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Abstract

This thesis discusses how to incorporate linguistic kndggeinto an SMT system. Although one
important category of linguistic knowledge is that obtaiis a constituent / dependency parser,
a POS / super tagger, and a morphological analyser, lingsbwledge here includes larger
domains than this: Multi-Word Expressions, Out-Of-Vodaloy words, paraphrases, lexical se-
mantics (or non-literal translations), named-entitiemeterences, and transliterations. The first
discussion is about word alignment where we propose a MWEHsenword aligner. The second
discussion is about the smoothing methods for a languagelnaod a translation model where
we propose a hierarchical Pitman-Yor process-based singatiethod. The common grounds for
these discussion are the examination of three exceptiasakdrom real-world data: the presence
of noise, the availability of prior knowledge, and the peabl of underfitting. Notable charac-
teristics of this design are the careful usage of (Bayesidanj9in order that it can capture both
frequent and linguistically important phenomena. This lsartonsidered to provide one example
to solve the problems of statistical models which often arteairn from frequent examples only,

and often overlook less frequent but linguistically importtphenomena.
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Chapter 1

Introduction

Machine Translation (MT) is the study of automatic translatthat incorporates knowledge of
both linguistics and statistics. As in other areas of Arafiéntelligence? the influx of statistical
approaches in the 1990’s had a dramatic effect on MT, so nuties to this day, the main models
are statistical. The study of such statistical methodsiegpd MT is known as Statistical Machine
Translation (SMT). A deeper examination of applying Maehlrearning methods may lead to
further improvements in the quality of MT output. The resbgpresented in this thesis attempts
this application, and we examine one particular moaded alignmentind one particular method
smoothingvhich applies to both the language model and the trans|atiodel.

Despite being rarely discussed in the MT community, therefemuired goes beyond the most
complex state-of-the-art Machine Learning algorithms. Mduires the conversion of a sequence
of words in the source language into another sequence ofsuotte target language where 1) the
length of the source-language sequence and that of the-targpiage sequence may be differént,

and 2) the correspondences between elements in the saungeaalge sequence and those in the

1Computer Vision is one such area where statistical appesaane most intensively used (Forsyth and Ponce,
2003); conversely, Computer Vision contributed to the pesg of Machine Learning.

2Structured prediction algorithms handle input and outpbse lengths are the same and whose correspondences
are already assigned from the beginning. For example in a B&ience in biology, the input sequence and output
sequence, which constitutes either A (Adenine), T (Thymi@gGuanine), and C (Cytosine), are the same length and
their correspondences match with their index.



EN | on thisparticular building

FR | dans ce batiment

EN | the health and safety legislation thaadtually passes

FR | la reglementation en matiere de sante et de securite qu’ il vote.
EN | why are thereno fire instructions ?

FR | comment se fait-il qu’ il n’ y ait pas de consignes en cas d’ incendi@
EN | there are two finnish channels and one portugoese

FR | il y a bien deux chaines finnoises et une chaine portugaise.

Table 1.1: Four simple examples that may brealqtie assumption

target-language sequence may be reordered. One fairhgstissumption made in SMT is that the
translation modeP(¢|f) has always accomodated a paireadnd f, which never lacks one side.
This assumption radically reduces the complexity of thebfgnm although this may yield some
other problems. This thesis examines the methods withsrdaesumption, untouched in other
complex cases since this is really a difficult ultimate gde®bIT.

Note that we may say that Machine Learning perspectivesaneentical with SMT perspec-
tives, but these two may complement each other in the fotigwense. On the one hand, various
particular MT technologies are developed for SMT such aagdextraction, stack-based decod-
ing, Hierarchical Phrase-Based Machine Translation (HPBF5Mlinimum Error Rate Training
(MERT), and so forth. On the other hand, the Machine Learpioigt of view concerns noise,
prior knowledge, overfitting, statistical assumptionsd @o forth. This thesis focuses on noise,
prior knowledge, and overfitting.

Among others, one idea that radically reduces the overalprdational complexity in SMT is
that it assumes that an observed word / phrase always forais §\fve call this thgair assumption
in this thesis.) A t-table and a translation model alwayoatnodate source and target words /
phrases. SMT is constructed based on this assumption. Bonp&, any pair in the translation
model is never lacking either side of the word / phrase. Utlisrassumption, we can write a pair
of words / phrases;| f; using just one variable. In the EM algorithm (Dempster et al., 1977), the

latent variableA;_,; can be written in terms of this. In the HMM algorithm (Baum et al., 1970;
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Baker, 1975), the observatigncan be written in terms of as well. There is a slight difference in
the notation between the SMT and Machine Learning liteeatbut if we convert;|f; to =, or z
to ¢;| fi, this becomes transparent.

The starting point of this thesis is a close look at the worgnmhent component, that is the
IBM Models of 1993 (Brown et al., 1993) and HMM Model of 1996 (\@e@t al., 1996). The first
motivation comes from the Machine Learning level in the esaig=M and HMM algorithms which
are already twenty or thirty years old (EM of 1976 and HMM 088%. Although these algorithms
are still popular given their simplicity, it is known todalyat they have some problems in terms
of, for example, overfitting, noise (or outliers), prior kmedge, and extensibility. Nowadays,
we know of various improved algorithms. Increasingly, MiaehLearning algorithms are often
designed for synthetic data where often do not go beyondetbearcher laboratory. SMT has to
handle real-life data. This may be a very good reason to lbtileaobustness of Machine Learning
algorithms. One recommendation we describe in this thesieeiuse of graphical models in terms
of extensibility where we employ the MAP assignment framefor prior knowledge (Refer to
Fig. 1.1).

prior knowledge

O—0O—C0O

variable evidence variable

Figure 1.1: Word aligners by Brown et al. and Vogel et al. dovave much extensibility, while the
graphical model implementation of the word aligner is egible. This figure shows the situation
where the prior knowledge is incorporated in a word aligner.

The second motivation comes from the linguistic level. 8i&MT is designed on theair
assumptionit is quite natural that if something exists which would dkehe pair assumption it

will effect the overall performance. Table 1.1 shows fouwctsexamples which break the pair as-

sumption. In the first and the second examples, the Englighiscludes some additional words,

11



C est la vie . C' est la vie

VNN LT

That is life . It is the life
C est la vie . C’ est la vie
This is just the way life is . Love story .

Figure 1.2: Examples of many-to-many mapping objects. Dlest row include two many-to-
many mapping objects, e.g. 4-to-7 and 4-to-2 mapping ohject

‘particular’ and ‘actually’. These are calléthnslational noise If we focus on Japanese or Chi-
nese, the situation is much worse. Indeed, we come acroggtigarof such translational noise
very easily. The third example shows an example of wherermifft syntactic structures are used.
In general, we call some objects which are inherently diffitw map literally as defined in the
word alignment leveimany-to-many mapping objecfEhe fourth example shows the necessity to
consider semantics.

Among these, one of our targets is many-to-many mappingctsbjeFigure 1.2 depicts the
situation where many-to-many mapping objects are yieldgite epaturally in the context of human
translation: human translators can translate using whatext they consider conveys the meaning
of the source text. Among them, consider the sentence pairast la vie’, ‘that is life’) and (¢’
est la vie, ‘love story’). In these cases, even native speakers will@oable to align the source
and target words. By the architecture of IBM Model-based wdighenent, it is known that such
objects have a potential danger of not being extracted iptbeess, although many such words
still have the possibility to be aligned correctly by phrasgraction heuristics in the translation
model (Och and Ney, 2003).

Conversely, we prepare a toy situation where many-to-marmping objects exist in the paral-
lel corpus in Figure 1.3. For example, we can consider ‘to egyet’, ‘i am sorry that’, ‘it is a pity

that’, and ‘sorry’ as many-to-many mapping objects (or parases). Similarly in this context,

12



Source Language

Target Language

to my regret i cannot go today .

i am sorry that i cannot visit today .
it is a pity that i cannot go today .
sorry , today i will not be available .

i am sorry that i cannot visit today .
it is a pity that i cannot go today .
sorry , today i will not be available .
to my regret i cannot go today .

Result of GIZA++

1.0 itam 1.0 pity that

1.0isam 1.0 today ,

1.0 s go 10 .

1.0 visit regret ~ 0.75 that cannot
0.667 i NULL

1.0 regret not
1.0 be pity 0.667 sorry go
1.0 available pity 0-667 go sorry

1.0amto 0.55 cannot sorry
10to, 0.33 sorry to

1.0my, 0.33 i cannot

1.0 will is 0.272 cannot available
1.0 not is 0.25 that regret

1.0 a that 0.18 cannot regret

Viterbi alignment for 4 sentence pairs (unidirection)

tg my regret i cannot go today .

i am sorry that i cannot visit today .

iﬂm www tdcw .

it is a pity that i cannot go today .
it is.a pity_that i cannot go today .
sorry’, today 1 will not be available .
so%, IOdW"%ble .

to my regret i cannot go today .

Source Language

Target Language

to_my_regret i cannot_go today .
i_am_sorry_that i cannot_visit today .
it_is_a_pity_that i cannot_go today .

sorry , today i will_not_be_available .

i_am_sorry_that i cannot_visit today .
it_is_a_pity_that i cannot_go today .
sorry , today i will_not_be_available .
to_my_regret i cannot_go today .

Result of our Local MAP Estimate—EM algorithm

1.0 today today to_my_regret i cannot_go today .
1.0it_is_a_pity_thati_am_sorry_that ‘

1.0i_am_sorry_that to_my_regret

1.0 to_my_regret sorry

1.0 sorry it_is_a_pity_that

1.0 cannot_go cannot_visit

1.0ii

1.0 cannot_go will_not_be_available
10..

0.5 cannot_visit cannot_go

0.5 will_not_be_available cannot_go
0.0001 , i

0.0001 , cannot_go

0.0001 , today

0.0001 , ,

0.0001 today ,

0.0001 to_my_regret ,

0.0001 i,

Viterbi alignment for 4 sentence pairs (unidirectia

i_am_sorry_that i cannot_visit today .

i_am_sorry_that i cannot_visit today .

it_is_a_pity_that i cannot_go today .
it_is_a_pity_that i cannot_go today .
sor?, toﬂmfbe_z;able\.
sorry , today i will_not_be_available .

to_my_regret i cannot_go today .

Figure 1.3: An example alignment of paraphrases (In the pl@both source and target language
is English for readability.) in which the training corpusnsists of four sentence pairs. (Upper
figure): Results show that only the matching between the daslonrrect (See the second row in
the rightmost column). Note that the matching between “igd &am” is close (See the fourth row
in the leftmost column). (Lower figure): An example alignrhehparaphrases by our Local MAP
Estimate-EM algorithm. As a prior knowledge, we incorpertite anchor words shown in Table
Al
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sentence ID target source position in tgt| position in src
1 to_my_regret i_am.sorry that 1 1
1 [ [ 2 2
1 cannotgo cannotvisit 3 3
1 today today 4 4
1 : . 5 5
2 i_am.sorry that it_is_a pity_that 1 1
2 [ [ 2 2
2 cannotyvisit cannotgo 3 3
2 today today 4 4
2 : . 5 5
3 it_is_a pity_that sorry 1 1
3 [ [ 2 4
3 cannotgo will _not be available| 3 5
3 today today 4 3
3 . : 5 6
4 sorry to_my_regret 1 1
4 [ [ 4 2
4 will _not .be available| cannotgo 5 3
4 today today 3 4
4 6 5

Table 1.2: Example of biterm correspondence which is gieethé Local MAP Estimate-EM
aligner.

‘cannot go’, ‘cannot visit’, and ‘will not be available’ amther many-to-many mapping objects (or
paraphrases). If human beings were to align these, one wayirndg so would be as shown on the
righthand side of the lower figure. However, as is shown inugyaer figure, the result of GIZA++
includes a number of wrong alignment linksn fact, the lower figure does not show the result of
human analysis, but of our MAP-based aligner (Refer to Se&i6.3, 3.5.4, etc; We gave the prior
knowledge about alignment links as in Table 1.2). This eXarmpows that our MAP-based word

aligner overcomes this to derive a solution in this casgeérstly, it is noted that even if a parallel

3|t is noted that a traditional word aligner often assumesaHairly big parallel corpus is given. In this sense, it
might be a mistake from the beginning to consider to use atiwadl word aligner in this case. However, we try to
let this corpus fairly simple to be aligned: the length ofrffsentences are quite similar (9, 10, 9, and 8) and among
35 words they include 5 times of ‘i’, 4 times of ‘today’ and, '3 times of ‘cannot’, and twice of ‘go’. This will make
both the model complexity and the data complexity are smilertheless, GIZA++ fails in aligning this.

4We noticed that there are two commas after ‘sorry’ in thisapar corpus. These commas cause the probability

14



corpus includes many-to-many mapping objects, there any w@ses where GIZA++ aligns them
correctly mainly due to the following process of symmetii@a or the phrase extraction heuristics.
Secondly, a traditional word aligner assumes that a faidyplarallel corpus is given. In practice,
we may be faced with a tiny corpus as in this case. In this sengegoal is (1) to achieve the
performance even if a corpus is contaminated with bad masmgainy mapping objects, and (2) to

provide a method which has scalability from tiny data to baged

Training corpus (1st sentence pair) (second sentence pair)
c est la vie . la vie rose
\a \b / ¢ / d %
that is life . rosy life

In this case, the best possible | The case when all the combination only consists correg

strategy to recover the solutio alignment links
is to give 50% of prior §
knowledge. - | {ab,c,d.e}
~ {ab,c,d,f} {ab,c,de,f}
{bcd}  {abcef
L {b,c} best case{a,b,d,e,f}
Precision ' L v i _
1.00 |- b}\ ,,,,,, S o In this case, prior knowledge
{ \ AR .| of 66% of link knowledge will
0.66 | & recover the correct solution.
0.33 ¢ & . worst case
N 3 N ; 3
¢ {ay {aeHai. .

0 1 2 3 4 5 6

Number of Prior Knowledge
(In this case maximum number is 6)

Figure 1.4: We show how much information about alignmerkdiwas required to recover the
precision which is shown in the y-axis. If we gave more thaur foorrect alignment links, the
MAP-based aligner was able to obtain the correct alignménte gave three correct alignment
links, the solution was correct in the case{éfc, d}. However, for other cases suchfse, [},
the precision was 0.66. The point at 0 in the x-axis indicitegperformance of a traditional word
aligner where no prior knowledge was provided. The prenigias 0.33.

Once such a MAP-based aligner is built, our interest is tavshow to use this word aligner.
Firstly, all the information about alignment links is prded to the MAP-based aligner in this

case as is shown in Table 1.2. Since the aim of traditionatatigners is to obtain information

0.001. If we happen to remove these commas, we obtainedgbk as in Figure A.1 in Appendix.
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about alignment links, the story seems somewhat upside dbwWrst sight. However, this is our
correct story. Our aim is to supply information about aligamnlinks by other methods than word
alignment. Our first example is bilingual noun phrase c@oeslences (Sections 3.9.4 and 3.10.3).
If we extract bilingual noun phrases, we will know the aligemhlinks between them. Similarly,
we could use other linguistic knowledge to extract sucmyilial correspondences (Details are
explained in Section 3.9).

Secondly, however, it is, of course, not possible in pradicprovide all the information about
alignment links. (If this were possible, we would not needdvalignment.) However, the good
news is that if we know around 50-60% of such alignment linke, MAP-based aligner can be
expected to obtain the alignment links successfully. TAbdeshows a schematic figure for a toy
example. If we can give the information about three lifksc, d} among six links{a, b, - -, f},

the precision reaches 1.0 for this particular situation.

1.1 The Structure of the Thesis
This thesis is organized in the following way:
Chapter 2 gives a brief introduction of SMT and graphical models.

Chapter 3 presents our word aligner. In the sections on algorithmsigie(3.4-3.6), Sections
3.4 and 3.5 discuss how to learn from a parallel corpus, whdetion 3.6 discusses inference.
These three sections give the foundation of our MAP-based alggner. The first section presents
the model without Markov dependencies and the second seetiplains the HMM Model. We
use such MAP-based word aligners as a tool to investigatagbect of noise throughout the word
alignment chapter. Section 3.7 Data Designh examines mettmohvestigate the aspect of data
manipulation. Section 3.8 Linguistic Domain Knowledge aibd/ord Alignment Links explores
the relations among variables (This is often called linfycidomain knowledge). Section 3.9

Experiments provides our results.
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Chapter 4 gives a (hierarchical) Pitman-Yor process-based langoaggelling and translation

modelling.

Chapter 5 concludes together with some avenues for further research.

1.2 Contributions of this Thesis

The summary of the contributions of this thesis is as follows

1. The proposal of local MAP estimate-EM and MAP assignnigvit-algorithms (Sections
3.4.3and 3.4.4).

2. Sentence-level outlier detection algorithm / word-lenveise sensitive MAP-based word

aligner (Sections 3.7.2 and 3.7.3).

3. Application of (hierarchical) Pitman-Yor process todaage model and translation model

in the context of Machine Translation (Sections 4.1.2,3%ahd 4.2.1).

1.3 Notation

We use the following notation throughout this thesis. Ferdescription of a Pitman-Yor process,

e an English word

f a foreign word

é an English sentence

3 an English phrase

A the length of sentencg

é; a reference translation of foreign senterice
P(e|f) | alexical translation probability (or T-table) for woedbver word f
P(e|f) | atranslation model for phrageover f

Pry(e) | alanguage model far

P (€) | alanguage model whose segmentation follews
a an alignment function

we use the following notation:

17



c(n) count of events

PY(d,0,G) Pitman-Yor process with discount parametgstrength pa-
rameter) and base distributiot”
u context

Gy ~ PY (dy,00,Gy) | a distribution Gy has the underlying distributio
Py(d()anuGO)

=]
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Chapter 2
Background Knowledge

2.1 Parameter Estimation in Statistical Machine Translation

A classical formulation of PB-SMT in an end-to-end setting, iBayesian noisy channel model,

can be written as in Definition 1.

Definition 1 (Bayesian Noisy Channel ModelyVe assume that sentence paisf) are drawn
i.i.d. (independent and identically distributed) accarglito the fixed (but unknown) underlying
distributionsp(f|€)-p(e). Then, for a given test sentenge our task is to obtain a sentence

which maximizes the following problem (2.1):

é= argmax, p(f|e) - pra(€) (decoding task)
5(fle) — p(fle)] <6,  (translation modeling task) ~ (2.1)

such that
1p(e) — p(e)| < dy (language modeling task)

wherep(f|e) denotes the target probability of the phrase alignment,tagk) denotes the target
probability of the language modeling task (up to Markov ardetypical » is around 5),5(f|e)
andp(e) denote the true probability, anjfidenotes some distance measure between two probability

densities wheré, andd, are some small quantities near zero.
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In order to achieve better performance, it becomes quitenommto accommodate multiple
translation models (Dyer et al., 2008) and language modetge that since the storage perfor-
mance in SMT affects the performance in training and deapdlims common to use various com-
pact formats to represent data which achieve small heapriagtsuch as a lattice, a hypergraph,

a confusion network, and a forest.

2.1.1 Translation Model

Refer to our notation defined in Section 1.2 in reading De@ini2 below.

Definition 2 (Word Alignment Task) Let ¢; be thei-th sentence in the target language, be
the j-th word in thei-th sentence, ane, be thei-th word in the parallel corpus (Similarly fof;,
fij» and f;). We are given a pair of sentence-aligned bilingual texts {(fl, E1)y.nny (fn, én)}
where each sentence can be composed of segments of phrMésﬁh: (fid,-- -, ﬁw) and

€ = (€1,...,8,). Foragiven word pair(e, f), the task of word alignment is to find a lexical
translation probabilityp, : e; — py,(e;) such thatpy, (e;) = 1 andVe; : 0 < py,(e;) < 1 (Itis
noted that some models such as IBM Models 3 and 4 have defigienilems). It is noted that
there may be several words in the source language and thettiigguage which do not map to

any words; these are called unaligned (or null aligned) wor@isples ( f;, €;,py,(e1))) are called

T-tables.

In practice, the IBM Models introduce an alignment (relatiadsolute distortion) functiohas
a latent variable to solve this problem as a missing valublpro. Note that the subsequent phrase
extraction process assumes that a word alignment procelsts yword-aligned sentence pairs via

Viterbi decoding, as in Definition 3.

1Deficiency problems mean that the sum of probabilities islnot

2An alignment function and a distortion function essenyiatifer to a similar idea. An alignment function is
defined in IBM Models 1 and 2, while a distortion function isfided in IBM Model 3, 4 and 5. The role of an
alignment function is to map the position of the foreign worh the position of English word.
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Definition 3 (Word Alignment Task — Viterbi Decoding)For a given(e, f), the task of word

alignment is to find the most likely word-aligned sentencespai

Based on such word-aligned sentence pairs, the phrasetextrpmocess, shown in Definition

4, is invoked.

Definition 4 (Phrase Extraction)The phrase extraction algorithm extracts all consisteniagh

pairs from a word-aligned sentence pair (Och and Ney, 2003).

The idea of phrase extraction is to loop over all possibleliEhghrases and find the mini-
mal foreign phrase that matches each of them in prinéigléatching is done by identifying all
alignment points for the English phrase and finding the gisbforeign phrase that includes all the

foreign counterparts for the English words.

2.1.2 Language Model

Let w; denote a word, an@l’ denotes a sequence of words, w,, ..., w,. A language model
aims at modelling(W) (= p(wy, . . . ,w,,)) such thap(WW) predicts the probability of picking up
a sequence of words W. In an n-gram language model, the ghitypatdw, . . . , w,,) of observing

the sentence, . .., w,, is approximated as in (2.2):

p(W) - p(w17"'7wm)
= Hp(wi\wl,...,w,-,l)
i=1

= Hp(wi\wi_m, W) (2.2)
=1
Note thatp(wy, ..., w,,) = [, p(w;|wi, ..., w,_1) holds by the chain rule to express the joint
distribution for a sequence of observations, witilev,, |w1, . .., w, 1) = P(w,|w,—m, - ., Wy, Wy_1)

holds by the Markov assumption of the history up to m words.

