f arteries, suggesting that elevated levels o f superoxide and 

hydrogen peroxide may inactivate NO after its release Clinical studies demonstrated 

decreased NO synthesis and increased ROS production in patients with essential 

hypertension, renovascular hypertension and malignant hypertension (Higashi et a i , 

2002, Lip et a l , 2002) Indeed, recent reports targeting ECs with adenovirus 

expressing NOS prevents elevation o f blood pressure in stroke-prone spontaneously 

hypertensive rats (Miller et a l , 2005) Moreover, in diabetes, several studies using 

different animal models demonstrate a decrease in endothelium-dependent 

vasodilatation For example, streptozotocin diabetic rats have a decreased EC 

response to NO stimulators such as acetylcholine In diabetic patients, several 

reports suggest basal NO release is impaired (Calver et a l , 1992, Elliott et a l , 1993), 

and endothelium-dependent responses to methacholine in the forearm resistance 

vessels are impaired in insulin-dependent (Johnstone et a l , 1993) and non-insulin 

dependent patients (Williams et a l , 1996)

Coronary artery disease (CAD) is associated with impaired endothelium- 

dependent vasodilatation (Thanyasin et a l , 2005), often causing transient 

myocardial ischemia (Kawano and Ogawa, 2005) In humans, acetylcholine, 

serotonin, histamine, or ergonovine, which are all endothelium-dependent 

vasodilators by virtue o f the release o f nitric oxide, induce coronary dilation in 

young healthy subjects but cause vasoconstriction in patients with atherosclerosis 

(Kawano and Ogawa, 2005) In addition, recent experimental and clinical data have 

shown that endothelial dysfunction precedes the formation o f arteriosclerotic lesions 

and is associated with an increased risk for future cardiovascular events 

(Schachinger and Zeiher, 2001) Endothelial dysfunction is also evident in advanced 

atherosclerosis, with compromised constitutive eNOS expression in ECs overlying 

atherosclerotic plaques
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The physiological importance of endogenous ET-1 in the maintenance of basal 

vascular tone and blood pressure in humans has been demonstrated by local and 

systemic vasodilation in response to inhibitors of the endothelin system (Verhaar et 

al., 1998). Pulmonary hypertension is associated with increased ET-1 production in 

both in animal models and in patients (Yoshibayashi et al., 1991). Elevated plasma 

levels of ET-1 have been associated with CAD, essential hypertension and heart 

failure (Sainani et al., 2005, Lerman et al., 1991, Stewart et al., 1991), whereas ET-1 

tissue concentrations in hypertensive rats correlate with systemic arterial pressure 

(Verma et al., 1995). Farkas et al. demonstrated an impaired forearm skin 

microcirculatory response in hypertensive patients due to increased ET-1, and also 

decreased response to acetylcholine (Farkas et al., 2005), suggesting the ET-1 and 

NO pathways interact, as has previously been described (Ohkita et al., 2003, Liu et 

al., 2003a, Lavallee et al., 2001). Interestingly, ET-1 can induce vasodilation via 

ETb receptor activation on ECs, resulting in release of NO and PGI2. The 

importance of endothelial ETb is highlighted by the growing trend of pharmaceutical 

companies utilising ETA specific antagonists, rather than non-selective ET-receptor 

antagonists in the treatment of hypertension (D'Orleans-Juste et al., 2002). Early 

studies demonstrated selective ETa receptor antagonism preserves relaxations to 

endothelins (Takase et al., 1995). Reports by Strachan et al (1999) demonstrated 

increased peripheral vascular resistance in normal subjects with systemic 

administration of specific ETb receptor antagonist, suggesting that the overall 

balance of effects of endogenous ET-1 at the vascular ETb receptor favors 

vasodilatation (Strachan et al., 1999).

Several laboratories have reported the potential association of 

polymorphisms in the ET-1 gene and disease. Studies on dilated cardiomyopathy did 

not detect a role of genetic polymorphisms in the ET-1 gene (Charron et al., 1999, 

Herrmann et al., 2001). On the other hand, Brugada et al demonstrated a 

polymorphism of the ET-1 gene might act as a modifier gene in hypertrophic 

cardiomyopathy (Brugada et al., 1997). Two variants of the ETA receptor have been 

studied with promising results, suggesting an association with idiopathic dilated 

cardiomyopathy (Charron et al., 1999) and nonischemic dilated cardiomyopathy
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(Herrmann et a l , 2001) A study in 528 never-treated hypertensives demonstrated 

that variants in the genes encoding ET-1 and the ETa receptor are not significant 

determinants of cardiac morphometric parameters (Lajemi et a l , 2001)
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1 3 Vascular remodelling & Altered mechanical forces

Vascular remodelling can be described as any enduring change in the size or 

composition of an adult blood vessel Thus, processes such as vascular cell 

proliferation, apoptosis and/or matrix synthesis or degradation can significantly alter 

lumen or vessel dimensions Remodelling of a blood vessel may occur to 

accommodate and adapt to changes in haemodynamic forces or as a response to 

inflammation or injury

Inappropriate remodelling of the blood vessel is currently thought to be a 

major contributing factor to a number of pathologies such as those seen in 

atherosclerosis, restenosis and diabetic retinopathy (Gibbons and Dzau, 1994) In 

diseased tissue, additional factors are present locally such as inflammatory 

cytokines, inflammatory cells or modified cholesterol, and systematically, such as 

altered haemodynamic forces such as blood pressure or flow

A common feature of vascular disease is altered or elevated biomechanical 

stress This can lead to an alteration in the balance between VSMC proliferation and 

apoptosis, or an increase in VSMC migration, and result in remodelling of the 

vasculature (Wang et a l , 1999) Spontaneous atherosclerotic lesions, for example, 

occur preferentially at bifurcations and curvatures of arterial blood vessels, where 

haemodynamic forces are disturbed (DeBakey et a l , 1985, Thubnkar and Robicsek, 

1995) In addition, venous vessels do not develop atherosclerosis when maintained 

in their normal low-pressure environment, however, atherosclerosis can be observed 

following arterial vein grafts due to the increased biomechanical force on the venous 

vessel (Xu, 2000) Alterations in VSMC fate decisions have been associated with 

numerous vascular disease states Proliferation of VSMC contributes to the 

pathogenesis of hypertension, intimal hyperplasia, atherosclerosis and the arterial 

response to injury (Vinters and Berliner, 1987, Thubrikar and Robicsek, 1995, Traub 

and Berk, 1998) Many studies have demonstrated that changes in intravascular 

forces that occur in disease states such as hypertension, result in a decreased lumen 

and increased media lumen ratios in arterial blood vessels, compared to 

normotensive patients (Nordborg et a l , 1983)
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Apoptosis plays a pivotal role both in normal vasculogenesis and in the 

pathobiology of the vascular system Apoptosis is virtually absent in normal adult 

vessels, but is a prominent feature of pathological conditions involving vascular 

remodelling This suggests a direct relationship between mechanical force and the 

regulation of apoptosis In recent years, many studies have independently proven the 

relationship between increased mechanical forces and increased levels of VSMC 

apoptosis Analysis of atherosclerotic lesions in both human and animal models 

reveal high levels of VSMC apoptosis (Kockx, 1998, Mayr and Xu, 2001) Isolated 

human SMC from atherosclerotic plaques display a higher tendency to undergo both 

spontaneous and induced apoptosis than VSMC isolated from normal vessels 

(Bennett, 1999) In addition, a study of biomechanical-mduced apoptosis in the 

development of vein graft arteriosclerosis revealed that the number of apoptotic 

VSMC in the vein wall increased for at least eight weeks following grafting to an 

artery, but not to any vein, thus proving the effect of increased mechanical forces on 

apoptosis (Xu, 2000, Mayr et a l , 2002)
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1.3.1 Proliferation

The cell-cycle consists of an orderly set of phases, during which specific 

protein subsets are transcribed and assembled. Quiescent (GO) cells enter a gap 

period (Gl), during which the factors necessary to replicate DNA for the subsequent 

synthetic (S) phase are assembled. After DNA replication is completed, the cells 

enter another gap phase (G2) in preparation for mitosis (M). Restriction points at the 

G l-S  and G2-M interphases ensure orderly cell cycle progression (Figure 1.9).

M
(mitosis)

G2
(Gap 2)

G1
(Gap 1)

S phase 
(DNA synthesis)

Cells th a t
cease
division

Figure 1.9: Schematic of the eukaryotic cell cycle and the 
phases G l, S, G2 and M.

The central components of the cell-cycle control system are cy cl in-dependent 

protein kinases (Cdks), whose activity depends on association with regulatory 

subunits called cyclins. Oscillations in the activities of various cyclin-Cdk 

complexes lead to the initiation of various cell-cycle events. Thus, activation of S- 

phase cyclin-Cdk complexes initiates S phase, while activation of M-phase cyclin- 

Cdk complexes triggers mitosis. The activities of cyclin-Cdk complexes are 

influenced by several mechanisms, including phosphorylation of the Cdk subunit, 

the binding of special inhibitory proteins (CKIs), proteolysis of cyclins, and changes 

in the transcription of genes encoding Cdk regulators. Phase-specific cyclin-CDK 

complexes confer specificity and orderly progression through the cell cycle. Initially, 

increasing accumulation of cyclin D-CDK4 and cyclin E-CDK2 complexes, in
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cooperation with proliferating cell nuclear antigen (pCNA), coordinate DNA 

replication by regulating the transition through the G1 and S phases (Sherr, 1995). 

Antimitogenic signals activate p53, which induces expression of the CKI p21 CIP1 

and consequently inhibits the activity of the G1 cyclin-CDK complexes, resulting in 

G1-phase arrest (Levine, 1997). Conversely, the E2F family of transcription factors 

controls expression of genes in S-phase (Sherr, 1995). In quiescent conditions, E2F 

members exist in inactive complexes with retinoblastoma (RB) protein. After 

mitogenic stimulation, the cyclin D-CDK4 and cyclin E-CDK2 complexes 

hyperphosphorylate RB, leading to dissociation of E2F, which in turn activates the 

expression of genes such as those encoding cyclins E and A and CDK1. In addition 

to p53 and E2F, GAX and GATA-6 are also relevant cell cycle-associated 

transcription factors in VSMCs. GAX, a homeobox transcription factor that 

regulates cell differentiation, proliferation and migration, is expressed in quiescent 

VSMCs (Smith et al., 1997). GATA-6 is a transcription factor involved in tissue- 

specific gene expression including VSMCs (Narita et al., 1996). Both stimulate the 

expression of p21 CIP1 and induce subsequent cell cycle arrest (Smith et al., 1997) 

(Perlman et al., 1998). Both are downregulated by mitogen stimulation in vitro and 

in response to vascular injury in vivo (Smith et al., 1997, Narita et al., 1996). Finally, 

transcription factors are not the only means by which the cell cycle is regulated in 

VSMCs. NO represses mitogen-stimulated cyclin A promoter activity, resulting in a 

cell cycle arrest through blockade of cyclin A mRNA and protein upregulation (Guo 

et al., 1998). In addition NO inhibits proliferation by upregulation of p21 CIP1 

(Ishida et al., 1997).
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1.3.2 Apoptosis

Cells of multi-cellular organisms generally die in one of two well- 

characterized ways, depending on the context and cause of death. These two forms 

of cell death, apoptosis and necrosis, can be defined and contrasted on the basis of 

their individual mechanisms, biochemistry, and altered cellular morphology (Hetts, 

1998) (Figure 1.10). Necrosis is a passive form of cell death, resulting from external 

noxious stimuli, inducing localized injury and inflammation. A classic example of 

necrosis is ischemic necrosis of the cardiomyocyte during acute myocardial 

infarction (Yeh, 1997). The necrotic process is characterized by severe cell swelling, 

breakdown of the membrane barrier and resulting release of the cellular components 

into the extracellular space and random degradation of nuclear DNAs. The release of 

extracellular components such as kinins incites localized inflammation, edema, 

capillary dilation and macrophage aggregation (Kuan and Passaro, 1998, Hetts, 

1998, Yeh, 1997). The inflammatory response is lengthy and unpredictable in its 

timecourse, often taking hours to days to occur and subside (Kuan and Passaro, 

1998). Although necrosis may be important in acute injury and certain acute 

inflammatory responses, it is not the mechanism whereby cells normally die (Hetts,

1998).
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Necrosis Apoptosis

Figure 1.10: Morphology of necrosis and apoptosis. Necrotic cells and their 
or^nelles are characteristically swollen. There is early membrane damage with eventual 
loss of plasma membrane integrity and leakage of cytosol into extracellular space. 
Despite early clumping the nuclear chromatin undergoes lysis. In contrast, apoptotic 
cells are shrunken and develop blebs containing dense cytoplasm. Membrane integrity 
is not lost until late, after cell death. Nuclear chromatin undergoes striking condensation 
and fragmentaiion.The cytoplasm becomes divided to form apoptotic bodies containing 
organelles and/or nuclear debris. Terminally, apoptotic cells and fragments are engulfed 
by phagocytes or surrounding cells

http ://200.72.204.110/web/images/Biologia/Apoptosis/

In contrast, apoptosis is an active, contained process, resulting from either 

external or internal stimuli (Kuan and Passaro, 1998). Apoptosis, or programmed 

cell death, is recognized as an important physiological process, both during 

development and in the maintenance of homeostasis in the adult. This mode of cell 

death allows for the removal of damaged, injured, infected or incompetent cells from 

the body both quickly and efficiently. The morphology of an apoptotic cell is clearly 

distinct to that of a necrotic cell. The apoptotic process is characterized by cell 

shrinkage and subsequent membrane blebbing, chromatin condensation around the 

nuclear membrane, and cleavage of the DNA into regular repeating 180 -  200 base 

pair units (Steller, 1995, Yeh, 1997). Apoptotic bodies are formed due to cleavage of 

the membrane, these are phagocytosed and digested by macrophages or
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neighbouring cells, or undergoes secondary necrosis. As no cytosolic components 

are released into the extracellular space, an inflammatory response is not initiated 

(Kuan and Passaro, 1998, Hetts, 1998). Unlike necrosis, this process is relatively 

rapid, reaching completion in approximately two hours (Kuan and Passaro, 1998).

The genetics and molecular mechanisms of apoptosis were first characterized 

during studies in C. elegans. Programmed cell death during the development of this 

nematode is highly precise and predictable, of the 1090 cells produced during 

development, 131 are destined to die (Ellis et al., 1991). Such studies have identified 

four sequential steps during the process of apoptosis, commitment to cell death 

induced by extracellular or intracellular triggers, activation of intracellular proteases, 

engulfment of the apoptotic bodies by other cells, and degradation of the apoptotic 

bodies within the lysosomes of the phagoctyotic cells (Steller, 1995). Genetic 

analysis of factors involved in apoptosis in C. elegans implicated three main genes, 

cell death defective 3 (ced 3), ced 4 and ced 9. As the genetic control of apoptosis is 

conserved throughout evolution, human homologues of these genes have been 

identified, these are caspase 8, Apaf-1, and Bcl-2 respectively (Hetts, 1998).
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1.3.2.1 Triggers of Apoptosis

Apoptosis-inducing stimuli can be either extrinsic or intrinsic, and can cause 

apoptosis through the activation of a number of different pathways. In most cases, 

however, these pathways converge on the caspase system of enzymes to execute 

their function. Extrinsic triggers of apoptosis include activation of receptor-mediated 

death-signalling pathways, for example Fas ligand activation, exposure to substances 

that cause DNA damage including chemotherapeutic agents and ionizing radiation 

(Hetts, 1998, Rich et al., 2000). Apoptosis can also be induced due to the removal of 

death-inhibiting (or survival-promoting) ligands, for example, vascular smooth 

muscle cells undergo apoptosis due to the withdrawal of growth factors, such as 

insulin-like growth factor and PDGF (Best et al., 1999). In addition, intrinsic signals 

such as increased intracellular oxidative stress, can cause the initiation of apoptosis 

within the cell, in which the mitochondria play a pivotal role (Desagher and 

Martinou, 2000).
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Figure 1.11: Schematic diagram of the multiple pathways involved 
in inducing, inhibiting, detecting and effecting the apoptotic event
http://www.chemicon.com/resource/
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1.3.2.1.1 Receptor-Mediated Death Signalling Pathways

Death receptors belong to the tumour necrosis factor (TNF) superfamily, and 

play a central role in instructive apoptosis (Ashkenazi and Dixit, 1998). Members of 

the death receptor family contain one to five cysteine-rich repeats in their 

extracellular domain, and a death domain (DD) in their cytoplasmic tail. This DD is 

essential for initiation of the apoptotic signal by these receptors. TNF receptor 1 and 

Fas (CD95) are two such receptors that initiate apoptosis when activated either by 

their respective ligands, TNF-a and Fas-L, or by agonist-like antibodies (MacLellan 

and Schneider, 1997, Gupta, 2003) (Figure 1.11). Following receptor-ligand 

interaction, the receptor oligomerizes, recruits adaptor molecules forming a death 

inducing signalling complex (DISC), which recruits and activates the caspase 

cascade and can culminate in apoptosis of the cell (Gupta, 2003, Yeh, 1997).

1.3.2.1.2 Apoptosis due to DNA Damage

Growth arrest, repair and apoptosis are all legitimate cellular responses to 

DNA damage. The choice of cell fate in each instance will depend on cell type, 

location, environment, and extent of damage.

p53 is a transcription factor that has been implicated in cell cycle arrest and 

in some, but not all, forms of apoptosis (MacLellan and Schneider, 1997). The level 

of p53 activity within the cell is maintained at a low level under normal conditions 

due to interaction with the Mdm-2 protein, which marks it for ubiquitin-mediated 

destruction (Mayo et al., 1997). DNA damage-induced phosphorylation of either p53 

or Mdm-2 prevents these two proteins from interacting, thus stabilizing and 

activating p53 (Evan and Littlewood, 1998). p53 levels are reported to increase 

within minutes of DNA damage, resulting in growth arrest or apoptosis of the cell 

(Lundberg and Weinberg, 1999).

Several cell-cycle regulators are induced by p53, including the cyclin- 

dependent kinase inhibitor p21, GADD 45 and members of the 14-3-3 family, 

resulting in growth arrest, followed by either DNA repair or cell death (Rich et al.,
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2000). p53 alone will not induce apoptosis, but acts as a transcription factor, 

activating the expression of numerous apoptosis-mediating genes (Bennett et al.,

1995). In contrast to these findings, it appears that a sustained and moderate level of 

p53 elevation induced by laminar shear stress causes endothelial cell cycle arrest, 

enhances DNA repair, and serves a protective function against excessive cell 

proliferation and cell death caused by increasing GADD 45 (Lin et al., 2000).

1.3.2.1.3 Mitochondrial Pathway of Apoptosis

A number of stimuli, including UV radiation, stress molecules (reactive 

oxygen and nitrogen species), and growth factor withdrawal, mediate apoptosis via 

the mitochondrial pathway (Gupta, 2003). During the process of apoptosis the 

mitochondria undergo morphological and cellular re-distribution changes. The 

mitochondria undergo a reduction in size and an increase in matrix density known as 

mitochondrial pyknosis. In addition, the mitochondria which are normally dispersed 

throughout the entire cell, display perinuclear clustering (Desagher and Martinou,

2000).

Mitochondria are organelles comprising of a matrix surrounded by an inner 

membrane (IM), an inter-membrane space, and an outer membrane (OM). The IM 

contains molecules that contribute to the formation of an electrochemical gradient or 

membrane potential, which include adenosine tri-phosphate (ATP) synthase and 

adenine nucleotide translocator. The OM contains a voltage-dependent anion 

channel, whilst the inter-membrane space contains proteins that contribute to 

apoptosis when activated, including holocytochrome c, some pro-caspases, and 

apoptosis-inducing factor (AIF) (Gupta, 2003) (Figure 1.12). Several mechanisms 

contribute to mitochondrial-mediated apoptosis. These include disruption of electron 

transport, oxidative phosphorylation and ATP production, alteration of the cellular 

redox potential, and release of proteins, such as cytochrome c, that trigger activation 

of the caspase family of proteases (Green and Reed, 1998).
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Figure 1.12: Schematic diagram of the mitochondria and its role 
in apoptosis. (www.sgul.ac.uk/depts/immunology/~dash/)
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1.3.2.2 Effectors of Apoptosis

1.3.2.2.1 The Caspase Cascade

Caspases are an evolutionally conserved family of cysteine proteases, which 

are viewed as the “central executioners” in apoptotic cell death. Caspases are 

synthesized as enzymatically inert zymogens, requiring proteolytic cleavage at an 

internal aspartate residue to induce their activation (Gibbons and Pollman, 2000, 

Hengartner, 2000). These zymogens are composed of three domains, an N-terminal 

pro-domain, and two domains termed plO and p20. The activation of caspases 

generally results in a serial sequence of caspase activation, known as the caspase 

cascade, which is a common end pathway in apoptosis induced by many different 

stimuli.

The aggregation of a number of caspase proteins via adaptor proteins renders 

the caspases capable of auto-proteolytic cleavage, and subsequent activation 

(Hengartner, 2000). Most caspases are activated by cleavage between the plO and 

p20 domains, and between the p20 and N-terminal pro-domain. Activation of 

caspase 8 and caspase 9, known as initiator caspases, results in subsequent cleavage 

and activation of downstream effector caspases, such as caspase 3, caspase 6 and 

caspase 7. The effector caspases are responsible for the induction of the biochemical 

and morphological changes associated with apoptosis, and are usually more 

abundant and active than the initiator caspases (Gibbons and Pollman, 2000, 

Hengartner, 2000).

Caspase 9 is activated through association with a regulatory subunit, known 

as an apoptosome. The apoptosome consists of cytochrome c, an adapter molecule 

Apaf-1 (apoptosis protease-activating factor), and pro-caspase 9 (Hengartner, 2000, 

Gupta, 2003). Cytochrome c is a nuclear DNA encoded protein; its precursor, 

apocytochrome c, is synthesized on free ribosomes within the cytoplasm, and can 

spontaneously insert into the mitochondrial outer membrane (Stuart and Neupert, 

1990, Gonzales and Neupert, 1990). This protein then incorporates a heme group, 

the protein re-folds, and is inserted into the inter-membrane space. The release of 

functional cytochrome c is reported to be an essential component for the formation
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of the apoptosome, and subsequent activation of caspases 9 and 3 (Liu et al., 1996). 

Apaf-1 is another essential component of the apoptosome, and appears to be 

activated by p53 and adenoviral E1A (Feamhead et al., 1998, Moroni et al., 2001). 

As Apaf-1 does not have caspase activity, it is proposed that it facilitates caspase 9 

auto-catalysis (Cai et al., 1998).

Caspase 9 subsequently cleaves and activates caspase 3, caspase 6, and a 

number of other substrates resulting in the biochemical and morphological 

characteristics of an apoptotic cell. These substrates include caspase-activated 

DNase (CAD), nuclear laminins, cytoskeletal proteins, and p21-activated kinase 2, 

among others. Activation of CAD within the cell results from the caspase 3- 

mediated cleavage of the CAD inhibitory subunit. This active nuclease is 

subsequently responsible for the characteristic “DNA laddering” of apoptosis. 

Cleavage of cytoskeletal proteins, such as fodrin and gelsolin, results in an overall 

loss of cellular shape (Kothakota et al., 1997), whereas nuclear laminin cleavage is 

responsible for the characteristic nuclear shrinkage and budding seen in apoptosis 

(Rao et al., 1996). In addition, caspase-mediated cleavage of PAK 2, a member of 

the p21-activated kinase family, appears to mediate the distinctive blebbing of 

apoptotic cells (Rudel and Bokoch, 1997).

Whilst caspase activation undoubtedly plays an important role in the 

initiation and execution of apoptosis, a number of caspase-independent inducers of 

apoptosis have also been identified, such as reactive oxygen species (ROS) (Suzuki 

et al., 1997). The generation of oxidants is involved in changes in mitochondrial 

permeability, and release of molecules, other than cytochrome c involved in the 

execution of apoptosis. AIF, apoptosis inducing factor, is one such molecule that is 

released from the mitochondria, and can induce caspase-independent apoptosis. AIF 

is transported to the nucleus where it causes ATP-independent large DNA 

fragmentation and chromatin condensation (Susin et al., 1996, Gupta, 2003). In 

addition, the release of EndoG, a mitochondrion-specific nuclease that translocates 

to the nucleus, cleaves chromatin DNA during apoptosis (Li et al., 2001).
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Bel-2 was initially identified as a frequent translocation occurring in human 

B-cell follicular lymphoma, and was found to function by promoting cell survival 

(Kirshenbaum, 2000) Bcl-2 is now recognized as being part of a large family of 

homologous proteins that can either promote or suppress apoptosis, known as the 

Bcl-2 family The Bcl-2 family are considered the primary regulators of 

mitochondria-induced apoptosis, controlling mitochondrial membrane 

permeabihzation and cytochrome c release (Thompson, 1995, Marsden et a l , 2002, 

Desagher and Martinou, 2000)

At least fifteen members of the Bcl-2 family have been identified, and these 

can be divided into two functional groups, pro-apoptotic and anti-apoptotic Bcl-2 

family members Examples of family members that prevent apoptosis are Bcl-2, Bcl- 

xL and Bfl-1 among others, whilst Bcl-2 family members that promote apoptosis 

include Bad, Bax, Bid and Bik, (Table 1 1) (Green and Reed, 1998, Reed, 1994, 

Sedlak et a l , 1995)

13  2 2 2 The Bcl-2 Family

Protein Effect on Apoptosis Protem-Protein interaction

BCI-2 decrease Bax, Bak
BCI-XL decrease Bax, Bak
BCI-W decrease

Bax increase BCI-2, BCI-XL
Bad increase BCI-2, BCI-XL
Bak increase BCI-2, BCI-XL

BCI-XS increase Bax, Bak

Table 1 1 Pro- and anti-apoptotic members of the BC1-2 family of proteins

Structural analysis o f the Bcl-2 family o f proteins has identified four 

conserved regions within the family, known as the Bcl-2 homology domains (BH1- 

BH4) All members of the Bcl-2 family contain at least one of these domains, which 

are formed by a-hehces and thus enable different members of the family to form 

either homo- or heterodimers and regulate each other (Kelekar and Thompson, 1998, 

Oltvai et a l , 1993) The majority of Bcl-2 family members share sequence
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homology at the C-terminal region, with a -20-residue hydrophobic domain, which 

targets the Bcl-2 family of proteins to intracellular membranes The principal 

membrane to which the Bcl-2 family members are directed is the outer 

mitochondrial membrane, therefore, this C-terminal region is critical for the function 

of both the pro- and anti-apoptotic Bcl-2 family members (Goping et a l , 1998, 

Kirshenbaum, 2000) Variable sequence homology, however, exists between the 

BH1 to BH4 domains, which implies that this variation in homology may determine 

whether the given Bcl-2 family member acts to promote or prevent cell death 

(Kirshenbaum, 2000) The anti-apoptotic Bcl-2 family members, such as Bcl-2 and 

Bcl-xL, contain at least three BH domains, and all contain the N-terminal BH4 

domain The BH4 domain is restricted to Bcl-2 family members with anti-apoptotic 

properties, therefore, it is postulated that this domain is critical in preventing 

apoptosis This is supported in a number of studies in which the deletion of the BH4 

domain rendered the anti-apoptotic Bcl-2 protein defective in suppressing apoptosis 

(Hunter et a l , 1996, Huang et a l , 1998) Pro-apoptotic Bcl-2 family members, such 

as Bax and Bak, have been identified as closely resembling Bcl-2, containing BH1- 

BH3 domains Other pro-apoptotic members of this family are described as “BH3 

only” as they contain the BH3 domain alone, which is therefore sufficient for the 

pro-apoptotic activity of these proteins (Kelekar and Thompson, 1998) Cell fate is 

determined by the ratio of pro- and anti-apoptotic members of the Bcl-2 family 

within any given cell (Reed, 1997, Sedlak et a l , 1995)

The Bcl-2 family can delay or prevent apoptosis by a diverse number of 

death signals, thus suggesting that it influences a number of signalling factors that 

can lead to cell death Bcl-2 has been shown, for example, to increase transactivation 

of the anti-apoptotic NFkB, which can, in turn, up-regulate anti-apoptotic Bfl-1 and 

Bcl-xL expression (Lee et a l , 1999a, Kirshenbaum, 2000)

However, members of the Bcl-2 family primarily exert their pro- or anti- 

apoptotic influence through regulation of mitochondrial membrane potential and the 

corresponding cytochrome c release Upon stimulation of apoptosis, many members 

of the pro-apoptotic Bcl-2 family translocate from the cytoplasm to the 

mitochondria Following a conformational change, these proteins can insert into the
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mitochondrial membranes, disrupting membrane integrity and increasing 

mitochondrial membrane potential This results in the release of several 

mitochondrial proteins involved in caspase activation and other apoptotic events 

(Zamzami and Kroemer, 2001, Goping et a l , 1998) The pro-apoptotic protein, Bax, 

for example, is normally present in the cell cytoplasm Following stimulation of 

apoptosis Bax migrates to the mitochondria where it inserts into the mitochondrial 

membrane and forms a homodimer, resulting in an increase m mitochondrial 

membrane potential, thus facilitating apoptosis Similarly, the pro-apoptotic protein 

Bid is cleaved by caspase 8, and the resulting C-terminal fragment, tBid, translocates 

to the mitochondria Bid therefore mediates crosstalk between the death receptor and 

mitochondrial pathways of apoptosis tBid facilitates insertion of other pro-apoptotic 

proteins into the mitochondrial membrane, and promotes Bax dimerization (Ferri 

and Kroemer, 2001, Eskes et a l , 1998, Jurgensmeier et a l , 1998)

Conversely, many of the anti-apoptotic Bcl-2 family proteins are associated 

with the mitochondrial membrane, where they act to inhibit increases in 

mitochondrial membrane potential, and prevent apoptosis by maintaining membrane 

integrity Both the pro- and anti-apoptotic members of the Bcl-2 family appear, at 

least in part, to regulate each other Bcl-2, for example, can form a heterodimer with 

Bax, thus inhibiting the ability of Bax to increase mitochondrial membrane potential 

Similarly, pro-apoptotic members can exert their effect by binding to their anti- 

apoptotic counterparts Bad, for example, binds to Bcl-xL thus inhibiting its anti- 

apoptotic function (Fern and Kroemer, 2001, Zamzami and Kroemer, 2001, 

Desagher and Martinou, 2000) In addition, many factors within the cell regulate the 

level of expression of Bcl-2 family of proteins For example, increased levels of p53 

tumour suppressor protein can increase Bax expression (Miyashita and Reed, 1995) 

Bcl-2 family members also appear to modulate other cellular processes in 

addition to apoptosis, however this appears to be restricted to certain family 

members Bfl-1 is an anti-apoptotic member of the Bcl-2 family that also exhibits 

proliferative and potent oncogene transforming activities (D'Sa-Eipper and 

Chmnadurai, 1998) Bfl-1, therefore, communicates with both the apoptotic and
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proliferation cell machineries, suggesting a link between these two cellular 

processes

The importance of the Bcl-2 family of proteins in normal physiology is 

highlighted by the fact that Bcl-2- and Bcl-xL-deficient mice die either at an 

embryonic stage or immediately post-natal due to increased apoptosis in multiple 

organs and tissues of the body (Veis et a l , 1993, Motoyama et a l , 1995)
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1 3.3 Glaucoma

Glaucoma is a group of diseases distinguished by characteristic damage to 

the bundle of nerve fibers that carries information from the eye to the brain (optic 

nerve) -  termed glaucomatous optic neuropathy (GON) (Figure 1 13A) Typically, 

there are two classifications of glaucoma open-angle and closed-angle

Closed-angle glaucoma results from a sudden, complete blocking of the fluid 

flowing out of the eye Symptoms may include severe pain, nausea, vomiting, 

blurred vision, and seeing a rainbow halo around lights Closed-angle glaucoma is a 

medical emergency and must be treated immediately or blindness could result in one 

or two days

Symptoms of open-angle glaucoma include a gradual and often 

imperceptible failing of peripheral vision, leading to only a small central area of 

vision (Figure 1 13 B, C, D & E) If the entire optic nerve is destroyed, total 

blindness will result Worldwide, it is estimated that about 66 8 million people have 

visual impairment from glaucoma, with 6 7 million suffering from blindness In the 

United States, approximately 2 2 million people age 40 and older have glaucoma, 

and of these, as many as 120,000 are blind due the disease The number of 

Americans with glaucoma is estimated to increase to 3 3 million by the year 2020 

(American Health Assistance) Each year, there are more than 300,000 new cases of 

glaucoma and approximately 5,400 people suffer complete blindness Vision experts 

estimate that half of those affected may not know they have it because symptoms 

may not occur during the early stages of the disease

The pathogenesis of optic nerve damage in glaucoma is still not fully 

understood, however substantial evidence indicates that GON is multifactorial in 

nature, with elevated intraocular pressure (IOP) being the most common risk factor 

In fact, glaucoma was initially described as a pressure-related disease and this is still 

largely the case The realisation that GON often occurs in the absence of elevated 

intraocular pressure and, conversely, elevated intraocular pressure may occur 

without associated damage of the optic nerve has encouraged investigators to search 

for additional factors that may insult the optic nerve It is possible that ischaerma,
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hypoxia, disruption of axoplasmic transport or a genetically determined accelerated 

retinal ganglion cell apoptosis is responsible for the optic neuropathy characteristic 

of glaucoma, with more than one mechanism contributing to the pathology in some 

individuals
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Figure 1.13: Progressive cupping of the optic nerve head causing 
glaucomatous optic neuropathy - GON (A). Typical vision loss due to 
GON, (B): Normal; (C): Early (Arrow indicates early blurring of vision); (D): 
Intermediate; (E): Late Stage GON
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In normal tension glaucoma (NTG), where IOP values are within the normal 

range (1 e <21 mm Hg), IOP is considered to be a risk factor of lesser significance 

than in high tension glaucoma (HTG) (open-angle glaucoma), and other factors take 

on greater significance Various vascular and cardiovascular disorders are 

recognised as being risk factors for NTG since they tend to occur more frequently in 

these patients They include impaired autoregulation of blood flow in the optic 

nerve head, systemic hypotension, arterial hypertension, increased blood viscosity, 

diabetes, migraine and other generalised vasospastic disorders such as cold hands or 

feet Each of these risk factors tends to support a vascular cause, or at least a 

vascular component in the cause of glaucoma, where optic nerve perfusion may be 

affected (Harris et a l , 2001) An additional hypotensive factor under investigation is 

a nocturnal fall in blood pressure, where it has been shown that both POAG and 

NTG patients with progressive field loss are more likely to have lower nocturnal 

blood pressure findings than those with stable fields

NTG comprises a significant proportion of the generic grouping of 

glaucoma, although this proportion varies between samples and possibly between 

different populations For example, Sommer states that 20 to 25 per cent of GON 

develops with normal IOP (Sommer, 1996), while in a recent Dutch survey, which 

found open angle glaucoma in 1 1 per cent of adults 55 years or older, 39 per cent of 

these cases had statistically normal IOP (Dielemans et a l , 1994) Similarly, a 1997 

Italian study of a population over 40 years of age found a prevalence of POAG of 

1 4 per cent and NTG of 0 6 per cent, showing that 33 per cent of open angle 

glaucoma cases had NTG (Bonomi et a l , 1998) The Swedish Dalby study of 1981 

found NTG in 61 per cent of open angle glaucoma cases (Bengtsson, 1981)

The optic nerve head is generally held to be the primary site of pathology in 

glaucoma (Quigley, 1999, Hernandez, 2000) (Figure 1 13A) GON is characterised 

by loss of ganglion cell axons, the consequence of which is an excavated appearance 

of the optic disc and progressive visual field loss, a process which is essentially 

common to both NTG and HTG The loss of the axons from the optic nerve occurs 

in a topographic pattern that matches visual field loss in glaucoma This consists of
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preferentially greater injury at the upper and lower poles of the optic nerve in a 

pattern shaped like an hourglass This seems related to the regional structure of the 

supporting connecting tissues of the optic nerve head, that is, a lower density of 

connective tissue in the upper and lower poles These areas also show a 

preponderance of larger ganglion cells that have a greater susceptibility to injury in 

glaucoma (Schwartz, 2003, Tomita, 2000) As alluded to earlier, glaucomatous 

axonal damage is hypothesised to occur as a result of one of two general 

mechanisms (Flammer et a l , 2002) First, mechanical disruption of axoplasmic 

transport may occur because of distortion and kinking of axons during passage 

through the lamina cnbrosa (especially evident in glaucoma associated with high 

pressure) This mechanical effect results in backward bowing of the lamina cribrosa, 

axon loss and progressive cupping The second hypothesis argues that axonal 

transport is detrimentally affected by a primary hypoxia associated with elevated 

pressure or other causes of decreased optic nerve head perfusion For the primary 

eye care practitioner, detection of NTG can be especially difficult, since early in 

glaucoma, there is overlap between normal and abnormal optic disc appearances 

Disc damage is often difficult to judge, with the assessment requiring careful, and 

often sequential examination to recognise change (Sack, 2000)
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13  3 1  Normal Tension Glaucoma Altered Blood Flow & Endothelial 

Dysfunction

Vasospasm due to endothelial dysfunction or other mechanisms resulting in 

transient decreases in blood flow to the optic nerve, have been thought of as possible 

causes of GON particularly when IOP measurements are within the normal range 

(Flammer et a l , 2001) Some evidence of the underlying cause of NTG has emerged 

through an association between NTG and migraine where some stages of the attack 

are considered to be due, in part, to vasospasm (Corbett et a l , 1985, Phelps and 

Corbett, 1985, Cursiefen et a l , 2000) McKenndrick et al recently demonstrated 

visual field defects associated with migraine are similar to those reported early in 

glaucoma (McKendrick et a l , 2000) Vasospasm often occur in response to cold- 

provocation Immersion of the hands in ice-cold water produced vasospasm in the 

form of more prolonged nailbed capillary spasm in the fingers of patients with NTG 

when compared to normal subjects (O’Brien and Butt, 1999, Drance et a l , 1988) 

When the NTG subjects were subdivided into those with and without migraine, 

increased vasospastic response of this kind was seen with greater frequency in the 

migraine subgroup of NTG subjects Interestingly, HTG and migraine were not 

associated in either the Blue Mountains (Wang et a l , 1997) and Beaver Dam studies 

(Klein et a l , 1993) suggesting raised IOP and vascular insufficiency might act as 

independent risk factors for GON Measurement of forearm blood flow using venous 

occlusion plethysmography in NTG, HTG and controls, found an impairment of 

peripheral endothelium-mediated vasodilatation in NTG, when compared to HTG 

and controls (Henry et a l , 1999) Furthermore, it has been suggested that peripheral 

vasodilators, such as calcium channel blockers, slow the progression of, or improve 

visual field damage in selected patients with vasospastic glaucoma

Studies using a measure of ocular vascular perfusion—the pulsatile ocular 

blood flow (POBF)—have shown that patients with NTG and HTG have a 

significantly lower POBF than normals (Fontana et a l , 1998, Agarwal et a l , 2003) 

Moreover, in patients with unilateral NTG, the eye with glaucomatous damage has a 

lower POBF than the unaffected eye (Fontana et a l , 1998), suggesting that
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haemodynamic differences between fellow eyes contribute to determine the side of 

onset of the disease. In patients with symmetric NTG, duplex sonography showed an 

elevated resistance to blood flow in the central retinal artery and posterior ciliary 

artery which are responsible for perfusing the optic nerve head (Akcar et al., 2005). 

Another implied measure of blood flow to the optic nerve is obtained with colour 

Doppler imaging, which assesses blood flow in the ophthalmic, ciliary and central 

retinal arteries. Using this technique, a statistically reduced mean systolic peak flow 

velocity is found in HTG patients with progressive field loss compared to normals 

(Butt et al., 1997). Moreover, in both HTG & NTG there is increased resistance to 

blood flow in the ophthalmic and central retinal arteries compared to control subjects 

(Butt et al., 1995). Furthermore, retinal arteriovenous passage times are also 

significantly prolonged in NTG (Arend et al., 2000, Arend et al., 2002) and noctural 

blood pressure ‘dipping’ is a distinct risk factor for glaucomatous damage in both 

HTG and NTG patients (Pache et al., 2003).

Association of altered systemic blood flow responses with NTG led 

investigators to examine the vasoactive mediators NO, ET-1 & PGI2 in patients. 

