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ABSTRACT
The classification of blind relevance feedback (BRF) terms
described in this paper aims at increasing precision or recall
by determining which terms decrease, increase or do not
change the corresponding information retrieval (IR) perfor-
mance metric. Classification and IR experiments are per-
formed on the German and English GIRT data, using the
BM25 retrieval model. Several basic memory-based classi-
fiers are trained on different feature sets, grouping together
features from different query expansion (QE) approaches.
Combined classifiers employ the results of the basic classi-
fiers and correctness predictions as features. The best com-
bined classifiers for German (English) yield 22.9% (26.4%)
and 5.8% (1.9%) improvement for term classification wrt.
precision and recall compared to the best basic classifiers.
IR experiments based on this term classification have also
been performed. Filtering out different types of BRF terms
shows that selecting feedback terms predicted to increase
precision improves the average precision significantly com-
pared to experiments without BRF. MAP is improved by
+19.8% compared to the best standard BRF experiment
(+11% for German). BRF term classification also increases
the number of relevant and retrieved documents, geometric
MAP, and P@10 in comparison to standard BRF. Experi-
ments based on an optimal classification show that there is
potential for improving IR effectiveness even more.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIE-
VAL]: Information Search and Retrieval—Query formula-
tion, Relevance feedback, Search process

General Terms
Performance, Measurement, Experimentation

Keywords
Query Reformulation, Query Expansion, Blind Relevance
Feedback, Machine Learning
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1. INTRODUCTION
Blind relevance feedback (BRF, also called pseudo-rele-

vance feedback) for information retrieval (IR) is regarded
as a means to improve recall and precision. Some previous
studies have shown that BRF may decrease precision [11],
and the general usefulness of BRF to improve IR effective-
ness has been questioned [1]. A possible explanation might
be that QE with synonyms or other related terms found in
documents presumed to be relevant also adds noise to the
results. Thus, more relevant documents may be retrieved
but precision for certain topics may degrade.

The main objective of this paper is to answer the ques-
tions: “Are there BRF terms which have a negative effect on
IR performance metrics (i.e. are there good and bad BRF
terms)?”, “Can good and bad feedback terms be differenti-
ated automatically?”, and “What is the impact of selecting
only good feedback terms on precision and recall?”

In this paper, experiments are performed to calculate the
change in performance resulting from adding a single term
to a query. From these results, training data for a machine
learning approach (ML) is derived. Memory-based learning
is applied to automatically classify which individual terms
have positive, negative, or zero effect on IR metrics. Filter-
ing out feedback terms with a negative effect is expected to
increase the corresponding IR metric. Different BRF strate-
gies using the term classification results are evaluated, fil-
tering out candidate feedback terms which are predicted to
be not useful.

The rest of this paper is organized as follows: Section 2
introduces related work. Section 3 describes the experimen-
tal IR setup. Section 4 proposes features for feedback term
classification and presents results for the basic and combined
classifiers. Retrieval experiments using different blind feed-
back strategies and their results are discussed in Section 5,
before ending with an outlook on future work in Section 6.

2. RELATED WORK
Blind relevance feedback (BRF) is a well-known approach

to improve IR performance by extracting terms from top-
ranked documents retrieved in an initial retrieval step, ex-
panding the query with these terms, and retrieving a final
result set with the modified query [16]. BRF in IR has been
extensively researched, investigating the decision whether
to use selective or massive feedback [2] or how to best rank
candidate feedback terms [16], but still some questions re-
main unanswered, e.g. how to dynamically adapt feedback
parameters [12].

Robertson [13] names several alternatives to deal with
query expansion terms, including using all terms from known



relevant documents (leaving processing to the term weight-
ing scheme), including a term selection stage to omit poor
terms instead of assigning them low weights, and including
user interaction to select useful expansion terms. Robert-
son expresses the question “How useful would a candidate
term be?” as “How much effect would adding it to the search
formulation have on retrieval performance?” and suggests
that the decision for including a term in an expanded query
should be based on its increase in effectiveness.