3Consistency always requires that these foreign words daligpt to other English words.
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The measure to evaluate the performance of a language nwdéen done by perplexity

defined as in (2.3):

oH (Prar) (2.3)
where the cross-entropy (P, ) is defined as in (2.4):

1 n
H(PLM) = _EZIOgPLM<wi|w17"‘7wi—1) (24)
i=1

2.1.3 Overfitting

One characteristic of word alignment is shown on the rigirichside of Figure 2.1. The y-axis
of both figures shows the class identity and the x-axis shbesitmber of words. The left-hand
side of Figure 2.1 shows the case for POS tagging, while tite-tiand side shows the case for
word alignment. The maximum number on the x-axis on theHeftd side is around 50, while that
on the right-hand side is around 1000. The discussion leattetmotivation in Chapter 3 of our
smoothing method, specifically whether it may be useful {ogyap power-law distribution-based
smoothing method.

Modern Machine Learning algorithms, such as Support Vediachines (Boser et al., 1992;
Vapnik, 1998), seek to obtain a small generalisation erver anseen data. This mechanism is
implemented by minimizing both the risk and the capacityhef function class. Suppose that we
cannot automatically adjust the generalisation error twigcoften the case in Bayesian Machine
Learning* We start with some model complexity and we adjust this modedlexity for some
given data in order to obtain the best generalisation ewer onseen data. In this context, if the

initial model complexity is below the point which achievls best generalisation error (or an equi-

4In Bayesian Machine Learning, An Information Criterion fdeike Information Criterion; AIC) (Akaike, 1974),
Bayesian Information Criterion (BIC) (Schwarz, 1978), &fidimal Description Length (MDL) (Rissanen, 1978) are
often used for measuring the model complexity.

23



50 - 1600

1400
40 ot ..--. e AT .- “ teem e

R [ 1200
I tes e Il e 1000

800

20 frmes -
Es === o: R i 600

S mm e e o e eee e o e e H 400

10fT 27

Figure 2.1: The left figure shows the POS tagging and the fighte shows the word alignment.
In both figures, the class identity is shown in y-axis and tinelber of words is shown in x-axis.

librium point), this is called ‘underfitting’ (point A3 in lgure 2.2). If the initial model complexity
is beyond the point which achieves the best generalisatiam, ¢his is called ‘overfitting’ (point
A4 in Figure 2.2). A model selection technique aims at transfl A3 or A4 into an equilibrium
state at A2. Analogous to this, we may apply the same idea ¢@8img techniques where we aim

at controlling the horizontal axis to transfer the state g equilibrium state at A2.

2.2 Graphical Models

This section gives a brief overview of graphical models,eesdly two of the main algorithms
on graphical models: sum-product and max-product algosthThe description in this chapter

follows (Bishop, 2006; Koller and Friedman, 2009).

2.2.1 Factor Graph

A factor graph is a generalization of Bayesian and Markov nete; as shown in (2.5):

p(x) = [[/fs(x) (2.5)
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Figure 2.2: A figure explain our usage of the term ‘underfgftin

wherex, denotes a subset of variables afids a factor which corresponds to a set of variables
x,. Firstly, a factor graph is a generalization of a Bayesiawag, which can be explained by the

fact that the joint distribution of Bayesian network wikhnodes can be written as in (2.6):

K

p($1,...,ZL’K) = Hp(xk|pak> (26)

k=1
wherepa,, denotes the set of parents:of. The fact that the joint distribution defined by a graph
is given by the product of a conditional distribution for bawode conditioned on the variables
corresponding to the parents of that node in the graph, lecc#the factorization property for
Bayesian network. Secondly, a factor graph is a generaizafia Markov network, which can be
explained by the fact that the joint distribution of a Markoetwork over the maximal cliques of
the graph can be written as a product of potential functigns:) as in (2.7):

p(x) = %H¢C(XC> (2.7)
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whereZ is a normalization constant shown as in (2.8):

Z = > []¢cxc) (2.8)
x C

Now, we describe algorithms only for a factor graph, whichneeshave just shown can be
used both for Bayesian and Markov networks. We describe tgari#thms which are representa-
tive algorithms in graphical models for a tree-structurggology, which can be easily modified
even when the topology of the graphical model changes. Theoduct algorithm aims at
marginalization by performing sums, while the max-prodalgorithm aims at finding the values
that maximize the marginals. For learning HMMs the sum-pobalgorithm is employed, while

for decoding the max-product algorithm is employed.

2.2.2 Sum-Product algorithm

On the one hand, the marginal can be obtained by summingititedjstribution over all variables

exceptr as in (2.9):

p(x) = Y pl) (2.9)

x\z

wherex\z denotes the set of variables snexceptz. On the other hand, if the factor graph is
in a tree structure, the joint distribution can be writteraggroduct of the factor. Lef, denote

the factor nodeX, denote the set of all variables in the subtree connectecetoahable node:
through the factor nodg;, F;(x, X;) denote the product of all the factors in the group associated
with factor f,, andne(z) denote the set of factor nodes that are neighbours dthen, the joint

distribution can be written as a product of all the factorseptz as in (2.10):

p(x) = ][ Ful= X, (2.10)
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From (2.9) and (2.10), the interchanging of sums and pradgietds (2.11):

p(x) = H ZFS(IaXS)]
sene(z) L Xs

= H fifi—a(T) (2.11)

sene(x)

Now we define two kinds of messages: from the factor ng@ds the variable node, and

from the variable node,, to the factor nodeg, as in (2.12):

,u’fs%iv(l) = ZXSFS<:U7XS)
Mzm%fs(xm) = szm Gm<xm7Xsm)

(2.12)

Then, we consider to compute the margipéat) by the product of all the incoming messages

arriving at noder as in (2.13) forF;, and (2.14) foiGG,,:

FS(ZU,XS) = f5<x,l‘1,---,xM)Gl(ﬁl,Xsl),.--,GM($M7X3M> (213)
lene(xm)\fs

Substitute (2.13) into (2.12) yields (2.15) tby:

ffz(x) = Z...Zfs(x,xl,...wM) H

Z G (T, Xsm)]

1 Tar mene(fs)\z LXzm
= Z...Zfs(x,xl,...,mM) H L= £ (Tim) (2.15)
1 T mene(fs)\z
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a a a a a a a? | a a a a a
bt bt b? b? bt bt b2 | b? bt bt b? b?
et c? et c? et A |t 2 ct c?

0.25| 0.35| 0.08| 0.16| 0.05| 0.07| 0.0 0.0| 0.15| 0.21| 0.09| 0.18

at at a’ a’ a’ a’

c c c c c c
0.33] 0.51| 0.05| 0.07| 0.24| 0.39

Table 2.1: Example of factor marginalization. Fadios marginalized out by sum-product algo-
rithm

Substitute (2.14) into (2.12) yields (2.16) fGt,,:

Mt (Tm) = H

lene(xm )\ fs

= JI rpoen(@m) (2.16)

lene(xm )\ fs

Z E(ana Xml)]

Xml

Note that we use the initialized messages at the root of #eednd at the leaf nodes as in

(2.17):

poog(@) =1 (2.17)

py-a(z) = f(2)

An easy example is shown in Table 2.1. For example,', ¢') = > [P(a’, b, '), P(a, b%,c")] =
5°[0.25,0.08] = 0.33.
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2.2.3 Max-Product (Max-Sum) Algorithm

The aim of max-sum algorithm is to find the set of valuexof= z7, ..., 27}, thatjointly (not

individually) maximizes the joint distributiop(x) as in (2.18):

max p(x) = max...maxp(x) (2.18)
X 1 M

The difference betweeindividually andjointly will result in a different conclusion. Take an easy
example. Consider the joint distributigriz,, z2): p(0,0) = 0.3, p(0,1) = 0.3, p(1,0) = 0.4,
p(1,1) = 0.0. The result of joint maximization is 0.4 (at1, 0)), while the indivual maximization
is 0.3 (atp(0,0)) (x; = 0 for maximization with regard ta; andz, = 0 with regard taz,).

Let M be the total number of variables. Suppose that a graph is lraia éorm. In this case,

the maximization op(x) can be written as in (2.19):

m&xp(x) = 7 rr;;lxx. ) .HQI%X [P12(x1,22) ... dn—1 N (TN_1, N)]
1
= 7 H;?X {¢1,2($17 T3) [ - H;%X ¢N—1,N($N—1, N)} ] (2.19)

We consider the messages sent from the leaves to the rootla®ymvith the results of the

sum-product algorithm of (2.15) and (2.16), we replacevith max as in (2.20):

Hfsa(T) = MaXg .| x lnflf,ZE,...,IM + méene z Mz, Tm
f—>() Ly ( 1 ) Z ene(fs)\ —>f( ) (2.20)

ﬂm—)f(x) = Zlerw(m)\f ,Uf_m(l')

Note that we use the logarithm in order to deal with the nuca¢tinderflow. (For this reason, the

max-product algorithm is also called the max-sum algoritfifimese two are essentially the same
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except for the representation using the logarithm.) Ihitiessages are similarly given as in (2.21):

) = 0
[ (T) (2.21)
pooyp(r) = Inf(z)
Then, at the root node the maximum probability can be obtbasan (2.22):
P = max > () (2.22)

s€ne(x)

Now, we consider the problem of finding the configuration & #ariables, cf. Viterbi algo-
rithm. Firstly, we consider the following problem to detenethe most probable configuration as
in (2.23):

x = argmax (g, (2)] (2.23)

For this purpose, we send messages from the root to leavisrap(2.20) with (2.23):

luffn_>fn,n+1 (xn) - /’Lfnfl,nﬁmn(xn) (224)
K1 n—fo (l’n) = maXg, , [ln fnfl,n(xn*b xn) + /an71—>fn71,n(wn)}
An initial message is shown in (2.25):
Hai— f12 (1) = 0 (2.25)
Then, the resulting ; which is the most probable value can be obtained by (2.26):
]}}Gaw = arg H;%X I:quN—l,N_>$N (,IN):| (226)
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a a a a a a a? | a a a a a
bt bt b? b? bt bt b2 | b? bt bt b? b?
et c? et c? et A |t 2 ct c?

0.25| 0.35| 0.08| 0.16| 0.05| 0.07| 0.0 0.0| 0.15| 0.21| 0.09| 0.18

al al a? a2 a’ a’
ct 2 ct c? et 2

0.25] 0.35| 0.05| 0.07| 0.15| 0.21

Table 2.2: Example of factor marginalization. Fadi@s marginalized out by max-sum algorithm

Secondly, we determine the state sequence correspondihg toost probable configuration.
This problem can be solved by keeping track of which valugb@wariables yields the maximum

state of each variable which is shown in (2.27):

¢(x,) = argmax [ln Jo—in(Tn_1,2,) + ,uxnflﬁfnfl,n(xn)} (2.27)

Tn—1

Once the most probable value of the final nadeis obtained, we follow the link back to find
the most probable state of node_, which is repeated until the initial nodg. This is called

back-tracking, which is shown as in (2.28):
= p(a) (2.28)

An easy example using the same data as in Table 2.1 is showabie 2.2. For example,
P(a',c') = max [P(a',b', c'), P(a*,b?, c¢')] = max[0.25,0.08] = 0.25.
2.2.4 Typical Inferences

This section describes three most common query types foligp\iKoller and Friedman, 2009;
Murphy, 2007). LeX = {X},..., X,,} be a set of random variables, a”Rd X1, ..., X,,) be the

joint distribution over a seK. Let us partition the variableX into E (evidence)Q (query), and
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H (hidden / nuisance).

Let a subsef’ of random variables in the model denote the evideacknote its instantiation

to these variables, a subsetYofof random network denote the query variables, @ndienotes a

(non-evidence) variables, that¥s — E.

» Conditional probability query (posterior):

P(Xqlze) o 3 p(Xq,om, oa)

Xnu

* MAP estimate whe™ = () (posterior mode):
T = arg rgl(%Xp(xQ\xE) = arg Igl%Xp(xQ, )
» Marginal MAP estimate (mode of marginal posterior):

rq = argmaxp(rq|rg) :argmapr(xQ,xE,xH)
Xq X 4=

32
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Chapter 3

Word Alignment: Noise

This chapter aims at identifyingpisein the level of word alignment in Statistical Machine Trans-
lation (SMT), as well as providing a prototype for handlinugls noise in word alignment. The aim
of such identification is to improve the overall performa¢ehe word aligner. We handle two
kinds of noise: word-level noise and sentence-level ndlge present quite different methods for
these two.

For word-level noise, we first introduce a novel MAP-baseddiadigner which has the capa-
bility of incorporating prior knowledge about alignmentKks as described in Chapter 1, and then
through this interface we try to incorporate them. In thissge one of our contributions is mainly
the analysis, design, and development of this MAP-based aiigner. The main function of this
MAP-based word aligner is, however, to incorporate knog&edot abouhoiseitself, but about
alignment links. Hence, the usage of this word aligner isrt fietect various alignment links
which may act asoiseto the word aligner, and then to supply such information tcoadaaligner.

In other words, many-to-many mapping objects may causdgmhin word alignment. Instead,
our idea is to extract a set of possible correct alignmeislinetween many-to-many mapping
objects (which is considereatbisg before we run word alignment, and then to supply such infor-

mation to the MAP-based word aligner. In this sense, befaeum the MAP-based word aligner,

33



we need to identify which objects will potentially prove ptematic in the word alignment pro-
cess. We will present the up-to-date results including igte bf such possible candidates which
becomenoiseobjects although this process to select candidates is eotdlical, but unfortunately
empirical.

For sentence-level noise, we introduce a method which igssito the outlier detection method
in computer vision or in Machine Learning. If we trace theteane-based training set errors, a
word aligner will not work for the specific sentence pair. Qmedy, if we assess the sentence-
based training set errors, it would be possible to estinteggérformance of the word aligner for
the particular sentence pair. In this case, sentences ribataaned badly by a word aligner are
labeled withnoise In this case, we will not be able to classiigiseobjects since all the sentence
pairs can equally be a candidatenafise

Now, we mention briefly which section explains what topiesSkction 3.1, we review what is
noisein audio, vision and word alignment. The teruiseis often used in the context of audio and
vision but has rarely been used in SMT. On the one hand, theatmifference from audio and
vision is thatnoisyobjects may also work assignalin SMT since all the fragments in a sentence
usually have some meaning (Refer to the definitionatein Section 3.1.3). On the other hand,
the similarity is that it is often very difficult to detect suaoiseuntil we detect thesignal as
mentioned in the above two algorithms. As is already meetipnve cannot list a candidate of
noiseat the sentence-level; we only describe a list of potenaldadates fonoiseat the word-
level. This list starts with many-to-many mapping objectsigeas well assignal), translational
noise (Qoisethat is not asignal), and so forth.

Section 3.2 explains a hand-annotated corpus between JRhiH we build. Then, Section
3.3 explains the method of evaluation. We use AlignmentiHRate (AER) (Och and Ney, 2003).
For the sake of SMT, our aim is to achieve an overall bettefopmance in terms of BLEU (Pa-
pineni et al., 2002). However, in terms of the quality of waddgnment, it is not always clear

if we only look at BLEU. Unfortunately, these two measures @oe well correlated with each

34



other. Even if we obtain high-quality results in terms of AERnay not always lead to better
overall results in terms of BLEU (Fraser and Marcu, 2007). éftheless, it is still worthwhile to
investigate word alignment in terms of AER for several reasdFirstly, it is widely recognized
that the IBM Models work quite well if we measure the perforcauy BLEU. This is true for
most European languages as well as for language pairs cangpAsian languages and European
languages, including EN-JP and EN-ZN. However, except fifHR we may not even know the
actual performance on AER. This is due to the scarce avatlabil hand-annotated word align-
ment corpora. Even between EN-FR, most of the cases are mdassing a Hansard annotation
corpus of just 448 sentences (Och and Ney, 2003). For EN-@JEpuld not find any report nor any
hand-annotated corpus. Accordingly, it took us some timeuitdl such a hand-annotated corpus
between EN-JP, and to measure the performance. The firstvalise is that the AER from EN
to JP is always several points higher than the other dinectldnlike word alignment between
European languages, in the case of JP, we often split theé impuwvords and morphemes using a
morphological analyzer. Hence, we align morphemes (JP)at@sv(EN). If the source includes
morphemes (JP), there is a strong possibility that such Ingongs connect with content words,
which is the case from JP to EN. Conversely, if the source dedwonly words (EN), even if we
have morphemes in the target side there are less possibilitat morphemes connect with content
words. Note that if we have to align these manually, therébila low inter-annotator agreement
whether we allow the alignment links between morphemes anteat words or not. Section 3.4
explains a Bayesian Machine Learning approach where nmeikiglutions may be obtained.

From Section 3.5 to Section 3.7, various algorithms propéseword alignment are explained.
In order to investigate suamoise we do not look at the word aligner as a black box, but we try
to understand the architectural weakness of the dominard aligner GIZA++ (Och and Ney,
2003). As is mentioned above, one of the important tools wedneas the MAP-based word
aligner which incorporates prior knowledge into the wordminent process. We describe how to

specify the prior knowledge into the process.
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Section 3.8 considers the basic algorithm for data mantijpulaAfter explaining the heuristic
sentence-cleaning algorithm introduced in Moses, we dhicte sentence-based and word-based
cleaning algorithms. Section 3.9 mentions the charatiesief language. This section intends to
obtain the relation between variables.

Then, in Section 3.10, we gather all the techniques — algmstand data manipulations —in

order to compute the overall performance as a word aligner.

3.1 Noise

Since it is not common to use the temisein the context of SMT, this section describes what
we mean bynoise We use this ternmoiseas an analogy afioisein audio or vision. We discuss,
however, that the characteristicsrafisein SMT are quite different in nature. However, it turned
out that rather than the pun®ise we need to take care signalssince suclsignalswork asnoise

at the same time. All the more, the input of the MAP-based vatigher is word alignment links
(notnoisg. Eventually, at the end of this section, we will give not éegarization ofnoisebut a
list of candidates which may provide the source of word ahgnt links. We start with the audio

noise and the visual noise. Then, we proceed to word alighmen

3.1.1 Noise in Audio

In audio,noiseis often defined alongsidggnals but sometimes it is not. For example in the con-
text of radio transmission and audio recording via recordapes signalsmay be the conversation
of persons, music, and plays which we aim to transmit or towhile noiseis the sound which
disturbs our ability to heasignalsand is often irrelevant to th&gnalsthemselves. High levels of
noise can block, distort, change or interfere with the dgynas another example, suppose that our
aim is to hear the conversation of other people. The conttersaf other people is not particularly
called as thesignals while the loud sounds which disburb us from hearing the eosations of the

other people are calletbise Note thatoiseis often distinguished frordistortionalthough those
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two are alike. The latter is an unwanted alteration of thaaigvaveform.

Various noise reduction techniques are developed in ocdexduce the former kinds oioise
There are several kinds of noise whose causes are differdkipediat, 2011). Richard Zens
and Hermann Ney. 2004. Improvements in phrase-basedtisttis thermal noise (electronic
noise), shot noise, flicker noise, burst noise, and avatndise. Thermal noise is due to the
random thermal motion of electrons inside an electric cotatu (Electronic noise is the random
variations in current or voltage caused by the random mowéofeelectrons on the circuit.) Shot
noise arises when the finite number of energy-carrying @agtibecomes significant among very
low-level signals. Flicker noise, which arises in semiaactdr devices, is a signal with a frequency
spectrum that falls off steadily into the higher frequenaich occurs in almost all electronic
devices. Burst noise is a sudden step-like transition betwee or more levels, as high as several
hundred microvolts, at random and unpredictable times.|lafwde noise arises when a junction

diode is operated at the onset of avalanche breakdown.

3.1.2 Noise in Vision

Noisein vision is comparable with that in audibloisein vision is often defined as the information
which we do not want to extract even if we manage to detect adwéver at the same time, it is
often the case that we do not know how to measure nor to extoé&tin an image.

There are several kinds abiseknown (Wikipedi&, 2011): amplifier noise, salt-and-pepper
noise, shot noise, quantization noise, film grain, and amp@ noise. Amplifier noise is an
additive stationary Gaussian noise (or white noise) capsedhrily by thermal noise. This noise
makes up a major part of the noise by image sensors. Salp@per noise (or spike noise) has
a fat-tail distribution caused by analog-to-digital coriee errors or bit transmission errors. Shot
noise is the dominant noise in the lighter parts of an imagmfan image sensor, which is due

to the statistical quantum fluctuations. Quantization eascaused by quantizing the pixels of a

lwikipedia, the free encyclopedihttp://en.wikipedia.org
2Wikipedia, the free encyclopedihttp://en.wikipedia.org
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sensed image to a number of discrete levels. Film grain greasdependent noise due to the grain
of photographic film with a similar statistical distributi@s shot noise. Anisotropic noise appears
with a significant orientation in images. For example, imsgesors are often subject to row noise
or column noise.

One observation in computer vision is that it is often theedhsit even if we know the cause
of noise in advance, it does not often help us how to consthgcinethod to extract them. This is
becauseoiseis often the object which we do not know how to measure and ti@ett we often

extract them by extractingignals then we first realize that the remainindendse

3.1.3 Noise in Word Alignment in Statistical Machine Transldion

The definition ofnoisein this section is intended only for word-level noise. Hyrsin contrast

to audio and vision where most of tm®iseis not part of thesignal it turns out that many-to-
many alignment objects work amiseas well as valid training data (hensgna) (Okita et al.,
2010a). Secondly, in a sentence, the unit@semay easily be changed (For example, somise

is defined in a word, but othetoiseis defined in a phrase.) In sum, our definition becomes as

follows:

1. Anyfragmentamay have (1) botlsignalsandnoise (2) onlysignals (3) onlynoise and (4)

neithersignalsnor noise
2. Segmentsan overlap with othesegments

It is noted that such overlapped approach in translationaiednvestigated in Kaariainen (2009).
However, this definition means that there is no obvinoise while eachnoisetype has a name in
audio and vision. At the same time, it means that we are natldamf findingnoisevia detecting
signals Hence, this definition does not give us help.