Buckley et al demonstrated vascular endothelium modulation of contractile 

responses to both 5-HT and ET-1 in human subcutaneous resistance arteries, but this 

effect is lost in patients with NTG, indicating a selective defect in agonist mediated 

release of endothelium derived vasodilators (Buckley et al., 2002). Plasma and 

aqueous humour levels of cGMP, an indirect indicator of NO are decreased in 

patients with NTG (Galassi et al., 2000) concomitant with lower systolic and 

diastolic velocities of the ophthalmic artery when examined with colour Doppler 

imaging. Similarly, the same laboratory demonstrated decreased concentrations of 

NO2' and cGMP in the plasma and aqueous humour of high tension glaucoma 

patients (HTG) (Galassi et al., 2004). HTG patients have decreased retinal blood 

flow velocities, which would impair flow induced EC-NO release. In some 

conditions, including hypercholesterolaemia (Brandes et al., 1997, Kagota et al.,

1999), impairment of the NO component of relaxation may be balanced by an 

increase in the as yet unidentified vasodilator - endothelium derived hyperpolarising 

factor (EDHF). EDHFs contribute to the maintenance of endothelium dependent
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relaxation in systemic resistance arteries from patients with NTG (Cleary et a l , 

2005)

eNOS gene variants are associated with ischemic heart disease (Casas et a l ,

2004), hypertension (Miyamoto et a l , 1998), carotid atherosclerosis (Lembo et a l ,

2001) and diabetic nephropathy (Nagase et a l , 2003) A variant in the promoter 

region of the eNOS gene was found in a significant percentage of familial HTG 

patients (Tunny et a l , 1998) Similarly, Wiggs et al have demonstrated a 

polymorphism in the eNOS gene in both HTG and NTG patients, with these patients 

more susceptible to early loss of central vision (arvo 2005) A significant difference 

was found in the distribution of allele frequencies of the eNOS marker in subjects 

who had glaucoma with migraine versus control subjects (Logan et a l , 2005) No 

association was found with iNOS, which is normally expressed in response to injury, 

inflammation, and ischemia in vascular or nonvascular cells However, 

pharmacalogic inhibition of iNOS provides neuroprotection of retinal ganglion cells 

in a rat model of chronic glaucoma suggesting a inflammatory response in HTG 

(Neufeld et a l , 1999) C-Reactive protein (CRP) is a reliable measure of underlying 

systemic inflammation and a strong predictor of future myocardial infarction and 

stroke Recent evidence has associated CRP levels with NTG (Leibovitch et a l ,

2005) Indeed, CRP has been shown to decrease eNOS activity (Venugopal et a l ,

2002) Immunohistochemical studies disclosed an increased presence of eNOS in 

glaucomatous tissue Such an up-regulation has been suggested to partly prevent 

neural damage This upregulation is lacking in patients who develop damage at a 

lower intraocular pressure Furthermore, eNOS gene polymorphisms are a 

determinant of renal hemodynamic function (Page et a l , 2005) and are also 

associated with coronary vasospasms (Nakayama et a l , 1999) Each of these studies 

demonstrate the critical role of NO and also that eNOS gene polymorphism may act 

as an additional risk factor m the development of endothelial dysfunction

Several reports suggest NTG patients have increased plasma levels o f ET-1 

(Sugiyama et a l , 1995, Kaiser et a l , 1995, Cellini et a l , 1997) Though HTG is not 

associated with elevated plasma ET-1 (Tezel et a l , 1997), aqueous humour ET-1 

levels are increased in HTG patients (Noske et a l , 1997) Kaiser et al reported

61



increased ET-1 in aqueous humour of NTG patients compared to HTG, however 

these results were not significant (Kaiser et a l , 1995) This work did however 

demonstrate a significant increase in plasma ET-1 levels when subjects moved from 

supine to upright position, however this response was absent in NTG patients 

Similarly, Poumaras demonstrated an increase ONH vascular resistance in NTG 

patients in response to elevated perfusion pressure compared to HTG or controls 

(Pournaras et a l , 2004) The possibility that ET-1 contributes to vasospasm in NTG 

is further supported by an abnormal increase in plasma ET-1 when the body cools, 

suggesting a hyperactive production and/or release of ET-1 (Nicolela et a l , 2003) 

Abnormal release of vasoactive mediators in response to stimuli is a hallmark of 

endothelial dysfunction leading to vasospasm

The role of ET-1 in maintaining vascular perfusion is complicated by the dual 

vasoactive effect of the peptide -  dependent on receptor subtype binding ETA 

receptors are located on mural cells and mediate vasoconstriction, whereas 

stimulation of endothelial ETb receptors causes vasodilation through release of nitric 

oxide and also functions to remove ET-1 from the circulation (Tirapelh et a l , 2005) 

The role of the EC-ETb mediated vasodilatory response is increasingly recognised 

Selective ETb receptor blockade attenuates pulmonary vasodilation at birth in the 

ovine fetus (Ivy et a l , 2004), whereas ETb receptor knock-out impairs endothelium- 

dependent ET-1 vasodilation in mice (Quaschning et a l , 2005) Infusion of ET-1 in 

humans reduces forearm blood flow m NTG patients or controls, presumably via 

SMC ETa mediated vasoconstriction However, infusion of ET-1 and a selective 

ETa inhibitor increased forearm blood flow in both groups (relative to ET-1 

infusion) This EC-ETB mediated vasodilation was lower in NTG patients than in 

controls (Henry et al -  IOVS -  in press) In contrast, recent incites into vasospams 

post-SAH demonstrate increased smooth muscle cell ETB receptor expression causes 

vasospasms in a rat model of subarachnoid haemorrhage (SAH) (Hansen-Schwartz 

et a l , 2003) and also in vasospastic cerebral arteries isolated from SAH-induced 

monkeys (Hino et a l , 1996) Moreover, the contribution of ETb receptors to 

vasoconstriction in human skin is negligible (Lipa et a l , 1999) As such, the 

vasoregulatory effect of ET-1 is no doubt specific to each area of the vasculature and
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largely determined by EC-mural cell ratio and ET-receptor expression

A few studies of genetic polymorphisms related to ET-1 have been reported 

with varying results Genotypic and allelic frequency analysis found no association 

between alterations in the promoter region of the ET-1 gene and familial HTG 

(Tunny et a l , 1998) Ishikawa et al recently demonstrated an association between 

NTG and gene polymorphism of ETA receptor The functional consequence of this 

polymorphism is unknown Exogenous addition o f ET-1 reduces retinal blood flow 

by -20%  in humans, however ETA blockade reverses this effect, suggesting the ETA 

receptor mediates the vasoconstrictive effects of ET-1 in the retina (Polak et a l ,

2003) Moreover, selective ETA receptor blockade reduces the frequency and 

severity of cerebral vasospasms following SAH (Vajkoczy et a l , 2005, Vatter et a l ,

2005) Under physiological conditions, the ET-l-induced constriction of cerebral 

blood vessels is mediated by activation of the ETA receptor (Faraci and Heistad, 

1998) Although several studies also investigated the role of ETb receptor 

polymorphisms in glaucoma, no significant associations have not yet been found 

(Charron et a l , 1999, Herrmann et a l , 2001, Lajemi et a l , 2001)
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1 3  4 Diabetic Retinopathy

Many of the complications of diabetes melhtus are predominantly vascular in 

origin These include diabetic retinopathy (DR), the commonest cause of blindness 

m people of working age in the UK and US (Aiello et a l , 1998), diabetic 

nephropathy, an increasingly common cause of renal failure, and premature 

peripheral vascular, cerebrovascular and coronary artery disease A person with 

diabetes is approximately three times as likely to suffer a heart attack, at least twice 

as likely to suffer stroke, and 20 times as likely to have a limb amputated The 

determinant of vascular damage in diabetes is chronic hyperglycemia, which has 

been convincingly shown both in Type 1 and in Type 2 diabetes (The Diabetes 

Control and Complications Trial Research Group, UK Prospective Diabetes Study 

(UKPDS) Group, 1998)

DR progresses through two stages of disease pre-proliferative-DR (Pre- 

PDR, sometimes referred to as non-PDR), and prohferative-DR (PDR) An early 

characteristic feature of pre-PDR is increased vascular permeability (Sander et a l , 

1994, Cunha-Vaz et a l , 1998) leading to breakdown of the inner blood retinal 

barrier (BRB) (Patz, 1980) As a result, erythrocytes, blood-borne plasma proteins, 

and lipids, leak into the subendothehal space causing haemorrhages and hard 

exudates m the retina (Nathan, 1993) Furthermore, thickening of basement 

membrane (BM) occurs, which is frequently used as an indicator of disease 

progression (Engerman and Kern, 1987, Robison, 1988) EC-Pericyte crosstalk m 

the vessel wall is an important regulator of vascular homeostasis BM thickening 

may disturb this homeostaic mechanism and contribute to pericyte drop-out as 

disease progresses (Cogan et a l , 1961, Mizutani et a l , 1996) Pericyte drop-out is 

detectable by the presence of “ghosts” in trypsin digests and transmission electron 

microscopy preparations of the retinal vasculature (Cogan et a l , 1961) Pericytes 

provide the endothelium with an anti-proliferative and also anti-apoptotic stimulus 

Therefore, loss of pericytes in DR possibly causes EC proliferation and new vessel 

formation Interestingly, ECs are also lost in DR resulting in acellular capillaries 

consisting solely of basement membrane
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Normal vision Vision with 
diabetic retinopathy

B

Figure 1.14: Typical vision loss due to Diabetic Retinopathy (A). The 
location of deteriorating blood vessels may determine what part of your vision 
is lost and how severe the loss becomes (B). 
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Extensive loss of retinal micro vasculature leads to occlusion of vessels, 

ischaemia and subsequent tissue hypoxia This oxygen deficit provokes nerve fibre 

layer infarctions creating soft or “cotton wool” exudates (Nathan, 1993), which can 

be observed as grey or white lesions, as the result of stasis of axoplasmic flow 

(Aiello et a l , 1998) (Figure 1 14 b)

PDR is characterised by a reparative attempt of the retinal vasculature to 

reperfuse ischaemic/hypoxic areas of the retina Thus, proliferation of new vessels 

occurs, traversing the internal limiting membrane and into the vitreous As these new 

vessels are fragile (due to impaired BRB function), they tend to bleed and cause 

vitreous haemorrhages Furthermore, they can lead to fibrous scar formation with 

accompanying tractional retinal detachment, resulting in sudden blindness if left 

untreated (Nathan, 1993) (Figure 1 14)
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13  41  Diabetic Retinopathy Altered Blood Flow & Endothelial Dysfunction

Numerous reports have been published documenting alterations in retinal 

blood flow in diabetic patients However, due to varying techniques used to measure 

blood flow, and also the pathological differences at different stages of disease, these 

results often appear to contradict Perturbations in blood flow are undoubtedly 

causative factors in disease progression however, with endothelial dysfunction 

frequently cited in patients

One of the earliest effects of hyperglycaemia is the persistent dilatation of the 

retinal arteries and arterioles, leading to increases m ocular blood flow (Kohner et 

a l , 1975, McMillan, 1984) Conversely, reports by Savage et al (2004) demonstrate 

little or no changes in pulsatile ocular blood flow (POBF) in early DR, but 

significant POBF increases in eyes with moderate to severe Pre-PDR POBF is 

decreased in eyes with laser-treated PDR (Savage et a l , 2004) Gracner et al 

demonstrated an increase in the ophthalmic artery blood flow and a decrease in the 

central retinal & posterior ciliary artery compared to controls with colour Doppler 

imaging (Gracner, 2004) Furthermore Hudson et al demonstrate reduced macular 

capillary blood flow in areas of capillary leakage (Hudson et a l , 2005)

Obviously there is a lot of discrepancy between various clinical and 

experimental studies investigating ocular blood flow in diabetes The variety of 

techniques used for the investigation of haemodynamics may account, in part, for 

this problem In addition, considerable differences in ocular perfusion may exist 

between patients with Type I and Type II diabetes, which have not yet been 

systematically studied In general, there is overwhelming evidence that retinal blood 

flow is initially increased, followed by an decrease when background retinopathy is 

present In the late stages of DR, the nature of the ocular perfusion abnormalities 

appears to strongly depend on glycaemic control as well as on the pathologic 

features

The development and progression of vascular endothelial cell damage is the 

basis of diabetic microangiopathy (Cai and Boulton, 2002) Autoregulatory defects 

in diabetes have their correlates in the central retinal artery, where hyperoxia
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significantly reduces central retinal artery end diastolic velocity and significantly 

increases the resistance index to flow in healthy but not diabetic subjects (Evans et 

a l , 1997) Unlike the central retinal artery whose watershed is exclusively retinal, 

the ophthalmic artery nourishes the entire orbit Nonetheless, in hyperbaric oxygen 

conditions, blood flow velocities are reduced in healthy subjects and in diabetics 

without significant neuropathy, but show increased velocities in diabetics with 

neuropathy (Okamoto et a l , 1998)

The important question therefore, is whether increased levels of circulating 

glucose can induce endothelial dysfunction, thus causing impaired autoregulation of 

retinal blood flow The link between chronic hyperglycemia and vascular damage 

has been established by four independent biochemical abnormalities 1) increased 

polyol pathway flux, 2) increased formation of advanced glycation endproducts 

(AGEs), 3) activation of protein kinase C (PKC), and 4) increased hexosamine 

pathway flux These seemingly unrelated pathways have an underlying common 

denominator overproduction of superoxide by the mitochondrial electron transport 

chain Mitochondrial reactive oxygen species (ROS) partially inhibit the glycolytic 

enzymes glyceraldehyde-3-phosphate dehydrogenase, which diverts increased 

substrate flux from glycolysis to pathways of glucose over-utilization Moreover, 

extensive evidence indicates that ROS regulate gene expression by modulating a 

large number of transcription factors, including NFkB, the peroxisome proliferators 

activated receptor (PPARy), and pathways linked to apoptosis It is also increasingly 

recognized that cell differentiation and proliferation, cytokine expression, and 

programmed cell death are determined by the interactions between oxidation- 

sensitive regulatory pathways previously thought to lead to distinct outcomes 

Endothelial dysfunction is also apparent by increased release of markers of 

endothelial activation damage into the circulation in diabetic subjects (Tamow et a l ,

2004), by several reports of impaired endothelium-dependent vasodilation (Dogra et 

a l , 2001, Maejima et a l , 2001) and finally as mentioned previously, by changes in 

vascular permeability

AGEs play an important role in the pathobiology of Diabetes, and pericytic 

accumulation of toxic products such as sorbitol or AGEs is a likely causative factor
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resulting in pericyte drop-out (Yamagishi et a l , 2002) Since pericytes help regulate 

vessel perfusion, dropout of these cells exacerbates the disturbances associated with 

retinal haemodynamics Furthermore, loss of pericytes has several ‘knock-on’ 

effects on regulation of EC homeostasis Retinal capillary coverage with pericytes is 

crucial for maintaining a fine balance between promotion of EC survival and 

inhibition of EC proliferation (Orlidge and D’Amore, 1987, Hirschi and D'Amore, 

1996) and regulation of EC production of vasoactive substances such as nitric oxide, 

prostacyclin and endothehn-1

Several studies implicate nitric oxide in the pathogenesis of diabetes, 

including increased and decreased basal NO production and altered NO sensitivity 

For example, several reports demonstrate elevated NO levels which contribute to the 

vascular dysfunction seen in diabetic rats (Tilton et a l , 1993, Do Carmo et a l , 

1998) A similar alteration is seen in diabetic humans as they respond with 

significantly less reduction of choroidal blood flow when administered an inhibitor 

of nitric oxide synthase (Schmetterer and Polak, 2001) Studies by 

Lakshminarayanan et al demonstrated BRECs exposed to increases in shear stress in 

vitro increase hydraulic conductivity via NO, thereby increasing transport of water 

and proteins across the endothelial barrier Thus NO is implicated in 

microaneurysm, edema and hard exudate formation in the retina (Lakshminarayanan 

et a l , 2000b) Similarly, glucose transport into the retina may be enhanced by 

increased EC glucose transporter GLUT1, which is upregulated by NO and also 

VEGF (Paik et a l , 2005, Cai and Boulton, 2002) Furthermore, altered endothelium- 

dependent vasodilation has been observed in animal models of Type I (Kamata et 

a l , 1989) and Type II diabetes (Sexl et a l , 1995), and also in humans with Type I 

and Type II diabetes (McVeigh et a l , 1992, Calver et a l , 1992) Interestingly, a 

direct nitric oxide-mediated vasodilatation action of insulin is seen in experimental 

animals (Su et a l , 1996) as well as in humans (Schmetterer et a l , 1997) Lastly, NO 

is significantly reduced in aortas of spontaneously hypertensive diabetic rats, 

compared to spontaneously hypertensive non-diabetic rats (Ibrahim et a l , 2005)
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VEGF is a potent angiogenic and vascular permeabihzing factor which plays a 

critical role in both physiological and pathological angiogenesis which occurs in DR 

Similarly, NO is known to mediate angiogenesis and vascular permeability Reports 

demonstrate that NO modulates VEGF-induced angiogenesis and vascular 

permeability in vivo predominantly via eNOS activation (Fukumura et a l , 2001) 

Moreover, intramuscular injection of eNOS plasmid induced therapeutic 

angiogenesis in a rat ischemic hindlimb model, also via VEGF activation (Namba et 

a l , 2003) These studies demonstrate the important role of NO in health and 

pathological remodelling associated with DR

ET-1 has also been implicated in the pathology of DR Breathing pure 

oxygen constricts retinal vessels and reduces blood flow, primarily via ET-1 

mediated pericyte vasoconstriction (Dallinger et a l , 2000) Studies by Grunwald et 

al (1984) demonstrated a reduction in blood flow of 53% in diabetic eyes without 

retinopathy, and 38% of those with Pre-PDR, and only 24% in those with PDR 

Retinal arteriovenous passage times were markedly reduced by breathing 100% pure 

oxygen in normal subjects, however this is unaffected in diabetics (Harris et a l ,

1996) Therefore, the capacity to reduce bulk retinal blood flow in response to 

increased oxygen delivery as mediated primarily by the actions of ET-1 on pericytes 

is progressively extinguished as the disease severity increases Furthermore, elevated 

ET-1 plasma concentrations were observed in Type I and Type II diabetic patients 

(Takahashi et a l , 1990, Fern et a l , 1995, Letizia et a l , 1997) Moreover, 

Chakrabarti et al demonstrate that retinas from the chronic diabetic BB/W rats show 

an increase in ET-1, ET-3, ETa receptor and ETB receptor mRNA expressions when 

compared to those from control rats Similar results are noted by them using 

immunohistochemical methods (Chakrabarti et a l , 1998) In the same rat model of 

DR, Deng et al demonstrated increased resistivity index (RI), a marker of retinal 

vasoconstriction, which is reversible with general ET-receptor blocker bosentan 

suggesting that the endothelin system is of importance in mediating retinal changes 

in diabetes (Deng et a l , 1999)
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Aberrant prostacyclin synthesis has also been reported due to endothelial 

dysfunction Prostacyclin-stimulating factor (PSF), a factor secreted by pericytes is 

decreased in early DR, and increased in the latter stages of disease Levels of PSF 

correlated with retinal blood flow fluctuations, that is a characteristic initial 

decrease, followed by an increase in blood flow as disease progresses (Hata et a l ,

2000) Furthermore, Johnson et al demonstrated increased prostacyclin in 

streptozotocin-diabetic rats (Johnson et a l , 1999) Recent evidence now suggests a 

role of VEGF in potentiating EC PGh formation in DR (He et a l , 1999) Like PGI2, 

NO is also implicated in VEGF mediated vascular permeability and angiogenesis 

Emerging evidence indicates that COX-2 also interacts with NO and that these two 

systems have reciprocal effects on each other (Neagoe et a l , 2005, Gliki et a l ,

2001)
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13  5 Mediators of Cell Fate Decisions

Haemodynamic forces associated with blood flow play a critical role in 

vasoregulation and vascular remodelling Endothelial and pericyte cell fate decisions 

arising from transient or chronic alterations of mechanical forces are possibly 

mediated by one of several pathways, such as the transforming growth factor (TGF), 

vascular endothelial cell growth factor (VEGF) or platelet-derived growth factor 

(PDGF) among others We propose two other pathways, namely Notch & Hedgehog 

(Hh) signalling, which are likely to play a role in remodelling of the retinal 

vasculature due to altered blood flow
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1.3.5.1 Notch Signalling Pathway

1.3.5.1.1 Introduction to Notch Signalling

The Notch gene of Drosophila melanogaster was first described by Morgan 

in 1916, and was so named as haploinsufficiencies of the gene causes “notches” at 

the wing margin in these flies (Simpson, 1998). Further studies in Drosophila, C. 

elegans, and subsequently in mammals and humans, have identified and 

characterized a super-family of Notch receptors that show a high degree of 

evolutionary conservation. Notch was originally identified in humans as a gene 

involved in the chromosomal translocations in T-cell leukaemias (Kojika and 

Griffin, 2001). The receptors exhibit a high degree of structural conservation both 

within, and across species as diverse as flies and humans.
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Figure 1.15: Schem atic of Notch S ignalling pathway: Interaction o f  N otch receptors 
(N otch 1 to  4) w ith their li^ n d s  (D elta like 1, -3, -4, Jagged-1 and -2) leads to  cleavage o f  
the transm em brane N otch receptor, giving rise to  the N otch intracellular domain (N IC D ) 
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The main components of the Notch signalling pathway include the Notch 

receptors (Notch 1-4 in vertebrates) and ligands (Delta 1-4, Jagged 1 and 2 in 

vertebrates) (Figure 1 15) Analysis of Notch receptor expression within the cell 

reveals that although Notch is a cell surface protein, the majority of Notch within the 

cell is found intracellularly (Aster et a l , 1994, Fehon et a l , 1991), and that a 

significant portion of Notch is retained m the endoplasmic reticulum (Aster et a l , 

1994, Weinmaster, 1997)

Notch receptors are single-pass transmembrane proteins, and as such have an 

extracellular (ExC), transmembrane (TM) and intracellular (IC) domain (Baron et 

a l , 2002) Notch receptors are synthesized as single (300 kDa) polypeptides, and are 

proteolytically processed into heterodimeric (180 kDa and 120 kDa) forms presented 

on the cell surface (Blaumueller et a l , 1997, Pan and Rubin, 1997, Logeat et a l , 

1998)

Similar in structure to the Notch receptors, the Notch ligands are also single­

pass transmembrane proteins, and as such, also have ExC, TM and IC domains 

(Artavams-Tsakonas et a l , 1995) Although the general architecture of the ligands is 

conserved, large variations in specific domain size and composition can be seen both 

within and among species (Fleming, 1998) Although Notch ligands are primarily 

transmembrane proteins, proteolytically cleaved, secreted forms of the proteins have 

been identified (Qi et a l , 1999, Klueg et a l , 1998) Initial reports indicated that the 

secreted soluble ligands act as dominant-negative molecules, competing with 

membrane bound ligands and blocking Notch activation (Sun and Artavams- 

Tsakonas, 1997) Conflicting reports, however, have been published, describing the 

soluble ligands as agonists of the Notch signalling pathway (Qi et a l , 1999, Han et 

a l , 2000, Wang et a l , 1998) A secreted form of Jagged 1, for example, can activate 

Notch 1 in hematopoietic cells to inhibit differentiation (Li et a l , 1998) The factors 

controlling whether the soluble form of the ligand is an agonist or antagonist on the 

Notch signalling pathway remain unclear

NotchIC activates expression of primary target genes o f Notch signalling, 

such as Hairy/Enhancer of Split (Hes) and Hairy Related Transcription Factor 

(HRT) genes (Bailey and Posakony, 1995, Lecourtois and Schweisguth, 1995)
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(Beatus et a l , 1999, Lee et a l , 1999b, Chen et a l , 1997, Ohtsuka et a l , 1999, Wang 

et a l , 2002b) These genes are part of a family of basic helix-loop-helix (bHLH) 

type transcriptional repressors that act as Notch effectors by negatively regulating 

expression of downstream target genes such as tissue-specific transcription factors 

(Iso et a l , 2003b, Iso et a l , 2001a) The Hes family was the first described primary 

effector of Notch signalling It should be noted that, due to the independent 

identification of the second family of effectors of Notch signalling by different 

groups, many different names exist for the HRT family, including HERP (Hes- 

related repressor protein, (Iso et a l , 2001b, Apelqvist et a l , 1999)), CHF 

(Cardiovascular helix-loop-helix factor, (Chin et a l , 2000)) and Hey genes (Maier 

and Gessler, 2000)
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13  5 1 2  Biological Consequences of Notch Signalling

A number of studies present evidence that Notch signalling acts as an 

important “switch” controlling cell fate decisions during embryogenesis It is 

postulated that the Notch pathway contributes to the establishment of two distinct 

sub-populations at different stages of vasculogenesis and angiogenesis These could 

include EC versus SMC, artery versus vein, pulmonary versus systemic vessels, and 

large vessels versus capillaries (Iso et a l , 2003a) Indeed, Artavanis-Tsakonas et a l , 

(1995) aptly described Notch as a “gatekeeper of cell fate”, as Notch signalling 

critically influences cell proliferation, differentiation and apoptosis

In addition to its role as an arbiter of cell fate decisions in the developing 

organism, a growing body of evidence has implicated the Notch signalling pathway 

in determining cell fate decisions in the mature organism (Kojika and Griffin, 2001, 

Wang et a l , 2002c), which may be due to the fact that most tissues are renewed 

throughout life from reserves of uncommitted stem cells (Artavanis-Tsakonas et a l , 

1995) Notch, for example, is involved in the control of cell fate decisions during 

haematopoiesis (Bigas et a l , 1998) and inhibits the differentiation of murine 

myoblast cells (Bush et a l , 2001) In addition, the Notch signalling pathway has 

been shown to affect other cell fate decisions, such as proliferation and apoptosis in 

the mature organism Notch has been shown to promote proliferation in certain cell 

types, for example, activation of the receptor and transfection of a constitutively 

active form of the receptor in bone marrow stem cells and promyelocytic leukaemia 

cells, respectively, cause accelerated progression through G1 (Carlesso et a l , 1999) 

Activation of Notch signalling in ECs is anti-proliferative and contributes to 

maintaining the endothelial lining in a quiescent state (Jang et a l , 2004, Noseda et 

a l , 2004, Qi et a l , 2003)

Notch is reported to have anti-apoptotic properties in many cell types The 

anti-apoptotic properties of Notch in T-cell systems has, for example, been 

documented by Deftos et al and Jehn et a l showing that Notch 1 activation inhibits 

glucocorticoid- and Nur-77-dependent apoptosis respectively (Deftos et a l , 1998, 

Jehn et a l , 1999) As human malignant cells display a resistance to both
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physiologically- and therapeutically-induced apoptosis, it was postulated that 

alterations in Notch signalling or expression may contribute to tumourigenesis 

(Miele and Osborne, 1999) Several lines of evidence support this Increased 

expression of Notch receptor and ligands is apparent in many malignancies, 

including cervical carcinomas, leukaemias, neuroblastomas, and pleural 

mesotheliomas, among others (Zagouras et a l , 1995, Daniel et a l , 1997) Notch 

over-expression is, for example, evident in 100% of the cervical cancer specimens 

studied (Zagouras et a l , 1995) In addition, Notch3 signalling has been shown to 

promote vascular smooth muscle cell survival in response to the pro-apoptotic Fas 

ligand (Wang et a l , 2002c)

It is postulated that the Notch signalling pathway plays a role in determining 

cell fate decisions following vascular injury Two independent studies have shown 

changes in the expression of the components o f this pathway following balloon 

catheter denudation of the rat carotid artery Lindner et al, (2001) demonstrated that 

the expression of Notch receptors (Notch 1-4) and ligands (Jagged 1-2) in both 

endothelial cells and smooth muscle cells of the vasculature was increased following 

injury This report also suggests that the level of Notch receptor expression may be 

related to endothelial cell/smooth muscle cell interaction In contrast, Wang et al, 

(2002a) reported that Notch 1, Notch2, Notch3, and the effector genes HRT1, HRT2 

and HRT3 were coordinately down-regulated following balloon injury The 

discrepancies between these reports may be accounted for as Lindner et al, used in 

situ hybridization thus limiting the study to the inner face of the artery Wang et al, 

however, extracted RNA from the artery following removal of the intimal and 

adventitial layers, representing the smooth muscle layer of the artery While further 

work is needed to elucidate the specific role of the Notch signalling pathway in 

maintaining vascular homeostasis, the importance of this pathway, and its potential 

for therapeutic intervention is not disputed

Dysfunctions of the Notch signalling pathway are associated with human 

pathologies involving cardiovascular abnormalities CADASIL (cerebral autosomal 

dominant arteriopathy with sub-cortical infarcts and leukoencephalopathy) and 

Alagille syndrome (AGS) are two such disorders (Gridley, 2003) These, coupled
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with the altered expression of Notch signalling pathway genes in both vascular 

smooth muscle and endothelial cells in response to injury in vivo, highlight both the 

presence and the importance of the Notch signalling pathway in both the adult and 

developing cardiovascular system (Lindner et a l , 2001)

13  5 1 3 1  CADASIL

The importance of Notch3 in vascular smooth muscle cells was highlighted 

in 1996 when Joutel et al, through positional cloning, found the genetic cause of 

CADASIL to be point mutations in the human Notch3 gene (Joutel et a l , 1996) 

CADASIL is a cerebral autosomal-dominant adult onset arteriopathy, with the mean 

onset age being approximately 45 years (Gridley, 1997, Joutel et a l , 2000) Affected 

individuals exhibit a variety of symptoms including recurrent subcortical ischemic 

strokes, usually in the absence of any vascular risk factors, leading to progressive 

cognitive decline, dementia and premature death (Joutel and Tourmer-Lasserve, 

1998, Gridley, 2003)

The vascular lesions underlying CADASIL are non-atherosclerotic, non- 

amyloid angiopathies preferentially affecting the small arteries and arterioles of the 

brain (Rubio et a l , 1997) However, vascular pathological changes in CADASIL 

patients are not only confined to the brain, but are also observed in systemic arteries 

and some veins, as well as in muscle, nerve vessels and skin (Brulin et a l , 2002) 

CADASIL is therefore a systemic vasculopathy Ultrastructural analysis o f affected 

arteries have revealed alterations and eventual loss of vascular smooth muscle cells, 

and the accumulation of granular osmophilic material within the smooth muscle cell 

basement membrane and the surrounding extracellular matrix (Gridley, 2003) In 

addition, endothelial cells appear to shrink, detach from the basal lamina, and the 

tight and gap junctions appear to be disrupted (Prakash et a l , 2002) It has been 

suggested that the mutant Notch3 molecules present on the cell surface compete with 

non-mutant Notch proteins for ligand binding, thus dominantly inhibiting the normal 

signalling pathway (Spinner, 2000)
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New emphasis has recently been given to funduscopic examination in 

patients with cerebral small vessel diseases, including CADASIL, since retinal and 

optic nerve head arterioles share common anatomical and physiological properties 

with small cerebral arteries (Rufa et a l , 2004b) Haritoglou et al (2004) analysed 

the ocular vasculature of CADASIL patients and made several observations 

(Haritoglou et a l , 2004a, Haritoglou et a l , 2004b) Electron microscopy revealed 

extensive deposits of granular osmophilic material in arterial walls, thickened 

basement membrane, VSMC loss, and pericyte degeneration Endothelial cells were 

detached with mtracytoplasmatic vacuoles and mild mitochondrial changes were 

observed Throughout the choroid and choriocapillans no abnormalities were 

detected This is of interest with respect to cerebral involvement in CADASIL, as 

cerebral and retinal blood vessels share similar anatomical and physiological 

properties Whereas the blood-retinal and blood-brain barriers are maintained by 

nonfenestrated endothelial cells, choroidal vessels contain a continuous layer of 

fenestrated endothelial cells This suggests a differential involvement of small blood 

vessels depending on the angioarchitecture and blood-tissue barriers

Harju et al demonstrated reduced retinal capillary blood flow and a 

narrowing of the retinal arterioles in CADASIL patients Similar to previous reports, 

patients had reduced VSMCs in retinal capillaries Furthermore, the pericytes of the 

central retinal artery were swollen, and focal demyelination of the optic nerve was 

observed (Harju et a l , 2004) Furthermore, arterioles progressively lose their 

capacity for autoregulation In addition, studies have recently revealed an impaired 

visual function in these patients by showing abnormal ocular electrophysiological 

responses in symptomatic and asymptomatic subjects (Parisi et a l , 2003) Rufa et al 

(2004) demonstrated a reduced retinal and anterior optic nerve head blood flow in 

symptomatic and asymptomatic CADASIL patients compared to healthy subjects 

Each of these studies demonstrate a non-redundant role for Notch signalling in the 

control o f retinal blood flow (Rufa et a l , 2004b)
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13  5 1 5  2 Alagille Syndrome

Alagille Syndrome (AGS) is an autosomal dominant disorder characterized 

by developmental abnormalities of the heart, liver, eye, skeleton and kidneys 

(Loomes et a l , 1999) The incidence of this disorder is 1 70,000 live births (Joutel 

and Tournier-Lasserve, 1998), however it is likely to be a cause of death in utero, as 

is evident with homozygous mouse models of AGS (Xue et a l , 1999) Congenital 

heart defects, the majority of which affect the pulmonary circulation, significantly 

contribute to mortality in AGS patients Most patients (97%) have a heart murmur, 

and 67% of these have peripheral pulmonary stenosis (Loomes et a l , 1999) Two 

groups independently identified Jaggedl as the defective gene in AGS (Joutel and 

Tournier-Lasserve, 1998, Henderson et a l , 1994), further highlighting the 

importance of the Notch signalling pathway in the development and maintenance of 

the cardiovascular system
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13  5 2 Hedgehog Signalling Pathway

13  5 2 1  Introduction to Hedgehog Signalling

Hedgehog (Hh) proteins are secreted morphogenic signalling molecules 

which play a role during embryonic development (Weed et a l , 1997, Pepicelli et a l , 

1998, Vokes et a l , 2004) and in the adult vasculature (Pola et a l , 2003, Zeng et a l ,

2001) In December 1993, Ingham, McMahon, and Tabin reported the isolation of 

vertebrate homologs of the Drosophila hedgehog (Hh) gene, and named the three 

mouse Hh genes Sonic hedgehog (SHh), Desert hedgehog (DHh) and Indian 

hedgehog (IHh) (Nieuwenhuis and Hui, 2005, Fietz et a l , 1994)

SHh is synthesised as a 45kDa precursor protein which undergoes 

autoproteolysis to yield a 20kDa N-terminal domain (SHh-N) and a 25kDa C- 

terminal domain (SHh-C) (Figure 1 16) The signalling activity of SHh resides only 

in the N-terminal domain, whilst the C-terminal domain is responsible for the 

autoprocessing (Bumcrot and McMahon, 1995) SHh-C is thought to act as a 

cholesterol transferase during the processing, allowing a cholesterol modification of 

SHh-N at its C terminus Palmitoylation also takes place at the N-terminus of SHh-N 

to give SHh-Np, in this way, SHh-Np can remain membrane-associated and function 

as a short range signalling molecule interacting with neighbouring cells (Pepinsky et 

a l , 1998) There is also evidence for a freely diffusible form of SHh-Np (termed s- 

SHh-Np) that mediates long range signalling The release of the cholesterol modified 

and therefore hydrophobic SHh-Np from the cell membrane is thought to involve a 

multimensation step in order to bury its lipid moieties in the hydrophobic surface of 

an adjacent SHh protein A transmembrane protein Dispatched (Disp) has been 

shown to be required for the release of the cholesterol modified SHh-Np (Porter et 

a l , 1995, Burke et a l , 1999, Williams et a l , 1999)
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Figure 1 16 Schcm atic of Sonic Hedgehog S ignalling  pathway Shh under gpes 
autocatalytic processing prior to secretion The Shh precursor protein is cleaved to yield an 
-20  kDa N-terminal domain (signaling domain) and an -25 kDa C-terminal domain (catalytic 
domain) Cholesterol modification is important tor secretion and activity ol the Shh protein 
(A) The Shh signaling path way involves two transmcmbranc proteins, Patched (Ptc) and 
Smoot hened (Smo) Ptc binds Shh whereas Smo acts as a signal transducer in the absence 
o f liquid, Ptc interacts with and inhibits Smo This inhibition activates a transcriptional 
repressor (eg  Gh invertebrates) Tn the presence of ligand, the interaction of Ptc and Smo is 
altered and Smo is no longer inhibited Gli protein may then enter the nucleus and function 
as a transcriptional activator (B) (Sonic hedgehog signaling in basal cell carcinomas, Grosjean 
etal 2005)

The secreted peptide binds to its receptor, the 12-membrane pass protein 

Patched 1 (Ptcl) (Chen and Struhl, 1998), thereby relieving Ptc 1-mediated repression 

of Smoothened (Smo) (Figure 116) Hh induces progressive Smo phosphorylation 

by protein kinase A and casein kinase, leading to elevation of Smo cell-surface 

levels and signalling activity (Jia et a l , 2004, Zhang et a l , 2004) Although the 

precise manner in which Hh binding facilitates activation of the G-protein-like 

molecule Smo is unknown, downstream events focus on the transcription factor 

Cubitus interuptus in Drosophila, and its homologues, the Gli family, in vertebrates 

The Gh family of zinc finger transcription factors, then activate transcription of 

Hedgehog target genes, such as FOXE1 and FOXM1 encoding Forkhead-box 

transcription factors While Glil and Gli2 are transcriptional activators, Gli3 seems 

to function primarily as a transcriptional repressor Gh2 appears to be the principal 

effector o f SHh signalling since disruption of the Gli2 gene leads to developmental
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defects involving several SHh target tissues, while Glil null mice are bom without 

detectable abnormalities

Regulation of Gh processing includes the action of Costal2, Fused, and 

Suppressor of Fused, which form a scaffold that links Gh to microtubules (Sisson et 

a l , 1997) In the absence of the Hh signal, the kinases protein kinase A, glycogen 

synthase kinase 3, and casein kinase 1, phosphorylate Gh and mediate its 

degradation to the repressor form Interestingly, one of the genes expressed 

downstream of Hh signalling encodes the Hh receptor Ptcl, thereby making Ptcl 

expression an indicator of Hh responsiveness (Fuse et a l , 1999)

The consensus is that the signals encoded by these three Hh genes all activate 

the same downstream signalling cascade, and that the presence of three genes 

controlled by separate regulatory elements facilitates the expression of the signal at 

multiple sites and times during embryogenesis (McMahon et a l , 2003) Hh 

signalling is used throughout embryogenesis in many differentiating tissues to 

establish cell fate, promote cell proliferation, and mediate programmed cell death 

(McMahon et a l , 2003)
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1.3.5.2.2 Biological Consequences of Hedgehog Signalling

Hedgehog has been implicated as an essential signalling molecule in several 

non-related functions. For example, SHh plays a role in early vasculogenesis, 

particularly the formation, aggregation and subsequent assembly of angioblasts 

(endothelial precursors) in endothelial tube formation (Vokes et al., 2004). 

Furthermore, the embryonic chick has the ability to regenerate its retina after it has 

been completely removed, one of few organisms with this capacity. This is mediated 

via SHh signalling of Fibroblast growth factors (Spence et al., 2004). Also the role 

of Hh signalling in the formation of the proximodistal axis of the eye and the 

differentiation of retinal pigment epithelium is well characterized (Perron et al.,

2003).

In the past decade however, there has been increasing appreciation of the fact 

that pathways such as Notch and Hh signalling, studied predominantly during 

embryogenesis and known to be relatively silent during normal adult life may be 

recruited postnatally in response to tissue injury (Pola et al., 2003). For example, 

expression of DHh and Ptcl persist in the postnatal and adult peripheral nerves, 

enabling maturation and maintenance of the peripheral nervous system in normal 

and in experimental diabetic neuropathy (Calcutt et al., 2003). In vivo mouse studies 

demonstrated postnatal recapitulation of IHh, SHh and Ptcl in fully differentiated 

adult muscular tissues and a regulatory role of Hh signalling in angiogenesis during 

muscle regeneration after ischemia (Pola et al., 2003). Exogenous administration of 

SHh induces robust angiogenesis, characterized by distinct large-diameter vessels 

and upregulation of Ptcl in aortic vessels and heart. SHh can induce corneal 

neovascularisation, and also blood-flow recovery and limb salvage following 

operatively induced hind-limb ischemia in aged mice (Pola et al., 2001). Recent 

results also suggest that reduced expression of Hedgehog interacting protein (HIP), a 

naturally occurring Hh pathway antagonist, in tumour neo-vasculature may 

contribute to increased Hh signalling within the tumour and possibly promote 

angiogenesis (Olsen et al., 2004). In fact, dysregulation of the Hh signalling pathway 

plays a pivotal role in a variety of human tumours, such as gastric cancer, pancreatic
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cancer, colorectal cancer, breast cancer, prostate cancer, basal cell carcinoma and 

brain tumours (Katoh and Katoh, 2005) -  several of which, are now therapeutic 

targets in the developing field of Hh related drug development
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1.3.5.3 Interaction of Notch & Hedgehog Signalling

Identification of a wide range of molecules whose targeted disruption results 

in defective vascular development, has led to candidate molecules implicated in 

vascular remodelling in the adult vasculature. For example, mice deficient in flk- 

1/KDR, flt-1, PDGF-B, PDGF, RTGF1, TGFRII, endoglin, SHh, Notch, tissue 

factor, neuropilin-1 and -2, ephrinB2, EphB4, tie-1, tie-2, hypoxia-inducible factor, 

and angiopoietin-1 and -2, to name a few, exhibit defective vascular development 

(D'Amore and Ng, 2002). The role each of these plays in vessel formation and/or 

vascular remodelling, and whether their influence is direct or indirect, is not fully 

understood. In addition to the large number of regulatory molecules and pathways, it 

is likely that few of these are exclusive and independent of the other pathways.

How does the Hh signal interact with the other signalling pathways 

demonstrated to play a role in vascular development? Addition of recombinant SHh 

to interstitial mesenchymal cells promotes expression of VEGFs and other 

angiogenic molecules such as angiopoietins (Pola et al., 2001). Recent chimera 

studies have demonstrated a role for VEGF produced by the visceral endoderm in 

yolk sac angiogenesis (Damert et al., 2002). Notch signalling is implicated in blood 

vessel differentiation, and arrest at the capillary plexus stage is observed in embryos 

deficient in Notch 1 (Krebs et al., 2000). Moreover, Notch4 regulates vessel 

patterning and remodelling in mouse models of vascular development (Krebs et al., 

2000, Uyttendaele et al., 2001). Expression of both Notch 1 and D114 are upregulated 

by VEGF in human arterial endothelial cells (Liu et al., 2003b). Taken together, 

these data are consistent with a regulatory cascade for vascular remodelling that 

begins with Hh promoting Angl, Ang2, and/or VEGF expression, which in turn 

promotes Notch expression and signalling. Strong support for this hierarchy comes 

from work performed in zebrafish, where exogenous VEGF can restore normal 

arteriogenesis in the absence of SHh, but not in the absence of Notch function. 

