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Abstract

This thesis discusses how to incorporate linguistic knowledge into an SMT system. Although one

important category of linguistic knowledge is that obtained by a constituent / dependency parser,

a POS / super tagger, and a morphological analyser, linguistic knowledge here includes larger

domains than this: Multi-Word Expressions, Out-Of-Vocabulary words, paraphrases, lexical se-

mantics (or non-literal translations), named-entities, coreferences, and transliterations. The first

discussion is about word alignment where we propose a MWE-sensitive word aligner. The second

discussion is about the smoothing methods for a language model and a translation model where

we propose a hierarchical Pitman-Yor process-based smoothing method. The common grounds for

these discussion are the examination of three exceptional cases from real-world data: the presence

of noise, the availability of prior knowledge, and the problem of underfitting. Notable charac-

teristics of this design are the careful usage of (Bayesian) priors in order that it can capture both

frequent and linguistically important phenomena. This canbe considered to provide one example

to solve the problems of statistical models which often aim to learn from frequent examples only,

and often overlook less frequent but linguistically important phenomena.
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Chapter 1

Introduction

Machine Translation (MT) is the study of automatic translation that incorporates knowledge of

both linguistics and statistics. As in other areas of Artificial Intelligence,1 the influx of statistical

approaches in the 1990’s had a dramatic effect on MT, so much so that to this day, the main models

are statistical. The study of such statistical methods applied to MT is known as Statistical Machine

Translation (SMT). A deeper examination of applying Machine Learning methods may lead to

further improvements in the quality of MT output. The research presented in this thesis attempts

this application, and we examine one particular moduleword alignmentand one particular method

smoothingwhich applies to both the language model and the translationmodel.

Despite being rarely discussed in the MT community, the effort required goes beyond the most

complex state-of-the-art Machine Learning algorithms. MTrequires the conversion of a sequence

of words in the source language into another sequence of words in the target language where 1) the

length of the source-language sequence and that of the target-language sequence may be different,2

and 2) the correspondences between elements in the source-language sequence and those in the

1Computer Vision is one such area where statistical approaches are most intensively used (Forsyth and Ponce,
2003); conversely, Computer Vision contributed to the progress of Machine Learning.

2Structured prediction algorithms handle input and output whose lengths are the same and whose correspondences
are already assigned from the beginning. For example in a DNAsequence in biology, the input sequence and output
sequence, which constitutes either A (Adenine), T (Thymine), G (Guanine), and C (Cytosine), are the same length and
their correspondences match with their index.
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EN on thisparticular building
FR dans ce bâtiment
EN the health and safety legislation that itactually passes
FR la reglementation en matière de santè et de securite qu’ il vote.
EN why are thereno fire instructions ?
FR comment se fait-il qu’ il n’ y ait pas de consignes en cas d’ incendie?
EN there are two finnish channels and one portugueseone.
FR il y a bien deux chaı̂nes finnoises et une chaı̂ne portugaise.

Table 1.1: Four simple examples that may break thepair assumption.

target-language sequence may be reordered. One fairly strong assumption made in SMT is that the

translation modelP (ē|f̄) has always accomodated a pair ofē andf̄ , which never lacks one side.

This assumption radically reduces the complexity of the problem although this may yield some

other problems. This thesis examines the methods within this assumption, untouched in other

complex cases since this is really a difficult ultimate goal of SMT.

Note that we may say that Machine Learning perspectives are not identical with SMT perspec-

tives, but these two may complement each other in the following sense. On the one hand, various

particular MT technologies are developed for SMT such as phrase extraction, stack-based decod-

ing, Hierarchical Phrase-Based Machine Translation (HPB-SMT), Minimum Error Rate Training

(MERT), and so forth. On the other hand, the Machine Learningpoint of view concerns noise,

prior knowledge, overfitting, statistical assumptions, and so forth. This thesis focuses on noise,

prior knowledge, and overfitting.

Among others, one idea that radically reduces the overall computational complexity in SMT is

that it assumes that an observed word / phrase always forms a pair. (We call this thepair assumption

in this thesis.) A t-table and a translation model always accommodate source and target words /

phrases. SMT is constructed based on this assumption. For example, any pair in the translation

model is never lacking either side of the word / phrase. Underthis assumption, we can write a pair

of words / phrasesei|fi using just one variablex. In the EM algorithm (Dempster et al., 1977), the

latent variableAi→j can be written in terms of thisx. In the HMM algorithm (Baum et al., 1970;
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Baker, 1975), the observationy can be written in terms ofx as well. There is a slight difference in

the notation between the SMT and Machine Learning literature, but if we convertei|fi to x, or x

to ei|fi, this becomes transparent.

The starting point of this thesis is a close look at the word alignment component, that is the

IBM Models of 1993 (Brown et al., 1993) and HMM Model of 1996 (Vogel et al., 1996). The first

motivation comes from the Machine Learning level in the usage of EM and HMM algorithms which

are already twenty or thirty years old (EM of 1976 and HMM of 1989). Although these algorithms

are still popular given their simplicity, it is known today that they have some problems in terms

of, for example, overfitting, noise (or outliers), prior knowledge, and extensibility. Nowadays,

we know of various improved algorithms. Increasingly, Machine Learning algorithms are often

designed for synthetic data where often do not go beyond the researcher laboratory. SMT has to

handle real-life data. This may be a very good reason to look at the robustness of Machine Learning

algorithms. One recommendation we describe in this thesis is the use of graphical models in terms

of extensibility where we employ the MAP assignment framework for prior knowledge (Refer to

Fig. 1.1).

evidence

prior knowledge

variablevariable

Figure 1.1: Word aligners by Brown et al. and Vogel et al. do nothave much extensibility, while the
graphical model implementation of the word aligner is extendible. This figure shows the situation
where the prior knowledge is incorporated in a word aligner.

The second motivation comes from the linguistic level. Since SMT is designed on thepair

assumption, it is quite natural that if something exists which would break the pair assumption it

will effect the overall performance. Table 1.1 shows four such examples which break the pair as-

sumption. In the first and the second examples, the English side includes some additional words,
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C’  est   la   vie   .

That    is    life   .

C’  est   la   vie   .

It   is    the   life   .

C’  est   la   vie   .

This  is  just  the  way   life  is  . Love  story  .

C’  est   la   vie   .

Figure 1.2: Examples of many-to-many mapping objects. The lower row include two many-to-
many mapping objects, e.g. 4-to-7 and 4-to-2 mapping objects.

‘particular’ and ‘actually’. These are calledtranslational noise. If we focus on Japanese or Chi-

nese, the situation is much worse. Indeed, we come across varieties of such translational noise

very easily. The third example shows an example of where different syntactic structures are used.

In general, we call some objects which are inherently difficult to map literally as defined in the

word alignment levelmany-to-many mapping objects. The fourth example shows the necessity to

consider semantics.

Among these, one of our targets is many-to-many mapping objects. Figure 1.2 depicts the

situation where many-to-many mapping objects are yielded quite naturally in the context of human

translation: human translators can translate using whatever text they consider conveys the meaning

of the source text. Among them, consider the sentence pairs (‘c’ est la vie’, ‘that is life’) and (‘c’

est la vie’, ‘love story’). In these cases, even native speakers will not be able to align the source

and target words. By the architecture of IBM Model-based word alignment, it is known that such

objects have a potential danger of not being extracted in theprocess, although many such words

still have the possibility to be aligned correctly by phraseextraction heuristics in the translation

model (Och and Ney, 2003).

Conversely, we prepare a toy situation where many-to-many mapping objects exist in the paral-

lel corpus in Figure 1.3. For example, we can consider ‘to my regret’, ‘i am sorry that’, ‘it is a pity

that’, and ‘sorry’ as many-to-many mapping objects (or paraphrases). Similarly in this context,

12



1.0 pity that
1.0 today ,
1.0 . .
0.75 that cannot
0.667 i NULL
0.667 sorry go
0.667 go sorry
0.55 cannot sorry
0.33 sorry to
0.33 i cannot
0.272 cannot available
0.25 that regret

to_my_regret i cannot_go today .
i_am_sorry_that i cannot_visit today .
it_is_a_pity_that i cannot_go today .
sorry , today i will_not_be_available .

i_am_sorry_that i cannot_visit today .
it_is_a_pity_that i cannot_go today .
sorry , today i will_not_be_available .
to_my_regret i cannot_go today .

Target LanguageSource Language

0.0001 , ,

1.0 today today
1.0 it_is_a_pity_that i_am_sorry_that
1.0 i_am_sorry_that to_my_regret
1.0 to_my_regret sorry
1.0 sorry it_is_a_pity_that
1.0 cannot_go cannot_visit
1.0 i i
1.0 cannot_go will_not_be_available
1.0 . .
0.5 cannot_visit cannot_go
0.5 will_not_be_available cannot_go
0.0001 , i
0.0001 , cannot_go
0.0001 , today

0.0001 today ,
0.0001 to_my_regret ,
0.0001 i ,

to_my_regret i cannot_go today .

i_am_sorry_that i cannot_visit today .

i_am_sorry_that i cannot_visit today .

it_is_a_pity_that i cannot_go today .

it_is_a_pity_that i cannot_go today .

sorry , today i will_not_be_available .

sorry , today i will_not_be_available .

to_my_regret i cannot_go today .

Result of GIZA++
1.0 it am
1.0 is am 
1.0 , go
1.0 visit regret
1.0 regret not
1.0 be pity
1.0 available pity
1.0 am to
1.0 to ,
1.0 my ,
1.0 will is
1.0 not is
1.0 a that 0.18 cannot regret

to my regret i cannot go today .
i am sorry that i cannot visit today .
it is a pity that i cannot go today .
sorry , today i will not be available .

Target LanguageSource Language

i am sorry that i cannot visit today .
it is a pity that i cannot go today .
sorry , today i will not be available .
to my regret i cannot go today .

to my regret i cannot go today .

i am sorry that i cannot visit today .

i am sorry that i cannot visit today .

it is a pity that i cannot go today .

it is a pity that i cannot go today .

sorry , today i will not be available .

sorry , today i will not be available .

to my regret i cannot go today .

Viterbi alignment for 4 sentence pairs (unidirection)

Result of our Local MAP Estimate−EM algorithm Viterbi alignment for 4 sentence pairs (unidirection)

Figure 1.3: An example alignment of paraphrases (In the example both source and target language
is English for readability.) in which the training corpus consists of four sentence pairs. (Upper
figure): Results show that only the matching between the colonis correct (See the second row in
the rightmost column). Note that the matching between “is” and “am” is close (See the fourth row
in the leftmost column). (Lower figure): An example alignment of paraphrases by our Local MAP
Estimate-EM algorithm. As a prior knowledge, we incorporate the anchor words shown in Table
A.1.
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sentence ID target source position in tgt position in src
1 to my regret i am sorry that 1 1
1 i i 2 2
1 cannotgo cannotvisit 3 3
1 today today 4 4
1 . . 5 5
2 i am sorry that it is a pity that 1 1
2 i i 2 2
2 cannotvisit cannotgo 3 3
2 today today 4 4
2 . . 5 5
3 it is a pity that sorry 1 1
3 i i 2 4
3 cannotgo will not be available 3 5
3 today today 4 3
3 . . 5 6
4 sorry to my regret 1 1
4 i i 4 2
4 will not be available cannotgo 5 3
4 today today 3 4
4 . . 6 5

Table 1.2: Example of biterm correspondence which is given to the Local MAP Estimate-EM
aligner.

‘cannot go’, ‘cannot visit’, and ‘will not be available’ areother many-to-many mapping objects (or

paraphrases). If human beings were to align these, one way ofdoing so would be as shown on the

righthand side of the lower figure. However, as is shown in theupper figure, the result of GIZA++

includes a number of wrong alignment links.3 In fact, the lower figure does not show the result of

human analysis, but of our MAP-based aligner (Refer to Section 3.5.3, 3.5.4, etc; We gave the prior

knowledge about alignment links as in Table 1.2). This example shows that our MAP-based word

aligner overcomes this to derive a solution in this case.4 Firstly, it is noted that even if a parallel

3It is noted that a traditional word aligner often assumes that a fairly big parallel corpus is given. In this sense, it
might be a mistake from the beginning to consider to use a traditional word aligner in this case. However, we try to
let this corpus fairly simple to be aligned: the length of four sentences are quite similar (9, 10, 9, and 8) and among
35 words they include 5 times of ‘i’, 4 times of ‘today’ and ’.’, 3 times of ‘cannot’, and twice of ‘go’. This will make
both the model complexity and the data complexity are small.Nevertheless, GIZA++ fails in aligning this.

4We noticed that there are two commas after ‘sorry’ in this parallel corpus. These commas cause the probability
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corpus includes many-to-many mapping objects, there are many cases where GIZA++ aligns them

correctly mainly due to the following process of symmetrization or the phrase extraction heuristics.

Secondly, a traditional word aligner assumes that a fairly big parallel corpus is given. In practice,

we may be faced with a tiny corpus as in this case. In this sense, our goal is (1) to achieve the

performance even if a corpus is contaminated with bad many-to-many mapping objects, and (2) to

provide a method which has scalability from tiny data to big data.

c’     est     la     vie     .

that     is     life     . rosy     life

la     vie     rose

Training corpus (1st sentence pair) (second sentence pair)

a b c d e f

In this case, prior knowledge

recover the correct solution.

strategy to recover the solution
In this case, the best possible

knowledge.

0 654321

0.33

0.66

Precision

Number of Prior Knowledge

(In this case maximum number is 6)

worst case

{b,c}

{b}
{d}

{a} {a,e}{a,f},...

1.00

{}

{a,b,c,d,e,f}
{a,b,c,d,e}
{a,b,c,d,f}
{a,b,c,e,f}

{a,b,d,e,f}
{b,c,d}

best case

is to give 50% of prior

of 66% of link knowledge will

The case when all the combination only consists correct
alignment links

Figure 1.4: We show how much information about alignment links was required to recover the
precision which is shown in the y-axis. If we gave more than four correct alignment links, the
MAP-based aligner was able to obtain the correct alignment.If we gave three correct alignment
links, the solution was correct in the case of{b, c, d}. However, for other cases such as{a, e, f},
the precision was 0.66. The point at 0 in the x-axis indicatesthe performance of a traditional word
aligner where no prior knowledge was provided. The precision was 0.33.

Once such a MAP-based aligner is built, our interest is to show how to use this word aligner.

Firstly, all the information about alignment links is provided to the MAP-based aligner in this

case as is shown in Table 1.2. Since the aim of traditional word aligners is to obtain information

0.001. If we happen to remove these commas, we obtained the result as in Figure A.1 in Appendix.
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about alignment links, the story seems somewhat upside downat first sight. However, this is our

correct story. Our aim is to supply information about alignment links by other methods than word

alignment. Our first example is bilingual noun phrase correspondences (Sections 3.9.4 and 3.10.3).

If we extract bilingual noun phrases, we will know the alignment links between them. Similarly,

we could use other linguistic knowledge to extract such bilingual correspondences (Details are

explained in Section 3.9).

Secondly, however, it is, of course, not possible in practice to provide all the information about

alignment links. (If this were possible, we would not need word alignment.) However, the good

news is that if we know around 50-60% of such alignment links,the MAP-based aligner can be

expected to obtain the alignment links successfully. Table1.4 shows a schematic figure for a toy

example. If we can give the information about three links{b, c, d} among six links{a, b, · · · , f},

the precision reaches 1.0 for this particular situation.

1.1 The Structure of the Thesis

This thesis is organized in the following way:

Chapter 2 gives a brief introduction of SMT and graphical models.

Chapter 3 presents our word aligner. In the sections on algorithmic design (3.4–3.6), Sections

3.4 and 3.5 discuss how to learn from a parallel corpus, whileSection 3.6 discusses inference.

These three sections give the foundation of our MAP-based word aligner. The first section presents

the model without Markov dependencies and the second section explains the HMM Model. We

use such MAP-based word aligners as a tool to investigate theaspect of noise throughout the word

alignment chapter. Section 3.7 Data Design examines methods to investigate the aspect of data

manipulation. Section 3.8 Linguistic Domain Knowledge about Word Alignment Links explores

the relations among variables (This is often called linguistic domain knowledge). Section 3.9

Experiments provides our results.
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Chapter 4 gives a (hierarchical) Pitman-Yor process-based languagemodelling and translation

modelling.

Chapter 5 concludes together with some avenues for further research.

1.2 Contributions of this Thesis

The summary of the contributions of this thesis is as follows.

1. The proposal of local MAP estimate-EM and MAP assignment-EM algorithms (Sections

3.4.3 and 3.4.4).

2. Sentence-level outlier detection algorithm / word-level noise sensitive MAP-based word

aligner (Sections 3.7.2 and 3.7.3).

3. Application of (hierarchical) Pitman-Yor process to language model and translation model

in the context of Machine Translation (Sections 4.1.2, 4.1.3 and 4.2.1).

1.3 Notation

We use the following notation throughout this thesis. For the description of a Pitman-Yor process,

e an English word
f a foreign word
ĕ an English sentence
ē an English phrase
|ĕi| the length of sentencĕei
ĕī a reference translation of foreign sentencef̆i
P (e|f) a lexical translation probability (or T-table) for worde over wordf
P (ē|f̄) a translation model for phrasēe over f̄
PLM(e) a language model fore
PLM(ē) a language model whose segmentation followsē
a an alignment function

we use the following notation:
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c(n) count of eventsn
PY (d, θ,G) Pitman-Yor process with discount parameterd, strength pa-

rameterθ and base distributionG
u context
G∅ ∼ PY (d0, θ0, G0) a distribution G∅ has the underlying distribution

PY (d0, θ0, G0)
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Chapter 2

Background Knowledge

2.1 Parameter Estimation in Statistical Machine Translation

A classical formulation of PB-SMT in an end-to-end setting, i.e. Bayesian noisy channel model,

can be written as in Definition 1.

Definition 1 (Bayesian Noisy Channel Model). We assume that sentence pairs(ĕ, f̆) are drawn

i.i.d. (independent and identically distributed) according to the fixed (but unknown) underlying

distributionsp(f̄ |ē)·p(e). Then, for a given test sentencĕf , our task is to obtain a sentencĕe

which maximizes the following problem (2.1):






















ĕ = argmaxe p(f̄ |ē) · pLM(ē) (decoding task)

such that











|p̂(f̄ |ē)− p(f̄ |ē)| ≤ δ1 (translation modeling task)

|p̂(ē)− p(ē)| ≤ δ2 (language modeling task)

(2.1)

wherep(f̄ |ē) denotes the target probability of the phrase alignment task, p(e) denotes the target

probability of the language modeling task (up to Markov order n; typical n is around 5),p̂(f̄ |ē)

andp̂(ē) denote the true probability, and|| denotes some distance measure between two probability

densities whereδ1 andδ2 are some small quantities near zero.
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In order to achieve better performance, it becomes quite common to accommodate multiple

translation models (Dyer et al., 2008) and language models.Note that since the storage perfor-

mance in SMT affects the performance in training and decoding, it is common to use various com-

pact formats to represent data which achieve small heap footprint, such as a lattice, a hypergraph,

a confusion network, and a forest.

2.1.1 Translation Model

Refer to our notation defined in Section 1.2 in reading Definition 2 below.

Definition 2 (Word Alignment Task). Let ĕi be thei-th sentence in the target language,ei,j be

thej-th word in thei-th sentence, andei be thei-th word in the parallel corpus (Similarly for̆fi,

fi,j, andfi). We are given a pair of sentence-aligned bilingual textsS = {(f̆1, ĕ1), . . . , (f̆n, ĕn)},

where each sentence can be composed of segments of phrases, that is f̆i = (f̄i,1, . . . , f̄i,|fi|) and

ĕi = (ēi,1, . . . , ēi,|ei|). For a given word pair(e, f), the task of word alignment is to find a lexical

translation probabilitypfi : ei → pfj(ei) such thatΣpfj(ei) = 1 and∀ei : 0 ≤ pfj(ei) ≤ 1 (It is

noted that some models such as IBM Models 3 and 4 have deficiency problems1). It is noted that

there may be several words in the source language and the target language which do not map to

any words; these are called unaligned (or null aligned) words.Triples(f̄i, ēi, pf̄i(ē1))) are called

T-tables.

In practice, the IBM Models introduce an alignment (relative/ absolute distortion) function2 as

a latent variable to solve this problem as a missing value problem. Note that the subsequent phrase

extraction process assumes that a word alignment process yields word-aligned sentence pairs via

Viterbi decoding, as in Definition 3.

1Deficiency problems mean that the sum of probabilities is not1.
2An alignment function and a distortion function essentially refer to a similar idea. An alignment function is

defined in IBM Models 1 and 2, while a distortion function is defined in IBM Model 3, 4 and 5. The role of an
alignment function is to map the position of the foreign wordinto the position of English word.
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Definition 3 (Word Alignment Task — Viterbi Decoding). For a given(e, f), the task of word

alignment is to find the most likely word-aligned sentence pairs.

Based on such word-aligned sentence pairs, the phrase extraction process, shown in Definition

4, is invoked.

Definition 4 (Phrase Extraction). The phrase extraction algorithm extracts all consistent phrase

pairs from a word-aligned sentence pair (Och and Ney, 2003).

The idea of phrase extraction is to loop over all possible English phrases and find the mini-

mal foreign phrase that matches each of them in principle.3 Matching is done by identifying all

alignment points for the English phrase and finding the shortest foreign phrase that includes all the

foreign counterparts for the English words.

2.1.2 Language Model

Let wi denote a word, andW denotes a sequence of wordsw1, w2, . . . , wn. A language model

aims at modellingp(W ) ( = p(w1, . . . , wm)) such thatp(W ) predicts the probability of picking up

a sequence of words W. In an n-gram language model, the probability p(w1, . . . , wm) of observing

the sentencew1, . . . , wm is approximated as in (2.2):

p(W ) = p(w1, . . . , wm)

=
m
∏

i=1

p(wi|w1, . . . , wi−1)

=
m
∏

i=1

p(wi|wi−m, . . . , wi−1) (2.2)

Note thatp(w1, . . . , wm) =
∏m

i=1 p(wi|w1, . . . , wi−1) holds by the chain rule to express the joint

distribution for a sequence of observations, whileP (wn|w1, . . . , wn−1) = P (wn|wn−m, . . . , wn−2, wn−1)

holds by the Markov assumption of the history up to m words.

3Consistency always requires that these foreign words do notalign to other English words.

22



The measure to evaluate the performance of a language model is often done by perplexity

defined as in (2.3):

2H(PLM) (2.3)

where the cross-entropyH(PLM) is defined as in (2.4):

H(PLM) = −
1

n

n
∑

i=1

logPLM(wi|w1, . . . , wi−1) (2.4)

2.1.3 Overfitting

One characteristic of word alignment is shown on the right-hand side of Figure 2.1. The y-axis

of both figures shows the class identity and the x-axis shows the number of words. The left-hand

side of Figure 2.1 shows the case for POS tagging, while the right-hand side shows the case for

word alignment. The maximum number on the x-axis on the left-hand side is around 50, while that

on the right-hand side is around 1000. The discussion leads to the motivation in Chapter 3 of our

smoothing method, specifically whether it may be useful to apply a power-law distribution-based

smoothing method.