The categorization here is not the categorization of eittese or signal but rather word

alignment links. For this reason, some types of noise havanaerof noise, but others do not.
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Firstly, this is due to the overlapping definitionmbiseandsignalas is mentioned above. There is
not much obviousoise but most of them arsignals Secondly, as is explained at the begining of
this chapter, the input of the MAP-based word aligner ismms$e but word alignment links, so it
is no use if we categorizeoise What we need is a categorization based on word alignmers.link
Thirdly, we aim at only the word-level noise for word alignmieFourthly, not all the objects may
become noise due to the phrase extraction (For example, teeeigh the unidirectional word
aligner did not detect many-to-many mapping objects, a qghextraction process may detect
many-to-many mapping objects.) Hence, each item in thegosdimtion below leaves open the

possibility that these objects may becontase
1. Many-to-many mapping object pairs (noun phrases, MWEganaphrases).
2. Translational noise.
3. Non-literal translation pairs.
4. Less frequent word pairs.

5. Human errors and typos (For example, ‘hmman’ will notrakgth ‘human’. Once errors

and typos are corrected, we can align them correctly).
6. Anaphora and pronouns.
It should also write the condition whetiseyields easily:

1. In the case where there are many possible correspondesivesen the source side and the

target side.

2. In the case where the same symbol in the semantic levelxgressed differently in the
surface level (e.g. “(", “[",’<”). One common way is to normalize the surface forms in

order to align them correctly. However, this is not a conetisvay to handle this correctly.
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3. In the case where the same objects in the semantic levekpressed differently in the syn-
tactic level (e.g. conjugations). Since the aim of wordratngnt is to align the corresponding

verbs or nouns correctly, syntactic difference will be astable to this.

4. In the case where the lengths in the source side and inrtiet &de are different (Note that
there are mechanisms such as fertility and NULL insertiofBi Model 3 and 4 to deal

with such cases).
5. In the case where a verb phrase is converted into a nousgtorvice versa.

It is noted that some of these will be investigated in Secsién

3.2 Hand-Annotated Corpus-based Evaluation

We evaluate our methods in this chapter based on AER whidhiresga hand-annotated corpus.
We used three kinds of corpus: the Hansard corpus betweeRRE{Gch and Ney, 2003) and two

other corpora which are built by us for EN-JP.

name | language pair person size | evaluation
Hansard| EN-FR Och & Ney | 484 | AER
IWSLT | EN-JP Okita 100 AER
NTCIR | EN-JP Okita 50 AER
NTCIR | EN-JP Fujii 3200k | BLEU
NTCIR | EN-JP Fuijii 200k | BLEU
NTCIR | EN-JP Fuijii 50k BLEU
IWSLT | EN-JP 40k BLEU

Table 3.1: The first three lines show the hand annotated carpbich we used in the evaluation
by AER, while the four last lines show the corpora which we usetthis thesis for evaluation by
BLEU.

We constructed two kinds of corpus between EN-JP. The firgtusois the IWSLT 2006 sub-
corpus consisting of 100 sentence pairs (cf. Table 3.2). sHBwe®nd corpus is the NTCIR sub-

corpus of 50 sentence pairs. We use the alignment processwiért et al. (Lambert et al., 2006).
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The main difference is that the resulting variety of opirsieagarding the correctness of the links
is expected to be so wide in the case of the EN-JP corpus thatayeneed 5 or 6 persons in order
to obtain the same effect as in the EN-FR corpus. We take thaph not to give the average of

many persons, but rather to adopt one annotation which isistemt throughout the corpgs.

# Sentence pair (5) source length 9 target length 10

we want to have a table near the window .

NULL ({125} ZB({ 7890 o DI 61) 2 1) M D ({34)) L({34})
x5 ). (10}

# Sentence pair (9) source length 8 target length 7

this is my first time diving .

NULL ({ D #E{ DIcd D #Ea( 6N o D ird D Av T 12345) TFd . (7))
# Sentence pair (12) source length 8 target length 8

go straight until you see a drugstore .

NLé{L;(D{ 346} FoF ({2 1r<{ 1) e HERA7H »({ H R2({5H x9{ D
# Sentence pair (21) source length 5 target length 6

pass the bread , please .

NULL ({2}) s> ({3phZ={ HEILH1}) TFSw({45hH. ({6}

Table 3.2: IWSLT hand-annotated corpus. Note that althougluse the GIZA++ format (which
is called a A3 final file) this is not the result of word alignndput the hand annotation itself. We
employ this format to simplify the annotation of alignmenks.

3The guidelines we adopt include:
* Unless there is no ‘of (EN)’, we do not align particles sushreo (JP)’. Hence, most particles are not aligned.
* We allow links between a punctuation mark and a word.
» Most proverbs in EN are not aligned since there is no comedence in JP (Omission of subjects in JP).
» Most articles in EN are not aligned (No articles in JP).

» Although Japanese may include expressions which areddlathe politeness register, we avoid the alignment
of such words.

» We align ‘to (EN)’ combined with a verb to their correspomgliJapanese verbs or nouns.

We established such rules not because we think these r@ébebest, but because we need to establish consistent
rules in order to label in a consistent manner. This is bex#usre are two many options to label them since we
assume that Japanese side is morphologically segmented.
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3.3 Evaluation

We use BLEU (Papineni et al., 2002) as the extrinsic evalnatieasure and AER (Och and Ney,
2003) as our intrinsic evaluation measure. tée the length of the testset andbe the length of
the reference translation. For given precisigrof n-grams of size up t&/, BLEU is defined as in

(3.1):

4
BLEU-4 = BP-exp <Zlogpn> (3.1)

n=1

where brevity penalty (BP) is intended to reduce the scofeeiflutput is too short as in (3.2):
BP = min (1, el_g) (3.2)

Alignment error rate (Och and Ney, 2003) is defined via thestire alignments, possible
alignmentsP, and whole alignmentgl. Recall is defined oy while precision is defined o#®

whereP O S. These definitions are shown as in (3.3):

(
Precisiont4, P) = |A|Q|P|,
Recall A, S) = |AQ|S‘, (3.3)
[ANS[+[AN P
AER(A,P,S) = 1-—
( Al +15]

First, note that if the performance of a word alignment sysite better than some other one, both
recall and precision often increase. The normal experiandéachine Learning is that if recall
goes up precision should go down, or vice versa. For thisoredkis may look odd at first sight.
However, this comes from the difference above that recall @necision are defined on slightly
different objects. Second, note that it is not easy to cateufalse negatives since we do not know

how many alignment links existed for a pair of sentences. ddeit is not easy to write ROC
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(Receiver-Operating Characteristic; The ROC curve was ugeldebUS army during World War
Il for the analysis of radar signals (Green and Swets, 196Bje way to calculate this would be
take the maximum between the number of source and targesword

Figure 3.1 shows the performance of GIZA++ on EN-FR Hansathsets whose training
set is 1.1 million sentence pairs, consisting of 10 iteretiof IBM Model 1, 10 iterations of

HMM Model, 10 iterations of IBM Model 3 and 10 iterations of Meld4. Figure 3.2 shows the

Word Alignment Performance Measured by AER

IBML | HMM | IBM3 | IBMA4

0.8

0.7 -

06

00 : ; ; ;

iteration

Figure 3.1: AER performance on EN-FR. The line which stadsifthe 11th iteration shows that
this is only trained by the HMM model. The other line whichrigdrom the 31st iteration shows
that this is only trained by IBM Model 4. The red and blue linésw that they are different
translation directions. Training set was Hansard 1.1 amlsentence pair together with a hand-
annotated amount of 484 sentence pairs.

performance of GIZA++ on the EN-JP corpus. The first obsermat that the performance on
EN-JP is considerably worse than the performance on EN-FBerase of EN-FR, it achieves
0.11 AER between 15 to 20 iterations and 0.09 AER between 34 tterations. In the case of
EN-JP, it achieves 0.52 on IWSLT and 0.62 on NTCIR. The secondreaison is the variability
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Word Alignment Performance (IWSLT 40k EN-JP by hand aligned corpus) Word Alignment Performance (NTCIR 50k EN-JP by hand aligned corpus)
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Figure 3.2: AER performance on EN-JP. The left figure showsp#arformance on the IWSLT
corpus, and the right figure shows the performance on the NEGIpus. Training set was IWSLT
40k sentence pairs including a hand-annotated portionlevihat of NTCIR was NTCIR 200k
sentence pairs including a hand-annotated portion.

for different translation directions. In the case of EN-H#& ted and blue lines are quite identical,

while in the case of EN-JP, the red line is always better tharbtue line.

3.4 Bayesian Learning

In Machine Learning there are two ways of performing estiomatsingle point estimate and mul-
tiple point estimate. The former is taken in frequentist moels, such as Maximum Likelihood
(ML) / Maximum-A-Posteriori (MAP) estimation, as well as vabalignment using IBM Models.
Multi-point estimation is used in a small amount of Bayesiagthnds (alternatively calledfall
Bayesian methqgd

Under the existence of latent variables, th# Bayesian methods not to consider a single
point estimate of parametér but rather evaluate it at many differefd. In order to consider the
merit of this, let us consider a fair bet casino problem. h@blem is to detect whether the coin
is biased or fair from the observation, say 10 coin flips.

Let ¢t be latent variablesy be observed variable8,be the probability of heads (parameters),
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ny be the number of heads in, andn be the number of tails i. We are given a biased coin
(t=1) with probability 0.5, or a fair coin (t=0) with probdity 0.5. When the coin is biased, we
assume a uniform distribution ovéyotherwise) = 0.5. Assume that we have a uniform prior on

6 with P(0) = 1forall 6 € [0, 1].

=}
o
o = m w s o m W @ @

0 01 02 03 04 05 06 07 08 09 | o 01 0z 03 04 05 06 07 08 09

Figure 3.3: The left figure shows the simple point estimatktae right figure shows the multiple
point estimate.

The single point estimate approach to this problem is cateduio two stages. The first step is

to apply the MAP estimate fat, as in (3.4):
0 = arg max P(w]f)P(6)  MAP estimate (3.4)

Now we observed a head; times, so the MAP estimate fis= ny/10. The second step is to look
at the value of that maximizesP(t|w, 6).
The multiple point estimate approach (or the full Bayesigoraach) is to see the distribution

over latent variables given the observed data, as in (3.5):
Ptlw) = / P(t|w, 0) P(0|w)do (3.5)
Using the case when = HHTHTTHHTH andw = HHTHHHTHH H we can draw the
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situation in Figure 3.3. The left figure shows the case of thgls point estimation, while the right
figure shows the case of the multiple point estimation. Indase ofw = HHTHTTHHTH,
both methods will obtain the best valuett= 0.8. Inthe case olv = HHTHHHTHHH, the
multiple point estimation obtains a flat plateau aroénd 0.6 ~ 0.85, which contrasts with the

single point estimation of = 0.8.

3.5 Algorithmic Design (I): Learning Generative Models (Exact Inference)

In this section, we deal with algorithms considering theecabere there are no Markov depen-
dencies, which is equivalent to the IBM Model 1. We first shoeword alignment implemented
by EM with the maximum likelihood estimates. We mention oharacteristic of word alignment
in that only a small amount of parameters (a matrix of t-tapge updated at a time on a sentence
by sentence basis.

Then, we move to consider how to incorporate prior knowladgethe formula. We apply the
prior in the same EM model by replacing the M-step of maximikelihood with MAP estimates.
We show two ways to set up priors: cache-based or globaldb&sate that MAP-EM has appeared
in some papers (Bishop, 2006), albeit without much appbeoadis far as we know.

However, it turned out that this approach has one disadgariteits MAP estimation in that it is
inherently basis dependent (Beal, 2003; Koller and Fried2@@9). Giverg* has a non-zero prior
probability, it is always possible to find a basis in which gayticulard* is the MAP solution. This
is the motivation of the third algorithm, which we call VB-ENgarithm (variational Bayesian EM
algorithm), which is not basis-dependent. The VB-EM aldonitdiscusses the lower bound of the
MAP-EM algorithm, modifying the distribution with a simpléorm.

Note that the aim of word alignment is to find the most probalignment path in the form of
A3 final files, which is derived via Viterbi decoding which westribe Section 3.6.1. Practically,

just one iteration of the HMM model is employé&d we need to derive such a path in IBM Model

4This is a technique which is often used when we want to obkan/Aterbi alignment or the A3 final file.

46



3.5.1 Standard EM (standard ML, GIZA++)

An EM algorithm was formulated by Dempster et al. (Dempsteale 1977), this algorithm has
been implicitly used in various fields (Dempster et al., L9¥icLachlan and Krishnan, 1997;
Bishop, 2006). First we introduce this algorithm, then welgpipis to word alignment (Brown et
al., 1993; Koehn, 2010).

Let Y be the random vector corresponding to the observed:gdtaving probability density
function g(y; ®) where® = (®,,...,®,)T is a vector of unknown parameters with parameter
space?. The observed data vectgrs viewed as being incomplete and is regarded as an observabl
function of the complete-data. Note that the incompleta datludes the missing data.

Let X be the random vector corresponding to the complete-datanechaving probability

density functiory.(z; ®). The complete log-likelihood function is given by (3.6):
log Le(®) = logge(z; ). (3.6)
The relation betweem andy is as in (3.7):
9(y:®) = / ge(; ®)dx (3.7)
X(y)

whereX(y) is the subset oK in the relations oy = y(x).
Let & be initial value for®. In the first iteration of E-step requires to calculate tHfeing

quantityQ(®; @), as in (3.8):
Q(D; ) = By (log Lo (®)|y) . (3.8)

The M-step is to maximiz€)(®; &) with regard to® over the parameter spa€e Hence, we
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choosedV) such tha)(®M); @) > Q(®; @) for all & € Q. This is equivalent to (3.9):
M(@WY) = arg max Q(D; ). (3.9)

Then this iteration is repeated as follows.
+ E-step: Calculat€)(®; &) whereQ(®; ) = Egyw (log Le(P)|y).

+ M-step: Choos@*+1) which maximizesQ(®; ®*)). That isQ(®*+1): d*)) > Q(®; dH)

for all ® € , or the alternative equivalent representation in (3.10):

M(@®) = argmgx@(@;@(k)). (3.10)

Dempster et al. (Dempster et al., 1977) show that the inceteqlata likelihood functiof (P)

is not decreased after an EM iteration, as in (3.11):
L(®FD) > [(d®) (3.11)

fork =0,1,2,.... Hence, the likelihood values are bounded above and coeneegs achieved.

In IBM Model 1, P(f,ale) is defined as in (3.12):

Pfale) = gy [ tUilea) (3.12)

Since we do not know the alignment functierwe do not knowP(f,ale) directly. However,
we can calculate the expectation Bf f, ale), that is>_ P(f,ale) (or EP(f,ale), the Bayesian
average ofP(f,ale) ) enumerating all the possible alignment functiansSuppose we are given
such expectation  P(f,ale) (which is equivalent taP( f|e)), we can obtainP(f, ale) by maxi-

mizing the this expectatioh | P(f, a|e) with respect toP(f|e), which is called the Expectation
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Maximization algorithm (Dempster et al., 1977). Now we h#we equality constraint for each

M-step can be written as in (3.13):

l l m

maximize S1(/.ale) (= 1(/1)) = G (filea,)
Z ZH (3.14)

subjectto > t(fle) =1

Note that our training corpus consists of a set of trangiati@™ | (1)), (e |f?),...,(e®)]fO)).
This fact corresponds to the fact that the alignment funcigoclosed within each sentence pair,
i.e. a constraint on the range of a map

In order to find the maxima (or minima) with equality consttaof (3.14), we use the Lagrange
method of Lagrange (1797; general introduction is avadlabk.g. (Cristianini and Shawe-Taylor,
2000; Bishop, 2006)). Let. denotes a Lagrange multiplier. Lagrangiéft, \) can be written as
in (3.15):

L) = WZ---ZH (f;lea,) ZA (Z 1) (3.15)

am=0 j=1

Then, the partial derivative af(¢, \) with respect ta becomes as in (3.37):

’:13

t(fk|6ak) - >‘€ (316)

LD mz S S e A1)

a1=0 am=0 j=1 k=1

where) is the Kronecker delta function, equaltavhen both of its arguments are the same @nd

St is noted that (3.14) is equivalent to (3.13):

l l m

{ maximize Et(f,ale) (=t(fle)) = i +€1)m Z Z Ht(fj\eaj) (3.13)
subjectto Y t(fle) =1
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otherwise. The stationary point is attained when this pbdrivative is zero as in (3.17):

l 1 m m
t(fle) = Ae—l(ljl) Y. ZZ (f, £,)8(e, ea)) T tFilear) (3.17)
a1=0 m=0 j=1 k=1
l m m
R T 2 };II (Fileas) ;;<ﬂf»&a%n} (3.18)
(3.19)
m l m
= A e {> 0(f. £;)d(e, eq))} (3.20)
k=1 i=0 J=1

This suggests that given an initial guess for the transigsiobabilitiest( fx|e,, ) in the righthand
side of (3.17), we will obtain a new estimatetof|e) in the lefthand side. Note that we use (3.21)

to change the order of and] ] from (3.19) to (3.20).

> 2 T tea) = TID_tfiles) (3.21)

In order to facilitate the computation, we define an auxflianctionc(f|e) to removes.

k) = Yo plale £) D 8te ol fu) 322
— —lf(e‘f) Zeé(e e])z (f, fi) (3.23)

>ilotlelfi) j=1 i=0

This functionc(f|e) is calculated for each sentence pair, from the sentence(@dir f(V)) to
(e, £9)). Then, we sum all of these to obtadi c(fle).

If we first computetotal sle}~ Zﬁfzo t(e|f;), then we can calculateount(éf)= t(e|f) Z;‘;l
d(e,ej) Zif:o o(f, f;)/ totals[e] The number of operations to calculate becomes propoitiona
[ +m rather than td/ + 1)™ which is suggested by(f|e) = >_, P(ale, ) > 72, 6(f, f;)(e, eq)).

Note that the calculation is done in the training sentenaebasis. For the:-th sentence pair, the
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cached auxiliary functior(f|e, f,e™) is calculated. Then;(f|e) is obtained by calculating

Z1§ugs c(fle, f(u)v e(u))-

Figure 3.4: A full matrix shows an example of the entire woid€nglish (x-axis) and French
(y-axis). Eight figures show each iteration of examined wmauls by the word alignment process.
Notice that there are many word (cept) pairs which are nanéxad (Refer to Figure 3.5).

Then, what we need is to calculate

t(e]f) (Zsc(e‘f))

— 3.2
5, (s clelf) (3.24)

~ count(ef)

"~ total s[f] (3.25)

As is evident with this definition of tota[f] = A., total s[f] works as the normalization constant.
Listing 3.1 shows the algorithm of word alignment (IBM Mod¢] which aims at obtaining the
t-table shown in an array One characteristic of word alignment relates to the line@iren the
training corpus, each line is processed line by line updadismall portion of t-tablé. Figure 3.4
shows this situation in eight iterations, starting from tpger left figure to the bottom right figure.
The x-axis shows the word ID of English woedand the y-axis shows the word ID of French word

f. We marked whole the points representing a word paind f where the alignment between this
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Figure 3.5: A matrix shows that an example of word pairs wilaichexamined by word alignment
process are plotted (black), while word pairs not examimredchat plotted (white). The corpus is
EN-FR hansard 488 sentences.

word pair is examined in the word alignment process, whiledaaot mark the points where the
alignment will not be examined. Then, we noticed that theecaaconsiderable number of word
pairs which are not considered at all from the beginning.sTéishown in Figure 3.4, where the
points which are not marked are the points which are not densd. One way to utilize this in the

algorithm is to make a sparse mattix

Listing 3.1: wordAlignment.py

def trainStandardEM  ( L1tok, L2tok ):
t =4
count = {}
total = {}
total_s = {}
residual =1
print ‘Initial correspondence calculation'
numSentence = len (L1ltok )
assert (len (L1ltok )==len (L2tok ))
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Figure 3.6: Convergence in terms of log likelihood.

iteration =0
print ‘Initial parameters set.'
for i in range (numSentence ):

for e in Lltok [i]:
for f in L2tok [i]:
t[( ef )] = UNIFORM_PROB
print ‘lterations.'

PPs =]

whi | e (iteration < ITERATION_MAX:
count = {}
total = {}
for i in range (numSentence ):

for e in Lltok [i]:
totals [e] =0
for f in L2tok [i]:
try:
totals [e] += t[( ef )]
except:
pass
for e in Lltok [il]:
for f in L2tok [i]:

try:
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32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

count [( ef )] += t[( ef )] [ total_s
except KeyError
try:

count [( eff )] = t[( ef )] [ total_s

except:
pass
try:
total [f] += t[( ef )] [/ totalLs [e]
except KeyError

try:
total [f] = t[( ef )] [ total_s
except:
pass
for x in countkeys ():
f =x[1]
try:

t[x] = count [x] / total [f]
except KeyError

pass
print
perplexity = - np.sum (np.log2 (x[1]) for x in titems
print 'PP=" perplexity
PPs.append ( perplexity )

return t

Figure 3.6 shows the convergence in terms of log likelihddthough we often iterate 5 itera-

tions or 10 iterations on IBM Model 1 when we use GIZA++, thiggn shows that the convergence

is achieved around 20 iterations.

3.5.2 Standard EM (standard ML, Vectorial Form)

Now we can easily modify this algorithm in vectorial form, ieh takes advantages if this is run

on some architecture of CPUs or software such as Matlab. Bsedd is shown in Listings A.1 in

Appendix.
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3.5.3 Local MAP Estimate-EM (standard ML)

Let P(a;) be prior knowledge about a local alignment link from the osii in f to the position

a; ine. P(f,ale) for MAP estimate version of IBM Model 1 can be defined as in (3.26

E

P(f,ale) = (filea;» aj)P(ay) (3.26)
Then,
maximize > P(f, = P(fjilea,,
> P(f,ale) ’”Zo ;OH (filea;» a;) P )(3_27)

I
—_

subjectto > t(fle)

The LagrangiarC(t, \) can be written as in (3.36):
¢ l l m
Lt = WZ > TI2(filea,  a) P( Z)\ (Z —1)(328)

a1=0 am=0 j=1

Then, the partial derivative af(¢, \) with respect td becomes as in (3.37):

- o S 3 YA L )oter e (Sl (3.29)
a1=0 am=0 j=1
Ht(fk|€ak7ak)P(a/k) — e (3.30)
k=1
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whered is the Kronecker delta function. The stationary point iaiattd when this partial derivative

is zero as in (3.31):

l l m n
t(fle) = Ae_la fnm 2 2 28U fdlesea) [T Pfileas an) Plar) - (3:31)
a1=0 am=0 j=1 k=1
= m Z Z HP fk|€ak;ak ( k){z 6(f7 fj>5(€>ellj)}
a1=0 ap=0 k=1 7j=1
m 1
= )\e_l(l+ Ty 11D t(flenr

k=1 1=0

This suggests that given an initial guess for the transigtiobabilitiest( f;|e,, ) on the righthand
side of (3.31), we will obtain a new estimatetdf |e) on the lefthand side.