Furthermore, activation of Notch can compensate for the loss of VEGF activity 

(Lawson et al., 2002). Evidence from a number of sources, however, suggests that 

this cascade may not be the only means whereby Hh promotes angiogenesis. For
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example, zebrafish embryos lacking SHh have a more severely abnormal vascular 

phenotype, failing to form two distinct trunk axial vessels, than those that lack 

VEGF or Notch, which have two vessels with the aorta transformed from artery to 

vein This discrepancy suggests that Hh also promotes vascular development via 

other signalling cascades (Lawson et a l , 2002), possibly the angiopoietin signalling 

pathway

This angiogenic cascade involving Hh, VEGF, and Notch involves 

communication between three different cell types the Hh producing cell, the Hh 

responding cell, and the target endothelial cells However, evidence also suggests 

that Hh may act directly on endothelial cells, as the Ptcl receptor is expressed on 

adult vascular endothelial cells (Pola et a l , 2001) In an assay using either murine 

brain capillary endothelial cells or human umbilical vein endothelial cells, SHh 

promoted endothelial network and lumen formation in the absence of support cells 

(Kanda et a l , 2003) A vascular network-like structure formed in response to SHh 

treatment of the bEnd3 endothelial cell line (Vokes et a l , 2004) This morphologic 

transition suggests that Hh may play a direct role in tubulogenesis In both of these 

in vitro experiments, the induction of capillary morphogenesis occurred in the 

apparent absence of VEGF, suggesting that the direct action of Hh on endothelial 

cells is independent of VEGF Taken together, the evidence suggests that Hh acts 

both via the VEGF-Notch cascade, and via an alternate pathway
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1 4 Relevance and Objectives of this study

Haemodynamic forces generated by blood flow play an important role in 

regulating vascular cell fate decisions and are also an important regulator of 

vasoactive substances such as NO, PGI2 and ET-1 Aberrant retinal blood flow is 

associated with numerous retinal pathologies, such as diabetic retinopathy, normal 

and high tension glaucoma Similarly, endothelial dysfunction, which impairs the 

ability o f vessels to ‘autoregulate’ blood flow in response to altered perfusion, is also 

associated with each of these pathologies Precise information on the mechanisms by 

which haemodynamic forces regulate vasoactive mediators in retinal vessels may aid 

in understanding the role of altered blood flow and endothelial dysfunction in 

disease Moreover, our experiments utilised co-culture technology, accounting for 

reciprocal regulation of cell fate decisions between ECs and pericytes, an important 

interaction not featured in most other in vitro haemodynamic models

Numerous studies have implicated the Notch signalling pathway in the 

regulation of cell fate decisions, including apoptosis, in many cell types (Artavanis- 

Tsakonas et a l , 1995, Artavanis-Tsakonas et a l , 1999, Greenwald, 1998) Whilst 

the presence and function of the Notch signalling pathway was not established in 

adult VSMC until recently, several lines of evidence indicated that components of 

this pathway could be present, and act to regulate apoptosis in adult VSMC 

Furthermore, recent reports from our laboratory and others suggest a potential 

crossover or interaction between Notch and Hedgehog signalling pathways To date, 

the presence or absence of Notch and Hedgehog in the retinal vasculature has not yet 

been defined Moreover, pulsatile flow regulation of Notch or Hedgehog has not 

been demonstrated in any vascular cell type
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Therefore, the findings of this research project has been divided into four results 

chapters with the following objectives

Chapter 3

Acute Exposure to Pulsatile Flow Regulates Nitric Oxide, Prostacyclin & 

Endothelin-1 in BREC mono-culture & BREC/BRP co-culture

- The aim o f  this chapter was to determine the ‘acute’ effect (i e 24 hours) o f  

pulsatile flow  on cell morphology and production o f vasoactive mediators by retinal 

endothelial cells, either cultured alone or in co-culture with retinal pericytes In 

addition, I  analysed which signalling pathways are activated and the role o f  the 

proposed mechanotransducers G-proteins, integrins and protein tyroine kinases

Chapter 4

BREC/BRP Co-Culture Pulsatile flow regulation of Nitric oxide, Prostacyclin, 

Endothelin-1 and apoptosis

- The aim o f  this study was to determine the apoptotic effect o f chronic exposure to 

pulsatile flow  on retinal endothelial & pericyte cell co-cultures fo r  3 days 

Furthermore, the role o f  NO, ET-1 and PGh in mediating changes in apoptosis due 

to pulsatile flow  was examined
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Chapter 5

Hedgehog signalling is anti-apoptotic and also regulates Notch signalling in static 

cultures of BRECs and BRPs

- The aim o f  this study was to identify the presence o f  Notch & Hedgehog signalling 

pathway components in retinal endothelial & pericyte cells in static culture and also 

in human normal and glaucomatous eye sections In addition, the effect o f  

exogenous Sonic Hedgehog addition on Notch signalling and apoptosis was also 

examined in retinal endothelial & pericyte cells

Chapter 6

Effect of Pulsatile Flow on BREC/BRPs co-culture -  Apoptosis, Notch and 

Hedgehog signalling

- The principal aims o f  this study were to establish the presence and activity o f  the 

Hedgehog/Notch signalling components in co-cultured retinal EC/pericytes exposed 

to pulsatile flow  Furthermore, the role o f  Notch/Hedgehog signalling in regulating 

EC/Pericyte cell apoptosis exposed to pulsatile flow was also examined
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Chapter 2 

Methods



2 O Material & Methods

2 1 Materials

All general-purpose chemicals and reagents used in experimental work were of 

analytical grade, and were purchased from the companies listed below

AGB Scientific (Dublin. Ireland)

Whatmann Chromatography paper

Ambion (Cambridgeshire. UK)

Cells to cDNA kit

Amersham Pharmacia Biotech (Buckinghamshire. UK)

Anti-mouse 2^ antibody, HRP conjugated 

Anti-rabbit 2^ antibody, HRP conjugated 

ECL Hybond nitrocellulose membrane 

ECL Hyperfilm

Rainbow molecular weight marker, broad range (6-175kDa)

Amersham Hyperprocessor Automatic Developer

Assay Designs (Ann Arbor. MI. US)

PGI2 Assay kit

Bachem UK Ltd (St Helens. UK)

Linear RGD peptide 

Cyclic RGD peptide

BD Transduction Laboratories (Oxford. UK)

All apoptosis related l 17 antibodies
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BDH Laboratory Supplies (Poole. England)

poly-l-lysine-coated glass slides

Bio Sciences Ltd (Dun Laoghaire. Ireland)

DMEM

dNTP’s

DEPC-treated water 

Trizol® reagent

Calbiochem (Bad Soden. Germany)

Hygromycin

PD142893

Genistein

Pertussis toxin

Anti-ppERK antibody

Anti-ppP38 antibody

Carl Zeiss (Jena. Germany)

Zeiss LSM 510 Confocal Microscope

Cayman Chemical Company (Michigan. USA) 

eNOS polyclonal antibody 

ET-1 El A kit

Cell Signaling (Beverly. MA. US) 

Phospho-specific eNOS1179 1^ antibodies

Corbett Research Limited (Cambridge. UK) 

Rotor-Gene 3000™ lightcycler
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Spectrum Laboratories Inc . ÍSanta Clara, Ca. US)

Cellmax™ Perfused Transcapillary Culture Capillaries

Gibco (Dun Laoghaire. Ireland)

G418

GibcoBRL Horizion 20 25 gel electrophoresis apparatus

Grass Instrument Co (W Warwick. RI)

Grass recorder (Models 7 and 7E)

Hitachi Corp Ltd 

Hitachi S 300N SEM

Invitrogen iGroningen. The Netherlands)

Lipofectamine reagent 

Vybrant™ Apoptosis Assay Kit #2 

Vybrant™ CFDA SE cell tracer kit

Global Medical Instrumentation ^Minnesota, US)

Labsystems Luminoskan Luminometer

Laboratory Instruments and Supplies (Dublin. Ireland)

Leica TP 1020 processor 

Leica EG 1140H embedder 

Leica RM 2135 microtome

MWG Biotech iMilton Keynes. UK)

All Oligonucleotides

National Disease Research Interchange fNDRI. Philadelphia. PA. USA) 

Human eyes
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Olympus (Singapore)

CK30 phase contrast microscope

Oxford Instruments. Microanalysis Group (UK) 

SEM Image Analysis software

Oxoid (Hampshire. UK)

Tryptone

Skim Milk Powder 

Yeast Extract

PALL Corporation (Dun Laoghaire, Ireland) 

Biotrace nitrocellulose membrane

Perkin Elmer (Turku. Finland)

Luminescence spectrometer LS 5OB 

Wallac Victor 2 1420 mutilabel counter

Pierce (Northumberland, UK)

Super Signal West Pico Chemiluminescent Reagent 

BCA Protein Assay Kit

Promega (UK)

Taq DNA Polymerase 

MLV-RT 

RNase H 

Oligo dT

Luciferase Reporter Reagents

WizardR Plus Midipreps DNA purification kit
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Santa Cruz (Heidelberg. Germany)

1^ Antibodies

Notch 1, Notch3, Indian & Sonic Hedgehog, Patched 1

Sarstedt (Drinagh. Wexford, Ireland)

T25 tissue culture flasks

T75 tissue culture flasks

T175 tissue culture flasks

6-well tissue culture plates

5,10 and 25ml serological pipettes

15 and 50ml falcone tubes

Scientific Imaging Systems (Eastman Kodak Group. Rochester. NY) 

Kodak ID image analysis software

Sigma Chemical Company (Poole.

Acetone

Agarose

b-glycerophosphate 

Bovine Serum Albumin 

Brightline Haemocytometer 

Calcium Chloride 

Chloroform 

Diaminobenzidine 

DMSO 

EDTA

Ethidium Bromide 

Glycerol

Hanks Balanced Salt Solution 

insulin-transferrin-sodium selemt 

Lauryl Sulphate

England) 

Acrylamide/bis-Acrylamide 

Ammonium Persulphate 

2ß-mercaptoethanol 

Brefeldin A 

Bromophenol blue 

CHAPSO

DNase/RNase free treated water

DMEM

DTT

EGTA

Foetal Calf Serum 

Glycine

Hydrochloric acid

Isopropanol

Leupeptin

Dorset.
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Methanol

Monensin

pNitroanilide

Penicillin-Streptomycin (lOOx)

Ponceau S 

Potassium Iodide 

Sodium Acetate 

Sodium citrate 

Sodium Hydroxide 

Sodium Orthovanadate 

Sodium Pyrophosphate 

Streptomycin 

TEMED 

Tris Acetate 

Tns Chloride

Trypsm-EDTA solution (10x)

Stratagene (La Jolla, Ca. US)

High Sensitivity ß-galactosidase Assay Kit

Oiagen (West Sussex. U K )

SYBR Green® PCR Kit

Vector Labs (Burlingame, Ca. US) 

Vectastatin Immunohistochemistry kits

Mineral oil (molecular grade) 

N-Acetyl-Asp-Glu-Val-Asp-

p-Nitroaniline

Potassium Chloride

Potassium Phosphate (Dibasic)

Sodium Chloride

Sodium Dodecly Sulphate

Sodium Nitrite

Sodium Phosphate

Streptomycin

Sulphuric Acid

Tetracycline

Tns Base

Triton X-100

Tween 20
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2 2 Cell Culture Methods

2.2 1 Culture of microvascular cells

All cell culture techniques were carried out in a clean and sterile environment 

using a Bio air 2000 MAC laminar flow cabinet Cells were visualized using an 

Olympus CK30 phase contrast microscope

Bovine retinal endothelial cells (BREC) and bovine retinal pericytes (BRP) 

were kindly donated by Prof Alan Stitt, Queens University, Belfast BREC were 

grown in Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 10% 

FBS, lOOU/ml penicillin, 100fAg/ml streptomycin, and 1 x msulin-transferrin-sodium 

selenit (ITS) BRP were grown in DMEM supplemented with 20% FBS, lOOU/ml 

penicillin, 100|ig/ml streptomycin and 1 x conc ITS Both cell lines were maintained 

m a humidified atmosphere of 5% CO2 / 95% air and routinely used between 

passages 5 to 9

BRECs & BRPs are adherent cell lines As such, trypsinisation was 

necessary for sub-culturing or harvesting o f cells For trypsinisation, growth media 

was removed from the flask and the cells were gently washed three times in Hanks 

buffered saline solution (HBSS) to remove a-macroglobulin, a trypsin inhibitor 

present in FBS A suitable volume of trypsin/ethylenediamine tetracetic acid 

(EDTA) (10% v/v trypsin EDTA in HBSS) was added to the flask and incubated 

until all cells detached from the flask surface Trypsin was inactivated by the 

addition o f FBS containing growth medium, and the cells were removed from 

suspension by centrifugation at 2500g for 2-3 mins Cells were then resuspended in 

culture medium and typically diluted 1 4 into culture flasks, or cryogemcally 

preserved
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2 2 2 Cryogenic preservation and recovery of cells

For long-term storage of cells, BRECs & BRPs were maintained in liquid 

nitrogen in a cryofreezer unit Cells to be stored were centrifuged following 

trypsmisation and the resultant pellet was resuspended in 50% (v/v) FBS containing 

dimetylsulphoxide (DMSO) at a final concentration of 10% (v/v) 1ml aliquots were 

transferred to sterile cryovials and frozen in a -80°C freezer at a rate o f -l°C/min 

using a Nalgene cryo freezing container Following overnight freezing at -80°C, the 

cryovials were transferred to a liquid nitrogen cryofreeze unit (Thermoylen locator 

jr cryostorage system)

Cells were recovered from long-term storage by rapid thawing at 37°C and 

resuspension in 5ml o f growth medium followed by centrifugation at 1000g for 2-3 

mins The resulting cell pellet was resuspended in fresh medium and transferred to 

culture flasks The following day, the media was removed and the cells were washed 

in HBSS and fresh culture media added
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2 2 3 Perfused Transcapillary Co-Culture System

The perfused transcapillary culture apparatus (Cellmax Quad™ artificial 

capillary culture system) consists o f an enclosed bundle o f 50 semi-permeable, 

Pronectin™ coated polypropylene capillaries (capillary length 13cm, outer diameter 

630^im, wall thickness 150fxm, luminal area 70cm2, outer surface area 100cm2, 

extra-capillary volume I 4ml, 95% MWCO 0 5juim) through which medium from a 

reservoir is pumped at a chosen flow rate via silicone rubber tubing As the gear 

pump rotates, the motor shaft forces the pump pins to depress the pump tubing on 

the capillary module, thereby forcing culture media to flow in a pulsatile fashion 

through the gas-permeable silicone flow path tubing and through the capillary 

(Figure 2 1) By altering the flow rate using an electronic control unit housed outside 

the humidified incubator, varying pulsatile flow rates and hence pulse heights 

(pressure) can be achieved in this system (Table 2 1) To maintain pH, pCCh, and 

pC>2 o f the culture media at constant levels, the perfused transcapillary culture 

system was housed in a humidified atmosphere in a standard CO2 incubator, thereby 

allowing gaseous exchange to occur through the silicone rubber tubing Prior to the 

addition o f cells, the module is equilibrated for 3 days by circulation o f culture 

media through the capillaries and tubing
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Side-port Side-port
Reservoir

Capillary bundle

Oxygenator ^ _________  Pump

IAMWMMW

Figure 21  Schematic of the Perfused Tran scapi 11 ary co-culture system
demonstrating the normal flow path of the perfusing medium via inlet and outlet ports 
and through the luminal spaces Below wave forms generated at ‘low’(left) and ‘high’ 
flow (right)

The outer surface area o f the capillaries is 100cm2 BRP from culture flasks 

of equivalent or greater surface area were harvested by adding 0 125% trypsin- 

EDTA and injected into the extracapillary space (ECS) at a density o f 2x 104/cm2 

using a double syringe method Briefly, BRP cells are introduced with a syringe into 

one ECS port and the displaced media is withdrawn from the opposite ECS port 

using another syringe Cells are allowed to adhere for 3 hours, after which the pump 

is set to low flow (0 3ml/min, pulse pressure o f 6mmHg, shear stress of 

0 3dynes/cm2) and returned to the incubator for 3 days BREC are introduced into 

the luminal compartment, again using the double syringe method at density o f 2 x 

104cells/cm2 and allowed to attach for 3 hours before circulating the media at low 

flow for a further 3 days Low serum (1%) was used to enhance BREC attachment to 

the Pronectin-F™-coated capillaries In addition, to prevent BREC from being 

flushed out o f the capillaries and to promote their adherence immediately following
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cell loading, the perfusion media (now also containing 1% FBS) was re-routed for 6 

hours, via the extra-capillary space using the side-ports Following this period, the 

perfusion circuit was returned to its original path, whereby media, containing 20% 

FBS, was again perfused through the lumen of each capillary that was now lined 

with BREC The cells were seeded at an appropriate density to guarantee full 

coverage o f all capillaries The number of cells that did not adhere were routinely 

counted to measure seeding density and adherence after the pump has been turned 

back on to ensure maximal coverage o f each capillary The harvested cells were then 

routinely counted at the end o f each experiment to confirm uniform seeding density 

and adherence To obtain ‘high flow’ the flow rate is increased steadily over 

approximately 5 hours until the desired high flow rate is reached (t = 0) After 

completion o f the experimental time-course, cells are harvested from their separate 

compartments by first washing the cells with Hanks Balanced Salt (HBSS) solution 

using the double syringe method, and removing the remaining cells by treatment 

with 0 125% trypsin-EDTA The circulating media is also harvested at the end of 

each experiment For BREC mono-cultures, no BRP are seeded into the ECS and the 

BREC are seeded into the luminal compartment as described above

ECS Lou Flow 

ECS High Flow

Inlet Lott Flow 

Inlet High Flow

P n l^  Pressure* 
Max 24 mmHg 
Mm 18 mmHg 
Max 70 mmHg 
Mm 14 mmHg

Max 11 mmHg 
Mm 0 mmHg 
Max 80 mmHg 
Mm 10 mmHg

Amplimt* 

6 mmHg 

56 mmHg

11 mmHg 

70 mmHg

Table 2 1 Pulse pressures within the luminal and extracapillary space under low 
and high pulsatile flow conditions
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The Cellmax™ system is a valuable tool in vascular biology, especially in its 

ability to duplicate vascular wall configuration, and its ability for prolonged 

sustainable growth The positive displacement pump system used to drive the flow 

in the Cellmax™ generates a pulsatility in the flow depending on the flow regime 

specified Since blood flow pulsatility is a natural and important component o f the 

mechanical signalling to vascular cells, a model that incorporates pulsatile flow is 

advantageous Pulse pressures were monitored simultaneously intraluminally at the 

inlet port and extraluminally (ECS) at the sideport using pressure transducers 

connected to a Grass recorder (Table 2 1) In the current study, the “low” pulsatile 

flow rate used was 0 3ml/min, corresponding to a shear stress of 0 5dynes/cm2 and a 

pulse pressure o f 24/18mm Hg with a frequency o f 0 2Hz and an amplitude o f 6mm 

Hg in the extracapillary space The “high” pulsatile flow rate was 23ml/min, 

corresponding to a shear stress o f 23dynes/cm2, a pulse pressure o f 70/14mm Hg 

with a frequency of 2Hz, and an amplitude of 56mm Hg in the extracapillary space
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2 2 4 Immunocytochemistry

BRPs seeded onto capillaries were washed x2 with PBS and fixed by the 

addition of 3% paraformaldehyde for 15 mins at room temperature The plastic 

casing housing the capillaries was then removed with a pipe-cutter and the 

capillaries cut into 1cm sections Cells were permeabihsed by the addition o f 0 2% 

(v/v) TritonX-100 in PBS, followed by two PBS washes and incubation for 30 mins 

at room temperature in blocking solution (1% BSA in PBS) Capillaries were then 

washed twice in PBS followed by incubation for 2 hours at room temperature with a 

1 200 dilution o f anti a-smooth muscle cell specific actin primary antibody in 

blocking solution Following three 5 mins washes in PBS, sections were incubated 

with a 1 400 dilution of Alexa488-conjugated rabbit anti-mouse IgG in blocking 

solution for 60 mins at room temperature Alexa488 is a green-fluorescent conjugate 

(excitation/emission maxima -495/519 nm) that has spectral characteristics similar 

to fluorescein conjugates, but exhibits fluorescence that is brighter, much more 

photostable and less pH dependent Capillary sections were then washed with PBS, 

prior to being mounted onto microscope slides for fluorescent microscopy analysis
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2 2 5 Confocal Microscopy

Visualisation o f BRP anti a-smooth muscle cell specific actm was performed 

on cells grown on capillaries and prepared as per immunocytochemistry above BRP 

nuclei were stained for 5 mins with 0 2|ig/ml propidium iodide Control procedures 

included unstained cells to allow for autofluorescence and secondary antibody only 

to control for non-specific binding of the fluorescent secondary antibody 

Rhodamine fluorescence (propidium iodide) was detected at 546nm and FITC 

(actm) at 488nm using an argon laser All images were acquired using a Zeiss LSM 

510 Confocal Microscope

2 2 6 Scanning Electron Microscopy

Media was removed from the capillary system and replaced with 2 5% 

glutaraldehyde in lx  PBS and incubated at room temperature for 1 hour Cells were 

then washed in 0 1M Cacodylate buffer (pH 7 4) and incubated for a further 90 mins 

in 1% osmium tetroxide in Cacodylate buffer at 4°C After a brief wash with 

Cacodylate buffer, a graded series o f ethanol solutions were perfused to dehydrate 

the capillaries (50, 60, 70, 80, 90% Ethanol for 10-15mins each) The capillaries are 

then incubated in 100% Ethanol twice for 10 mins and dried in a standard bell 

chamber under vacuum overnight Images were acquired using a Hitachi S 300N 

SEM and analysed with SEM Image Analysis software
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2 2 7 Cell counts

Cells counts were performed using a Sigma brightline haemocytometer 

Trypan blue exclusion dye was routinely used to determine cell viability 20(̂ 1 o f 

trypan blue was added to lOOjxl o f cell suspension, the mixture was left to incubate 

for 2 mins 20fxl o f this mixture was loaded to the counting chamber of the 

haemocytometer and cells visualized by light microscopy Viable cells excluded the 

dye while dead cells stained blue The number of cells was calculated using the 

following equation

Average Cell No x dilution factor x lx l0 4 (volume under cover slip mm3) = Viable 

cells/ml
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2 3 Immunohistochemical analysis of tissues

Normal and glaucomatous post-mortem eyes were obtained from the 

National Disease Research Interchange (NDRI), an organisation which procures and 

distributes human tissues, cells and organs for research and transplantation The 

NDRI procures tissue from donors only where informed written consent has been 

given Ethical approval was obtained from the Mater Misericordiae Hospital’s Ethics 

Committee (Dublin) for the procurement of this tissue Globes were fixed in 10% 

formalin within 20 hrs of death and were then processed as soon as possible Globes 

were dissected into two, processed and embedded as described in the following 

section The average age o f normal donors was 69 ± 2 9 (67% male) and the average 

age o f glaucoma donors was 69 ± 5 6 (33% female)

107



2 3 1 Preparation of tissue samples for histological analysis

Eyes were placed in 4%  paraformaldehyde and left to fix overnight The 

tissues were then processed on a Leica TP 1020 processor using the following 

programme

Time (hrs )

Formalin

Formalin

70% methylated spirit

95% methylated spirit

Spirit (99% IMS)

Spirit

Spirit

Spirit

Xylene

Xylene

Paraffin Wax

Paraffin Wax

The tissue was embedded in paraffin wax on a Leica EG 1140H embedder 

5 îm sections were cut on a Leica RM 2135 microtome and dried onto poly-L- 

lysine-coated glass slides The slides were baked overnight at 50°C
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2 3 2 Deparaffinisation and rehydration of tissue sections

The slides were deparaffmised and rehydrated as follows

Xylene 5 mm

Xylene 5 mm

Xylene 5 min

100% Methanol 20 sec

100% Methanol 3 min

90% Methanol 3 mm

70% Methanol 3 mm

50% Methanol 3 mm

30% Methanol 3 min

2 3 3 Immunohistochemical staining (peroxidase-diaminobenzidine reaction)

For some proteins, an antigen retrieval step was required prior to staining 

This was achieved by micro waving the sections in sodium citrate buffer (pH 6) 

following the dewaxing and rehydration steps outlined in section 2 3 2 Sections 

were microwaved at a medium heat for approximately 5 mins, without letting the 

buffer boil and were left in the buffer for a further 30 mins to cool

Endogenous peroxidase activity was quenched in the tissue sections by 

incubation with 0 3% H2O2 in 100% Methanol for 30 mins Slides were then washed 

3x 5 mins in PBS at 50rpm Non-specific binding was blocked by the incubation o f  

tissue sections in 1 5% normal serum from the species in which the secondary 

antibody was raised for 30 mins or 1 hour - normal serum concentrate, provided with 

the Vectastain Elite kit diluted in PBS The tissue sections were then incubated with 

the primary antibody in normal serum for the optimal time (typically 1 hour) 

Sections were washed again, 3x 5 mins in PBS and then incubated with the 

appropriate biotmylated secondary antibody (Vectastain kit) for 1 hour at room
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temperature The tissue was washed 3x 5 mins in PBS and incubated with the ABC 

complex from the kit for 30 mins at room temperature Following this, slides were 

washed as before and exposed to diaminobenzidme (DAB) chromogen for up to 10 

mins Sections were counterstained with hematoxylin for 30 secs, and washed in tap 

water for 5 mins The slides were rinsed with methanol and cleared with xylene (3 

separate washes) The slides were then mounted using DPX mounting media

i
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2 4 RNA preparation methods

2.4.1 RNA isolation

Trizol is a ready to use reagent for the isolation of total RNA, DNA and/or 

protein from cells and tissues RNA isolation was developed by Chomczynski et al 

(Chomczynski and Sacchi, 1987) Trizol reagent maintains the integrity o f the RNA 

while disrupting the cells and dissolving the cell components

Cells were lysed in both tissue culture flasks and cartridges by the addition o f  

lml o f Trizol per 10cm2 surface area A volume less than this can result in 

contamination of the RNA with DNA To ensure complete homogenization, cells 

were lysed by passing through a pipette a number of times The samples were then 

incubated for 5 mins at room temperature to allow complete dissociation o f  

nucleoprotein complexes 0 2m 1 of chloroform was added per ml o f Trizol reagent 

used and was then mixed vigorously for 15 secs before incubation at room 

temperature for 5 mins Samples were then centrifuged at 12,000g for 15 mins at 

4°C The mixture separated into a lower red, phenol-chloroform phase, an interphase 

and an upper colourless aqueous phase RNA remains exclusively in the aqueous 

phase

The aqueous phase was carefully removed and transferred to a fresh, sterile 

tube The RNA was precipitated out of solution by the addition o f 0 5ml o f  

isopropanol per lml of Trizol used Samples were incubated for 15 mins at room 

temperature and then centrifuged at 12,Q00g for 10 mins at 4°C The RNA 

precipitate forms a gel-like pellet on the side of the tube The supernatant was 

removed and the pellet washed in lml o f 75% ethanol per ml o f Trizol used, 

followed by centrifugation at 7,500g for 5 mins at 4°C The resultant pellet was air- 

dried for 5-10 mins before being resuspended in DNase/RNase-free water The 

sample was then stored at -80°C until used The concentration o f total RNA was 

determined by UV spectrophotometry as outlined in the following section
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2 4 2 Spectrophotometnc analysis of nucleic acids

DNA or RNA concentrations were determined by measuring the absorbance 

at 260nm, the wavelength at which nucleic acids absorb light maximally (X max) A 

SOjuig/ml solution o f DNA or 40|Hg/ml solution o f RNA has an absorbance reading o f  

1 0 at this wavelength In order to calculate the concentration o f DNA/RNA in 

samples the following calculations were used

For DNA Abs @ 260nm x 50 x dilution factor = \xg/m\

For RNA Abs @ 260nm x 40 x dilution factor = (ig/ml

The purity of the DNA or RNA samples was established by reading the 

absorbance at 260nm, the absorbance at 280nm, and then determining the ratio 

between the two (Abs260/Abs280) using the Shimadzu UV-160A dual-beam 

spectrophotometer Pure DNA, which has no protein impurities, has a ratio of 1 8, 

whereas pure RNA has a ratio o f 2 0 Lower ratios indicate the presence of proteins, 

while higher ratios imply the presence of organic reagents
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2 4 3 Reverse transcription polymerase chain reaction (RT-PCR)

Reverse transcription was preformed using Moloney Murine Leukemia Virus 

Reverse Transcriptase (M-MLV RT) in accordance with manufacturers 

specifications 0 5 îg of total RNA was mixed with 0 125(ig oligo dT primers and 

the reaction mixture brought to a final volume o f \2\i\ with DEPC water This 

mixture was heated for 10 mins at 70°C to allow annealing o f oligo dT primers to 

poly A tails o f mRNA Following this, tubes were immediately cooled on ice and the 

remaining components of the reaction were added as follows

MLV 5x Reaction Buffer 5\i\

lOmMdNTP 3\l\

MLV-RT 200umts

The mixture was then made up to a final volume o f 25\i\ using 

DNase/RNase-free water and incubated for 60 mins at 42°C Contaminating RNA 

was subsequently removed by the addition o f \ \ i \  o f RNaseH (2umts/|jil) at 37°C for 

20 mins cDNA samples were then either used immediately or stored at -80°C
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2 4 4 Polymerase Chain Reaction

A 50^il PCR reaction mixture was prepared as follows

RNase free water 36 5|il

1 Ox reaction buffer 5|nl

lOmM dNTP lj.il

25mM MgCl 3\i\

lO îM Forward primer 1 1̂

lOfiM Reverse primer lfXl

Taq Polymerase 0 5|il

cDNA sample 2jtl

The mixture was overlaid with 50(1x1 o f mineral oil and then placed in a 

Hybaid PCR Thermocycler (SPRT 001) Samples were subjected to an initial 

incubation o f 92°C for 2 mins, followed by 30 cycles comprise o f the following 

steps 92°C for 1 min, annealing temperature for 2 mins (variable -  dependent on 

primer set), and 72°C for 3 mins PCR products were removed from beneath the 

mineral oil and placed in fresh tubes before being subjected to agarose gel 

electrophoresis PCR was performed in order to test for the presence or absence o f  

specific genes and confirmed via product size on agarose gels
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Quantitative PCR was carried out using a Real time Rotor-Gene 3000™ lightcycler 

The principle o f real time amplification detection is that the amount o f fluorescence 

is proportional to the concentration o f product in a reaction Higher fluorescence 

indicates a higher concentration o f a product Each PCR reaction was set up 

typically as follows

SYBR-Green 12 5\il

RNAse free water 8 5\i\

cDNA 2jal

Forward primer l|il

Reverse primer 1 \i\

Each sample was assayed in triplicate, and the program used for the different primer 

sets was as follows for 55 cycles

Denaturing Phase 95°C 20

Annealing Phase 57°C 45

Elongation Phase 72°C 30

115



2 4 5 Agarose gel electrophoresis

Agarose gels were prepared by boiling agarose in TAE buffer Gels were 

generally 1-4% (w/v) depending on the size o f the DNA being visualised, and 

contained 0 5\xg ethidium bromide per 1ml o f agarose for visualization o f DNA 

When the gel was hand-hot the gel was poured into a GibcoBRL Horizon 20 25 gel 

electrophoresis apparatus

Samples were mixed with 6x gel loading buffer \5\i\ o f PCR product was 

mixed with 3\i\ o f loading buffer and subsequently loaded The gel was run at 100V 

in TAE buffer until the blue dye front was approximately 0 5cm from the end of the 

gel DNA was visualized on a transilluminator and photographed for densitometric 

analysis using the Kodak ID gel documentation system

2 4 6 Whole-Eye Tissue RNA Preparation

Several 20fiM tissue sections were prepared as per section 2 3 2, one o f  

which was dewaxed and counterstained in order to localize the retina in each eye 

Retinas were then crudely removed from the slides with a blade and pooled in a 

sterile eppendorf 1 ml of xylene was added per tube, vortexed vigorously for 1 min, 

and incubated at 58°C for 20mins Samples were then centrifuged @12,000 g for 2 

mins The supernatants were aspirated and the step repeated with 1 ml o f fresh 

xylene 500^1 of 100% EtOH was then added and tubes were agamed vortexed and 

centrifuged @ 12,000 g for lmin 500[xl o f 70% ethanol was added, centrifuged 

again for 1 min, and the pellet air dried for 5-10mins Pellets were then washed 

twice in ice-cold PBS and resuspended in lysis buffer (cells-to-cDNA kit) and 

incubated @ 75 °C for 12mins Samples were then cooled at room temperature for 

5mins, after which 2 îl Dnase was added Each sample was then gently vortexed and 

briefly centrifuged to collect samples to bottom o f each tube Samples were 

incubated @ 37°C for 15 mins, then @ 75°C for 5mins The pellet/cell debris was 

then removed and the samples were ready for reverse transcriptase reaction
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2 5 Protein Preparation & electrophoresis 

2 51  Preparation of whole cell lysates

Following trypsmisation of cells as described in section 2 2 1, pellets were 

washed in PBS to remove any trace levels of FBS The cell suspension was then 

centrifuged at lOOOg for 5 mins The PBS supernatant was removed and the cells 

were resuspended in lysis buffer The resulting lysates were frozen and thawed three 

times followed by three cycles of ultrasonication for 5 secs on ice using a sonic 

disembrator (Vibra Cell, Somes and materials Inc) Samples were stored at -20°C for 

short-term storage or -80°C for long-term storage

2 5 2 Bicinchoninic Acid protein microassay

In this assay, Cu++ reacts with protein under alkaline conditions to produce 

Cu+, which in turn reacts with BCA to produce a coloured product Two separate 

reagents were supplied in this commercially available assay kit (Pierce Chemicals) 

A, an alkaline bicarbonate solution and B, a copper sulphate solution 1 part solution 

B is mixed with 50 parts solution A 200|li1 of this mixture is added to 10|xl o f  

protein lysate or BSA protein standards (standard curve in the range 0-2mg/ml) The 

plate is incubated at 37°C for 30 mins and the absorbance read at 560nm using a 

microtitre plate reader
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2 5 3 Western Blotting

SDS-PAGE was performed as described by Laemmli using 10% 

polyacrylamide gels (Laemmli, 1970) 10% resolving and 5% stacking gels were 

prepared as follows

Resolving Gel 1 5ml 1 5M TnspH8 8

1 5ml 40% acrylamide stock

3 0ml Distilled water

60^1 10% (w/v) SDS

30^1 10% (w/v) ammonium persulphate

7\i\ TEMED

Stacking Gel 0 75ml 0 5M TnspH 6 8

0 375ml 40% acrylamide stock

1 85ml Distilled water

30^1 10% (w/v) SDS

15 (il 10% (w/v) ammonium persulphate

7|tl TEMED

Analysis of cell lysate protein concentration was determined by BCA assay 

and equal amounts o f protein were resolved per gel Samples were mixed with 

loading buffer and boiled at 95°C for 5 mins, then immediately placed on ice The 

gel was electrophoresed in reservoir buffer at 40 milliamps (mA) per gel using an 

Atto vertical mini-electrophoresis system until the dye front reached the bottom of  

the gel

Following electrophoresis, the gel was soaked for 15 mins in transfer buffer 

Nitrocelluose membrane and 16 sheets of Whatmann filter paper were cut to the 

same size as the gel and soaked in transfer buffer Proteins were transferred to the 

membrane for 90 mins at 100V in a wet transfer system Following transfer,
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membranes were soaked in Ponceau S solution to confirm transfer of protein to the 

membrane and also to normalize for variations in protein loading

Membranes were blocked for 1 hour in blocking solution (5% skimmed milk 

in PBS) Membranes were then incubated either overnight at 4°C or for 3-4 hours at 

room temperature, with primary antibody diluted according to manufacturers 

instructions in blocking solution The blots were then washed in three changes o f  

PBS-T (0 1% (v/v) Tween in PBS) and then incubated for 2 hours at room 

temperature with a suitable Horseradish-peroxidase (HRP) linked secondary 

antibody diluted in PBS-T Following incubation in secondary antibody, the blots 

were again washed with three changes o f PBS-T

Antibody-antigen complexes were detected by incubation in West Pico 

Supersignal reagent Briefly, an equal volume of solution A and B were mixed and 

the blot was incubated for 5 mins at room temperature Blots were exposed to 

autoradiographic film to visualize bands present on the blot and developed 

(Amersham Hyperprocessor Automatic Developer) Bands o f interest were 

identified either by use o f an antigenic positive control or based on molecular weight 

markers Exposure times varied depending on the antibody being used but were 

typically between 1-2 mins
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2.6 DNA preparation methods

2.6.1 Transformation of Competent cells

lOng o f plasmid DNA of interest was placed in a sterile microfuge tube. To 

this was added lOOjil o f competent E.coli. The mixture was gently mixed and placed 

on ice for 30mins. The cells were heat-shocked by placing the tube in a waterbath at 

42°C for 45-50 seconds after which they were placed on ice for 2mins.

Cells were grown for 1 hour at 37°C with agitation (200rpm) in 1ml o f sterile 

LB broth. The cells were then centrifuged at 5000g for 1 min and the supernatant 

removed. The resultant pellet was resuspended in 0.2ml o f LB broth and spread 

plated either 150|il or 50[i\ on LB agar plus ampicillin (LB medium containing 1.5% 

(w/v) agar plus 35|ig/ml ampicillin). The plates were incubated at 37°C overnight 

and for no longer than 18 hours to prevent coalescence o f colonies. As a control for 

each transformation a mock transformation was included, in which no DNA was 

added to the competent cells.

2.6.2 Plasmid DNA Mini-preparation:

Plasmid DNA was isolated as specified by Qiagen Plasmid Kit protocol. 

Single colonies o f transformed cells were removed from plates and grown in 3ml o f 

LB broth supplemented with 35|ig/ml ampicillin. These mini-cultures were grown at 

37°C for 8 hours with gentle agitation (<200 rpm). 1.5ml o f the final culture was 

used for the generation o f glycerol stocks. The remainder was diluted in 100ml of 

LB broth supplemented with 35}ig/ml ampicillin and grown at 37°C overnight at 

250rpm. The following day the cells were harvested by centrifugation at 6000 rpm 

for 15 mins at 4°C.

The pellet was resuspended in 4ml o f Buffer PI. The resuspended cells were 

lysed by gentle inversion with 4ml o f Buffer P2 and incubated at room temperature 

for 10 mins. Protein was precipitated by the addition o f 4ml of pre-chilled Buffer P3, 

gentle mixing and incubation on ice for 5 mins. Protein precipitates were removed 

by high-speed centrifugation @ 13000rpm for 30 mins at 4°C. The supernatant was
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removed and centrifuged @ 13,000rpm for 30 mins at 4°C to ensure complete 

removal o f all protein

Once the supernatant had been removed it was applied to a Qiagen tip-100, 

which had been equilibrated with Buffer QBT (commercial kit) The sample was 

allowed to enter the column by gravity flow and the column washed with 2x 10 ml 

washes o f Buffer QC (commercial kit) Finally, DNA was eluted from the column 

using 5 ml of Buffer QF (commercial kit)

DNA was precipitated from the eluate by the addition o f 3 5ml o f  

isopropanol at room temperature The mixture was centrifuged at 12,000rpm for 30 

mins at 4°C, to yield a glassy pellet The supernatant was removed carefully so as 

not to disturb the isopropanol pellet The pellet was then washed in 2ml of 70% 

ethanol, to remove precipitated salts and to make reconstitution o f the pellet easier 

and then centrifuged at 12,000rpm for 10 mins The pellet was air-dried for 5-10  

mins after removal o f the supernatant and then redissolved in sterile Tris-EDTA 

(TE) buffer

2 6 3 Transient Transfections

BREC were transiently transfected in the perfused transcapillary system 

using Lipofectamme™ reagent according to the manufacturers specifications 

(Invitrogen) Briefly, 1500(Lil of DMEM containing 33 75^ig Luc reporter plasmid 

and 11 2 5 [ig LacZ (a plasmid encoding p-galactosidase activity) was mixed with 

750[xl DMEM containing 50 îl lipofectamme The DNA/lipofectamine mix was 

added to cells harvested from 3x 75cm2 flasks resuspended in 12 5mls DMEM Cells 

were left to incubate for 15-20 mins at room temperature after which, the volume 

was split evenly and seeded onto two separate capillary modules Following 

exposure to increased fluid flow using the apparatus described above, the cells were 

trypsmised from the capillaries Transactivation o f reporter genes was evaluated by 

the luciferase assay and normalised to the p-galactosidase activity
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2 6 4 Luciferase Assay

To analyse promoter transactivation o f the COX-2 gene in BRECs exposed 

to pulsatile flow, cells were transfected with a luciferase tagged reporter gene 

construct Cells were pelleted by centrifugation at l,000g for 5min at room 

temperature, washed once in sterile PBS and then transferred to a microfuge tube in 

lml o f sterile PBS After centrifugation at 5,000g for 5 mm at room temperature, the 

supernatant was completely removed and the cell pellet resuspended in 100|il o f  

Reporter lysis buffer The tubes were vortexed for 10-15secs and lysis allowed to 

proceed for 15min on ice The lysates were clarified by centrifugation at 12,000g for 

5min and the supernatant saved in a fresh tube Samples were stored at -80°C until 

required, when 20̂ x1 was used per assay Samples are stable in lysis buffer over 

several freeze-thaw cycles At the time o f assay, it was important to allow sufficient 

time for the detection reagent (stored at -80°C) to equilibrate to room temperature 

100|il o f detection reagent was added to the sample, mixed by repetitive pipetting (3 

times) and light emission integrated over a period o f 60sec after lag period o f lOsec 

Briefly, the enzyme firefly luciferase, generated due to promoter activation on a 

luciferase tagged plasmid, catalyses the conversion o f D-luciferin to oxyluciferin, 

with a concominant production o f a photon o f light, with is measured by the 

lummometer

2 6 5 P-galactosidase assay

LacZ, a plasmid encoding (3-galactosidase was used to monitor transfection 

levels Increased p-galactosidase activity was attributed to successful transfection of 

the gene o f interest Following transfection and cell lysis, a 30|il sample was added 

to 3^1 of lOOx Mg solution (0 1M MgCh and 4 5M (3-mercaptoethanol), 66\i\ of 

ONPG (o-nitrophenyl-p-D-galactopyranoside) (4mg/ml ONPG in 0 1M sodium 

phosphate, pH 7 5) and 20|nl o f 0 1M sodium phosphate The reaction was incubated 

for 4-6 hours at 37°C until a yellow colour developed The reaction was 

subsequently stopped with 500^1 o f Na2C0 3 , and optical density read at 420nm
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Measurement of nitrate in culture media was carried out by fluorometric 

assay as described previously (Kleinhenz et a l , 2003) In brief, the reaction o f 2, 3- 

diaminonaphthalene (DAN) with nitrate results in the formation o f 1-(H)- 

naphthotriazole, a fluorescent product The reaction is initiated by the addition of 

10[xl o f  DAN solution (0 05mg/ml in 0 62M HC1) to 100(4,1 o f standard or media 

sample and allowed to continue for 10 mins The reaction is terminated by the 

addition of 5\i\ o f 2 8M NaOH Samples were read using a Luminescence 

spectrometer at excitation 365nm, emission 450nm and nitrate activity recorded as 

pmoles nitrate/mg protein

2 7 2 Prostacyclin Assay

An enzyme immunoassay (EIA) kit was used to determine the level o f  

prostacyclin in media from cultured cells This kit uses a competitive binding 

technique The prostaglandin in the sample competes with a fixed amount o f  

alkaline-phosphatase-labelled PG for the binding o f a polyclonal antibody, which is 

immobilised to the wells o f the 96-well plate 1 OOjxl o f sample or standard was 

placed into each antibody-coated well o f the 96-well plate 50(0,1 o f blue conjugate 

(alkaline phosphate conjugated with PG) and 50jxl o f antibody solution (containing a 

monoclonal antibody to the PG) was incubated with each of the standards and 

samples for 2 hours at room temperature at 50rpm All wells were washed 3 times 

with washing buffer (Tns-buffered saline (TBS) containing detergents and sodium 

azide) 200[il o f p-nitrophenyl phosphate (pNPP substrate) was added to each well 

and incubated for an additional 45mins at room temperature 50fxl of assay buffer 

(TBS containing proteins and sodium azide) was used to assess non-specific binding 

and maximum binding The optical density o f each well was read at 405nm? with 

wavelength correction between 600 and 690nm, using the Wallac 1420 Manager on

2 7 Media Assays

2 7 1 Nitrate Assay
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the Wallac Victor 2 1420 mutilabel counter PG concentration was then calculated 

using the optical density o f the samples

2 7 3 Endothelm-1 Assay

This lmmunometric assay is based on a double antibody ‘sandwich’ 

technique Each well o f the 96-well plate is coated with a monoclonal antobody 

specific for Endothelin-1 (capture antibody) An acetylcholinesterase Fab’ 

Conjugate (AchE Fab’), which binds to a different epitope on the endothelm 

molecule is also added to the well This allows the two antibodies to form a 

‘sandwich’ by binding on opposite sides of the molecule The ‘sandwiches’ are 

immobilised on the plate so the excess reagents can be washed away The 

concentration of the analyte is then determined by measuring the enzymatic activity 

of the AchE by adding Ellman’s reagent (which contains the substrate for AchE) to 

each well The product o f the AchE- catalyzed reaction has a distinct yellow colour 

which absorbs strongly at 412nm The intensity o f this colour, determined 

spectrophotometrically, is directly proportional to the concentration o f the 

endothelm

124



2 8 Fluorescense Activated Cell Sorting Analysis

Flow Cytometry technology is utilized to measure properties o f cells as they 

move, or flow, in liquid suspension Most flow cytometers can measure two kinds o f  

light from cells light scatter and fluorescence, considering all materials, including 

cells, will scatter light In a flow cytometer, light scatter detectors are located 

opposite the laser (relative to the cell), and to one side of the laser, in-line with the 

fluid-flow/laser beam intersection The measurements made by these detectors are 

called forward light scatter and side light scatter, respectively Forward light scatter 

provides some information on the relative size o f individual cells, whereas side light 

scatter provides some information on the relative granularity o f individual cells In 

this case these two are combined to identify the characteristic light scatter pattern 

emitted by condensed, shrunken apoptotic cells, presented as dot plots

Fluorescence is the ability of a molecule to absorb light o f a particular 

wavelength and re-emit light of a longer wavelength The wavelength change relates 

to an energy loss that takes place in the process
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2 81  Apoptosis Assay

Apoptosis is a carefully regulated process of cell death that occurs as a 

normal part of development Apoptosis is distinguished from necrosis, or accidental 

cell death, by characteristic morphological and biochemical changes, including 

compaction and fragmentation o f the nuclear chromatin, shrinkage o f the cytoplasm 

and loss o f membrane asymmetry In normal viable cells, phosphatidylserine (PS) is 

located on the cytoplasmic surface o f the cell membrane However in apoptotic cells, 

PS is translocated from the inner to the outer leaflet o f the plasma membrane, thus 

exposing PS to the external cellular environment The human anticoagulant, annexin 

V, is a 35-36kD Ca2+ dependent phospholipid-binding protein that has a high affinity 

for PS Annexin V labeled with a fluorophore or biotin can identify apoptotic cells 

by binding to PS exposed on the outer leaflet

We utilised the commercially available ‘Vybrant™ Apoptosis Assay Kit #2’ 

containing a recombinant annexin V conjugated to the Alexa Fluor488 dye Alexa 

Fluor488 dye is an almost perfect spectral match to fluorescein (FITC), but it creates 

brighter and more photostable conjugates In addition, the kit includes a ready-to use 

solution o f the red-fluorescent propidium iodide (PI) nucleic acid binding dye PI is 

impermeant to live cells and apoptotic cells, but stains necrotic cells with red 

fluorescence, binding tightly to the nucleic acids in the cell After staining a cell 

population with Alexa Fluor488 annexin V and PI in the provided binding buffer, 

apoptotic cells show green fluorescence, dead cells show red and green fluorescence, 

and live cells show little or no fluorescence These populations can easily be 

distinguished using a flow cytometer with the 488nm line o f an argon-ion laser for 

excitation

BRECs and BRPs were trypsmised from capillaries, washed in ice cold-PBS 

and resuspended in 400ul Annexin-Binding Buffer (ABB) From this, 50jxl cells 

were mixed with 2 5\i\ Alexa Fluor488 Annexin V and \\i\ o f PI and incubated at 

room temperature for 15 mins A further 200^1 o f ABB is then added and placed on 

ice till read on FACs machine
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2 8 2 Proliferation Assay

The succmimidyl ester of carboxyfluorescein diacetate (CFDA, SE) is 

currently the most widely used probe for generation analysis o f cells CFDA SE 

spontaneously and irreversibly couples to both intracellular and cel 1-surface proteins 

by reaction with lysine side chains and other available amine groups When cells 

divide, CFDA SE labeling is distributed equally between the daughter cells, which 

are therefore half as fluorescent as the parents As a result, each successive 

generation in a population of proliferating cells is marked by a halving o f cellular 

fluorescence intensity, that is readily detected by flow cytometry

BRECs and BRPs were labelled immediately prior to seeding into the 

compartments of the perfused transcapillary system, utilising the Vybrant™ CFDA 

SE cell tracer kit A stock solution o f 5mM CFDA SE was diluted in DMSO and 

further diluted with HBSS to a working concentration o f 5|liM After three washes in 

HBSS, cells were treated with dye for 15 mins at 37°C Cells were then centrifuged 

and resuspended in regular media and introduced into the capillary compartment

2 9 Statistical analysis

Results are expressed as mean ±SEM of a minimum o f three independent 

experiments (n=3) unless otherwise stated Statistical comparisons between groups 

of normalized densitometric data were performed using both unpaired Student’s t- 

test and Wilcoxon signed rank test A value of P< 0 05 was deemed significant
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Acute Exposure to Pulsatile Flow Regulates Nitric Oxide, Prostacyclin & 

Endothelin-1 in BREC mono-culture & BREC/BRP co-culture

3.1 Introduction

3.2 Results

3.3 Discussion

3.4 Conclusion

Chapter 3
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3 1 Introduction

Perfusion of retinal vessels is dependent upon the complex interaction of 

opposing vasodilatory and vasoconstrictive forces in the retinal blood supply 

(Flammer et a l , 2002) Retinal pericyte and endothelial cell (EC) cross-talk in these 

vessels is largely influenced by mechanical stimuli due to the pulsatile nature of 

blood flow i e pulse pressure (cyclic strain) and shear stress (Chakravarthy and 

Gardiner, 1999, Haefliger et a l , 2001, Traub and Berk, 1998, Lehoux and Tedgui,

1998) These mechanical forces result in cellular signalling events mediated via 

growth factors and intracellular secondary messengers, G-proteins, small GTPases 

and kinases (Malek et a l , 1999a, Redmond et a l , 1998) The response to fluid shear 

stress, the frictional tangential force imposed on the vessel wall due to blood flow, 

results in abluminal release of factors from ECs, resulting in dilation or constriction 

of the underlying pericyte layer (Patrick and Mclntire, 1995) While ECs are the 

major recipient of shear stress, cyclic strain exerts its effect on both the endothelium 

and the pericyte cell layer and both forces have been shown to modulate local 

autoregulation of vessel tone

A number of retinal pathologies are associated with disturbed retinal blood 

flow Vascular dysregulation or impaired autoregulation, leads to vasospasm of 

retinal vessels and has been implicated in normal tension glaucoma, where decreased 

retinal blood flow correlates with increasing optic nerve head damage (Prasanna et 

a l , 2003) and reduced pulsatile ocular blood flow (Frank, 2004) Similarly, 

hyperglycaemic retinas exhibit impaired flicker-induced vasodilation and also lack 

of an appropriate vasoconstrictor upon breathing of pure oxygen, each implicating 

vascular dysregulation in diabetic retinopathy

ECs modulate vessel tone via release of the dilators nitric oxide (NO) and 

prostacyclin (PGI2), and vasoconstrictors such as endothelin-1 (ET-1) Shear stress 

has already been shown to modulate EC production of these vasoactive agents NO, 

PG12 & ET-1 in macrovascular cells However, a large proportion of our knowledge 

and understanding of the retinal microvascular system has been obtained by drawing
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comparisons with the more extensively researched macrovasculature As such, we 

examined the interaction between retinal endothelial and pericyte cells exposed to 

pulsatile fluid flow, that is shear stress and pulse pressure combined, utilising a 

perfused transcapillary co-culture system

The aim of this chapter was to determine the ‘acute’ effect (i e 24 hours) 

of pulsatile flow on cell morphology and production of vasoactive mediators by 

retinal endothelial cells, either cultured alone or in co-culture with retinal 

pericytes In addition, we analysed which signalling pathways are activated and 

the role of the proposed mechanotransducers G-proteins, integrins and protein 

tyrosine kinases
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3 2 Results

Vascular cells derived from bovine retina were routinely characterised to 

confirm a pure culture o f either pericyte or endothelial cells Similar to vascular 

smooth muscle cells (SMCs), pericytes stain positively for contractile proteins such 

as a-smooth muscle cell specific actin (a-smc-actin), a cytoskeletal marker o f  

pericyte cells, and also other cytoskeletal components such as calponm and myosin 

(Fig 3 1 (a) (b) and (c)) Pericytes were identified and distinguished from ECs by 

their size and irregular morphology, by their noncontact-inhibited growth pattern, 

and by the lack of staining with antisera to von Willebrand factor, endothelial nitric 

oxide synthase (eNOS) and the astrocyte-specific marker glial fibrillary acidic 

protein (GFAP) (data not shown) Pericytes were also distinguished from SMCs by 

their irregular morphology and their lack o f "hill and valley" growth pattern

Endothelial cells exhibited a typical ‘cobblestone’ growth morphology (Fig 

3 2 (A)) and also stained positive with anti sera to von Willebrand factor and eNOS 

(Fig 3 2 (B) & (C)) Endothelial cells were negative for a-smc-actin, calponm, 

myosin and GFAP (data not shown)

3 21  Characterisation of Bovine Retinal Pericytes & Endothelial Cells
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Figure 3.1 Immunocytochemistry staining for pericyte cytoskeletal components
(green): (A) a-smc-actin; (B) Calponin; (C) Myosin; (D) No primary antibody control. 
Nuclei are stained with dapi (Blue). Magnification x20.
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(A) Phase contrast microscopy of 
confluent endothelial cells. 
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Figure 3.2

(B) Immunocytochemistiy staining for 
endothelial cell specific marker von 
Willebrand Factor (green) 
Magnification x20.