Cao, Nie and Robertson [3] differentiate between good and
bad feedback terms. They train an SVM classifier based on
seven features, including BM25 document scores and achieve
an accuracy of about 69% for the classification of terms into
good and bad expansion terms on three TREC collections.
An Oracle (optimal) classification results in 18-30% improve-
ment in MAP. They conclude that there is much potential
improvement to be gained if the classification accuracy can
be further improved and that BRF may not have to be recall-
oriented: “adding the expansion terms does not hurt, but
improves precision”. In contrast, the classification described
in this paper employs many more features and aims at in-
creasing precision and recall. IR experiments are conducted
for both German and English, with combined classifiers em-
ployed to improve classification accuracy.

Ogilvie, Vorhees, and Callan [12] aim at dynamically adapt-
ing the number of feedback terms, e.g. optimizing it for
each topic individually. They compare results from eight re-
trieval systems and observe that systems are able to obtain
almost all possible benefit with a fixed number of feedback
terms. Results show that the best static number of feedback
terms and the resulting improvement over no expansion vary
with the systems (10-100 terms resulting in 5.7-31.5% im-
provement in MAP). The findings suggest that current term
weighting and a static number of feedback terms leave little
room for further improvement. They also find that 15-55%
improvement in MAP over no expansion is possible when
the number of feedback terms is determined dynamically for
each topic (4-30% over feedback with a static number of
terms). Their results also seem to suggest that performance
improvements stem from a combination of terms rather than
from a single term. In the term classification described in
this paper, a set of terms (including the empty set) is de-
termined for QE implicitly, based on performance changes
calculated for adding a single term. The best number of
feedback terms for each topic is also implicitly determined
by the cardinality of the set of terms selected for feedback,
i.e. if all BRF terms are considered as bad, the query will
not be expanded. Furthermore, the experiments described
here are motivated by a different rationale. Selecting a cutoff
value builds on the assumption that good terms are likely to
appear consecutively in the top term ranking. Instead, it is
presumed here that the ranking by traditional term selection
value is not good enough to support finding a single cutoff
value which divides the terms into good and bad terms.

Lavrenko and Croft [8] investigate a formal probabilistic
approach to estimate a model of relevance with no additional
training data. The proposed method can be viewed as a
form of massive query expansion, where the original query
is replaced with a distribution over the entire vocabulary.
The method does not require careful tuning of parameters
(e.g. the number of feedback documents). On TREC ad-hoc
data, the relevance model outperforms the language model-
ing baseline approach with query expansion on one query
set, but performs worse on the second query set.

Gey and Petras [6] observe that BRF improves perfor-
mance only for some topics. They state that for geographic
information retrieval (GIR), the most useful feedback terms
seem to be proper nouns (location names), but do not in-
vestigate this suggestion. Leveling [9] explores the idea that
location names are most useful for BRF in GIR in more de-
tail. Experiments on the GeoCLEF newspaper data showed
that restricting feedback terms to a certain type (i.e. lo-
cation names) and filtering out other feedback terms can
significantly improve MAP, but not for all topics.

These approaches are similar to the work presented in this
paper as they identify a type of useful feedback terms and fil-
ter out less useful feedback terms. However, the approaches
use only a single property of a feedback term (its part-of-
speech) and are applied to a specific domain only (GIR),
whereas classification experiments in this paper are based
on different feature sets and intended for a more general
application domain (ad hoc IR).

Van Halteren, Zavrel, and Daelemans [17] combine differ-
ent classification systems and approaches to improve part-
of-speech tagging. They report a reduction of 24.3% error
rate for tagging the LOB corpus when combining different
classification results. In contrast, the experiments described
in this paper are based on a single ML system, combining ba-
sic classifiers trained on different feature sets by using their
results and predicted correctness as classification features.

Other related research includes optimizing document se-
lection for BRF and learning to rank, which aims at reorder-
ing a document set to obtain higher precision (e.g. [4]).
However, these topics are outside of the scope of the exper-
iments described in this paper.

3. SYSTEM DESCRIPTION AND EXPERI-
MENTAL SETUP

3.1 Documents, Topics, and Relevance Assess-
ments

The retrieval experiments described in this paper are based
on data from the German Indexing and Retrieval Test data-
base (GIRT), which has been used in the domain-specific
track at the Cross Language Retrieval Forum (CLEF) for
several years (see, for example [7]). The document collec-
tions are available in German and English and consist of
151,319 documents each.1 GIRT documents contain meta-
data on publications from the social sciences, represented as
structured XML documents. The metadata scheme defines
14 fields, including abstract, authors, classification terms,
controlled terms, date of publication, and title.