Modern Machine Learning algorithms, such as Support VectorMachines (Boser et al., 1992;

Vapnik, 1998), seek to obtain a small generalisation error over unseen data. This mechanism is

implemented by minimizing both the risk and the capacity of the function class. Suppose that we

cannot automatically adjust the generalisation error which is often the case in Bayesian Machine

Learning.4 We start with some model complexity and we adjust this model complexity for some

given data in order to obtain the best generalisation error over unseen data. In this context, if the

initial model complexity is below the point which achieves the best generalisation error (or an equi-

4In Bayesian Machine Learning, An Information Criterion (orAkaike Information Criterion; AIC) (Akaike, 1974),
Bayesian Information Criterion (BIC) (Schwarz, 1978), andMinimal Description Length (MDL) (Rissanen, 1978) are
often used for measuring the model complexity.
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Figure 2.1: The left figure shows the POS tagging and the rightfigure shows the word alignment.
In both figures, the class identity is shown in y-axis and the number of words is shown in x-axis.

librium point), this is called ‘underfitting’ (point A3 in Figure 2.2). If the initial model complexity

is beyond the point which achieves the best generalisation error, this is called ‘overfitting’ (point

A4 in Figure 2.2). A model selection technique aims at transfering A3 or A4 into an equilibrium

state at A2. Analogous to this, we may apply the same idea to smoothing techniques where we aim

at controlling the horizontal axis to transfer the state into an equilibrium state at A2.

2.2 Graphical Models

This section gives a brief overview of graphical models, especially two of the main algorithms

on graphical models: sum-product and max-product algorithms. The description in this chapter

follows (Bishop, 2006; Koller and Friedman, 2009).

2.2.1 Factor Graph

A factor graph is a generalization of Bayesian and Markov networks, as shown in (2.5):

p(x) =
∏

s

fs(xs) (2.5)
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Figure 2.2: A figure explain our usage of the term ‘underfitting’.

wherexs denotes a subset of variables andfs is a factor which corresponds to a set of variables

xs. Firstly, a factor graph is a generalization of a Bayesian network, which can be explained by the

fact that the joint distribution of Bayesian network withK nodes can be written as in (2.6):

p(x1, . . . , xK) =
K
∏

k=1

p(xk|pak) (2.6)

wherepak denotes the set of parents ofxk. The fact that the joint distribution defined by a graph

is given by the product of a conditional distribution for each node conditioned on the variables

corresponding to the parents of that node in the graph, is called the factorization property for

Bayesian network. Secondly, a factor graph is a generalization of a Markov network, which can be

explained by the fact that the joint distribution of a Markovnetwork over the maximal cliques of

the graph can be written as a product of potential functionsφC(xC) as in (2.7):

p(x) =
1

Z

∏

C

φC(xC) (2.7)
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whereZ is a normalization constant shown as in (2.8):

Z =
∑

x

∏

C

φC(xC). (2.8)

Now, we describe algorithms only for a factor graph, which aswe have just shown can be

used both for Bayesian and Markov networks. We describe two algorithms which are representa-

tive algorithms in graphical models for a tree-structured topology, which can be easily modified

even when the topology of the graphical model changes. The sum-product algorithm aims at

marginalization by performing sums, while the max-productalgorithm aims at finding the values

that maximize the marginals. For learning HMMs the sum-product algorithm is employed, while

for decoding the max-product algorithm is employed.

2.2.2 Sum-Product algorithm

On the one hand, the marginal can be obtained by summing the joint distribution over all variables

exceptx as in (2.9):

p(x) =
∑

x\x

p(x) (2.9)

wherex\x denotes the set of variables inx exceptx. On the other hand, if the factor graph is

in a tree structure, the joint distribution can be written asa product of the factor. Letfs denote

the factor node,Xs denote the set of all variables in the subtree connected to the variable nodex

through the factor nodefs, Fs(x,Xs) denote the product of all the factors in the group associated

with factorfs, andne(x) denote the set of factor nodes that are neighbours ofx. Then, the joint

distribution can be written as a product of all the factors exceptx as in (2.10):

p(x) =
∏

s∈ne(x)

Fs(x,Xs) (2.10)
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From (2.9) and (2.10), the interchanging of sums and products yields (2.11):

p(x) =
∏

s∈ne(x)

[

∑

Xs

Fs(x,Xs)

]

=
∏

s∈ne(x)

µfs→x(x) (2.11)

Now we define two kinds of messages: from the factor nodesfs to the variable nodex, and

from the variable nodexm to the factor nodesfs as in (2.12):











µfs→x(x) =
∑

Xs
Fs(x,Xs)

µxm→fs(xm) =
∑

Xsm
Gm(xm, Xsm)

(2.12)

Then, we consider to compute the marginalp(x) by the product of all the incoming messages

arriving at nodex as in (2.13) forFs, and (2.14) forGm:

Fs(x,Xs) = fs(x, x1, . . . , xM)G1(x1, Xs1), . . . , GM(xM , XsM ) (2.13)

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (2.14)

Substitute (2.13) into (2.12) yields (2.15) forFs:

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[

∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (2.15)
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a1 a1 a1 a1 a2 a2 a2 a2 a3 a3 a3 a3

b1 b1 b2 b2 b1 b1 b2 b2 b1 b1 b2 b2

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

0.25 0.35 0.08 0.16 0.05 0.07 0.0 0.0 0.15 0.21 0.09 0.18

⇓

a1 a1 a2 a2 a3 a3

c1 c2 c1 c2 c1 c2

0.33 0.51 0.05 0.07 0.24 0.39

Table 2.1: Example of factor marginalization. Factorb is marginalized out by sum-product algo-
rithm

Substitute (2.14) into (2.12) yields (2.16) forGm:

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[

∑

Xml

Fl(xm, Xml)

]

=
∏

l∈ne(xm)\fs

µfl→xm
(xm) (2.16)

Note that we use the initialized messages at the root of the tree and at the leaf nodes as in

(2.17):











µx→f (x) = 1

µf→x(x) = f(x)
(2.17)

An easy example is shown in Table 2.1. For example,P (a1, c1) =
∑

[P (a1, b1, c1), P (a1, b2, c1)] =
∑

[0.25, 0.08] = 0.33.
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2.2.3 Max-Product (Max-Sum) Algorithm

The aim of max-sum algorithm is to find the set of values ofx = x∗1, . . . , x
∗
M that jointly (not

individually) maximizes the joint distributionp(x) as in (2.18):

max
x

p(x) = max
x1

. . .max
xM

p(x) (2.18)

The difference betweenindividually andjointly will result in a different conclusion. Take an easy

example. Consider the joint distributionp(x1, x2): p(0, 0) = 0.3, p(0, 1) = 0.3, p(1, 0) = 0.4,

p(1, 1) = 0.0. The result of joint maximization is 0.4 (atp(1, 0)), while the indivual maximization

is 0.3 (atp(0, 0)) (x1 = 0 for maximization with regard tox1 andx2 = 0 with regard tox2).

LetM be the total number of variables. Suppose that a graph is in a chain form. In this case,

the maximization ofp(x) can be written as in (2.19):

max
x

p(x) =
1

Z
max
x1

. . .max
xN

[φ1,2(x1, x2) . . . φN−1,N(xN−1, N)]

=
1

Z
max
x1

[

φ1,2(x1, x2)

[

. . .max
xN

φN−1,N(xN−1, N)

]]

(2.19)

We consider the messages sent from the leaves to the root. Similarly with the results of the

sum-product algorithm of (2.15) and (2.16), we replace
∑

with max as in (2.20):











µf→x(x) = maxx1,...,xM

[

ln f(x, x1, . . . , xM) +
∑

m∈ne(fs)\x
µxm→f (xm)

]

µx→f (x) =
∑

l∈ne(x)\f µf→x(x)
(2.20)

Note that we use the logarithm in order to deal with the numerical underflow. (For this reason, the

max-product algorithm is also called the max-sum algorithm. These two are essentially the same
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except for the representation using the logarithm.) Initial messages are similarly given as in (2.21):











µf→x(x) = 0

µx→f (x) = ln f(x)
(2.21)

Then, at the root node the maximum probability can be obtained as in (2.22):

pmax = max
x





∑

s∈ne(x)

µfs→x(x)



 (2.22)

Now, we consider the problem of finding the configuration of the variables, cf. Viterbi algo-

rithm. Firstly, we consider the following problem to determine the most probable configuration as

in (2.23):

xmax = argmax
x

[µfs→x(x)] (2.23)

For this purpose, we send messages from the root to leaves applying (2.20) with (2.23):











µxn→fn,n+1(xn) = µfn−1,n→xn
(xn)

µfn−1,n→fx(xn) = maxxn−1

[

ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(xn)

]

(2.24)

An initial message is shown in (2.25):

µx1→f1,2(x1) = 0 (2.25)

Then, the resultingxN which is the most probable value can be obtained by (2.26):

xmax
N = argmax

xN

[

µfN−1,N→xN
(xN)

]

(2.26)
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a1 a1 a1 a1 a2 a2 a2 a2 a3 a3 a3 a3

b1 b1 b2 b2 b1 b1 b2 b2 b1 b1 b2 b2

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

0.25 0.35 0.08 0.16 0.05 0.07 0.0 0.0 0.15 0.21 0.09 0.18

⇓

a1 a1 a2 a2 a3 a3

c1 c2 c1 c2 c1 c2

0.25 0.35 0.05 0.07 0.15 0.21

Table 2.2: Example of factor marginalization. Factorb is marginalized out by max-sum algorithm

Secondly, we determine the state sequence corresponding tothe most probable configuration.

This problem can be solved by keeping track of which values ofthe variables yields the maximum

state of each variable which is shown in (2.27):

φ(xn) = argmax
xn−1

[

ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(xn)
]

(2.27)

Once the most probable value of the final nodexN is obtained, we follow the link back to find

the most probable state of nodexN−1, which is repeated until the initial nodex1. This is called

back-tracking, which is shown as in (2.28):

xmax
n−1 = φ(xmax

n ) (2.28)

An easy example using the same data as in Table 2.1 is shown in Table 2.2. For example,

P (a1, c1) = max [P (a1, b1, c1), P (a1, b2, c1)] = max[0.25, 0.08] = 0.25.

2.2.4 Typical Inferences

This section describes three most common query types following (Koller and Friedman, 2009;

Murphy, 2007). LetX = {X1, . . . , Xn} be a set of random variables, andP (X1, . . . , Xn) be the

joint distribution over a setX. Let us partition the variablesX into E (evidence),Q (query), and
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H (hidden / nuisance).

Let a subsetE of random variables in the model denote the evidence,e denote its instantiation

to these variables, a subset ofY of random network denote the query variables, andW denotes a

(non-evidence) variables, that isX− E.

• Conditional probability query (posterior):

P (XQ|xE) ∝
∑

XH

p(XQ, xE, xH) (2.29)

• MAP estimate whenH = ∅ (posterior mode):

x∗Q = argmax
XQ

p(xQ|xE) = argmax
XQ

p(xQ, xE) (2.30)

• Marginal MAP estimate (mode of marginal posterior):

x∗Q = argmax
XQ

p(xQ|xE) = argmax
XQ

∑

XH

p(xQ, xE, xH) (2.31)
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Chapter 3

Word Alignment: Noise

This chapter aims at identifyingnoisein the level of word alignment in Statistical Machine Trans-

lation (SMT), as well as providing a prototype for handling such noise in word alignment. The aim

of such identification is to improve the overall performanceof the word aligner. We handle two

kinds of noise: word-level noise and sentence-level noise.We present quite different methods for

these two.

For word-level noise, we first introduce a novel MAP-based word aligner which has the capa-

bility of incorporating prior knowledge about alignment links as described in Chapter 1, and then

through this interface we try to incorporate them. In this sense, one of our contributions is mainly

the analysis, design, and development of this MAP-based word aligner. The main function of this

MAP-based word aligner is, however, to incorporate knowledge not aboutnoiseitself, but about

alignment links. Hence, the usage of this word aligner is to first detect various alignment links

which may act asnoiseto the word aligner, and then to supply such information to a word aligner.

In other words, many-to-many mapping objects may cause problems in word alignment. Instead,

our idea is to extract a set of possible correct alignment links between many-to-many mapping

objects (which is considerednoise) before we run word alignment, and then to supply such infor-

mation to the MAP-based word aligner. In this sense, before we run the MAP-based word aligner,
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we need to identify which objects will potentially prove problematic in the word alignment pro-

cess. We will present the up-to-date results including the lists of such possible candidates which

becomenoiseobjects although this process to select candidates is not theoretical, but unfortunately

empirical.

For sentence-level noise, we introduce a method which is similar to the outlier detection method

in computer vision or in Machine Learning. If we trace the sentence-based training set errors, a

word aligner will not work for the specific sentence pair. Coversely, if we assess the sentence-

based training set errors, it would be possible to estimate the performance of the word aligner for

the particular sentence pair. In this case, sentences that are trained badly by a word aligner are

labeled withnoise. In this case, we will not be able to classifynoiseobjects since all the sentence

pairs can equally be a candidate ofnoise.

Now, we mention briefly which section explains what topics. In Section 3.1, we review what is

noisein audio, vision and word alignment. The termnoiseis often used in the context of audio and

vision but has rarely been used in SMT. On the one hand, the crucial difference from audio and

vision is thatnoisyobjects may also work as asignal in SMT since all the fragments in a sentence

usually have some meaning (Refer to the definition ofnoisein Section 3.1.3). On the other hand,

the similarity is that it is often very difficult to detect such noiseuntil we detect thesignal, as

mentioned in the above two algorithms. As is already mentioned, we cannot list a candidate of

noiseat the sentence-level; we only describe a list of potential candidates fornoiseat the word-

level. This list starts with many-to-many mapping objects (noiseas well assignal), translational

noise (noisethat is not asignal), and so forth.

Section 3.2 explains a hand-annotated corpus between JP-ENwhich we build. Then, Section

3.3 explains the method of evaluation. We use Alignment Error Rate (AER) (Och and Ney, 2003).

For the sake of SMT, our aim is to achieve an overall better performance in terms of BLEU (Pa-

pineni et al., 2002). However, in terms of the quality of wordalignment, it is not always clear

if we only look at BLEU. Unfortunately, these two measures arenot well correlated with each
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other. Even if we obtain high-quality results in terms of AER,it may not always lead to better

overall results in terms of BLEU (Fraser and Marcu, 2007). Nevertheless, it is still worthwhile to

investigate word alignment in terms of AER for several reasons. Firstly, it is widely recognized

that the IBM Models work quite well if we measure the performance by BLEU. This is true for

most European languages as well as for language pairs comprising Asian languages and European

languages, including EN-JP and EN-ZN. However, except for EN-FR we may not even know the

actual performance on AER. This is due to the scarce availability of hand-annotated word align-

ment corpora. Even between EN-FR, most of the cases are measured using a Hansard annotation

corpus of just 448 sentences (Och and Ney, 2003). For EN-JP, we could not find any report nor any

hand-annotated corpus. Accordingly, it took us some time tobuild such a hand-annotated corpus

between EN-JP, and to measure the performance. The first observation is that the AER from EN

to JP is always several points higher than the other direction. Unlike word alignment between

European languages, in the case of JP, we often split the input into words and morphemes using a

morphological analyzer. Hence, we align morphemes (JP) to words (EN). If the source includes

morphemes (JP), there is a strong possibility that such morphemes connect with content words,

which is the case from JP to EN. Conversely, if the source includes only words (EN), even if we

have morphemes in the target side there are less possibilities that morphemes connect with content

words. Note that if we have to align these manually, there will be a low inter-annotator agreement

whether we allow the alignment links between morphemes and content words or not. Section 3.4

explains a Bayesian Machine Learning approach where multiple solutions may be obtained.

From Section 3.5 to Section 3.7, various algorithms proposed for word alignment are explained.

In order to investigate suchnoise, we do not look at the word aligner as a black box, but we try

to understand the architectural weakness of the dominant word aligner GIZA++ (Och and Ney,

2003). As is mentioned above, one of the important tools we need was the MAP-based word

aligner which incorporates prior knowledge into the word alignment process. We describe how to

specify the prior knowledge into the process.
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Section 3.8 considers the basic algorithm for data manipulation. After explaining the heuristic

sentence-cleaning algorithm introduced in Moses, we introduce sentence-based and word-based

cleaning algorithms. Section 3.9 mentions the characteristics of language. This section intends to

obtain the relation between variables.

Then, in Section 3.10, we gather all the techniques — algorithms and data manipulations — in

order to compute the overall performance as a word aligner.

3.1 Noise

Since it is not common to use the termnoisein the context of SMT, this section describes what

we mean bynoise. We use this termnoiseas an analogy ofnoisein audio or vision. We discuss,

however, that the characteristics ofnoisein SMT are quite different in nature. However, it turned

out that rather than the purenoise, we need to take care ofsignalssince suchsignalswork asnoise

at the same time. All the more, the input of the MAP-based wordaligner is word alignment links

(not noise). Eventually, at the end of this section, we will give not a categorization ofnoisebut a

list of candidates which may provide the source of word alignment links. We start with the audio

noise and the visual noise. Then, we proceed to word alignment.

3.1.1 Noise in Audio

In audio,noiseis often defined alongsidesignals, but sometimes it is not. For example in the con-

text of radio transmission and audio recording via records or tapes,signalsmay be the conversation

of persons, music, and plays which we aim to transmit or record, while noiseis the sound which

disturbs our ability to hearsignalsand is often irrelevant to thesignalsthemselves. High levels of

noise can block, distort, change or interfere with the signals. As another example, suppose that our

aim is to hear the conversation of other people. The conversation of other people is not particularly

called as thesignals, while the loud sounds which disburb us from hearing the conversations of the

other people are callednoise. Note thatnoiseis often distinguished fromdistortionalthough those
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two are alike. The latter is an unwanted alteration of the signal waveform.

Various noise reduction techniques are developed in order to reduce the former kinds ofnoise.

There are several kinds of noise whose causes are different (Wikipedia1, 2011). Richard Zens

and Hermann Ney. 2004. Improvements in phrase-based statistical : thermal noise (electronic

noise), shot noise, flicker noise, burst noise, and avalanche noise. Thermal noise is due to the

random thermal motion of electrons inside an electric conductor. (Electronic noise is the random

variations in current or voltage caused by the random movement of electrons on the circuit.) Shot

noise arises when the finite number of energy-carrying particles becomes significant among very

low-level signals. Flicker noise, which arises in semiconductor devices, is a signal with a frequency

spectrum that falls off steadily into the higher frequences, which occurs in almost all electronic

devices. Burst noise is a sudden step-like transition between two or more levels, as high as several

hundred microvolts, at random and unpredictable times. Avalanche noise arises when a junction

diode is operated at the onset of avalanche breakdown.

3.1.2 Noise in Vision

Noisein vision is comparable with that in audio.Noisein vision is often defined as the information

which we do not want to extract even if we manage to detect it. However at the same time, it is

often the case that we do not know how to measure nor to extractnoisein an image.

There are several kinds ofnoiseknown (Wikipedia2, 2011): amplifier noise, salt-and-pepper

noise, shot noise, quantization noise, film grain, and anisotropic noise. Amplifier noise is an

additive stationary Gaussian noise (or white noise) causedprimarily by thermal noise. This noise

makes up a major part of the noise by image sensors. Salt-and-pepper noise (or spike noise) has

a fat-tail distribution caused by analog-to-digital converter errors or bit transmission errors. Shot

noise is the dominant noise in the lighter parts of an image from an image sensor, which is due

to the statistical quantum fluctuations. Quantization noise is caused by quantizing the pixels of a

1Wikipedia, the free encyclopedia.http://en.wikipedia.org .
2Wikipedia, the free encyclopedia.http://en.wikipedia.org .
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sensed image to a number of discrete levels. Film grain is a signal-dependent noise due to the grain

of photographic film with a similar statistical distribution as shot noise. Anisotropic noise appears

with a significant orientation in images. For example, imagesensors are often subject to row noise

or column noise.

One observation in computer vision is that it is often the case that even if we know the cause

of noise in advance, it does not often help us how to constructthe method to extract them. This is

becausenoiseis often the object which we do not know how to measure and to extract; we often

extract them by extractingsignals, then we first realize that the remaininder isnoise.

3.1.3 Noise in Word Alignment in Statistical Machine Translation

The definition ofnoisein this section is intended only for word-level noise. Firstly, in contrast

to audio and vision where most of thenoiseis not part of thesignal, it turns out that many-to-

many alignment objects work asnoiseas well as valid training data (hencesignal) (Okita et al.,

2010a). Secondly, in a sentence, the unit ofnoisemay easily be changed (For example, somenoise

is defined in a word, but othernoiseis defined in a phrase.) In sum, our definition becomes as

follows:

1. Any fragmentsmay have (1) bothsignalsandnoise, (2) onlysignals, (3) onlynoise, and (4)

neithersignalsnornoise.

2. Segmentscan overlap with othersegments.

It is noted that such overlapped approach in translation model is investigated in Kaariainen (2009).

However, this definition means that there is no obviousnoise, while eachnoisetype has a name in

audio and vision. At the same time, it means that we are not capable of findingnoisevia detecting

signals. Hence, this definition does not give us help.

The categorization here is not the categorization of eithernoiseor signal, but rather word

alignment links. For this reason, some types of noise have a name of noise, but others do not.
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Firstly, this is due to the overlapping definition ofnoiseandsignalas is mentioned above. There is

not much obviousnoise, but most of them aresignals. Secondly, as is explained at the begining of

this chapter, the input of the MAP-based word aligner is notnoise, but word alignment links, so it

is no use if we categorizenoise. What we need is a categorization based on word alignment links.

Thirdly, we aim at only the word-level noise for word alignment. Fourthly, not all the objects may

become noise due to the phrase extraction (For example, eventhough the unidirectional word

aligner did not detect many-to-many mapping objects, a phrase extraction process may detect

many-to-many mapping objects.) Hence, each item in the categorization below leaves open the

possibility that these objects may becomenoise.

1. Many-to-many mapping object pairs (noun phrases, MWEs andparaphrases).

2. Translational noise.

3. Non-literal translation pairs.

4. Less frequent word pairs.

5. Human errors and typos (For example, ‘hmman’ will not align with ‘human’. Once errors

and typos are corrected, we can align them correctly).

6. Anaphora and pronouns.

It should also write the condition whennoiseyields easily:

1. In the case where there are many possible correspondencesbetween the source side and the

target side.

2. In the case where the same symbol in the semantic level are expressed differently in the

surface level (e.g. “(”, “[”,“<”). One common way is to normalize the surface forms in

order to align them correctly. However, this is not a conclusive way to handle this correctly.
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3. In the case where the same objects in the semantic level areexpressed differently in the syn-

tactic level (e.g. conjugations). Since the aim of word alignment is to align the corresponding

verbs or nouns correctly, syntactic difference will be an obstacle to this.

4. In the case where the lengths in the source side and in the target side are different (Note that

there are mechanisms such as fertility and NULL insertion inIBM Model 3 and 4 to deal

with such cases).

5. In the case where a verb phrase is converted into a noun phrase, or vice versa.

It is noted that some of these will be investigated in Section3.9.

3.2 Hand-Annotated Corpus-based Evaluation

We evaluate our methods in this chapter based on AER which requires a hand-annotated corpus.