(C) Immunocytochemistiy staining for 
endothelial cell specific marker
endothelial nitric oxide synthase
(green). Magnification x40.
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3 2 2 Characterisation of Pericytes & Endothelial Cells Exposed to Pulsatile 

Flow

To date, most in vitro experiments have been performed on monocultured EC 

exposed to laminar flow The potential modulatory role of a neighbouring cell type 

and the pulsatile nature of blood flow have been largely ignored Therefore, using a 

perfused transcapillary co-culture system we have investigated the effects of acute 

pulsatile flow (; e 24 hours) on monocultured BRECs or co-cultured BREC and 

BRPs

The presence of BRP cells on the surface of the capillaries was determined by 

immunocytochemistry and scanning, electron and confocal microscopy of individual 

capillaries removed from the bundle Staining for the presence of a-smc-actin, 

showed BRP to be positive for this marker (Fig 3 3 (a) and 3 4) and negative for 

endothelial nitric oxide synthase and GFAP, (data not shown) A fluorescent stain, 

4',6-diamidino-2-phenyhndole (DAPI) was used for nuclear staining (Blue Fig 3 3 

(b) and (c)) DAPI binds selectively to double-stranded DNA, with little or no 

background staining of the cytoplasm Visualisation of BRP with anti a-smc-actin 

was performed on sub-confluent cells using confocal microscopy and confirmed 

BRP were present on the capillaries Moreover, actin staining appeared more 

punctate under high flow as the cells begin to orientate in the direction of flow (Fig 

3 4) confirming that these changes in pulsatile flow induce a clear reorganization of 

the cytoskeleton Scanning electron microscopy revealed that the pericyte cell layer 

at confluency maintained a stellar morphology under low flow conditions (Fig 3 5 

(a)), similar to that observed in cells grown in static cultures (Fig 3 1 (a)) Increases 

in media flow rate led to orientation of the BRP along the direction of flow, forming 

elongated striated cells (Fig 3 5) The presence of functional microvascular 

endothelial cells was further confirmed by western blot of eNOS proteins in these 

cells (Fig 3 6)
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Figure 3.3 Immunocytochemistry analysis of pericytes cultured on CELLMAX™  
capillaries. (A) Immunocytochemistry staining for pericyte a-smc-actin (arrows); (B) 
& (C) Nuclei stained with dapi (Blue) in one field at two depths of focus. Arrows 
denote top (B) and side (C) of capillaries. Magnification x20.
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Figure 3.4 Confocal Imaging of BRPs on perfused capillary tubing stained for a -  
actin at (A) Low Flow & (B) High Flow. White arrows: diffuse staining during low flow  
and clustering of a-smc-actin with punctate staining in cells exposed to high flow. Green 
arrow: direction of flow. Insets: punctate staining of a-smc-actin under high flow at higher 
magnification. Magnification x20; insets, xlOO.

Figure 3.5 Scanning electron micrographs of BRPs cultured on capillary tubing and 
subjected to (A) low- and (B) high-flow conditions. In low flow conditions, pericytes 
were more stellar/rounded in their morphology. Arrows: bovine retinal pericytes. In high- 
flow conditions, the pericytes changed their morphology and oriented themselves along 
the direction of flow, giving a more striated appearance. Cell contacts became tighter, and 
the capillary was no longer visible. Magnification, x450.
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3 2 3 Pulsatile Flow-induced Activation of Endothelial Nitric Oxide Synthase 

(eNOS)

We investigated the effect of low (0 3mls/min, 6mm Hg, 0 5 dynes/cm2) and 

high (25mls/min, 56 mmHg, 23 dynes/cm2) pulsatile flow on the total eNOS protein 

levels and the phosphorylation state of eNOS in BREC cultured alone or in co­

culture with BRP over a 24 hour period Under these conditions, no changes in total 

BREC eNOS expression were observed in either mono-cultures, or co-cultures with 

BRPs (Fig 3 6 (a) and (b)) as determined by Western blotting However, a 

significant increase in the phosphorylation state of the eNOS protein was detected in 

both mono-cultured (1 903 ± 0 332 fold, n=6) and co-cultured (1 932 ± 0 199 fold, 

n=6) BRECs exposed to high flow (Fig 3 6 (c) and (d)) Metabolism of nitric oxide 

and release of nitrate into the circulating media was further confirmed by a 

fluorometric DAN assay There was a significant increase in nitrate levels in mono- 

and co-cultures of BREC, respectively (2 306 ± 0 276 and 2 404 ± 0 38 fold, n=5) 

(Fig 3 7 (a) and (b))

Real-time PCR analysis of eNOS expression in mono-cultured BRECs at 2, 

8 5 and 24 hours, revealed no changes in eNOS mRNA levels (Fig 3 7 (c)) This 

suggest that changes in pulsatile flow does not affect eNOS transcription within 24 

hours

137



Flow rate (mls/mln)

0 3 25

*
»

eNOS mono

B Flow rate (mls/mln)

0 3 25

eNOS co

0 00
0 3 25

Flow (mls/min)

0 00 -

Flow (mls/min)

Flow rate (mls/min) 

0 3 25

ppeNOS mono

0 3 25
Flow (mls/min)

D
Flow rate (mls/min) 

0 3 25

ppeNOS co

0 3 25
Flow (mls/min)

Figure 3 6 I he effects of Pulsatile How on BkfcjC total and phosphorvlated eNOS  
Western Blot Analysis of (A) BRFC eNOS in mono-culture (B) BRPC eNOS in co­
cu Iturc (C) BREC phosphorylatcd-cNOS (ppeNOS) in mono-culturc (D) BREC 
ppeNOS in co-culture Histogram represents mean values ± SEM (n=6) *P<0 05 
tompan.il to low flow control
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Figure 3 7 The effects of Pulsatile Flow on NO release and BREC eNOS mRNA
(A) mono-culture ECs nitrate assay after 24 hours (n=6) (B) co-cultured EC/Pericyte 
nitrate assay after 24 hours (n=6) (C) Real-time PCR analysis of eNOS mRNA in mono­
cultured endothelial cells after 2 hours (n=l), 8 5 hours (n=l) & 24 hours hours (n=3) 
exposed to low or high flow Histogram represents mean values ± SEM, *P<0 05 
compared to low flow control
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3 2 4 Pulsatile Flow induced Prostacyclin release by BREC

In order to examine the effect of pulsatile flow on the production of PGI2, we 

exposed mono- and co-cultures of BREC and BRP to low and high flow rates as 

previously described The levels of prostacyclin present in the circulating media 

were determined by enzyme immunoassay There was a significant increase in PGI2 

levels in cells exposed to high flow as compared to low flow (2 260 ± 0 257 fold, 

n=6, and 2 015 ± 0 372 fold, n=7) in both mono- and co-cultures respectively (Fig 

3 8 (a) and (b))

To determine if the increase in PGI2 levels was a direct consequence of the 

induction of COX-2 expression, we examined the effect of pulsatile flow on COX-2 

promoter activity in BREC In cells transiently transfected with a plasmid encoding 

the COX-2 promoter, there was a significant increase in COX-2 transactivation 

(5 066 ± 1 07 fold, n=5) in monocultured BREC after 24 h exposure to pulsatile 

flow (Fig 3 8 (c)), demonstrating the presence of elements within the COX-2 gene 

which can be activated by flow
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Figure 3 8 The effects of Pulsatile Flow on PGI2 release and BREC COX-2 
protein (A) mono-culture ECs prostacyclin assay after 24 hours (B) co-cultured 
EC/Pericyte prostacyclin assay after 24 hours (C) Transactivation of the COX-2- 
Luc reporter construct Lucíferase activity was normalised to b-gal activity and 
expressed as fold increase over low flow Histogram represents mean values ± SEM, 
(n=6) *P<0 05 compared to low flow control
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3 2 5 Pulsatile Flow-induced Changes in Endothelin-1 (ET-1) Release

To examine the relationship between pulsatile flow and ET-1 peptide release, 

we exposed BREC and BRP to low and high pulsatile flow rates as previously 

described Exposure of cells to high pulsatile flow resulted in a 1 850 ± 0 338 and 

1 961 ± 0 205 fold (n=5) increase in media perfusate ET-1 levels in mono- and co­

cultured BREC, respectively, as compared to low flow (Fig 3 9)

Real-time PCR analysis of ET-1 mRNA expression in mono-cultured BRECs 

at 2, 8 5 and 24 hours, revealed a slight, but insignificant increase in ET-1 mRNA 

levels after 2 hours exposure to high flow, with a significant decrease after 8 5 

hours, which is maintained at 24 hours high flow (Fig 3 9 (c))

142



A B

ET 1 realtime 24 hours mono

low
high

Time (hours)

Figure 3 9 The effects of Pulsatile Flow on ET-1 release and BREC ET-1 mRNA (A)
mono-culture ECs endothelin-1 assay after 24 hours (n=6) (B) co-cultured EC/Pericyte 
endothehn-1 assay after 24 hours (n=6) (C) Real-time PCR analysis of ET-1 mRNA in 
mono-cultured endothelial cells after 2 hours (n=l), 8 5 hours (n=l) & 24 hours (n=3) 
exposed to low or high flow Histogram represents mean values ± SEM, *P<0 05 
compared to low flow control
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3 2 6 Pulsatile Flow regulation of mitogen activated protein kinases (MAPKs)

To determine if increased nitric oxide, prostacyclin or endothelin-1 is due to 

an overall change in MAPK signalling, we examined the effect of pulsatile flow on 

total ERK and total p38, and also the effect on the phosphorylation state of these 

enzymes (phospho-ERK and phospho-p38) In BRECs analysed from both mono­

cultures and co-cultures with BRPs, there was no change in total ERK, total p38, 

phospho-ERK or phospho-p38 (Fig 3 10 and 3 11) after 24 hours exposure to low or 

high pulsatile flow
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3 2 7 Mechanotransduction of Pulsatile Flow-induced changes m Nitric oxide, 

Prostacyclin & Endothehn-1

Endothelial cell transduction of a mechanical force into a biochemical signal 

is typically mediated via mtegnns, protein tyrosine kinases (PTKs) or G-proteins In 

order to determine the role of each of these ‘mechanotransducers’ in mediating 

increased nitric oxide, prostacyclin or ET-1 due at high pulsatile flow, we exposed 

mono-cultures of BRECs to low and high pulsatile flow, in the presense of specific 

inhibitors of integrms (0 5mM linear RGD peptide), PTKs (40|iM Gemstein) or G- 

proteins (25 ng/ml Pertussis toxin (PTX))

Increased endothelial nitric oxide production due to high pulsatile flow is 

attenuated by 50% when G-protein signalling is impaired with pertussis toxin, while 

no change was observed with blockage of integrin or PTK signalling (Fig 3 12 (a)) 

These results demonstrate the importance in G-protein signalling mediating 

increased nitric oxide in BRECs exposed to high pulsatile flow

Similar to nitric oxide, prostacyclin release is also increased after 24 hours 

exposure to high flow This increase is partially inhibited with blockage of integrin 

signalling using RGD peptide (Fig 3 12 (b)) Addition of both gemstein and PTX 

did not inhibit prostacyclin release Endothelin-1 release was inhibited by addition of 

PTX only, suggesting a role of G-protein signalling in high flow induced release of 

ET-1 peptide (Fig 3 12(c))
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3.3 Discussion

This study describes the use of a novel transcapillary co-culture system as a 

basis for mimicking the effects of haemodynamic forces on microvascular 

endothelial and pericyte cells cultured in vitro Blood vessels are continually 

exposed to haemodynamic forces generated in the vasculature due to fluid flow  

induced shear stress and cyclic strain Changes in these mechanical forces result in 

alterations in the signal-transduction pathways and release of vasoactive substances 

from vascular ECs that are ultimately responsible for autoregulation of retinal 

vascular tone (Traub and Berk, 1998, Malek et a l , 1999a, Redmond et a l , 1998)

Retinal blow flow, as measured by various non-invasive techniques, ranges 

from 60 to 100 fxL/min in larger retinal vessels, corresponding to a shear stress level 

of ~50 dynes/cm2 (Garcia et a l , 2002, Wong et a l , 2003) If one assumes smaller 

ocular vessels receive -10% of retinal blood flow, the levels of shear stress for 

microvascular ECs are within the range of 0 5 to 23 dynes/cm2 used in the present 

study Changes in haemodynamics can result in endothelial dysfunction, a process 

that has been described in macro vascular disease states including the pathogenesis of 

atherosclerosis and thrombosis (Davies et a l , 2002), and is also of particular interest 

in the microvasculature in conditions such as proliferative diabetic retinopathy 

(PDR) (Kohner et a l , 1975, De La Cruz et a l , 2004, Caldwell et a l , 2003) and 

normal-tension glaucoma (Orgul et a l , 1998, Hams et a l , 2001), in which there is 

growing evidence of endothelial dysfunction as a major risk factor (Ftammer et a l , 

2002) Boehm et al demonstrated an alteration of the perfusion of the optic nerve 

head with increasing age, suggesting that the blood supply is reduced in elderly 

subjects (Boehm et a l , 2005) With glaucoma and PDR more common in elderly 

than in younger individuals, it is possible that changes in retinal blood flow initiate 

such pathologies
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The present study combined the relevant physiological forces of pulse 

pressure and shear stress with co-culture technology to evaluate their effects on the 

expression and activity of the vasoactive substances NO, PGI2, and ET-1 

Immunocytochemistry, scanning electron microscopy, and confocal microscopy, m 

combination with Western blot analysis, confirmed the presence and growth of 

microvascular retinal ECs and pericytes in the perfused transcapillary culture 

system Moreover, there was a single layer of pericytes oriented along the direction 

of flow on the abluminal side of the capillaries BRP were exposed to increases m 

pulsatile flow rates and hence pulse pressure from a ‘low’ flow rate of 0 3 ml/min to 

a ‘high’ flow rate of 25 ml/min, corresponding to pulse pressures of 6 and 56 mm 

Hg, respectively The pressure at the intimal surface of vessels in vivo is equal to the 

intravascular blood pressure, which acts as a compressive force perpendicular to the 

endothelial lining The distinct compartmentalization of actin observed in pericytes 

after exposure to high pulsatile flow, with actin less evenly distributed throughout 

the cytoplasm to accommodate altered cell function, suggests that phenotypic 

modulation may involve not only quantitative changes in contractile proteins, but 

also reorganization of these proteins Because the cytoskeleton acts as a spatial 

regulator of intracellular signalling, reorganization of the cytoskeleton may lead to 

realignment of signalling molecules, which, in turn, may mediate the changes in 

function associated with phenotypic modulation after exposure to flow Culturing of 

the BRECs alone or as cocultures with pericytes did not significantly enhance or 

diminish the effects of pulsatile flow on eNOS and COX activity or ET-1 levels, 

suggesting that the major source of pulsatile flow-induced changes in these 

vasoactive substances was the retinal microvascular EC

ECs are known to modulate vessel tone via the production and release of the 

vasodilators NO and PGI2 and the vasoconstrictor ET-1 One of the earliest events 

occurring in ECs placed under increased haemodynamic constraints is the activation 

of eNOS through phosphorylation at several sites and the subsequent release of the 

vasodilator NO (Gallis et a l , 1999) A large number of in vitro and m vivo studies 

have demonstrated that NO plays an important role in regulation of regional ocular 

blood flow (Davis et a l , 2001, Schmetterer and Polak, 2001) Indeed, NO has been

151



implicated in the etiology of several ocular diseases that result in altered ocular 

blood flow (Koss, 1999) Because phosphorylation of eNOS has been recognized as 

a critical regulatory mechanism controlling its activity, we examined the expression 

of pp-eNOS in mono- and cocultured BRECs after exposure to pulsatile flow In 

agreement with previous studies using macro vascular ECs, the present study 

demonstrated that pulsatile flow can activate eNOS through the increased 

phosphorylation of eNOS in microvascular BRECs (Hendrickson et a l , 1999) No 

change in total eNOS protein or mRNA levels was found, demonstrating the acute 

response of BRECs exposed to high pulsatile flow is activation via phosphorylation 

and not an overall increase in gene expression or transcription It is reported that 

flow induced phosphorylation of eNOS in ECs is controlled by Akt, a 

serine/threonine protein kinase As shear stress alone has been shown to stimulate 

NO release in retinal microvascular ECs, these experiments further suggest that NO 

may be a key signalling molecule in elevating vascular transport in ocular diseases 

such as diabetic retinopathy (Davis et a l , 2001), where retinal blood flow is 

increased (Candido and Allen, 2002, Gracner, 2004, Johnson et a l , 1999, Kohner et 

a l , 1975, Schmetterer and Polak, 2001, Schmetterer and Wolzt, 1999)

Previous studies have suggested that prostaglandins, synthesized by the 

enzymes COX-1 or -2, may contribute to normal physiological and homeostatic 

functions in the retina Doroudi et al perfused human umbilical veins at high/low 

shear stress (25/<4 dyn/cm2) at identical intraluminal pressure (20 mmHg) for 1 5 ,3,  

or 6 hours COX-1 and COX-2 mRNA showed a biphasic response with peaks at 1 5 

and 6 hours, and a decrease at 3 hours (Doroudi et a l , 2000) Inoue et al 

demonstrated a rapid and sustained expression of COX-2 in response to shear stress 

in human umbilical vein endothelial cells, via transcriptional activation and 

posttranscnptional mRNA stabilization (Inoue et a l , 2002) On the other hand, 

Dancu et al demonstrated asynchronous shear stress and circumferential strain 

reduction in COX-2 gene expression in bovine aortic endothelial cells (Dancu et al , 

2004) Furthermore, Hendrickson et al demonstrated that sustained increases in 

pulsatile flow maintain elevated COX-1 & -2 protein expression and activity in EC
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while decreasing COX-1 & -2 expression in co-cultured smooth muscle cells 

(Hendrickson et a l , 1999) We therefore investigated the role of pulsatile flow in 

modulating microvascular retinal endothelial PGI2 release and the contributory role 

of the COX-2 isoform in mediating this response As previously observed in 

macro vascular ECs, pulsatile flow increased the levels of PGI2, concomitant with a 

significant increase in the transactivation of the COX-2 promoter in these cells The 

human COX-2 promoter region contains 3 cis-acting elements, namely, an NF-kB 

binding site, an NF-IL6 binding site, and a cAMP responsive element (CRE), all of 

which have been shown to be involved in the regulation of COX-2 gene 

transcription Inoue et al (2002) demonstrated that the CRE site of the COX-2 gene 

is largely responsible for shear stress induced promoter activity

The data regarding the regulation of ET-1 synthesis and release by shear 

forces in ECs are controversial Initial reports described a shear stress-dependent 

induction of ET-1 production (Yoshizumi et a l , 1989, Morita et a l , 1993) Other 

groups found no significant changes in ET-1 release (Noris et a l , 1995), or a 

downregulation of prepro-ET-1 (ppET-1) mRNA and endothelin release by shear 

stress in human and bovine ECs (Sharefkin et al , 1991, Malek and Izumo, 1992, 

Kuchan and Frangos, 1993) Cyclic stretch has been reported to enhance ET-1 

peptide synthesis and pp-ET-1 mRNA expression in cultured endothelial cells 

(Cattaruzza et a l , 2000) In situations in which the pressure-induced distension of 

the vessel wall is more pronounced and/or chronically elevated, as in aortocoronary 

venous bypass grafts, endothelial cell ET-1 production may be elevated (Lauth et a l , 

2000) Exposure of human glomerular microvascular ECs (HGMECs) to low levels 

of laminar shear stress have shown an initial increase in ET-1 followed by a decrease 

at 24 hours (Wang et a l , 2002a) In contrast, the present study demonstrated a 

sustained increase in ET-1 levels secreted by BRECs in response to high pulsatile 

flow conditions in both monoculture and in coculture with pericytes after 24 hours 

Several studies have suggested that patients with glaucoma have increased 

circulating plasma ET-1 levels, which may be the source of retinal vessel 

vasoconstriction and ischemia of the optic nerve head vessels Indeed, a strong
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immunoreactivity for ET-1 converting enzyme (ECE)-l can be found in the blood 

vessels of the retina, optic nerve, and choroids, suggesting an important role for ET- 

1 during autoregulation within the eye Because ocular blood flow alterations in 

patients with glaucoma seem, at least partly, to be related to a systemic vascular 

dysregulation and are exhibited as altered responsiveness to ET-1, it is possible that 

flow-induced changes in ET-1 production within the eye contributes to the 

pathogenesis of glaucomatous damage

The sensitivity of the MAPKs (ERK 1/2, p38 and JNKs) to mechanical 

forces is well established in both in vivo and in vitro models Kito et al found that 

cyclic strain activated ERK1/2, JNK and p38 in pulmonary ECs with subsequent 

activation of transcription factors (Kito et a l , 2000) Using rabbit facial vein 

segments Loufram et al demonstrated stretch-induced ERK 1/2 activation via a 

calcium-dependent pathway involving a tyrosine kinase (Loufram et a l , 1999) A 

shear stress of 12 dynes/cm2 was found to activate ERK 1/2 and p38 but to reduce 

activity of JNK (Surapisitchat et a l , 2001) Furthermore, Jo et al reported 

differential shear stress regulation of ERK 1/2 and JNK with regards to duration of 

activation and levels of shear required to elicit a response (Jo et a l , 1997) The 

ability of cyclic stretch to activate MAPK is dependent on the substrate on which the 

cells are seeded, e g ERK 1/2 and JNK are activated in cyclically stretched smooth 

muscle cells grown on pronectin but not on lamimn (Reusch et al , 1996) 

Paradoxically, we found no change in total or phosphorylated BREC p38 or ERK 

1/2 in response to increased pulsatile flow cultured on our pronectin™ coated 

capillaries after 24 hours exposure Further experiments are required to determine if 

increased pulsatile flow induces MAPK phosphorylation and/or new protein 

synthesis pre-24 hour Shear related effects can be broadly categorized into two 

responses acute and chronic As MAPKs are typically activated within minutes to 

many stimuli, activation may have occurred at an earlier timepoint and plateaued 

after 24 hours exposure to pulsatile flow (Lehoux and Tedgui, 1998, Cowan and 

Storey, 2003) Moreover, corroborating studies suggest a role of preconditioning 

ECs to flow before initiating any flow increases (Rizzo et a l , 2003) Exposure of rat
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lung microvascular cells to increases in flow exhibit no changes in ERK1/2 activity 

if ECs have been preconditioned to flow (Rizzo et a l , 2003) Our BRECs/BRP 

pulsatile flow studies each include a period of preconditioning to flow of ~4 days, 

possibly accounting for no change m ERK1/2 or p38 levels or activation

There appears to be several possible mechanisms by which endothelial cells 

detect mechanical forces and act as a shear transducer e g G-proteins, integrins and 

PTKs Following the initial mechanosensing, cell surfaces and cell membranes may 

be deformed, ions may be translocated, local biochemical responses may be 

activated, downstream intracellular signalling pathways may be activated and 

endothelial genes may then be expressed, all to modulate shear-induced endothelial 

function as well as important shear-induced alterations in endothelial cell 

morphology G-proteins have been implicated in the transduction of a number of 

flow-induced responses in vascular cells, with activation by mechanical forces one 

of the earliest mechanotransduction events reported Cyclic strain activation of G- 

proteins has been found to be dependent on the magnitude and rate of the strain 

(Clark et a l , 2002, Gudi et a l , 1998) G-proteins may detect mechanical forces via 

G-protein coupled receptor or may be stimulated directly by the deformation of 

either the actin cytoskeleton or the membrane phospholipid bilayer during exposure 

to such stimuli

Shear stress and cyclic strain-induced activation of G-proteins results in 

several flow-initiated responses which function in the regulation of vascular tone, 

including release of NO, PGI2 and ET-1 (Liu et a l , 2003a, Pirotton et a l , 1987) 

Changes in G-protein expression have been observed within the physiological range 

of cyclic strain and shear stress, correlated with enhanced NO and PGI2 release as 

well as increased G-protein functionality (Redmond et a l , 1998) PTX, which 

inhibits G-protein signalling via ADP ribosylation of the Ga subunit, is routinely 

used to elucidate the role of G-proteins in flow mediated EC responses Pulsatile 

flow activation of NO and ET-1 was PTX sensitive in our retinal microvascular ECs 

Thus G-protein activation may be an early event in flow mediated vasoactive
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response, representing an important pathway by which ECs adapt to changes in 

retinal blood flow.

In the current study, BRECs/BRP cultures were grown on polyethylene 

capillaries coated in Pronectin™, an extra-cellular matrix (ECM) protein. The ECM 

is an important contributor to mechanotransduction, containing components which 

interact with integrins, which are displaced by cyclic stretch and shear stress. 

Mechanical stresses can stimulate conformational activation of integrins and 

increase cell binding to the ECM. Evidence for mechanical activation of integrins is 

provided by both direct assessment of integrin conformational changes in response 

to these forces and blockade of the induced responses by antibodies or blocking 

peptides such as the Arg-Gly-Asp (RGD) peptide (Lehoux and Tedgui, 1998). 

Blocking integrins with RGD peptide abolishes the shear stress-induced secretion of 

basic fibroblast growth factor (Gloe et al., 2002) and the anti-apoptotic effect of 

shear stress on ECs (Urbich et al., 2000). In addition to modulating the avidity and 

affinity of integrins, shear stress also increases the mRNA and protein levels of the 

a5 and pi integrins in ECs (Urbich et al., 2000).

Cell surface matrix receptors of the integrin family may in part be 

responsible for some of the changes occurring in diabetic retinopathy, since topical 

application of integrin antagonist peptides (RGD) inhibited proliferative retinopathy 

in a mouse model by 50% (Riecke et al., 2001). The integrin heterodimer most 

actively involved in retinal neo-angiogenesis is the av/33 integrin, since in a mouse 

model of proliferative retinopathy induced by hypoxia the expression of this integrin 

was an early phenomenon and application of RGD-containing pentapeptides was 

highly effective in inhibiting angiogenesis (Chavakis et al., 2002). Increased plasma 

concentrations of the vasoactive peptide endothelin have also been found in diabetic 

retinopathy (Itoh et al., 2002). Blocking of the effects of endothelin by bosentan, a 

non-specific endothelin receptor blocker, prevented thickening of retinal capillary 

basement membranes, and also the increased expression of the a l  (IV) chain and 

fibronectin in streptozotocin-diabetic rats (Itoh et al., 2002). Blockage of integrin 

signalling in our model of retinal blood flow with RGD peptide inhibited PGI2 

secretion into the media perfusate. No inhibitory effect could be attributed to RGD
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with respect to NO or ET-1, which increased independent of integrin activation at 

high pulsatile flow

Protein tyrosine kinases (PTKs) have been implicated m haemodynamic 

force-induced changes in EC function (Ravichandran, 2001) Clinically, PTKs such 

as insulin growth factor receptor, platelet-derived growth factor receptor and 

fibroblast growth factor receptor have been linked to multiple vascular pathologies, 

including atherosclerosis, hypertension, restenosis, angiogenesis, artenogenesis and 

diabetic vascular disease (Okura et a l , 2001, Patel et a l , 2001, Rajkumar et a l , 

1996, Fath et a l , 1993, Grant et a l , 1996) In the current study, high pulsatile flow 

induction of NO, PGI2 or ET-1 could not be inhibited by pre-treatment with 

gemstein, a PTK inhibitor Taken together, these data imply different roles of the 

proposed mechanosensors G-proteins, integrins and PTKs in mediating pulsatile 

flow induction of retinal microvascular EC vasoactive response

When considering all these factors it can be concluded that the cell in its 

entirety may be considered as a mechanosensor, which alters its cytoskeleton, the 

composition of the ECM and cross talk between receptors in response to mechanical 

stimuli to maintain the homeostasis within the vascular wall

3 4 Conclusion

In conclusion, these studies demonstrate a pulsatile flow induced vasoactive 

response by EC in co-culture with pericytes and the potential mechanisms by which 

retinal endothelial cells autoregulate local blood These results correlate well with 

characterised physiological responses of EC from other vascular beds exposed to 

mechanical forces and demonstrate an important role of G-proteins and integrins in 

mediating this response
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Pulsatile Flow alters microvascular endothelial & pericyte cell apoptosis via 
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4.1 Introduction

Mechanical forces associated with retinal blood flow play an important role 

in maintaining vessel structure and function Aberrant retinal blood flow has been 

reported in high tension glaucoma (Bathija, 2000, Hafez et a l , 2003), normal tension 

glaucoma (Butt et a l , 1995, Fontana et a l , 1998, Henry et a l , 1999, Arend et a l , 

2002) and diabetic retinopathy (Schmetterer and Wolzt, 1999, Kohner et a l , 1975, 

Savage et a l , 2004, Candido and Allen, 2002, Gracner, 2004), and may be a 

causative factor of the vascular remodelling occunng in each of these pathologies 

Glaucoma for example, is characterised by regression of vessels (Quigley, 1999) and 

is frequently associated with reduced retinal blood flow and/or systemic 

hypertension/hypotension (Folkow, 1995, Hayreh, 2001) DR is associated with an 

initial increase, followed by decreased retinal blood flow (Schmetterer and Wolzt,

1999), and is exacerbated by systemic hypertension In addition, DR is characterised 

by unstable or leaky vessels, and angiogenic proliferation of new vessels during the 

later stages of disease Adaptive vascular remodelling such as regression or 

proliferation, implys an alteration in EC and pericyte cell fate decisions such as 

apoptosis, proliferation, migration and/or differentiation

We have previously demonstrated an increase in EC production of vasoactive 

mediators NO, PGI2 and ET-1  upon exposure to increases in pulsatile flow up to 24 

hours (Chapter 3) This EC response to increased pulsatile flow occurred 

independent of the presence or absence of pericytes In the following experiments, 

we examined the effect of chronic exposure of EC/pericyte co-cultures to low and 

high pulsatile flow for 3 days

Numerous reports have implicated NO, PGI2 and ET-1  as important 

molecules mediating apoptosis in both ECs and VSM Cs (Bennett, 1999, Boyle et al , 

2002, Chae et al , 2004, Hata et a l , 2001, Lau, 2003, Li et a l , 2004a, Shichiri et a l , 

1997, Cattaruzza et a l , 2000) As such, we hypothesize that vascular remodelling 

may occur, in part, as a result of alterations in vasoactive molecules within the vessel 

wall, generated by chronic alterations in blood flow Therefore, we inhibited NO (L- 

NAME), PGI2 (indomethacm) and ET-1 (PD 142893) to determine their role in
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regulating EC and pericyte cell apoptosis In addition, the apoptotic profile of static 

EC and pericyte cultures were also examined upon exogenous addition of NO, PGI2 

and ET-1

The aim of this study was to determine the apoptotic effect of chronic 

exposure to pulsatile flow on retinal endothelial & pencyte cell co-cultures for 3 

days Furthermore, the role of NO, ET-1 and PGI2 in mediating changes in 

apoptosis due to pulsatile flow was examined
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4.2 Results

4 2 1 Pulsatile Flow induced Activation of Endothelial Nitric Oxide Synthase 

(eNOS)

We investigated the effects of ‘ low’ (0 3ml/min, 6  mmHg, 0 5 dynes/cm2) 

and ‘high’ (25ml/min, 56 mmHg, 23 dynes/ cm2) pulsatile flow on eNOS mRNA 

and protein levels in BRECs co-cultured with BRPs over a 72-hour period Under 

these conditions, both eNOS mRNA (3 190 ± 0 718 fold, n=6 ) and protein (2 405 ± 

0 353 fold, n=5) levels were seen to increase significantly as determined by real time 

PCR and Western blot analysis respectively (Fig 4 1 (a) and (b)) Increased EC 

eNOS resulted in an increase in media perfusate nitrate levels in high compared to 

low pulsatile flow (2 609 ± 0 256 fold, n=6 ), as determined by fluorometric DAN 

assay (Fig 4 1 (c))
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Figure 4 1 The effects of Pulsatile Flow on BREiC eNOS in co-culture with BRPs for 
72 hours Western Blot analysis (A) and realtime PCR analysis (B) of eNOS Histogram 
represents mean values ± SEM (n=6), *P<0 05 compared to low flow control
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Figure 4 1 The effects of Pulsatile Flow on NO release from 72 hour 
BREC/BRP co-culture (C) D AN  assay of media nitrate levels harvested from 
BRP/BREC co-culture exposed to low or high flow pulsatile flow for 72 hours 
Histogram represents mean values ± SEM (n=6 ), *P<0 05 compared to low flow 
control
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4 2 2 Pulsatile Flow induced changes in Prostacyclin release

To examine the effects of pulsatile flow on the production of PGI2, we 

exposed co-cultured BRECs and BRPs to low and high flow rates as described 

previously Levels of PGI2 in the circulating media were determined by enzyme 

immunoassay, which revealed a significant increase in PGI2 levels in cells exposed 

to high flow conditions for 72 hrs (2 167 ± 0 088 fold, n=6 ) compared to low flow 

(Fig 4 2(a))

To determine if the increase in PGI2 levels was a direct consequence of the 

induction of COX-1 or COX-2 expression in BRECs or BRPs, we carried out 

western blot analysis on lysates from each cell type (Fig 4 2 (b)) BRECs exhibited 

a significant increase in COX-2 levels under high flow conditions (3 920 ± 0 573 

fold, n=5) whereas COX-1 remained unchanged (n=3)

Western blot analysis of BRPs was also performed, as previous reports 

suggest COX-2 is mechanically regulated by flow in smooth muscle cells 

(Hendrickson et a l , 1999) COX-2 levels in BRPs remained unchanged however 

from low to high flow (Fig 4 2) (n=3), suggesting increased PGI2 levels in the 

circulating media perfusate is a direct consequence of high flow-mediated induction 

of COX-2 expression in BRECs Furthermore, PGI2 levels were undetectable in 

media from BRPs exposed to low or high pulsatile flow for 72 hours in the absence 

of BRECs (data not shown)
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Figure 4 2 The effects of Pulsatile Flow on PG12 release, and COX-1 & -2 protein 
expression in co-culturcd BREC/BRPs BRP/BRhC co-culture exposed to low or high 
flow pulsatile flow for 72 hours (A) Media assay for PG12 levels (B) Western Blot analysis 
of COX enzymes in BREC & BRP lysates (C) Graph of BREC COX-2 levels Histogram 
represents mean values ± SEM (n=6) *P<0 05 compared to low flow control
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4.2.3 Pulsatile Flow-Induced Changes in ET-1 peptide and ETA & ET„ receptor 

mRNA

Circulating media from co-cultured BRECs and BRPs exposed to low and 

high- pulsatile flow conditions for 72 hrs was assayed for ET-1 levels by enzyme 

immunoassay Exposure of the cells to high flow resulted in a 0 534 ± 0 054 fold, 

(n=7) reduction in media ET-1 levels, compared with low flow (Fig 4 3 (a)) In 

addition, BREC ET-1 mRNA levels were significantly reduced at high compared to 

low flow as examined by realtime PCR (0 576 ± 0 071 fold, n=6) (Fig 4 3 (b))

Both ECs and pericytes are target cells for ET-1 peptide signalling, with ECs 

expressing ETB receptor, whereas SMCs/pencytes express both ETA and ETB 

receptors (Masaki, 2004) Activation of ETB on ECs increases release of NO and 

prostacyclin (Quaschning et al , 2005) Conversely, activation of both ETA and ETB 

on SMCs/pencytes causes vasoconstriction (Masaki, 2004) Alteration of receptor 

numbers on the cell surface can thus alter the local vasoactive response and chronic 

alterations can alter the structure of a vessel Several investigators have found 

increased SMC ETA and ETB receptor levels in hypertensive vessel thickening 

(Cahill et a l , 1998) We investigated the mRNA levels of ETA and ETB receptors in 

co-cultured BRECs/BRPs using realtime PCR ETB mRNA levels in both BRECs 

and BRPs increased significantly at high compared to low flow (9 964 ± 4 150 fold, 

n=6 and 2 235 ± 0531 fold, n=7 respectively) (Fig 4 4  and 45), whereas ETA 

mRNA levels decreased in BRPs (0 549 ± 0 087 fold, n=7) (Fig 4 5 (b)) ETA 

receptor mRNA was not detected in BRECs exposed to low or high pulsatile flow 

(Fig 3(b))
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Figure 4 3 The effects of Pulsatile Flow on NO release and BREC ET-1 mRNA
BRP/BREC co-culture exposed to  low or higfr flow pulsatile flow for 72 hours (A) Media 
assay for ET-1 levels (B) Realtime PCR analysis o f BREC ET-1 mRNA levels 
Histogram represents mean values ± SEM (n=6), *P<0 05 compared to low flow control
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Figure 4 4 The effects of Pulsatile Flow on BREC ETB mRNA BRP/BREC co­
culture exposed to low or higfr flow pulsatile flow for 72 hours Realtime PCR 
analysis of BREC Endothelm-B Receptor mRNA levels Histogram represents mean 
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Figure 4 5 The effects of Pulsatile Flow on BRP ETA & ETB mRNA. BRP/BREC 
co-culture exposed to low or high flow pulsatile flow for 72 hours Realtime PCR 
analysis of BRPs Endothelm-B Receptor mRNA levels (A), and BRPs Endothehn-A 
Receptor mRNA levels (B) Histogram represents mean values ± SEM (n=6), 
*P<0 05 compared to low flow control
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4.2.4 Effect of L-NAME, Indomethacin and PD142893 on the Flow-Induced 

changes in NO, PGI2 and ET-1

BRECs/BRPs co-cultures were exposed to L-NAME (500[xM), Indomethacin 

(ljxM) or PD142893 (l^M ) to determine the compensatory or competitive 

interaction between NO, PGI2 and ET-1, respectively. L-NAME treatment had no 

effect on eNOS activity under low flow conditions (0.867 ±0.164 fold, n=6), as 

detected by DAN assay. However, L-NAME treatment significantly inhibited flow- 

induced nitrate release at high flow (1.425 ± 0.095 fold, n=6) (Fig. 4.6 (a)). 