In order to facilitate the computation, we define an auxli@nctionc(f|e) to removee.

_ 3oy HelN Pl )il 1) .32
j=1 i=0 Z o tlelfir)Play)

The priorlog p(t), a probability used to reflect the degree of prior belief altbe occurrences
of the events, can embed prior knowledge about noun phras®8NEs). The prior of this MAP-
based word aligner is defined by the alignment links betweand f by T" = {(sentID,1;,
tj, posi, pos;), ..., }. We use this information to calculate the prigit) = p(t;e, f,T') for the
given wordse and f: this is 1 ife and f have an alignment link, O if they are not connected, and

uniform if their link is not known. This is shown in (3.38):

(1 (ei =t fj =1t))

e fuT) = 4" (€=t f5 #15) (3.33)
0 (ei # ti, f; = 1))
| uniform (e; # &, f; # t;)

®This equation shows how to set up our prior. For example, when t;andf; # t;, our prior takes the value.
This is the value of the prior.)
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O~NO O WN P

pair GIZA++(no prior) | Ours(with prior)
EN-FR || fin | ini [ prior || fin | ini [ prior
iISNULL |1 |.25|0 0 |.25|.25
rosyen |1 |5 |0 0O |5 ].2
that . 1 [1.25|0 0 |.25|.25
life la 1 /.25/0 0O [.25|0
. C' 1 1.25|0 0 |.25|.25
thatc’ 0O |.25|0 1 |.25].25
is est 0O [.25|0 1 |.25|.25
life vie O[5 1|0 1 |5 |1
rosyrose|| O |.25|0 1 |.25|.2
GIZA++ (no prior)
NULL ¢ est la vie .. NULL la vie en rose
that is life . rosy  life
Ours (with prior)
NULL ¢’ est Iafvi/e/j NULL la vie en rose
that\is Iiife ) rosy ﬁfe

Table 3.3: Benefit of prior knowledge about anchor words titated by toy data.

The posterior probability is calculated for the prior ashe tisting 3.3.

Listing 3.2: wordAlignment.py

def trainMAPEM ( L1tok,L2tok,prior ):
...the same as trainStandardEM ...
whi | e (iteration < ITERATION_MAX:

count = {}
total = {}
for i in range (numSentence ):

for e in Lltok [i]:
totals [e] = 0
for f in L2tok [i]:
try:
total s [e] += t[( ef )] =* pri [( ef )]
except:
pass
for e in Lltok [i]:
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

for f in L2tok [i]:
try:
count [( ef )] += t[(ef )] == pri [(ef)] /
total s [e]
except KeyError
try:
count [(ef )] = t[(ef)] =* pri [(ef)] /
total_s [e]
except:
pass
try:
total [f] += t[(ef )] =* pri [(ef)] [/ totals [e]
except KeyError
try:
total [f] = t[(ef)] = pri [(ef)] /
total s [e]
except:
pass
for x in countkeys ():
f =x[1]
try:
pri =prior [f]
except:
pri =1.0
try:
t[x] = count [x] [/ total [f]
except KeyError
pass
logLikelihood = -sum(log (x[1]) for x in titems ()
for x in countkeys ():
f =x[1]
if (t[x] < PROB_SMOOJH
t [ x]= PROB_SMOOTH
...the same as trainStandardEM ...

3.5.4 MAP Assignment-EM (standard ML)

Except for the simplest case when we do not consider any Matkpendencies, the problem of
MAP estimate corresponds to finding the configuration thahast likely under the distribution
p(z) defined over the (Bayesian or Markov) network. In this gensetting, under the assump-

tion that we do not doubt the evidences, the task of MAP assggn is to find the most likely
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assignment to all of the (non-evidence) variables. Thisngets somewhat simpler than the MAP
estimate in the previous section in which we assume the pebef which we may override de-
pending on the statistics.

First we devide variables into the variables whose valueahlisady known a priori and those
which we would like to obtain. Concretely, l¢tc PRI be variables which we know the values a
priori, andj € V AR be variables in question. TheR( f, a|e) for the MAP assignment version of

IBM Model 1 can be defined as in (3.34):

P(fale) = e 11 tUiles) TI tfilea) (3.34)

jJEVAR jePRI

Then,
( l l
maximize S, t(f,ale) = (z+€1)m Sy }H t(f;lea,)
a1=0 am=0jeVAR (335)
H]GPR] t(fj|efl])
\ subjectto >, t(fle) = 1

Then, the Lagrangiad (¢, \) can be written as in (3.36):

L(t,\) =

l

. +el)mz_.. ST thilea) T tfilea) =D A <Zt(fye)—1) (3.36)
a e f

1=0  am=04jcVAR jEPRI

Then, the partial derivative af(¢, \) with respect ta becomes as in (3.37):

PO 2 30 S e (A1

a1:0 (Lm:() jZl
H t(frleay) H t(frleay) = Ae (3.37)
keVAR kePRI



whered is the Kronecker delta function. The stationary point iaiattd when this partial derivative

is zero as in (3.38):

H(fle)
l ! m

= AT 2 2 20U fdeen) T] tilea) TT t(filea)
a1=0 am=0 j=1 keVAR kePRI
l ! m

- Ae-l(ljl)m t(filea) ] <fk|e%>{2 5(f, £;)d(e, ea,)}
a1=0 am=0keV AR kePRI

_ )\e‘l(l_:l)m > I tlea) S 0 Y (3.38)
ay,0€EVAR ayn€VARKEV AR apo€ PRI apm€E€PRI

kePRI j=1

This suggests that given an initial guess for the transigtiobabilitiest( fx|e,, ) on the righthand
side of (3.38), we will obtain a new estimatetgf|e) on the lefthand side.

In order to facilitate the computation, we define an auxli@nctionc(f|e) to removee.

c(fley = Y plale, )Y 8(e.e))d(f. fuip)

_ telf) 5
= €, €;) (f, fi) (3.39)
ZzEVARt( elfi) + 2 icprrt(elfi) Z Z

3.5.5 \Variational Bayesian-EM (standard ML)

The Bayesian Machine Learning algorithm often depends oagkemed complexity of the distri-
bution. A simple algorithm, such as the maximum entropy mazation algorithm, only assumes
the exponential family distribution. An exponential faynis the set of parametric distributions
that has sufficient statistics and a consistent maximuntiliked estimate. In other words, the

likelihood cost function has a global optimum and the estintd the parameters of distributions
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in this family will be unique’, as in (3.40):

P(X|0) = exp(A(X)+T(X)"0— K(6)). (3.40)

where A(X) denotes a function of the dat&;(0) a function of the model or the partition func-
tion, andT’(X)"# an inner product between the model and a function of the ddi@exponential
family distribution includes most of the naturally arisidggtributions, such as normal, binomial,
Dirichlet, Laplace, Wishart distributions, and so forthheTpartition functionk (6) ensures that
the distribution is normalized when we integrate over More complex distributions are taken
in the form of mixture models. Further complicated disttibns are described by graphical mod-
els. The standard EM and the MAP-EM which we explained in &t two sections are tools to
handle mixture models, and HMM models in general which wdargn the next chapter fall
into the category of graphical models. The complexity ofréhsition depends on the nature of the
application.

This section follows the description of Beal (Beal, 2003). Tdea of the variational Bayesian
framework employs a simpler distribution than a true disttion to approximate the distribution
over both hidden variables and parameters. Often, we asawrapler distribution, which we
call thefree distributiong(z, 6), where the hidden states and parameters are independenttes
data.

We assume a prior distribution over parametg(@®m) conditioned on the modeh. The
marginal likelihood of a model(y|m) can be lower bounded by introducing any distribution over
both latent variables and parameters which has supporé|y, m).

Let m be a model with parametefsgiving rise to an IID data sef = {yi,...,y,} with

corresponding hidden variables= {z;,...,x,}. A lower bound on the model, which is the

"Exponential families are characterized by their strictdynex and differential function&”, which is called a log-
normalizer (or a partition function). Due to such propestithe Hessian of this log-normalizer is a positive definite
matrix.
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model log marginal likelihood, is as in (3.41):

p(z,y,0\m)

4z ()qo(0) (3.41)

Fnlas(a), gs(6)) = / 06, (x)g5(6) log

This can be iteratively optimised by performing the follogiupdates, which will converge to

a local maximum off,, (¢, (), go(9)). Note that the superscriptdenotes the iteration number.

E-step:
qgﬂ)( ) = Zimexp [/ d@qét) logp(wi,yi\e,m)l for all i (3.42)
where
¢ (= H ¢ (x (3.43)
M-step:
60 = 5o | [ togp(eiom (3.44)

Pseudocode is shown in Listing A.2 in Appendix. The diffeefrom the standard EM is evi-
dentin line 31 where we calculate the lower bound in EquaBof2) and the posterior probability

in the M-step.

3.6 Algorithmic Design (Il): Learning HMM

Although word alignment handles two word sequences inmffelanguages, the EM models de-
scribed in the last section do not take advantage of thig.dbenot treat them as propsequences
but rather eag-of-words In this section, we try to treat them as sequences. Our gstiahg is

that we do not have a hand-annotated word aligned corpuspweichave the (direct) labels, but
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we can compute the expectation of such labels in terms ofhiddriables, i.e. alignment func-
tions. The HMM word alignment of Vogel et al. (Vogel et al.,.98) modeled alignment functions
as hidden variables. In brief, the purpose of the HMM mod#b imtroduce a first order Markov
dependency in terms of states.

The discussion of HMM in this section resembles the discumssf the EM algorithm, but be-
comes substantially more complicated since the paramgterthe model are not a single one but
three, i.e. a translation matrix, an emission matrix, anéngmmatrix. The first and the second
algorithms are the standard HMM algorithm. We show two imatations where the former
uses the forward-backward algorithm (or Baum-Welch algan)t(Baum et al., 1970) via EM al-
gorithm, while the latter uses the graphical model. Sineedfandard HMM does not have the
interface of prior knowledge, we incorporate priors on pagters, a transition matrix, an emission
matrix, and an init matrix. This model is called a Bayesian HN\Ghahramani, 2001; Stolcke,
2002). One algorithm counts the pseudo-counts given altieensentences provided as a prior,
which is the third algorithm which we call a pseudo-count Bage HMM, while another algo-
rithm makes use of Gibbs sampling to estimate the E-steghwhithe fourth algorithm which we
call a Gibbs-Bayesian HMM. We have a potential difficulty irstBayesian HMM in that our aim
(which we discuss in detail in the next section) is to plaeeghor knowledge about alignment
links. This difficult problem is often called the MAP configion problem, which is one of the
hottest topics in the Bayesian Machine Learning community.BAyesian HMM algorithms, as
far as we know, are aimed at solving the overfitting probleémesé algorithms aim at learning the
parameters of priors. In contrast, we aim at enforcing priorthe model: our algorithm aims
at learning models under the specified priors which are drsat. Similar to the discussion re-
garding the EM algorithm, the MAP estimation is basis-dejggn. WWe demonstrate a variational

Bayesian approach to HMM, which we callariational Bayesian-HMMVB-HMM).
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3.6.1 Standard HMM (standard ML, GIZA++): Baum-Welch Implementa tion

HMM Model handles not a bag-of-word but a sequence. Hentteapossible alignments are not
equally likely possible. Instead of enumerating all thesiole allgnmentsz as in (3.46), we

can use the maximum approximationx,» as in (3.47) (Vogel et al., 1996; Ney et al., 2000):

P(fle) = (P (f1lf|€11)= P(filer")) (3.45)
- ZH (ajlaj—1, Dp(filea,)] (3.46)

at j=1

J
~ ng%xH [p(ajlaj 1, Dp(filea,)] (3.47)

Let Z be a normalization constant. Recollect that in the IBM Mod@T 1¢(f, ale) = t(f|e).

We can write (3.48):

. 1
maximize t(fle) = Em%XHt(fﬂeam,am)P(am|am_1)
= (3.48)

subjectto >, t(fle) = 1

Note that the standard HMM does not have an equality constirathis formula. Similarly with
the previous sections, we consider to employ the Lagrangbadeof Lagrange (1797). Let.

denotes a Lagrange multiplier. The Lagrangizin, \) can be written as in (3.49):

L)) = %m?xﬁt(fj\eam,am) P (| a1 Z/\ (Z 1) (3.49)
ay i=1

The partial derivative of (¢, ) with respect tad becomes as in (3.50):

Mgf) - %gﬂf,fj)é(e,e@)(ﬂ mathfueaﬂa» (aj]a;-1) = Ae (3.50)

o

where) is the Kronecker delta function, equal tavhen both of its arguments are the same @nd
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otherwise. The stationary point is attained when this pbdrivative is zero as in (3.51):

(Fle) = A% S0 £)ote, o mas [ thdeus ) Plaslors) @50

L

We define an auxiliary functiona( f|e) to removee.

le
e(fle) = D _plale, )3 8(e,e;)a(f, fuii) (3.52)
~ Helf) Z(s 66 25 £f) (353)

maxall HZLI t(fk|€aka ak ak|ak 1

This functionc(f|e) is calculated for each sentence pair, from the sentence(g@dir fV)) to
(e, f19). The quantitymax, [T;, t(fx|€a,, ax) P(ax|ar—1) can be obtained via the standard
HMM where we use a cache matrix for each sentence pair. Thersum all of these to obtain

2_gc(fle).

(s clelf))
22 (2usclelf))

t(elf) (3.54)

Now we focus on the standard HMM to obtain the quanrtii;yxal1 [T t(frleay, ar) Plag|ag—1)-
The description of HMM model is based on Gharamani (2001 HINM model assumes that
the state of this hidden process satisfies the Markov prgpegiiten the value of;_, the current

statesS, is independent of all the states priortte- 1. Figure 3.7 shows a graphical model of an

HMM. Let X,.; denoteXy, ..., X7. We can write the complete-data likelihood of a sequence as
in (3.55):
T
p(sir yur) = p(wlsi) [ [ p(silsi—)p(uelse) (3.55)
t=2
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where we marginalize out hidden variablgs- as in (3.56):

p(yLT) = 5 p<511T7 yl:T) (3.56)
S1:T
S1 S2 & sS4 Al A2 A3 Al
X1 X2 X3 X4
flle Al f2le A2 f3le A3 f4]e_Ad

Figure 3.7: The left figure shows the original HMM model, vehihe right figure shows the HMM
word alignment of Vogel et al. Note that the word pair appedn emission node.

Let # denote the set of parameters in the modelonsists of a transition matrix, an emission

matrix C, and an init matrixr.

0 = (A C,n) (3.57)
A = Aajy}azy =plse = j'lse-1 =) (3.58)
C = {gm}: cim = pyr = mls; = j) (3.59)
m = {m}:m = plsi =J) (3.60)

We show the dependenciestin= (A, C, ) in p(si|si—1), p(y:|s:), andp(s;) as in (3.61) — (3.63),

respectively.

k k '

plsilsion, A) = J[]] e (3.61)
j=1j'=1

p .

p(yelse, C) = H Cj;’iyt’m (3.62)
j=1m=1
k

p(si|m) = le’j (3.63)

j=1



while we add the parameter dependencies in (3.55) as in)(3.@165):

T T
p(sir,yrld) = p(81|7T)Hp Yilse, C Hp Stlsi—1, A (3.64)
t=1 t=2

= 1ogp<slrw>+Zlogp(yAst,mZlogp(sAst_l,A) (3.65)
t=2

Note that depending on the case, the HMM can have discreteartthuous values. We explain
only the case of discrete values since we do not need to aamtid continuous case in word
alignment.

Now, we consider the application of the EM algorithm sincecarenot compute this in general
as the state variables are hidden. We consider the exmectatder the posterior distribution of

the hidden states given the observations, as in (3.66):

/ FOXOP(XIY, 0)dX (3.66)

and as in Listing A.3 in Appendix. This posterior distritmrtiof the latent variables can be obtained
efficiently using a two-stage message passing algorithmthdrHMM literature, this is known
as the forward-backward algorithm (Rabiner, 1989), or thenB&\elch algorithm (Baum et al.,
1970). The forward-backward algorithm is one instance efdgim-product algorithm to obtain
marginals in the graphical model.

Using the forward-backward algorithm in (3.70), we derive tollowing quantities.

Aij = ZEStﬁst—Lj (367)
- ZtT=T2 Bsuisit (3.68)
> imo Bt
Ci = ]Es“ (369)
Ty = M (3.70)
Zt 1]E5tl
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Note that the forward-backward algorithm is in calculatedhe following manner. Firstly, the
backward path computes the conditional probability of theesvations,, 1. givens; asin (3.71)

- (3.73):

Bi = P(yrrirlse) (3.71)
= ZP(yt+1:T‘St+1)P(St+1|5t)P(yt+1‘3t+1) (3.72)
St+1
= Z5t+1p(5t+1’3t)P(yt+1|St+1> (3.73)
St41
Bri = PYryr7|se = 1) (3.74)

Secondly, the forward path computes This «; is defined as the joint probability ¢t and the

sequence of observatiops;.

a; = P(st,y14) (3.75)
= ZP(St—l»yl:t—1>P(3t|3t—1) P(yi|st) (3.76)
= Za/t—lp(st"st—l) P(yist) (3.77)
arg = P(sy=1,y14) (3.78)

Then, from these, we can compute the expections oénds; ;s;_1 ;.

Est,i = Mt (3.79)
Qg z’ﬁtz’
= bt 3.80
Zj Oét,jﬁt,j ( )
ESt,iSthj = ft,z’,j (3-81)

_ 1,5 Ai 5P (Y| 56.4) Bri (3.82)

Zk’l Oét—l,kAk,lP<yt|3t,l)5t,l
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From (3.55), we take logarithm in both sides as in (3.83):

T T
log P(s1.r,y1.7) = log P(s1)+ Z log P(y|s:) + Z log P(s¢|st-1) (3.83)

t=1 t=2

We replace this representation with parameters { A, C, 7}. Let A(; ;) be an element of the
transition matrix ofK’” x K, which means the probability of transitioning from state statei. By

this definition,

K K
P(si|si—1) = []1TA)e. (3.84)
i=1 j=1
We take the logarithm of both sides.
K K
log P(s¢|si-1) Z Z S¢iS1—1,5 log Ajj (3.85)
i=1 j=1
= s, (log A)s,_;. (3.86)
Let C' be an emission matrix of size x K.
P(yls;) = C (3.87)
log P(y,|s)) = ' (logC)s, (3.88)
log P(s1) = s (log) (3.89)

Altogether, we can rewrite (3.65) as in (3.90):

T T
psir,yurld) = s7logC+ ) s/ logCyy Y logs|;log As, (3.90)
t=1 t=2
Note that we assume a homogeneous transition in the HMM wiydnaent model as in Defi-

nition 5.
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Definition 5 (Homogeneous transition in HMMWhen all the transitions in HMM from statg
to s, are position-independent, i.(A; = s,|Ai=1 = s,) = p(A; = s,|4;—1 = s,), the HMM is
called homogeneous. Notice that the alignment functips- j means thaf; is mapped int@, ),
i.e. the j-th position of f is mapped into thh position ofe. We consider only output values, i.e.

sy = a(i) ands, = a(i — 1).

3.6.2 Standard HMM (standard ML): Graphical Model Implementati on

The following description is based on (Bishop, 2006). [etlenote the factors anddenote the

root node among such factors. These factors can be written(a91):

h(z1) = p(21)p(a1]21) (3.91)

fn(znflazn) - p(Zn’anl)p(xn’Zn)

First, we consider the messages from the leaf node to thenostd. Using the sum-product algo-

rithm, the messages can be writte as in (3.92):

ILLZ'nfl‘)fn (anl) = ILLf'rL71‘>Zn71 (anl) (3.92)

/’Lfn_)zn(zn) = Zzn—l fn(zn_17Zn)/"LZn—l_)fn(Zn_]-)

Note that (3.92) is equivalent to the alpha recursions. H®®9R2), we deletg:,, ., (2,-1) tO

obtain a recursion from the factgy, to the nodez,, as in (3.93):

oo (Z0) = > falZnets 2a) gy (Z0m1) (3.93)

Zn—1

If we definea as in (3.94):

alzn) = fi, -z, (2n), (3.94)
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this leads to the forward algorithm as in (3.95):

a(z,) = p(l’n|2’n)Za(zn_l)p(zn|zn_1) (3.95)

Zn—1

Then, we consider the messages from the root node to thedeat rSince variable nodes do

not perform any computation, message can be writte as i6).3.9

ot (zn) = > Fa(Zns Zng)ifinsznn (2ns1) (3.96)

Zn+1

If we defines as in (3.97):

5(271) = /“l’fn+1_>zn(zn)7 (3.97)

this leads to the backward algorithm as in (3.98):

Bzn) = ZB(Z’nH)P(fl?nH’Zn+1)p(zn+1\zn) (3.98)

Zn+41

Init message is shown in (3.99):

Pon—ty () = 1 (3.99)

Note that the local marginal at the nodg can be obtained by the product of the incoming

messages as in (3.100):

plzn, X) = Ufn%zn(zn)ﬂfnﬂ—mn(zn) (3.100)

= a(z,)B(zn) (3.101)
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Then, if we definey = p(z,, X)/p(X), we obtain (3.103):

V(z) = 2 ;f(”X))() (3.102)
_ —0‘(?(>§()Z") (3.103)

14 C Y
I OO

Factorial HMM

??//
O

L
O O

Standard HMM

O

)

HMM with mixture of Gaussian
output

O
O O

Input-output HMM

Coupled HMM

Figure 3.8: Five variants of HMM.