We used three kinds of corpus: the Hansard corpus between EN-FR (Och and Ney, 2003) and two

other corpora which are built by us for EN-JP.

name language pair person size evaluation
Hansard EN-FR Och & Ney 484 AER
IWSLT EN-JP Okita 100 AER
NTCIR EN-JP Okita 50 AER

NTCIR EN-JP Fujii 3200k BLEU
NTCIR EN-JP Fujii 200k BLEU
NTCIR EN-JP Fujii 50k BLEU
IWSLT EN-JP 40k BLEU

Table 3.1: The first three lines show the hand annotated corpora which we used in the evaluation
by AER, while the four last lines show the corpora which we usedin this thesis for evaluation by
BLEU.

We constructed two kinds of corpus between EN-JP. The first corpus is the IWSLT 2006 sub-

corpus consisting of 100 sentence pairs (cf. Table 3.2). Thesecond corpus is the NTCIR sub-

corpus of 50 sentence pairs. We use the alignment process of Lambert et al. (Lambert et al., 2006).
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The main difference is that the resulting variety of opinions regarding the correctness of the links

is expected to be so wide in the case of the EN-JP corpus that wemay need 5 or 6 persons in order

to obtain the same effect as in the EN-FR corpus. We take the approach not to give the average of

many persons, but rather to adopt one annotation which is consistent throughout the corpus.3

# Sentence pair (5) source length 9 target length 10
we want to have a table near the window .
NULL ({ 1 2 5})窓際({ 7 8 9})の({ })席({ 6 })を({ })御({ })願い({ 3 4})し({ 3 4})
ます({ })。({ 10})
# Sentence pair (9) source length 8 target length 7
this is my first time diving .
NULL ({ })海({ })に({ })潜る({ 6 })の({ })は({ })初めて({ 1 2 3 4 5})です({ })。({ 7 })
# Sentence pair (12) source length 8 target length 8
go straight until you see a drugstore .
NULL ({ 3 4 6})まっすぐ({ 2 })行く({ 1 } )と({ })薬局({ 7 })が({ })見え({ 5 })ます({ })
。({ 8 })
# Sentence pair (21) source length 5 target length 6
pass the bread , please .
NULL ({ 2 })パン({ 3 })を({ })回し({ 1 })て下さい({ 4 5})。({ 6 })

Table 3.2: IWSLT hand-annotated corpus. Note that although we use the GIZA++ format (which
is called a A3 final file) this is not the result of word alignment, but the hand annotation itself. We
employ this format to simplify the annotation of alignment links.

3The guidelines we adopt include:

• Unless there is no ‘of (EN)’, we do not align particles such as ‘no (JP)’. Hence, most particles are not aligned.

• We allow links between a punctuation mark and a word.

• Most proverbs in EN are not aligned since there is no correspondence in JP (Omission of subjects in JP).

• Most articles in EN are not aligned (No articles in JP).

• Although Japanese may include expressions which are related to the politeness register, we avoid the alignment
of such words.

• We align ‘to (EN)’ combined with a verb to their corresponding Japanese verbs or nouns.

We established such rules not because we think these rules are the best, but because we need to establish consistent
rules in order to label in a consistent manner. This is because there are two many options to label them since we
assume that Japanese side is morphologically segmented.
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3.3 Evaluation

We use BLEU (Papineni et al., 2002) as the extrinsic evaluation measure and AER (Och and Ney,

2003) as our intrinsic evaluation measure. Letc be the length of the testset andr be the length of

the reference translation. For given precisionpn of n-grams of size up toN , BLEU is defined as in

(3.1):

BLEU-4 = BP · exp

(

4
∑

n=1

log pn

)

(3.1)

where brevity penalty (BP) is intended to reduce the score if the output is too short as in (3.2):

BP = min
(

1, e1−
r
c

)

(3.2)

Alignment error rate (Och and Ney, 2003) is defined via the setof sure alignmentsS, possible

alignmentsP , and whole alignmentsA. Recall is defined onS while precision is defined onP

whereP ⊃ S. These definitions are shown as in (3.3):































Precision(A,P ) =
|A
⋂

P |

|A|
,

Recall(A, S) =
|A
⋂

S|

|S|
,

AER(A,P, S) = 1−
|A
⋂

S|+ |A
⋂

P |

|A|+ |S|

(3.3)

First, note that if the performance of a word alignment system is better than some other one, both

recall and precision often increase. The normal experiencein Machine Learning is that if recall

goes up precision should go down, or vice versa. For this reason, this may look odd at first sight.

However, this comes from the difference above that recall and precision are defined on slightly

different objects. Second, note that it is not easy to calculate false negatives since we do not know

how many alignment links existed for a pair of sentences. Hence, it is not easy to write ROC
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(Receiver-Operating Characteristic; The ROC curve was used by the US army during World War

II for the analysis of radar signals (Green and Swets, 1966)). One way to calculate this would be

take the maximum between the number of source and target words.

Figure 3.1 shows the performance of GIZA++ on EN-FR Hansard datasets whose training

set is 1.1 million sentence pairs, consisting of 10 iterations of IBM Model 1, 10 iterations of

HMM Model, 10 iterations of IBM Model 3 and 10 iterations of Model 4. Figure 3.2 shows the

HMMIBM1 IBM3 IBM4

Figure 3.1: AER performance on EN-FR. The line which starts from the 11th iteration shows that
this is only trained by the HMM model. The other line which starts from the 31st iteration shows
that this is only trained by IBM Model 4. The red and blue lines show that they are different
translation directions. Training set was Hansard 1.1 million sentence pair together with a hand-
annotated amount of 484 sentence pairs.

performance of GIZA++ on the EN-JP corpus. The first observation is that the performance on

EN-JP is considerably worse than the performance on EN-FR. Inthe case of EN-FR, it achieves

0.11 AER between 15 to 20 iterations and 0.09 AER between 34 to40 iterations. In the case of

EN-JP, it achieves 0.52 on IWSLT and 0.62 on NTCIR. The second observation is the variability
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IBM4IBM3HMMIBM1 IBM1 HMM IBM3 IBM4

Figure 3.2: AER performance on EN-JP. The left figure shows the performance on the IWSLT
corpus, and the right figure shows the performance on the NTCIRcorpus. Training set was IWSLT
40k sentence pairs including a hand-annotated portion, while that of NTCIR was NTCIR 200k
sentence pairs including a hand-annotated portion.

for different translation directions. In the case of EN-FR, the red and blue lines are quite identical,

while in the case of EN-JP, the red line is always better than the blue line.

3.4 Bayesian Learning

In Machine Learning there are two ways of performing estimation: single point estimate and mul-

tiple point estimate. The former is taken in frequentist methods, such as Maximum Likelihood

(ML) / Maximum-A-Posteriori (MAP) estimation, as well as word alignment using IBM Models.

Multi-point estimation is used in a small amount of Bayesian methods (alternatively called afull

Bayesian method).

Under the existence of latent variables, thefull Bayesian methodis not to consider a single

point estimate of parameterθ, but rather evaluate it at many differentθs. In order to consider the

merit of this, let us consider a fair bet casino problem. Thisproblem is to detect whether the coin

is biased or fair from the observation, say 10 coin flips.

Let t be latent variables,w be observed variables,θ be the probability of heads (parameters),
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nH be the number of heads inw, andnT be the number of tails inw. We are given a biased coin

(t=1) with probability 0.5, or a fair coin (t=0) with probability 0.5. When the coin is biased, we

assume a uniform distribution overθ, otherwiseθ = 0.5. Assume that we have a uniform prior on

θ with P (θ) = 1 for all θ ∈ [0, 1].

Figure 3.3: The left figure shows the simple point estimate and the right figure shows the multiple
point estimate.

The single point estimate approach to this problem is conducted in two stages. The first step is

to apply the MAP estimate forθ, as in (3.4):

θ̂ = argmax
θ
P (w|θ)P (θ) MAP estimate (3.4)

Now we observed a headnH times, so the MAP estimate iŝθ = nH/10. The second step is to look

at the value oft that maximizesP (t|w, θ̂).

The multiple point estimate approach (or the full Bayesian approach) is to see the distribution

over latent variables given the observed data, as in (3.5):

P (t|w) =

∫

P (t|w, θ)P (θ|w)dθ (3.5)

Using the case whenw = HHTHTTHHTH andw = HHTHHHTHHH we can draw the
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situation in Figure 3.3. The left figure shows the case of the single point estimation, while the right

figure shows the case of the multiple point estimation. In thecase ofw = HHTHTTHHTH,

both methods will obtain the best value ofθ = 0.8. In the case ofw = HHTHHHTHHH, the

multiple point estimation obtains a flat plateau aroundθ = 0.6 ∼ 0.85, which contrasts with the

single point estimation ofθ = 0.8.

3.5 Algorithmic Design (I): Learning Generative Models (Exact Inference)

In this section, we deal with algorithms considering the case where there are no Markov depen-

dencies, which is equivalent to the IBM Model 1. We first show the word alignment implemented

by EM with the maximum likelihood estimates. We mention one characteristic of word alignment

in that only a small amount of parameters (a matrix of t-tablet) are updated at a time on a sentence

by sentence basis.

Then, we move to consider how to incorporate prior knowledgeinto the formula. We apply the

prior in the same EM model by replacing the M-step of maximum likelihood with MAP estimates.

We show two ways to set up priors: cache-based or global-based. Note that MAP-EM has appeared

in some papers (Bishop, 2006), albeit without much application as far as we know.

However, it turned out that this approach has one disadvantage in its MAP estimation in that it is

inherently basis dependent (Beal, 2003; Koller and Friedman, 2009). Givenθ∗ has a non-zero prior

probability, it is always possible to find a basis in which anyparticularθ∗ is the MAP solution. This

is the motivation of the third algorithm, which we call VB-EM algorithm (variational Bayesian EM

algorithm), which is not basis-dependent. The VB-EM algorithm discusses the lower bound of the

MAP-EM algorithm, modifying the distribution with a simpler form.

Note that the aim of word alignment is to find the most probablealignment path in the form of

A3 final files, which is derived via Viterbi decoding which we describe Section 3.6.1. Practically,

just one iteration of the HMM model is employed4 if we need to derive such a path in IBM Model

4This is a technique which is often used when we want to obtain the Viterbi alignment or the A3 final file.
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1.

3.5.1 Standard EM (standard ML, GIZA++)

An EM algorithm was formulated by Dempster et al. (Dempster et al., 1977), this algorithm has

been implicitly used in various fields (Dempster et al., 1977; McLachlan and Krishnan, 1997;

Bishop, 2006). First we introduce this algorithm, then we apply this to word alignment (Brown et

al., 1993; Koehn, 2010).

Let Y be the random vector corresponding to the observed datay, having probability density

function g(y; Φ) whereΦ = (Φ1, . . . ,Φd)
T is a vector of unknown parameters with parameter

spaceΩ. The observed data vectory is viewed as being incomplete and is regarded as an observable

function of the complete-data. Note that the incomplete data includes the missing data.

Let X be the random vector corresponding to the complete-data vector x, having probability

density functiongc(x; Φ). The complete log-likelihood function is given by (3.6):

logLc(Φ) = log gc(x; Φ). (3.6)

The relation betweenx andy is as in (3.7):

g(y; Φ) =

∫

X(y)

gc(x; Φ)dx (3.7)

whereX(y) is the subset ofX in the relations ofy = y(x).

LetΦ(0) be initial value forΦ. In the first iteration of E-step requires to calculate the following

quantityQ(Φ;Φ(0)), as in (3.8):

Q(Φ;Φ(0)) = EΦ(0) (logLc(Φ)|y) . (3.8)

The M-step is to maximizeQ(Φ;Φ(0)) with regard toΦ over the parameter spaceΩ. Hence, we
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chooseΦ(1)) such thatQ(Φ(1); Φ(0)) ≥ Q(Φ;Φ(0)) for all Φ ∈ Ω. This is equivalent to (3.9):

M(Φ(1)) = argmax
Φ

Q(Φ;Φ(0)). (3.9)

Then this iteration is repeated as follows.

• E-step: CalculateQ(Φ;Φ(k)) whereQ(Φ;Φ(k)) = EΦ(k) (logLc(Φ)|y).

• M-step: ChooseΦ(k+1) which maximizesQ(Φ;Φ(k)). That isQ(Φ(k+1); Φ(k)) ≥ Q(Φ;Φ(k))

for all Φ ∈ Ω, or the alternative equivalent representation in (3.10):

M(Φ(k)) = argmax
Φ

Q(Φ;Φ(k)). (3.10)

Dempster et al. (Dempster et al., 1977) show that the incomplete-data likelihood functionL(Φ)

is not decreased after an EM iteration, as in (3.11):

L(Φ(k+1)) ≥ L(Φ(k)) (3.11)

for k = 0, 1, 2, . . .. Hence, the likelihood values are bounded above and convergence is achieved.

In IBM Model 1,P (f, a|e) is defined as in (3.12):

P (f, a|e) =
ǫ

(l + 1)m

m
∏

j=1

t(fj|eaj) (3.12)

Since we do not know the alignment functiona we do not knowP (f, a|e) directly. However,

we can calculate the expectation ofP (f, a|e), that is
∑

P (f, a|e) (or EP (f, a|e), the Bayesian

average ofP (f, a|e) ) enumerating all the possible alignment functionsa. Suppose we are given

such expectation
∑

P (f, a|e) (which is equivalent toP (f |e)), we can obtainP (f, a|e) by maxi-

mizing the this expectation
∑

P (f, a|e) with respect toP (f |e), which is called the Expectation
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Maximization algorithm (Dempster et al., 1977). Now we havethe equality constraint for eache,

M-step can be written as in (3.14):5















maximize
∑

t(f, a|e) (= t(f |e)) =
ǫ

(l + 1)m

l
∑

a1=0

. . .

l
∑

am=0

m
∏

j=1

t(fj|eaj)

subject to
∑

f t(f |e) = 1

(3.14)

Note that our training corpus consists of a set of translations,(e(1)|f (1)), (e(2)|f (2)),. . .,(e(S)|f (S)).

This fact corresponds to the fact that the alignment function is closed within each sentence pair,

i.e. a constraint on the range of a mapai.

In order to find the maxima (or minima) with equality constraint of (3.14), we use the Lagrange

method of Lagrange (1797; general introduction is available in e.g. (Cristianini and Shawe-Taylor,

2000; Bishop, 2006)). Letλe denotes a Lagrange multiplier. LagrangianL(t, λ) can be written as

in (3.15):

L(t, λ) =
ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

m
∏

j=1

t(fj|eaj)−
∑

e

λe

(

∑

f

t(f |e)− 1

)

(3.15)

Then, the partial derivative ofL(t, λ) with respect tot becomes as in (3.37):

∂L(t, λ)

∂t
=

ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

m
∑

j=1

δ(f, fj)δ(e, eaj)t(f |e)
−1

m
∏

k=1

t(fk|eak)− λe (3.16)

whereδ is the Kronecker delta function, equal to1 when both of its arguments are the same and0

5It is noted that (3.14) is equivalent to (3.13):











maximize Et(f, a|e) (= t(f |e)) =
ǫ

(l + 1)m

l
∑

a1=0

. . .

l
∑

am=0

m
∏

j=1

t(fj |eaj
)

subject to
∑

f t(f |e) = 1

(3.13)

49



otherwise. The stationary point is attained when this partial derivative is zero as in (3.17):

t(f |e) = λe
−1 ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

m
∑

j=1

δ(f, fj)δ(e, eaj)
m
∏

k=1

t(fk|eak) (3.17)

= λe
−1 ǫ

(l + 1)m

l
∑

a1=0

. . .

l
∑

am=0

m
∏

k=1

t(fk|eak){
m
∑

j=1

δ(f, fj)δ(e, eaj)} (3.18)

(3.19)

= λe
−1 ǫ

(l + 1)m

m
∏

k=1

l
∑

i=0

t(fk|ei){
m
∑

j=1

δ(f, fj)δ(e, eaj)} (3.20)

This suggests that given an initial guess for the translation probabilitiest(fk|eak) in the righthand

side of (3.17), we will obtain a new estimate oft(f |e) in the lefthand side. Note that we use (3.21)

to change the order of
∑

and
∏

from (3.19) to (3.20).

l
∑

a1=0

. . .

l
∑

am=0

m
∏

k=1

t(fk|eak) =
m
∏

k=1

l
∑

i=0

t(fk|ei) (3.21)

In order to facilitate the computation, we define an auxiliary functionc(f |e) to removeǫ.

c(f |e) =
∑

a

p(a|e, f)
le
∑

j=1

δ(e, ej)δ(f, fa(j)) (3.22)

=
t(e|f)

∑lf
i=0 t(e|fi)

le
∑

j=1

δ(e, ej)

lf
∑

i=0

δ(f, fi) (3.23)

This functionc(f |e) is calculated for each sentence pair, from the sentence pair(e(1), f (1)) to

(e(S), f (S)). Then, we sum all of these to obtain
∑

S c(f |e).

If we first computetotal s[e]=
∑lf

i=0 t(e|fi), then we can calculatecount(e|f)= t(e|f)
∑le

j=1

δ(e, ej)
∑lf

i=0 δ(f, fi)/ total s[e]. The number of operations to calculate becomes proportional to

l+m rather than to(l+1)m which is suggested byc(f |e) =
∑

a P (a|e, f)
∑m

j=1 δ(f, fj)δ(e, eaj).

Note that the calculation is done in the training sentence pair basis. For theu-th sentence pair, the
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cached auxiliary functionc(f |e, f (u), e(u)) is calculated. Then,c(f |e) is obtained by calculating
∑

1≤u≤S c(f |e, f
(u), e(u)).

Figure 3.4: A full matrix shows an example of the entire wordsin English (x-axis) and French
(y-axis). Eight figures show each iteration of examined wordpairs by the word alignment process.
Notice that there are many word (cept) pairs which are not examined (Refer to Figure 3.5).

Then, what we need is to calculate

t(e|f) =
(
∑

S c(e|f))
∑

e (
∑

S c(e|f))
(3.24)

=
count(e|f)
total s[f]

(3.25)

As is evident with this definition of totals[f] = λe, totals[f] works as the normalization constant.

Listing 3.1 shows the algorithm of word alignment (IBM Model 1), which aims at obtaining the

t-table shown in an arrayt. One characteristic of word alignment relates to the line 21. Given the

training corpus, each line is processed line by line updating a small portion of t-tablet. Figure 3.4

shows this situation in eight iterations, starting from theupper left figure to the bottom right figure.

The x-axis shows the word ID of English worde and the y-axis shows the word ID of French word

f . We marked whole the points representing a word paire andf where the alignment between this
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Figure 3.5: A matrix shows that an example of word pairs whichare examined by word alignment
process are plotted (black), while word pairs not examined are not plotted (white). The corpus is
EN-FR hansard 488 sentences.

word pair is examined in the word alignment process, while wedo not mark the points where the

alignment will not be examined. Then, we noticed that there are a considerable number of word

pairs which are not considered at all from the beginning. This is shown in Figure 3.4, where the

points which are not marked are the points which are not considered. One way to utilize this in the

algorithm is to make a sparse matrixt.

Listing 3.1: wordAlignment.py

1 def trainStandardEM ( L1tok, L2tok ):
2 t = {}
3 count = {}
4 total = {}
5 total_s = {}
6 residual =1
7 print 'Initial correspondence calculation'
8 numSentence = len ( L1tok )
9 assert ( len ( L1tok )== len ( L2tok ))
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Figure 3.6: Convergence in terms of log likelihood.

10 iteration = 0
11 print 'Initial parameters set.'
12 for i in range ( numSentence ):
13 for e in L1tok [ i ]:
14 for f in L2tok [ i ]:
15 t [( e,f )] = UNIFORM_PROB
16 print 'Iterations.'
17 PPs = []
18 while ( iteration < ITERATION_MAX):
19 count = {}
20 total = {}
21 for i in range ( numSentence ):
22 for e in L1tok [ i ]:
23 total_s [ e] = 0
24 for f in L2tok [ i ]:
25 try:
26 total_s [ e] += t [( e,f )]
27 except:
28 pass
29 for e in L1tok [ i ]:
30 for f in L2tok [ i ]:
31 try:
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32 count [( e,f )] += t [( e,f )] / total_s [ e]
33 except KeyError :
34 try:
35 count [( e,f )] = t [( e,f )] / total_s [ e]
36 except:
37 pass
38 try:
39 total [ f ] += t [( e,f )] / total_s [ e]
40 except KeyError :
41 try:
42 total [ f ] = t [( e,f )] / total_s [ e]
43 except:
44 pass
45 for x in count.keys ():
46 f =x[1]
47 try:
48 t [ x] = count [ x] / total [ f ]
49 except KeyError :
50 pass
51 print
52 perplexity = - np.sum ( np.log2 ( x[1]) for x in t.items ())
53 print 'PP=' ,perplexity
54 PPs.append ( perplexity )
55 return t

Figure 3.6 shows the convergence in terms of log likelihood.Although we often iterate 5 itera-

tions or 10 iterations on IBM Model 1 when we use GIZA++, this graph shows that the convergence

is achieved around 20 iterations.

3.5.2 Standard EM (standard ML, Vectorial Form)

Now we can easily modify this algorithm in vectorial form, which takes advantages if this is run

on some architecture of CPUs or software such as Matlab. Pseudocode is shown in Listings A.1 in

Appendix.
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3.5.3 Local MAP Estimate-EM (standard ML)

Let P (ai) be prior knowledge about a local alignment link from the position i in f to the position

ai in e. P (f, a|e) for MAP estimate version of IBM Model 1 can be defined as in (3.26):

P (f, a|e) =
ǫ

(l + 1)m

m
∏

j=1

P (fj|eaj , aj)P (aj) (3.26)

Then,















maximize
∑

P (f, a|e) =
ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

m
∏

j=1

P (fj|eaj , aj)P (aj)

subject to
∑

f t(f |e) = 1

(3.27)

The LagrangianL(t, λ) can be written as in (3.36):

L(t, λ) =
ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

m
∏

j=1

P (fj|eaj , aj)P (aj)−
∑

e

λe

(

∑

f

t(f |e)− 1

)

(3.28)

Then, the partial derivative ofL(t, λ) with respect tot becomes as in (3.37):

∂L(t, λ)

∂t
=

ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

m
∑

j=1

δ(f, fj)δ(e, eaj)t(f |e)
−1 (3.29)

m
∏

k=1

t(fk|eak , ak)P (ak)− λe (3.30)
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whereδ is the Kronecker delta function. The stationary point is attained when this partial derivative

is zero as in (3.31):

t(f |e) = λe
−1 ǫ

(l + 1)m

l
∑

a1=0

. . .

l
∑

am=0

m
∑

j=1

δ(f, fj)δ(e, eaj)
n
∏

k=1

P (fk|eak , ak)P (ak) (3.31)

= λe
−1 ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

n
∏

k=1

P (fk|eak , ak)P (ak){
m
∑

j=1

δ(f, fj)δ(e, eaj)}

= λe
−1 ǫ

(l + 1)m

m
∏

k=1

l
∑

i=0

t(fk|ei)P (ak)

This suggests that given an initial guess for the translation probabilitiest(fk|eak) on the righthand

side of (3.31), we will obtain a new estimate oft(f |e) on the lefthand side.