Inhibition of cyclooxygenase with indomethacin resulted in a significant increase in 

nitrate release at low (1.517 ± 0.148 fold, n=6) but not high pulsatile flow (3.157 ± 

0.413 fold, n=6), demonstrating that increased release of nitric oxide compensates 

for reduced PGI2 release at low flow. Inhibition of ET-1 did not affect nitric oxide 

release at either low or high pulsatile flow (0.957 ± 0.081 fold and 2.383 ± 0.224 

fold, n=6, respectively) (Fig. 4.6 (a)).

Treatment of BRECs/BRPs with indomethacin significantly decreased PGI2 

release at both low and high pulsatile flow compared to controls (2.703 ± 0.472 fold 

and 3.200 ± 0.609 fold, n=6, respectively). In order to determine the dual role of 

nitric oxide and PGI2 in mediating the vasodilator response, we examined PGI2 

levels upon nitric oxide inhibition with L-NAME treatment. Nitric oxide inhibition 

at both low and high pulsatile flow resulted in significant increases in PGI2 

circulating in media perfusate compared to controls (2.703 ± 0.472 fold and 3.200 ± 

0.609 fold, n=6, respectively) (Fig. 4.6 (b)). PD142893 inhibition of ET-1 binding 

had no effect on PGI2 release at either low or high pulsatile flow rates (1.133 ± 0.170 

fold and 1.967 ± 0.07 fold, n=6, respectively) (Fig 4.6 (b)).

Nitric oxide inhibits ET-1 at both low and high flow, as determined by 

increased ET-1 in the presence of L-NAME (1.470 ± 0.070 fold and 0.782 ±0.132 

fold, n=6, respectively) (Fig 4.6 (c)). Similarly, addition of indomethacin also 

demonstrated the potency of PGI2 inhibiting ET-1 at both low and high flow (1.315 

± 0.015 fold and 0.839 ± 0.108 fold, n=6, respectively) (Fig 4.6 (c)). ET-1 also 

decreased in the presence of PD 142893 at low and high flow (0.273 ± 0.043 fold and
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0 253 ± 0 057 fold, n=6, respectively) (Fig 4 6 (c)), however this is potentially a 

result of assay interference with samples containing PD142893 compound
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Figure 4 6 The effect of LrName, Indomethacin & PD142893 on Pulsatile Flow 
induced release of NO, PGI2 or ET-1 BRP/BREC co-culture exposed to low or high flow 
pulsatile flow for 72 hours with non-selective NOS inhibitor, (L-Name), a non-selective COX 
inhibitor, (Indomethacin), or ET-receptor antagonist (PD 142893) (A) DAN assay o f media 
nitrate levels, (B) media assay for PGI2 levels Histogram represents mean values ± SEM 
(n=6), *P<0 05 compared to low flow control, $P<0 05 compared to high flow control

170



c
2n

© SD. 
m 5
S I

O w

1 -

J *V

$ $

0  3  m l s / m i n 2 5  m l s / m i n

Figure 4 6 continued. (C) media assay for ET-1 levels Histogram represents mean 
values ± SEM (n=6), *P<0 05 com pared to  low flow control, $P<0 05 com pared to  high 
flow control
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4 2 5 Effect of L-NAME, Indomethacm and PD142893 on Cell Viability

EC apoptosis was significantly reduced at high compared to low flow (0 626 

± 0 024 fold, n=6), as determined by Annexin V FACs analysis (Fig 4 7 (a)) 

Inhibition of NO, PGI2 and ET-1 did not significantly effect EC apoptosis at low 

flow (0 917 ± 0 055 fold, 0 903 ± 0 044 fold, 1 01 ± 0 048 fold, n=6, respectively) 

(Fig 4 7  (b)) At high pulsatile flow however, inhibition of both NO and ET-1, but 

not PG12, significantly abrogated the protective effect of high pulsatile flow on EC 

apoptosis (0 944 ± 0 049 fold, 101 ± 0 049 fold, 0 761 ± 0 029 fold, n=6, 

respectively) (Fig 4 7 (b))

In contrast to BRECs, BRPs harvested from the same co-cultures had a 

significant increase in apoptosis at high compared to low pulsatile flow rates (1 48 ± 

0 07 fold, n=6) (Fig 4 7 (c)) Inhibition of PGI2 and ET-1 did not alter the protective 

effects of low pulsatile flow rates, however inhibition of NO release significantly 

increased BRP apoptosis at low pulsatile flow (0 833 ± 0 038 fold, 0 972 ± 0 055 

fold, 1 278 ± 0 038 fold, n=6, respectively) (Fig 4 7 (c)) Interestingly, inhibition of 

NO at high pulsatile flow did not exacerbate the apoptotic BRP response (1 417 ± 

0 038 fold, n=6) (Fig 4 7(c))

Indomethacm and PD142893 treatment at high flow reversed the increase in 

BRP apoptosis (0 848 ± 0 064 fold and 1 167 ± 0 046 fold, n=6, respectively) (Fig 

4 7 (b)), demonstrating an important role of both PGI2 and ET-1 in mediating 

pericyte apoptosis at high flow rates
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Figure 4.7 The effect of I^Name, Indomethacin & PD142893 on BREC and BRP 
apoptosis exposed to Pulsatile Flow. BRP/BREC co-culture exposed to low or higji pulsatile 
flow for 72 hours with non-selective NOS inhibitor, L-Name, or non-selective COX inhibitor, 
Indomethicin. (A) Representative AnnexinV FACs scatter graphs of BRECs at low (left) or 
high (right) pulsatile flow. (B) BRECs (C) Pericytes. Histogram represents mean values ± SEM 
(n=3), *P<0.05 compared to low flow control; $P<0.05 compared to high flow control
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4 2 6 Effect of SNAP and Uoprost on Cell Viability

To investigate the direct effects of NO, PGI2 and ET-1 on BREC and BRP 

apoptotic profiles, static cultures of each cell type were supplemented for 72hrs with 

a nitric oxide generator, S-Nitroso-N-Acetylpemcillamine (SNAP - 50^iM and 

500fiM), a prostacyclin analogue, iloprost (50nM and 500nM) or ET-1 peptide 

(lOnM and lOOnM) in media containing low serum The number of apoptotic cells in 

both BRECs and BRPs was significantly increased under low serum conditions, 

compared to normal serum controls (6 000 ± 0 572 fold and 5 100 ± 0 330 fold, n=6, 

respectively) (Fig 4 8)

Treatment of BRECs with ET-1 or iloprost resulted in a dose-dependent 

decrease in apoptosis (ET-1 [lOnM 1 500 ± 0 535 fold, lOOnM 6 000 ± 0 476 fold, 

n=6] iloprost [50nM 1 500 ± 0 535 fold, 500nM 6 000 ± 0 476 fold, n = 6 ]) (Fig 

4 8 (a)) Treatment with SNAP resulted m a significant decrease in apoptosis at 

50\iM (2 500 ± 0 330 fold, n=6), but not at 500^iM (7 000 ± 0 373 fold, n=6), 

suggesting the concentration of NO is critical in regulating BREC apoptosis

Treatment of BRPs with ET-1 or iloprost did not significantly affect 

apoptosis in low serum conditions (ET-1 llOOnM 4 500 ± 0 386 fold, lOnM 4 800 

± 0 425 fold, n=6] iloprost T500nM 6 300 ± 0 330 fold, 50nM 6 500 ± 0 353 fold, 

n=6] ) (Fig 4 8 (b)) Similar to the concentration dependent effect of SNAP on EC 

apoptosis, SNAP increased BRP apoptosis at 500^M (7 300 ± 0 341 fold, n=6), 

whereas 50jxM protected against low serum induced apoptosis (1 800 ± 0 353 fold, 

n=6) (Fig 4 8(b))
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Figure 4 8 The effect of SNAP, Iloprost & ET-1 peptide on BREC and BRP 
apoptosis Serum starvation of BRECs or BRPs static mono-cultures and Annexin V 
FACs analysis of BRECs (A) and BRPs (B) apoptotic cells BRECs or BRPs exposed for 
72 hours to nitric oxide generator SNAP or prostacyclin analogue, iloprost Histogram 
represents mean values ± SEM (n=6), *P<0 05 compared to low flow control, $P<0 05 
compared to higfi flow control
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4 3 Discussion

ECs in normal blood vessels produce NO, PGI2 and ET-1 which contribute to 

maintainance of vessel homeostasis (Osanai et a l , 2000) We have previously 

demonstrated the acute effect of pulsatile flow on ECs and BRPs in co-culture, with 

increased release of NO, PGI2 and ET-1 in response to high pulsatile flow at 24 

hours In this study, we examined the effect of sustained increases in pulsatile flow 

on BREC/BRP co-cultures after 72 hours Similar to the acute BREC response, a 

sustained increase in NO and PGI2 was found, with increased BREC eNOS and 

COX-2 protein expression These results concur with numerous reports of increased 

NO upon exposure to increases in mechanical forces (Boo and Jo, 2003, Davis et a l , 

2001, Gallis et a l , 1999, Hendrickson et a l , 1999, Jin et a l , 2003, Jin et a l , 2005, 

Kuchan and Frangos, 1994, Malek et a l , 1999a, Ziegler et a l , 1998) Similarly, 

several investigators report increased EC PGI2 synthesis or secretion in response to 

increased shear stress (Okahara et a l , 1998, Inoue et al , 2002, Hendrickson et al , 

1999, Meyer-Kirchrath et a l , 2004, Osanai et a l , 2000, Dancu et a l , 2004) 

Previous reports suggest elevated PGI2 production by shear stress is mediated by 

increased arachidonic acid release and a combination of increased expression of 

COXs and PGI2 synthase (Okahara et al , 1998) We demonstrate an increase in 

BREC COX-2, but not COX-1 protein, whereas BRP COX-2 expression was 

unchanged Circulating PGI2 in mono-cultured BRPs exposed to low or high 

pulsatile flow for 72 hours was negligible compared to co-culture experiments, 

demonstrating that the endothelial cell is the predominant source of PGI2

Our previous analysis of ET-1 peptide in BREC/BRP co-cultures, 

demonstrated an increase in media perfusate ET-1 at high pulsatile flow after 24 

hours (Chapter 3) Chronic exposure however, results in decreased circulating ET-1 

peptide, as determined by enzyme-immunoassay Moreover, BREC ET-1 mRNA 

decreased at high compared to low pulsatile flow Several publications document a 

bi-phasic EC ET-1 response to either increased shear stress (Morawietz et a l , 2000, 

Wang et a l , 2002a, Malek et a l , 1999b, Kuchan and Frangos, 1993) or cyclic stretch 

(Cattaruzza et a l , 2000) ECs adapt to increased mechanical forces with
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reorganisation of the cytosleton and these changes in shape and cytoskeletal 

organisation are integral to transducing shear stress into altered ET-1 gene 

expression (Malek et a l , 1999b), and may account for the bi-phasic EC response to 

changes in flow

Binding of ET-1 to ETA and ETB receptors on VSMCs results in 

vasoconstriction, cell growth and cell adhesion Binding of the same peptide to ETB 

receptors on endothelial cells causes vasodilation by stimulating the release of PGI2 

and NO, via increased protein kinase B/Akt and eNOS phosphorylation (Liu et a l , 

2003a) The overall vasoactive effect in vivo however, is a potent vasoconstriction 

Luscher et al demonstrated that endothelial denudation in vivo enhances ET-1 

dependent contraction, confirming the vasodilatory effect of ET-1 (Luscher et a l , 

1990b) Interestingly, Lerman et al demonstrated the ability of NO and PGI2 to limit 

ET-1 dependent effects in vivo, demonstrating cross-talk between these opposing 

vasoactive pathways (Lerman et a l , 1992) With a doubling of baseline ET-1 plasma 

levels caused by exogenous ET-1 infusion in anesthetized pigs, there was a fourfold 

greater increase in systemic, pulmonary, coronary and renal vascular resistances 

after blockade of NO formation Inhibition of ET-1 peptide binding with PD142893 

in our co-culture model did not significantly affect either NO or PGI2 levels in media 

perfusate, however both L-NAME and indomethacin attenuated the flow induced 

decrease in ET-1, thus confirming the inhibitory effect of each dilator on ET-1 

secretion

A plethora of clinical studies have correlated ET-1 plasma levels with systemic 

and peripheral vascular diseases ET-1 is activated in hypertension, atherosclerosis, 

restenosis, heart failure, idiopathic cardiomyopathy, and renal failure (Luscher and 

Barton, 2000) Tissue concentrations and receptor expression more reliably reflect 

the activation of the endothelin system however, as increased vascular ET-1 levels 

can occur in the absence of changes in plasma (Luscher and Barton, 2000) ET-1 

peptide circulating in media perfusate decreased at high flow in our culture model, 

however ETB receptor mRNA increased ~10-fold in BRECs exposed to high flow 

rates, resulting in two key outcomes BREC NO and PGI2 would increase at high 

flow, and secondly, BREC ETB receptors compete with pericyte ETA and ETB
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receptors for ET-1 binding, thus reducing the vasoconstrictor capacity of ET-1 

Morawietz et al (2000) similarly demonstrated a shear stress dose-dependent 

upregulation of HUVEC ETB receptor The importance of endothelial ETB is 

highlighted by the growing trend of pharmaceutical companies utilising ETA specific 

antagonists, rather than non-selective ET-receptor antagonists in the treatment of 

hypertension (D’Orleans-Juste et a l , 2002) Reports by Strachan et al (1999) 

demonstrated increased peripheral vascular resistance in normal subjects with 

systemic administration of specific ETB receptor antagonist, suggesting that the 

overall balance of effects of endogenous ET-1 at the vascular ETB receptor favors 

vasodilatation (Strachan et a l , 1999) Additionally, infusion of ET-1 in humans 

reduces forearm blood flow in NTG patients or controls, presumably via SMC ETA 

mediated vasoconstriction However, infusion of ET-1 and a selective ETA inhibitor 

increased forearm blood flow in both groups, although the vasodilation was lower in 

NTG patients than in controls, suggesting an impaired EC ETB mediated release of 

vasodilators (Henry et al - ¡O V S -  in press)

BRP ETb receptors also increased at high flow, however ETA receptors are the 

predominant pericyte receptor subtype, and high flow reduced BRP ETA expression 

These results mirror those published by Cattaruzza et al (2000), who demonstrated a 

~ 10-fold increase in SMC ETB and a ~2-fold decrease in ETA, when exposed to 

cyclic stretch (Cattaruzza et a l , 2000) Interestingly, in the same study, stretching 

increased SMC apoptosis and was mediated by ETB, but not ETA SMC receptor 

activation Several in vivo reports have also demonstrated a potential role of 

increased expression of ETB VSMC receptors responsible for apoptosis in 

atherscierosis (Kobayashi et al , 2000, Babaei et a l , 2000), whereas Chakrabarti et 

al demonstrated increased ETB in diabetic rat retinas (Chakrabarti et a l , 1998) The 

present results demonstrate a ~2-fold increase in both BRP apoptosis and BRP ETB 

receptor, however, inhibition of ET-1 binding with PD142893 only partially 

reversed increased BRP apoptosis at high flow Increased BRP ETB at high flow may 

mediate increased apoptosis, however further experiments with selective ET- 

receptor inhibitors are required Finally, increased ET-1 in ocular and retinal tissue 

of diabetic rats has also been reported (Chakrabarti et a l , 1998, Takagl et a l ,
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1996a)

Retinal blood flow is autoregulated, such that within certain limits retinal 

vessels either contract or relax in order to maintain a constant blood supply We 

have demonstrated an EC vasoactive response to altered biomechanical forces, 

which may represent the primary mechanism whereby EC can ‘sense’ variations in 

blood flow In addition to the EC vasoactive response to altered flow rates, however, 

local interaction among endothelial factors may also be an important variable For 

example, when NO formation is disrupted, there is often a compensatory 

upregulation of PGI2 This compensation is thought to be a protective mechanism for 

maintaining endothelium-dependent vasodilation (Li et a l , 2004b) However, 

various examples of cross-talk between endothelial dilators indicate that the nature 

and mechanisms involved may vary depending on the vessels and conditions 

studied As such, several apparent contradictions can be found in the literature A 

report by Osanai on PGI2/NO cross-talk m HUVECs exposed to shear stress 

demonstrated a two-fold enhancement of flow-induced PGI2 production upon 

inhibition of NO synthase (Osanai et a l , 2000), while PGI2 inhibition did not alter 

shear induced release of NO Similarly, our BREC/BRP co-culture results 

demonstrate a significant increase in PGI2 at both low and high flow with L-NAME, 

compared to controls In contrast, with indomethacin treated co-cultures, NO 

increased at both low and high flow compared to controls Interestingly, an in vivo 

report of NO-induced retinal and choroidal vasorelaxation in the piglet, suggested 

NO relaxation is actually mediated by PGI2, with NO donors leading to increased 

circulating PGI2 (Hardy et a l , 1998) In addition, Vassalle et al (2003) report 

increased PGI2 in response to sodium nitroprusside, an NO-donor, though they also 

report a compensatory increase in NO with inhibition of COX (Vassalle et a l , 2003) 

Conversely, in human microvascular endothelial cells and in umbilical vein 

endothelial cells, PGI2 did not compensate for decreased NO following 

pharmacological inhibition in cell culture (Vassalle et a l , 2003) Quinn et al 

however, report a compensatory PGI2 vasodilation upon NO inhibition in the porcine 

ciliary artery (Quinn et a l , 2003)
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ET-1 inhibition did not alter NO or PGI2 in our co-culture model, however 

inhibition of either NO or PGI2 increased ET-1 at both low and high flow ET-1 

induces pericyte proliferation in EC/pencyte co-culture (Yamagishi et a l , 1993), and 

as such, NO or PGI2 inhibition of ET-1 would presumably stabilise mature vessels 

by inhibiting pericyte proliferation Kuchan and Frangos (1993) first demonstrated 

flow-induced decrease in ET-1 was mediated by NO (Kuchan and Frangos, 1993) 

Also, endothelium-derived hyperpolarising factor (EDHF), which is speculated to be 

cytochrome P450, a product of arachidomc acid metabolism (Coats et a l , 2001), has 

not been investigated m this study A recent report suggests that EDHF mediates 

vasodilation in retinal vessels, in particular when NO, PGI2 or ET-1 levels are 

inhibited (Ding and Tnggle, 2000)

In this study we have demonstrated that chronic exposure to high pulsatile 

flow for 3 days causes increased BRP apoptosis, whilst simultaneously conferring a 

protective effect on BRECs when compared to low flow Several investigators have 

previously demonstrated the anti-apoptotic effect of laminar shear stress and also 

cyclic strain on EC (Bartling et a l , 2000, Kaiser et a l , 1997, Urbich et a l , 2000, 

Haga et a l , 2003, Yoshizumi et a l , 2003) In addition, Sakao et al (2005) 

demonstrated reduced EC apoptosis at high pulsatile flow, with the same pulsatile 

flow apparatus used in this study (Sakao et a l , 2005) Moreover, several in vivo 

results demonstrate the pro-apoptotic effect of reduced blood flow, with increased 

EC apoptosis at vessel branch points or bifurcations (Berceli et a l , 1990, Garcia- 

Cardena et a l , 2001, Hosoya et a l , 2005) Considering less EC apoptosis at higher 

flow rates in our co-culture model, it is tempting to speculate that reduced retinal 

blood flow, as is reported in glaucoma, may result in increased EC apoptosis and 

thus facilitate regression of vessels Similarly, in DR where blood flow velocities are 

reduced during the latter stages of disease, increased EC apoptosis may facilitate 

increased transport across the blood retinal barrier and lead to basement membrane 

thickening and possibly pericyte cell death -  a hallmark of DR
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Whereas ECs are exposed to shear stress and cyclic strain, pericyte/VSMCs 

cells are predominantly exposed to cyclic strain (Redmond et a l , 1995) Cyclic 

strain is an important determinant of VSMCs cell phenotype, however the role of 

cyclic strain in protecting against, or inducing apoptosis is less clear For example, 

exposure of VSMCs to varying magnitudes of cyclic strain at different points within 

the vessel wall (e g advential or medial layers) confers a specific SMC phenotype 

(Shi et a l , 1996, Cappadona et a l , 1999) Pericyte cells on retinal capillaries and in 

our co-culture model exist as a single layer of cells, and as such, the magnitude of 

cyclic strain is directly correlated with retinal blood flow High pulsatile flow 

resulted m increased pericyte apoptosis, similar to previous results from our 

laboratory with aortic SMCs exposed to pulsatile flow (Birney et a l , 2004) This 

may be particularly relevant to the onset of DR where blood flow velocities initially 

increase, followed by increased pericyte ‘drop-out’ or apoptosis Studies within our 

laboratory are ongoing to determine the combined effect of hyperglycaemia and 

varying pulsatile flow rates

The role of the vasoactive mediators NO, PGI2 and ET-1 in this divergent 

EC/pericyte apoptotic response to increased pulsatile flow was also examined To 

date, pericyte-endothelial cell interactions have largely documented the cross-talk 

regulating proliferation of each cell type Pericytes are known to inhibit endothelial 

cell proliferation by releasing cytokines such as TGF-p (Martin et al , 2000), 

whereas ultrastructural studies have shown that newly formed capillaries stop 

growing when pericytes migrate into the basement membrane (Crocker et a l , 1970) 

Loss of capillaries in diabetic retinopathy is implicated in proliferation of endothelial 

cells in new vessel formation (Orhdge and D'Amore, 1987) EC/pericyte cross-talk 

involves a plethora of molecules, most of which are as yet undefined The most 

extensively studied to date is VEGF Pericyte secretion of VEGF induces NO 

production in EC (Breslin et a l , 2003) and also protects EC from NO induced EC 

apoptosis (Hata et a l , 2001) NO is a known anti-apoptotic stimulus in numerous 

cell types, however excessive local concentrations can lead to reactive oxygen 

species, apoptosis and also necrosis (Kim et a l , 2001b) (Lau, 2003) The present 

results demonstrate a protective effect of high compared to low pulsatile flow
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against EC apoptosis in both mono-cultured EC and also co-cultured EC/Pericytes 

Comparison of EC harvested from mono-culture and EC harvested from co-culture 

however, resulted in a several-fold increase in baseline apoptosis, demonstrating that 

the presence of pericytes has a protective effect on EC These results might explain 

the phenomenon of endothelial cell apoptosis occurring after pericyte apoptosis in 

DR, leading to formation of acellular capillaries (Witmer et a l , 2003)

Our results demonstrate increased BRP apoptosis at high compared to low 

pulsatile flow We therefore analysed whether this increase may be due to NO, PGI2 

or ET-1 production upon exposure to flow Increased BRP apoptosis at high flow 

was not attributable to either NO or ET-1, however inhibition of PGI2 synthesis with 

indomethacin attenuated the increased apoptosis at high compared to low pulsatile 

flow Interestingly, the PGI2 analogue iloprost did not rescue BRP from serum 

starvation induced apoptosis in static cultures, though it did not increase apoptosis 

either Reports by Li et al demonstrated that iloprost induces apoptosis via a cAMP- 

mediated suppression of ERK activity in VSMCs in static cell cultures (Li et a l , 

2004a) The synthetic PPARy ligand, rosiglitazone, induced prostaglandin release 

and apoptosis in rat aortic SMCs (Bishop-Bailey and Warner, 2003) Whereas, two 

recent reports also with rat aortic SMCs, demonstrated reactive oxygen species and 

reactive nitrogen species (Upmacis et a l , 2004) induce apoptosis via a prostaglandin 

dependent mechanism Inhibition of NO at high flow did not alter BRP apoptosis, 

however at low flow BRP apoptosis significantly increased This is possibly due to 

nitric oxide protecting BRP against apoptosis at lower flow rates, or it may also be a 

result of PGI2, which increased significantly in the presence of L-NAME at low 

flow

Though PGI2 may have been responsible for increased BRP apoptosis at high 

flow rates, and possibly at low flow rates when NO is inhibited, inhibition of PGI2 

did not have a significant effect on the protective effect of increased pulsatile flow in 

BRECs Furthermore, addition of iloprost to serum-starvation induced apoptotic 

BRECs had a dose-dependent protective effect on BREC apoptosis Inhibition of 

both NO and ET-1 with L-NAME and PD142893 respectively, abolished the 

protective effect of increase pulsatile flow This is in agreement with reports that
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ET-1 functions as an apoptosis survival factor for endothelial cells in an 

autocrine/paracrine manner via the ETB receptor (Shichin et a l , 1997) Even though 

ET-1 decreased ~2-fold at high flow, ET-1 may have an important protective effect, 

since BRECs ETB receptor mRNA increased ~ 10-fold at high flow Interestingly, 

ET-1 induces NO production via activation of the ETB receptor and this may be the 

mechanism by which it protects endothelial cells exposed to pulsatile flow 

Furthermore, in static cultures, ET-1 also protected EC from serum-starvation 

induced apoptosis

Numerous publications on the effect of NO and EC apoptosis have 

demonstrated either a pro- or anti-apoptotic response Indeed, our static experiments 

with an NO donor (SNAP), demonstrate a dual role, depending on concentration 

NO protects EC from apoptosis at low concentrations, however excessive amounts 

can induce reactive oxygen species which can inhibit the protective effect of NO and 

also cause apoptosis Our co-culture model demonstrates that increased NO at high 

pulsatile flow protects these cells from apoptosis Reports by Hata et al indicate that 

VSMCs protect ECs from NO-induced apoptosis through inhibiting down-regulation 

of Bcl-2, possibly through VEGF (Hata et a l , 2001), demonstrating the importance 

of EC-pencyte cross-talk in maintaining vessel homeostasis

These results help explain the damaging effects of endothelial dysfunction, 

which is frequently associated with DR (Deng et a l , 1999, McVeigh et a l , 1992, 

Calver et a l , 1992), and in particular normal tension glaucoma (Buckley et a l , 2002) 

(Henry et a l , 1999) Endothelial dysfunction impairs the ability of ECs to respond to 

fluctuations in blood flow, reducing levels of NO or PGI2 and also increasing ET-1, 

thus causing vasospasm The present results highlight the particular importance of 

NO signalling in the retinal vasculature At low flow, for example, reduced NO 

resulted in increased PGI2 possibly leading to increased pericyte apoptosis 

Furthermore, reduced NO at low flow increased ET-1 levels which would compound 

the detrimental effects of low flow by constricting vessels At high flow we 

demonstrate that increased NO is required to protect EC against apoptosis, however
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endothelial dysfunction may impair this protective mechanism and reverse the 

protective effect of increased flow on the endothelium

The crucial role of NO in maintaining vascular homeostasis is also apparent 

with the association of eNOS polymorphisms with disorders that have in common a 

dysfunctional endothelium coronary heart disease, ischemic stroke, hypertension 

and Fabry’s disease(Wilcox et a l , 1997, Heltianu et a l , 2005, Abe et a l , 2005, 

Howard et a l , 2005) Similarly, systemic factors such as hypercholesterolemia and 

hyperglycaemia are thought to impair endothelial NO signalling via oxidative stress 

damage Oxidative stress manifests as an imbalance between the levels of NO and 

reactive oxygen species (ROS) such as the superoxide anion (SO) (Miller et a l , 

2005, Napoli et a l , 2001) Studies on various animal models of diabetes have 

showed that administration of scavengers of ROS such a superoxide dismutase 

(SOD) and catalase (CAT) improved or normalised the agonist induced endothelium 

dependent dilation of arteries, suggesting that elevated levels of superoxide and 

hydrogen peroxide may inactivate NO after its release Clinical studies demonstrated 

decreased NO synthesis and increased ROS production in patients with essential 

hypertension, renovascular hypertension and malignant hypertension (Higashi et a l , 

2002, Lip et a l , 2002) Indeed, recent reports targeting ECs with adenovirus 

expressing NOS prevents elevation of blood pressure in stroke-prone spontaneously 

hypertensive rats (Miller et a l , 2005)
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We believe this pulsatile flow study is relevant to blood flow abnormalities 

observed in DR and glaucoma In addition, these results may shed light on 

hypertensive retinopathy -  a condition characterised by a spectrum of retinal 

vascular abnormalities in people with elevated blood pressure Our co-culture model 

exposes retinal cells to increases in pulse pressures from low to high flow 6 to 56 

mm Hg in the extra-capillary space, and 11 to 70 mm Hg at the capillary inlet 

Hypertension is a polygenic, multifactorial disorder, which induces structural 

and functional changes of arteries, forming thick, rigid vessels at a greater nsk of 

atherosclerosis The underlying pathological defect in hypertension is due, at least in 

part, to the endothelial dysfunction, possibly due to pulse pressure induced increases 

in cyclic strain and shear stress in the vessel wall With hypertension, the retinal 

vasculature is initially protected from increases in systemic blood pressure by a local 

autoregulatory response, such that vasospasm occurs and the tone of retinal 

arterioles increases This stage is seen clinically as a generalized narrowing of the 

retinal arterioles Arteriolar narrowing may result from, but also lead to, 

hypertension A ‘vicious cycle’ may exist through which the microcirculation 

maintains or even amplifies an initial increase in blood pressure Thus, a rise in 

blood pressure may lead to increased resistance in the microcirculation, leading to 

further elevation of blood pressure (Porta et a l , 2005)

The retinal circulation undergoes a series of pathophysiological changes in 

response to elevated blood pressure There is disruption of the blood-retina barrier, 

necrosis of the smooth muscles and endothelial cells, exudation of blood and lipids, 

and retinal ischemia (Wong and Mitchell, 2004) In addition, arteriovenous 

“nicking” is seen in chronic stages of hypertension This is caused by the 

enlargement of the retinal arteriolar wall, which compresses a retinal vein at their 

common adventitial sheath(Luo and Brown, 2004), increasing the risk of retinal 

venous occlusion During chronic stages of the pathology, large areas of the inner 

retina become mfarcted as a result of occlusions of the precapillary arterioles 

Eventually their smooth muscle cells necrose This necrosis destroys the arterioles’ 

ability to constrict, thereby leading to focal vasodilation and transmission of the high 

blood flow to the endothelium of smaller vessels Leakage of plasma proteins in the
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posterior retina as hard exudates soon follows because the endothelial damage 

causes a breakdown of the blood retinal barrier (Walsh, 1982, Luo and Brown, 

2004)

Elevated blood pressure is a definitive risk for poor microvascular and 

macrovascular outcomes of diabetes In Type 2 diabetes, blood pressure status was 

shown to be even more important than blood glucose status in predicting and 

preventing significant vision loss from diabetic retinopathy (UK Prospective 

Diabetes Study Group, 1998) Furthermore, when diabetes is associated with 

hypertension, retinopathy accelerates and is also more severe (Porta et a l , 2001) 

Moreover, tight control of blood pressure can prevent deterioration of DR In the 

ARIC prospective cohort study, retinal arterioles were significantly narrower in 

persons who subsequently developed diabetes over the following 3 5 years 

compared with those who did not (Porta et a l , 2005)

4.4 Conclusion

Primarily as a result of increased NO, chronic exposure to high pulsatile flow 

protects ECs from apoptosis On the other hand, high pulsatile flow induces pericyte 

cell apoptosis via increased prostaglandin products Moreover, ECs respond to 

fluctuations in pulsatile flow via altered NO/PGI2/ET-l signalling, demonstrating 

that EC and pericytes have an inherent capacity to autoregulate blood flow in 

response to perfusion pressure changes
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Hedgehog signalling is anti-apoptotic and also regulates Notch signalling in 

both BRECs and BRPs

5.1 Introduction

5.2 Results

5.3 Discussion

5.4 Conclusion

Chapter 5
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5 1 Introduction

Formation of the vascular system is one of the earliest and most important 

events during embryogenesis in mammals During the early stages of vascular 

development, the de novo formation of blood vessels occurs from mesodermally- 

derived endothelial cell precursors termed angioblasts Angioblasts differentiate and 

subsequently assemble into primitive blood vessels, termed the primary vascular 

plexus, in a process known as vasculogenesis Formation of the primordial vessels m 

the central retina is mediated by vasculogenesis, whereas angiogenesis is responsible 

for increasing vascular density and peripheral vascularization in the inner retina In 

contrast, the outer plexus and the radial peripapillary capillaries are formed by 

angiogenesis only These mechanisms of retinal vascularization appear similar to 

those of vascularization of the central nervous system during development (Hughes 

et a l , 2000, Gariano, 2003) Identification of a wide range of molecules whose 

targeted disruption results in defective vascular development has begun to expose 

the extent of the complexity of this process Mice deficient in flk-l/KDR, flt-1, 

PDGF-B, PDGFR|3,TGFpi, TGFpRII, endoglin, SHh, Notch, tissue factor, 

neuropihn-1 and -2, ephnnB2, EphB4, tie-1 s tie-2, hypoxia-inducible factor, and 

angiopoietin-1 and -2, to name a few, exhibit defective vascular development The 

role that each of these plays in vessel formation, and whether their influence is direct 

or indirect, is not fully understood (D'Amore and Ng, 2002)

Several studies have reported the importance of the Notch signalling pathway 

in the development of many tissues and organs in the body (Artavams-Tsakonas et 

a l , 1999, Miele and Osborne, 1999) Mutation of many components of the Notch 

signalling pathway in mice, for example, results in embryonic lethality due to 

defects in the formation of the vascular system Mice homozygous for null mutations 

m Jagged 1 and Notch 1 die in utero due to defects in vascular morphogenesis and 

angiogenic vascular remodelling respectively (Han et a l , 2000, Singh et a l , 2000) 

There is an increasing appreciation that pathways studied predominantly for their
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role during development, rather than being silent in adult vasculature, are in fact 

active and largely responsible for pathologic and non-pathologic tissue remodelling 

As with Notch, the importance of the Hedgehog signalling pathway within 

the vasculature is increasingly recognized The transmembrane Hedgehog receptor, 

Ptcl, is expressed throughout the vasculature in both juvenile and adult mice, 

suggesting that adult cardiovascular tissues may contain several cell populations 

responsive to Hedgehog signalling (Pola et a l , 2001) The Hedgehog pathway also 

plays a pivotal role in development, regulating many of the same functions as the 

Notch signalling pathway, such as limb and neural tube development, highlighting 

the functional interactions between these pathways (Artavanis-Tsakonas et a l , 1995, 

Artavams-Tsakonas et a l , 1999, Weed et a l , 1997) Hedgehog signalling also 

appears to be important m proper development of the vascular system Similar to the 

Notch signalling pathway the correct level of Hedgehog signalling appears to be 

important, as both up- and down-regulation of hedgehog proteins results m vascular 

defects (Sullivan and Bicknell, 2003) Mutations of the Hedgehog signalling 

pathway, for example, result in lack of proper vascularization in the developing 

mouse lung (Pepicelli et a l , 1998)

As with the Notch signalling pathway, the Hedgehog pathway is implicated 

in regulating cell fate decisions SHh regulates both proliferation and survival of 

oligodendrite precursors, and acts to promote proliferation and inhibit differentiation 

in both neuronal and non-neuronal cell types (Ho and Scott, 2002) Dysregulation of 

both the Hedgehog and Notch pathways lead to dysregulated cell growth and 

abnormal cellular accumulations, contributing to many types of cancers 

(Villavicencio et a l , 2000, Miele and Osborne, 1999) Therefore, although it is 

likely, whether the Hedgehog signalling pathway regulates cell fate decisions 

through the Notch signalling pathway remains to be fully established
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The aim of this study was to identify the presence of Notch & Hedgehog 

signalling pathway components in retinal endothelial pericyte cells in static 

culture and also in human normal and glaucomatous eye sections In addition, the 

effect of exogenous Sonic Hedgehog addition on Notch signalling and apoptosis 

was also examined in retinal endothelial & pericyte cells
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5 2 Results

Notch 1, -2 and -4 have been reported to be expressed in endothelial cells in 

vivo, and similar results have been reported in cultured endothelial cells (Liu et a l , 

2003b) Analysis of BRECs has revealed the presence of components of the Notch 

signalling pathway (Fig 5 1 & 5 2) The Notch receptors, Notchl (Fig 5 1(a)) and 

Notch3 (Fig 5 1(c)) are present in BRECs as determined by immunocytochemistry 

The antibodies used in this study are directed against the active intracellular portion 

(IC) portion of the Notch receptors Therefore, these antibodies detect both the 

cleaved IC portion of the Notch receptor, in addition to the full-length receptor 

Routine detection of Notch 1IC & Notch 3IC with antibodies from two different 

commercial sources, and competition with an appropriate blocking peptide 

confirmed the specificity of the antibody binding In these experiments, the nuclei 

were also stained with a fluorescent dye -  DAPI (blue) (Fig 5 1 to 5 6, right panel) 

The presence of Notch 1 IC & Notch3IC protein was also confirmed by western blot 

analysis, and the presence of mRNA transcripts were verified through PCR analysis 

(western blot data -  Chapter 6)

Immunocytochemical analysis revealed the sub-cellular localization of the 

components of the Notch signalling pathway Fig 5 1 (a) illustrates that Notch 1 IC is 

predominately located in the nuclei of BRECs, however, it is present both in the cell 

cytoplasm and on the plasma membrane Membrane-tethered Notch 1IC appears to 

constitute a small proportion of the overall cellular distribution of Notch 1 IC 

Similarly, Notch3IC appears to be primarily located in the nuclei of BREC (Fig 5 1 

(c)) Notch3IC is also present in the cytoplasm of the cell The presence of the Notch 

ligand, Jagged, has also clearly been shown in BRECs (Fig 5 2 (e)) 

Immunocytochemical analysis also revealed the presence of Notch target genes of 

the HRT and Hes families in BRECs Hes-1 (Fig 5 1 (e)), HRT-1 (Fig 5 1 (g)), 

HRT-2 (Fig 5 2 (a)) and HRT-3 (Fig 5 2 (c)) all exhibit a strong nuclear 

localization pattern within the cell, as is evident with Notch receptors and ligands

5 2 1 Components of the Notch Signalling Pathway are present in BRECs
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Both Hes-1 and HRT-2 are present within the cytoplasm, however, relative to the 

Hrt-1 and Hrt-3 staining pattern, they exhibit a more specific nuclear localization

In all cases the appropriate primary and secondary controls were performed 

m parallel with each experiment

5 2 2 Components of the Hedgehog Signalling Pathway are present in BRECs

Using BRECs in culture, we examined for the presence of Sonic Hedgehog 

(SHh), Indian Hedgehog (IHh) and the transmembrane Hedgehog receptor Patched 

(Ptcl) in microvascular endothelial cells in vitro Using antibodies targeted against 

Ptcl (Fig 5 3 (a)), SHh (Fig 5 3 (c)) and IHh (Fig 5 3 (e)), each of these proteins 

stained positive in BRECs

Using PCR and Western blot analysis, the presence of SHh, IHh and Ptcl 

mRNA and protein expression were further confirmed in BRECs (data not shown) 

Furthermore, the presence of mRNA transcripts for the Hedgehog signalling 

downstream targets, Gh2 and Smo, were confirmed by PCR analysis (data not 

shown)
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Figure 5.1 Immunocytochemistry staining of BRECs. Notch 1 (A), 
Notch3 (C), Hcsl (E) and HrtI (G), with corresponding Dapi nuclcar 
staining (B) (D) (F) (H). Arrows indicate staining localised in nuclcar region 
(red) and in cytoplasm (white) Magnification x20.
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Figure 5.2 Immunocytochemistry staining of BRECs. Hrt2 (A), Hrt3 (C) 
and Jagged (E), with corresponding Dapi nuclear staining (B) (D) (F). Arrows 
indicate staining localised in nuclear region (red) and in cytoplasm (white) 
Magnification x20.
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Figure 5.3 Immunocytochemistry staining of BRECs. Ptcl (A), Indian (C) 
and Sonic (E), with corresponding Dapi nuclear staining (B) (D) (F). Arrows 
indicate staining localised in nuclear region (red) and in cytoplasm (white) 
Magnification x20.
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5 2 3 Components of the Notch Signalling Pathway are present in Bovine 

Retinal Pericytes (BRPs)

Immunocytochemistry staining of BRPs with monoclonal antibodies has 

revealed the presence of components of the Notch signalling pathway in retinal 

pericytes (Fig 5 4 -  5 5) Fig 5 4 (c) illustrates that Notch3IC is predominately 

located in the nuclei of BRPs, however, it is also present both in the cell cytoplasm 

and on the plasma membrane Nuclear Notch31C does not appear to be present in the 

nucleoli of the cell, and the distribution of Notch3IC in the cytoplasm appears to be 

clustered around the nucleus Membrane-tethered Notch3IC appears to constitute a 

small proportion of the overall cellular distribution of Notch3IC Similarly, 

Notch 1IC appears to be primarily located in the nuclei of BRPs (Fig 5 4 (a))? 

however in this case, a discrete localization of the receptor within the nucleolus is 

also evident The presence of both Notch 1IC & Notch3IC protein was further 

confirmed by western blot analysis, and the presence of mRNA was verified through 

PCR analysis (data not shown)

Additionally, homogenous staining of the Notch target genes Hes-1 (Fig 5 4 

(c)), HRT-2 (Fig 5 4 (a)), HRT-3 (Fig 5 4 (c)) and the Notch ligand Jagged (Fig 

5 4 (e)) was also established Analysis of HRT-1 staining (Fig 5 4 (g) revealed a 

specific nuclear sub-cellular localization In all cases the appropriate primary and 

secondary controls were performed in parallel with each experiment
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5 2 4 Components of the Hedgehog Signalling Pathway are present m BRPs

Immunocytochemical analysis of SHh, IHh and Ptcl receptor proteins in 

BRP cells indicated the presence of these proteins in retinal pericytes Rather than 

being freely secreted proteins, mature Hedgehog are tethered to the plasma 

membrane through a covalently bonded cholesterol moiety (Lee et a l , 1992) 

Expression of the Hedgehog morphogens SHh and IHh was uniformly distributed 

throughout the cell Their presence in this mural cell type is in agreement with 

previous immunohistological observations of SHh smooth muscle localisation in rat 

micro vascular tissue sections (Podlasek et a l , 2003)