Figure 3.8 shows the standard HMM and five variants of HMM, séhnetwork structure re-
sembles the standard model. Traditionally, the algorittithese need designing different algo-
rithms. The graphical model facilitates the design of theseh of the variants providing basic
notions of inference / learning which can be reused. Hencee ave design an HMM, we can

reuse it fairly easily when we implement a factorial HMM, ftample.
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3.6.3 Bayesian HMM (standard ML): Pseudo-count Implementation

A Bayesian HMM (Stolcke, 1994; Ghahramani, 2001; Beal, 2098)ie example of incorporating
the prior into the standard HMM. It is often the case that thecDlet prior is selected due to its
conjugacy. Dirichlet priors are applied on the transitioml &mission matrix, where we assume
a multinomial distribution. The Dirichlet distribution & conjugate prior over the Multinomial
distribution.

Note that our main theme in this thesis is to embed the priomkadge into an HMM which
is slightly different from ours: the prior here is to prevewerfitting. Since excessive parameters
in HMM cause overfitting, this method aims at regularisingnthusing a prior to reduce such
parameters, which is a common technique in HMM; then it masésithe a posteriori probability
of the parameters by the MAP estimate.

The generative model can be written as in (3.1058.108):

Oila ~ Dir(a) (3.104)

ol ~ Dir(a) (3.105)

tiltioa =t ~ Multi(6,) (3.106)

wilti=t ~ Multi(¢,) (3.107)

y ~ F(¢) (3.108)

For a sequence of draws = (zy,...,z,) from a multinomial distributiord with observed
countsny, . .., ng, asymmetridirichlet(3) prior overd yields the MAP estimate, = nj’}j(%jll).

On the one hand, a multinomial distribution for unorderethigles can be expressed as in

(3.109):

P(ci,....cale,0) = []o5 (3.109)
i=1
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On the other hand, a Dirichlet prior distributigiia,) can be expressed as in (3.110):

glag) = ! ) H(Qq,p)yq’p_l (3.110)

B(vig,...,v
(17q> gl 2y

whereB(v,, - - ., Vn,) is the Beta function in (3.111):

I(v14) ... D(vnyg)

3.111
F(vig+ .. 4 Vnyg) ( )

B(vig, . -y Vnyg)

wherel'(n) = (n — 1)!. A Dirichlet prior is a conjugate prior, i.e. the same funathl form as the

likelihood function, of the multinomial distribution. Hen,

P@ler,... cn) = L | TTev . (3.112)

i
B(I/l’q + a1,...,Vng —+ i1

Then, integration of this yields a closed-form solutionraé3.114):

1 n
P(0)P(ci,...,c,|0)d0 = —/ gsitei=tdp 3.113
[POre.elow = g 11 (3.113)
i B(cl+a1,...,cn+an)
B B(ah s ,O./n) (3114)

Then the MAP estimate far, , can be expressed as in (3.115):

-1
a _ (Vap — 1) + Cop (3.115)

P Zr(yr —1)+ Zr Crgq

Note that this is equivalent to the addition (@f — 1) virtual samples to the likelihood, which is

called a pseudo count method.
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3.6.4 \Variational Bayesian HMM (standard ML)

This section follows the description of Beal (Beal, 2003). Bysidering the derivatives of the

lower bound with respect to the variational posterior, &lgs

108261(31:T) = <10gp(31Tale|7TAC)> q(A)g(C) — 10825(?/1:T)- (3.116)

wherez(y,.r) is a normalization constant. Using this, the complete-liled¢tihood is as in (3.118):

T
p(sur, yur) = plyilsy) [ [ p(silse—1)p(uilse) (3.117)
t=2
T T
plsur,yurld) = plsilm) [[pwelse, ©) [ [ p(selsi-1, A (3.118)
t=1 t=2
T
log p(sv.r, yrrld) = logp<sl|w>+Zlogp(yt\st,c*)Zlogp(st\st_l,m (3.119)
t=1 t=2

T T
= (s logm+ Z s, log Cy, + Z log s, 1 10g Ast) g(m)g(A)a(C)

t=1 t=2

— log (y1) (3.120)
= 5] (log T)y(m) + Z sy (log C)gicyye + Z Sy (log A)ga
t=1

Now we consider the parameteas well as the natural parameter vecet¢f) given in (3.123):

0 = (r,AC) (3.122)

o(0) = (logm,logA,logC) (3.123)
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Note that the expectation of the natural parameteaiadd are given as in (3.125):

¢ = ((0))q0) (3.124)
= ((log m)g(x), (log A)g(a), (log C)g(c)) (3.125)
and
0 = ¢ '((6(0))qo)) (3.126)
= (exp(log m)¢(x), exp(log A)4a, exp(log C)g(c)) (3.127)
= (1, 4,0). (3.128)

Using the standard results shown in (3.129):
k
/dﬂDir(ﬂu) logm; = ¥(u;) — @/}(Z u;) (3.129)
j=1

we can compute the expectations of the logarithm of the patens under the Dirichlet distribu-

tions as in (3.132):

k k

T = exp w(wj(.ﬂ) — w(z wj(»ﬂ)) : ij <1 (3.130)
_ — —

- B k T k

A = exp [pl) =D wi)| > ajy < 1v) (3.131)
L Jj=1 . J'*l
[ p

C = exp [p(wl) — (Y wl)) :Zc iy < 1Y) (3.132)
L j=1 i

As is similar with the standard HMM, we use the Baum-Welch atgm (or forward-backward
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algorithm) to derivey and, as in (3.134):

wls) = g-;yt) 5 (o)) ol (3.133)
Bi(se) = Z6t+1(5t+1)ﬁ(3t+1yst)ﬁ(ytJrl’StJrl)) (3.134)

The calculation of the lower bound is done in the followingrmer. The product of normali-

sation constants is as in (3.135):

T
[Iew) =z (3.135)

Then, we can write as in (3.136):

Flg(m, A, C), q(s17)) = / drq(m)log SEZ; + / dAq(A) 1og§(—fl§ + / dCq(C) 1og% +

H(Q(SliT)) + <10g p(slzTa yl:T|7T7 A7 C)>q(7r)q(A)q(C)q(51:T) (3136)

where H(q(s1.7)) denotes the entropy of the variational posterior distidsubver hidden state

sequences, as in (3.137):

H(q(s11)) = _ZQ(SI:T)<10gp(SI:T7yl:T|7T7A7O)>q(7r)q(A)q(C)+10g2<ylzT) (3.137)

S1:T

Using this, the computation of the lower boufdq(w, A, C), ¢(s1.r)) involves the evaluation of

KL divergences between variational posterior and priondbdiet distributions for each row of

7, A, C and the normalisation constadts (y) }._,, which is in (3.138):

= mq(m)lo p(m) o M o 2@
Flalr A.C)air) = [ dnamlog B0+ [ aaq(ayiog B33 + [ acuicytog B +
log Z(y1.1) (3.138)
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M-step:
We take the functional derivatives 6fwith respect to each of these distributions and consider

the point which takes zero. This yields the following Ditdiehdistributions.

g(r) = Dir({m,...,m}{w”, ... w”}), w!™

= uf +(0(51,5))g(s1) (3.139)

k
. A A A
o(A) = [[Dirllaj,....ap{wl, ... Wi}, wl)
j=1

] =

<6<St*17j)5(5t7j/)>q(51;T) (3140)

t

k

. c c o

Q(C) - HD/LT({le""’Cjk}|{w§1)7’"7w]('k)}),w§-q)
j=1

[|
N

= uf > (5(56,4)6(51,9))g(orr) (3.141)

t=1

3.7 Algorithmic Design: Inference

While Sections 3.5 and 3.6 derives lexical translation podhes (Section 3.5) or HMM Model
(Section 3.6), this section derives a Viterbi alignmenhgghe obtained lexical translation prob-
abilities or models. Viterbi alignment is the most likelygsence of alignments for a particular
sentence pair (Refer to the righthand side of upper and lowares in Figure 1.3). Although
the importance of this process is seldom described, thisgssois inevitable in order to pipe the
obtained lexical translation probabilities into the forinMiterbi alignment. Viterbi alignment of

the training corpus is the input to the phrase extractiocgss.

3.7.1 Viterbi Decoding (standard ML, GIZA++)

Let us define an observed sequencea model parametet, and latent variables. If we are
interested in obtaining the posterior distribution for wegi observation, we are to se€kd|X).

On the other hand, the quantiB}(t = 1|0, X') is sometimes useful when the model is sensitive to
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the choice of, which is often the case. The former corresponds to the Mitircoding (Viterbi,
1967) and the latter does to the posterior decoding.

A Viterbi decoding is needed to obtain the most probablegiath for a given mode\1.

Definition 6 (Viterbi decoding) Given HMM modeJM and a observed sequengg, . .., X, find

the most likely sequence of statgs. . . , s,, which could have generated this observed sequence.

3.7.2 Viterbi Decoding (standard ML): Graphical Model Implementation

The following description is based on (Bishop, 2006). A faggi@aph for HMM is shown in Figure
3.9. Let the node,, denote the root. We pass massages from the leaf nodes toathesing the

max-sum algorithm, where the messages in the max-sum tigoare shown as in (3.142):

Zn n = n—7rZn Zn
Hozn— fri1 Hfr— (2n) (3.142)

/’Lfn+1‘>Z7L+1 = maxzn {ln fn+1<zn7 Zn+1) + /’LG‘)fn#»l (Zn>}

By eliminating ., ., (2,) from (3.142), we obtain a recursion form the message ffdm: as

in (3.143):
wznrn) = Mp(@natlznin) + max{np(e.alz) +w(z) (3.143)
wherew(z,) = i1, ., (2,). Note that init message is shown as in (3.144):
w(z1) = Inp(z1) +1Inp(zq]z1)) (3.144)

Note that the Viterbi algorithm can also be obtained fromjtet distribution. We take the loga-

rithm and exchangeiax and _, which is shown as in (3.145):

w(zpy) = max p(z1,...,%n, 21, .., %) (3.145)

Z1yeens Zn—1
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Figure 3.9: Figures shows a factor graph of hidden Markovehod

As is explained in Section 2.3. on the max-product (max-saiggrithm, once we computed
themax operations, we can obtain the most probable path. We cammhtao the state sequences
corresponding to this path by the back-tracking procedure.

k= o(kyiY) (3.146)

If we only keep track ofX” possible paths ik current states, we havé? possible paths. However,
at timen + 1, we only retaink” of these paths corresponding to the best path for each stedeep
N, we discover the most probable path. Then, since there isga@ipath which uses the state in

its path, it is possible to back-track the path.

3.7.3 Posterior Decoding (standard ML)

A posterior decoding is to obtain multiple paths which havegh probability with thresholding
the posterior probability in each state. This contrasts with Viterbi decoding wheeedimgle
most probable path is obtained. Let us define a posteria ptabability P( X1, ..., X,,, s; = ©),

namely a probability that an HMM modgH generates the sequenge, . . ., X, passing through
the state at timet. Then, the aim of a posterior decoding is for each< i < n) to find a state

t; that is the most likely to have generated the symbol at thsitipa, as in Algorithm 1.:

Definition 7 (Posterior decoding)Given HMM modelM and sequenc& = Xi,..., X, for

each positionl < ¢ < n, find the state; that most likely to have generated the symbol at that
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position.

Algorithm 1 Pseudocode for posterior decoding
def posteriorDecoding(e,f,t,forward,backward,thrédho
Step 1: (e,f)=getSentence()
Step 2: forward=makeForward(e,f,t)
Step 3: backward=makeBackward(e,f,t)
Step 4: likelihood = makeLikelihood(forward,backward)
Step 5: posterior = makePosterior(forward,backwardihiked)
Step 6: fore; in e:
Step 7: forf; in f:

Step 8: alignment.addPosteiey(f;, posteriorg;, f;])
Step 9: if (posteriok;, f;] > threshold):
Step 10: alignment.add(f /;])

3.8 Data Design: Training Data Manipulation

In Machine Learning research, there are various data mkatipuoi techniques, such as data center-
ing, data standardization, anomality detection (or nogskiction), principle component analysis
(PCA), singular value decomposition (SVD), ANOVA analysosyer-dimensional reduction, and
so forth. This section focuses on noise reduction (or anibyragetection).

We describe algorithms to handle both sentence-level amd-lgwel noise. At the sentence-
level, we first describe an hueristic sentence cleaningrigiige, then move to the bigram-based
sentence cleaning algorithm. At the word-level, we degctito kinds of noise-sensitive MAP-
word aligner: this word aligner can inherently handle ndaiseis detected beforehand. The first
MAP-based word aligner is simple where prior knowledge isststent, while the second MAP-
based word aligner is complex where prior knowledge is nosistent. With this MAP-based word
aligner, we aim at handling three kinds of noise: 1) manyaemy mapping objects, 2) translational
noise, and 3) noisy mapping between function words and obmterds. The first one is relatively
easy to handle, except that the computational complexitygls. The third one, the detection of

translational noise, is very difficult as unfortunately, @anot use the results of word alignment
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to judge translational noise. Figure 3.10 shows that th@ D+happings amount to around 30% in
the EN to DE direction. In reality, translational noise iglfalow in number between European
languages, say less than 1%. A null alignment does not suggasthis immediately indicates

translational noise.

DE-EN mgiza alignment Results 1:N mapping ratio for Conf 5
1000000 T T T T T T 1.0~ T T T T o
800000 | | . 008} 1
e}
2 600000 - g 06 4
5 &
S 400000 g =04 R
3
200000 1 ®o02r _ E
2l ST L 1 1 | - E = i) e a1
% z 4 & B 16 12 0T % & & § 1o o
1:n mapping (0=NULL mapping) 1:n mapping
EN-DE mgiza alignment Results 1:N mapping ratio for Conf 5
1000000 ‘ - - - - 1.0 : ; ; T T
800000 | | ] 508} N
=
£ 600000 : Co6}
5 ]
S 400000 g = 0.4
=
200000 . 02}
0 . i L] L I I 0.0 == —v—rﬂ_ﬂ I
0 2 4 6 8 10 Y0 2 4 6 8 10
n:1 mapping (0=NULL mapping) n:1 mapping

Figure 3.10: Figures A and C show the results of word alignni@nDE-EN where outliers de-
tected by Algorithm 1 are shown in blue at the bottom. We chadtthe alignment cept pairs in
the training corpus inspecting so-called A3 final files byetygs alignment from 1:1 to 1:13 (or
NULL alignment). It is noted that outliers are miniscule iiglres A and C because each count is
only 3%. Most of them are NULL alignments or 1:1 alignmenthjlesithere are small numbers of
alignments with 1:3 and 1:4 (up to 1:13 in the DE-EN directiofrigure A). In Figure C, 1:11 is
the greatest. Figures B and D show the ratio of outliers ol¢h@ counts. Figure B shows that
in the case of 1:10 alignments, 1/2 of the alignments areideresd to be outliers by Algorithm 1,
while 100% of alignments from 1:11 to 1:13 are considerecttotiliers (false negatives). Figure
D shows that in the case of EN-DE, most of the outlier ratiesl@ss than 20%.

Note that the effectiveness of these algorithms dependlepdrticular situation, especially
in its level of noise and its language-specific noise arisingh the corpus. Apart from the level

of noise which depends on the corpus, the difference of lagguetween JP-EN is bigger than
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X | ENFR| FREN | ESEN| DEEN | ENDE
10 | 0.098 | 0.096 | 0.143| 0.097 | 0.079
20 | 0.165| 0.165| 0.246| 0.138 | 0.127
30 | 0.193| 0.187| 0.279| 0.157 | 0.137
40 | 0.201 | 0.199 | 0.295| 0.168 | 0.142
50 | 0.208 | 0.201| 0.297| 0.170 | 0.145
60 | 0.211| 0.203 | 0.297| 0.171 | 0.146
70 | 0.212| 0.202 | 0.298| 0.170 | 0.146
80 | 0.211| 0.202| 0.301| 0.169 | 0.147
90 | 0.212| 0.202| 0.297| 0.171 | 0.147
100| 0.211| 0.202 | 0.302 | 0.169 | 0.146
# 43k 43k 51k 60k 60k
ave | 21.0/23.8(EN/FR) 20.9/24.5(EN/ES)
len | 20.6/21.6(EN/DE)

Table 3.4: BLEU score after cleaning of sentences with leggglater thanX'. The row showsx,
while the column shows the language pair. Parallel corpideiss Commentary parallel corpus
(WMTQ7).

between EN-FR, therefore let us focus on the NTCIR JP-EN d#tershan Europarl between
EN-FR.
3.8.1 Sentence-level Corpus Cleaning (SMT oriented, Moses)

A heuristic sentence-level cleaning algorithm is shown Igodithm 2 whose code is provided in

Moses.

Algorithm 2 Sentence Cleaning Algorithm (Heuristic in state-of-theST)
Remove sentences with lengths greater thaor remove sentences with lengths smaller than
X in the case of short sentences).

This algorithm reduces training sentence pairs based omthect featuresentence length
Interestingly as is shown in Table 3.4 this algorithm magofimprove the BLEU score.

Figure 3.11 gives us some insights as to why this algorithpraves BLEU score, since this
algorithm removed the region where the outlier ratio is higthis example. The three figures on

the right show that if we view this using the ratio of outlienger all of the sentence-cleaning, all
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Figure 3.11: The three figures on the left show histogramiseohtimber of sentences over sentence
length. The three figures on the right show histograms of tiikeo ratio over sentence length.
This histogram shows that the region whose sentence lesgtioie than 70 or 80 (in the lower
two figures, the region whose sentence length is between LL@ras well) has higher ratio of
outliers compared to other area. This explains why Algarithworks. Note that outliers in this
figure were detected by Algorithm 3.

three figures tend to have more than 20-30% of their sentdras@sg a length of 80—-100 words.
The lower two figures show that sentence length 1 to 4 tende tleds than 10% of the figure.
(As the numbers of outliers are less than 5% in each caseuythers are miniscule. In the case of
EN-ES, we can observe the dark blue small distributionseabtittom of each figure from sentence

length 2 to 16.)

3.8.2 Sentence-level Outlier Detection (original)

This algorithm comes from the analogy of the outlier detectiln a linear regression problem,
it is known that the existence of a few extreme points calletliers which are distant from the

decision plane can drastically affect results. If this is dase, we would obtain better results by
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removing such outliers, or conversely by collecting godéers. We show this algorithm in the
context of SMT to make a good point algorithm.

First we define the noise detection problem as in Definition 8.

Definition 8 (Noise detection)Let S = {(él,fl), o (émfn)} be a parallel corpus consisting
of a training and development corpus. For a given parallelpes, the noise detection task is to
detect sentence pai(s;, ﬁ-) that contain noise (or unfavourable elements). Note thawmirable

elements include many-to-many mapping objects.

One difficulty is that we have no appropriate direct measarassess the quality of word
alignment due to the unavailability of hand-annotated @ath alignment links; AER (Och and
Ney, 2003) can be applied only if a hand-annotated corpustseaind if in-domain test data is
available. With BLEU as an evaluation measure, the appraadamntin (Okita, 2009a) is as follows.
LetS = {(é1, f1), ..., (én, f)} be a training corpus and 18t : f — ¢ be our MT system trained
on this training corpus. If the distance between a reference transla&oandM(ﬁ) is big for
relatively small data sets, this may indicate that the méz is relatively difficult to translate;
this may be due to a training senten¢éeing too complex for the model complexity of MT system
M. By removing the detected noisy sentences we reduce théntyasorpus and rerun the word

aligner® In sum, this algorithm becomes as in Algorithm 3.

8]t is to be noted that we set aside the problem of whether fipsaach actually improves the test set accuracy. It
is also noted that if our parallel corpus is sufficiently higs would use the held-out datasets to validate the resillts. |
our parallel corpus is small, this would not be possiblesitep 5 seeks the points whose score is zero.
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Figure 3.12: The sentence-based cumulative n-gram scrtasis is phrase-based SMT and y-
axis is word-based SMT. The focus is on the worst point (00@ne both scores are zero. Many
points reside in (0,0) in cumulative 4-gram scores, whilly @mall numbers of points reside in

(0,0) in cumulative 1-gram scores.

Algorithm 3 Revised Good Points Algorithm
Step 1. Train word-based MT (Moses with MAXPHRASE LENGTH = 1) on the full par-
allel corpus. Translate all training sentences by the abwemtioned word-based MT decoder.
Step 2: Obtain the cumulativE-gram scoreSy, 5 x for each pair of sentences wheXeis 4, 3,
2, and 1 for word-based MT decoder.
Step 3: Train PB-SMT on the full parallel corpus. Note that wandt need to run a word aligner
again here, but use the results of Step 1. Translate allngagentences by the above mentioned
PB-SMT decoder.
Step 4: Obtain the cumulativE-gram scoreSpp x for each pair of sentences whekeis 4, 3,
2, and 1 for PB-SMT decoder.
Step 5: Remove sentences whds@ 52, Sps2) = (0,0). We produce new reduced parallel
corpus.
(Step 6: Do the whole procedure of PB-SMT using the reduceallphcorpus which we obtain
from Step 1t0 5.)

86



Note that the sentence duplication algorithm (Okita, 2Q0G$tmwn in Algorithm 4 is not to
reduce the number of sentences in the training corpus, bdtipicate particular sentences. It
seems that this works comparably well or even better in saBses; but this invokes some minor

problems in GIZA++, which cause computation to not be comeple

Algorithm 4 Sentence Duplication Algorithm
Step 1: Conditioned on a sentence length pajts), we count the numbers of them. We calcu-
late the ratio; ; of this number over the number of all sentences.
Step 2: If this ratiar; ; is under the threshold’, we duplicateV times.

One way to explain the rationale behind this algorithm ishe power-law distribution. Since
this algorithm allows an increase in the number of sentencdise tail of this distribution, the
distribution at the tail is amplified. Note that the powesldistribution is also called a long tail

distribution where there are many elements whose countscaree.