In order to facilitate the computation, we define an auxiliary functionc(f |e) to removeǫ.

c(f |e) =
m
∑

j=1

n
∑

i=0

t(e|f)P (ak)δ(e, ej)δ(f, fi)
∑lf

i′=0 t(e|fi′)P (ai′)
(3.32)

The priorlog p(t), a probability used to reflect the degree of prior belief about the occurrences

of the events, can embed prior knowledge about noun phrases (or MWEs). The prior of this MAP-

based word aligner is defined by the alignment links betweene and f by T = {(sentID, ti,

tj, posi, posj), . . . , }. We use this information to calculate the priorp(t) = p(t; e, f, T ) for the

given wordse andf : this is 1 if e andf have an alignment link, 0 if they are not connected, and

uniform if their link is not known. This is shown in (3.33):6

p(t; ei, fi, T ) =































1 (ei = ti, fj = tj)

0 (ei = ti, fj 6= tj)

0 (ei 6= ti, fj = tj)

uniform (ei 6= ti, fj 6= tj)

(3.33)

6This equation shows how to set up our prior. For example, whenei = tiandfj 6= tj , our prior takes the value0.
This is the value of the prior.)
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pair GIZA++(no prior) Ours(with prior)
EN-FR fin ini prior fin ini prior

is NULL 1 .25 0 0 .25 .25
rosyen 1 .5 0 0 .5 .2
that . 1 .25 0 0 .25 .25
life la 1 .25 0 0 .25 0
. c‘ 1 .25 0 0 .25 .25
thatc‘ 0 .25 0 1 .25 .25
is est 0 .25 0 1 .25 .25
life vie 0 .5 0 1 .5 1
rosyrose 0 .25 0 1 .25 .2

NULL   la   vie   en   roseNULL   c’   est   la   vie   .

that   is   life   . rosy    life

NULL   c’   est   la   vie   .

that   is   life   .

NULL   la   vie   en   rose

rosy    life

GIZA++ (no prior)

Ours (with prior)

Table 3.3: Benefit of prior knowledge about anchor words illustrated by toy data.

The posterior probability is calculated for the prior as in the Listing 3.3.

Listing 3.2: wordAlignment.py

1 def trainMAPEM ( L1tok,L2tok,prior ):
2 ...the same as trainStandardEM ...
3 while ( iteration < ITERATION_MAX):
4 count = {}
5 total = {}
6 for i in range ( numSentence ):
7 for e in L1tok [ i ]:
8 total_s [ e] = 0
9 for f in L2tok [ i ]:

10 try:
11 total_s [ e] += t [( e,f )] * pri [( e,f )]
12 except:
13 pass
14 for e in L1tok [ i ]:
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15 for f in L2tok [ i ]:
16 try:
17 count [( e,f )] += t [( e,f )] * pri [( e,f )] /
18 total_s [ e]
19 except KeyError :
20 try:
21 count [( e,f )] = t [( e,f )] * pri [( e,f )] /
22 total_s [ e]
23 except:
24 pass
25 try:
26 total [ f ] += t [( e,f )] * pri [( e,f )] / total_s [ e]
27 except KeyError :
28 try:
29 total [ f ] = t [( e,f )] * pri [( e,f )] /
30 total_s [ e]
31 except:
32 pass
33 for x in count.keys ():
34 f =x[1]
35 try:
36 pri =prior [ f ]
37 except:
38 pri =1. 0
39 try:
40 t [ x] = count [ x] / total [ f ]
41 except KeyError :
42 pass
43 logLikelihood = - sum( log ( x[1]) for x in t.items ())
44 for x in count.keys ():
45 f =x[1]
46 if ( t [ x] < PROB_SMOOTH):
47 t [ x]= PROB_SMOOTH
48 ...the same as trainStandardEM ...

3.5.4 MAP Assignment-EM (standard ML)

Except for the simplest case when we do not consider any Markov dependencies, the problem of

MAP estimate corresponds to finding the configuration that ismost likely under the distribution

p(x) defined over the (Bayesian or Markov) network. In this generalsetting, under the assump-

tion that we do not doubt the evidences, the task of MAP assignment is to find the most likely
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assignment to all of the (non-evidence) variables. This setting is somewhat simpler than the MAP

estimate in the previous section in which we assume the priorbelief which we may override de-

pending on the statistics.

First we devide variables into the variables whose value arealready known a priori and those

which we would like to obtain. Concretely, letj ∈ PRI be variables which we know the values a

priori, andj ∈ V AR be variables in question. Then,P (f, a|e) for the MAP assignment version of

IBM Model 1 can be defined as in (3.34):

P (f, a|e) =
ǫ

(l + 1)m

m
∏

j∈V AR

t(fj|eaj)
∏

j∈PRI

t(fj|eaj) (3.34)

Then,































maximize
∑

a t(f, a|e) =
ǫ

(l + 1)m

l
∑

a1=0

. . .

l
∑

am=0

∏

j∈V AR

t(fj|eaj)

∏

j∈PRI t(fj|eaj)

subject to
∑

f t(f |e) = 1

(3.35)

Then, the LagrangianL(t, λ) can be written as in (3.36):

L(t, λ) =

ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

∏

j∈V AR

t(fj|eaj)
∏

j∈PRI

t(fj|eaj)−
∑

e

λe

(

∑

f

t(f |e)− 1

)

(3.36)

Then, the partial derivative ofL(t, λ) with respect tot becomes as in (3.37):

∂L(t, λ)

∂t
=

ǫ

(l + 1)m

l
∑

a1=0

. . .

l
∑

am=0

m
∑

j=1

δ(f, fj)δ(e, eaj)t(f |e)
−1

∏

k∈V AR

t(fk|eak)
∏

k∈PRI

t(fk|eak)− λe (3.37)
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whereδ is the Kronecker delta function. The stationary point is attained when this partial derivative

is zero as in (3.38):

t(f |e)

= λe
−1 ǫ

(l + 1)m

l
∑

a1=0

. . .

l
∑

am=0

m
∑

j=1

δ(f, fj)δ(e, eaj)
∏

k∈V AR

t(fk|eak)
∏

k∈PRI

t(fk|eak)

= λe
−1 ǫ

(l + 1)m

l
∑

a1=0

. . .
l
∑

am=0

∏

k∈V AR

t(fk|eak)
∏

k∈PRI

t(fk|eak){
m
∑

j=1

δ(f, fj)δ(e, eaj)}

= λe
−1 ǫ

(l + 1)m

∑

av0∈V AR

. . .
∑

avn∈V AR

∏

k∈V AR

t(fk|eak)
∑

ap0∈PRI

. . .
∑

apm∈PRI

(3.38)

∏

k∈PRI

t(fk|eak){
m
∑

j=1

δ(f, fj)δ(e, eaj)}

This suggests that given an initial guess for the translation probabilitiest(fk|eak) on the righthand

side of (3.38), we will obtain a new estimate oft(f |e) on the lefthand side.

In order to facilitate the computation, we define an auxiliary functionc(f |e) to removeǫ.

c(f |e) =
∑

a

p(a|e, f)
le
∑

j=1

δ(e, ej)δ(f, fa(j))

=
t(e|f)

∑lf
i∈V AR t(e|fi) +

∑

i∈PRI t(e|fi)

le
∑

j=1

δ(e, ej)

lf
∑

i=0

δ(f, fi) (3.39)

3.5.5 Variational Bayesian-EM (standard ML)

The Bayesian Machine Learning algorithm often depends on theassumed complexity of the distri-

bution. A simple algorithm, such as the maximum entropy maximization algorithm, only assumes

the exponential family distribution. An exponential family is the set of parametric distributions

that has sufficient statistics and a consistent maximum likelihood estimate. In other words, the

likelihood cost function has a global optimum and the estimate of the parameters of distributions
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in this family will be unique,7 as in (3.40):

P (X|θ) = exp(A(X) + T (X)⊤θ −K(θ)). (3.40)

whereA(X) denotes a function of the data,K(θ) a function of the model or the partition func-

tion, andT (X)⊤θ an inner product between the model and a function of the data.The exponential

family distribution includes most of the naturally arisingdistributions, such as normal, binomial,

Dirichlet, Laplace, Wishart distributions, and so forth. The partition functionK(θ) ensures that

the distribution is normalized when we integrate overX. More complex distributions are taken

in the form of mixture models. Further complicated distributions are described by graphical mod-

els. The standard EM and the MAP-EM which we explained in the last two sections are tools to

handle mixture models, and HMM models in general which we explain in the next chapter fall

into the category of graphical models. The complexity of distribution depends on the nature of the

application.

This section follows the description of Beal (Beal, 2003). Theidea of the variational Bayesian

framework employs a simpler distribution than a true distribution to approximate the distribution

over both hidden variables and parameters. Often, we assumea simpler distribution, which we

call thefree distributionq(x, θ), where the hidden states and parameters are independent given the

data.

We assume a prior distribution over parametersp(θ|m) conditioned on the modelm. The

marginal likelihood of a modelp(y|m) can be lower bounded by introducing any distribution over

both latent variables and parameters which has supportp(x, θ|y,m).

Let m be a model with parametersθ giving rise to an IID data sety = {y1, . . . , yn} with

corresponding hidden variablesx = {x1, . . . , xn}. A lower bound on the model, which is the

7Exponential families are characterized by their strictly convex and differential functionsK, which is called a log-
normalizer (or a partition function). Due to such properties, the Hessian of this log-normalizer is a positive definite
matrix.
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model log marginal likelihood, is as in (3.41):

Fm(qx(x), qθ(θ)) =

∫

dθdqx(x)qθ(θ) log
p(x, y, θ|m)

qx(x)qθ(θ)
. (3.41)

This can be iteratively optimised by performing the following updates, which will converge to

a local maximum ofFm(qx(x), qθ(θ)). Note that the superscriptt denotes the iteration number.

E-step:

q(t+1)
xi

(xi) =
1

Zxi

exp

[
∫

dθq
(t)
θ log p(xi, yi|θ,m)

]

for all i (3.42)

where

q(t+1)
x (x) =

n
∏

i=1

q(t+1)
xi

(xi). (3.43)

M-step:

q
(t+1)
θ (θ) =

1

Zθ

exp

[
∫

dxq(t+1)
x (x) log p(x, y|θ,m)

]

(3.44)

Pseudocode is shown in Listing A.2 in Appendix. The difference from the standard EM is evi-

dent in line 31 where we calculate the lower bound in Equation(3.42) and the posterior probability

in the M-step.

3.6 Algorithmic Design (II): Learning HMM

Although word alignment handles two word sequences in different languages, the EM models de-

scribed in the last section do not take advantage of this: they do not treat them as propersequences,

but rather abag-of-words. In this section, we try to treat them as sequences. Our usualsetting is

that we do not have a hand-annotated word aligned corpus; we do not have the (direct) labels, but
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we can compute the expectation of such labels in terms of hidden variables, i.e. alignment func-

tions. The HMM word alignment of Vogel et al. (Vogel et al., 1996) modeled alignment functions

as hidden variables. In brief, the purpose of the HMM model isto introduce a first order Markov

dependency in terms of states.

The discussion of HMM in this section resembles the discussion of the EM algorithm, but be-

comes substantially more complicated since the parametersθ in the model are not a single one but

three, i.e. a translation matrix, an emission matrix, and aninit matrix. The first and the second

algorithms are the standard HMM algorithm. We show two implementations where the former

uses the forward-backward algorithm (or Baum-Welch algorithm) (Baum et al., 1970) via EM al-

gorithm, while the latter uses the graphical model. Since the standard HMM does not have the

interface of prior knowledge, we incorporate priors on parameters, a transition matrix, an emission

matrix, and an init matrix. This model is called a Bayesian HMM(Ghahramani, 2001; Stolcke,

2002). One algorithm counts the pseudo-counts given alternative sentences provided as a prior,

which is the third algorithm which we call a pseudo-count Bayesian HMM, while another algo-

rithm makes use of Gibbs sampling to estimate the E-step, which is the fourth algorithm which we

call a Gibbs-Bayesian HMM. We have a potential difficulty in this Bayesian HMM in that our aim

(which we discuss in detail in the next section) is to place the prior knowledge about alignment

links. This difficult problem is often called the MAP configuration problem, which is one of the

hottest topics in the Bayesian Machine Learning community. All Bayesian HMM algorithms, as

far as we know, are aimed at solving the overfitting problem: these algorithms aim at learning the

parameters of priors. In contrast, we aim at enforcing priors in the model: our algorithm aims

at learning models under the specified priors which are already set. Similar to the discussion re-

garding the EM algorithm, the MAP estimation is basis-dependent. We demonstrate a variational

Bayesian approach to HMM, which we call avariational Bayesian-HMM(VB-HMM).
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3.6.1 Standard HMM (standard ML, GIZA++): Baum-Welch Implementa tion

HMM Model handles not a bag-of-word but a sequence. Hence, all the possible alignments are not

equally likely possible. Instead of enumerating all the possible alignments
∑

am1
as in (3.46), we

can use the maximum approximationmaxam1 as in (3.47) (Vogel et al., 1996; Ney et al., 2000):

P (f̆ |ĕ) =
(

P (f1:lf |e1:le) = P (f l
1|e

m
1 )
)

(3.45)

=
∑

am1

J
∏

j=1

[

p(aj|aj−1, I)p(fj|eaj)
]

(3.46)

≃ max
am1

J
∏

j=1

[

p(aj|aj−1, I)p(fj|eaj)
]

(3.47)

Let Z be a normalization constant. Recollect that in the IBM Model 1
∑

a t(f, a|e) = t(f |e).

We can write (3.48):















maximize t(f |e) =
1

Z
max
am1

m
∏

j=1

t(fj|eam , am)P (am|am−1)

subject to
∑

f t(f |e) = 1

(3.48)

Note that the standard HMM does not have an equality constraint in this formula. Similarly with

the previous sections, we consider to employ the Lagrange method of Lagrange (1797). Letλe

denotes a Lagrange multiplier. The LagrangianL(t, λ) can be written as in (3.49):

L(t, λ) =
1

Z
max
al1

m
∏

j=1

t(fj|eam , am)P (am|am−1)−
∑

e

λe

(

∑

f

t(f |e)− 1

)

(3.49)

The partial derivative ofL(t, λ) with respect tot becomes as in (3.50):

∂L(t, λ)

∂t
=

1

Z

m
∑

j=1

δ(f, fj)δ(e, eaj)t(f |e)
−1max

al1

m
∏

k=1

t(fk|eaj , aj)P (aj|aj−1)− λe (3.50)

whereδ is the Kronecker delta function, equal to1 when both of its arguments are the same and0
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otherwise. The stationary point is attained when this partial derivative is zero as in (3.51):

t(f |e) = λe
−1 1

Z

m
∑

j=1

δ(f, fj)δ(e, eaj)max
al1

m
∏

k=1

t(fk|eak , ak)P (ak|ak−1) (3.51)

We define an auxiliary functionc(f |e) to removeǫ.

c(f |e) =
∑

a

p(a|e, f)
le
∑

j=1

δ(e, ej)δ(f, fa(j)) (3.52)

≃
t(e|f)

maxal1
∏m

k=1 t(fk|eak , ak)P (ak|ak−1)

le
∑

j=1

δ(e, ej)

lf
∑

i=0

δ(f, fi) (3.53)

This functionc(f |e) is calculated for each sentence pair, from the sentence pair(e(1), f (1)) to

(e(S), f (S)). The quantitymaxal1
∏m

k=1 t(fk|eak , ak)P (ak|ak−1) can be obtained via the standard

HMM where we use a cache matrix for each sentence pair. Then, we sum all of these to obtain
∑

S c(f |e).

t(e|f) =
(
∑

S c(e|f))
∑

e (
∑

S c(e|f))
(3.54)

Now we focus on the standard HMM to obtain the quantitymaxal1
∏m

k=1 t(fk|eak , ak)P (ak|ak−1).

The description of HMM model is based on Gharamani (2001). The HMM model assumes that

the state of this hidden process satisfies the Markov property: given the value ofSt−1, the current

stateSt is independent of all the states prior tot − 1. Figure 3.7 shows a graphical model of an

HMM. Let X1:T denoteX1, . . . , XT . We can write the complete-data likelihood of a sequence as

in (3.55):

p(s1:T , y1:T ) = p(s1)p(y1|s1)
T
∏

t=2

p(st|st−1)p(yt|st) (3.55)
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where we marginalize out hidden variabless1:T as in (3.56):

p(y1:T ) =
∑

s1:T

p(s1:T , y1:T ) (3.56)

S1 S2 S3 S4

X1 X2 X3 X4

f_2 | e_A2f_1 | e_A1 f_3 | e_A3 f_4 | e_A4

A1 A2 A3 A4

Figure 3.7: The left figure shows the original HMM model, while the right figure shows the HMM
word alignment of Vogel et al. Note that the word pair appearsat an emission node.

Let θ denote the set of parameters in the model.θ consists of a transition matrixA, an emission

matrixC, and an init matrixπ.

θ = (A,C, π) (3.57)

A = {ajj′} : ajj′ = p(st = j′|st−1 = j) (3.58)

C = {cjm} : cjm = p(yt = m|st = j) (3.59)

π = {πj} : πj = p(s1 = j) (3.60)

We show the dependencies inθ = (A,C, π) in p(st|st−1), p(yt|st), andp(s1) as in (3.61) – (3.63),

respectively.

p(st|st−1, A) =
k
∏

j=1

k
∏

j′=1

a
st,j′st−1,j

jj′ (3.61)

p(yt|st, C) =
k
∏

j=1

p
∏

m=1

c
st,jyt,m
jm (3.62)

p(s1|π) =
k
∏

j=1

π
s1,j
j (3.63)
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while we add the parameter dependencies in (3.55) as in (3.64) – (3.65):

p(s1:T , y1:T |θ) = p(s1|π)
T
∏

t=1

p(yt|st, C)
T
∏

t=2

p(st|st−1, A) (3.64)

= log p(s1|π) +
T
∑

t=1

log p(yt|st, C)
T
∑

t=2

log p(st|st−1, A) (3.65)

Note that depending on the case, the HMM can have discrete andcontinuous values. We explain

only the case of discrete values since we do not need to consider the continuous case in word

alignment.

Now, we consider the application of the EM algorithm since wecannot compute this in general

as the state variables are hidden. We consider the expectation under the posterior distribution of

the hidden states given the observations, as in (3.66):

Ef(x) =

∫

X

f(X)P (X|Y, θ)dX (3.66)

and as in Listing A.3 in Appendix. This posterior distribution of the latent variables can be obtained

efficiently using a two-stage message passing algorithm. Inthe HMM literature, this is known

as the forward-backward algorithm (Rabiner, 1989), or the Baum-Welch algorithm (Baum et al.,

1970). The forward-backward algorithm is one instance of the sum-product algorithm to obtain

marginals in the graphical model.

Using the forward-backward algorithm in (3.70), we derive the following quantities.

Aij =
T
∑

t=2

Est,ist−1,j (3.67)

=

∑T

t=2 Est,ist−1,j
∑T

t=2 Est−1,j

(3.68)

Ci = Es1,i (3.69)

πdi =

∑T

t=1 yt,dEst,i
∑T

t=1 Est,i
. (3.70)
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Note that the forward-backward algorithm is in calculated in the following manner. Firstly, the

backward path computes the conditional probability of the observationsyt+1:T givenst as in (3.71)

– (3.73):

βt = P (yt+1:T |st) (3.71)

=
∑

st+1

P (yt+1:T |st+1)P (st+1|st)P (yt+1|st+1) (3.72)

=
∑

st+1

βt+1P (st+1|st)P (yt+1|st+1) (3.73)

βt,i = P (yt+1:T |st = i) (3.74)

Secondly, the forward path computesαt. Thisαt is defined as the joint probability ofst and the

sequence of observationsy1:t.

αt = P (st, y1:t) (3.75)

=

[

∑

st−1

P (st−1, y1:t−1)P (st|st−1)

]

P (yt|st) (3.76)

=

[

∑

st−1

αt−1P (st|st−1)

]

P (yt|st) (3.77)

αt,i = P (st = i, y1:t) (3.78)

Then, from these, we can compute the expections ofst,i andst,ist−1,j.

Est,i = γt,i (3.79)

=
αt,iβt,i

∑

j αt,jβt,j
(3.80)

Est,ist−1,j = ξt,i,j (3.81)

=
αt−1,jAi,jP (yt|st,i)βt,i

∑

k,l αt−1,kAk,lP (yt|st,l)βt,l
(3.82)
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From (3.55), we take logarithm in both sides as in (3.83):

logP (s1:T , y1:T ) = logP (s1) +
⊤
∑

t=1

logP (yt|st) +
⊤
∑

t=2

logP (st|st−1) (3.83)

We replace this representation with parametersθ = {A,C, π}. LetA(i,j) be an element of the

transition matrix ofK×K, which means the probability of transitioning from statej to statei. By

this definition,

P (st|st−1) =
K
∏

i=1

K
∏

j=1

(Aij)
st,ist−1,j . (3.84)

We take the logarithm of both sides.

logP (st|st−1) =
K
∑

i=1

K
∑

j=1

st,ist−1,j logAij (3.85)

= s⊤t (logA)st−1. (3.86)

LetC be an emission matrix of sizeD ×K.

P (yt|st) = C (3.87)

logP (yt|st) = y⊤t (logC)st (3.88)

logP (s1) = s⊤1 (log π) (3.89)

Altogether, we can rewrite (3.65) as in (3.90):

p(s1:T , y1:T |θ) = s⊤1 logC +
⊤
∑

t=1

s⊤t logCyt

⊤
∑

t=2

log s⊤t−1 logAst (3.90)

Note that we assume a homogeneous transition in the HMM word alignment model as in Defi-

nition 5.
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Definition 5 (Homogeneous transition in HMM). When all the transitions in HMM from statesu

to sv are position-independent, i.e.p(Ai = su|Ai=1 = sv) = p(Aj = su|Aj−1 = sv), the HMM is

called homogeneous. Notice that the alignment functionAi = j means thatfj is mapped intoea(i),

i.e. the j-th position of f is mapped into thei-th position ofe. We consider only output values, i.e.

su = a(i) andsv = a(i− 1).

3.6.2 Standard HMM (standard ML): Graphical Model Implementati on

The following description is based on (Bishop, 2006). Letfn denote the factors andh denote the

root node among such factors. These factors can be written asin (3.91):











h(z1) = p(z1)p(x1|z1)

fn(zn−1, zn) = p(zn|zn−1)p(xn|zn)
(3.91)

First, we consider the messages from the leaf node to the rootnode. Using the sum-product algo-

rithm, the messages can be writte as in (3.92):











µzn−1→fn(zn−1) = µfn−1→zn−1(zn−1)

µfn→zn(zn) =
∑

zn−1
fn(zn−1, zn)µzn−1→fn(zn−1)

(3.92)

Note that (3.92) is equivalent to the alpha recursions. From(3.92), we deleteµzn−1→fn(zn−1) to

obtain a recursion from the factorfn to the nodezn as in (3.93):

µfn→zn(zn) =
∑

zn−1

fn(zn−1, zn)µfn−1→zn−1(zn−1) (3.93)

If we defineα as in (3.94):

α(zn) = µfn→zn(zn), (3.94)
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this leads to the forward algorithm as in (3.95):

α(zn) = p(xn|zn)
∑

zn−1

α(zn−1)p(zn|zn−1) (3.95)

Then, we consider the messages from the root node to the leaf node. Since variable nodes do

not perform any computation, message can be writte as in (3.96):

µfn+1→fn(zn) =
∑

zn+1

fn(zn, zn+1)µfn+2→zn+1(zn+1) (3.96)

If we defineβ as in (3.97):

β(zn) = µfn+1→zn(zn), (3.97)

this leads to the backward algorithm as in (3.98):

β(zn) =
∑

zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn) (3.98)

Init message is shown in (3.99):

µzN→fN (zN) = 1 (3.99)

Note that the local marginal at the nodezn can be obtained by the product of the incoming

messages as in (3.100):

p(zn, X) = µfn→zn(zn)µfn+1→zn(zn) (3.100)

= α(zn)β(zn) (3.101)
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Then, if we defineγ = p(zn, X)/p(X), we obtain (3.103):

γ(zn) =
p(zn, X)

p(X)
(3.102)

=
α(zn)β(zn)

p(X)
(3.103)

HMM with mixture of Gaussian
  output

Factorial HMM

Input−output HMM

Coupled HMM

Auto Regressive HMM

Standard HMM

Figure 3.8: Five variants of HMM.