Patched associates with caveolin-1 at caveolae, which are small, flask-shaped 

membrane invaginations enriched in cholesterol and sphingolipids Staining of BRPs 

for Ptcl immunofluorescense was positive (Fig 5 6 (a)), indicating retinal pericytes 

are a target of Hedgehog morphogens The staining pattern of Ptcl had some clusters 

of fluorescense at the membrane which suggests that Ptcl may function by 

trafficking Smoothened at caveolae Ingram et al previously suggested that Patched 

mediates the trafficking of Smoothened through a membrane compartment, either by 

promoting its trafficking to the plasma membrane or by promoting its degradation 

via the lysosome (Ingham et a l , 2000)
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Figure 5.4 Immunocytochemistry staining of Pericytes. Notchl (A), 
Notch3 (C), Hesl (E) and H rtl (G), with corresponding Dapi nuclear staining 
(B) (D) (F) (H). Arrows indicate staining localised in nuclear region (red) and 
in cytoplasm (white) Magnification x20.
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Figure 5.5 Immunocytochemistry staining of Pericytes. Hrt2 (A), Hrt3 (C) 
and Jagged (E), with corresponding Dapi nuclear staining (B) (D) (F). Arrows 
indicate staining localised in nuclear region (red) and in cytoplasm (white) 
Magnification x20.
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Figure 5.6 Immunocytochemistry staining of Pericytes. Ptcl (A), Indian (C) 
and Sonic (E), with corresponding Dapi nuclear staining (B) (D) (F). Arrows 
indicate staining localised in nuclcar region (red) and in cytoplasm (white) 
Magnification x20.
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5 2 5 Pathway Components of Notch & Hedgehog Signalling are present in the 

human retina -  comparison of normal & glaucomatous eyes

Immunohistochemical staining for Notch & Hedgehog Signalling Pathways 

components was performed on formalin fixed, paraffin wax embedded sections of 12 

human eyes, of which, 6 were from glaucoma patients It is noteworthy that these 

glaucomatous eyes are from patients with raised intra-ocular pressure Concurrent 

control experiments with omission of the primary antibody excluded the possibility 

of non-specific immunolabelling by the secondary antibody and allowed the 

effectiveness of endogenous peroxidase quenching to be assessed

Three different regions in the optic nerve head (ONH) were identified (1) 

the Pre-Laminar Region (PLR), localized at the level of the choroid and retina, 

which includes the superficial nerve fiber layer and is characterized by minimal 

connective tissue and the absence of clearly myelinated axons, (2) the Lamina 

Cribosa (LC), localized at the level of the sclera and characterized by large 

connective tissue septa, and (3) the retro-laminar region (RLR), localized outside the 

eye and characterized by myelinated axons and delicate connective tissue septa 

These ONH regions, along with the retina were examined for immunoperoxidase 

vessel staining

There was no detectable Notch3IC, Hrt-1, Hes-1, Hes-5, Sonic or Patched 

immunoreactivity in the retinas of either normals or glaucomas This is not to 

conclude that these proteins are absent however, as the epitope used to generate the 

commercial monoclonal antibodies may have simply been masked in these tissue 

samples

The majority of PLR microvessels at the ONH were positive for Notch IIC 

(Fig 5 7 (b)) Similarly, immunostaining of these vessels for Notch target genes, 

Hrt-1, Hrt-2 and Hrt3 (Fig 5 7, b to f) were positive Some smaller vessels which are 

found in the retina (Fig 5 7 (a) & (f)) and the RLR (Fig 5 7 (d))3 were also positive 

for NotchllC and its transcription factor targets (Hrt-1, Hrt-2 and Hrt3) Subjective 

analysis of NotchllC staining suggests an increase in NotchllC in glaucomatous 

patients, though staining is also evident in normals It is difficult to ascertain for
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certain if Notch 1IC is increased in glaucoma patients however, with the small 

number of eyes used in this study

In contrast, the PLR microvessels of the ONH were clearly negative for the 

Hedgehog morphogen Indian However, large numbers of vessels within the retina 

(Fig 5 8 (A) (B) & (C)) of normal eyes examined, were positively stained for IHh 

(n=6) Interestingly, microvessels in all of the glaucomatous eyes, though present, 

were negative for IHh (n=6) The specific vessels positively staining for IHh are the 

interconnecting vessels between the two layers of vasculature within the retina -  the 

superficial and the deep or inner vascular plexus Furthermore, no immunoreactivity 

was observed for IHh in RLR vessels in either normals or glaucomas
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Figure 5.7 Immunohistological di ami nobenzidine (DAB) staining of 
human retina/Optic Nerve Head. Notchl (A), Hrtl (B), Hrt2 (C) & (D) and
Hrt3 (E) & (F) (arrows = DAB)
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Figure 5.8 Immunohistological DAB staining of human retina.
Indian (A) (B) & (C) (arrows = DAB)
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5 2 6 Exogenous addition of Sonic Hedgehog Protects against serum-starvation 

induced apoptosis & activates Notch Signalling in BRECs & BRPs

Vascular cell fate decisions are hallmarks of the vascular cell response to 

injury and play a crucial role in the pathogenesis of vascular disease Notch receptor- 

ligand interactions and the Hedgehog (Hh) signalling pathway have been strongly 

implicated in vascular morphogenesis and remodelling of the embryonic vasculature, 

with Hh activation upstream of Notch signalling during development This study has 

successfully detected components of the Notch & Hh signalling pathway m cycling 

BRECs and BRPs We therefore tested the hypothesis that the Hh and Notch 

pathways interact to promote changes in vascular cell fate in BRECs & BRPs in 

vitro

The interaction of Hh proteins with their specific receptor patched-1 (Ptcl) 

inactivates the repression of the transmembrane protein smoothened (Smo), leading 

to activation of the transcription factor Gli, the principal mediator of the Hh 

signalling pathway Gli induces expression of downstream target genes of the Hh 

pathway, including Ptcl and Gli itself Thus, Ptcl and Gh are both components and 

transcriptional targets of the Hh signalling pathway Activation with SHh 

recombinant protein (3^g/ml) resulted in a significant fold increase in Ptcl target 

gene mRNA expression in both BRECs and BRPs (4 50 ± 0 18 and 1 70 ± 0 09 fold, 

n=3, respectively) concomitant with a significant fold increase in gh2 mRNA levels 

(1 38 ± 0 05 and 2 45 ± 0 19 fold, respectively) as determined by real-time PCR 

analysis (Fig 5 9 (a) & (b)) Smo mRNA also increased in BRECs and BRPs treated 

with exogenous SHh (1 53 ± 0 07 and 1 47 ± 0 05 fold, n=3, respectively) As 

expected, treatment of both BRECs and BRPs with SHh in the presence of the 

specific SHh inhibitor cyclopamine (40^iM) abrogated the effect of SHh induction of 

Ptcl, Gli2 and Smo in each cell type (Fig 5 9) Cyclopamine is a naturally occurring 

steroidal alkaloid which specifically inhibits the Hh pathway by interacting with the 

Hh signalling protein Smoothened Cylopamine was dissolved in DMF at 40u.M and 

as such, all controls contained the equivalent volume of DMF
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To investigate whether the induction of the Hedgehog signalling pathway 

resulted in an increase in transcription of Notch pathway components, we performed 

real-time PCR analysis of BREC & BRP mRNA samples following activation with 

SHh SHh stimulated the expression of Notch 1 and Notch3 in BRECs (4 26 ± 0 25 

and 2 32 ± 0 11 fold, n=3, respectively) (Fig 5 10 (a)) and Notch 1, but not Notch3 

in BRPs (1 50 ± 0 06 and 0 93 ± 0 09 fold, n=3, respectively) (Fig 5 10 (b)) 

Abrogation of this response with the addition of cyclopamine, demonstrates SHh 

peptide acts by de-repressing the Ptcl-Smo complex (Fig 5 10)

Activation of Hedgehog signalling with recombinant SHh peptide had an 

overall anti-apoptotic effect on both BRECs and BRPs BREC anti-apoptotic 

transcripts BCl-2 and BCl-xl both increased in the presence of SHh (1 53 ± 0 06 and 

1 54 ± 0 06 fold, n=3, respectively), while the pro-apoptotic marker Bax decreased 

(0 48 ± 0 04 fold, n=3) (Fig 5 11) In BRPs, exogenous SHh increased BCl-2 but not 

BCl-xl (1 54 ± 0 10 and 1 03 ± 0 05 fold, n=3, respectively), while Bax decreased 

(0 68 ± 0 09 fold, n=3) (Fig 5 11) The overall anti-apoptotic effect in both BRECs 

and BRPs due to Hedgehog activation was reversible in the presence of cyclopamine 

(Fig 5 11)
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Figure 5 9 Realtime PCR analysis of Ptcl, Gh2 and Smo mRNA. BRECs (A) or 
BRPs (B) were exposed to recombinant SHh (3[xg/ml) or SHh (3 fig/ml) + 
Cydopamine (an inhibitor of Shh) (40^iM), m static culture Histogram represents 
mean values ± SEM (n=3), *P<0 05 compared to low flow control (normalised to 
1)$ P<0 05 compared to Sonic treatment
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Figure 5 10 Realtim e PCR analysis of Notch 1 and Notch3 mRNA. 
BRECs (A) or BRPs (B) were exposed to recombinant SHh (3\ig/m\) or SHh 
(3^ig/ml) + Cyclop amine (an inhibitor of Shh) (40p,M), in static culture 
Histogram represents mean values ± SEM (n=3), *P<0 05 compared to low 
flow control (normalised to 1) $P<0 05 compared to Sonic treatment
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Cyclopamme (an inhibitor of Shh) (40[xM), in static culture Histogram represents 
mean values ± SEM (n=3), *P<0 05 compared to low flow control (normalised to 
1)s P<0 05 compared to Sonic treatment
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5 2 7 Real-time PCR analysis of Notch & Hedgehog Signalling components in 

retinal tissue isolated from normal & glaucomatous human eyes

In earlier immunocytochemistry analysis of Notch and Hedgehog signalling 

components, we confirmed the presence of Notch 1, Notch3, Hesl, Hrtl, Hrt2, Hrt3, 

Jagged, Ptcl, SHh and IHh in BRECs (Fig 5 1 to 5 3) and BRPs (Fig 5 4 to 5 6) 

Furthermore, we confirmed the presence of Notch 1, Hrtl, Hrt2, Hrt3, Ptcl and IHh 

in vessels of normal and/or glaucomatous human eyes by immunohistochemistry 

(Fig 5 7 & 5 8) We therefore sought to confirm by real-time PCR analysis if SHh is 

present in the human eye, since there was none detectable by 

immunohistochemistry Furthermore, a comparative analysis of mRNA for Notch 1, 

Notch3, IHh & SHh in normal versus glaucomatous eyes was performed

Four normal and four glaucomatous RNA preparations of retinal tissue were 

analysed There was no significant difference between normal and glaucoma eye 

mRNA levels of Notchl (Fig 5 12 (a)), Notch3 (Fig 5 12 (b)), SHh (Fig 5 13 (a)) 

or IHh (Fig 5 13 (b)) Previous immunohistochemical analysis of the same eyes 

demonstrated presence of IHh in normal, but not in glaucoma eyes Though IHh is 

present in glaucomatous eyes, the real-time data suggest increased mRNA in normal 

eyes compared to glaucoma eyes Due to the small sample size, these results are not 

significant, however they are suggestive of a role of IHh in normal microvessels in 

the retina, which are impaired in glaucomatous retinas Impairment of these vessels 

may occur secondary to loss of neurons or possibly due to increased IOP

210



A
Notch 1 mRNA

B
Notch 3 mRNA

0>
o>c
CO
.co
2o

Figure 5 12 Realtime PCR analysis of N otchl (A) and Notch3 (B) mRNA 
levels in human normal and glaucomatous retinas (n=4)
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Figure 513 Realtime PCR analysis of Sonic  (A) and Indian  (B) gene 
expression in human normal and glaucomatous retinas (n=4)
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5.3 Discussion

A number of different receptor-ligand interactions have been implicated in 

the development and maintenance of the vasculature including: the vascular 

endothelial growth factor (VEGF) family, angiopoietins and their cognate receptor- 

Tie2, the fibroblast growth factor (FGF) family, the platelet derived growth factor 

(PDGF) family, ephrins and Eph receptors, and various other cytokines and 

chemokines (Karsan and Harlan, 1996). Further to this plethora of signalling 

molecules and pathways, the Notch and Hedgehog family of receptors and ligands 

also play a significant and non-redundant role in development and maintenance of 

the vasculature.

Several studies point to a role for Notch and its ligands in influencing 

vascular development. For example, Notch signalling is required for arterial-venous 

differentiation in zebrafish (Lawson et al., 2001). Mutant mice that are null for 

Notch 1 show defects in the vasculature, and the severity of these vascular defects is 

enhanced in mice that are null for both Notch4 and Notch 1, although Notch4 single 

knockouts are viable and healthy (Krebs et al., 2000). A homozygous Notch2 

hypomorphic allele in mice disrupts development of vasculature of the glomerulus, 

heart, and eye (McCright et al., 2001). Mice that are rendered null for the Notch 

ligand, Jagged 1, exhibit defects in vascular remodelling (Xue et al., 1999). In 

addition, mice with mutations in both Delta-like 1 and Notch2 show embryonic 

haemorrhage, possibly resulting from poor development of vascular structures 

(Kojika and Griffin, 2001). Mutations in Notch target genes also highlight the 

importance of the Notch signalling pathway in vascular development. Zebrafish 

embryos harbouring a mutation in Gridlock, a HRT-2 orthologue, show impairment 

of vascular formation in the form of aortic coarctation (Weinstein et al., 1995). In 

contrast, HRT-2 null mice do not present with aortic coarctation, suggesting a level 

of redundancy between mammalian Notch target genes, however, they present with 

massive post-natal cardiac hypertrophy, and a resulting high rate of lethality in the 

first 10 days of life (Gessler et al., 2002). Interestingly, constitutive activation of 

Notch4 specifically in EC, also causes defects in vascular remodelling (Leong et al.,
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2002) (Uyttendaele et a l , 2001) The similar vascular phenotypes that are induced 

by either constitutive activation or constitutive loss of Notch suggest a requirement 

for specific and finely tuned activation of Notch within the context of the developing 

vasculature

The human disorders CADASIL and AGS provide evidence of the 

importance of the Notch signalling pathway in the adult vasculature These disorders 

involve dysregulation of components of the Notch signalling pathway resulting in 

cardiovascular abnormalities CADASIL, which is caused by mutations in Notch3, is 

characterized by degeneration of SMC, primarily in cerebral arteries and arterioles, 

but also in systemic arteries and some veins CADASIL patients present with an 

abnormal accumulation of Notch3 in VSMC, impaired Jagged l/Notch3 binding and 

defective CBF-1 -dependent Notch3 signalling (Brulin et a l , 2002, Prakash et a l , 

2002, Joutel et a l , 2004, Prakash et a l , 2002, Brulin et a l , 2002) AGS also 

highlights the importance of the Notch signalling pathway, and in particular 

Jagged 1, in the development and maintenance of the cardiovascular system AGS 

patients typically present with congenital heart defects, heart murmurs and/or 

peripheral pulmonary stenosis (Joutel and Tourmer-Lasserve, 1998, Loomes et a l , 

1999)

Several studies have revealed the presence of Notch 1, Notch2 and Notch 3 in 

VSMC, both in vivo and in vitro (Leimeister et a l , 2000, Lindner et a l , 2001, 

Campos et a l , 2002, Kitamoto et a l , 2005) However, Notch3 expression is 

previously reported as SMC specific (Joutel et a l , 2000) Joutel et al indicated that 

Notch3 function is required in adult mice for the structural and functional integrity 

of arteries, particularly smaller-diameter arteries (Joutel et a l , 1996) To date, 

vascular expression of Notch4 has not been documented in VSMC, which is 

reported to be endothelial cell specific (Uyttendaele et a l , 1996) In addition to 

Notch4, Notch 1 and Notch2 have been reported to be expressed in endothelial cells 

in vivo (Lindner et a l , 2001, Nijjar et a l , 2001) Therefore, whilst significant 

advances have been made in recent years in detailing the regulation, expression and 

role of the Notch signalling pathway in the adult vasculature, the pathway remains 

poorly characterized
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This study documents the presence of many components of the Notch 

signalling pathway in retinal endothelial and pericyte cells, both in vivo and in vitro 

and is largely m agreement with several recent studies of the macrovascular VSMC 

(Campos et a l , 2002, Iso et a l , 2002) Campos et a l , for example, documented the 

presence of Jaggedl, Notch3, HRT-1, HRT-2 and HRT-3 protein and mRNA 

expression in Rat VSMC in vitro We demonstrate the presence of HRT-1, HRT-2, 

HRT-3, Hes-1, Notch 1 and Notch3 in BRECs, in BRPs, and also in the adult 

vasculature of the human retina and optic nerve head The Notch receptor antibodies 

used in this study are directed against the IC portion of the Notch receptor and, as 

such, detect both the IC and full-length forms of the Notch receptor Several studies 

have revealed the predominance of the IC portion of the Notch receptor in vascular 

cells (Campos et a l , 2002, Wang et a l , 2002c, Wang et a l , 2002b) and m other cell 

types (Fehon et a l , 1991, Aster et a l , 1994) This study also investigated the sub- 

cellular localization of the components of the Notch signalling pathway using 

immunocytochemical analysis The components of the Notch signalling pathway 

appear to localize predominantly in the nucleus, which is in agreement with several 

reports (Fortini et a l , 1993, Kopan et a l , 1996, Lieber et a l , 1993)

Since Hh signalling plays a key role in pattern formation, differentiation, and 

proliferation in the early mouse embryo, the vascular system was not initially 

identified as a target of Hh action when knockout mutants of individual Hh genes 

were examined Nonetheless, a role for Hh signalling in blood vessel formation in 

the embryo is supported by a number of observations, including the 

hypervascularization of neurectoderm in response to overexpression of SHh (Saika 

et a l , 2004), and the decreased vascularization of lung tissue in SHh-deficient mice 

(Pepicelli et a l , 1998) Support for Hh's role in vascular development came from the 

observation that zebrafish carrying mutations in components of the Hh signalling 

pathway have a defect in circulation and vascularization (Lawson et a l , 2002, 

Brown et a l , 2000) During normal development, two trunk axial vessels form—the 

aorta and the posterior cardinal vein The aorta develops immediately adjacent to a 

midline source of SHh The loss of SHh leads to a single large vessel that expresses
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only venous and no arterial markers (Lawson et a l , 2002) Hh does not act directly 

on the axial vessels, but through a mesodermal intermediate

The consensus is that the signals encoded by the three Hh genes (Sonic, 

Indian and Dessert) all activate the same downstream signalling cascade, and that 

the presence of genes controlled by separate regulatory elements facilitates the 

expression of the signal at multiple sites and times during embryogenesis Hh 

signalling is used throughout embryogenesis in many differentiating tissues to 

establish cell fate, promote cell proliferation, and mediate programmed cell death 

Although the expression of DHh and IHh are more restricted, recent analysis has 

revealed previously unobserved overlapping domains of expression for SHh and IHh 

in the early embryo— for example, in the node and somites (Zhang et a l , 2001) A 

role for IHh in early embryogenesis is supported by the observation that double 

IHh/SHh knockouts have an earlier, more severely altered phenotype than do SHh 

mutants, and resemble Smo mutations, which have no Hh downstream signalling 

(Zhang et al 2001) Hh ligand binding relieves Ptcl-mediated suppression of 

Smoothened (Smo) Without the Hh ligand, kinases glycogen synthase kinase 3, 

casein kinase 1, and protein kinase A mediate phosphorylation of Gli and its 

processing to a repressor form With Hh binding to Ptcl, the full-length Gli 

promotes transcription of downstream targets, including Ptcl Interestingly, one of 

the genes expressed downstream of Hh signalling encodes the Hh receptor Ptcl, 

thereby making Ptcl expression an indicator of Hh responsiveness In this study, we 

have demonstrated the presence of Ptcl in both BRECs and BRPs in cell culture 

Furthermore, both Hedgehogs, Indian and Sonic, were also present in BRECs and 

BRPs, suggesting a possible autocrine/paracrine signalling mechanism

Similar to Notch signalling, Hh is now appreciated as an important molecular 

pathway involved in maintenance of the adult vasculature For example, several 

reports indicate the adult vascular system in the mouse can respond to Hh Ptcl- 

LacZ expression, an indicator of Hh response in Ptcl-LacZ heterozygous mice, is 

measurable in both endothelial cells and adventitial fibroblasts that surround the 

vessels, with the fibroblasts capable of robust Ptcl upregulation in response to 

administered Hh (Pola et a l , 2001) In a hind limb ischemia model, SHh treatment
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promotes an increase in capillary density and blood flow (Pola et a l , 2001) 

Furthermore, Ptcl is upregulated in the interstitial mesenchymal cells and an SHh- 

blocking antibody inhibits angiogenesis (Pola et a l , 2003) SHh addition also 

promotes neovascularization and the formation of large, well-branched vessels in a 

corneal angiogenesis assay (Pola et a l , 2001) The data documenting upregulation of 

Ptcl expression in adventitial fibroblasts suggest that Hh acts via a support cell 

intermediate, rather than directly on endothelial cells to promote adult vessel 

remodelling

Activation of the Hh pathway has previously been associated with several 

tumours For example, mutations in the Ptcl gene are associated with basal cell 

carcinomas and with medulloblastomas (Bale, 2002), and the Gli genes are named 

for their role in glioma formation (Matise and Joyner, 1999) Defects in Hh 

signalling cascade components are also associated with holoprosencephaly and 

congenital malformations (Kim et a l , 2001a) It has now been established that in 

many digestive tract tumours, the Hh system is activated, with increased expression 

of SHh and IHh This occurs in oesophageal, stomach, pancreatic and biliary 

tumours, but not in colonic SHh expression seems particularly important in 

pancreatic tumourigenesis (Thayer et a l , 2003)

Interestingly, our immunohistolgical analysis of adult human eyes had no 

obvious SHh or Ptcl staining, either in the retinal or optic nerve head vessels 

However, IHh was visible in capillaries of the retina of normal eyes, but not in 

glaucomatous eyes No IHh staining was visible in larger vessels of normal or 

glaucomatous eyes in the lamina cribosa, pre- or retro-laminar regions These eyes 

from patients with glaucoma, have raised mtra ocular pressure as the principal cause 

of the pathology In these high tension glaucoma patients, it is likely that the vessels 

which stain positive for IHh would be exposed to considerable increases in pressure 

Furthermore, similar to NTG, HTG patients have reduced ocular blood flow (Findl 

et a l , 2000, Fuchsjager-Mayrl et a l , 2004, Garhofer et a l , 2004) and prolonged 

arterio-venous passage times (Duijm et a l , 1999, Arend et a l , 2004), indicating 

vascular blood flow abnormalities are at least a secondary effect of HTG Our 

realtime PCR analysis of IHh also suggests mRNA levels in patients compared to
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normals are lowered, however a larger patient/control size is required to confirm the 

significance of these results

SHh, Notch 1 and Notch3 are all present m human eyes, as determined by 

RT-PCR, however no obvious differences are apparent between normals and 

glaucomas RNA samples from these eyes were generated from the retinal tissue and 

the prelaminar region (PLR) of the optic nerve head (ONH), which is involved in 

several eye diseases In particular, a variety of optic neuropathies are located at the 

PLR and circulatory disturbances in this area are thought to be one of the causes of 

glaucoma The reasons for the specific vulnerability of this region to pathologic 

conditions are as yet unclear

How does the Hh signal interact with the other signalling pathways 

demonstrated to play a role in vascular development7 Loss-of-function mutation of a 

number of genes implicated in angiogenesis results in embryonic vascular 

remodelling defects For example, targeted mutation of the Angl or Tie2 genes 

results in severe yolk sac angiogenesis defects by midgestation, reminiscent of the 

Smo homozygous mutant phenotype (Thurston, 2003, Zhang et a l , 2001) This 

observation suggests that this angiogenesis growth factor and its receptor may act in 

the same pathway as Hh This hypothesis is further supported by the observation that 

SHh treatment upregulates the angiopoietins in adventitial fibroblast cells, placing 

Hh upstream of these vascular-specific growth factors (Pola et a l , 2001) Addition 

of SHh also promotes expression of VEGFs in fibroblasts up to 72 hours In contrast, 

the same group report an absence of Ptcl upregulation by SHh in endothelial cells of 

corneal neovessels in vivo, which was mirrored in vitro by the inability of human 

umbilical vein endothelial cells or microvascular endothelial cells to respond to SHh 

by Ptcl upregulation, proliferation, migration or serum-free survival (Pola et a l , 

2001) Olsen et al (2004) propose the inability of many cell types to respond to 

exogenous Hh addition expressing the necessary targets -  Ptcl, Gli and Smo -  is due 

to large intracellular levels of Hedgehog-interacting protein (HIP), a Hh pathway 

antagonist HIP is abundantly expressed in endothelial, but low or undetectable in 

many other cell types Pola et al do not specify from which microvascular bed they
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derive their ECs, however our retinal microvascular ECs do repond to exogenous 

SHh addition by upregulating not only Ptcl and Gli2, known downstream targets of 

the Hh cascade, but also Smo Our ECs were stimulated in media containing reduced 

serum, thereby possibly sensitizing our cells Furthermore, we demonstrated a 

similar induction of Hh components in retinal microvascular pericytes upon addition 

of SHh peptide Analysis of HIP in BRECs compared to macrovascular endothelial 

cells would be an interesting future study

Notch signalling has also been implicated in blood vessel differentiation and 

arrest at the capillary plexus stage is observed in embryos deficient in Notch 1 (Krebs 

et a l , 2000) Notch4 is also implicated in vessel remodelling (Krebs et a l , 2000) 

(Uyttendaele et a l , 2001) Recent chimera studies (Damert et a l , 2002) have 

demonstrated a role for VEGF produced by the visceral endoderm in yolk sac 

angiogenesis VEGF has also recently been shown to induce Notch 1 and Delta-like4 

(D114) expression in arterial endothelial cells via the PI3K/Akt pathway (Liu et a l , 

2003b) D114, the likely vascular Notch receptor, is expressed in arteries but not 

veins, implying a role for this cascade in establishing vessel identity, a key step 

during vascular development (Shutter et a l , 2000) D114 expression is also known to 

play a role in retinal capillary development possibly in conjunction with PDGF 

signalling (Claxton and Fruttiger, 2004) Taken together, these data are consistent 

with a regulatory cascade for vascular remodelling that begins with Hh promoting 

Angl, Ang2, and VEGF expression, which in turn promotes Notch expression and 

signalling Strong support for this hierarchy comes from work performed in 

zebrafish, where exogenous VEGF can restore normal arteriogenesis in the absence 

of SHh, but not in the absence of Notch function, and addition of Notch can 

compensate for the loss of VEGF activity (Lawson et a l , 2002) SHh from the 

notochord promotes VEGF expression by the adjacent somite, which promotes 

Notch activity and expression of the artery-specific ephrin B2 in the dorsal aorta 

Absence of this pathway permits expression of venous markers and differentiation of 

the posterior cardinal vein Our studies demonstrate increased Notch 1 expression in 

both BRECs and BRPs upon addition of SHh, while Notch3 is increased in BRECs 

but not in BRPs. In most cell types Notch 1IC expression results m increased CBF-1-
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dependent activity, however, the role o f Notch3IC appears to be cell-type specific 

In 1999, Beatus et a l , suggested that Notch3IC acts as an antagonist o f the CBF-1 - 

dependent Notch signalling pathway, as Notch3IC expression inhibited the 

Notch 1IC CBF-1 -dependent increase in Hes-1 activity in a human chorion 

carcinoma cell line In addition, Wang et a l , have shown that co-expression o f  

Notch 1 and Notch3IC in VSMC results in a potentiation o f the Notch 1IC response 

(Wang et a l , 2002c) This contradicts the finding in embryonic VSMC, that the 

activation of Notch3IC on the CBF-1 promoter is considerably more potent than that 

of Notch 1IC (Campos et a l , 2002) The reason for this discrepancy is not clear, but 

perhaps points to a more important role for Notch3 signalling developmentally, or 

indeed, a more significant role for Notch 1 in adult VSMC A Notch3 inhibition o f  

Notchl in VSMCs may explain a functional reason for SHh activation of Notchl, 

but not Notch3 in our pericytes Future studies are required to ascertain if this is the 

case

The process of apoptosis is tightly regulated through a number o f gene 

products that promote or inhibit cell death Apoptosis constitutes a systematic means 

of cell suicide within an organism during normal morphogenesis, tissue remodelling 

and in response to pathogenic infections or other irreparable cell damages The most 

extensively studied gene products, and perhaps the most important, are the Bcl-2 

family (Gupta, 2003) The net influence o f the Bcl-2 family on apoptosis appears to 

be the ratio between the pro- and anti-apoptotic molecules in a cell at any given 

time A number of signalling pathways such as the MAPK and NFkB pathways can 

influence the relative concentration o f Bcl-2 family proteins in mammalian cells 

(Gupta, 2003) This study investigates whether the Hedgehog signalling pathway 

should be added to this list

Activation of Hedgehog signalling resulted in increased anti-apoptotic BCl-2 

and BCl-xl in BRECs, and a decrease in pro-apoptotic Bax Similarly, in BRPs, BCl- 

2 was also increased, concomitant with decreased Bax expression No change in 

BRP BCl-xl expression levels was found, however Therefore addition o f  SHh had 

an overall anti-apoptotic effect on both BRECs and BRPs Discrepancies in
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downstream target activation, such as BCl-xl in this case, may be due to differential 

intermediate Notch signalling in the signalling cascade It is conceivable, and indeed 

likely, that the Notch signalling pathway could be part o f a complex multi-signalling 

network that exerts an influence over EC/pericyte cell fate decisions, including 

apoptosis This, however, remains largely undefined and requires further study 

Notch 1 has been shown to physically interact with the NFkB signalling pathway in 

T cells (Guan et a l , 1996) exhibiting an IkB-like activity, physically interacting with 

the p50 NFkB subunit, sequestering it in the cytoplasm, thus inhibiting NFkB 

activity It is currently not documented whether Notch 1IC, exerts the same effect on 

NFkB activity in vascular cells

Evidence from a number o f sources suggests that the Hh-VEGF-Notch 

cascade may not be the only means whereby Hh promotes cell fate decisions For 

example, zebrafish embryos lacking SHh have a more severely abnormal vascular 

phenotype, failing to form two distinct trunk axial vessels, than those that lack 

VEGF or Notch, which have two vessels with the aorta transformed from artery to 

vein This discrepancy suggests that Hh also promotes vascular development via 

other signalling cascades (Lawson et a l , 2002) The simple pathway o f Hh 

promoting VEGF production by an adjacent cell type is further complicated by the 

observation that both IHh and VEGF are produced by the visceral endoderm layer, 

and this source of VEGF is required for proper angiogenesis (Damert et a l , 2002) 

These data suggest that Hh and VEGF may act in concert rather than in tandem to 

promote vascular remodelling This model is supported by an investigation of the 

role played by retinoic acid (RA) in supporting yolk sac capillary plexus remodelling 

(Bohnsack and Hirschi, 2004) In this study, RA acts by promoting visceral 

endoderm survival and therefore the expression o f the visceral endoderm products 

VEGF-A, basic fibroblast growth factor, and IHh Rescue of the vascular 

remodelling phenotype observed in retinaldehyde dehydrogenase-2-deficient 

embryos, unable to synthesize RA, could only be achieved upon addition o f  all three 

endoderm-specific factors, addition o f any one alone was not sufficient (Bohnsack 

and Hirschi, 2004)
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This angiogenic cascade involving Hh, VEGF, and Notch involves 

communication between three different cell types the Hh producing cell, the Hh 

responding cell, and the target cells However, our evidence also suggests that Hh 

may act directly on endothelial cells as has previously been demonstrated In an 

assay using either murine brain capillary endothelial cells or human umbilical vein 

endothelial cells, SHh promoted endothelial network and lumen formation in the 

absence o f support cells (Kanda et a l , 2003) Furthermore, a vascular network-like 

structure formed m response to SHh treatment o f the bEnd3 endothelial cell line 

(Vokes et a l , 2004) This morphologic transition suggests that Hh may also play a 

direct role in tubulogenesis In both of these in vitro experiments, the induction o f 

capillary morphogenesis occurred in the apparent absence of VEGF, suggesting that 

the direct action of Hh on endothelial cells is independent o f VEGF Taken together, 

the evidence suggests that Hh acts both via the VEGF-Notch cascade, and via an 

alternate pathway

5 4 Conclusion

This study demonstrates the presence o f many components o f the Notch 

signalling pathway in micro vascular endothelial & pericyte cells and also in the 

retinal & optic nerve head microvasculature We have demonstrated activation o f the 

hedgehog pathway in each cell type, resulting in an overall anti-apoptotic cellular 

response This effect is possibly mediated by activation o f Notch 1 in pericytes and 

Notch 1 and/or Notch3 in endothelial cells
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The effects of Pulsatile Flow on Hedgehog & Notch Signalling Control of 

Microvascular retinal endothelial and pericyte cell fate

6.1 Introduction

6.2 Results
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6 1 Introduction

An important aspect of this study was to investigate the effect of pulsatile 

flow on Notch and Hedgehog signalling in co-cultured BRECs & BRPs In addition, 

the role of these pathways in determining BREC & BRP cell fate decisions, namely 

apoptosis and proliferation were examined

Cells of the vasculature are exposed to two principal haemodynamic forces, 

shear stress and cyclic strain generated as a result of blood flow Shear stress is 

described as the dragging frictional force created due to blood flow, and primarily 

affects EC under normal conditions Additionally, vessels are exposed to an 

oscillating transmural pressure due to the pulsatile nature of blood flow, resulting in 

the “stretching” of vascular cells in multiple planes Both pericytes and endothelial 

cells absorb this pressure-induced cyclic strain Several retinal pathologies such as 

high tension glaucoma, normal tension glaucoma & diabetic retinopathy report 

fluctuations in blood flow, thus altering mechanical forces within the vessel wall 

Therefore, this study focuses on the effect of alterations in pulsatile flow on EC and 

pericyte apoptotic and proliferative profiles As retinal EC & pericytes reside in a 

mechanically active environment and are subjected to variable mechanical loads, the 

response of these cells to deformation may represent an important defence 

mechanism against fluctuating mechanical load

Apoptosis is an essential physiological process, important in both vascular 

development and maintenance of homeostasis within the adult vasculature 

Dysregulation of apoptosis, however, is a common response to vascular injury, 

contributing to the progression and ultimate clinical outcome of vascular disease 

states, such as hypertension, transplant artenopathy, diabetic retinopathy, glaucoma 

and atherosclerosis Despite its clinical importance however, regulation of apoptosis 

within the retinal vasculature is poorly understood As such, these experiments 

examined the role of both Notch and Hedgehog signalling and apoptosis in retinal 

cells
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The Notch signalling pathway has previously been implicated in several 

aspects of vascular development, including arterio-venous differentiation, 

angiogenic processes, and in the regulation of developmental VSMC fate decisions 

(Artavams-Tsakonas et a l , 1999, Gndley, 2001, Iso et a l , 2003a) Moreover, 

mutations in Notch receptors result in embryonic lethality due to defects in both 

vasculogenesis and angiogenesis (Xue et a l , 1999, Singh et a l , 2000) In addition, 

the fact that dysregulation of the Notch signalling pathway is involved with human 

pathologies involving cardiovascular abnormalities, such as CADASIL and AGS, 

highlights the importance of the Notch signalling pathway in the adult vasculature 

Numerous studies have implicated the Notch signalling pathway in the regulation of 

cell fate decisions, including apoptosis, in many cell types (Artavams-Tsakonas et 

a l , 1995, Artavams-Tsakonas et a l , 1999, Greenwald, 1998) Whilst the presence 

and function of the Notch signalling pathway was not established in adult VSMC or 

ECs until recently, several lines of evidence indicated that components of this 

pathway could be present, and possibly regulate apoptosis in both VSMC and ECs 

Results from our laboratory demonstrated cyclic strain decreased VSMC Notch, 

which resulted in increased VSMC apoptosis, thus demonstrating the anti-apoptotic 

role of Notch signalling in VSMCs (Morrow et al , 2005) Furthermore, results also 

demonstrated Notch modulation of VSMC migration and growth rate (Sweeney et 

a l , 2004) To date, there are no documented reports of the effect of mechanical 

forces on EC Notch in vitro

Our results with microvascular retinal endothelial and pericytes have clearly 

established Hedgehog upstream of Notch in a signalling cascade (Chapter 5) 

Furthermore, we also demonstrated the anti-apoptotic effect of Hedgehog/Notch 

signalling in serum deprivation-induced apoptosis in both BRECs and BRPs As 

such, we examined the effect of pulsatile flow on Hedgehog signalling in 

BREC/BRP cultures and investigated the interaction between Hedgehog and Notch 

signalling using specific inhibitors of each We hypothesized that Hedgehog/Notch 

signalling effect changes in apoptosis due to altered pulsatile flow
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Therefore, the principal aims of this study were to establish the presence 

and activity of Hedgehog and Notch signalling components in co-cultured retinal 

EClpencyte cells exposed to pulsatile flow Furthermore, the role of 

Notch!Hedgehog signalling in regulating ECiPencyte cell apoptosis exposed to 

pulsatile flow was also examined
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6 2 Results

6.2 1 Pulsatile flow regulates Pericyte Proliferation and Apoptosis

Proliferation of BRPs when co-cultured with BRECs in vitro, was determined 

using carboxyfluorescein diacetate succmimidyl ester (CFDA-SE) dye flow  

cytometry cell tracer assay CFDA-SE dye is a succmimidyl ester (SE) fluorescent 

dye The fluorescent SE covalently couples to both intracellular and cell-surface 

proteins by reaction with lysine side chains and other available amine groups When 

cells divide, the SE labeling is distributed equally between the daughter cells, which 

are therefore half as fluorescent as the parents As a result, each successive 

generation in a population of proliferating cells is marked by a halving of cellular 

fluorescence intensity that is readily followed by flow cytometry Using this 

technique we examined the proliferative profile of BREC & BRP after co-culture for 

3 and 18 days, at both low and high flow Our results demonstrate high flow (25 

mls/min) inhibits BRP proliferation after 3 (Fig 6 1 (a)) and 18 days (Fig 6 I (b)), 

when compared to low flow (0 3 mls/min)

Western blot analysis of proliferating cell nuclear antigen (pCNA) was also 

performed pCNA is a 36 kDa molecular weight protein also known as cyclin (Sherr, 

1995) The protein has also been identified as the polymerase-associated protein and 

is synthesized in early G1 and S phases of the cell cycle (Sherr, 1995) The anti­

proliferative effect of increased pulsatile flow on BRPs was confirmed with reduced 

pCNA protein levels at high flow (Fig 6 2) as determined by western blot analysis 

BRPs exposed to high pulsatile flow for 3 days with BRECs resulted in a 

significant increase in annexin V positive (green/apoptotic) cells with respect to low 

flow control (1 48 ± 0 068 fold, n=6) (Fig 6 3) The effect of cyclic strain on the 

bcl-2 family of apoptotic genes was also investigated High pulsatile flow increased 

BRP mRNA of the pro-apoptotic bax gene by 1 45 ± 0 04 fold (n=3) over low flow  

(Fig 6 5) Additionally, the anti-apoptotic bcl-2 gene decreased in BRP following 

increased pulsatile flow (0 49 ± 0 05 fold, n=3) (Fig 6 5) The role of Bcl-2 related 

proteins mediating increased BRP apoptosis at high flow was confirmed via Western 

blot analysis BRP Bax protein increased 1 40 ± 0 05 fold (n=3) (Fig 6 4  (b)),
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whereas BC1-2 decreased 0 36 ± 0 04 fold (n=3) in BRPs exposed to high relative to 

low flow (Fig 6 4  (a)) In contrast, high pulsatile flow resulted in no significant 

change of anti-apoptotic bcl-xLm RN A  (n=3) (Fig 6 5) The progression of apoptosis 

is determined by the relative concentration of both pro- and anti-apoptotic mediators 

within a cell The pattern of bcl-2 family gene expression is in agreement with our 

flow cytometry findings that increased pulsatile flow induces apoptosis in BRPs
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A Low High

B
Low High

Figure 6.1 The effect of Pulsatile Flow on Pericyte Proliferation. Pericytes 
were stained with CFDA dye pre co-culture with BRECs and exposed to low 
(green) or high (red) pulsatile flow for 3 (A) (n=3) or 18 (B) days (n=l)
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Figure 6 2 The effects of Pulsatile Flow on BRP pCNA protein levels Western Blot 
Analysis of pericyte protein lysates for pCNA protein Pericytes were exposed to low or high 
pulsatile flow in co-culture with BRECs for 3 days Histogram represents mean values ± 
SEM (n=3)., *P<0 05 compared to low flow control

FACs Assay Pericyte

0 3 25
Flow (mls/min)

Figure 6 3 The effects of Pulsatile Flow on BRP apoptosis. Annexin V FACs Pericyte 
Apoptosis Assay Pericytes were exposed to low or high pulsatile flow in co-culture with 
BRECs for 3 days Histogram represents mean values ± SEM (n=4)., *P<0 05 compared 
to low flow control
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Figure 6.4 The effect of Pulsatile Flow on BRP Bcl-2 and Bax protein levels. Western 
Blot Analysis of pericyte protein lysates for BCI-2 (A) and Bax protein (B). Pericytes 
were exposed to low or high pulsatile flow with BRECs for 3 days. Histogram represents 
mean values ± SEM (n=3), *P<0.05 compared to low flow control
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Figure 6 5 The effect of Pulsatile Flow on BRP bcl-2, bcl-xl and box mRNA 
levels Realtime PCR analysis of Pericyte bcl-2, bcl-xl and mRNA levels after 
3 day co-culture with BRECs at low or high pulsatile flow Histogram represents 
mean values ± SEM (n=3), *P<0 05 compared to low flow control
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The effect of pulsatile flow on components of the Notch and Hedgehog 

signalling pathway was determined in this study by Western blot and quantitative 

real time PCR analysis BRPs/BRECs co-cultures were exposed to low or high 

pulsatile flow for 3 days, separated and analysed

When compared to low flow, high pulsatile flow reduced BRP Indian, Sonic, 

P tcl, NotchllC and Notch3IC protein levels (0 44 ± 0 07, 0 70 ± 0 07, 0 77 ± 0 03, 

0 58 ± 0 08, 0 84 ± 0 03 fold, respectively) (n=3) (Fig 6 7 (a) & (b), 6 8 (a) & (b), 

6 9 (a), respectively) The effect of pulsatile flow on the components of the 

Notch/Hedgehog signalling pathways was further examined using quantitative real 

time PCR analysis Increased pulsatile flow caused significant decreases in indian, 

sonic, Ptcl, Gh2, notch1 and notch3 mRNA levels (0 49 ± 0 16, 0 38 ± 0 09, 0 41 ± 

0 08, 0 58 ± 0 02, 0 47 ± 0 09 fold, n=3 respectively) with respect to low flow (Fig 

6 6) Interestingly, Smo mRNA increased in BRPs exposed to increases in pulsatile 

flow ( 1 65 ± 0 06 fold, n=3) (Fig 6 6)

In order to determine if these changes m BRP NotchllC protein were due to 

signalling between BRECs and BRPs, or due to increased mechanical forces at high 

flow, we exposed BRPs to low or high flow in the absence of BRECs for 3 days 

Mono-cultured BRPs NotchllC protein decreased 0 61 ± 0 07 fold (n=3) (Fig 6 9  

(b)) at high relative to low pulsatile flow, similar to results of BRPs harvested from 

co-culture

6 2 2 Pulsatile flow regulates Pericyte Hedgehog & Notch Signalling pathway

components
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Figure 6.6 The effect of Pulsatile Flow on BRP Ptcl, Gh2, Smo, Sonic, Indian, 
Notchl and Notch3 mRNA levels Realtime PCR analysis of Pericyte Ptc I, Gh2, 
Smo, Sonic, Indian, Notchl and Notch3 mRNA levels after 3 day co-culture with 
BRECs at low or high pulsatile flow Histogram represents mean values ± SEM, 
(n=3) *P<0 05 compared to low flow control
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Figure 6.7 The effects of Pulsatile Flow on BRP Indian & Sonic Hedgehog protein 
levels. Western Blot Analysis of pericyte protein lysates for Indian (A) and Sonic protein (B). 
Pericytes were exposed to low or high pulsatile flow with BRECs for 3 days. Histogram 
represents mean values ± SEM, (n=3) *P<0.05 compared to low flow control
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Figure 6 8 The effects of Pulsatile Flow on BRP Ptcl & NotchllC protein levels
Western Blot Analysis of pericyte protein lysates for Ptcl (A) and Notch 1 protein (B) 
Pericytes were exposed to low or high pulsatile flow with BRECs for 3 days Histogram 
represents mean values ± SEM, (n=3) *P<0 05 compared to low flow control
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Figure 6.9 The effects of Pulsatile Flow on BRP Notch3 & NotchllC (mono-culture)
protein levels. Western Blot Analysis of pericyte protein lysates for Notch3 (A) and Notchl
protein (B). Pericytes were exposed to low or high pulsatile flow for 3 days with BRECs
(A) and without BRECs (B). Histogram represents mean values ± SEM, (n=3) *P<0.05 
compared to low flow control
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6 2.3 Pulsatile flow regulates BREC Proliferation and Apoptosis

In contrast to the anti-proliferative effect of increased pulsatile flow on 

BRPs, BREC proliferation was unchanged after 3 days (n=3) and 18 days (n=3) 

exposure to low or high pulsatile flow, as determined by CFDA-SE cell tracer assay 