3.8.3 Word-level Noise-Sensitive MAP-based Word Aligner (oginal)

Given that a parallel corpus contains unlabeled many-toymmaapping objects (the usual case in

MT), our first target to solve is the following problem in Defian 9.

Definition 9 (many-to-many mapping object detectiohpt S = {(¢é;, AN (&, f»)} be a par-
allel corpus. For a given parallel corpus, many-to-many miag object detection is the task of de-
tecting sentence pair&;, ﬁ) which include many-to-many mapping objects, such as paesas;

non-literal translations, and multi-word expressions.

If noisy objects were limited within many-to-many mappingects. the experimental results
based on Definition 8 and Definition 9 would be similar: we majl Definition 8 an intrinsic
method and Definition 9 an extrinsic method in this case. ™Bnsic method does not detect
sentences that include many-to-many mapping objects naigbtforward way, but instead detects
them via indirect measures that identify sentences thatgomany-to-many mapping objects.

Note that depending on the results of word alignment, thagghextraction heuristics, such as
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grow-diag-final, are capable of extracting many-to-manypiag objects. We also note that it
turns out (Refer to the latter part of Section 3.10.3) thaafsimption above is not correct, but we
have various other noisy objects as well. Our current eséirobthe list of noisy objects is shown
in Section 3.1.3.

The intrinsic method identifies the many-to-many mappingais themselves. Unfortunately,
many-to-many mapping objects are still at large which idelat least three cases such as para-
phrases, non-literal translations, and multi-word exgimess. We limit it here to the NP / MWE

detection task which is defined as follows:

Definition 10 (Bilingual NP detection) Let S = {(¢1, f1),- .., (¢, f»)} be a parallel corpus
consisting of a training and development corpus. For a gigarallel corpus, the bilingual NP

detection task is to detect NPs in each sentdig; ).

The purpose of the bilingual NP detection task is to iderttiganchor words’ defined as in
Definition 11. Note that we suppose here that we consider B&chs one word. Then we can

handle them in the same way as if we see a pair of words in waydraént.

Definition 11 (Anchor Words) Let (¢, f) = {(¢1, f1), ..., (€., f.)} be a parallel corpus. By prior
knowledge we additionally have knowledge of anchor weidg) = {(sent;, te,, s, pose,, posy,
lengthe,lengthy), ..., (senty, t., ty,, DoSe, , oSy, , length., lengths)} wheresent; denotes sen-
tence ID,pos., denotes the position af, in a sentence’;, and length. (and length;) denotes
the sentence length of the original sentence which inclagde®/e call such prior knowledge for

alignment links “anchor words”.

Hence, using anchor word8 we invoke the MAP-based word aligner which we described in

Section 3.4 of MAP-EM and 3.5 of Bayesian HMM. This task is dedias in Definition 12:

9This term is used by Church and Gale (Gale and Church, 199hgioontext of sentence alignment.
100ne example of anchor words is a pair of NP. Other exampler@pbaases shown in Table 1.2.
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Definition 12 (Noise-sensitive MAP-based word alignmen®iven anchor words defined above
and a parallel corpus, we align words using the MAP-based woighal (Refer also to Sections

3.4 MAP-EM and 3.5 Bayesian HMM).

3.9 Linguistic Domain Knowledge about Word Alignment Links

This section describes possible techniques to extract simgaistic domain knowledge which
is required to pursue the approach described in the subeemti the word-level noise-sensitive
MAP-based word aligner: this approach is to detect lingudmain knowledge in the first step,
and then incorporate such linguistic domain knowledge & fnowledge to the MAP-based
word aligner.

In the sections on Algorithmic designs, we have discussedrthchine learning algorithms,
EM-based algorithms and HMM-based algorithms. The EM-thadgorithms in Section 3.4 do
not consider any dependencies, while HMM-based algoritimfSection 3.5 consider only the
first-order Markov dependencies. This section intendsttoduce more varieties of dependencies
in bilingual settings.

Our MAP-based word aligner may use various knowledge saurcerder to set up the prior.
The classical examples of knowledge source includes orépbic features, POS tags, bilingual
dictionary, Markov features, relative sentence positiba,maximum translation score between the
source and one of the target words (null), and dice and Mo@dlabre et al., 2006; Blunsom and
Cohn, 2006). We may also collect more direct linguistic kremgle for word alignment, which will
result in higher precision: lexical semantics derived fatuilingual wordnet, multi-word expres-
sions, functional word sequence patterns (which is simidasynchronous grammatical knowl-
edge), reference lists derived by co-reference resolutigather with zero anaphora resolution,
named entities as established by a named-entity recogmmeekers which suggest information

structure, dependency relations via dependency parseQanrOf-Vocabulary (OOV) words-

INote that this section scratches only the several topiceréltvould be many other linguistic knowledge which
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3.9.1 NPs/MWEs/ Idioms (Structured Relation: Lexicon)

Non-compositionality concerns the case in which the mepafra constituent is not based on the
meaning of its parts (Jurafsky and Martin, 2009). An exangpthe phraséhe tip of the icebergn
the next sentence: Coupons are jhgttip of the icebergnon-compositional word). This suggests
that we need to differentiate between the fragments of thiage and the phrase itself in word
alignment. The exact treatment of this matter will be relate detect compositionality in each
side of languages independently. However, due to the difficfi detecting such compositionality
in practice, our method only concerns this issue as a paheobilingual terminology extraction
process: the terminology extracted by our algorithm costaiot only non-compositional termi-
nology, but both compositional and non-compositional iaofogy. We extract NPs by the method
of Kupiec (Kupiec, 1993) and paraphrases by the method ofs6aHBurch et al. (Callison-Burch,
2008). Unfortunately, lexical resources, such as Wordteetot help much as their NPs are small
in number.

One algorithm that we used for extracting NPs is a statistiethod which is a bidirectional
version of Kupiec (1993). Firstly, Kupiec presents a mettwextract bilingual noun phrase pairs
in a unidirectional manner based on the knowledge aboutdyOS patterns of noun phrases,
which is language-dependent but can be written down withesease by a linguistic expert. For
example in French they are N N, N prep N, and N Adj. Secondlytake the intersection (or

union) of extracted bilingual noun phrase pdfs.

will be the source of word alignment links. However, we léfe$e as a further study.
21n word alignment, bidirectional word alignment by takirgetintersection or union is a standard method which
improves its quality compared to unidirectional word atiggnt.
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Algorithm 5 Noun Phrase Extraction Algorithm
Given: a parallel corpus and a set of anchor word alignmaksli
1. We use a POS tagger (Part-Of-Speech Tagger) to tag a sermeithe SL side.
2. Based on the typical POS patterns for the SL, extract notasph on the SL side.
3. Countn-gram statistics (typically. = 1,--- , 5 are used) on the TL side which jointly occur
with each source noun phrase extracted in Step 2.
4. Obtain the maximum likelihood counts of joint phrasess, houn phrases on the SL side and
n-gram phrases on the TL side.
5. Repeat the same procedure from Step 1 to 4 reversing thedSLlan
6. Intersect (or union) the results in both directions.

Let SL be the source language side and TL be the target lapgidg. The procedure is shown
in Algorithm 5. We informally evaluated the noun phrase agtion tool following Kupiec (1993)
by manually inspecting the mapping of the 100 most frequerms. For example, we found that
93 of the 100 most frequent English terms in the patent cowmre correctly mapped to their
Japanese translation.

The second method is to use domain knowledge about impligitraent links, which can be
only applicable to specific parallel corpora such as pateditechnical document corpora, we can
use heuristics to extract the “noun phrase” + “referencebrrinfrom both sides. This is due to
the fact that terminology is often labelled with a uniquesrehce number, which is labelled on

both the SL and TL sides.

3.9.2 Translational Noise

The term ‘translational noise’ is often used in a contextwlan translator who adds or removes
words only on one side in order to clarify the semantics. $8pghat we translate a Japanese
word ‘tsunami’ into English. Since there is no appropriateresponding word in English (at least
until recently), a human translator may add something elsttew in the text in order to explain
the semantics of this word in English. For example, othen tin@ translation of this word such
as ‘a big wave’ or ‘a series of water waves caused by the dispient of a large volume of a

body of water’ (by Wikipedia), a human translator may addr‘Egwample, Sumatra was hit by a
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tsunami in 2004, which is not written anywhere in the sour€ae human translator recognizes
that the translation of the target side will not be equivalaformation if he / she performs back
translation. However, a human translator needs to convegemantics of the source side, which
often results in superfluous elements on the target side eMernywe do not include such cases as
‘translational noise’ simply because this seems to be adiffigult problem by a word aligner.

Instead of handling this difficult problem, we intend herenamdle only simpler cases. For
example in Japanese, phrases such as “monodearu”, “youhitfrmonotonaru”, “youninatteiru”,
and “kototonaru” often exist in the written text, but mearihiog. (These phrases can be deleted
from the Japanese sentences without loss of meaning.) Beea phrases are existed or deleted,
the coresponding English sentence will not change. Howéwveir existence does affect the word
aligner since one to five words are created from such phrasgsnding on the morphological
analyzer. It seems that it is not very easy to show such exasi@tween European languages.
However, consider the sentence pair (‘on thasticular building’,'dans ce &timent) from Eu-
roparl (Koehn, 2005). We call the woghrticular noisesince it only exists on the English side
and may cause problems for a word aligner.

Table 3.5 shows the motivation of our study that BLEU scorenggroved by 0.70 to 1.0 points
(PB-SMT) by removing only five typical Japanese phrases “rdeaau”, “youninaru”, “mono-
tonaru”, “youninatteiru”, and “kototonaru”. Note that wealize that the detection of such trans-

lational noise is very difficult. For example, it will be méslding if we look at the results of word

alignment since 0-to-1 mapping objects amount to around, 3@iech should not be the case.

ENJP| JPEN
200k PB-SMT (baseline) | 24.96| 17.96
200k PB-SMT (removed) | 25.69| 18.96
200k HPB-SMT (baseline) 28.51| 21.89
200k HPB-SMT (removed) 27.93| 21.94

Table 3.5: Translational noise only removing five typicalusdant phrases from the Japanese side
of the training corpus.
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Table 3.6: An example of lexical mapping derived by WordNet.

3.9.3 Lexical Semantics (Pair Relation)

Lexical resources such as WordNet (Miller, 1995) may prefte word alignment links with high
precision but low recall using Algorithm 6. This algorithneeb not try to specify a particular
unique sense, but rather to detect the possible transtdtemuivalences in the sentence pair in
guestion. For IWSLT corpus between JP-EN in Table 3.6, howeespite that we could specify
87% of the possible combinations of content words in mowpial settings, which amounts only
to 43.7% of the possible total links. The figure 43.7% is very tompared to GIZA++ of around
70%. For NTCIR-8 patent corpus, despite the high coverage mofimgual settings, this results
in a very low percentage of the bilingual correspondenc&%0or 200k sentence pairs. These
figure suggests that the link information derived by WordNetself may not be superior to that
of word alignment, although this link information may complent the quality. Note that in terms
of NPs / MWESs, we will give a statistical approach since thdlalkée lexical resources are often

too few in number.
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Algorithm 6 Algorithm for Lexical Semantic Cue
1. Obtain POS-tag and lemma for each word on the source side.
2. For all lemmas of content words / phrases (NP/VP) in thesehtence in the source language,
collect all possible synset IDs, and then the derived taxgetls / phrases for each synset ID.
3. Search all possible combinatiol¥sas to whether each word / phrase in a list contains some
word / phrase in the n-th sentence in the target language.
4. If the possibility is unique, the prior probability is &gsed to 1. If the possibility is two, the
prior probability is assigned to 1/2, and so forth.

size| corpus| unigue| coverage
links | synonym/hype-hypo
50k | NTCIR| 8825|79.12/81.85
200k | NTCIR | 13141| 74.52/77.80
40k | IWSLT | 6808| 87.41/89.43
115k | literatur| 23048| 79.16/83.49

size | bilingual all | content
links links | words
50k 77098| 3.8%| 8.5.%
200k | 327680| 4.2% | 10.7%
40k 68749| 16.0 %| 43.7%
115k | 146584| 11.8 % | 19.5%

Table 3.7: Statistics related to lexical semantics.

3.9.4 Numbers/ Equations (Less Frequent Relation)

There are several classes of linguistic objects which e teedefine monolingually, such as num-
bers and equations. In this case, 1) we construct a monalingle-based extraction algorithm,
2) we extract these objects by a rule-based extraction ithgorespectively, and 3) we perform
matching on a bilingual basis. For example, it is fairly etswrite a rule enumerating various
possibility that the fragment is numbers, such as figurea ddo 9 and English word from zero to

billion.

3.9.5 Proper Nouns / Transliterations / Localization Termirology (Less Frequent Relation)

Named entity recognition is very sensitive to the trainetadehich is in-domain data or out-of-

domain data in terms of the parallel corpus at hand. For #asan, we do not rely overly on
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the results of named-entity recognition, but we first deseich named entities by detecting OOV

words. Japanese transliteration is not easy, e.g. KnighGaaehl (Knight and Graehl, 1997) only

handle very easy cases. In general, the level of difficultyansliteration depends on whether there

is no fluctuation in Japanese, whether there are less JapkBimlish involved, whether there is

not much transliteration from German or Russian, whethelddpanese way of abbreviation is

involved, and whether there is no mixture of ‘r and ‘I'.

fluctuation gAT7)TA—=BATILT 4 royalty, loyalty
BATLTA—B—VILT A—

fluctuation H—7Yrx—n—7711, ropeway, aerial tram, cable car
H—79IT—a—7"7I4

fluctuation B2 —{flF,a—>3r soldering, brazing

Japanized way of abbrey.L 7 reflex camera, reflector

Japanized way of abbrey.m —~< 77 K V) v 7 Roman Catholic

‘e’and I’ L N— lever / joystick,liver

rand ‘I AN list, wrist

Japanized English o—JLH 2R roll sandwich, sandwich roll

Japanized English VAR TR restructuring scheme

Japanized English J—nm v NG European Union, EU

Japanized German )T F rheumatism (German: Rheumatismt

Table 3.8: An example of transliteration (Breen, 1999).

103
25928
3408
207
13842

equations
transliteration
proper nouns
localization
symbols

Table 3.9: Statistics of less frequent substructure.

3.10 Experiments

This section describes experiments using some of the #igwsiintroduced so far. The first ex-

periment is on sentence-level noise reduction. The secgpetienent is on the MAP-based word
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aligner with given NPs as prior knowledge.

3.10.1 Word Alignment with Sentence-level Noise Reduction

Experimental Settings The baseline in our experiments is a standard log-linear MB-8/stem
based on Moses. The GIZA++ implementation (Och and Ney, POOBM Model 4 is used as the
baseline for word alignment. Model 4 is incrementally teadrby performing 5 iterations of IBM
Model 1, 5 iterations of the HMM Model, 5 iterations of IBM Mddg, and 5 iterations of IBM
Model 4. For phrase extraction, the grow-diag-final heinsstiescribed in (Koehn et al., 2003)
(Refer to Definition 3 and its subsequent explanation) arel tselerive the refined alignment
from bidirectional alignments. We then perform Minimum &riRate Training (MERT) (Och,
2003) which optimizes the BLEU metric, while a 5-gram langaiagpdel is derived with Kneser-
Ney smoothing (Kneser and Ney, 1995) trained with SRILM (&ke] 2002) on the English side
of the training data. We use Moses (Koehn et al., 2007) foodieg.

We evaluate our method using the News Commentary parallplisarsed in the 2007 Statisti-
cal Machine Translation Workshop shared task. We use theetland the evaluation set provided

by this workshop. The training set size for EN-ES is 51k aad ttwr DE—EN is 60k.

Experimental Results Table 3.10 shows the results. Although ‘noise’ does not ybaorre-
spond to sentences which include many-to-many mappingtshjte improvement achieved by

this algorithm was relatively large.

EN-ES | BLEU | effective sent
Base 0.280 | 99.30 %
Ours 0.317 | 97.80 %
DE-EN | BLEU | effective sent
Base 0.169 | 99.10 %
Ours 0.218 | 97.14 %

Table 3.10: Results for Algorithm 3 (revised good point aiipon).

We conducted experiments in two evaluation campaigns ds Vet first one was for IWSLT09
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train set| duplicated redundancieg train set| duplicated noise re-| removal

train set train set | duction
BT TR-EN | 27,972 | 20,112 3.0% 4831 | .4478 4611 7.1%
BT ZH-EN | 47,098 | 43,657 12.2 % .3903 | .3750 3741 10.4%
CHZH-EN | 75,231 | 69,680 4.0% 3169 | .2847 3011 10.6%

CH EN-ZH | 39,228 38,227 12.0 % 3531 | .3154 .3170 9.5%

Table 3.11: Redundancies in Parallel corpus and its BLEU sogyevement. BT denotes BTEC
corpus while CH denotes Challenge corpus. TR is an abbreniafidurkish, while ZH is that of
a simplified Chinese.

(Ma et al., 2009) and the second one was for NTCIR-8 (Okita e2@llOb). One important find-
ing in IWSLTO09 was that Algorithm 3 (revised good point alglonm) did not work well at all.
In Table 3.11, the column labelled with ‘train set’ shows BleEU scores for original training
set, the column labelled with ‘pure train set’ shows BLEU ssdior the pure training set without
redundant sentences, and the column labelled with ‘noect®n’ shows the BLEU scores for
the reduced training set. In sum, we conjecture that duedbaf duplicated sentence pairs in the
IWSLTO9 data sets, Algorithm 3 did not work so well. Althougk wned parameters empirically,
the sentence duplication algorithm works comparably veethe noise reduction algorithm (Okita,
2009b) (Refer to Algorithm 4).

In NTCIR-8 parallel corpus between EN-JP, we conduct the ndefino600k sentence pairs
(Okita et al., 2010b). The left half of Table 3.12 shows theutefor EN—JP. HPB-SMT 1 is Moses
and HPB-SMT 2 is Joshua (Li et al., 2009). PB-SMT 1 is Moses with distortion limit 12
over a 600k training corpus, while PB-SMT 2 is Moses with tr&altion limit 6 over a 3,200k
training corpus. It is noted that the official BLEU scores eaming an asterisk are evaluated after
the removal of Out-Of-Vocabulary (OOV) words. It is noteathve trained over 3,200k training
corpus for the systems marked wittand over 600k training corpus for other systems.

The right half of Table 3.12 shows the result for JP-EN. Thé8HIMT 1 is based on the
Moses Chart, and the HPB-SMT 2 is based on Joshua. The PB-SMTehsisbased on Moses

with the distortion limit 12 over 600k training corpus, whiPB-SMT 2 is based on Moses with
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the distortion limit 6 over 3,200k training corpus. It is adtthat we trained over 3,200k sentence

pairs for the systems marked withand used over 600k training data for other systems.

Systems (JP—EN) BLEU | #00V | Systems (EN-JP) BLEU
HPB-SMT 1 26.86| 314 HPB-SMT 1 32.50
PB-SMT 1 26.5T| 194 PB-SMT 1 30.53
Noise reduction (PB-SMT) 24.01 | 443 PB-SMT 2F 30.08
PB-SMT 2" 23.9T| 316 Noise reduction | 29.53
HPB-SMT 2 23.30 | 303 HPB-SMT 2 27.23

Table 3.12: Intrinsic evaluation results (JP—EN and EN-JP)

3.10.2 MAP-based Word Aligner with Noun Phrase Detection

This setting is to verify the effectiveness of our word-levaise-sensitive MAP-based word aligner
presented in Section 3.8.3. The extraction of NPs (or MWEggscribed in Section 3.9.5 of NPs
/ MWEsS /Idioms.

Experimental Settings The baseline in our experiments is a standard log-lineaagehbased
MT system based on Moses. The GIZA++ implementation (OchNeyd 2003) of IBM Model 4
is used as the baseline for word alignment, which we commaoeit modified GIZA++ (Section
3.4.3). Model 4 is incrementally trained by performing Sat@ons of Model 1, 5 iterations of
HMM, 5 iterations of Model 3, and 5 iterations of Model 4. Fdrase extraction the grow-diag-
final heuristics (Koehn et al., 2003) are used to derive tlfiegé alignment from bidirectional
alignments. We then perform MERT (Och, 2003) while a 5-granglage model is trained with
SRILM (Stolcke, 2002). Our implementation is based on a medifiersion of GIZA++ (Och
and Ney, 2003). We modify the function that reads a bilingaahinology file, the function that
calculates priors, the M-step in IBM Models 1-5, and the fadvaackward algorithm in the HMM
Model. Other related software tools are written in Pythod Berl: terminology concatenation,
terminology numbering, and so forth.

We use two corpora: the NTCIR-8 corpus (Fujii et al., 2010) Withristic-based and statistical
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noun phrase extraction and Europarl (Koehn, 2005) witlhssiizd| noun phrase extraction.

corpus | language| size| #unique #all
NPs NPs

statistical method

NTCIR | EN-JP | 200k| 1,121 | 120,070

europarl| EN-FR | 200k | 312 22,001

europarl| EN-ES | 200k | 406 16,350

heuristic method
NTCIR \ EN-JP \ 200k\ 50,613\ 114,373

Table 3.13: Statistics of our noun phrase extraction methidte numbers of noun phrases are
from 0.08 to 0.6 NP / sentence pair in our statistical noumpdextraction methods.

Experimental Results Firstly, noun phrases are extracted from both corpora.drsétond step,
we apply our modified version of GIZA++ in which we incorparahe results of noun phrase
extraction. Secondly, in order to incorporate the exthcteun phrases, they are reformatted as
shown in Table 3.13. Thirdly, we convert all noun phrases asingle token, i.e. we concatenate
them with an underscore character. We then run the modifiesloreof GIZA++ and obtain a
phrase and reordering table. In the fourth step, we splictreatenated noun phrases embed-
ded in the third step. Finally, in the fifth step, we run MERMdgroceed with decoding before

automatically evaluating the translations.