Figure 3.8 shows the standard HMM and five variants of HMM, whose network structure re-

sembles the standard model. Traditionally, the algorithm of these need designing different algo-

rithms. The graphical model facilitates the design of theseeach of the variants providing basic

notions of inference / learning which can be reused. Hence, once we design an HMM, we can

reuse it fairly easily when we implement a factorial HMM, forexample.
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3.6.3 Bayesian HMM (standard ML): Pseudo-count Implementation

A Bayesian HMM (Stolcke, 1994; Ghahramani, 2001; Beal, 2003) is one example of incorporating

the prior into the standard HMM. It is often the case that the Dirichlet prior is selected due to its

conjugacy. Dirichlet priors are applied on the transition and emission matrix, where we assume

a multinomial distribution. The Dirichlet distribution isa conjugate prior over the Multinomial

distribution.

Note that our main theme in this thesis is to embed the prior knowledge into an HMM which

is slightly different from ours: the prior here is to preventoverfitting. Since excessive parameters

in HMM cause overfitting, this method aims at regularising them using a prior to reduce such

parameters, which is a common technique in HMM; then it maximises the a posteriori probability

of the parameters by the MAP estimate.

The generative model can be written as in (3.105)∼ (3.108):

θt|α ∼ Dir(α) (3.104)

φt|α
′ ∼ Dir(α′) (3.105)

ti|ti−1 = t ∼ Multi(θt) (3.106)

wi|ti = t ∼ Multi(φt) (3.107)

y ∼ F (φ) (3.108)

For a sequence of drawsx = (x1, . . . , xn) from a multinomial distributionθ with observed

countsn1, . . . , nK , a symmetricDirichlet(β) prior overθ yields the MAP estimateθk =
nk+β−1

n+K(β−1)
.

On the one hand, a multinomial distribution for unordered samples can be expressed as in

(3.109):

P (c1, . . . , cn|c, θ) =
n
∏

i=1

θcii (3.109)
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On the other hand, a Dirichlet prior distributiong(aq) can be expressed as in (3.110):

g(aq) =
1

B(ν1,q, . . . , νn,q)

n
∏

p=1

(qq,p)
νq,p−1 (3.110)

whereB(νp,q, . . . , νn,q) is the Beta function in (3.111):

B(ν1,q, . . . , νn,q) =
Γ(ν1,q) . . .Γ(νn,q)

Γ(ν1,q + . . .+ νn,q)
(3.111)

whereΓ(n) = (n− 1)!. A Dirichlet prior is a conjugate prior, i.e. the same functional form as the

likelihood function, of the multinomial distribution. Hence,

P (θ|c1, . . . , cn) =
1

B(ν1,q + α1, . . . , νn,q + αn)

n
∏

i=1

θ
νq,p+αi−1
i . (3.112)

Then, integration of this yields a closed-form solution as in (3.114):

∫

θ

P (θ)P (c1, . . . , cn|θ)dθ =
1

B(α1, . . . , αn)

∫

θ

n
∏

i=1

θci+αi−1
i dθ (3.113)

=
B(c1 + α1, . . . , cn + αn)

B(α1, . . . , αn)
(3.114)

Then the MAP estimate foraq,p can be expressed as in (3.115):

aq,p =
(νq,p − 1) + cq,p

∑

r(νr − 1) +
∑

r cr,q
(3.115)

Note that this is equivalent to the addition of(νi − 1) virtual samples to the likelihood, which is

called a pseudo count method.
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3.6.4 Variational Bayesian HMM (standard ML)

This section follows the description of Beal (Beal, 2003). By considering the derivatives of the

lower bound with respect to the variational posterior, it yields

log q(s1:T ) = 〈log p(s1:T , y1:T |π,A,C)〉q(π)q(A)q(C) − log z̄(y1:T ). (3.116)

wherez(y1:T ) is a normalization constant. Using this, the complete-datalikelihood is as in (3.118):

p(s1:T , y1:T ) = p(s1)p(y1|s1)
T
∏

t=2

p(st|st−1)p(yt|st) (3.117)

p(s1:T , y1:T |θ) = p(s1|π)
T
∏

t=1

p(yt|st, C)
T
∏

t=2

p(st|st−1, A) (3.118)

log p(s1:T , y1:T |θ) = log p(s1|π) +
T
∑

t=1

log p(yt|st, C)
T
∑

t=2

log p(st|st−1, A) (3.119)

= 〈s⊤1 log π +
T
∑

t=1

s⊤t logCyt +
T
∑

t=2

log s⊤t−1 logAst〉q(π)q(A)q(C)

− log z̄(y1:T ) (3.120)

= s⊤1 〈log π〉q(π) +
T
∑

t=1

s⊤t 〈logC〉q(C)yt +
T
∑

t=2

s⊤t−1〈logA〉q(A)st

− log z̄(y1:T ) (3.121)

Now we consider the parameterθ as well as the natural parameter vectorφ(θ) given in (3.123):

θ = (π,A,C) (3.122)

φ(θ) = (log π, logA, logC) (3.123)
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Note that the expectation of the natural parametersφ andθ are given as in (3.125):

φ̄ = 〈φ(θ)〉q(θ) (3.124)

= (〈log π〉q(π), 〈logA〉q(A), 〈logC〉q(C)) (3.125)

and

θ̄ = φ−1(〈φ(θ)〉q(θ)) (3.126)

= (exp〈log π〉q(π), exp〈logA〉q(A), exp〈logC〉q(C)) (3.127)

= (π̄, Ā, C̄). (3.128)

Using the standard results shown in (3.129):

∫

dπDir(π|u) log πj = ψ(uj)− ψ(
k
∑

j=1

uj) (3.129)

we can compute the expectations of the logarithm of the parameters under the Dirichlet distribu-

tions as in (3.132):

π̄ = exp

[

ψ(w
(π)
j − ψ(

k
∑

j=1

w
(π)
j )

]

:
k
∑

j=1

π̄j ≤ 1 (3.130)

Ā = exp

[

ψ(w
(A)
jj′ − ψ(

k
∑

j=1

w
(A)
jj′ )

]

:
k
∑

j′=1

¯ajj′ ≤ 1∀j (3.131)

C̄ = exp

[

ψ(w
(C)
jm − ψ(

p
∑

j=1

w
(C)
jm )

]

:

p
∑

m=1

c̄kjm ¯ajj′ ≤ 1∀j (3.132)

As is similar with the standard HMM, we use the Baum-Welch algorithm (or forward-backward
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algorithm) to deriveα andβ, as in (3.134):

αt(st) =
1

ξ̄t(yt)

[

∑

st=1

αt−1(st−1)p̄(st|st−1)

]

p̄(yt|st) (3.133)

βt(st) =
∑

st+1

βt+1(st+1)p̄(st+1|st)p̄(yt+1|st+1)) (3.134)

The calculation of the lower bound is done in the following manner. The product of normali-

sation constants is as in (3.135):

T
∏

t=1

ξ̄t(yt) = z̄(y1:T ). (3.135)

Then, we can write as in (3.136):

F (q(π,A,C), q(s1:T )) =

∫

dπq(π) log
p(π)

q(π)
+

∫

dAq(A) log
p(A)

q(A)
+

∫

dCq(C) log
p(C)

q(C)
+

H(q(s1:T )) + 〈log p(s1:T , y1:T |π,A,C)〉q(π)q(A)q(C)q(s1:T ) (3.136)

whereH(q(s1:T )) denotes the entropy of the variational posterior distribution over hidden state

sequences, as in (3.137):

H(q(s1:T )) = −
∑

s1:T

q(s1:T )〈log p(s1:T , y1:T |π,A,C)〉q(π)q(A)q(C) + log z̄(y1:T ) (3.137)

Using this, the computation of the lower boundF (q(π,A,C), q(s1:T )) involves the evaluation of

KL divergences between variational posterior and prior Dirichlet distributions for each row of

π,A,C and the normalisation constants{ ¯ξt(yt)}
T
t=1, which is in (3.138):

F (q(π,A,C), q(s1:T )) =

∫

dπq(π) log
p(π)

q(π)
+

∫

dAq(A) log
p(A)

q(A)
+

∫

dCq(C) log
p(C)

q(C)
+

log z̄(y1:T ) (3.138)
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M-step:

We take the functional derivatives ofF with respect to each of these distributions and consider

the point which takes zero. This yields the following Dirichlet distributions.

q(π) = Dir({π1, . . . , πk}|{w
(π)
1 , . . . , w

(π)
k }), w

(π)
j

= uπj + 〈δ(s1, j)〉q(s1:T ) (3.139)

q(A) =
k
∏

j=1

Dir({aj1, . . . , ajk}|{w
(A)
j1 , . . . , w

(A)
jk }), w

(A)
jj′

= uAj′ +
T
∑

t=2

〈δ(st−1, j)δ(st, j
′)〉q(s1:T ) (3.140)

q(C) =
k
∏

j=1

Dir({cj1, . . . , cjk}|{w
(C)
j1 , . . . , w

(C)
jk }), w

(C)
jq

= uCq +
T
∑

t=1

〈δ(st, j)δ(st, q)〉q(s1:T ) (3.141)

3.7 Algorithmic Design: Inference

While Sections 3.5 and 3.6 derives lexical translation probabilities (Section 3.5) or HMM Model

(Section 3.6), this section derives a Viterbi alignment using the obtained lexical translation prob-

abilities or models. Viterbi alignment is the most likely sequence of alignments for a particular

sentence pair (Refer to the righthand side of upper and lower figures in Figure 1.3). Although

the importance of this process is seldom described, this process is inevitable in order to pipe the

obtained lexical translation probabilities into the form of Viterbi alignment. Viterbi alignment of

the training corpus is the input to the phrase extraction process.

3.7.1 Viterbi Decoding (standard ML, GIZA++)

Let us define an observed sequenceX, a model parameterθ, and latent variablest. If we are

interested in obtaining the posterior distribution for a given observation, we are to seekP (θ|X).

On the other hand, the quantityP (t = 1|θ,X) is sometimes useful when the model is sensitive to
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the choice oft, which is often the case. The former corresponds to the Viterbi decoding (Viterbi,

1967) and the latter does to the posterior decoding.

A Viterbi decoding is needed to obtain the most probable state path for a given modelM.

Definition 6 (Viterbi decoding). Given HMM modelM and a observed sequenceX1, . . . , Xn, find

the most likely sequence of statess1, . . . , sn which could have generated this observed sequence.

3.7.2 Viterbi Decoding (standard ML): Graphical Model Implementation

The following description is based on (Bishop, 2006). A factor graph for HMM is shown in Figure

3.9. Let the nodezn denote the root. We pass massages from the leaf nodes to the root using the

max-sum algorithm, where the messages in the max-sum algorithm are shown as in (3.142):











µzn→fn+1 = µfn→zn(zn)

µfn+1→zn+1 = maxzn{ln fn+1(zn, zn+1) + µzn→fn+1(zn)}
(3.142)

By eliminatingµzn→fn+1(zn) from (3.142), we obtain a recursion form the message fromf to z as

in (3.143):

ω(zn+1) = ln p(xn+1|zn+1) + max
zn

{ln p(x+1|zn) + ω(zn)} (3.143)

whereω(zn) = µfn→zn(zn). Note that init message is shown as in (3.144):

ω(z1) = ln p(z1) + ln p(x1|z1)) (3.144)

Note that the Viterbi algorithm can also be obtained from thejoint distribution. We take the loga-

rithm and exchangemax and
∑

, which is shown as in (3.145):

ω(zn) = max
z1,...,zn−1

p(x1, . . . , xn, z1, . . . , zn) (3.145)
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Figure 3.9: Figures shows a factor graph of hidden Markov model.

As is explained in Section 2.3. on the max-product (max-sum)algorithm, once we computed

themax operations, we can obtain the most probable path. We can alsoobtain the state sequences

corresponding to this path by the back-tracking procedure.

kmax
n = φ(kmax

n+1 ) (3.146)

If we only keep track ofK possible paths inK current states, we haveK2 possible paths. However,

at timen+1, we only retainK of these paths corresponding to the best path for each state.At step

N , we discover the most probable path. Then, since there is a unique path which uses the state in

its path, it is possible to back-track the path.

3.7.3 Posterior Decoding (standard ML)

A posterior decoding is to obtain multiple paths which have ahigh probability with thresholding

the posterior probabilityδ in each state. This contrasts with Viterbi decoding where the single

most probable path is obtained. Let us define a posterior state probabilityP (X1, . . . , Xn, st = i),

namely a probability that an HMM modelM generates the sequenceX1, . . . , Xn passing through

the statei at timet. Then, the aim of a posterior decoding is for eachi(1 ≤ i ≤ n) to find a state

ti that is the most likely to have generated the symbol at that position, as in Algorithm 1:

Definition 7 (Posterior decoding). Given HMM modelM and sequenceX = X1, . . . , Xn, for

each position1 ≤ i ≤ n, find the stateti that most likely to have generated the symbol at that
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position.

Algorithm 1 Pseudocode for posterior decoding
def posteriorDecoding(e,f,t,forward,backward,threshold)
Step 1: (e,f)=getSentence()
Step 2: forward=makeForward(e,f,t)
Step 3: backward=makeBackward(e,f,t)
Step 4: likelihood = makeLikelihood(forward,backward)
Step 5: posterior = makePosterior(forward,backward,likelihood)
Step 6: forei in e:
Step 7: forfj in f:
Step 8: alignment.addPosteior(ei,fi, posterior[ei,fj])
Step 9: if (posterior[ei,fj] > threshold):
Step 10: alignment.add([ei,fj])

3.8 Data Design: Training Data Manipulation

In Machine Learning research, there are various data manipulation techniques, such as data center-

ing, data standardization, anomality detection (or noise reduction), principle component analysis

(PCA), singular value decomposition (SVD), ANOVA analysis,lower-dimensional reduction, and

so forth. This section focuses on noise reduction (or anomality detection).

We describe algorithms to handle both sentence-level and word-level noise. At the sentence-

level, we first describe an hueristic sentence cleaning algorithm, then move to the bigram-based

sentence cleaning algorithm. At the word-level, we describe two kinds of noise-sensitive MAP-

word aligner: this word aligner can inherently handle noiseif it is detected beforehand. The first

MAP-based word aligner is simple where prior knowledge is consistent, while the second MAP-

based word aligner is complex where prior knowledge is not consistent. With this MAP-based word

aligner, we aim at handling three kinds of noise: 1) many-to-many mapping objects, 2) translational

noise, and 3) noisy mapping between function words and content words. The first one is relatively

easy to handle, except that the computational complexity ishigh. The third one, the detection of

translational noise, is very difficult as unfortunately, wecannot use the results of word alignment
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to judge translational noise. Figure 3.10 shows that the 0-to-1 mappings amount to around 30% in

the EN to DE direction. In reality, translational noise is fairly low in number between European

languages, say less than 1%. A null alignment does not suggest that this immediately indicates

translational noise.

Figure 3.10: Figures A and C show the results of word alignment for DE-EN where outliers de-
tected by Algorithm 1 are shown in blue at the bottom. We checkall the alignment cept pairs in
the training corpus inspecting so-called A3 final files by type of alignment from 1:1 to 1:13 (or
NULL alignment). It is noted that outliers are miniscule in Figures A and C because each count is
only 3%. Most of them are NULL alignments or 1:1 alignments, while there are small numbers of
alignments with 1:3 and 1:4 (up to 1:13 in the DE-EN directionin Figure A). In Figure C, 1:11 is
the greatest. Figures B and D show the ratio of outliers over all the counts. Figure B shows that
in the case of 1:10 alignments, 1/2 of the alignments are considered to be outliers by Algorithm 1,
while 100% of alignments from 1:11 to 1:13 are considered to be outliers (false negatives). Figure
D shows that in the case of EN-DE, most of the outlier ratios are less than 20%.

Note that the effectiveness of these algorithms depends on the particular situation, especially

in its level of noise and its language-specific noise arisingfrom the corpus. Apart from the level

of noise which depends on the corpus, the difference of language between JP-EN is bigger than
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X ENFR FREN ESEN DEEN ENDE
10 0.098 0.096 0.143 0.097 0.079
20 0.165 0.165 0.246 0.138 0.127
30 0.193 0.187 0.279 0.157 0.137
40 0.201 0.199 0.295 0.168 0.142
50 0.208 0.201 0.297 0.170 0.145
60 0.211 0.203 0.297 0.171 0.146
70 0.212 0.202 0.298 0.170 0.146
80 0.211 0.202 0.301 0.169 0.147
90 0.212 0.202 0.297 0.171 0.147
100 0.211 0.202 0.302 0.169 0.146
# 43k 43k 51k 60k 60k

ave 21.0/23.8(EN/FR) 20.9/24.5(EN/ES)
len 20.6/21.6(EN/DE)

Table 3.4: BLEU score after cleaning of sentences with lengthgreater thanX. The row showsX,
while the column shows the language pair. Parallel corpus isNews Commentary parallel corpus
(WMT07).

between EN-FR, therefore let us focus on the NTCIR JP-EN data rather than Europarl between

EN-FR.

3.8.1 Sentence-level Corpus Cleaning (SMT oriented, Moses)

A heuristic sentence-level cleaning algorithm is shown in Algorithm 2 whose code is provided in

Moses.

Algorithm 2 Sentence Cleaning Algorithm (Heuristic in state-of-the-art SMT)
Remove sentences with lengths greater thanX (or remove sentences with lengths smaller than
X in the case of short sentences).

This algorithm reduces training sentence pairs based on theindirect featuresentence length.

Interestingly as is shown in Table 3.4 this algorithm may often improve the BLEU score.

Figure 3.11 gives us some insights as to why this algorithm improves BLEU score, since this

algorithm removed the region where the outlier ratio is highin this example. The three figures on

the right show that if we view this using the ratio of outliersover all of the sentence-cleaning, all
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Figure 3.11: The three figures on the left show histograms of the number of sentences over sentence
length. The three figures on the right show histograms of the outlier ratio over sentence length.
This histogram shows that the region whose sentence length is more than 70 or 80 (in the lower
two figures, the region whose sentence length is between 1 and10 as well) has higher ratio of
outliers compared to other area. This explains why Algorithm 2 works. Note that outliers in this
figure were detected by Algorithm 3.

three figures tend to have more than 20–30% of their sentenceshaving a length of 80–100 words.

The lower two figures show that sentence length 1 to 4 tends to be less than 10% of the figure.

(As the numbers of outliers are less than 5% in each case, the outliers are miniscule. In the case of

EN-ES, we can observe the dark blue small distributions at the bottom of each figure from sentence

length 2 to 16.)

3.8.2 Sentence-level Outlier Detection (original)

This algorithm comes from the analogy of the outlier detection. In a linear regression problem,

it is known that the existence of a few extreme points called outliers which are distant from the

decision plane can drastically affect results. If this is the case, we would obtain better results by
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removing such outliers, or conversely by collecting good inliers. We show this algorithm in the

context of SMT to make a good point algorithm.

First we define the noise detection problem as in Definition 8.

Definition 8 (Noise detection). Let S = {(ĕ1, f̆1), . . . , (ĕn, f̆n)} be a parallel corpus consisting

of a training and development corpus. For a given parallel corpus, the noise detection task is to

detect sentence pairs(ĕi, f̆i) that contain noise (or unfavourable elements). Note that unfavourable

elements include many-to-many mapping objects.

One difficulty is that we have no appropriate direct measure to assess the quality of word

alignment due to the unavailability of hand-annotated datawith alignment links; AER (Och and

Ney, 2003) can be applied only if a hand-annotated corpus exists and if in-domain test data is

available. With BLEU as an evaluation measure, the approach taken in (Okita, 2009a) is as follows.

Let S = {(ĕ1, f̆1), . . . , (ĕn, f̆n)} be a training corpus and letM : f̆ → ĕ be our MT system trained

on this training corpusS. If the distance between a reference translationĕī andM(f̆i) is big for

relatively small data sets, this may indicate that the sentence f̆i is relatively difficult to translate;

this may be due to a training sentencef̆i being too complex for the model complexity of MT system

M . By removing the detected noisy sentences we reduce the training corpus and rerun the word

aligner.8 In sum, this algorithm becomes as in Algorithm 3.

8It is to be noted that we set aside the problem of whether this approach actually improves the test set accuracy. It
is also noted that if our parallel corpus is sufficiently big,we would use the held-out datasets to validate the results. If
our parallel corpus is small, this would not be possible since Step 5 seeks the points whose score is zero.
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Figure 3.12: The sentence-based cumulative n-gram scores:x-axis is phrase-based SMT and y-
axis is word-based SMT. The focus is on the worst point (0,0) where both scores are zero. Many
points reside in (0,0) in cumulative 4-gram scores, while only small numbers of points reside in
(0,0) in cumulative 1-gram scores.

Algorithm 3 Revised Good Points Algorithm
Step 1: Train word-based MT (Moses with MAXPHRASE LENGTH = 1) on the full par-
allel corpus. Translate all training sentences by the abovementioned word-based MT decoder.
Step 2: Obtain the cumulativeX-gram scoreSWB,X for each pair of sentences whereX is 4, 3,
2, and 1 for word-based MT decoder.
Step 3: Train PB-SMT on the full parallel corpus. Note that we do not need to run a word aligner
again here, but use the results of Step 1. Translate all training sentences by the above mentioned
PB-SMT decoder.
Step 4: Obtain the cumulativeX-gram scoreSPB,X for each pair of sentences whereX is 4, 3,
2, and 1 for PB-SMT decoder.
Step 5: Remove sentences whose(SWB,2, SPB,2) = (0, 0). We produce new reduced parallel
corpus.
(Step 6: Do the whole procedure of PB-SMT using the reduced parallel corpus which we obtain
from Step 1 to 5.)
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Note that the sentence duplication algorithm (Okita, 2009b) shown in Algorithm 4 is not to

reduce the number of sentences in the training corpus, but toduplicate particular sentences. It

seems that this works comparably well or even better in some cases, but this invokes some minor

problems in GIZA++, which cause computation to not be completed.

Algorithm 4 Sentence Duplication Algorithm
Step 1: Conditioned on a sentence length pair (le,lf ), we count the numbers of them. We calcu-
late the ratiori,j of this number over the number of all sentences.
Step 2: If this ratiori,j is under the thresholdX, we duplicateN times.

One way to explain the rationale behind this algorithm is in the power-law distribution. Since

this algorithm allows an increase in the number of sentencesin the tail of this distribution, the

distribution at the tail is amplified. Note that the power-law distribution is also called a long tail

distribution where there are many elements whose counts arescarce.