A GIRT topic resembles topics from other retrieval cam-
paigns such as TREC. It contains a brief summary of the
information need (topic title), a longer description (topic de-
scription), and a part with information on how documents
are to be assessed for relevance (topic narrative). Retrieval
queries are typically generated from the title (T) and de-
scription (D) fields of topics. For example, the description
of GIRT topic 177 is Find publications focusing on jobless
adolescents who have not completed any vocational train-
ing. GIRT includes 150 German and English topics from the

1In 2006, 20,000 abstracts from Cambridge Scientific Ab-
stracts were added to the English GIRT document collec-
tion. Since no relevance assessments are available for topics
from before 2006, these documents were discarded for the
experiments described in this paper.



domain-specific track at CLEF from 2003 to 2008 (25 topics
each year), together with official relevance assessments.

In addition to providing a number of topics and the cor-
responding relevance assessments large enough to generate
data for ML techniques. GIRT data includes additional re-
sources, most notably a bi-lingual thesaurus, which serves
as an external domain-specific knowledge resource for the
term classification. Furthermore, the document collection is
available in German and in English, which makes a compari-
son of the importance of term features between two different
languages possible.

3.2 The Information Retrieval System
The Lucene toolkit2 was employed to preprocess the top-

ics and documents, and to index and search the document
collection. Support for the BM25 retrieval model [16, 15]
and for the corresponding BRF approach (see Equation 1
and 2) was implemented into Lucene by one of the authors.

The BM25 score for a document and a query Q is defined
as: X

t∈Q

w(1) (k1 + 1)tf

K + tf

(k3 + 1)qtf

k3 + qtf
(1)

where Q is the query, containing terms t and w(1) is the RSJ
(Robertson / Sparck-Jones) weight of T in Q [14]:

w(1) =
(d + 0.5)/(D − d + 0.5)

(n− d + 0.5)/(N − n−D + d + 0.5)
(2)

where

• k1, k3, and b are model parameters. The default pa-
rameters for the BM25 model used are b = 0.75, k1 =
1.2, and k3 = 7.

• N is the number of documents in the collection and D
is the number of documents known or presumed to be
relevant for a topic.

• n is the document frequency for the term and d is the
number of relevant documents containing the term.

• tf is the frequency of the term within a document; qtf
is the frequency of the term in the topic.

• K = k1((1− b) + b · doclen/avg doclen)

• doclen and avg doclen are the document length and
average document length, respectively.

BRF terms are ranked by a term selection value (TSV).
The method to compute the TSV for a term for the IR
experiments used in this paper was first introduced by [13]
and is shown in Equation 3.

TSV = (d/D) · w(1) (3)

For all retrieval experiments, the topic title and descrip-
tion were used to create IR queries for Lucene (TD). The
document structure was flattened into a single index by
collecting the abstract, title, controlled terms and classifi-
cation text as content and discarding the remaining fields
(e.g. author, publication-year, and language-code). Stan-
dard Lucene modules were employed to tokenize the text and
to fold upper case characters to lower case. Stopword lists

2http://lucene.apache.org/

from Jacques Savoy’s web page on multilingual IR resources3

for German (603 words) and English (571 words) were used
to identify stopwords. Stemming of topics and documents
was performed using the German or English Snowball stem-
mer provided in Lucene.

4. FEEDBACK TERM CLASSIFICATION

4.1 Classification Features
One strategy to improve on existing BRF is to form a dis-

tinction between good terms and bad terms for QE, where
good terms are terms which increase retrieval effectiveness
and bad terms are those which do not. In this paper, the
basic term classifiers for precision (P-classification) are de-
noted by Pci, and term classifiers for recall (R-classification)
are denoted by Rci. Similarly, classifiers using classification
results are denoted by Ppi and Rpi, and combined clas-
sifiers are denoted by Pcci and Rcci. The class resulting
from a classifier is denoted by C(classifier). Three classes
representing the effect of a term on recall or precision were
defined, corresponding to a decrease in performance met-
ric, no change, or an increase. Class labels represent the
abbreviated form of the change: positive (p), zero (z ), or
negative (n) effect. Each feedback term in the top-50 feed-
back terms ranked by TSV was added to the original query.
The term classes were obtained by computing the difference
between average precision and the number of relevant doc-
uments at 1000 documents for the original query and the
query expanded with this feedback term, using the sign of
the change to derive the class.