] size \ EN-JP \ BLEU \ JP-EN \ BLEU \
50k | baseline | 16.33 | baseline | 22.01
50k | baseline2 16.10 | baseline2 21.71
50k | prior 17.08 | prior 22.11
200k | baseline | 23.42 | baseline | 21.68
200k | baseline2| 24.10 | baseline2 22.32
200k | prior 24.22 | prior 22.45

Table 3.14: Results for EN-JP. Baseline is plain GIZA++ / Mogeighout NP grouping / prior),
baseline2 is with NP grouping, prior is with NP grouping amidp

Table 3.14 and 3.15 show the results where ‘baseline’ inelscao Bilingual NP (BNP) group-
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size \ FR-EN \ BLEU \ EN-FR \ BLEU \
50k | baseline | 17.68 | baseline | 17.80
50k | baseline2 17.76 | baseline2 18.00
50k | prior 17.81 | prior 18.02
200k | baseline | 18.40 | baseline | 18.20
200k | baseline2 18.80 | baseline2| 18.50
200k | prior 18.99 | prior 18.60
size | ES-EN BLEU | EN-ES BLEU

50k | baseline | 16.21 | baseline | 15.17
50k | baseline2 16.61 | baseline2 15.60
50k | prior 16.91 | prior 15.87
200k | baseline | 16.87 | baseline | 17.62
200k | baseline2 17.40 | baseline2 18.21
200k | prior 17.50 | prior 18.20

Table 3.15: Results for FR-EN and ES-EN. Baseline is plain GiEAMoses (without bilingual
noun phrase grouping / prior), baseline2 is with bilingualm phrase grouping, prior is with
bilingual noun phrase grouping and prior.

ing nor any prior, and ‘baseline2’ represents a BNP groupmmigwithout the prior. Although
‘baseline2’ (BNP grouping) shows a drop in performance infffReEN / EN-JP 50k sentence pair
setting, Prior Model results in an increase in performandheé same setting. Except for EN-ES
200k, our Prior Model was better than ‘baseline2’ and dia#iy significant. For EN—JP NTCIR
using 200k sentence pairs, we obtained an absolute impeavieoh 0.77 BLEU points compared
to the ‘baseline’; for EN-JP using 50k sentence pairs, 0.7BWBpoints; and for ES—EN Europarl
corpus using 200k sentence pairs, 0.63 BLEU points.

For EN-JP NTCIR using the same corpus of 200k, although thébauwf unique NPs ex-
tracted by the statistical method and the heuristic metlaoky significantly, the total number of
NPs extracted by each method becomes comparable. Thamg®IltEU score for the heuristic
method (24.24 | 22.48 Blue points for 200k EN-JP / JP—EN) gh8l better than that of the sta-
tistical method. The possible reason for this is relateti¢onay the heuristic method groups terms
including reference numbers, while the statistical mettioels not. As a result, the complexity of

the alignment models simplified slightly in the case of therfgtic method.
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3.11 Conclusions

We presented two methods in this capter. One is for sentieneénoise (Section 3.8) and the other
is for word-level noise (Sections 3.5, 3.6, 3.7 and 3.9). tRersentence-level noise we employed
the method similar to the outlier detection algorithm, \hibr the word-level noise we built a
MAP-based word aligner.

The sentence-level noise reduction was easy to implemeantyas difficult to handle. We
observed that the sentence-level noise reduction worketthédosmall dataset, but was not so suc-
cessful for the redundant dataset and the large datase¢pEfar the case where we obtain good
performance, we will be lost when we faced with the situatidrere we find that the noise re-
duction does not work. This is because there is little spaceai$ to control this algorithm. In
this sense, this algorithm has a disadvantage in that webwilbst when this algorithm does not
work. All the more, it seems that whether this algorithm wgook not depends on the dataset. This
is because the success of this algorithm depends on thessugicerord alignment. Obviously it
is quite difficult to predict whether the given parallel cosgs easier to align or not compared to
other parallel corpus. Similarly, it is difficult to prediasthether the given redundancies in parallel
corpus affect the performance of word alignment.

The word-level noise reduction requires a lot of preparatiand is difficult to predict the result
based on the supplying prior knowledge about word alignrieks. The preparation includes a
construction of MAP-based word aligner as well as the ingatibn how to detect word alignment
links through various linguistic knowledge where each die tend to require different methods.
Our experiments in this thesis have scratched only the seidéit and we left many things as a
further study. Our findings are that if we supply word aligminknks of many-to-many mapping
objects such as NPs, this resulted in the encouraging ireprent of 0.63 - 0.77 BLEU points
absolute. For translational noise (which does not need ad&ged word aligner objects though),
we observed in PB-SMT that only removing five typical Japamessy phrases improved 0.75 -

1.00 BLEU points absolute. One issue we noticed was that tleot#nmg of translation model
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may improve the performance. We can guess that the way teaVikiP-based word aligner is
constructed will make the distribution radically changenpared to the traditional way of making

a translation model without any prior knowledge. We will Hnthis topic in Chapter 5.
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Chapter 4

Smoothing Methods: Overfitting

Statistical approaches or non-parametric Machine Legmmiethods estimate some targeted statis-
tical quantities based on (i) the (true) posterior distiims in a Bayesian manner (Bishop, 2006)
or (i) on the underlying fixed but unknown (joint) distritboihs from which we assume that we
sample our training examples in a frequentist manner (\lg898). In Natural Language Pro-
cessing (NLP), such distributions are observed by simplytag (joint/conditional) events, such
asc(w), c(wy, we) ande(ws|wy, wy) wherew denotes words and-) denotes a function to count
events. Since such quantities are often discrete, it ikelglthat such events will be counted incor-
rectly at first sight. However, it is a well-known fact in NLRat such counting methods are often
unreliable if the size of the corpus is too small comparedhgorhodel complexity. Researchers in
NLP often try to rectify such counting of (joint or conditial) events using a technique known as
smoothing (Kneser and Ney, 1995). Most smoothing techisigoenot have a statistical model but
rely on either interpolation or back-off schemes.

Chapter 4 discusses a statistical smoothing method baselierarthical) Pitman-Yor pro-
cesses, which is a nonparametric generalization of thelidi distribution that produces power-
law distributions (Teh, 2006; Goldwater et al., 2006). Was pieces of research have been carried

out in which hierarchical Pitman-Yor processes have begheapto language models (Hierarchi-
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cal Pitman-Yor Language Model (HPYLM) (Teh, 2006; Mochihiaand Sumita, 2007; Huang
and Renals, 2009)) whose generative model uses hierardhiegrams. This model is shown to
be superior to the interpolated Kneser-Ney methods (KnasérNey, 1995) and comparable to
the modified Kneser-Ney methods in terms of perplexity. dlihh this method was presented five
years ago, there has been no paper which reports that tigisdgae model indeed improves transla-
tion quality in the context of Machine Translation (MT). $hs important for the MT community
since an improvement in perplexity does not always lead torgomovement in BLEU score; for
example, the success of word alignment measured by AlighErear Rate (AER) does not often
lead to an improvement in BLEU (Fraser and Marcu, 2007).

Section 4.1 describes the smoothing methods used for lgeguadels: a Hierarchical Pitman-
Yor Language Model (HPYLM) and a Pitman-Yor Good-Turing gaage Model (PYGTLM).
The primary aim is to report in the context of MT that an imprment in perplexity really leads
to an improvement in BLEU score. It turns out that an applaawf HPYLM requires a mi-
nor change in the conventional decoding process. We coed@tperiments in which HPYLM
improved translation by 1.03 BLEU points absolute and 6%ikeddor 50k EN-JP, which was sta-
tistically significant (Koehn, 2004). Unfortunately, owperimental results show that PYGTLM
performs better than the conventional Kneser-Ney methddzood-Turing method, but is inferior
to HPYLM.

Section 4.2 proposes a new Pitman-Yor process-based applteanslation models. In fact,
this section is the real motivation for this chapter. In Cleat, we proposed a new word align-
ment method which incorporates a range of linguistic knogée The first hypothesis is that even
if we build a translation model without such additional lungtic knowledge, the relative frequency
estimates of the translation model will not be correctlycokdted, as was discussed by Foster et
al. (Foster et al., 2006). The second hypothesis is that ifnwerporate such additional linguis-
tic knowledge in the word alignment process, the relatiegjfiency estimates of the translation

model will include further irregularities. Hence, in bothses, the application of smoothing meth-
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ods is considered to improve the results. Under such camgsitwe propose a new smoothing
method, which is a straightforward extension of the HPYLMsiction 4.1. The result shows our

hypotheses to be well-founded.

4.1 Language Model Smoothing

4.1.1 Language Model

We start with several traditional smoothing methods foglaage models in order to understand
that these are really the methods which combine some hiear{®anning and Schutze, 1999;
Jurafsky and Martin, 2009; Koehn, 2010). Such heuristictuthe absolute discount, back-off,
interpolation schemes, and so forth. The main motivatidmirize our focus on the hierarchical
Pitman-Yor process-based smoothing method in this chéiptein the fact that we would like to
base our models on more statistically motivated methodieerahan those methods explained in
this section.

In Section 4.1.1, we will informally explain the differencé smoothing methods using the
bigram language model. This will not lose generality, but miake it easier to understand. Before
we discuss these methods, we introduce some notationw,; denotes two consecutive words,
denotes the consecutive two words where the first word is amg vandc(-) denotes a function
which counts the words specified as its argument. The conditiw; ;w;) > 0 means that the
bigramw;_,w; appeared in the corpus.

We start with a maximum likelihood method, which is shown4rij.

—C(wi_lwi) if  c(w;_jw 0
P (wilwi_1) = Y C(Wwimw) I (wi—w) > 4.1

0 otherwise

Since the maximum likelihood reflects purely statisticeréhis no value assigned for unobserved

'Hence, in most cases below, the condition ‘otherwise’ méaatsthe bigramu;_;w; did not appear in the corpus.
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n-grams, which is shown in otherwise in (4.1). If we subti@aéitked (absolute) discourd® from
each count in order to allocate some mass for unobservedrbgrthis is called the absolute

discounting method, which is shown in (4.2):

w)— D
e(wi-1wi) if c(wi_1w) >0
PAbsoluteDiscounting (wi’wi—l) - Zw C(wi_lw) (42)

a(w;)p(w;) otherwise

If we take into account the diversity of histories for the bserved bigrams, this is called a Kneser-
Ney smoothing method (Kneser and Ney, 1995). With the dedmitf the count of histories for a

word as in (4.3),
Nii(ow) = [{w; : e(w;—yw) > 0} (4.3)

the raw counts of the maximum likelihood estimation areaeetl with this count of histories for

aword. In sum, a Kneser-Ney method is written as in (4.4):

clwiawi) = D if  clwi_1w) >0

Zw c(w;—1w) (4.4)

N .
1 (ow) otherwise

PKneserNey (wl |wi—1) -

a(wi) N1+(w171w)

If we combine the ideas behind interpolation and back-off oan combine two terms in the right-
hand side in (4.4). This is called amterpolated Kneser-Ney method (Chen and Goodman, 1998),

which is shown in (4.5):

cgil(wi) — l)) + ﬁ(wi)—Nng(.w) ] if  c(w;_qw) >0
PInterpolatedKN(wi|wi—1) - w € %;il(uiw) 1+ (Wi W (45)
i) ————— otherwise
ﬁ(w )Nl_t'_(wl‘_lf(U)

Now, if we have an intuition that an absolute discount for eachn-gram takes different (but
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fixed) values shown in (4.6),

D; (lf C = 1)
DQ <|f C = 2)
D3+ <|f c> 3),

(4.6)

this method makes modified Kneser-Ney method (Chen and Goodman, 1998), which is shown

in (4.7). Note that we derive (4.7) from (4.5) using (4.6) @bifferent sized n-grams. Note that

similarly with (4.6), although each distribution has theseavhen a bigram is not observed it is

omitted from (4.7).

Phrodi fiedK N (wz)

Phrodi fiedK N (wi |wi71)

Phrodi fiedK N (wi |wz’72wi71)

A Good-Turing method (Good, 1953) introduces the counteafats/N. shown in (4.8),

cwi) =Dy o\ Nis(o)
Sl PR )

(if W=unigram)

c(wi_lwi) — D2 ‘ NH_(.U))
o ctwiw) TR (ww)

(if W=bigram)

C(wi—Qwi—lwi) — D3, Nl—l—(.wi—lw)

+ B(w;)

Zw C(wi—2wi—1w> N1+(wi—2wi—1w)

(if W > trigram)

N = > L

z:count(z)=c

4.7)

(4.8)

which is the number of different words that were seen exadilynes. Using thisV.,, this method

infers the zero probability mass. L&t denote the total number of counts. The modified catint
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can be obtained by

Nchl

v (4.9)

= (c+1)

Using these quantities, the probability mass for unobskenvgrams can be calculated as in (4.10)

where the mass for unobserved n-grams is uniformly allacate

N; (4.10)

PGoodTuring(wla cee 7wn) -

4.1.2 Hierarchical Pitman-Yor Process-based Language Model

According to Teh, the performance of a hierarchical Pitnivanis known to be comparable with
the modified Kneser-Ney smoothing in terms of perplexityn(TZ006). As was shown in Section
4.1.1, the modified Kneser-Ney method employs several stigisuch as interpolation, absolute
discount, and back-off. Compared to this, a hierarchicah&it-Yor process-based smoothing is

mathematically constructed using Bayesian statistics.

HPYLM: Generative Model A Hierarchical Pitman-Yor Language Model (HPYLM) (Goldwa-
ter et al., 2006; Teh, 2006; Mochihashi et al., 2009; Okite \afay, 2010) is constructed encoding
the property of the power-law distribution.

Let PY(d, 0, Gy) denote a Pitman-Yor process (Pitman, 1995)enote a discount parameter,
¢ denote a strength parameter, adg a base distribution. We define(u) as the suffix ofu
consisting of all but the earliest word in Equation (4.15),ia(Teh, 2006): we see asn-gram

words andr(u) as (-1)-gram words. Then, we place a Pitman-Yor process peicursivelyover
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G'ru) in the generative model, as is shown in (4.11):

Guldj) Oju)s Grwy ~ PY (djuy, O, Gr(u))
(4.11)

Gyldo, 6o, Go ~ PY (do, by, Go)

Note that the discount and strength parameters are fuisatittine lengthju| of the context, while
the mean vector i§'(,), and the vector of probabilities of the current word giveibat the earliest

word in the context.

HPYLM: Inference One procedure — A Chinese restaurant process — computesneiein
order to generate words drawn fras) which iteratively marginalizes out.

Let~ be an n-gram context; for example in trigrams, this is {w,, w,}. A Chinese restaurant
contains an infinite number of tabléseach with infinite seating capacity. Customers, which are
the n-gram counts(w|h), enter the restaurant and seat themselves over the tablest,,..?
The first customer sits at the first available table, whileheaicthe subsequent customers sits at
an occupied table with probability proportional to the nenbf customers already sitting there
chwk — d, OF at a new unoccupied table with probability proportiotwed + d - ¢;,. as is shown in
(4.12):

Chwk —d (1 <k <tpy).

wlh ~ (4.12)
0+d-t, (k=new).

wherecy,,;, is the number of customers seated at tablentil now, andt,. = > ¢, is the total
number of tables .

Hence, the predictive distribution efgram probability in HPYLM is recursively calculated

2In te., tx Means the table for the word sequeéehw- means the sequende followed by some word.
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asin (4.13):

C(U}‘h)—d'thw 9+dth

pwlh) = 0+ c(h) 0+ c(h) p(w|h)

(4.13)

where p(w|h’) is the same probability using @-1)-gram contexth’. Implementation of this
inference procedure relates to the Markov chain Monte Cantapding (Metropolis et al., 1953).
The simplest way is to build a Gibbs sampler (Geman and Ge&84) while a more efficient

way is to build a blocked Gibbs sampler (Mochihashi et alQ®0

Decoding Algorithm in PB-SMT A minor difference in the decoding process is required. In a
test sentence, if we encounter unseen phrases, a cona@mB+SMT decoder looks up the prob-
ability with constant zero-probabilities. However, oug@lithm should look up the corresponding
probabilities based on the hierarchical Pitman-Yor preessWe calculate these zero-probabilities
using the parameters that we derived while obtaining the ENRY

There are two ways to incorporate this: 1) just before we dmdimg, we update a language
model by supplying a test sentence in terms of zero-praiabilthat is, if test sentences include
unseen words and phrases, we notify the translation modettoporate these unseen words and
phrases.), and 2) we modify a PB-SMT decoder to incorporadalifierence. Due to its easiness
of implementatior?, we take the approach 1) here, but the effect would be the same.

Our procedure is as follows. Firstly, we prepare the HPYLNapaeter filep,(w) which we
obtained when we calculate the HPYLM. This HPYLM parameterdontains the parameters in
the Chinese restaurant processes, such as the number sf thleand so forth. Such parameters
enable us to calculate the zero-probabilities for any umpbeases in a test sentence. The overall

algorithm to obtain the updated HPYLM is shown in Algorithm 7

31f we modify a PB-SMT decoder, we need to modify the stack dempalgorithm. This will take time.
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Algorithm 7 Decoder for HPYLMp(w)
Given: a test sentence= {3, -, 5,}, HPYLM p(w), HPYLM parameter filey(w).
Step 1: By generating a possiblegram candidate, using, we update HPYLM (w).
Step 2: Run a decoder which looks up updated HP Y (\b).

4.1.3 Good-Turing Pitman-Yor Language Model Smoothing

We use the same generative model which uses the Pitman-0oess as a prior in Equation (4.11)
once (not recursively), and let us now consider a count4sofumction. (This is also known as
event-counts or count of counts.) We refer to this model as@da uring Pitman-Yor Language
Model (GTPYLM). Our intention here is to incorporate thegorknowledge that a distribution
takes a power-law distribution, as well as incorporatirgzbro-frequency mass.

We use the notation of (4.8) and (4.10). By (4.13), the predidistribution of n-gram proba-
bility in GTPYLM is computed as in (4.14):

c(w|wi—1, Ny) — d -ty 0+d-tn,.
0 + c*(w|Ny) 0 + c*(w| Ny

p*(wz|wz - 17 Nw) - )p*(wi|wi_1, Nw—l) (414)

Note that this formulation does not avoid the problem of dgtarseness a¥. whenc is large,

which requires us to obtaiN., in a similar way as in other work, such as Gale (1994).

4.1.4 Performance

We conduct an experimental evaluation for JP—EN on the NTCtRrBus (Fuijii et al., 2010) and
for FR-EN and ES—-EN on Europarl (Koehn, 2005). We randomlyaektd a training corpus
of 200k sentence pairs where we use 1,200 sentence pairs Y00 2,000 sentence pairs
(Europarl) for the development set, and we use 1,119 (ENAIED51 (JP-EN) sentence pairs
(NTCIR) and 2,000 sentence pairs (Europarl; test2006) fotesirset

Our baseline was a standard log-linear PB-SMT system bas&tbeas (Koehn et al., 2007).

The GIZA++ implementation (Och and Ney, 2003) of IBM Model 4snesed for word alignment.

4The number of 1,119 and 1,251 are provided by NTCIR-8 orgasiz
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For phrase extraction the grow-diag-final heuristics dbedrin (Och and Ney, 2003) was used
to derive the refined alignment. We then performed MERT (Q¢03) to optimize the BLEU
metric, while a 5-gram language model was derived with Knélsy smoothing trained with

SRILM (Stolcke, 2002) on the English side of the training d&t used Moses for decoding.

| size | EN-JP | BLEU | Perplexity| JP-EN | BLEU | Perplexity|
200k | baselinel | 23.42 | 59.607 baselinel | 21.68 | 117.78
200k | baseline2 | 23.36 | 58.587 baseline2 | 21.38 | 119.13
200k | HPYLM | 24.22 | 52.295 HPYLM | 22.32 | 105.22
200k | GTPYLM | 23.22 | 53.332 GTPYLM | 22.21 | 110.12
| size | FR-EN | BLEU | Perplexity| EN-FR | BLEU | Perplexity|
200k | baselinel | 18.40 | 162.573 | baselinel| 18.20 | 165.839
200k | baseline2 | 18.19 | 165.232 | baseline2 | 18.02 | 168.989
200k | HPYLM | 18.99 | 148.338 | HPYLM | 18.60 | 153.921
200k | GTPYLM | 18.70 | 152.104 | GTPYLM | 18.50 | 160.332
| size | ES-EN | BLEU | Perplexity| EN-ES | BLEU | Perplexity|
200k | baselinel | 16.87 | 168.431 | baselinel | 17.62 | 154.273
200k | baseline2 | 16.37 | 174.856 | baseline2 | 17.32 | 168.754
200k | HPYLM | 17.50 | 152.312 | HPYLM | 18.20 | 145.223
200k | GTPYLM | 17.15 | 156.440 | GTPYLM | 18.10 | 146.211

Table 4.1: Results for language model. Baselinel uses modifieder-Ney smoothing and base-
line2 uses Good-Turing smoothing.

This method conjectures that the weakness of language hmgdahd translation modelling is
its ignorance of underfitting in terms of the number of sampldPYLM algorithm implements
a statistical smoothing method which deals with this unter§ problem. The results show that
a hierarchical Pitman-Yor process-based language modeéthimproves the translation quality,
which is shown in Table 4.1. The best improvement of HPYLMhwiegard to the modified
Kneser-Ney method was 0.80 BLEU points absolute and 3.4 %velmr 200k EN-JP corpus,
while the best improvement of GTPYLM with regard to the Gdlading method was 0.83 BLEU

points absolute and 3.9 % relative for 200k JP—EN corpus.
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4.2 Translation Model Smoothing

When PB-SMT was introduced around 2002, the most primitivénotgtnamely relative frequency
(Koehn et al., 2003), was introduced to calculate the pritibab in the translation model. Then,
two kinds of glass box smoothing methods were introducedZeyg and Ney, 2004) and (Koehn
et al., 2005), which decompose source phrases by indepesmdssumptions. Foster et al. apply to
a translation model the classical smoothing methods uskthguage models, such as the Good-
Turing method and the Kneser-Ney method (Foster et al., 2006hnson et al. show that the
performance does not decreased much even if most of thegsheas pruned (Johnson et al.,
2007).