(Fig 6 10) Moreover, no changes in BREC pCNA levels were found by Western 

blot analysis (n=3) (Fig 6 11)

In contrast to increased BRP apoptosis at high pulsatile flow, increased 

pulsatile flow had an anti-apoptotic effect on BRECs (043 ± 0 06 fold, n=3), as 

determined by flow cytometry Annexin V assay (Fig 6 12) Similar to BRPs, BREC 

apoptotic profile is altered via changes in BCl-2 protein family members High 

pulsatile flow increased anti-apoptotic BCl-2 protein (2 05 ± 0 27 fold, n=3), 

whereas pro-apoptotic protein Bax decreased compared to low flow (0 58 ± 0  06 

fold, n=3) (Fig 6 13 (a) (b), respectively) The modulation of each of these family 

members by pulsatile flow was validated with real-time PCR analysis Be 1-2 mRNA 

levels increased (2 73 ± 0 38 fold, n=3), concomitant with decreased Bax mRNA 

(0 45 ± 0 06 fold, n=3) at high pulsatile flow (Fig 6 14) Furthermore, anti-apoptotic 

Bcl-xl mRNA levels also increased (1 86 ± 0 1 1  fold, n=3) in BRECs exposed to 

high pulsatile flow (Fig 6 14)
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Figure 6.10 The effect of Pulsatile Flow on BREC Proliferation. BRECs were stained 
with CFDA dye pre co-culture with BRECs, exposed to low (green) or high (red) 
pulsatile flow for 18 days (n=l)

Flow rate (mls/min) 

0. 2

pCNA protein - BRECs

flow (mls/min)

Figure 6.11 The effect of Pulsatile Flow on BREC pCNA protein levels. Western 
Blot Analysis of BRECs protein lysates for pCNA protein. BRECs were exposed to low 
or high pulsatile flow with BRECs for 3 days. Histogram represents mean values ± 
SEM, (n=3)*P<0.05 compared to low flow control
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Figure 6 12 The effects of Pulsatile Flow on BREC apoptosis. Annexin V FACs 
BREC Apoptosis Assay BRECs were exposed to low or high pulsatile flow in co­
culture with BRPs for 3 days Histogram represents mean values ± SEM, (n=3) 
*P<0 05 compared to low flow control
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Figure 6 13 The effects of Pulsatile Flow on BREC Bcl-2 and Bax protein levels.
Western Blot Analysis of BREC protein lysates for BCI-2 (A) and Bax protein (B) BRECs 
were exposed to low or high pulsatile flow with Pericytes for 3 days Histogram represents 
mean values ± SEM, (n=3) *P<0 05 compared to low flow control
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Figure 6.14 The effect of Pulsatile Flow on BREC bcl-2, bcl-xl and 
box mRNA levels Realtime PCR analysis of BREC bcl-2, bcl-xl and 
bax mRNA levels after 3 day co-culture with Pericytes at low or high 
pulsatile flow Histogram represents mean values ± SEM, (n=3) 
*P<0 05 compared to low flow control
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The effect of low and high pulsatile flow on Notch and Hedgehog signalling 

in BRECs was also investigated, after co-culture with BRPs for 3 days In contrast to 

the effect of increased pulsatile flow on BRP Notch and Hedgehog components, 

protein levels of Indian, Sonic, NotchllC and Notch3IC all increased in BRECs 

exposed to high compared to low flow (2 83 ± 0 34, 1 56 ± 0 11, 2 26 ± 0 19, 2 30 ± 

0,20 fold, respectively, n=3) (Fig 615 (a)(b), 616  (a)(b), respectively) 

Furthermore, increased pulsatile flow significantly increased Indian, sonic, Ptcl, 

Ghl, Smo, notchl and notch3 mRNA levels (13 46 ± 4 2, 9 27 ± 2 55, 2 38 ± 0 52, 

8 98 ± 1 03, 1 49 ± 0 06, 2 99 ± 0 63, 11 41 ± 2 83 fold, respectively, n=3) (Fig 

6 17) Therefore, to summarise, high pulsatile flow resulted in increased Notch and 

Hedgehog signalling components in BRECs, whilst the opposite occurred in BRPs 

The only exception is Smo, which increased in both BRECs and BRPs at high 

pulsatile flow

6 2 4 Pulsatile flow regulates BREC Hedgehog & Notch Signalling pathway

components
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Figure 6 15 The effects of Pulsatile Flow on BREC Indian & Sonic Hedgehog protein 
levels. Western Blot Analysis of BREC protein lysates for Indian (A) and Sonic protein 
(B) BRECs were exposed to low or high pulsatile flow with Pericytes for 3 days 
Histogram represents mean values ± SEM, (n=3) *P<0 05 compared to low flow control
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Figure 6 16 The effects of Pulsatile Flow on BREC Notch 1 & Notch3 protein levels
Western Blot Analysis of BREC protein lysates for Notch 1(A) and Notch3 protein (B) 
BRECs were exposed to low or high pulsatile flow with Pericytes for 3 days Histogram 
represents mean values ± SEM, (n=3) *P<0 05 compared to low flow control
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Figure 6 17 The effect of Pulsatile Flow on BREC Ptcl, Gh2, Smo, Sonic, Indian, 
Notchl and Notch3 mRNA levels Realtime PCR analysis of BREC Ptc, Gh2t Smo, Sonic, 
Indian, Notchl and Notch3 gene expression after 3 day co-culture with Pericytes at low or 
high pulsatile flow Histogram represents mean values ± SEM, (n=3) *P<0 05 compared to 
low flow control
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6.2 5 Inhibition of Hedgehog Signalling in mono-cultured BRECs exposed to 

low or high pulsatile flow

Cyclopamine is a naturally occurring steroidal alkaloid which specifically 

inhibits the Hh pathway by interacting with the Hh signalling protein Smoothened 

Inhibition of Hedgehog signalling in static BREC cultures (low serum) with 

cyclopamine (40^iM) induced apoptosis via reduced Bcl-2 and Bcl-xl and increased 

Bax gene expression (Section 5 2 6) Furthermore, exposure of BRECs to increased 

pulsatile flow in co-culture with BRPs, decreased apoptosis via increased BREC 

Bcl-2 & Bcl-xl, and decreased Bax mRNA levels (Section 6 2 3) We therefore 

examined whether inhibition of Hedgehog signalling with cyclopamine would 

abrogate the anti-apoptotic effect of high pulsatile flow in BRECs In order to 

elucidate the effect of specific Hh inhibition on BRECs exposed to pulsatile flow, 

these experiments were performed on mono-cultured BRECs

Similar to the anti-apoptotic effect of increased pulsatile flow on BRECs co­

cultured with BRPs, high pulsatile flow conferred a protective effect on mono­

cultured BRECs when compared to low flow (0 43 ± 0 06, Fig 6 18) Inhibition of 

Hh signalling with cyclopamine however, increased apoptosis in both low and high 

flow BRECs, when compared to low flow control (1 88 ± 0 08 fold, 1 24 ± 0 1 1  fold, 

respectively, n=3) Furthermore, cyclopamine abrogated high flow-induced increases 

in Bcl-2 mRNA levels (2 06 ± 0 09 fold, n=3) (Fig 6 19), at both low and high 

pulsatile flow (0 25 ± 0 03 fold, 0 78 ± 0 07 fold, repectively, n=3) Similarly, 

cyclopamine addition inhibited flow induced increases in BclXL mRNA (1 35 ± 0 03 

fold, n=3) (Fig 6 20) Furthermore, high pulsatile flow reduced expression of pro- 

apoptotic Bax mRNA in control samples (0 39 ± 0 06 fold, n=3), which was reversed 

upon addition of cyclopamine (1 30 ± 0 12 fold, n=3) (Fig 6 21)

Previously, in chapter 5 we demonstrated activation of Hh signalling 

components with exogenous addition of recombinant SHh peptide in static serum- 

starved BRECs Similarly, high pulsatile flow increased mRNA levels of Hh related 

genes Ptcl, Gh2 and smo (2 38 ± 0 52, 11 68 ± 1 23, 1 65 ± 0 08 fold, n=3, 

respectively) (Fig 6 22 -  6 24) Hh inhibition with cyclopamine abrogated any
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increases due to high pulsatile flow in each of these 3 genes (0 62 ± 0 09, 1 00 ± 

0 09, 0 70 ± 0 07, n=3, respectively) (Fig 6 22 -  6 24), thereby demonstrating 

increased Hh signalling due to high pulsatile flow increases BREC Ptcl, Gh2 and 

Smo mRNA levels

Exposure of BRECs to recombinant SHh in static culture increased Notch 1 

and Notch3 mRNA levels (Fig 5 10) As such, we examined BREC Notchl and 

Notch3 mRNA levels in the pulsatile flow system upon inhibition of Hh signalling 

with cyclopamine to determine if increased Hh at high flow mediates flow induced 

increases in Notchl or Notch3 mRNA levels Addition of cyclopamine abolished 

flow-induced increases in Notchl, but not Notch3 mRNA (1 03 ± 0 06, 12 00 ± 1 83 

fold, n=3, respectively) (Fig 6 25 -  6 26) These results demonstrate increased Hh at 

high pulsatile flow modulates Notchl mRNA levels

248



Low High

Figure 6.18 The effect of Cyclopamine on BREC apoptosis exposed to Pulsatile Flow.
Annexin V FACs Apoptosis Assay Mono-cultured BRECs were exposed to low or high 
pulsatile flow for 3 days with DMF (control) or Hedgehog inhibitor - Cyclopamine 
Histogram represents mean values ± SEM, (n=3) *P<0 05 compared to low flow control 
$P<0 05 compared to high flow control
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Figure 6 19 The effect of Cyclopamine on BREC Bcl-2 mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC bcl-2 gene expression 
BRECs were exposed to low or high pulsatile flow for 3 days with DMF (control) or 
Hedgehog inhibitor - Cyclopamine Histogram represents mean values ± SEM, (n=3) 
*P<0 05 compared to low flow control SP<0 05 compared to high flow control
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Figure 6 20 The effect of Cyclopamine on BREC BcUXL mRNA levels exposed 
to Pulsatile Flow Realtime PCR analysis of mono-cultured BREC bcl-xl gene 
expression BRECs were exposed to low or high pulsatile flow for 3 days with 
DMF (control) or Hedgehog inhibitor - Cyclopamine Histogram represents mean 
values ± SEM, (n=3) *P<0 05 compared to low flow control $P<0 05 compared to 
high flow control
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Figure 6.21 The effect of Cyclopamine on BREC Bax  mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC bax gene 
expression BRECs were exposed to low or high pulsatile flow for 3 days with 
DMF (control) or Hedgehog inhibitor - Cyclopamine Histogram represents mean 
values ± SEM, (n=3) *P<0 05 compared to low flow control SP<0 05 compared to 
high flow control
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Figure 6 22 The effect of Cyclopamine on BREC Ptcl mRNA levels exposed 
to Pulsatile Flow Realtime PCR analysis of mono-cultured BREC Ptc gene 
expression BRECs were exposed to low or high pulsatile flow for 3 days with 
DMF (control) or Hedgehog inhibitor - Cyclopamine Histogram represents 
mean values ± SEM, (n=3) *P<0 05 compared to low flow control $P<0 05 
compared to high flow control
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Figure 6 23 The effect of Cyclopamine on BREC Gli2 mRNA levels exposed 
to Pulsatile Flow Realtime PCR analysis of mono-cultured BREC GU2 gene 
expression BRECs were exposed to low or high pulsatile flow for 3 days with 
DMF (control) or Hedgehog inhibitor - Cyclopamine Histogram represents mean 
values ± SEM, (n=3) *P<0 05 compared to low flow control $P<0 05 compared 
to high flow control
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Figure 6.24 The effect of Cyclopamine on BREC Smo mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC Smo gene expression 
BRECs were exposed to low or high pulsatile flow for 3 days with DMF (control) or 
Hedgehog inhibitor - Cyclopamine Histogram represents mean values ± SEM, (n=3) 
*P<0 05 compared to low flow control $P<0 05 compared to high flow control
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Figure 6 25 The effect of Cyclopamine on BREC Notchl mRNA levels exposed to 
Pulsatde Flow Realtime PCR analysis of mono-cultured BREC Notchl gene expression 
BRECs were exposed to low or high pulsatile flow for 3 days with DMF (control) or 
Hedgehog inhibitor - Cyclopamine Histogram represents mean values ± SEM, (n=3) 
*P<0 05 compared to low flow control SP<0 05 compared to high flow control
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Figure 6 26 The effect of Cyclopamine on BREC Notch3 mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC Notch3 gene 
expression BRECs were exposed to low or high pulsatile flow for 3 days with DMF 
(control) or Hedgehog inhibitor - Cyclopamine Histogram represents mean values ± 
SEM, (n=3) *P<0 05 compared to low flow control $P<0 05 compared to high flow 
control SP<0 05 compared to high flow control
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6.2.6 Inhibition of Notch Signalling in mono-cultured BRECs exposed to low or 

high pulsatile flow

To determine the role of the Notch signalling pathway in modulating BREC 

apoptosis exposed to pulsatile flow in vitro, we inhibited Notch signalling in our 

flow experiments. This was achieved through transfection of BRECs with an 

inhibitor of the Notch signalling pathway, RPMS-1. RPMS-I has previously been 

shown to prevent NotchlC-mediated activation at promoters with CBF-1 binding 

sites by stabilizing the CBF-1/HDAC co-repressor complex. This prevents effective 

displacement of the co-repressor complex by NotchIC (Smith et al., 2000a). Cells 

were co-transfected with the (3-gal plasmid to allow for normalisation of transfection 

efficiency, while control cells were transfected with pCMV (mock) - the vector 

system of RPMS-1. The number of apoptotic cells upon inhibition of NotchIC with 

RPMS-1 significantly increased with respect to mock transfected control, at both 

low and high pulsatile flow (1.58 ± 0.13, 2.08 ± 0.09 fold, n=3, respectively) (Fig. 

6.27). These results suggest an important role for NotchIC in BRECs exposed to 

pulsatile flow.

The downstream effect of the inhibition of Notch signalling on the bcl-2 

family of apoptotic genes was also investigated. No change in Bcl-2 expression was 

found with RPMS-1 treated BRECs compared to mock transfected control (2.08 ± 

0.16, 1.99 ± 0.16 fold, n=3, respectively) (Fig. 6.28). RPMS-1 transfection abrogated 

flow-induced decreases in Bax mRNA, with increased bax mRNA at both low and 

high flow (2.86 ± 0.06 fold, 3.29 ± 0.22 fold, respectively, n=3), compared to low 

flow control (Fig. 6.30). High flow increased BREC BClXL mRNA in control cells 

(1.75 ± 0.12 fold, n=3) (Fig. 6.29), however RPMS-1 treatment reduced this flow 

induced increase in BClXL mRNA (1.41 ± 0.09 fold, n=3) (Fig. 6.29).

Our experiments have demonstrated Hh signalling modulates the Notch 

signalling pathway in BRECs static and pulsatile flow studies. To determine if 

Notch can modulate Hh signalling, we analysed Sonic, Indian, Gli2, smo and Ptcl 

gene expression in RPMS-1 transfected BRECs exposed to pulsatile flow. As 

expected, high flow induced gene expression of each of these Hh signalling
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components in control experiments (2 73 ± 0 11, 3 33 ± 0 14, 5 55 ± 0 54, 1 40 ± 

0 05, 4 64 ± 0 20 fold, n=3, respectively) Inhibition of NotchIC with RPMS-1 

however, had no significant effect on gene expression of any of these Hh genes (Fig 

631 - 6 3 5 )
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Figure 6 27 The effect of RPMS-1 on BREC Apoptosis exposed to Pulsatile Flow.
Annexin V FACs Apoptosis Assay Mono-cultured BRECs transfected with pCMV 
(control vector) or RPMS-1 (Notch inhibitor) and exposed to low or high pulsatile 
flow for 3 days Histogram represents mean values ± SEM, (n=3) *P<0 05 compared 
to low flow control SP<0 05 compared to high flow control
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Figure 6 28 The effect of RPMS-1 on BREC Bcl-2 mRNA levels exposed to 
Pulsatile Flow. Realtime PCR analysis of mono-cultured BREC bcl-2 gene 
expression BRECs were transfected with pCMV (control vector) or RPMS-1 (Notch 
inhibitor) and exposed to low or high pulsatile flow for 3 days Histogram represents 
mean values ± SEM, (n=3) *P<0 05 compared to low flow control $P<0 05 
compared to high flow control
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Figure 6.29 The effect of RPMS-1 on BREC Bcl-XL mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC bcl-xl gene 
expression BRECs were transfected with pCMV (control vector) or RPMS-1 (Notch 
inhibitor) and exposed to low or high pulsatile flow for 3 days Histogram represents 
mean values ± SEM, (n=3) *P<0 05 compared to low flow control $P<0 05 compared 
to high flow control
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Figure 6 30 The effect of RPMS-1 on BREC Bax mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC box gene expression 
BRECs were transfected with pCMV (control vector) or RPMS-1 (Notch inhibitor) 
and exposed to low or high pulsatile flow for 3 days Histogram represents mean 
values ± SEM, (n=3) *P<0 05 compared to low flow control $P<0 05 compared to 
high flow control
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Figure 6 31 The effect of RPMS-1 on BREC Sonic mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC Sonic gene 
expression BRECs were transfected with pCMV (control vector) or RPMS-1 
(Notch inhibitor) and exposed to low or high pulsatile flow for 3 days Histogram 
represents mean values ± SEM, (n=3) *P<0 05 compared to low flow control 
$P<0 05 compared to high flow control
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Figure 6 32 The effect of RPMS-1 on BREC Indian mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC Indian gene 
expression BRECs were transfected with pCMV (control vector) or RPMS-1 
(Notch inhibitor) and exposed to low or high pulsatile flow for 3 days Histogram 
represents mean values ± SEM, (n=3) *P<0 05 compared to low flow control 
$P<0 05 compared to high flow control
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Figure 6.33 The effect of RPMS-1 on BREC Gh2 mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC Gh2 gene 
expression BRECs were transfected with pCMV (control vector) or RPMS-1 
(Notch inhibitor) and exposed to low or high pulsatile flow for 3 days Histogram 
represents mean values ± SEM, (n=3) *P<0 05 compared to low flow control 
SP<0 05 compared to high flow control

Smo mRNA

a:

c o
u
o

1 7 5

1 50-

125-

100

0 75

Low High

Figure 6 34 The effect of RPMS-1 on BREC Smo mRNA levels exposed to 
Pulsatile Flow Realtime PCR analysis of mono-cultured BREC Smo gene 
expression BRECs were transfected with pCMV (control vector) or RPMS-1 (Notch 
inhibitor) and exposed to low or high pulsatile flow for 3 days Histogram represents 
mean values ± SEM, (n=3) *P<0 05 compared to low flow control SP<0 05 
compared to high flow control

259



Ptc mRNA

<z
oc
E 5c o 
Q) ^
£ o
Szio
p
oLL

cP cP

Low

*

High

Figure 6.35 The effect of RPMS-1 on BREC Ptcl mRNA levels exposed to Pulsatile 
Flow Realtime PCR analysis of mono-cultured BREC Ptc gene expression BRECs 
were transfected with pCMV (control vector) or RPMS-1 (Notch inhibitor) and exposed 
to low or high pulsatile flow for 3 days Histogram represents mean values ± SEM, (n=3) 
*P<0 05 compared to low flow control $P<0 05 compared to high flow control
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6.3 Discussion

Local retinal blood flow haemodynamics greatly influence remodelling of 

developing and mature vessels in both normal and pathologic settings Remodelling 

of the retinal vasculature involves restructuring of extra-cellular matrix through 

synthesis, degradation, and reorganisation, and it also involves regulation of cell 

populations through control of cell fate decisions, namely apoptosis, proliferation, 

migration and differentiation The mechanisms that effect these aspects of 

restructuring of the vessel wall are now being elucidated and we have clearly 

demonstrated a role of Notch & Hedgehog in mediating these processes

This study demonstrates that increased pulsatile flow induces apoptosis and 

inhibits proliferation in BRP This concurs with macrovascular studies from our 

laboratory, and others, which report increased VSMC apoptosis both in vivo and in 

vitro due to increased mechanical forces (Mayr et a l , 2002, Mayr et a l , 2000, 

Vouyouka et a l , 2004, Birney et al , 2004, Hirsch et a l , 1998) In addition, the 

degree of pulsatile flow induced BRP apoptosis observed in this study is comparable 

to those reported in macrovascular in vitro studies, which describe a 2- to 4 fold 

increase in VSMC apoptosis due to increased cyclic strain (Mayr et al , 2002, 

Wermg et a l , 2003)

This study has clearly established that increased pulsatile flow induces 

apoptosis in BRPs concomitant with decreased Notchl and Notch3 mRNA and 

protein The Notch receptor is activated when engagement by one of its ligands 

triggers a series of cleavages that releases the notch intracellular domain Processing 

of Notch receptors requires the activity of two proteases, namely tumor necrosis 

factor a-con verting enzyme (TACE) and presenil in/y-secretase (Baron et al , 2002) 

TACE cleaves the Notch receptor between the extracellular and transmembrane 

domains, whereas further cleavage takes place within the transmembrane domain by 

y-secretase, which is dependent on the presence of presemlins These cleavage 

events release the intracellular domain of Notch, thereby allowing translocation to 

the nucleus (Samson et a l , 2005) In addition, recent evidence implicates glycogen
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synthase kinase-3 (GSK-3) in post-translational modification of NotchIC GSK-3 is 

a serine/threonine kinase which has been implicated in the regulation of several 

metabolic enzymes and transcription factors in response to extracellular signals 

Recently, reports demonstrate GSK-3p phosphorylates NotchIC, thus protecting 

NotchIC from proteasome-mediated degradation (Foltz et a l , 2002)

Functional coupling between the Notch signalling pathway and BRP 

apoptosis was difficult to establish since pericytes proved extremely difficult to 

transfect Our static BRP experiments however, suggest Notch may modulate BRP 

apoptosis For example, addition of recombinant SHh to BRPs in static cultures 

inhibited serum starvation-induced apoptosis, concomitant with increased Notch 1 

and Notch3 mRNA Moreover, studies within our laboratory have confirmed the 

potent anti-apoptotic effect of both Notch 1 and Notch3 in VSMCs and 

overexpression of either Notch 1IC or Notch3IC can reverse cyclic strain induced 

VSMC apoptosis (Sweeney et a l , 2004) These findings concur with in vivo findings 

by Wang et a l , (2002a), who report a decrease in Notch receptor and Notch target 

gene expression following balloon injury, with the most dramatic decrease evident 

for the Notch3 receptor and the HRT-1 target gene

In addition, exposure of BRPs to exogenous SHh in static cultures increased 

Notch 1 and Notch3 and reduced Bax mRNA, suggesting Bax may be a downstream 

target of Notch signalling in BRPs The importance of the Bel-2 family in the 

regulation of apoptosis in a variety of cells is well established, with changes in Bel-2 

family expression often observed during the pathogenesis of vascular disease (Bai et 

a l , 1999, Cook et a l , 1999) Therefore, this study investigated the effect of pulsatile 

flow on the pro-apoptotic gene bax, and the anti-apoptotic genes bcl-2 and bcl-xL 

This study shows that high pulsatile flow alters the ratio of bcl-2 family genes in 

favour of apoptosis in BRP, with an increase in Bax mRNA and protein, and a 

concomitant decrease in Bcl-2 mRNA and protein No significant change in anti- 

apoptotic bcl-xl mRNA levels was observed Furthermore, work with VSMCs in our 

laboratory demonstrated that the pro-apoptotic bax gene, and the anti-apoptotic be I- 

xL gene are both regulated by the Notch signalling pathway in VSMC in response to 

cyclic strain (Morrow et a l , 2005) Down-regulation of the Notch signalling
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pathway in response to increased cyclic strain results in a decrease m bcl-xL 

expression in VSMCs Bcl-xL acts to protect against apoptosis in part by binding to 

the pro-apoptotic protein Bax, thus inhibiting the ability of Bax to form homodimers 

This inhibits the ability of Bax to increase mitochondrial membrane potential and 

cause activation of the caspase cascade Our pulsatile flow studies concur with these 

macro vascular cyclic strain experiments

The regulation of both box and bcl-2 by pulsatile flow is somewhat 

unsurprising as both have been implicated in neonatal vascular remodelling and the 

pathogenesis of vascular disease (Pollman et a l , 1999, Gibbons and Pollman, 2000, 

Kim et a l , 2000) Bax expression is up-regulated in the rat heart following coronary 

occlusion (Liu et a l , 1998) and its over-expression in the ventricles of spontaneously 

hypertensive rats is said to contribute to myocyte apoptosis (Fortuno et a l , 1998) In 

addition, an increased level of apoptosis and Bax expression was observed in human 

umbilical vessel SMCs during delivery, which coincided with increased mechanical 

forces in the vessel during delivery (Kim et a l , 2000) Similarly, Bax-associated 

apoptosis was also observed at other sites undergoing dramatic haemodynamic 

changes during the perinatal period, such as the ductus arteriosus and the branching 

point of large arteries (Kim et a l , 2000) These observations indicate that Bax may 

play a key role in both neonatal and pathological vascular remodelling, and that the 

stimulus for Bax up-regulation may be exposure to increased haemodynamic forces 

Several investigators have proposed that the stimulus for increased bax gene 

expression due to cyclic strain is likely due to increased p53 activity as bax is a 

direct transcriptional target for p53 Two recent studies have shown increases in both 

p53 activity and Bax expression due to cyclic strain (Mayr et a l , 2002, Wermg et a l , 

2003) In contradiction of these reports, we observed a decrease in p53 mRNA levels 

in BRPs exposed to increased flow (data not shown) Several distinct experimental 

differences may account for this Firstly, the fact that BRPs were analysed in co­

culture with BRECs is a key difference, since BRECs can modulate BRPs cell fate 

decision, as determined by our co-culture studies (Chapter 4) For example nitric 

oxide, prostacyclin and endothehn-1 to name a few, are each known to modulate 

VSMC fate decisions Kibbe et al report the absence of p53 renders VSMC more
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susceptible to NO-induced apoptosis than p53 competent cells, suggesting an anti- 

apoptotic effect of p53 due to differential expression and activation of the MAPK 

pathways m response to NO (Kibbe et a l , 2002) Therefore, reduced BRP p53 at 

high pulsatile flow may in fact be a pro-apoptotic stimulus Moreover, recent studies 

with VSMCs exposed to pulsatile flow in our laboratory demonstrated an increase in 

VSMC apoptosis at high flow, concomitant with no change in VSMC p53 (Birney et 

a l , 2004) Furthermore, Chae et al demonstrated increased Bax and decreased Bel-2 

in VSMCs exposed to exogenous NO donor, suggesting NO from the underlying 

BRECs may also alter the Bax/Bcl2 ratio in BRPs (Chae et a l , 2004)

This study has provided the basis for further analysis within our laboratory of 

the mechanism of Notch signalling pathway regulation of box and bcl-xL in VSMCs 

Using siRNA knockdown technology preliminary results indicate that the down- 

regulation of hrt-1, hrt-2 and hrt-3 results in increased box expression, with the most 

significant effect being mediated by hrt-3 (Dr Catherine Sweeney -  personal 

communication) In contrast, down-regulation of hes-1 results in decreased bax 

expression In addition, targeted inhibition of hrt-1, hrt-2 and hrt-3 results in a 

decrease in bcl-xL expression in VSMC, whereas hes-1 down-regulation results in a 

slight increase in bcl-xL protein expression (D Morrow -  personal communication)

Several investigators have described the role of Hh in vasculogemc and 

angiogenic vessel formation In particular, EC sprouting, tube formation and 

migration by Hh is well described, however Hh signalling in SMC/pencytes is less 

well described We demonstrated the potent anti-apoptotic effect of exogenous 

addition of recombinant SHh to BRP in static cultures (Chapter 5), via increased 

BCl-2 and decreased Bax mRNA Furthermore, SHh also increased BRP Note h i and 

Notch3 mRNA levels In haemodynamic experiments, BRPs exposed to high 

pulsatile flow resulted in decreased Indian and Sonic Hh protein and mRNA levels, 

concomitant with increased apoptosis and NotchIC Thus, it is tempting to speculate 

that increased BRP apoptosis at high flow is due to less NotchIC as a result of 

decreased Hh Indeed, recent reports demonstrate SHh activates GSK-J3, a molecule 

known to inhibit intracellular proteolytic degradation of NotchIC Future
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experiments should determine if Hh modulates Notch post-translational modification 

via GSK-3, or membrane cleavage by any one of several enzymes such as y- 

secretase or presemlin

Chronic hypoxia is, at least in the retina, sufficient to induce the expression 

of angiogenic growth factors, resulting in the characteristic retinal 

neovascularization associated with proliferative diabetic retinopathy (PDR) The 

observation that retinal neovascularization occurs adjacent to the nonperfused area 

supports the hypothesis that angiogenic factors are released from hypoxic tissue 

New vessel formation in PDR thus requires VEGF-mediated recruitment of ECs, 

however pericyte recruitment is also required to form a mature and stable vessel 

Recruitment of pericytes is largely regulated by the PDGR family of proteins and 

receptors (Hammes et a l , 2002) Therefore, in addition to the effect of pulsatile flow 

on BRP apoptosis, we also examined the proliferative profile of BRPs The effect of 

flow is a known modulator of EC/pencyte cell fate decisions during vasculogenesis 

and may play an important role in angiogenic sprouting of new vessels in PDR High 

pulsatile flow decreased BRP proliferation in co-culture with BRECs, as determined 

by pCNA protein expression and a cell tracer assay This suggests flow is an anti­

proliferative force for pericytes and may contribute to maturation of new vessels 

Additionally, experimental observations suggest that pericyte proliferation may also 

be a clinically significant factor in hypertension, a risk factor in several retinopathies 

(Herman et a l , 1987, Herman and Jacobson, 1988) Vouyouka et al (2004) also 

demonstrated high pressure inhibits VSMC proliferation It is tempting to speculate 

that inhibition of BRP proliferation at high flow is due to reduced BRP Notch 1IC 

and/or Notch3IC at high flow Wang et al demonstrated HRT1, a downstream target 

of Notch, promotes VSMC growth by inhibiting the expression of a principle cell 

cycle inhibitor, p21 WAF1/CIP1, and attenuates both growth factor deprivation and 

Fas ligand (FasL)-induced cell death by inducing the expression/activity of Akt, a 

well-established anti-apoptotic mediator (Wang et a l , 2003b, Wang et a l , 2002c) 

Further experiments are required to elucidate any potential modulation of BRP 

proliferation by NotchIC
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In contrast to high flow induced BRP apoptosis, high flow conferred a 

protective effect on BREC apoptosis Accordingly, a plethora of studies on EC 

responsiveness to shear stress demonstrate a protective effect of increased shear 

stress (Bartling et a l , 2000, Kaiser et a l , 1997, Caplan and Schwartz, 1973, Haga et 

a l , 2003) Moreover, at certain positions along the vasculature, such as bifurcations 

in the vessel or points of extreme curvature, where flow patterns are disturbed, 

preferential formation of atherosclerotic lesions occur at these points (Caplan and 

Schwartz, 1973) These regions are characterized by an enhanced turnover of 

endothelial cells, which could be mediated by apoptosis activation

Exposure of BRECs to increased pulsatile flow resulted in increased Notch 1 

and Notch3 mRNA, whereas Western blot analysis demonstrated an increase of 

intracellular cleavage components of both Notch 1 and Notch3 receptors As such, 

we hypothesized that increased Notch at high flow mediated the protective effects of 

high pulsatile flow

The function of the Notch signalling pathway has often times been 

demonstrated as being cell type specific (Yang et a l , 2004) For example, activated 

Notch4 is able to inhibit endothelial apoptosis in response to the inflammatory 

mediator, lipopolysaccharide, through inhibition of a mitochondrial-directed death 

pathway, through a CSL-dependent and independent pathway mechanism 

(MacKenzie et al 2004a) Moreover, Notch 1 increases Bcl-2 expression in a thymic 

lymphoma cell line (AKR1010) but not in a T-cell hybndroma line (2B4 11), 

however Notch 1 confers resistance to glucocorticoid-induced apoptosis in both cell 

types Interestingly, a number of recent papers suggest that Notch promotes Bcl-2 

expression, and that this is achieved in a CBF-1-independent manner Notch 1 and 

Notch4 upregulate Bcl-2 expression in T-cells and EC respectively (MacKenzie et 

al , 2004b, Jang et a l , 2004) and inhibit induction of apoptosis in the respective 

cells Our studies demonstrate high flow confers a protective anti-apoptotic effect on 

ECs compared to low flow, via increased Bcl2 and BclXL, and decreased Bax, 

concomitant with increased NotchIC
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Using the same CELLMAX™ pulsatile flow apparatus, Sakao et al (2005) 

also demonstrated increased Bcl-xl expression at high flow in human pulmonary 

microvascular ECs (Sakao et a l , 2005) Similarly, exposure of human umbilical vein 

ECs to increases in laminar shear stress resulted in increased Bcl-xl expression 

(Bartling et a l , 2000) Our studies reveal RPMS-1 inhibition of CBF-1 dependent 

Notch binding reversed the protective effect of high flow RPMS-1 inhibits NotchIC 

activation of CBF-1 through interference with the SKIP CBF-1 repressor complex 

Our findings demonstrate high flow increases BREC BclXL and decreases BREC Bax 

mRNA via a CBF-1 dependent mechanism Recent reports however, demonstrate 

Notch can upregulate Bel-2 via a CBF-1 independent mechanism, though this 

mechanism is unclear at present (MacKenzie et al 2004a) RPMS-1 did not inhibit 

high flow-induced increases in BREC Bcl-2 mRNA Accordingly, high flow- 

induced increases in NotchIC may increase Bcl-2 mRNA via a CBF-1 independent 

mechanism Further investigations are required to confirm these intial findings This 

dual anti-apoptotic mechanism makes the activation of Notch a particularly potent 

inhibitor of the intrinsic apoptotic pathway

This is the first account of EC Notch 1 or Notch3 modulation by mechanical 

forces Furthermore, this is the first account of Notch3 in any EC type Several 

reports suggest Notch3 is specific to mural cells, however there may be many 

reasons we have localised Notch3 to BRECs Firstly, this is the first in vitro account 

of Notch in any vascular EC type exposed to pulsatile flow Exposure of BRECs to 

pulsatile flow enables culture of these cells in supplemental media, even after a 

confluent monolayer has formed These cells maintain a healthy phenotype, and do 

not overgrow, as would be the case in static cell culture, since pulsatile flow 

presumably confers an anti-proliferative effect on the endothelial monolayer at both 

low and high pulsatile flow Secondly, our model enabled co-culture of ECs with 

pericytes, the presense of which can modulate the EC proteome through many 

secretory molecules, most of which are as yet undefined For example, we 

demonstrate Notch3 activation in static BRECs with exogenous SHh addition In our 

co-culture model, BRPs may be a source of Hh Several investigators have 

demonstrated that SHh is tethered to the cell membrane, however reports also
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demonstrate diffusion of Hh through tissues. Our report of Notch activation upon 

exposure to increased pulsatile flow, is in agreement with reports demonstrating 

increased EC Notch ligand (Jagged) and downstream target (Hes-1) in human 

umbilical vein endothelial cells (HUVECs) exposed to increases in shear stress 

(Wasserman et al., 2002). Notch signalling is activated via cell-to-cell contact, such 

that Notch receptors bind ligands on an adjacent cell. Using immunocytochemistry, 

we have demonstrated the Notch ligand Jagged is present in BRECs (Figure 5.2).

Our studies did not evaluate the effect of pulsatile flow on Notch4 expression 

in ECs, though Notch4 is widely expressed in ECs. Recent unpublished observations 

in our laboratory however, suggested Notch4 is not regulated by cyclic strain in 

aortic ECs (Dr. von Offenberg Sweeney -  personal communication). This is an area 

which will require further work to determine the role, if any, of Notch4 in 

modulating retinal EC responses to mechanical forces in vitro.

Using bioinformatics, we examined whether any Notch target gene promoter 

sites are present on the bax, bcl-2 or bcl-xL genes. Nakagawa et al., (2000) have 

determined that the HRT family of Notch target genes preferentially bind to an E 

box motif, CACGTG, but also bind to other E box motifs (CAACTG, CACCTG, 

CACTTG, and CATCTG) to regulate transcription of other genes. Therefore, 

through sequence alignment of cloned bax, bcl-2 and bcl-xL promoters (Grillot et al., 

1997, Igata et al., 1999), we have determined that the Notch family HRT target 

genes can bind to, and therefore possibly directly regulate, both the bax and bcl-xL 

genes (MultiAlin software). The HRT family can bind to the CACGTG or CATCTG 

sequences of bax, and the CACCTG or CACTTG sequences of bcl-xL, however, this 

would have to be further confirmed with mutational analysis. Therefore, it is likely 

that the HRT family of Notch target genes act as effectors of the Notch signalling 

pathway, at least in part, by repressing bax expression and promoting bcl-xL 

expression, which has been confirmed in additional experiments within our 

laboratory.

Similar to BREC modulation of BRP cell fate decisions, BRPs have a 

modulatory effect on BRECs. For example, Hata et al (2001) demonstrate that 

VSMCs protect ECs from NO-induced apoptosis by releasing VEGF. In addition,

268



they demonstrate VSMCs may maintain the levels of anti-apoptotic protein Bel-2 in 

adjacent ECs, demonstrating VSMCs play important roles in the regulation of EC 

survival Furthermore, Gerber et al reported that binding of VEGF to the VEGF 

receptor-2 (VEGFR-2) on ECs, enhanced EC survival through the 

phosphatidyl inositol 3-kinase (PI3K)/Akt signal transduction pathway (Gerber et a l , 

1998) Since growth factor activation of the PI3K/Akt induces the phosphorylation 

of the Bcl-2 family member BAD thereby suppressing apoptosis and promoting cell 

survival, VEGF could directly inactivate the cell-intrinsic death machinery BAD by 

its phosphorylation in ECs Future studies within our laboratory will attempt to 

elucidate the role of VEGF signalling and apoptosis in both ECs and pericytes

The effects of Notch activation on proliferation can be stimulatory or 

inhibitory depending on the cell type, and the mechanisms mediating cell cycle 

inhibition can be cell-type specific (Noseda et al , 2005) Proliferation of endothelial 

cells is inhibited by a constitutively active NotchIC or activation of the Notch 

pathway by Jaggedl (Noseda et al 2004, Liu et al 2003) Notch activation inhibits 

proliferation of endothelial cells in a cell autonomous manner by inhibiting 

phosphorylation of the retinoblastoma protein (Noseda et al 2004b) During 

endothelial cell cycle entry, activated Notch inhibits mitogen induced upregulation 

of p21Cipl and delays phosphorylation of retinoblastoma suppressor protein, Rb, by 

cyclin D-cdk4 complexes Notch-dependent downregulation of p21Cipl inhibits 

nuclear localization of cyclin D and cdk4, and targeted downregulation of p21Cipl 

hinders nuclear translocation of cyclin D-cdk4, reducing S-phase entry in endothelial 

cells Furthermore, recent evidence demonstrates that Notch-mediated cell cycle 

arrest is associated with downregulation of minichromosome maintenance (MCM) 

proteins in ECs and human fibroblasts (Noseda et a l , 2005) MCM proteins form a 

complex with helicase and participate in the formation of prereplicative complexes 

that allow chromatin licensing to ensure that DNA replication initiates at specific 

sites Thus, MCM proteins are essential for DNA replication and cell cycle 

progression Indeed, downregulation of MCM proteins is also observed on activation 

of CBF1 and is mediated by inhibition of Rb phosphorylation (Noseda et a l , 2005)
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Our results however demonstrate no change in BREC proliferation from low to high 

pulsatile flow even though both Notch 1 and Notch3 are increased upon exposure to 

high pulsatile flow BRECs within our 3-D model are fully confluent for several 

days prior to increases in flow rate and thus presumably quiescent at this point (t=0) 

Interestingly, it has previously been reported, when endothelial cells reach 

confluence, the Notch pathway is activated and p21Cipl is downregulated, 

suggesting that Notch activation contributes to contact inhibition of endothelial cells, 

in part through downregulation of p21Cipl (Noseda et al 2004)

Similarly, various studies raise the notion that Notch activation may be 

required for the establishment of a mature, quiescent endothelial phenotype, in part 

by downregulating VEGFR-2 (Liu et al 2003, Taylor et al 2002) Furthermore, the 

prominent vascular defects observed in Notch and Notch ligand-deficient mice 

suggest that inappropriate apoptosis and/or proliferation may play a role in the 

observed phenotypes (Krebs et al 2000, McCnght et al 2001, Xue et al 1999) 

Interestingly, the lack of Notch 1 and (or) Notch4 does not prevent the differentiation 

of mesodermal precursors into endothelial cells in mice (Krebs et al 2000) The 

primary vascular plexus is laid down, but remodelling of this initial endothelial 

network does not take place (Krebs et al 2000) Thus, it is possible that Notch 

activation is required to maintain endothelial viability only in reorganizing or mature 

vasculature Notch may thus affect the non-proliferative state of an endothelial 

monolayer in vivo and also in our 3-D co-culture model

It has previously been shown that SHh indirectly induces angiogenesis by 

upregulating expression of VEGF (Pola et a l , 2001) As described previously, 

VEGF can activate Notch in some cell types, as such, we examined Hh signalling 

components in BRECs exposed to pulsatile flow These results demonstrate high 

pulsatile flow increases BREC IHh, SHh, Ptcl, Smo and the downstream Hh 

transcriptional target -  Gli2

Our static BREC experiments (chapter 5) demonstrate Hh modulation of 

Notch signalling Further evidence of the signalling cascade of Hedgehog -  Notch 

in BRECs was confirmed in this pulsatile flow study Addition of the specific Hh
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inhibitor cydopamine abrogated flow-induced increases in Notch1 mRNA Recent 

studies in our laboratory examined CBF-1-dependent Notch signaling pathway 

activation by luciferase reporter constructs These studies reveal that stimulation of 

BRECs with VEGF transactivates a CBF-1-dependent promoter (Dr Catherine 

Sweeney -  personal communication) While recent reports by Liu et al (2003) 

demonstrate that VEGF upregulates Notch 1 and D114 gene expression via the 

PI3K/AKT pathway in human arterial endothelial cells Further evidence of SHh 

activation of Notch via VEGF are apparent in studies by Kanda et al (2002), in 

which they demonstrate SHh activation of PI3K/AKT in microvascular ECs

This is the first demonstration of pulsatile flow regulation of Hedgehog in 

ECs, and also the first in vitro demonstration of Notch signalling in retinal 

endothelial or pericyte cells Interestingly, Wu et al previously demonstrated 

induction of IHh by cyclic strain and determined IHh functions as an autocrine 

signal to transduce and amplify mechanical stimulation of chondrocyte proliferation 

(Wu et a l , 2001) Similarly, mechanical loading in a repeated manner in a mouse in 

vivo model, triggers the expression of IHh which in turn increases the number of 

replicating mesenchymal cells as well as the amount of the cartilage formed (Ng et 

a l , 2006) Taken together these events increase condylar growth This lends weight 

to the link between Hh and Notch signalling, since notch regulation of cellular 

proliferation is well characterised Using zebrafish as a model system, Lawson et al 

(2001) demonstrated that the SHh signalling pathway has a role in artery formation 

Furthermore, the authors show that SHh is upstream of VEGF, and is necessary for 

Notch 1 expression in arteries (Lawson et a l , 2002)

Bone morphogenetic proteins (BMPs) are another family of secreted proteins 

that regulate cell fate decisions, such as growth and differentiation Interestingly, Wu 

et al also demonstrate that BMPs are a downstream target of IHh, and DPP, the 

equivalent of BMP in Drosophila is induced by hedgehog (2001) Several reports 

also demonstrate a link between BMPs and Notch signalling Thus, Hedgehog- 

VEGF-Notch signalling may be a link in a complex signalling mechanism involving 

several molecules and/or pathways regulating cell fate decisions For example,
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Lawson et al demonstrated that the Notch signalling pathway lies upstream of Eph- 