3.8.3 Word-level Noise-Sensitive MAP-based Word Aligner (original)

Given that a parallel corpus contains unlabeled many-to-many mapping objects (the usual case in

MT), our first target to solve is the following problem in Definition 9.

Definition 9 (many-to-many mapping object detection). LetS = {(ĕ1, f̆1), . . . , (ĕn, f̆n)} be a par-

allel corpus. For a given parallel corpus, many-to-many mapping object detection is the task of de-

tecting sentence pairs(ĕi, f̆i) which include many-to-many mapping objects, such as paraphrases,

non-literal translations, and multi-word expressions.

If noisy objects were limited within many-to-many mapping objects. the experimental results

based on Definition 8 and Definition 9 would be similar: we may call Definition 8 an intrinsic

method and Definition 9 an extrinsic method in this case. The extrinsic method does not detect

sentences that include many-to-many mapping objects in a straightforward way, but instead detects

them via indirect measures that identify sentences that contain many-to-many mapping objects.

Note that depending on the results of word alignment, the phrase extraction heuristics, such as
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grow-diag-final, are capable of extracting many-to-many mapping objects. We also note that it

turns out (Refer to the latter part of Section 3.10.3) that theassumption above is not correct, but we

have various other noisy objects as well. Our current estimate of the list of noisy objects is shown

in Section 3.1.3.

The intrinsic method identifies the many-to-many mapping objects themselves. Unfortunately,

many-to-many mapping objects are still at large which include at least three cases such as para-

phrases, non-literal translations, and multi-word expressions. We limit it here to the NP / MWE

detection task which is defined as follows:

Definition 10 (Bilingual NP detection). Let S = {(ĕ1, f̆1), . . . , (ĕn, f̆n)} be a parallel corpus

consisting of a training and development corpus. For a givenparallel corpus, the bilingual NP

detection task is to detect NPs in each sentence(ĕi, f̆i).

The purpose of the bilingual NP detection task is to identifytheanchor words9 defined as in

Definition 11. Note that we suppose here that we consider eachNP as one word. Then we can

handle them in the same way as if we see a pair of words in word alignment.

Definition 11 (Anchor Words). Let(ĕ, f̆) = {(ĕ1, f̆1), . . . , (ĕn, f̆n)} be a parallel corpus. By prior

knowledge we additionally have knowledge of anchor words(ê, f̂) = {(senti, te1 , tf1 , pose1 , posf1 ,

lengthe, lengthf ), . . ., (sentk, ten , tfn , posen , posfn , lengthe, lengthf )} wheresenti denotes sen-

tence ID,posei denotes the position oftei in a sentencĕei, and lengthe (and lengthf ) denotes

the sentence length of the original sentence which includesei. We call such prior knowledge for

alignment links “anchor words”.

Hence, using anchor words10 we invoke the MAP-based word aligner which we described in

Section 3.4 of MAP-EM and 3.5 of Bayesian HMM. This task is defined as in Definition 12:

9This term is used by Church and Gale (Gale and Church, 1991) inthe context of sentence alignment.
10One example of anchor words is a pair of NP. Other example is paraphrases shown in Table 1.2.
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Definition 12 (Noise-sensitive MAP-based word alignment). Given anchor words defined above

and a parallel corpus, we align words using the MAP-based word aligner (Refer also to Sections

3.4 MAP-EM and 3.5 Bayesian HMM).

3.9 Linguistic Domain Knowledge about Word Alignment Links

This section describes possible techniques to extract somelinguistic domain knowledge which

is required to pursue the approach described in the subsection on the word-level noise-sensitive

MAP-based word aligner: this approach is to detect linguistic domain knowledge in the first step,

and then incorporate such linguistic domain knowledge as prior knowledge to the MAP-based

word aligner.

In the sections on Algorithmic designs, we have discussed the machine learning algorithms,

EM-based algorithms and HMM-based algorithms. The EM-based algorithms in Section 3.4 do

not consider any dependencies, while HMM-based algorithmsin Section 3.5 consider only the

first-order Markov dependencies. This section intends to introduce more varieties of dependencies

in bilingual settings.

Our MAP-based word aligner may use various knowledge sources in order to set up the prior.

The classical examples of knowledge source includes orthographic features, POS tags, bilingual

dictionary, Markov features, relative sentence position,the maximum translation score between the

source and one of the target words (null), and dice and Model 1(Moore et al., 2006; Blunsom and

Cohn, 2006). We may also collect more direct linguistic knowledge for word alignment, which will

result in higher precision: lexical semantics derived froma bilingual wordnet, multi-word expres-

sions, functional word sequence patterns (which is similarto synchronous grammatical knowl-

edge), reference lists derived by co-reference resolutiontogether with zero anaphora resolution,

named entities as established by a named-entity recognizer, markers which suggest information

structure, dependency relations via dependency parser, and Out-Of-Vocabulary (OOV) words.11

11Note that this section scratches only the several topics. There would be many other linguistic knowledge which
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3.9.1 NPs / MWEs / Idioms (Structured Relation: Lexicon)

Non-compositionality concerns the case in which the meaning of a constituent is not based on the

meaning of its parts (Jurafsky and Martin, 2009). An exampleis the phrasethe tip of the icebergin

the next sentence: Coupons are justthe tip of the iceberg(non-compositional word). This suggests

that we need to differentiate between the fragments of this phrase and the phrase itself in word

alignment. The exact treatment of this matter will be related to detect compositionality in each

side of languages independently. However, due to the difficulty of detecting such compositionality

in practice, our method only concerns this issue as a part of the bilingual terminology extraction

process: the terminology extracted by our algorithm contains not only non-compositional termi-

nology, but both compositional and non-compositional terminology. We extract NPs by the method

of Kupiec (Kupiec, 1993) and paraphrases by the method of Callison-Burch et al. (Callison-Burch,

2008). Unfortunately, lexical resources, such as Wordnet,do not help much as their NPs are small

in number.

One algorithm that we used for extracting NPs is a statistical method which is a bidirectional

version of Kupiec (1993). Firstly, Kupiec presents a methodto extract bilingual noun phrase pairs

in a unidirectional manner based on the knowledge about typical POS patterns of noun phrases,

which is language-dependent but can be written down with some ease by a linguistic expert. For

example in French they are N N, N prep N, and N Adj. Secondly, wetake the intersection (or

union) of extracted bilingual noun phrase pairs.12

will be the source of word alignment links. However, we left these as a further study.
12In word alignment, bidirectional word alignment by taking the intersection or union is a standard method which

improves its quality compared to unidirectional word alignment.
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Algorithm 5 Noun Phrase Extraction Algorithm
Given: a parallel corpus and a set of anchor word alignment links:
1. We use a POS tagger (Part-Of-Speech Tagger) to tag a sentence on the SL side.
2. Based on the typical POS patterns for the SL, extract noun phrases on the SL side.
3. Countn-gram statistics (typicallyn = 1, · · · , 5 are used) on the TL side which jointly occur
with each source noun phrase extracted in Step 2.
4. Obtain the maximum likelihood counts of joint phrases, i.e. noun phrases on the SL side and
n-gram phrases on the TL side.
5. Repeat the same procedure from Step 1 to 4 reversing the SL and TL.
6. Intersect (or union) the results in both directions.

Let SL be the source language side and TL be the target language side. The procedure is shown

in Algorithm 5. We informally evaluated the noun phrase extraction tool following Kupiec (1993)

by manually inspecting the mapping of the 100 most frequent terms. For example, we found that

93 of the 100 most frequent English terms in the patent corpuswere correctly mapped to their

Japanese translation.

The second method is to use domain knowledge about implicit alignment links, which can be

only applicable to specific parallel corpora such as patent and technical document corpora, we can

use heuristics to extract the “noun phrase” + “reference number” from both sides. This is due to

the fact that terminology is often labelled with a unique reference number, which is labelled on

both the SL and TL sides.

3.9.2 Translational Noise

The term ‘translational noise’ is often used in a context of human translator who adds or removes

words only on one side in order to clarify the semantics. Suppose that we translate a Japanese

word ‘tsunami’ into English. Since there is no appropriate corresponding word in English (at least

until recently), a human translator may add something else written in the text in order to explain

the semantics of this word in English. For example, other than the translation of this word such

as ‘a big wave’ or ‘a series of water waves caused by the displacement of a large volume of a

body of water’ (by Wikipedia), a human translator may add ‘For example, Sumatra was hit by a
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tsunami in 2004’, which is not written anywhere in the source. The human translator recognizes

that the translation of the target side will not be equivalent information if he / she performs back

translation. However, a human translator needs to convey the semantics of the source side, which

often results in superfluous elements on the target side. However, we do not include such cases as

‘translational noise’ simply because this seems to be a verydifficult problem by a word aligner.

Instead of handling this difficult problem, we intend here tohandle only simpler cases. For

example in Japanese, phrases such as “monodearu”, “youninaru”, “monotonaru”, “youninatteiru”,

and “kototonaru” often exist in the written text, but mean nothing. (These phrases can be deleted

from the Japanese sentences without loss of meaning.) Even these phrases are existed or deleted,

the coresponding English sentence will not change. However, their existence does affect the word

aligner since one to five words are created from such phrases depending on the morphological

analyzer. It seems that it is not very easy to show such examples between European languages.

However, consider the sentence pair (‘on thisparticular building’,‘dans ce b̂atiment’) from Eu-

roparl (Koehn, 2005). We call the wordparticular noisesince it only exists on the English side

and may cause problems for a word aligner.

Table 3.5 shows the motivation of our study that BLEU score is improved by 0.70 to 1.0 points

(PB-SMT) by removing only five typical Japanese phrases “monodearu”, “youninaru”, “mono-

tonaru”, “youninatteiru”, and “kototonaru”. Note that we realize that the detection of such trans-

lational noise is very difficult. For example, it will be misleading if we look at the results of word

alignment since 0-to-1 mapping objects amount to around 30%, which should not be the case.

ENJP JPEN
200k PB-SMT (baseline) 24.96 17.96
200k PB-SMT (removed) 25.69 18.96
200k HPB-SMT (baseline) 28.51 21.89
200k HPB-SMT (removed) 27.93 21.94

Table 3.5: Translational noise only removing five typical redundant phrases from the Japanese side
of the training corpus.
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0:when:
1:the:
2:fluid:[サブスタンス,リキッド,体液,動体,汁,流体,流動体,流動物,液,液体,物,
物質]
3:pressure:[うしろ押し,エマージェンシー,プッシュ,プッシング,プレス,プレ
ッシャー,一押し,体性感覚,切迫,力,単位面積当たりの力,危急,危殆,危難,圧し,
圧力,圧覚,圧迫,後ろ押し,後押,後押し,急場,急迫,押,押し,押すこと,気圧,火急,
物理現象,究追,空圧,窮状,窮迫,窮追,緊急,重圧]
4:cylinder:[コンテナ,コンテナー,シリンダ,シリンダー,ソリッド,丈夫,入れ
もの,入れ物,入物,円柱,円筒,器,器物,固体,固形,容れもの,容れ物,容器,容物,
益荒男,部屋]
5:@card@:
6:be:[(omitted)]
7:use:[使い果たす,使う,使用,働かす,働かせる,充てる,利かす,利する,利用,
動く,取り入れる,取入れる,実行,実践,実践躬行,履行,引き当てる,引当てる,
引当る,当てはめる,当てる,当て嵌める,役する,役だてる,役立てる,悪用,摂する,
摂る,摂取,服する,服用,活用,消費,用いる,経口摂取,行ずる,行なう,行使,行動,
運用,適用]
8:,:
9:fluid:[サブスタンス,リキッド,体液,動体,汁,流体,流動体,流動物,液,液体,物,
物質]
10:be:[(omitted)]
11:gradually:[おもむろに,じょじょに,じわじわ,じわっと,じわり,じんわり,
ちびちび,ちびりちびり,ひたひた,ぼちぼち,ぼつぼつ,ぽちぽち,ぽつぽつ,ゆっ
くり,ジワジワ,垂々,垂垂,少しずつ,徐々,徐々に,徐に,徐徐,徐徐に,次第,次第
に,次第次第,次第次第に,歩々,歩歩,段段,漸々,漸う,漸く,漸次,漸漸,漸進的,追
々,追い追い,追い追いに,追追]
12:apply:[あてはまる,くれてやる,つける,リクエスト,付ける,使う,使用,係る,
係わる,働かす,働かせる,充てる,分け与える,分配,列なる,利かす,利する,利用,
塗る,実行,実践,実践躬行,尽くす,履行,差し上げる,引き当てる,引当てる,引当
る,強いる,強要,当てはまる,当てはめる,当てる,当て嵌まる,当て嵌める,役
する,役だてる,役立てる,懸かる,懸る,所望,抛つ,押しつける,押し付ける,押付
ける,指示,捧げる,掛ける,掩う,擲つ,施す,施行,求む,求める,活用,無理強,無理
強い,用いる,申しこむ,申込む,示す,禀請,稟請,蓋う,蔽う,行う,行ずる,行なう,
行使,被う,被せる,要望,要求,覆う,見舞う,連なる,運用,適用,配る,関する,関わる,
関係,関連,附ける,頼む,願いでる,願う]

Table 3.6: An example of lexical mapping derived by WordNet.

3.9.3 Lexical Semantics (Pair Relation)

Lexical resources such as WordNet (Miller, 1995) may provide the word alignment links with high

precision but low recall using Algorithm 6. This algorithm does not try to specify a particular

unique sense, but rather to detect the possible translational equivalences in the sentence pair in

question. For IWSLT corpus between JP-EN in Table 3.6, however, despite that we could specify

87% of the possible combinations of content words in monolingual settings, which amounts only

to 43.7% of the possible total links. The figure 43.7% is very low compared to GIZA++ of around

70%. For NTCIR-8 patent corpus, despite the high coverage in monolingual settings, this results

in a very low percentage of the bilingual correspondence 10.7% for 200k sentence pairs. These

figure suggests that the link information derived by WordNetin itself may not be superior to that

of word alignment, although this link information may complement the quality. Note that in terms

of NPs / MWEs, we will give a statistical approach since the available lexical resources are often

too few in number.
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Algorithm 6 Algorithm for Lexical Semantic Cue
1. Obtain POS-tag and lemma for each word on the source side.
2. For all lemmas of content words / phrases (NP/VP) in the n-th sentence in the source language,
collect all possible synset IDs, and then the derived targetwords / phrases for each synset ID.
3. Search all possible combinations13 as to whether each word / phrase in a list contains some
word / phrase in the n-th sentence in the target language.
4. If the possibility is unique, the prior probability is assigned to 1. If the possibility is two, the
prior probability is assigned to 1/2, and so forth.

size corpus unique coverage
links synonym/hype-hypo

50k NTCIR 8825 79.12 / 81.85
200k NTCIR 13141 74.52 / 77.80
40k IWSLT 6808 87.41 / 89.43

115k literatur 23048 79.16 / 83.49

size bilingual all content
links links words

50k 77098 3.8 % 8.5.%
200k 327680 4.2 % 10.7%
40k 68749 16.0 % 43.7%

115k 146584 11.8 % 19.5%

Table 3.7: Statistics related to lexical semantics.

3.9.4 Numbers / Equations (Less Frequent Relation)

There are several classes of linguistic objects which are easy to define monolingually, such as num-

bers and equations. In this case, 1) we construct a monolingual rule-based extraction algorithm,

2) we extract these objects by a rule-based extraction algorithm respectively, and 3) we perform

matching on a bilingual basis. For example, it is fairly easyto write a rule enumerating various

possibility that the fragment is numbers, such as figures from 0 to 9 and English word from zero to

billion.

3.9.5 Proper Nouns / Transliterations / Localization Terminology (Less Frequent Relation)

Named entity recognition is very sensitive to the trained data which is in-domain data or out-of-

domain data in terms of the parallel corpus at hand. For this reason, we do not rely overly on
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the results of named-entity recognition, but we first detectsuch named entities by detecting OOV

words. Japanese transliteration is not easy, e.g. Knight and Graehl (Knight and Graehl, 1997) only

handle very easy cases. In general, the level of difficulty intransliteration depends on whether there

is no fluctuation in Japanese, whether there are less Japanized English involved, whether there is

not much transliteration from German or Russian, whether theJapanese way of abbreviation is

involved, and whether there is no mixture of ‘r’ and ‘l’.

fluctuation ロイアリティー,ロイアルティ royalty, loyalty
ロイアルティー,ローヤルティー

fluctuation ロープウェー,ロープウェイ, ropeway, aerial tram, cable car
ロープウエー,ロープウエイ

fluctuation ロー付け,ローづけ soldering, brazing
Japanized way of abbrev.レフ reflex camera, reflector
Japanized way of abbrev.ローマカトリック Roman Catholic
‘e’ and ‘i’ レバー lever / joystick,liver
‘r’ and ‘l’ リスト list, wrist
Japanized English ロールサンド roll sandwich, sandwich roll
Japanized English リストラ策 restructuring scheme
Japanized English ヨーロッパ連合 European Union, EU
Japanized German リウマチ rheumatism (German: Rheumatismus)

Table 3.8: An example of transliteration (Breen, 1999).

equations 103
transliteration 25928
proper nouns 3408
localization 207
symbols 13842

Table 3.9: Statistics of less frequent substructure.

3.10 Experiments

This section describes experiments using some of the algorithms introduced so far. The first ex-

periment is on sentence-level noise reduction. The second experiment is on the MAP-based word
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aligner with given NPs as prior knowledge.

3.10.1 Word Alignment with Sentence-level Noise Reduction

Experimental Settings The baseline in our experiments is a standard log-linear PB-SMT system

based on Moses. The GIZA++ implementation (Och and Ney, 2003) of IBM Model 4 is used as the

baseline for word alignment. Model 4 is incrementally trained by performing 5 iterations of IBM

Model 1, 5 iterations of the HMM Model, 5 iterations of IBM Model 3, and 5 iterations of IBM

Model 4. For phrase extraction, the grow-diag-final heuristics described in (Koehn et al., 2003)

(Refer to Definition 3 and its subsequent explanation) are used to derive the refined alignment

from bidirectional alignments. We then perform Minimum Error Rate Training (MERT) (Och,

2003) which optimizes the BLEU metric, while a 5-gram language model is derived with Kneser-

Ney smoothing (Kneser and Ney, 1995) trained with SRILM (Stolcke, 2002) on the English side

of the training data. We use Moses (Koehn et al., 2007) for decoding.

We evaluate our method using the News Commentary parallel corpus used in the 2007 Statisti-

cal Machine Translation Workshop shared task. We use the devset and the evaluation set provided

by this workshop. The training set size for EN–ES is 51k and that for DE–EN is 60k.

Experimental Results Table 3.10 shows the results. Although ‘noise’ does not always corre-

spond to sentences which include many-to-many mapping objects, the improvement achieved by

this algorithm was relatively large.

EN–ES BLEU effective sent
Base 0.280 99.30 %
Ours 0.317 97.80 %
DE–EN BLEU effective sent
Base 0.169 99.10 %
Ours 0.218 97.14 %

Table 3.10: Results for Algorithm 3 (revised good point algorithm).

We conducted experiments in two evaluation campaigns as well. The first one was for IWSLT09
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train set duplicated
train set

redundancies train set duplicated
train set

noise re-
duction

removal

BT TR-EN 27,972 20,112 3.0 % .4831 .4478 .4611 7.1%
BT ZH-EN 47,098 43,657 12.2 % .3903 .3750 .3741 10.4%
CH ZH-EN 75,231 69,680 4.0 % .3169 .2847 .3011 10.6%
CH EN-ZH 39,228 38,227 12.0 % .3531 .3154 .3170 9.5%

Table 3.11: Redundancies in Parallel corpus and its BLEU scoreimprovement. BT denotes BTEC
corpus while CH denotes Challenge corpus. TR is an abbreviation of Turkish, while ZH is that of
a simplified Chinese.

(Ma et al., 2009) and the second one was for NTCIR-8 (Okita et al., 2010b). One important find-

ing in IWSLT09 was that Algorithm 3 (revised good point algorithm) did not work well at all.

In Table 3.11, the column labelled with ‘train set’ shows theBLEU scores for original training

set, the column labelled with ‘pure train set’ shows BLEU scores for the pure training set without

redundant sentences, and the column labelled with ‘noise reduction’ shows the BLEU scores for

the reduced training set. In sum, we conjecture that due to a lot of duplicated sentence pairs in the

IWSLT09 data sets, Algorithm 3 did not work so well. Although we tuned parameters empirically,

the sentence duplication algorithm works comparably well to the noise reduction algorithm (Okita,

2009b) (Refer to Algorithm 4).

In NTCIR-8 parallel corpus between EN–JP, we conduct the method for 600k sentence pairs

(Okita et al., 2010b). The left half of Table 3.12 shows the result for EN–JP. HPB-SMT 1 is Moses

and HPB-SMT 2 is Joshua (Li et al., 2009). PB-SMT 1 is Moses with the distortion limit 12

over a 600k training corpus, while PB-SMT 2 is Moses with the distortion limit 6 over a 3,200k

training corpus. It is noted that the official BLEU scores containing an asterisk are evaluated after

the removal of Out-Of-Vocabulary (OOV) words. It is noted that we trained over 3,200k training

corpus for the systems marked with+ and over 600k training corpus for other systems.

The right half of Table 3.12 shows the result for JP–EN. The HPB-SMT 1 is based on the

Moses Chart, and the HPB-SMT 2 is based on Joshua. The PB-SMT 1 system is based on Moses

with the distortion limit 12 over 600k training corpus, while PB-SMT 2 is based on Moses with
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the distortion limit 6 over 3,200k training corpus. It is noted that we trained over 3,200k sentence

pairs for the systems marked with+ and used over 600k training data for other systems.

Systems (JP–EN) BLEU #OOV Systems (EN–JP) BLEU
HPB-SMT 1 26.86∗ 314 HPB-SMT 1 32.50
PB-SMT 1 26.51∗ 194 PB-SMT 1 30.53
Noise reduction (PB-SMT) 24.01 443 PB-SMT 2+ 30.08
PB-SMT 2+ 23.91∗ 316 Noise reduction 29.53
HPB-SMT 2 23.30 303 HPB-SMT 2 27.23

Table 3.12: Intrinsic evaluation results (JP–EN and EN–JP).

3.10.2 MAP-based Word Aligner with Noun Phrase Detection

This setting is to verify the effectiveness of our word-level noise-sensitive MAP-based word aligner

presented in Section 3.8.3. The extraction of NPs (or MWEs) isdescribed in Section 3.9.5 of NPs

/ MWEs /Idioms.

Experimental Settings The baseline in our experiments is a standard log-linear phrase-based

MT system based on Moses. The GIZA++ implementation (Och andNey, 2003) of IBM Model 4

is used as the baseline for word alignment, which we compare to our modified GIZA++ (Section

3.4.3). Model 4 is incrementally trained by performing 5 iterations of Model 1, 5 iterations of

HMM, 5 iterations of Model 3, and 5 iterations of Model 4. For phrase extraction the grow-diag-

final heuristics (Koehn et al., 2003) are used to derive the refined alignment from bidirectional

alignments. We then perform MERT (Och, 2003) while a 5-gram language model is trained with

SRILM (Stolcke, 2002). Our implementation is based on a modified version of GIZA++ (Och

and Ney, 2003). We modify the function that reads a bilingualterminology file, the function that

calculates priors, the M-step in IBM Models 1-5, and the forward-backward algorithm in the HMM

Model. Other related software tools are written in Python and Perl: terminology concatenation,

terminology numbering, and so forth.