Since most of these methods involve a combination of heécsisine motivation here is to seek
the most well-founded method for the translation model. Elmv, as is shown by Foster et al.,
the modification of smoothing methods used for language irtodbe case of translation models
is quite straightforward. We consider to apply a hierarahiRitman-Yor process-based smoothing

method to the translation model, which is the theme of thitice.

4.2.1 Hierarchical Pitman-Yor Translation Model Smoothing

An n-gram is often defined as a subsequence of n items from a gagreace where items can
be phonemes, syllables, letters, words or base pairs. ddtheve can extend this definition of
n-gram to one which includes ‘phrases’, let us use the diffeterm ‘n-phrase-gram’ instead
in this chapter, in order to avoid any confusion with thgram for words. Fig. 4.1 shows a
typical phrase extraction example. In this process, urfiecbnsistency constraint, phrase pairs
are extracted which is depicted in the centre. Note thafitpise is depicted separating the source
and the target sides.

Fig. 4.2 shows the same figure if we depict elements as pdueslolvest column includes only
1-phrase-grams, the second lowest column includes 2-@lgt@ens, and so on. The line connect-

ing two nodes indicates parent-child relations. Accorllinthis becomes the lattice structure of
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michael geht davon aus, dass er im haus bleibt

michael geht davon aus , dass er dass er im haus bleib
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michael

michael assumes that he

michael assumes that

Figure 4.1: A toy example of phrase extraction process. s phrase pairs can be described as
a lattice structure.

the generated phrase pairs. These generated phrase pginavesseveral paths to yield complete
sentences. Similar to the HPYLM case, we can limit this bysodering the suffix of a sequence,
meaning that we can process a sequence always from laffiib-Hence, although the natural lat-
tice would include the dashed lines, the dashed lines cahrbmated if we impose the constraint
that we should always read the suffix of this sequence frotxidefight. This constraint makes the
resulting structure a tree. If the resulting structure iea,twe can employ the same strategy as we
did with HPYLM. The predictive distribution can be calcddtby Equation (4.13) by replacing

n-grams withn-phrase-grams.
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Lattice structure (Tree structure if we only accept real lines)

michael assumes that he will stay in the houqqz michael geht davon aus, dass er im haus bleibt

michael assumes that he ||

michael assumes tha{  michael geht davo/ ): 7 . will stay in the house || im haus bleibt

- that he || dass er
michael assumel$ michael geht da aus PEAEN
2>phrase-gram .-~ in the house || im haus \
michael|| michael assumef geht davon aus that || dass hell er
inthe || im  house || haus Wil stay || bleibt
1-phrase—gram

Figure 4.2: Figure shows a lattice structure of translatmmdel for a toy example.

4.2.2 Performance

We randomly selected 200k sentence pairs from the NTCIR-&patepus for IP-EN (Fujii et
al., 2010) as a training corpus. We used 1.2k sentencesdaldhelopment set, while we used
the test set prepared for the NTCIR-8 evaluation campaign. Japanese side of the data was
segmented using Cabocha (Kudo and Matsumoto, 2003). Tablghdws the statistics of each
type of prior knowledge. We prepared terminology withouhgsxternal resources but with some
human interaction. For the first prior knowledge type, NPsenextracted by the heuristic NP-
extraction strategy similar to (Kupiec, 1993), and thengkiieacted terminology was processed by
hand via manual inspection of the data. For the second priowledge type, paraphrases were
extracted by the method described in (Bannard and CallisonkFB@005). For the third prior
knowledge type, OOV word lists were created as follows. Westrmcted a PB-SMT decoder,
decoded all the training corpus as well as the test corpussgaltected all of the OOV words from
the translation outputs. Then, we supplied the translattamterparts manually.

Table 4.3 shows our results. Without translation model ghing, the improvement in BLEU

by the prior 1 was 0.80 BLEU points absolute, the prior 2 wa® BEEU points absolute, the

5Due to the segmentation process, for around 20% of the ienagion terms it was not possible to find their
counterparts.
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JP-EN training | test
prior knowledge 1 NPs 120070/ 3865
prior knowledge 2 paraphrases | 432135 —
prior knowledge 3 transliteration] 25928| 284
proper nouns 3408 2

localization 207 2
equations 103 1
symbols 13842| 684
noise 19007| 175

Table 4.2: Statistics of prior knowledge.

JP-EN | without TM smoothin§ | with TM smoothing
baseline | 21.68 22.44
prior 1 22.48 22.78
prior 2 22.43 22.64
prior 3 22.26 22.52
all 1-3 22.95 23.03
heuristics| 21.90 22.49

Table 4.3: Results for 200k JP-EN sentences. Heuristicseiiast row shows the result when
prior knowledge 1 was added at the bottom of the translatiodeh

prior 3 was 0.58 BLEU points absolute, and the prior 1 to 3 w23 BLEU points absolute.
With translation model smoothing, the improvement in BLEUnpared to the baseline with no
TM smoothing by the prior 1 was 1.10 BLEU points absolute, ther2 was 0.96 BLEU points
absolute, the prior 3 was 0.85 BLEU points absolute, and tiwe prto 3 was 1.35 BLEU points
absolute. With translation model smoothing, the improvetnne BLEU compared to the baseline
with TM smoothing by the prior 1, 2 and 3 was rather small. Bhisws that an MWE-sensitive
aligner and the translation model smoothing improved tiselte if we applied them separately,
but the combined effect was not much observed unless wepacate NPs, MWES, paraphrases,

and OQVs together.

5The probability in a translation model is described by reéatrequency.
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4.3 Conclusions

This chapter presents an application of the (hierarchRigt)an-Yor process-based language model
and translation model to MT. The first part discusses langumagdels. Firstly, although the per-
formance of HPYLM was reported in terms of perplexity, theawe been no reports, as far as we
know, in terms of BLEU in the MT context. We showed that theres awaain with a minor change
in the decoding process. Although Teh reported that HPYLb&d a comparable performance
with the modified Kneser-Ney method, we obtained betterlt®sian the modified Kneser-Ney
method here. Secondly, we proposed an alternative languadel using the Pitman-Yor process
applying the count-counts distribution of the Good-Turimgthod. The performance of this was
not as successful as HPYLM, but it was better than both thefraddneser-Ney and Good-Turing
methods. Furthermore, this was statistically significant.

The second part discusses a translation model. The appticatt this was a straightforward
application of HPYLM introducing a phrase-gram. We condexpperiments combining several
types of linguistic knowledge that we obtained in the woidrahent process, such as NPs, MWEs,
paraphrases, and OOV items. We assume that this methoddgarsamoothing the probabilities
extracted by the MWE-sensitive word alignment method. Wheronlg use the HPYTM, our
results show that the improvement was 0.56 BLEU points absobut when we incorporate all
sorts of linguistic knowledge, we obtained an improvemédnt.85 BLEU points absolute and

6.0% relative.
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Chapter 5

Conclusions and Further Study

This thesis examined word alignment and language modekixgjoring 1) the existence obise

in word alignment, 2) the existence fior knowledgedor word alignment, and 3) the existence of
underfitting in terms of the number of samples for languagdetfimg and translation modelling.
The first two relate to word alignment in Section 3 and thedtbine relates to statistical smoothing
in Section 4.

In word alignment, this thesis considers not only algorithaspects but also data manipula-
tion aspects. The latter is often not considered espedraligrms of noise. Our algorithms aim
at extracting possible structured objects separately fraword alignment algorithm, then sup-
plying them as a prior knowledge in the word alignment. Agnsilar with the phrase extraction
heuristics (Och and Ney, 2003) which radically reduces tmepmutational complexity compared to
the phrase alignment approach of Marcu and Wong (2002)widysof handling structures in word
alignment has merits in terms of computational complexityorder to continue in this way, we
provided the MAP-based word alignment technique which Wwakéey component in our approach
theoretically speaking.

In practice, we consider two distinct applications: seog¢elevel and word-level noise reduc-

tion. The latter is far more complex compared to the formée first application handled sentence-
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level noise. If we detect such noise, we filtered out suchynim&ning sentences. Although this

was a simple experiment, this study gave us a view as to hovaweackle the problem of noise.

If the parallel corpus is not noisy, there are not many thithgé we can do, as observed in the
EN-ZH IWSLT corpus. However, if the corpus is noisy, the effetcour noise reduction method

may be significant.

The second and the third applications handle word-levedenomany-to-many mapping ob-
jects and translational noise. Despite the fact that we argimen information about alignment
links, NP detection gave such information virtually ‘foe&’. Using such prior knowledge and
using a MAP-based word aligner, we incorporate NPs into tbehalignment process. We noted
that many-to-many mapping objects pose two different englkes for word alignment—noise (or
outliers), as well as valid training data—so this situai®not just an application of outlier detec-
tion in pattern analysis. We also noted that since not alintla@y-to-many mapping objects are
obstacles for the word alignment process, methods whidr filit any kind of noise will often
give better results than those which incorporate prior Kedge about NPs. One useful observa-
tion was that translational noise was language-dependevds very useful for Japanese, but may
not be so useful for European language pairs. As with theesertlevel noise, this kind of noise
reduction algorithm suggests that they should be selégt@molied only when the level of noise is
high. At the same time, the required resources and overnalpatational complexity for extracting
translational noise becomes considerably higher.

In Chapter 4 on statistical smoothing methods, we expli@aggumed that the distribution
which we aim at learning forms a power-law distribution. Bas@& this assumption, we apply
the hierarchical Pitman-Yor process-based smoothing @deth both the language model and the
translation model. In our view, smoothing techniques nestihe underfitting state in terms of the
number of samples into an equilibrium with model complestiwhere such an underfitting state
is an inevitable consequence of relative frequency estisnal/ith respect to the language model,

(Teh, 2006) reported that the hierarchical Pitman-Yor psscmethod yields comparable perfor-
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mance to that of the modified Kneser-Ney method. To the bestioknowledge, there have been
no reports on MT quality prior to our work. Our result showattthis indeed improves the results.

There are several avenues for further study. Firstly, alghdhis thesis mainly studied the IBM
Model 1 and the HMM model, we did not focus much on IBM Model 4. \WWkamportant in IBM
Model 4 is the mechanism of fertility and null insertion wihiextends thepair assumptionen-
abling comparison of two sentences with different lengitiss work will relate to Gibbs sampling
(Geman and Geman, 1984) and / or graphical models (I.Jdedan(1999; Bishop, 2006; Koller
and Friedman, 2009). Under the MAP formulation, Gibbs samgplvill be the major approach
to train the model. However, it is also known that it is oftefficlilt to obtain stable results using
Gibbs sampling (Geman and Geman, 1984).

Secondly, in Section 3.1 we discussed the fact that wordagghpairs are only extracted from
the within-sentence pairs by most word alignment algorghirhis is a problem in that if just two
words are observed in separate sentences, their propatillinot be considered, i.e. the index of
the matrix does not include them from the beginning, or justrd a value of zero. Thinking about
the performance on the test set, this may be a restriction.&pproach to remedy this would be to
employ semantic knowledge derived from language resosuoasas WordNet (Miller, 1995) and
others.

Thirdly, as is mentioned in Bayesian HMM, many approachetéMachine Learning com-
munity have tried to solve the problem of overfitting. Since @annot use one prior for more
than one purpose at the same time, if we use the prior for ttuegfi we cannot use the prior for

embedding prior knowledge. It is worthwhile to considerthot these at the same time.
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Appendix A

Pseudocodes

Listing A.1: wordAlignment.m

whi | e (iteration < ITERATION_MAX ,
n size (alF, 1);

m = size (a2F, 1);

clear total _cache;

clear count_cache;

clear count;

clear total;

1 @

count =zeros (n,m);
total =zeros (1,m);
logLikelihood =1 ;
for i=1:size (al, 1),
ml=size (unique (al{i}) ,1);
m2=size (unique (az2{i}) ,1);
indl = [al{i}] ;
ind2 = [a2{i}] ;
t cache = t(unique (indl ),uniqgue (ind2)) ;
total_cache =total (unique (ind2)) ;
count_cache =count (unique (indl ),unique (ind2)) ;

total_s = sum(t_cache, 2);
histgram0O = histc (al{i},uniqgue (al{i})) ;
histgraml = histc (a2{i},unique (a2{i}))

count0 =ones (m1,m2);

for j=1: max( max( histgram0 ),max ( histgraml )) ,
ind3 =( histgram0 ==j);
xxx3 = repmat (ind3, 1,m2);
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27 ind4 =( histgraml ==j);
28 xxx4 = repmat (ind4 ‘'m1,1);
29 XXX5 = XXx3 | Xxxx4;
30 countO(xxx5)=j;
31 end
32
33 count_cache = count_cache + (countO . * t _cache) ./ repmat(total_s,
34| 1,m2);
35 total_cache = total_cache + sum((countO . * t_cache) ./ repmat(
36| total_s,1,m2), 1);
37 count(unique(indl),unique(ind 2)) = count_cache;
38 total(unique(ind2))=total_cache;
39 end
40
41 t = zeros(size(alF,1),size(a2F,1));
42 t = count ./ repmat(total,n,1);
43 ind = (t < PROB_SMOOTH) & (t "= 0);
44 t(ind)=PROB_SMOOTH;
45 ind =t > 0;
46 logLikelihood = [logLikelihood sum(log2(t(ind)))];
47 iteration = iteration + 1;
48| end
Listing A.2: trainingVBEM.py
1| def trainVBEM (L1tok,L2tok ):
2 ...the same as trainStandardEM ...
3 whi | e (iteration < ITERATION_MAX:
4 count = {}
5 total = {}
6 for i in range (numSentence ):
7 . set the prior ...
8 for e in Lltok [i]:
9 totals [e] =0
10 for f in L2tok [i]:
11 try:
12 totals [e] += t[( ef )]
13 except:
14 pass
15 for e in Lltok [i]:
16 for f in L2tok [i]:
17 try:
18 count [( ef )] += t[( ef )] [/ total. s [e€]
19 except KeyError
20 try:
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count [( ef )] = t[( ef )] [ total_s
except:
pass
try:
total [f] += t[( ef )] [/ totals [e€]
except KeyError
try:
total [f] = t[( ef )] [/ total_s [e]
except:
pass
. calculation of the lower bound ...
for x in countkeys ():

f =x[1]
try:

pri =prior [f]
except:

pri =1.0
try:

t[x] = count [x] / total [f] * pri
except KeyError
pass
logLikelihood = -sum(log (x[1]) for x in titems ()

for x in countkeys ():
f =x[1]
if (t[x] < PROB_SMOOJH
t [ x]= PROB_SMOOTH
...the same as trainStandardEM ...

Listing A.3: Baum-Welch Algorithm

def baumWelch( hmm, obs_seqs, = args ):

epochs = 20
scaling =1
normUpdate =1
verbose =1
K = len (obs_seqs )
start = time.time ()
LLs = ]
for epoch in xrange (epochs):
start_epoch = time.time ()
LL_epoch =0
E_si all = zeros ([ hmm.N, float )
E si all TM1 = zeros ([ hmm.N, float )
E_si_gsj all = zeros ([ hmm.N,hmm.N], float )
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15 E si_sj all TM1 = zeros ([ hmm.N,hmm.N], float )

16 E_si_t0_all = zeros ([ hmm.N)

17 eEmitProb = zeros ([ hmm.N,hmm.M, float )

18 ow = 0

19 for obs in obs_segs :

20 obs = list (obs)

21 logProbObs, alpha, c = forward (hmrehmm, obs=obs, scaling =1)
22 beta = backward (hmnrhmm, obs=obs, ¢ =c)

23 LL _epoch += logProbObs

24 T = len (obs)

25 i f normUpdate :

26 print logProbObs, log (len (obs))

27 w k = 1.0 / -( logProbObs + log (len (0obs)))
28 el se:

29 wk=1.0

30 obs_symbols = obs][:]

31 obs = symbol_index (hmm, obs)

32| # gama[i,t] = P(q_t = S_i|obs, hhm

33 gamma_raw = alpha = beta

34 gamma = gamma_raw / gamma_raw.sum (0)

35 E_si tO all += w_k * gammd , O]

36 E_si_all += w_k * gamma.sum(1)

37 E si all TM1 += w_k * gammd: ,: T-1] .sum (1)

38| # xi[i,j,t] = P(g_t = S, g_t+l = S_j|obs, hmm

39 xi = zeros ([ hmm.N,hmm.N, T-1] , float )

40 for t in xrange (T-1):

41 for i in xrange (hmm.N:

42 xi [i, :,;t ] = alpha [it ] *hmm.transProb [i, ] =
43| hmm.emitProb [ , obs [t+1]] = beta [ ,t +1]

44 i f not scaling

45 Xi[i ,:t]= xi[[ ,:t] /xi[,:,t].sum(
46 E si_gsj all += w_k * xi.sum (2)

47 E_si_sj all_TM1 += w_k * xi [} ,:,:T-1] .sum(2)

48 emitProbNew = zeros ([ hmm.N,hmm.M , float )

49 for k in xrange (hmm.N:

50 which = array ([ hmm.symbol [ k] == x for x in obs_symbols 1])
51 emitProbNew [: k] = gamma.T[ which, :] .sum (0)
52 eEmitProb += w_k * emitProbNew

53 E_si t0_all = E_si t0_all / sum (E_si_t0_all )

54 hmm.Pi = E_si tO_all

55 transProbNew = zeros ([ hmm.N,hmm.N], float )

56 for i in xrange (hmm.N:

57 transProbNew [i, :] = E_si sjall TM1 [i, ] [/ E_sial TM1 [i]
58 hmm.transProb = transProbNew

59 for i in xrange (hmm.N:
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60 eEmitProb [i, :] = eEmitProb [i, ;] [/ E_si all [i]

61 hmm.emitProb = eEmitProb
62 LLs.append (LL_epoch)
63 return hmm, LLs

Listing A.4: fwdBack.py

1| def forward (hmm, obs, scaling =True):

2 T = len (obs)

3 print 'obs' ,obs

4 obs = symbol_index (hmm, obs)

5 print 'sym' ,obs

6 i f scaling

7 c = zeros ([ T], float )

8 alpha = zeros ([ hmm.N,T], float )

9 alpha [ ,0] = hmm.Pi * hmm.emitProb [ ,obs [0]]
10 i f scaling

11 c[0] =1 .0 / sum(alpha [: , 0])

12 alpha [ ,0] = c[0] =* alpha [ , 0]

13 for t in xrange (1,T):

14 alpha [ ,t ] = dot (alpha [} ,t -1] ,hmm.transProb ) *hmm.emitProb
15

16| [ ,obs [t]]

17 i f scaling

18 c[t] = 1.0/ sum(alpha [: ,t ]

19 apha [ t] = aphal[ t] = c[t]
20 print ‘alpha=" ,alpha

21 i f scaling

22 logProbObs = -( sum(log (c)))

23 return (logProbObs, alpha, c )

24 el se:

25 probObs = sum(alpha [: ,T -1])

26 return (probObs, alpha )

27

28| def backward (hmm, obs, ¢ =None):

29 T = len (obs)

30 obs = symbol_index (hmm, obs)

31 beta = zeros ([ hmm.N, T], float )

32 beta[: , T-1] =1 .0

33 if c is not None:

34 beta [ ,T-1]= beta [ ,T-1] =* c[T-1]
35 for t in reversed (xrange (T-1)):

36 beta [ ,t ] = dot (hmm.transProb, (hmm.emitProb [. ,obs [t+1]] =
37| beta [} ,t +1]))

38 if c is not None:
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beta [ t] =
return beta

beta [ ,t ]

* c[t]

Listing A.5: viterbi.py

def viterbi  (hmm, obs, scaling
T = len (obs)
obs = symbol_index (hmm, obs)
delta = zeros ([ hmm.N,T], float
i f scaling
delta [: , O]
el se:
delta [: , O]
psi = zeros ([ hmm.N, T], int )
i f scaling
for t in xrange (1,T):
nus = delta [ ,t -1] +
delta [ t] =
psi [ ,t] =

el se:
for t in xrange (1,T):

nus = delta [} t -1]

delta [ t] =

psi [ t] =

gStar = [argmax(delta [ ,T -1])]

for t

gStar.insert 0, psi

return (gStar, delta, psi )

log (hmm.Pi) +

=True ):

)

log (hmm.emitProb [: ,obs [0]])

hmm.Pi * hmm.emitProb [: ,obs [0]]

log (hmm.transProb )
nus.max (0) +
nus.argmax (0)

log (hmm.emitProb [: ,obs [t]])

* hmm.transProb
nus.max (0)
nus.argmax (0)

* hmm.emitProb [. ,obs [t]]

in reversed (xrange (1, T-1)) :
[ gStar [0] ,t +1])

Table 1 shows the prior knowledge about alignment links use¢lde paraphrase examples in

Section 1 (Refer to Figure 1.3.)
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Source Language Target Language

to_my_regret i cannot_go today . i_am_sorry_that i cannot_visit today .
i_am_sorry_that i cannot_visit today . it_is_a_pity_that i cannot_go today .
it_is_a_pity_that i cannot_go today . sorry today i will_not_be_available .
sorry today i will_not_be_available . to_my_regret i cannot_go today .

Result of our Local MAP Estimate—EM algorithm  Viterbi alignment for 4 sentence pairs (unidirectig
1.0 today today to_my_regret i cannot_go today .
1.0it_is_a_pity_thati_am_sorry_that
1.0i_am_sorry_that to_my_regret
1.0 to_my_regret sorry
1.0 sorry it_is_a_pity_that i_am_sorry_that i cannot_visit today .
1.0 cannot_go cannot_visit \ ‘
1.0ii
1.0 cannot_go will_not_be_available

1.0.. o it_is_a_pity_that i cannot_go today .
0.5 cannot_visit cannot_go /
0.5 will_not_be_available cannot_go

sorry today i will_not_be_available .

i_am_sorry_that i cannot_visit today .

it_is_a_pity_that i cannot_go today .

sorry today i will_not_be_available .

to_my_regret i cannot_go today .

Figure A.1: The result of word alignment by our local MAP esdte-EM aligner removing two
commas from parallel corpus. (Compare this result with ttsilteshown in Figure 1.3. The
ambiguous phrase pairs whose probability are all 0.000& wet yielded in this case.)
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