B4/ephnn-B2 in arterial/venous specification In zebrafish, Notch is expressed solely 

in arteries, and lack of Notch signalling results in the loss of ephnn-B2 expression in 

the arterial tree (Lawson et a l , 2002)

Our results demonstrating Hh modulation by changes in pulsatile flow in 

both ECs and pericytes may also be significant to the pathogenesis of diabetic 

retinopathy There is strong evidence that retinal blood flow is raised in the early 

stages of diabetes even before the onset of diabetic retinopathy and also considerable 

variation in the distribution of blood flow The early stages of retinopathy are 

characterised by an increase in retinal blood flow with a progressive decrease during 

advanced stages of disease The reason for this increase in retinal perfusion is most 

probably coupled to the cellular and intracellular alterations induced by glucose and 

to endothelial dysfunction Vascular endothelial growth factor (VEGF) is universally 

accepted as a primary factor in the regulation of vessel patency in vascular networks 

throughout the body, including the retina There is considerable evidence that the 

VEGF system in disturbed early in diabetes and interacts with other pathways and 

vasoactive factors to stimulate breakdown of the blood retinal barrier (BRB) and 

eventually promote angiogenesis, the hallmark feature of proliferative diabetic 

retinopathy (PDR) Furthermore, intravitreal injections of VEGF in animal studies 

mimic retinal blood flow alterations associated with the pathology Abberant 

regulation of Hedgehog signalling due to altered retinal blood flow may be 

responsible for increased VEGF in DR Work by Pola et al (2001) demonstrated 

SHh stimulates fibroblasts in vitro to produce a combination of potent angiogenic 

factors, including the 3 major isoforms of VEGF, Ang-1, and Ang-2 Therefore, SHh 

seems to act as an indirect angiogenic agent and may trigger neovascularization 

through SHh/Ptcl signalling specifically in mesenchymal cells

The human disorders CADASIL and AGS provide additional evidence of the 

importance of the Notch signalling pathway in the adult vasculature These disorders 

involve dysregulation of components of the Notch signalling pathway, and resulting 

cardiovascular abnormalities CADASIL, which is caused by mutations in Notch3, is 

characterized by degeneration of SMC, primarily in cerebral arteries, but also in
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systemic arteries and some veins CADAS1L patients present with an abnormal 

accumulation of Notch3 in VSMC, impaired Jagged l/Notch3 binding and defective 

CBF-1-dependent Notch3 signalling (Prakash et a l , 2002, Brulin et a l , 2002, Joutel 

et a l , 2004) AGS also highlights the importance of the Notch signalling pathway, 

and in particular Jagged 1, in the development and maintenance of the 

cardiovascular system AGS patients typically present with congenital heart defects, 

heart murmurs and/or peripheral pulmonary stenosis (Joutel and Toumier-Lasserve, 

1998, Loomes et a l , 1999)

CADASIL patients have reduced retinal mean and peak systolic capillary 

flow This agrees with the previously reported reduction of capillary flow on the 

optic nerve head rim measured in CADASIL patients as well as with the irregular 

choroidal filling in retinal fluorescein angiography CADASIL might also be a risk 

factor for nonarteritic anterior ischemic optic neuropathy as recently reported (Rufa 

et a l , 2004a), suggesting pathology of arteries supplying the optic nerve head Each 

of these suggest a strong regulatory role of Notch3 signalling in blood supply to the 

retina in vivo (Harju et a l , 2004)

6 4 Conclusion

High pulsatile flow provides an anti-proliferative and pro-apoptotic stimulus 

to BRPs in co-culture with BRECs This may be due to reduced Hedgehog activation 

of Notch signalling at this flow rate In contrast, BRECs exhibit reduced apoptosis in 

a high flow environment, whereas proliferation is unchanged Hedgehog activates 

Notch signalling at high flow which protects ECs from flow-induced apoptosis by 

downregulating Bax protein & gene expression, and possibly also modulating Bc2 

and Bcl-xl
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Chapter 7

Summary
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The current study describes the use of a novel in vitro transcapillary co­

culture system as a basis for modelling the effects of haemodynamic forces on 

microvascular retinal endothelial and pericyte cells Blood vessels are continually 

exposed to haemodynamic forces generated in the vasculature in the form of fluid 

shear and circumferential stresses Changes in these conditions result in alterations 

in the signal transduction pathways and release of vasoactive substances from 

vascular endothelial and mural cells that are ultimately responsible for regulating 

vascular tone Changes in haemodynamics can result in endothelial dysfunction, a 

process that has been described in macrovascular disease states such as 

atherosclerosis and thrombosis (Drexler and Hornig, 1999) and is also of particular 

interest in the ocular microvasculature in conditions such as diabetic retinopathy 

(DR) (Endemann and Schiffnn, 2004) and normal tension glaucoma (NTG) (Henry 

et al , 1999), where there is growing evidence of endothelial dysfunction as a major 

risk factor

The work described in this thesis can be broadly classified in two parts 

Chapters 3 and 4 describe the acute and chronic effect of pulsatile flow on the 

release of vasoactive substances NO, PGI2 and ET-1, and the resulting effect on EC 

and pericyte cell apoptosis The latter part, described in chapters 5 and 6, 

characterise Notch and Hedgehog signalling in human eyes, in static cell culture, and 

also co-cultures of retinal ECs and pericytes exposed to pulsatile flow Interaction 

between the Notch/Hedgehog pathways and their role in modulating apoptosis was 

also examined The following is a brief overview of the main findings of this 

research project and suggestions for future experiments and potential avenues of 

research For an in-depth analysis, please refer to the discussion sections of chapters 

3 to 6
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The retinal vasculature does not have sympathetic autonomic innervation, 

rather, it maintains optimal nutrition and oxygenation of the retina through vascular 

autoregulation (Jean-Louis et al , 2005) Autoregulation assures sufficient blood 

supply over a wide range of ocular perfusion pressures and regulates blood flow, 

depending on functional activity and the resultant metabolic demands (Garhofer et 

a l , 2005) This autoregulatory capacity is evident with a recently described flicker 

stimulation technique (Garhofer et a l , 2002) Retinal blood flow increases after 

flickering light provocation, indicating the ability of the retina to adapt its blood 

flow to changing energy demands caused by increased neural activity (Garhofer et 

a l , 2005) Similarly, provocation through breathing pure oxygen has also been used 

to demonstrate retinal vascular autoregulation, seen as a vasoconstriction of retinal 

vessels or a decrease in retinal blood flow (Jean-Louis et a l , 2005) As described 

previously, endothelial dysfunction disrupts autoregulation of retinal blood flow 

The term ‘endothelial dysfunction’ indicates a generalised alteration in EC 

phenotype and function characterised by an abnormal vasodilator response, such as 

decreased NO or prostacyclin release, or increased production of vasoconstrictors 

such as ET-1 (Ibrahim et a l , 2005) The mechanism of these EC changes are not 

fully understood, but impaired NO bioactivity is a principal feature of this 

abnormality An impaired retinal blood flow autoregulation in both DR and 

glaucoma patients has been demonstrated with both flicker stimulation and pure 

oxygen breathing experiments (Garhofer et a l , 2002, Riva et a l , 2004, Patel et a l , 

1994, Rassam et a l , 1995, Grunwald et a l , 1984)

As mentioned previously, blood flow alterations are apparent in both DR and 

glaucoma, and may also be a causative factor of impaired retinal blood flow 

autoregulation Therefore, we examined the effect of altered pulsatile flow on the 

principal mediators of retinal vascular autoregulation NO, PGI2 and ET-1 Analysis 

of conditioned media from these experiments revealed the vasodilators NO and PGI2 

were both significantly up-regulated following exposure to high pulsatile flow for 24 

and 72 hours Moreover, the observed increase was associated with increases in 

protein expression and steady-state mRNA levels On the other hand, the potent 

vasoconstrictor ET-1 increased after 24 hour exposure to high flow, however chronic
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exposure for 72 hours resulted in decreased ET-1 peptide and BREC ET-1 mRNA 

levels. This is a possible mechanism that microvessels use to maintain blood flow at 

a constant rate, such that, acute increases in blood flow stimulate ET-1 release, 

returning blood flow to ‘normal’ levels. Chronic increases in blood flow inhibit ET- 

1 release however, as ET-1 is also a potent pericyte mitogen. Malek et al. (1999(b)) 

report a similar bi-phasic ET-1 release with aortic ECs exposed to increases in shear 

stress. In addition, Malek et al demonstrate this bi-phasic response is due to 

reoorganisation of the EC microtubule network, which proved crucial to 

transduction of shear stress into altered ET-1 gene expression.

0.3mls/min -----------------► 25mls/min

Figure 7.1 Schematic summary diagram o f effects o f high compared to low pulsatile flow  on 
BRECs/BRPs co-culture. Exposure to increased flow for 24 hours induces NO, PGI2 &  ET-1 
release. A fter 72 hours, NO &  PG12 increase, whereas ET-1 peptide release decreases. NO &  ET-1 
protect ECs from apoptosis at high flow. Apoptosis o f BRPs increases at high flow due to PGI2 
release from BRECs.
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Our pulsatile flow studies suggest blood flow inhibits ET-1 release, at least 

in part by NO, as we found a significant increase in ET-1 release m the presence of 

the NO inhibitor, L-NAME This may be particularly relevant in NTG NTG patients 

typically have an impaired EC NO response as a result of endothelial dysfunction 

Taken together, these results suggest reduced local levels of NO would increase 

local ET-1 peptide, and possibly explain why these patients have microvascular 

vasospasms At present, it is unclear which is the primary and which is the 

secondary cause of the vasculopathy in NTG reduced blood flow or reduced NO

The crosstalk between NO and ET-1 is a fundamental mechanism governing 

the expression and activity of ET-1 across species (Lavallee et a l , 2001) In addition 

to this interaction, we demonstrated a similar ability of PGI2 to inhibit ET-1 release, 

as indomethacin treatment resulted in increased ET-1 at both low and high flow 

compared to controls Moreover, crosstalk between these vasoactive mediators is 

further complicated by reports that ET-1 induces COX-2 expression in rat ECs and 

also in VSMCs (Chen et a l , 2003), suggesting another autoregulatory mechanism 

Lastly, to elucidate crosstalk of PGI2 and NO production, we investigated the effects 

of the inhibition of NO synthesis on the shear-induced PGI2 production The results 

demonstrated that inhibition of NO synthase with L-NAME enhanced flow-induced 

production of PGI2, indicating that endogenous NO functions as an inhibitor of PGI2 

production in an autocrine or paracrine fashion Similar studies with HUVECs 

exposed to shear stress corroborate these findings (Osanai et a l , 2000)
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Haemodynamic forces generated by the flow of blood are crucial in 

maintaining homeostasis within the blood vessel wall Abnormal blood flow 

however alters the mechanical forces in the vessel wall and can lead to vascular 

remodelling, a process which underlies the pathogenesis of cardiovascular diseases 

such as atherosclerosis and restenosis (Schwartz et al , 1995, Libby, 2003), and the 

microvascular complications DR and glaucoma In DR for example, hyperglycaemia 

induces EC metabolic changes, increased retinal blood flow, basement membrane 

thickening, pericyte dropout, and leaky vessels which are prone to rupture (Cai and 

Boulton, 2002, Frank, 2004, Hammes et a l , 2002) During the later proliferative 

phase of DR, blood flow typically decreases and new vessels proliferate

In glaucoma, vessels typically regress, possibly due to loss of neurons, or 

possibly as a result of blood flow perturbations We hypothesize that fluctuations in 

mechanical forces within the vessel wall due to altered blood flow m DR and NTG 

will result in altered local vasoactive metabolites and possibly regulate EC and 

pericyte apoptosis As such, we examined the role of NO, PGI2 and ET-1 on 

EC/pericyte cell apoptosis in co-culture In control cells, increased pulsatile flow 

resulted in reduced EC apoptosis, whereas pericyte apoptosis increased Using 

specific inhibitors of each vasoactive pathway, we have shown that the protective 

effect of increased flow on ECs was mediated by NO and ET-1 L-NAME inhibited 

the flow-induced increase in NO release into circulating media perfusate and also 

increased BREC apoptosis To our initial surprise, inhibition of ET-1 also abrogated 

the flow-induced anti-apoptotic BREC response These findings were intriguing, as 

high flow inhibited ET-1 release in control experiments The protective effect of ET- 

1 at high flow may be attributable to increased expression of the EC ET-1 receptor -  

ETB Interestingly, activation of ETB receptor on ECs typically results in increased 

NO Henry et al have reported an impaired EC ETB receptor mediated peripheral 

vasodilatation in NTG patients in vivo using a selective ETA antagonist (Henry et al 

-  IOVS -  in press, 2005) In the presence of ETA receptor antagonism, endogenous 

ET-1 interacts solely with the ETB receptor subtype, which is expressed by both 

endothelial and mural cells This produces vasodilatation resulting from reduced 

ETA-receptor-mediated vasoconstriction and/or unopposed ETB-receptor-mediated
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release of NO from the endothelium Therefore, it is probable that the protective 

effect of high flow on EC apoptosis may be largely due to NO release This would 

explain why endothelial dysfunction is predominantly characterised by reduced EC 

secretion of NO, particularly in response to flow Furthermore, the disadvantage of 

two pro-apoptotic stimuli on ECs in NTG is apparent -  NTG is associated with 

reduced blood flow velocities and also reduced bioavailability of NO

In contrast to the protective effect of increased flow on EC apoptosis, BRP 

apoptosis increased at high flow rates These results are consistent with reports from 

our laboratory of VSMCs exposed to pulsatile flow in the same pulsatile flow 

apparatus (Birney et a l , 2004) Our studies demonstrated a cyclooxygenase product, 

possibly PGI2, was primarily responsible for this increase in BRP apoptosis, as 

indomethacin treatment reversed the flow-induced BRP apoptosis Several other 

laboratories have also reported a similar effect on VSMC apoptosis (Bishop-Bailey 

and Warner, 2003, Upmacis et a l , 2004, Pi lane and LaBelle, 2004) Furthermore, we 

have shown exogenous addition of iloprost, a prostacyclin analogue, rescued BRECs 

but not BRPs from serum-starvation induced apoptosis We also observed a partial 

inhibition of BRP apoptosis at high flow with inhibition of ET-1 binding Similar to 

the protective effect of ET-1 on ECs at high flow, the increase in BRP apoptosis due 

to ET-1, though less peptide is circulating in media perfusate at high flow may be 

due to increased BRP ETB receptor expression Moreover, studies by Cattaruzza et 

al (2000) have previously demonstrated that increased VSMC apoptosis due to 

cyclic stretch is mediated by increased VSMC ETB receptor expression Future 

studies with specific ETA or ETB receptor inhibitors are required to elucidate the 

signalling mechanism involved
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The second half of this thesis describes the role of Notch and Hedgehog 

signalling in retinal ECs and pericytes The principal findings of this aspect of the 

study relate to the cellular mechanisms by which these two signalling pathways 

interact, and alter cell fate Unlike the vasoactive mediators NO, PGI2 and ET-1, 

Notch/Hedgehog are relatively recently described in vascular cell types Moreover, 

data of Notch/Hedgehog in microvascular cell types is limited and regulation of 

Notch/Hedgehog by mechanical forces has not yet been described in retinal vascular 

cells in vitro As such, our initial experiments sought to simply determine the 

presence or absence of Notch/Hedgehog signalling components in BRECs and 

BRPs, before proceeding to pulsatile flow experiments

This study comprehensively documents the presence of many components of 

Notch/Hedgehog signalling in both BRECs and BRPs, most of which had not yet 

been described in these cell types The Hedgehog signalling family was first 

identified in Drosophila, and was so named as haploinsufficiencies of this family of 

genes produces a phenotype resembling a hedgehog (Nusslein-Volhard and 

Wieschaus, 1980) The Hedgehog signalling pathway shows a high degree of 

evolutionary conservation from Drosophila to humans Similarly, the Notch 

signalling pathway is a highly conserved method of cell-cell communication that 

also controls cell fate decisions in many cell types, a function that is also conserved 

from Drosophila to humans (Miele and Osborne, 1999) As such, we postulated that 

Notch and Hedgehog signalling might also regulate cell fate decisions in BRECs and 

BRPs

This study has clearly shown that exogenous addition of recombinant Sonic 

Hedgehog exerts an anti-apoptotic effect in serum-starved BRECs and BRPs In an 

attempt to elucidate the mechanism through which the Sonic Hedgehog signalling 

pathway exerts its anti-apoptotic effect, we examined a number of known regulators 

of apoptosis from the Bel-2 family of proteins This study provides previously 

unreported evidence that the Hedgehog signalling pathway regulates mRNA levels 

of the pro-apoptotic bax, and anti-apoptotic bcl-2 and bcl-xL in BRECs and BRPs 

Furthermore, exogenous addition of Sonic Hedgehog increased BREC Notchl and 

Notch3, and BRP Notchl mRNA levels, suggesting SHh may mediate its anti-
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apoptotic effect through regulation of Notch These results corroborate other studies 

from our laboratory, which document the anti-apoptotic effect of Hedgehog 

activation in VSMC, via increases in NotchIC (Morrow et al -  in press) 

Additionally, Notch has recently been shown to prevent apoptosis in both ECs 

(MacKenzie et a l , 2004b) and VSMCs (Wang et al , 2002c) Furthermore, in human 

diabetic retinas, pericyte cell apoptosis is an early pathological feature Increases in 

pro-apoptotic bax are known to occur in pericytes of DR patients (Podesta et a l ,

2000) Therefore, demonstration of SHh reducing bax mRNA, possibly via Notch in 

BRPs, suggests a potential role of Notch/Hh signalling in DR

These results are particularly interesting with respect to pulsatile flow 

regulation of BREC/BRP apoptosis As described previously, BRP apoptosis 

increased under high pulsatile flow conditions, concomitant with decreased 

Notch 1IC and Notch3IC protein, and decreased NotchI and Notch3 mRNA levels 

At present, we can only speculate that reduced NotchIC in BRPs exposed to high 

flow triggers increased BRP apoptosis However, studies of VSMCs exposed to 

cyclic strain in our laboratory substantiate this hypothesis Sweeney et al (2004) 

recently demonstrated that overexpression of NotchIC reversed cyclic strain-induced 

VSMC apoptosis Furthermore, we demonstrate that increased BRP apoptosis is 

mediated by increased bax and decreased bcl-2 mRNA levels, whereas Sweeney et 

al (2004) similarly demonstrated that Notch modulates VSMC apoptosis via bax 

and bcl-2
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Figure 7.2 Schematic diagram of effects of pulsatile flow on BRPs Hedgehog/Notch Signalling in 
co-culture with BRECs. Exposure to increased flow for 72 hours decreased SHh, Ihh, GH2, 
NotchllC and Notch3IC. Apoptosis of BRPs increased at high compared to low flow, via decreased 
BC1: & BclXL, and increased Bax.

Our static experiments demonstrate that Sonic Hedgehog activates Notch 

signalling in BRPs, therefore we also examined the regulation of Hh signalling 

components in BRPs exposed to pulsatile flow. The flow-induced regulation of BRP 

IHh and SHh mirrored pulsatile-flow regulation of Notch, leading us to postulate 

that Hh modulates Notch in BRPs. SHh can activate GSK-3p, a serine/threonine 

kinase which has been implicated in the regulation of several metabolic enzymes and 

transcription factors in response to extracellular signals. Indeed, GSK3-P is known 

to modulate Notch signaling through phosphorylation of NotchIC, such that 

inhibition of GSK3-(3 shortened the half-life of NotchllC. Early studies of GSK-3P 

in mammalian systems focused on its pivotal role in glycogen metabolism and 

insulin-mediated signalling, suggesting a pivotal role of Notch/Hedgehog in DR. At 

present, both SHh and IHh are thought to activate the same signalling pathway via 

binding to the Ptc receptor, thus causing de-repression of the Ptc-Smo membrane 

complex. It is unclear if these two Hh peptides display the same binding affinity for 

the Ptc receptor however, and more than one Ptc receptor has now been described 

(Nieuwenhuis and Hui, 2005). Therefore, the significance of increased Ihh and SHh 

is unclear at present.
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High flow reduces BREC apoptosis, concomitant with increased NotchllC 

and Notch3IC protein, and increased Notchl and Notch3 mRNA. Our findings 

demonstrate that inhibition of endogenous NotchIC CBF-1 dependent signalling 

reversed the protective effects of increased flow. Moreover, we also demonstrate 

that SHh and IHh protein and mRNA increased at high flow. Therefore, in 

conjunction with our static results, these results led us to hypothesize that Hh 

activation at high flow in BRECs is protecting against apoptosis via increased 

NotchIC. Indeed, Hh inhibition with cyclopamine abrogated flow-induced increases 

in Notch mRNA. Furthermore, either Hh inhibition, or Notch inhibition, each 

attenuated the flow-induced decrease in BREC apoptosis bax mRNA levels. Lastly, 

inhibition of Notch did not alter any Hh signalling components, suggesting Notch is 

downstream of Hh in a signalling cascade of Hh -  Notch -  Bcl-2 genes.

0.3mls/min  *• 25mls/min

Figure 7.3 Schematic diagram of effects of pulsatile flow on BRECs Hedgehog/Notch Signalling.
Exposure to increased flow for 72 hours increased SHh, Ihh, Gli2, NotchllC and Notch31C. 
Apoptosis of BRECs decreased at high compared to low flow via increased BCl2 & Bclxl and 
decreased Bax. Inhibition of Hh with cyclopamine, or inhibition of NotchIC CBF-l dependent gene 
transactivation, reverses the protective effect of high flow.
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To date, there is no documentation of Notch3 in ECs in any vascular EC 

type, while most authors describe Notch3 as ‘VSMC-specific’ (Nijjar et a l , 2001, 

Lindner et a l , 2001, Wang et a l , 2002b) Our results reveal this is not the case, with 

immunocytochemistry, Western blotting and realtime PCR each confirming the 

presence of Notch3 in BRECs Further evidence of EC Notch3 signalling is 

suggested in CADAS1L patients -  a disease caused by mutations in the Notch3 gene 

Haritoglou et al (2004 (a)) analysed the ocular vasculature of CADASIL patients 

and found ECs were detached with intracytoplasmatic vacuoles and mitochondrial 

changes In addition, findings in muscle and skin biopsies of CADASIL patients 

have suggested arterial ECs are also affected ECs appear to shrink, detach from the 

basal lamina and the tight and gap junctions are also disrupted (Prakash et a l , 2002) 

Furthermore, results from co-workers with bovine aortic ECs, demonstrate the 

presence of Notch3IC and cyclic strain mediated increase in Notch3IC in vitro (Dr 

Von Offenberg Sweeney - personal communication) At present however, the 

distinctive functionality of the four Notch receptors in either ECs or pericytes 

remains to be elucidated

These results may be of particular relevance to the angiogenic process, which 

is principally regulated by VEGF Angiogenesis in the retina is a critical process in 

vascular development as well as in recovery from injury It may also have 

pathological, sight-threatening consequences when it produces neovascularization of 

the vitreous (e g , ROP, diabetes, retinal vein occlusion) or subretinal space (e g , 

age-related macular degeneration, ocular histoplasmosis) (Garner and Kissun, 1980, 

Garner, 1986) Elucidating the molecular mediators of angiogenesis is therefore of 

great clinical importance

VEGF has been linked to increased angiogenesis, proliferation, and 

migration of both EC and SMC Brown et a l , (2000) demonstrated that cyclic strain- 

induced angiogenesis was associated with increases in VEGF (Brown and Hudlicka, 

2003) The logical progression of this project would examine the interaction between 

Hh, VEGF and Notch, as Hh is reportedly upstream, and Notch downstream of 

VEGF in a signalling cascade in some cell types Indeed, recent studies in our
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laboratory demonstrated that VEGF is the intermediate signalling molecule which 

enables SHh to activate VSMC Notch in vitro (D Morrow -  personal 

communication) In addition, VEGF induces transactivation of the Notch promoter 

in static BREC cultures (Dr C Sweeney -  personal communication)

The VEGF family compnses six known ligand and three known receptor 

sub-types The ligands include VEGF, placenta growth factor, and VEGFB, VEGFE, 

whilst the VEGF-receptor (VEGFR) sub-family includes VEGFR1 (Fit-1), VEGFR2 

(KDR/Flk-l) and VEGFR3 (Flt-4) (Zachary, 2005) The most prominent ligand of 

the VEGF family is VEGF itself (VEGF-A), which binds to VEGFR 1 and VEGFR2 

(Veikkola and Alitalo, 1999) VEGFR 1 is the predominant receptor subtype on 

retinal pericytes (Takagi et a l , 1996b) and VSMCs in vitro (Parenti et a l , 2002) In 

vivo studies of adult human and monkey tissues also demonstrate that VEGFR 1 is 

the predominant pericyte receptor subtype (Witmer et a l , 2002) The majority of in 

vitro studies on VEGFR 1 signalling in ECs have found weak or no signalling, 

however Kanno et al (2000) demonstrated VEGF mediated induction of migration 

was via VEGFR 1 signalling (Kanno et a l , 2000) Furthermore, recent in vivo studies 

have demonstrated that VEGFR1 inhibition is capable of inhibiting tumour and 

retinal angiogenesis (Luttun et a l , 2002)

Several groups have shown VEGF is an intermediate molecule in a signalling 

cascade of Hedgehog -  VEGF -  Notch (Lawson et a l , 2002, Liu et a l , 2003b) 

Currently it is unclear if VEGF activates Notch via VEGFR 1 or VEGFR2, or 

independently of these receptors It is also possible that VEGF regulates enzymes 

responsible for Notch cleavage e g presenilin or y-secretase VEGF upregulates 

both Notch 1 and Delta-like 4 in arterial ECs (Lawson et a l , 2002, Liu et a l , 2003b) 

ECs undergo apoptosis when they are deprived of VEGF or are exposed to VEGF 

receptor antagonists (Sakao et al , 2005) Consistent with our findings of SHh 

inhibiting EC apoptosis by upregulating Bcl-2 and downregulating Bax, VEGF also 

prevents EC apoptosis via activation of bcl-2 family genes (Liu et a l , 2000) 

Furthermore, utilising the same pulsatile flow apparatus, Sakao et al (2005) recently 

demonstrated that high flow is an anti-apoptotic stimulus for ECs, however, 

inhibition of VEGFR 1 and VEGFR2 increased apoptosis at high flow These
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findings mirror our RPMS-1 results Thus, it is tempting to surmise that VEGF, 

acting on VEGFR1 or VEGFR2 on ECs mediates increased intracellular BREC 

NotchIC In addition, gene knockout studies in mice with dispruted VEGFR1 

expression die embryonically due to vascular defects with features highly 

reminiscent of Notch signalling pathway disruption (Xue et a l , 1999, Smith et a l , 

2000)

The phenotypic consequences of Notch 1 signalling vary widely depending 

on cell type and cellular context For example, Notch 1 signalling results in growth 

inhibition and apoptosis induction of human hepatoma cells (Qi et a l , 2003), 

whereas in lymphoma or myeloma cells activated Notch 1 induces proliferation and 

inhibits apoptosis (Jundt et a l , 2002, Jundt et a l , 2004) Notch 1 is also anti­

proliferative in SiHa and Caski cells (Jesudasan et a l , 1995) and increased Notch 1 

signalling triggers cell cycle withdrawal and differentiation in primary mouse 

keratinocytes (Rangarajan et a l , 2001) Furthermore, the induction of gene 

expression by Notch activation is likely to involve cross-talk with other pathways 

implicated in growth/differentiation Our results suggest Notch signalling may 

activate different proliferation pathways in BRECs and BRPs Several investigators 

have demonstrated that Notch signalling in ECs has a potent anti-proliferative effect 

At high flow, BREC proliferation was unchanged compared to low flow, 

concomitant with increased Notch These results suggest sufficient NotchIC is 

present at both low and high pulsatile flow to maintain a quiescent monolayer Sakao 

et al (2005) demonstrated that ECs become hyperproliferative in the presence of 

VEGFR inhibitor, again suggesting a potential signalling between VEGFR and 

Notch and also EC proliferative control

During development, VEGF acts on EC VEGFR2 to induce EC proliferation 

(Samson et a l , 2005) In the quiescent vasculature of the adult however, it is 

estimated that only 0 01% of cells are actively proliferating (Samson et a l , 2005) 

Quiescent endothelial cells are normally anchored by their abluminal surface to a 

collagen-rich matrix via Notch-(3lintegrin binding (Leong et a l , 2002) Our 

pronectm-coated culture capillaries may facilitate EC anchorage in such a manner
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Pronectin is a synthetic protein polymer which incorporates multiple copies of the 

RGD cell attachment ligand of human fibronectin Recent results demonstrate that 

Notch prevents EC proliferation via increased plintegnn mediated adhesion, via 

downregulation of p21 Cipl (reducing S-phase entry), and also by downregulating 

EC VEGFR2 (Samson et a l , 2005, Taylor et a l , 2002) Henderson et al have shown 

that EC over-expression of HRT-1, a transcriptional target of Notch, downregulates 

VEGFR2 mRNA expression levels, and inhibits VEGF-meditated cell fate decisions 

in vitro (Henderson et al , 2001) Similarly, zebrafish notch5 has been shown to 

repress VEGFR3 expression in venous EC in vivo (Lawson et a l , 2001) These 

results demonstrate that Notch plays a critical role in controlling EC proliferation 

and may also stabilise the vasculature by inhibiting vascular permeability (Taylor et 

a l , 2002)

During angiogenesis, elongation of the new sprout depends on the proliferation 

of ECs It has been suggested that Notch activation is absent in vessels at the early 

stages of angiogenesis when ECs are proliferating and reactivated when ECs stop 

proliferating facilitating vessel stabilisation A recent publication by Claxton et al

(2004), demonstrates an important regulatory role of Delta-like 4 (D114), a Notch 

ligand, in retinal angiogenesis DI14 mRNA is strongly expressed in ECs at the very 

tips of growing vessels, however these ECs had no apparent Notch staining The 

authors demonstrated that astrocytes at the leading edge of the growing vessels were 

positive for Notch and thus the likely target of EC D114 Studies using an m vitro 

endothelial-sprouting assay, demonstrated that expression of constitutively-active 

Notch4 in human dermal microvascular endothelial cells inhibited endothelial 

sprouting (MacKenzie et a l , 2004a) Moreover, Notch4 inhibited VEGF-induced 

angiogenesis in the chick chorioallantoic membrane in vivo and inhibited EC 

proliferation and migration through collagen but not fibrinogen (MacKenzie et a l , 

2004a) Furthermore, activation of pl-integrins is sufficient to inhibit VEGF- 

mduced endothelial sprouting in vitro and angiogenesis in vivo suggesting that 

constitutive Notch4 activation in ECs inhibits angiogenesis, in part, by promoting 

(31-integrin-mediated adhesion to the underlying matrix (Leong et a l , 2002)
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In contrast, studies demonstrated that Notch 1-expressing endothelial cell 

cultures formed cord-like structures on Matrigel in contrast to cells expressing a 

dominant-negative form of Notch 1, emphasizing the relevance of the Notch 1 

pathway in vessel assembly (Soares et a l , 2004) In EC that sprout from the surface 

of beads embedded in fibrin gels following stimulation with fibroblast-derived 

factors, Notch 1, Notch4, and D114, as well as the downstream Notch effectors are 

robustly expressed (Nakatsu et a l , 2003) reinforcing the pivotal role Notch plays in 

guiding EC during angiogenic sprouting Similar studies have shown that 

constitutive activation of Notch signalling stabilizes network formation of ECs on 

Matrigel and enhances formation of vessel-like structures in a three-dimensional 

angiogenesis model, whereas blocking Notch signalling can partially inhibit network 

formation (Liu et a l , 2003b) Thus, results are inconclusive regarding the exact role 

of Notch signalling in vessel formation and stabilisation, and require further work to 

determine which transcription factors are activated by each NotchIC, in response to 

specific stimuli

NotchIC decreased in BRPs exposed to high pulsatile flow, concomitant with 

decreased proliferation, suggesting BRP NotchIC induces a pro-proliferative 

response Recent reports from our laboratory demonstrate that overexpression of 

either Notch 1IC or Notch3IC resulted in enhanced VSMC growth, and inhibition of 

VSMC apoptosis and transmigration (Sweeney et a l , 2004) Interestingly, pericytes 

at the tip of growing vessels in the retinal vasculature also express Notch3 (Claxton 

and Fruttiger, 2004), suggesting Notch3 may induce pericyte proliferation required 

during new vessel formation Previous studies have reported that Notch3 receptor 

signalling in VSMCs can promote proliferation by inhibiting the expression of 

p27KIPl, a critical cell cycle inhibitor, and can promote survival through induction 

of c-FLIP, a well-established anti-apoptotic mediator (Campos et a l , 2002) In 

addition, Notch3 receptor expression is increased in neointimal formation in the rat 

balloon injury model, implying a role of Notch3 in VSMC proliferation (Campos et 

a l , 2002, Wang et a l , 2002b) Future studies are required to elucidate the 

proliferative signalling pathway in BRPs exposed to flow.
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Exposure of BREC/BRP co-cultures to pulsatile flow led us to postulate why 

BREC increase NotchIC in response to increases in flow, yet NotchIC in BRPs 

decreases One possible reason for the differential response to flow could be due to 

EC growth in monolayers, whereas BRP do not form a monolayer EC monolayer 

growth would permit Jagged ligand binding to Notch receptors on adjacent cells, 

however this would not occur in BRPs Interestingly, anti sense oligonucleotides 

directed against Jaggedl enhance FGF-2-induced endothelial tube formation in a 

collagen gel assay (Zimrin et a l , 1996), suggesting Jagged-Notch binding is 

responsible for inhibiting EC proliferation Future studies should address whether 

increased BREC NotchIC at high flow is due to increased Jagged expression 

Additionally, analysis of Delta ligand expression may potentially explain NotchIC 

increases at high flow in ECs only, as Delta ligand expression is EC-specific

Retinal angiogensis is largely regulated by hypoxic stimuli, which 

presumably destabilise a ‘normal’ quiescent vessel The principle hypoxia mediators 

are hypoxia-inducible factors (HIF-1), which bind hypoxia response elements 

(HREs) in promoter sequences In normoxia and hyperoxia, hydroxylation of HIF-1 

residues enables its capture by a ubiquitin ligase complex which directs it to the 

proteasome for destruction Under hypoxic conditions, HIF-1 a  is not hydroxylated, 

escapes ubiquitination, accumulates, and directs pro-angiogenic gene expression 

(Guttendge, 2000) The promoter regions of several genes known to regulate 

angiogenesis have HRE sites, such as VEGF and VEGFR1 VEGFR2, which does 

not have any HRE sites, is also upregulated by angiogensis, presumably directly by 

VEGF In DR, VEGFA acting as an EC survival factor may be increased in 

preclimcal DR as a mechanism to maintain the integrity of the vascular bed 

Intracellular ‘pseudohypoxia’, due to increased glucose and advanced glycation 

endproducts (AGEs) increases VEGF expression in vitro (Lu et a l , 1998) In the 

later stages of the pathology, high VEGFA production in ischaemic areas where 

VEGFR2 is upregulated, then leads to well-known signs of DR, i e vascular leakage 

and neovasculansation
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Whilst this study has provided evidence of the expression and activity of the 

Notch and Hedgehog signalling in BRECs/BRPs, and has contributed to the 

understanding of the regulation of BRECs/BRPs apoptosis, it also poses a 

considerable number of questions Specifically, the role of VEGF, hypoxia and 

glucose on Notch/Hedgehog signalling in EC/pencyte co-cultures remain unclear 

Analysis of VEGF receptor levels in each cell type may provide some clues to
i

angiogenic mechanisms in a flow environment Several complications arise 

however Hedgehog activates VEGF in several cell types, yet Hedgehog and VEGF 

may not solely signal in a cell-autonomous manner, as such, co-culture experiments 

may involve BRECs/BRPs ‘cross-talk’ via VEGF and/or Hedgehog Moreover, 

VEGF can also signal independent of VEGFR1 and VEGFR2 In addition, Nagase et 

al demonstrate that SHh is responsible for angiogenesis in the neural tube via Angll 

and independently of VEGF (Nagase et a l , 2005) Indeed, preliminary results in our 

laboratory demonstrate Angll can transactivate BREC Notch gene expression (Dr 

C Sweeney -  personal communication) Therefore, the potential of SHh induction 

of Notch, independent of VEGF, needs to be examined

Evidence now suggests that retinal endothelial and pericyte cells also interact 

with another cell type during new vessel formation Primordial vessels are preceded 

by a plexus of glial cells, namely astrocytes Sinor et al (1998) demonstrated 

hypoxia upregulates VEGF expression and release in astrocytes (Sinor et al , 1998), 

however the role of astrocytes in modulating the angiogenic sprout has not yet been 

defined BREC, BRPs, and astrocyte exposed to pulsatile flow in a commercially 

available tn-culture CELLMAX™ flow system, may provide some clues to 

interactions between these cells and how the angiogenic vessels form

Another potential area of research might examine utilisation of novel sources 

of ECs m new vessel formation, such as recruitment of circulating stem cells or 

redeployment of mural cells from regressing vessels Indeed Claxton et al 

demonstrated two distinct populations of ECs were present in the developing 

vasculature, only half of which were D114 positive (Claxton and Fruttiger, 2004) 

Recent studies by Lee et al (2005) found circulating endothelial precursor cells 

were elevated in non-proliferative & proliferative Diabetic Retinopathy groups
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compared to controls Similarly vasculogenesis-related progenitor cells are increased 

in coronary heart diseases (Shintam et a l , 2001) Additionally, circulating stem cells 

systematically administered to adult mice participate m experimental retinal 

neovascularisation (Grant et a l , 2002, Grant et a l , 2003) Taken together, these 

results suggest ischaemia may somehow mobilise a systemic factor to signal to bone 

marrow cells for recruitment of progenitor cells

Other angiogenic pathways currently generating a lot of interest, are those 

involving Id (inhibitor of differentiation/DNA synthesis) proteins They are 

members of the basic HLH family of transcription factors, however they lack a DNA 

binding domain (Kadesch, 1993) By binding to basic HLH transcription factors, Id 

proteins regulate gene expression and regulate cell growth and differentiation in 

embryonic and adult tissues (Ouyang et a l , 2002, Kreider et a l , 1992) Notch target 

genes are basic HLH transcription factors and thus are potentially modulated by Id 

proteins Elevated Id-1 expression either at transcriptional or translational levels has 

been reported in over 20 types of human cancer including prostate, breast, cervical, 

colon, liver cancers (Lee et a l , 2005, Ling et a l , 2003) Furthermore, ectopic 

expression of Id-1 is able to promote cancer cell proliferation and inhibit apoptosis 

Recent reports demonstrated upregulation of Id-2 expression in response to hypoxia, 

with two functional HIF-1 binding sites identified in the Id-2 promoter region 

(Lofstedt et a l , 2004) Furthermore, using microarray technology, our laboratory 

demonstrated that retinal SMCs increase Id-2 in response to hypoxia (Dr R Kane -  

personal communication) and Lyden et al (1999) indicated that normal Id expression 

in ECs is required to support tumour angiogenesis Id knockout animals lacked the 

ability to branch and sprout new tumour vessels (Lyden et a l , 1999) Notch 

signalling in osteoblast cells signal bone-morphogenetic proteins (BMPs) - known 

activators of Id-1 promoter activity (Nobta et a l , 2005) As such, these studies 

demonstrate a potential interaction between the Notch and Id signalling pathways
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A new family of regulators of angiogensis has recently been identified 

Sprouty Sprouty inhibits signalling mediated by the FGF receptor and the epidermal 

growth factor (EGF) receptor in Drosophila (Casci et a l , 1999, Kramer et a l , 1999, 

Reich et a l , 1999) and four mammalian genes (Sprouty 1-4) have been identified 

(Tefft et a l , 1999) The precise molecular mechanism by which the FGF receptor 

signal is blocked remains controversial however Recently Kwabi-Addo et al have 

established that decreased Sprouty 1 expression may play a role in prostate cancer 

Sprouty 1 protein is downregulated in approximately 40% of prostate cancers 

(Kwabi-Addo et a l , 2004) Direct evidence for a role for Sprouty in angiogenesis 

comes from a study in which the mouse Sprouty4 was overexpressed in the 

developing endothelium of a mouse embryo (Lee et a l , 2001) It was found that 

embryos expressing Sprouty4 had decreased sprouting of smaller vessels from the 

larger ones In addition, when HUVECs were transfected in vitro with Sprouty4, 

there was a decrease in cell migration and cell cycle arrest at the Gl/S phase with no 

apoptosis (Lee et a l , 2001) Sprouty has also been shown to interact with Frizzled 

(Strutt and Strutt, 2003), a receptor of the Wnt family of molecules Furthermore, 

Frizzled has recently been shown to inhibit Notch signalling (Strutt, 2002), 

suggesting Sprouty and Notch pathways communicate Additionally, suggestions of 

Hedgehog -  Sprouty interactions were demonstrated by co-localisation studies 

(Warburton et a l , 2001)

Though the work in this thesis examined two seemingly disparate cell 

signalling mechanisms -  Vasoactive regulation by flow and Notch/Hedgehog 

signalling -  it is unlikely these pathways signal independently of one another in 

either BRECs or BRPs For example, recent evidence demonstrated that NO induces 

Notch 1 expression in mouse cholangiocytes concomitant with decreased apoptosis 

(Ishimura et al , 2005) In addition, VEGF, which is intrinsically linked to Notch 

signalling, stimulates release of NO and prostacyclin In ECs, NO has been shown to 

signal the actions of VEGF in increasing cell proliferation, migration, and 

permeability (Leibovich et a l , 1994, Papapetropoulos et a l , 1997, Ziche et a l , 

1997), suggesting a role in vascular growth and remodelling Interestingly, VEGF
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activates EC via VEGFR2 on the cell surface, however VEGFR2 is also a key 

mechanotransducer that activates eNOS in response to blood flow (Jin et al , 2003) 

Additionally, both NO and VEGF increase EC GLUT1 (Sone et a l , 2000), a 

membrane-bound glucose transporter, thus increasing glucose uptake and possibly 

EC damage in DR Furthermore, studies by Lakshminarayanan et al indicate that 

VEGF elevates hydraulic conductivity in BRECs through signalling mechanisms 

involving NO (Lakshminarayanan et a l , 2000a)

There is also a distinct relationship between VEGF and the prostaglandin- 

cyclooxygenase system Recent evidence suggests cyclooxygenase-2 modulates 

angiogenesis by interacting with the VEGF system (He et a l , 1999, Gliki et a l ,

2001) Furthermore, Lipocalin-type prostaglandin D synthase (L-PGDS), a gene 

involved in the prostanoid biosynthesis, is a target of Notch signalling in rat 

leptomemngeal cells (Fujimori et al , 2003), though involvement of VEGF in this 

process is not yet clear Moreover, prostaglandin-D2 synthase is present in the 

vitreous humor of DR patients (Yamane et al , 2003) Lastly, the stimulatory 

interaction between VEGF and ET-1 on each other’s gene expression in vascular 

endothelial cells and smooth muscle cells has also been demonstrated (Matsuura et 

al , 1998) Co-culture of BAECs and VSMCs resulted in enhanced gene expression 

in these cells of ET-1 and VEGF, respectively This interaction may play an 

important role in cardiovascular disorders characterised by disruption of vascular 

cell proliferation, as both ET-1 and VEGF are potent mitogens

In conclusion, advancing our understanding of retinal blood flow 

autoregulation via changes in micro vascular endothelial cell function and the 

subsequent interaction with the retinal pericyte will be of crucial importance to the 

understanding and origin of events within the eye that lead to ocular diseases such as 

glaucoma and retinopathies Moreover, better understanding of the molecular and 

functional changes occurring in response to alterations in Notch and Hedgehog 

signalling in response to flow may lead to strategies and potential targets to 

modulate blood flow in disease
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