We use two corpora: the NTCIR-8 corpus (Fujii et al., 2010) withheuristic-based and statistical
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noun phrase extraction and Europarl (Koehn, 2005) with statistical noun phrase extraction.

corpus language size #unique #all
NPs NPs

statistical method
NTCIR EN-JP 200k 1,121 120,070
europarl EN-FR 200k 312 22,001
europarl EN-ES 200k 406 16,350
heuristic method
NTCIR EN-JP 200k 50,613 114,373

Table 3.13: Statistics of our noun phrase extraction method. The numbers of noun phrases are
from 0.08 to 0.6 NP / sentence pair in our statistical noun phrase extraction methods.

Experimental Results Firstly, noun phrases are extracted from both corpora. In the second step,

we apply our modified version of GIZA++ in which we incorporate the results of noun phrase

extraction. Secondly, in order to incorporate the extracted noun phrases, they are reformatted as

shown in Table 3.13. Thirdly, we convert all noun phrases into a single token, i.e. we concatenate

them with an underscore character. We then run the modified version of GIZA++ and obtain a

phrase and reordering table. In the fourth step, we split theconcatenated noun phrases embed-

ded in the third step. Finally, in the fifth step, we run MERT, and proceed with decoding before

automatically evaluating the translations.

size EN-JP BLEU JP-EN BLEU

50k baseline 16.33 baseline 22.01
50k baseline2 16.10 baseline2 21.71
50k prior 17.08 prior 22.11
200k baseline 23.42 baseline 21.68
200k baseline2 24.10 baseline2 22.32
200k prior 24.22 prior 22.45

Table 3.14: Results for EN-JP. Baseline is plain GIZA++ / Moses(without NP grouping / prior),
baseline2 is with NP grouping, prior is with NP grouping and prior.

Table 3.14 and 3.15 show the results where ‘baseline’ indicates no Bilingual NP (BNP) group-
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size FR-EN BLEU EN-FR BLEU

50k baseline 17.68 baseline 17.80
50k baseline2 17.76 baseline2 18.00
50k prior 17.81 prior 18.02
200k baseline 18.40 baseline 18.20
200k baseline2 18.80 baseline2 18.50
200k prior 18.99 prior 18.60
size ES-EN BLEU EN-ES BLEU

50k baseline 16.21 baseline 15.17
50k baseline2 16.61 baseline2 15.60
50k prior 16.91 prior 15.87
200k baseline 16.87 baseline 17.62
200k baseline2 17.40 baseline2 18.21
200k prior 17.50 prior 18.20

Table 3.15: Results for FR-EN and ES-EN. Baseline is plain GIZA++ / Moses (without bilingual
noun phrase grouping / prior), baseline2 is with bilingual noun phrase grouping, prior is with
bilingual noun phrase grouping and prior.

ing nor any prior, and ‘baseline2’ represents a BNP grouping but without the prior. Although

‘baseline2’ (BNP grouping) shows a drop in performance in theJP–EN / EN–JP 50k sentence pair

setting, Prior Model results in an increase in performance in the same setting. Except for EN–ES

200k, our Prior Model was better than ‘baseline2’ and statistically significant. For EN–JP NTCIR

using 200k sentence pairs, we obtained an absolute improvement of 0.77 BLEU points compared

to the ‘baseline’; for EN–JP using 50k sentence pairs, 0.75 BLEU points; and for ES–EN Europarl

corpus using 200k sentence pairs, 0.63 BLEU points.

For EN–JP NTCIR using the same corpus of 200k, although the number of unique NPs ex-

tracted by the statistical method and the heuristic method varies significantly, the total number of

NPs extracted by each method becomes comparable. The resulting BLEU score for the heuristic

method (24.24 / 22.48 Blue points for 200k EN–JP / JP–EN) is slightly better than that of the sta-

tistical method. The possible reason for this is related to the way the heuristic method groups terms

including reference numbers, while the statistical methoddoes not. As a result, the complexity of

the alignment models simplified slightly in the case of the heuristic method.
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3.11 Conclusions

We presented two methods in this capter. One is for sentence-level noise (Section 3.8) and the other

is for word-level noise (Sections 3.5, 3.6, 3.7 and 3.9). Forthe sentence-level noise we employed

the method similar to the outlier detection algorithm, while for the word-level noise we built a

MAP-based word aligner.

The sentence-level noise reduction was easy to implement, but was difficult to handle. We

observed that the sentence-level noise reduction worked for the small dataset, but was not so suc-

cessful for the redundant dataset and the large dataset. Except for the case where we obtain good

performance, we will be lost when we faced with the situationwhere we find that the noise re-

duction does not work. This is because there is little space for us to control this algorithm. In

this sense, this algorithm has a disadvantage in that we willbe lost when this algorithm does not

work. All the more, it seems that whether this algorithm works or not depends on the dataset. This

is because the success of this algorithm depends on the success of word alignment. Obviously it

is quite difficult to predict whether the given parallel corpus is easier to align or not compared to

other parallel corpus. Similarly, it is difficult to predictwhether the given redundancies in parallel

corpus affect the performance of word alignment.

The word-level noise reduction requires a lot of preparations, and is difficult to predict the result

based on the supplying prior knowledge about word alignmentlinks. The preparation includes a

construction of MAP-based word aligner as well as the investigation how to detect word alignment

links through various linguistic knowledge where each detection tend to require different methods.

Our experiments in this thesis have scratched only the surface of it and we left many things as a

further study. Our findings are that if we supply word alignment links of many-to-many mapping

objects such as NPs, this resulted in the encouraging improvement of 0.63 - 0.77 BLEU points

absolute. For translational noise (which does not need a MAP-based word aligner objects though),

we observed in PB-SMT that only removing five typical Japanesenoisy phrases improved 0.75 -

1.00 BLEU points absolute. One issue we noticed was that the smoothing of translation model
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may improve the performance. We can guess that the way that the MAP-based word aligner is

constructed will make the distribution radically change compared to the traditional way of making

a translation model without any prior knowledge. We will handle this topic in Chapter 5.
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Chapter 4

Smoothing Methods: Overfitting

Statistical approaches or non-parametric Machine Learning methods estimate some targeted statis-

tical quantities based on (i) the (true) posterior distributions in a Bayesian manner (Bishop, 2006)

or (ii) on the underlying fixed but unknown (joint) distributions from which we assume that we

sample our training examples in a frequentist manner (Vapnik, 1998). In Natural Language Pro-

cessing (NLP), such distributions are observed by simply counting (joint/conditional) events, such

asc(w), c(w1, w2) andc(w3|w1, w2) wherew denotes words andc(·) denotes a function to count

events. Since such quantities are often discrete, it is unlikely that such events will be counted incor-

rectly at first sight. However, it is a well-known fact in NLP that such counting methods are often

unreliable if the size of the corpus is too small compared to the model complexity. Researchers in

NLP often try to rectify such counting of (joint or conditional) events using a technique known as

smoothing (Kneser and Ney, 1995). Most smoothing techniques do not have a statistical model but

rely on either interpolation or back-off schemes.

Chapter 4 discusses a statistical smoothing method based on (hierarchical) Pitman-Yor pro-

cesses, which is a nonparametric generalization of the Dirichlet distribution that produces power-

law distributions (Teh, 2006; Goldwater et al., 2006). Various pieces of research have been carried

out in which hierarchical Pitman-Yor processes have been applied to language models (Hierarchi-
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cal Pitman-Yor Language Model (HPYLM) (Teh, 2006; Mochihashi and Sumita, 2007; Huang

and Renals, 2009)) whose generative model uses hierarchies of n-grams. This model is shown to

be superior to the interpolated Kneser-Ney methods (Kneserand Ney, 1995) and comparable to

the modified Kneser-Ney methods in terms of perplexity. Although this method was presented five

years ago, there has been no paper which reports that this language model indeed improves transla-

tion quality in the context of Machine Translation (MT). This is important for the MT community

since an improvement in perplexity does not always lead to animprovement in BLEU score; for

example, the success of word alignment measured by Alignment Error Rate (AER) does not often

lead to an improvement in BLEU (Fraser and Marcu, 2007).

Section 4.1 describes the smoothing methods used for language models: a Hierarchical Pitman-

Yor Language Model (HPYLM) and a Pitman-Yor Good-Turing Language Model (PYGTLM).

The primary aim is to report in the context of MT that an improvement in perplexity really leads

to an improvement in BLEU score. It turns out that an application of HPYLM requires a mi-

nor change in the conventional decoding process. We conducted experiments in which HPYLM

improved translation by 1.03 BLEU points absolute and 6% relative for 50k EN–JP, which was sta-

tistically significant (Koehn, 2004). Unfortunately, our experimental results show that PYGTLM

performs better than the conventional Kneser-Ney method and Good-Turing method, but is inferior

to HPYLM.

Section 4.2 proposes a new Pitman-Yor process-based applied to translation models. In fact,

this section is the real motivation for this chapter. In Chapter 5, we proposed a new word align-

ment method which incorporates a range of linguistic knowledge. The first hypothesis is that even

if we build a translation model without such additional linguistic knowledge, the relative frequency

estimates of the translation model will not be correctly calculated, as was discussed by Foster et

al. (Foster et al., 2006). The second hypothesis is that if weincorporate such additional linguis-

tic knowledge in the word alignment process, the relative frequency estimates of the translation

model will include further irregularities. Hence, in both cases, the application of smoothing meth-
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ods is considered to improve the results. Under such conjectures, we propose a new smoothing

method, which is a straightforward extension of the HPYLM inSection 4.1. The result shows our

hypotheses to be well-founded.

4.1 Language Model Smoothing

4.1.1 Language Model

We start with several traditional smoothing methods for language models in order to understand

that these are really the methods which combine some heuristics (Manning and Schutze, 1999;

Jurafsky and Martin, 2009; Koehn, 2010). Such heuristics include absolute discount, back-off,

interpolation schemes, and so forth. The main motivation behind our focus on the hierarchical

Pitman-Yor process-based smoothing method in this chapterlies in the fact that we would like to

base our models on more statistically motivated methods rather than those methods explained in

this section.

In Section 4.1.1, we will informally explain the differenceof smoothing methods using the

bigram language model. This will not lose generality, but will make it easier to understand. Before

we discuss these methods, we introduce some notation:wi−1wi denotes two consecutive words,·w

denotes the consecutive two words where the first word is any word, andc(·) denotes a function

which counts the words specified as its argument. The condition c(wi−1wi) > 0 means that the

bigramwi−1wi appeared in the corpus.1

We start with a maximum likelihood method, which is shown in (4.1).

PML(wi|wi−1) =











c(wi−1wi)
∑

w c(wi−1w)
if c(wi−1w) > 0

0 otherwise
(4.1)

Since the maximum likelihood reflects purely statistics, there is no value assigned for unobserved

1Hence, in most cases below, the condition ‘otherwise’ meansthat the bigramwi−1wi did not appear in the corpus.
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n-grams, which is shown in otherwise in (4.1). If we subtracta fixed (absolute) discountD from

each count in order to allocate some mass for unobserved bigrams, this is called the absolute

discounting method, which is shown in (4.2):

PAbsoluteDiscounting(wi|wi−1) =











c(wi−1wi)−D
∑

w c(wi−1w)
if c(wi−1w) > 0

α(wi)p(wi) otherwise
(4.2)

If we take into account the diversity of histories for the unobserved bigrams, this is called a Kneser-

Ney smoothing method (Kneser and Ney, 1995). With the definition of the count of histories for a

word as in (4.3),

N1+(•w) = |{wi : c(wi−1w) > 0}| (4.3)

the raw counts of the maximum likelihood estimation are replaced with this count of histories for

a word. In sum, a Kneser-Ney method is written as in (4.4):

PKneserNey(wi|wi−1) =















c(wi−1wi)−D
∑

w c(wi−1w)
if c(wi−1w) > 0

α(wi)
N1+(•w)

N1+(wi−1w)
otherwise

(4.4)

If we combine the ideas behind interpolation and back-off, we can combine two terms in the right-

hand side in (4.4). This is called aninterpolated Kneser-Ney method (Chen and Goodman, 1998),

which is shown in (4.5):

PInterpolatedKN(wi|wi−1) =















c(wi−1wi)−D
∑

w c(wi−1w)
+ β(wi)

N1+(•w)

N1+(wi−1w)
if c(wi−1w) > 0

β(wi)
N1+(•w)

N1+(wi−1w)
otherwise

(4.5)

Now, if we have an intuition that an absolute discountDn for eachn-gram takes different (but
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fixed) values shown in (4.6),

D(n) =























D1 (if c = 1)

D2 (if c = 2)

D3+ (if c ≥ 3),

(4.6)

this method makes amodified Kneser-Ney method (Chen and Goodman, 1998), which is shown

in (4.7). Note that we derive (4.7) from (4.5) using (4.6) fordifferent sized n-grams. Note that

similarly with (4.6), although each distribution has the case when a bigram is not observed it is

omitted from (4.7).































































































PModifiedKN (wi) =
c(wi)−D1
∑

w c(w)
+ β(wi)

N1+(•)

N1+(w)

(if W=unigram)

PModifiedKN (wi|wi−1) =
c(wi−1wi)−D2
∑

w c(wi−1w)
+ β(wi)

N1+(•w)

N1+(wi−1w)

(if W=bigram)

PModifiedKN (wi|wi−2wi−1) =
c(wi−2wi−1wi)−D3+
∑

w c(wi−2wi−1w)
+ β(wi)

N1+(•wi−1w)

N1+(wi−2wi−1w)

(if W ≥ trigram)

(4.7)

A Good-Turing method (Good, 1953) introduces the count-of-countsNc shown in (4.8),

Nc =
∑

x:count(x)=c

1, (4.8)

which is the number of different words that were seen exactlyc times. Using thisNc, this method

infers the zero probability mass. LetN denote the total number of counts. The modified countc∗
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can be obtained by

c∗ = (c+ 1)
Nc+1

Nc

(4.9)

Using these quantities, the probability mass for unobserved n-grams can be calculated as in (4.10)

where the mass for unobserved n-grams is uniformly allocated:

PGoodTuring(w1, . . . , wn) =



















c∗

N
if c(w1, . . . , wn) > 0

1−
∑∞

i=1 c
∗Ni

N
N0

if c(w1, . . . , wn) = 0

(4.10)

4.1.2 Hierarchical Pitman-Yor Process-based Language Model

According to Teh, the performance of a hierarchical Pitman-Yor is known to be comparable with

the modified Kneser-Ney smoothing in terms of perplexity (Teh, 2006). As was shown in Section

4.1.1, the modified Kneser-Ney method employs several heuristics such as interpolation, absolute

discount, and back-off. Compared to this, a hierarchical Pitman-Yor process-based smoothing is

mathematically constructed using Bayesian statistics.

HPYLM: Generative Model A Hierarchical Pitman-Yor Language Model (HPYLM) (Goldwa-

ter et al., 2006; Teh, 2006; Mochihashi et al., 2009; Okita and Way, 2010) is constructed encoding

the property of the power-law distribution.

Let PY (d, θ,G0) denote a Pitman-Yor process (Pitman, 1995),d denote a discount parameter,

θ denote a strength parameter, andG0 a base distribution. We defineπ(u) as the suffix ofu

consisting of all but the earliest word in Equation (4.11), as in (Teh, 2006): we seeu asn-gram

words andπ(u) as (n-1)-gram words. Then, we place a Pitman-Yor process priorrecursivelyover
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Gπ(u) in the generative model, as is shown in (4.11):























Gu|d|u|, θ|u|, Gπ(u) ∼ PY (d|u|, θ|u|, Gπ(u))

. . .

G∅|d0, θ0, G0 ∼ PY (d0, θ0, G0)

(4.11)

Note that the discount and strength parameters are functions of the length|u| of the context, while

the mean vector isGπ(u), and the vector of probabilities of the current word given all but the earliest

word in the context.

HPYLM: Inference One procedure — A Chinese restaurant process — computes inference in

order to generate words drawn fromG, which iteratively marginalizes outG.

Leth be an n-gram context; for example in trigrams, this ish = {w1, w2}. A Chinese restaurant

contains an infinite number of tablest, each with infinite seating capacity. Customers, which are

the n-gram countsc(w|h), enter the restaurant and seat themselves over the tables1, . . . , thw·.2

The first customer sits at the first available table, while each of the subsequent customers sits at

an occupied table with probability proportional to the number of customers already sitting there

chwk − d, or at a new unoccupied table with probability proportionalto θ + d · th· as is shown in

(4.12):

w|h ∼











chwk − d (1 ≤ k ≤ thw).

θ + d · th· (k = new).
(4.12)

wherechwk is the number of customers seated at tablek until now, andth· =
∑

w thw is the total

number of tables inh.

Hence, the predictive distribution ofn-gram probability in HPYLM is recursively calculated

2In thw·
, tX means the table for the word sequenceX. hw· means the sequencehw followed by some word.
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as in (4.13):

p(w|h) =
c(w|h)− d · thw

θ + c(h)
+
θ + d · th·
θ + c(h)

p(w|h′) (4.13)

wherep(w|h′) is the same probability using a(n-1)-gram contexth′. Implementation of this

inference procedure relates to the Markov chain Monte Carlo sampling (Metropolis et al., 1953).

The simplest way is to build a Gibbs sampler (Geman and Geman,1984) while a more efficient

way is to build a blocked Gibbs sampler (Mochihashi et al., 2009).

Decoding Algorithm in PB-SMT A minor difference in the decoding process is required. In a

test sentence, if we encounter unseen phrases, a conventional PB-SMT decoder looks up the prob-

ability with constant zero-probabilities. However, our algorithm should look up the corresponding

probabilities based on the hierarchical Pitman-Yor processes. We calculate these zero-probabilities

using the parameters that we derived while obtaining the HPYLM.

There are two ways to incorporate this: 1) just before we do decoding, we update a language

model by supplying a test sentence in terms of zero-probabilities (that is, if test sentences include

unseen words and phrases, we notify the translation model toincorporate these unseen words and

phrases.), and 2) we modify a PB-SMT decoder to incorporate this difference. Due to its easiness

of implementation,3 we take the approach 1) here, but the effect would be the same.

Our procedure is as follows. Firstly, we prepare the HPYLM parameter filep0(w) which we

obtained when we calculate the HPYLM. This HPYLM parameter file contains the parameters in

the Chinese restaurant processes, such as the number of tables, d,θ, and so forth. Such parameters

enable us to calculate the zero-probabilities for any unseen phrases in a test sentence. The overall

algorithm to obtain the updated HPYLM is shown in Algorithm 7.

3If we modify a PB-SMT decoder, we need to modify the stack decoding algorithm. This will take time.
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Algorithm 7 Decoder for HPYLMp(w)
Given: a test sentencĕs = {s̆1, · · · , s̆n}, HPYLM p(w), HPYLM parameter filep0(w).
Step 1: By generating a possiblen-gram candidate, usingp0 we update HPYLMp′(w).
Step 2: Run a decoder which looks up updated HPYLMp′(w).

4.1.3 Good-Turing Pitman-Yor Language Model Smoothing

We use the same generative model which uses the Pitman-Yor process as a prior in Equation (4.11)

once (not recursively), and let us now consider a count-counts function. (This is also known as

event-counts or count of counts.) We refer to this model as a Good-Turing Pitman-Yor Language

Model (GTPYLM). Our intention here is to incorporate the prior knowledge that a distribution

takes a power-law distribution, as well as incorporating the zero-frequency mass.

We use the notation of (4.8) and (4.10). By (4.13), the predictive distribution of n-gram proba-

bility in GTPYLM is computed as in (4.14):

p∗(wi|wi − 1, Nw) =
c∗(w|wi−1, Nw)− d · tNww

θ + c∗(w|Nw)
+

θ + d · tNw·

θ + c∗(w|Nw)
p∗(wi|wi−1, Nw−1) (4.14)

Note that this formulation does not avoid the problem of datasparseness ofNc whenc is large,

which requires us to obtainNc in a similar way as in other work, such as Gale (1994).

4.1.4 Performance

We conduct an experimental evaluation for JP–EN on the NTCIR-8corpus (Fujii et al., 2010) and

for FR–EN and ES–EN on Europarl (Koehn, 2005). We randomly extracted a training corpus

of 200k sentence pairs where we use 1,200 sentence pairs (NTCIR) and 2,000 sentence pairs

(Europarl) for the development set, and we use 1,119 (EN–JP)/ 1,251 (JP–EN) sentence pairs

(NTCIR) and 2,000 sentence pairs (Europarl; test2006) for ourtest set.4

Our baseline was a standard log-linear PB-SMT system based onMoses (Koehn et al., 2007).

The GIZA++ implementation (Och and Ney, 2003) of IBM Model 4 was used for word alignment.

4The number of 1,119 and 1,251 are provided by NTCIR-8 organizers.

111



For phrase extraction the grow-diag-final heuristics described in (Och and Ney, 2003) was used

to derive the refined alignment. We then performed MERT (Och,2003) to optimize the BLEU

metric, while a 5-gram language model was derived with Kneser-Ney smoothing trained with

SRILM (Stolcke, 2002) on the English side of the training data. We used Moses for decoding.

size EN–JP BLEU Perplexity JP–EN BLEU Perplexity

200k baseline1 23.42 59.607 baseline1 21.68 117.78
200k baseline2 23.36 58.587 baseline2 21.38 119.13
200k HPYLM 24.22 52.295 HPYLM 22.32 105.22
200k GTPYLM 23.22 53.332 GTPYLM 22.21 110.12

size FR–EN BLEU Perplexity EN–FR BLEU Perplexity

200k baseline1 18.40 162.573 baseline1 18.20 165.839
200k baseline2 18.19 165.232 baseline2 18.02 168.989
200k HPYLM 18.99 148.338 HPYLM 18.60 153.921
200k GTPYLM 18.70 152.104 GTPYLM 18.50 160.332

size ES–EN BLEU Perplexity EN–ES BLEU Perplexity

200k baseline1 16.87 168.431 baseline1 17.62 154.273
200k baseline2 16.37 174.856 baseline2 17.32 168.754
200k HPYLM 17.50 152.312 HPYLM 18.20 145.223
200k GTPYLM 17.15 156.440 GTPYLM 18.10 146.211

Table 4.1: Results for language model. Baseline1 uses modifiedKneser-Ney smoothing and base-
line2 uses Good-Turing smoothing.

This method conjectures that the weakness of language modelling and translation modelling is

its ignorance of underfitting in terms of the number of samples. HPYLM algorithm implements

a statistical smoothing method which deals with this underfitting problem. The results show that

a hierarchical Pitman-Yor process-based language model indeed improves the translation quality,

which is shown in Table 4.1. The best improvement of HPYLM with regard to the modified

Kneser-Ney method was 0.80 BLEU points absolute and 3.4 % relative for 200k EN–JP corpus,

while the best improvement of GTPYLM with regard to the Good-Turing method was 0.83 BLEU

points absolute and 3.9 % relative for 200k JP–EN corpus.
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4.2 Translation Model Smoothing

When PB-SMT was introduced around 2002, the most primitive method, namely relative frequency

(Koehn et al., 2003), was introduced to calculate the probabilities in the translation model. Then,

two kinds of glass box smoothing methods were introduced by (Zens and Ney, 2004) and (Koehn

et al., 2005), which decompose source phrases by independence assumptions. Foster et al. apply to

a translation model the classical smoothing methods used inlanguage models, such as the Good-

Turing method and the Kneser-Ney method (Foster et al., 2006). Johnson et al. show that the

performance does not decreased much even if most of the phrases are pruned (Johnson et al.,

2007).