The training data contains 7500 training instances for each
language, corresponding to 50 feedback terms for 150 top-
ics, which consist of of term features and class labels. For
the classification according to precision (P-classification), all
three classes occurred (German: 2564 terms in p, 1080 z, and
3856 n; English: 2642 p, 582 z, and 4276 n).

One of the most important evaluation metrics for clas-
sification is accuracy, which is defined as the number of
correctly classified instances divided by the number of all
instances. Always selecting class n (the majority baseline)
achieves 51.4% accuracy, i.e. classifiers should outperform
this trivial baseline. For the R-classification, only two classes
occurred (German: 885 p and 6615 z, English: 281 p and
7219 z ). The majority baseline achieves 88.2% accuracy.
Note that the number of relevant and retrieved documents
can (in theory) decrease when a query is expanded by adding
terms. However, in the training data used for the experi-
ments described in this paper, this case did not occur.

4.2 Feature Sets
Features for basic term classifiers are grouped in seven

feature sets (FSj, j ∈ {1, . . . , 7}), which roughly correspond
to different approaches to QE (e.g. co-occurrence based QE
or thesaurus-based QE). All features are numeric, except for
one string feature, i.e. the suffix removed from a word during
stemming. Note that representing the string feature as a set
of binary features (one for each suffix) might cause problems
when multiple languages are examined because the number
and type of removed suffixes is not known in advance for
both training and test data.

Basic classifiers were initially trained on a single feature
set. In some cases, this approach had to be extended to cover

3http://members.unine.ch/jacques.savoy/clef/index.html



two or three feature sets to obtain a reasonable accuracy.
Combined classifiers aggregate results from basic classifiers.
For the basic classifiers, 80 features fi (i ∈ {1, . . . , 80}) were
considered, which are briefly described in Table 1. Seven fea-
tures corresponding to classifications of the basic classifiers
and seven features corresponding to the predicted correct-
ness of classifiers based on the same feature sets were used
for the combined classifiers.

FS1 includes term-specific features which have been used
in traditional BRF (e.g. d). FS1 also contains a non-numeric
feature corresponding to the suffix which has been removed
from the term during stemming (f12). Query-specific fea-
tures and properties of the result set size are grouped in
FS2. For example, if a query contains only few and rare
words, only few documents can be retrieved at all (e.g. less
than 1000 documents), BRF may be found to improve ef-
fectiveness in general for this query. FS3 contains features
determining the relation between a feedback term and terms
in the original query, including thesaurus relations and the
Levenstein distance which can indicate if a term is a mor-
phological variant or a spelling error. These features are
motivated by knowledge-based approaches to query expan-
sion. BM25 document scores (FS4) have also been used as
term classification features by Cao, Nie and Robertson [3].
For the classification experiments described here, document
score differences are also considered (FS5). Statistical the-
sauri are based on co-occurrence measures for terms. Fea-
tures in FS6 try to model co-occurrences of feedback terms
and terms in the original query in the document collection
by well-known co-occurrence measures (mutual information,
phi-square-coefficient, and log-likelihood ratio). Finally, fea-
tures in FS7 represent positional information of the feedback
term. The flat index generated from different document
fields may indicate the importance of individual document
fields. The (normalized) absolute position of a feedback term
may help to associate document structure with importance
of document fields for feedback (e.g. title and abstract occur
at the beginning of the document, subject terms are given
at the end).

Two additional feature sets (FS8 and FS9) are derived
from results of the basic classifiers. FS8 includes all term
classification results from basic classifiers (denoted as C(Pci)
or C(Rci)). For example, a corresponding training instance
is (1:p, 2:p, 3:z, 4:n, 5:p, 6:p, 7:p, class: p). FS9 contains
predictions on the correctness of the basic classifications
(C(Ppi) or C(Rpi)). Instead of training the predictions on
the classes p, z, and n, the classes determine if the classifi-
cation by a basic classifier is correct (c) or incorrect (i). For
example, a corresponding training instance for FS9 is (1:c,
2:c, 3:i, 4:i, 5:c, 6:c, 7:c, class: p).