Since most of these methods involve a combination of heuristics, one motivation here is to seek

the most well-founded method for the translation model. However, as is shown by Foster et al.,

the modification of smoothing methods used for language model to the case of translation models

is quite straightforward. We consider to apply a hierarchical Pitman-Yor process-based smoothing

method to the translation model, which is the theme of this section.

4.2.1 Hierarchical Pitman-Yor Translation Model Smoothing

An n-gram is often defined as a subsequence of n items from a given sequence where items can

be phonemes, syllables, letters, words or base pairs. Although we can extend this definition of

n-gram to one which includes ‘phrases’, let us use the different term ‘n-phrase-gram’ instead

in this chapter, in order to avoid any confusion with then-gram for words. Fig. 4.1 shows a

typical phrase extraction example. In this process, under the consistency constraint, phrase pairs

are extracted which is depicted in the centre. Note that thisfigure is depicted separating the source

and the target sides.

Fig. 4.2 shows the same figure if we depict elements as pairs. The lowest column includes only

1-phrase-grams, the second lowest column includes 2-phrase-grams, and so on. The line connect-

ing two nodes indicates parent-child relations. Accordingly, this becomes the lattice structure of
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Figure 4.1: A toy example of phrase extraction process. Resultant phrase pairs can be described as
a lattice structure.

the generated phrase pairs. These generated phrase pairs may have several paths to yield complete

sentences. Similar to the HPYLM case, we can limit this by considering the suffix of a sequence,

meaning that we can process a sequence always from left-to-right. Hence, although the natural lat-

tice would include the dashed lines, the dashed lines can be eliminated if we impose the constraint

that we should always read the suffix of this sequence from left-to-right. This constraint makes the

resulting structure a tree. If the resulting structure is a tree, we can employ the same strategy as we

did with HPYLM. The predictive distribution can be calculated by Equation (4.13) by replacing

n-grams withn-phrase-grams.
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michael assumes that he will stay in the house|| michael geht davon aus, dass er im haus bleibt

michael assumes that he || michael geht davon aus , dass er

michael michael || assumes  geht davon aus||

michael assumes michael geht davon aus||

dass erthat he ||

in the || im house || haus

in the house || im haus

that he will stay in the house || dass er im haus bleibt

that || dass   er  he ||

will stay || bleibt

will stay in the house || im haus bleibtmichael assumes that michael geht davon aus , dass||

Lattice structure (Tree structure if we only accept real lines)

1−phrase−gram

2−phrase−gram

Figure 4.2: Figure shows a lattice structure of translationmodel for a toy example.

4.2.2 Performance

We randomly selected 200k sentence pairs from the NTCIR-8 patent corpus for JP–EN (Fujii et

al., 2010) as a training corpus. We used 1.2k sentences for the development set, while we used

the test set prepared for the NTCIR-8 evaluation campaign. TheJapanese side of the data was

segmented using Cabocha (Kudo and Matsumoto, 2003). Table 4.2 shows the statistics of each

type of prior knowledge. We prepared terminology without using external resources but with some

human interaction. For the first prior knowledge type, NPs were extracted by the heuristic NP-

extraction strategy similar to (Kupiec, 1993), and then theextracted terminology was processed by

hand via manual inspection of the data. For the second prior knowledge type, paraphrases were

extracted by the method described in (Bannard and Callison-Burch, 2005). For the third prior

knowledge type, OOV word lists were created as follows. We constructed a PB-SMT decoder,

decoded all the training corpus as well as the test corpus, and collected all of the OOV words from

the translation outputs. Then, we supplied the translationcounterparts manually.5

Table 4.3 shows our results. Without translation model smoothing, the improvement in BLEU

by the prior 1 was 0.80 BLEU points absolute, the prior 2 was 0.65 BLEU points absolute, the

5Due to the segmentation process, for around 20% of the transliteration terms it was not possible to find their
counterparts.

115



JP–EN training test
prior knowledge 1 NPs 120070 3865
prior knowledge 2 paraphrases 432135 —
prior knowledge 3 transliteration 25928 284

proper nouns 3408 2
localization 207 2
equations 103 1
symbols 13842 684
noise 19007 175

Table 4.2: Statistics of prior knowledge.

JP–EN without TM smoothing6 with TM smoothing
baseline 21.68 22.44
prior 1 22.48 22.78
prior 2 22.43 22.64
prior 3 22.26 22.52
all 1-3 22.95 23.03
heuristics 21.90 22.49

Table 4.3: Results for 200k JP–EN sentences. Heuristics in the last row shows the result when
prior knowledge 1 was added at the bottom of the translation model.

prior 3 was 0.58 BLEU points absolute, and the prior 1 to 3 was 1.27 BLEU points absolute.

With translation model smoothing, the improvement in BLEU compared to the baseline with no

TM smoothing by the prior 1 was 1.10 BLEU points absolute, the prior 2 was 0.96 BLEU points

absolute, the prior 3 was 0.85 BLEU points absolute, and the prior 1 to 3 was 1.35 BLEU points

absolute. With translation model smoothing, the improvement in BLEU compared to the baseline

with TM smoothing by the prior 1, 2 and 3 was rather small. Thisshows that an MWE-sensitive

aligner and the translation model smoothing improved the results if we applied them separately,

but the combined effect was not much observed unless we incorporate NPs, MWEs, paraphrases,

and OOVs together.

6The probability in a translation model is described by relative frequency.
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4.3 Conclusions

This chapter presents an application of the (hierarchical)Pitman-Yor process-based language model

and translation model to MT. The first part discusses language models. Firstly, although the per-

formance of HPYLM was reported in terms of perplexity, therehave been no reports, as far as we

know, in terms of BLEU in the MT context. We showed that there was a gain with a minor change

in the decoding process. Although Teh reported that HPYLM showed a comparable performance

with the modified Kneser-Ney method, we obtained better results than the modified Kneser-Ney

method here. Secondly, we proposed an alternative languagemodel using the Pitman-Yor process

applying the count-counts distribution of the Good-Turingmethod. The performance of this was

not as successful as HPYLM, but it was better than both the modified Kneser-Ney and Good-Turing

methods. Furthermore, this was statistically significant.

The second part discusses a translation model. The application of this was a straightforward

application of HPYLM introducing a phrase-gram. We conductexperiments combining several

types of linguistic knowledge that we obtained in the word alignment process, such as NPs, MWEs,

paraphrases, and OOV items. We assume that this method is used for smoothing the probabilities

extracted by the MWE-sensitive word alignment method. When weonly use the HPYTM, our

results show that the improvement was 0.56 BLEU points absolute, but when we incorporate all

sorts of linguistic knowledge, we obtained an improvement of 1.35 BLEU points absolute and

6.0% relative.
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Chapter 5

Conclusions and Further Study

This thesis examined word alignment and language modelling, exploring 1) the existence ofnoise

in word alignment, 2) the existence ofprior knowledgefor word alignment, and 3) the existence of

underfitting in terms of the number of samples for language modelling and translation modelling.

The first two relate to word alignment in Section 3 and the third one relates to statistical smoothing

in Section 4.

In word alignment, this thesis considers not only algorithmic aspects but also data manipula-

tion aspects. The latter is often not considered especiallyin terms of noise. Our algorithms aim

at extracting possible structured objects separately fromthe word alignment algorithm, then sup-

plying them as a prior knowledge in the word alignment. As is similar with the phrase extraction

heuristics (Och and Ney, 2003) which radically reduces the computational complexity compared to

the phrase alignment approach of Marcu and Wong (2002), thisway of handling structures in word

alignment has merits in terms of computational complexity.In order to continue in this way, we

provided the MAP-based word alignment technique which was the key component in our approach

theoretically speaking.

In practice, we consider two distinct applications: sentence-level and word-level noise reduc-

tion. The latter is far more complex compared to the former. The first application handled sentence-
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level noise. If we detect such noise, we filtered out such noisy training sentences. Although this

was a simple experiment, this study gave us a view as to how we can tackle the problem of noise.

If the parallel corpus is not noisy, there are not many thingsthat we can do, as observed in the

EN-ZH IWSLT corpus. However, if the corpus is noisy, the effect of our noise reduction method

may be significant.

The second and the third applications handle word-level noise: many-to-many mapping ob-

jects and translational noise. Despite the fact that we are not given information about alignment

links, NP detection gave such information virtually ‘for free’. Using such prior knowledge and

using a MAP-based word aligner, we incorporate NPs into the word alignment process. We noted

that many-to-many mapping objects pose two different challenges for word alignment—noise (or

outliers), as well as valid training data—so this situationis not just an application of outlier detec-

tion in pattern analysis. We also noted that since not all themany-to-many mapping objects are

obstacles for the word alignment process, methods which filter out any kind of noise will often

give better results than those which incorporate prior knowledge about NPs. One useful observa-

tion was that translational noise was language-dependent:it was very useful for Japanese, but may

not be so useful for European language pairs. As with the sentence-level noise, this kind of noise

reduction algorithm suggests that they should be selectively applied only when the level of noise is

high. At the same time, the required resources and overall computational complexity for extracting

translational noise becomes considerably higher.

In Chapter 4 on statistical smoothing methods, we explicitlyassumed that the distribution

which we aim at learning forms a power-law distribution. Based on this assumption, we apply

the hierarchical Pitman-Yor process-based smoothing method on both the language model and the

translation model. In our view, smoothing techniques resolve the underfitting state in terms of the

number of samples into an equilibrium with model complexities, where such an underfitting state

is an inevitable consequence of relative frequency estimates. With respect to the language model,

(Teh, 2006) reported that the hierarchical Pitman-Yor process method yields comparable perfor-
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mance to that of the modified Kneser-Ney method. To the best ofour knowledge, there have been

no reports on MT quality prior to our work. Our result shows that this indeed improves the results.

There are several avenues for further study. Firstly, although this thesis mainly studied the IBM

Model 1 and the HMM model, we did not focus much on IBM Model 4. What is important in IBM

Model 4 is the mechanism of fertility and null insertion which extends thepair assumption, en-

abling comparison of two sentences with different lengths.This work will relate to Gibbs sampling

(Geman and Geman, 1984) and / or graphical models (I.Jordan(Ed.), 1999; Bishop, 2006; Koller

and Friedman, 2009). Under the MAP formulation, Gibbs sampling will be the major approach

to train the model. However, it is also known that it is often difficult to obtain stable results using

Gibbs sampling (Geman and Geman, 1984).

Secondly, in Section 3.1 we discussed the fact that word / phrase pairs are only extracted from

the within-sentence pairs by most word alignment algorithms. This is a problem in that if just two

words are observed in separate sentences, their probability will not be considered, i.e. the index of

the matrix does not include them from the beginning, or just award a value of zero. Thinking about

the performance on the test set, this may be a restriction. One approach to remedy this would be to

employ semantic knowledge derived from language resourcessuch as WordNet (Miller, 1995) and

others.

Thirdly, as is mentioned in Bayesian HMM, many approaches in the Machine Learning com-

munity have tried to solve the problem of overfitting. Since we cannot use one prior for more

than one purpose at the same time, if we use the prior for overfitting, we cannot use the prior for

embedding prior knowledge. It is worthwhile to consider both of these at the same time.
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Appendix A

Pseudocodes

Listing A.1: wordAlignment.m

1 while ( iteration < ITERATION_MAX) ,
2 n = size ( a1F, 1) ;
3 m = size ( a2F, 1) ;
4 clear total_cache;
5 clear count_cache;
6 clear count;
7 clear total;
8
9 count =zeros ( n,m) ;

10 total =zeros (1 ,m) ;
11 logLikelihood = [] ;
12 for i =1: size ( a1, 1) ,
13 m1=size ( unique ( a1{ i }) , 1) ;
14 m2=size ( unique ( a2{ i }) , 1) ;
15 ind1 = [ a1{ i }] ;
16 ind2 = [ a2{ i }] ;
17 t_cache = t ( unique ( ind1 ) ,unique ( ind2 )) ;
18 total_cache =total ( unique ( ind2 )) ;
19 count_cache =count ( unique ( ind1 ) ,unique ( ind2 )) ;
20 total_s = sum( t_cache, 2) ;
21 histgram0 = histc ( a1{ i } ,unique ( a1{ i })) ;
22 histgram1 = histc ( a2{ i } ,unique ( a2{ i })) ;
23 count0 =ones ( m1,m2) ;
24 for j =1: max( max( histgram0 ) ,max ( histgram1 )) ,
25 ind3 =( histgram0 ==j ) ;
26 xxx3 = repmat ( ind3, 1,m2) ;
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27 ind4 =( histgram1 ==j ) ;
28 xxx4 = repmat ( ind4 ',m1,1);
29 xxx5 = xxx3 | xxx4;
30 count0(xxx5)=j;
31 end
32
33 count_cache = count_cache + (count0 . * t_cache) ./ repmat(total_s,
34 1,m2);
35 total_cache = total_cache + sum((count0 . * t_cache) ./ repmat(
36 total_s,1,m2), 1);
37 count(unique(ind1),unique(ind 2)) = count_cache;
38 total(unique(ind2))=total_cache;
39 end
40
41 t = zeros(size(a1F,1),size(a2F,1));
42 t = count ./ repmat(total,n,1);
43 ind = (t < PROB_SMOOTH) & (t ˜= 0);
44 t(ind)=PROB_SMOOTH;
45 ind = t > 0;
46 logLikelihood = [logLikelihood sum(log2(t(ind)))];
47 iteration = iteration + 1;
48 end

Listing A.2: trainingVBEM.py

1 def trainVBEM ( L1tok,L2tok ):
2 ...the same as trainStandardEM ...
3 while ( iteration < ITERATION_MAX):
4 count = {}
5 total = {}
6 for i in range ( numSentence ):
7 ... set the prior ...
8 for e in L1tok [ i ]:
9 total_s [ e] = 0

10 for f in L2tok [ i ]:
11 try:
12 total_s [ e] += t [( e,f )]
13 except:
14 pass
15 for e in L1tok [ i ]:
16 for f in L2tok [ i ]:
17 try:
18 count [( e,f )] += t [( e,f )] / total_s [ e]
19 except KeyError :
20 try:
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21 count [( e,f )] = t [( e,f )] / total_s [ e]
22 except:
23 pass
24 try:
25 total [ f ] += t [( e,f )] / total_s [ e]
26 except KeyError :
27 try:
28 total [ f ] = t [( e,f )] / total_s [ e]
29 except:
30 pass
31 ... calculation of the lower bound ...
32 for x in count.keys ():
33 f =x[1]
34 try:
35 pri =prior [ f ]
36 except:
37 pri =1. 0
38 try:
39 t [ x] = count [ x] / total [ f ] * pri
40 except KeyError :
41 pass
42 logLikelihood = - sum( log ( x[1]) for x in t.items ())
43
44 for x in count.keys ():
45 f =x[1]
46 if ( t [ x] < PROB_SMOOTH):
47 t [ x]= PROB_SMOOTH
48 ...the same as trainStandardEM ...

Listing A.3: Baum-Welch Algorithm

1 def baumWelch( hmm, obs_seqs, ** args ):
2 epochs = 20
3 scaling =1
4 normUpdate =1
5 verbose =1
6 K = len ( obs_seqs )
7 start = time.time ()
8 LLs = []
9 for epoch in xrange ( epochs ):

10 start_epoch = time.time ()
11 LL_epoch =0
12 E_si_all = zeros ([ hmm.N] , float )
13 E_si_all_TM1 = zeros ([ hmm.N] , float )
14 E_si_sj_all = zeros ([ hmm.N,hmm.N] , float )
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15 E_si_sj_all_TM1 = zeros ([ hmm.N,hmm.N] , float )
16 E_si_t0_all = zeros ([ hmm.N])
17 eEmitProb = zeros ([ hmm.N,hmm.M] , float )
18 ow = 0
19 for obs in obs_seqs :
20 obs = list ( obs )
21 logProbObs, alpha, c = forward ( hmm=hmm, obs=obs, scaling =1)
22 beta = backward ( hmm=hmm, obs=obs, c =c)
23 LL_epoch += logProbObs
24 T = len ( obs )
25 if normUpdate :
26 print logProbObs, log ( len ( obs ))
27 w_k = 1. 0 / -( logProbObs + log ( len ( obs )))
28 else:
29 w_k = 1. 0
30 obs_symbols = obs [:]
31 obs = symbol_index ( hmm, obs)
32 # gamma[i,t] = P(q_t = S_i|obs,hmm)
33 gamma_raw = alpha * beta
34 gamma = gamma_raw / gamma_raw.sum (0)
35 E_si_t0_all += w_k * gamma[: , 0]
36 E_si_all += w_k * gamma.sum(1)
37 E_si_all_TM1 += w_k * gamma[: , : T-1] .sum (1)
38 # xi[i,j,t] = P(q_t = S_i, q_t+1 = S_j|obs, hmm)
39 xi = zeros ([ hmm.N,hmm.N, T -1] , float )
40 for t in xrange ( T-1):
41 for i in xrange ( hmm.N):
42 xi [ i, : ,t ] = alpha [ i,t ] * hmm.transProb [ i, :] *
43 hmm.emitProb [: , obs [ t +1]] * beta [: ,t +1]
44 if not scaling :
45 xi [: , : ,t ] = xi [: , : ,t ] / xi [: , : ,t ] .sum ()
46 E_si_sj_all += w_k * xi.sum (2)
47 E_si_sj_all_TM1 += w_k * xi [: , : , : T-1] .sum (2)
48 emitProbNew = zeros ([ hmm.N,hmm.M] , float )
49 for k in xrange ( hmm.M):
50 which = array ([ hmm.symbol [ k] == x for x in obs_symbols ])
51 emitProbNew [: ,k ] = gamma.T[ which, :] .sum (0)
52 eEmitProb += w_k * emitProbNew
53 E_si_t0_all = E_si_t0_all / sum ( E_si_t0_all )
54 hmm.Pi = E_si_t0_all
55 transProbNew = zeros ([ hmm.N,hmm.N] , float )
56 for i in xrange ( hmm.N):
57 transProbNew [ i, :] = E_si_sj_all_TM1 [ i, :] / E_si_all_TM1 [ i ]
58 hmm.transProb = transProbNew
59 for i in xrange ( hmm.N):
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60 eEmitProb [ i, :] = eEmitProb [ i, :] / E_si_all [ i ]
61 hmm.emitProb = eEmitProb
62 LLs.append ( LL_epoch )
63 return hmm, LLs

Listing A.4: fwdBack.py

1 def forward ( hmm, obs, scaling =True ):
2 T = len ( obs )
3 print 'obs' ,obs
4 obs = symbol_index ( hmm, obs)
5 print 'sym' ,obs
6 if scaling :
7 c = zeros ([ T] , float )
8 alpha = zeros ([ hmm.N,T] , float )
9 alpha [: , 0] = hmm.Pi * hmm.emitProb [: ,obs [0]]

10 if scaling :
11 c[0] = 1 . 0 / sum ( alpha [: , 0])
12 alpha [: , 0] = c[0] * alpha [: , 0]
13 for t in xrange (1 ,T ):
14 alpha [: ,t ] = dot ( alpha [: ,t -1] ,hmm.transProb ) * hmm.emitProb
15
16 [: ,obs [ t ]]
17 if scaling :
18 c[ t ] = 1 . 0 / sum ( alpha [: ,t ])
19 alpha [: ,t ] = alpha [: ,t ] * c[ t ]
20 print 'alpha=' ,alpha
21 if scaling :
22 logProbObs = -( sum( log ( c)))
23 return ( logProbObs, alpha, c )
24 else:
25 probObs = sum( alpha [: ,T -1])
26 return ( probObs, alpha )
27
28 def backward ( hmm, obs, c =None):
29 T = len ( obs )
30 obs = symbol_index ( hmm, obs)
31 beta = zeros ([ hmm.N, T] , float )
32 beta [: , T -1] = 1 . 0
33 if c is not None:
34 beta [: ,T -1 ] = beta [: ,T -1] * c[ T-1]
35 for t in reversed ( xrange ( T-1)):
36 beta [: ,t ] = dot ( hmm.transProb, ( hmm.emitProb [: ,obs [ t +1]] *
37 beta [: ,t +1]))
38 if c is not None:
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39 beta [: ,t ] = beta [: ,t ] * c[ t ]
40 return beta

Listing A.5: viterbi.py

1 def viterbi ( hmm, obs, scaling =True ):
2 T = len ( obs )
3 obs = symbol_index ( hmm, obs)
4 delta = zeros ([ hmm.N,T] , float )
5 if scaling :
6 delta [: , 0] = log ( hmm.Pi ) + log ( hmm.emitProb [: ,obs [0]])
7 else:
8 delta [: , 0] = hmm.Pi * hmm.emitProb [: ,obs [0]]
9 psi = zeros ([ hmm.N, T] , int )

10 if scaling :
11 for t in xrange (1 ,T ):
12 nus = delta [: ,t -1] + log ( hmm.transProb )
13 delta [: ,t ] = nus.max (0) + log ( hmm.emitProb [: ,obs [ t ]])
14 psi [: ,t ] = nus.argmax (0)
15 else:
16 for t in xrange (1 ,T ):
17 nus = delta [: ,t -1] * hmm.transProb
18 delta [: ,t ] = nus.max (0) * hmm.emitProb [: ,obs [ t ]]
19 psi [: ,t ] = nus.argmax (0)
20 qStar = [ argmax ( delta [: ,T -1])]
21 for t in reversed ( xrange (1 , T -1)) :
22 qStar.insert (0 , psi [ qStar [0] ,t +1])
23 return ( qStar, delta, psi )

Table 1 shows the prior knowledge about alignment links usedin the paraphrase examples in

Section 1 (Refer to Figure 1.3.)
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Result of our Local MAP Estimate−EM algorithm Viterbi alignment for 4 sentence pairs (unidirection)

1.0 today today
1.0 it_is_a_pity_that i_am_sorry_that
1.0 i_am_sorry_that to_my_regret
1.0 to_my_regret sorry
1.0 sorry it_is_a_pity_that
1.0 cannot_go cannot_visit
1.0 i i
1.0 cannot_go will_not_be_available
1.0 . .
0.5 cannot_visit cannot_go
0.5 will_not_be_available cannot_go

to_my_regret i cannot_go today .

i_am_sorry_that i cannot_visit today .

i_am_sorry_that i cannot_visit today .

it_is_a_pity_that i cannot_go today .

it_is_a_pity_that i cannot_go today .

sorry today i will_not_be_available .

sorry today i will_not_be_available .

to_my_regret i cannot_go today .

to_my_regret i cannot_go today .
i_am_sorry_that i cannot_visit today .
it_is_a_pity_that i cannot_go today .
sorry today i will_not_be_available .

i_am_sorry_that i cannot_visit today .
it_is_a_pity_that i cannot_go today .
sorry today i will_not_be_available .
to_my_regret i cannot_go today .

Target LanguageSource Language

Figure A.1: The result of word alignment by our local MAP estimate-EM aligner removing two
commas from parallel corpus. (Compare this result with the result shown in Figure 1.3. The
ambiguous phrase pairs whose probability are all 0.0001 were not yielded in this case.)
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