4.3 Training Data
For the 150 English (German) topics, 15574 (16200) docu-

ments have been assessed as relevant, i.e. there are on aver-
age 103.8 (108) relevant documents per topic. BRF typically
uses 20-30 terms and 10-20 documents. For the ML exper-
iments described here, T was set to 50 to obtain a pool of
term candidates for BRF. D was set to 20 to allow generat-
ing a large number of training instances while avoiding a bias
towards bad terms. For aggregated feature values, different
aggregating functions were employed (e.g. minimum, max-
imum, and average). Feature values are normalized when
necessary, e.g. the term position in a document was nor-
malized by document length. Multi-class features (e.g. the-

saurus relations) were represented as a set of binary features.
Some features are included both in terms of absolute values
and value changes. The GIRT thesaurus was employed to
determine semantic relations between query terms and can-
didate feedback terms. For phrase lookup, Wikipedia article
titles in German and English were used as an external re-
source (versions from June and May 2008, respectively).

Two sets of training data were generated. The first set
corresponds to term classification for precision (P-classifica-
tion), the second set corresponds to term classification for
recall (R-classification). Instances in both training have the
same feature values, but differ in their class labels. The
training data for the R-classification is imbalanced, showing
few instances of the interesting class p. However, no down-
sampling or upsampling of the training data was applied.
Liu, Chawla et al. [10] report that imbalanced data sets are
still a problem for ML and there is no best solution yet. For
the experiments described in this paper, explicit feature se-
lection was avoided by training classifiers on different feature
sets. Negative effects resulting from imbalanced data seem
to be alleviated by combining the results of basic classifiers.

4.4 Training with TiMBL
TiMBL [5] implements a memory-based learning approach

and supports different algorithms for supervised ML. For the
experiments described in this paper, TiMBL’s IB1 algorithm
was employed (k-NN or k-nearest distances classification).
TiMBL was used to train classifiers for both the classifi-
cation of terms with respect to precision (P-classification)
and the classification of terms with respect to recall (R-
classification). All classifiers were cross-validated with the
leave-one-out method, i.e. trained on the set of training
instances except for the test instance.

4.5 Results for Basic Classifiers
Table 2 shows the classification results, including F-Score,

area under curve (AUC), and accuracy as reported by TiMBL.
In addition, the number of true positives for the most inter-
esting class (TP(p)) for 2564 terms in p for German, and
2642 terms for English is given. Table 3 shows the results
for classifying terms by change in recall. Adding a single
term to the original query may decrease precision. In con-
trast, no term was identified which adversely affected the
number of relevant and retrieved documents when added
to the original query. BRF does not decrease recall in the
cases observed (although it is theoretically possible). Only
a few terms increase the number of retrieved relevant doc-
uments; the majority of feedback terms do not affect this
performance metric at all. This may be one explanation
why BRF could be considered to mainly enhance recall: few
terms would actually decrease the number of relevant and re-
trieved documents, and additional terms provide more con-
text to differentiate relevant documents. However, adding
terms which do not affect recall may still result in lower
average precision, because more noise is added to the query.

The basic classifiers yield a relatively low accuracy and
the feature sets vary in the number of features they con-
tain. Thus, some basic classifiers for P-classification and
R-classification are trained on features from more than one
feature set. However, a simple combination of features does
not always yield a higher classification performance (cf. Pc7

vs. Pc1). This observation was confirmed by results from
the combined classifier (Pcc1), which achieved a higher F-
score, but identified less true positives for the class p than



Table 1: Classification features.

Feature Feature set Description

f1-f6 FS1 inverse TSV rank, TSV score, qtf , n, d, term length
f7-f11 FS1 does the term contain lowercase characters, uppercase characters, digits, punctuation,

or other non-alphabetic characters?
f12 FS1 suffix removed from the term during stemming

f13-f16 FS2 query length in tokens; result set size for the original query, for the query expanded with
the feedback term, and percentual change between both

f17-f21 FS3 is the term part of the original query or an expansion term?, are the term and any query
term part of a phrase (using Wikipedia article names as a phrase lexicon)?, is the term
a compound constituent of an original term or vice versa?

f22-f27 FS3 is the term is a prefix, suffix, or infix string of any query term, or vice versa?
f28 FS3 minimum edit-distance (Levenstein distance) between term and query terms
f29-f32 FS3 thesaurus relations (synonymy, broader term, narrower term, and related term) between

term and original query terms

f33-f47 FS4 BM25 document score of the document at kth position (k ∈
{1, 10, 20, 30, . . . , 100, 200, 300, 400, 500})

f48-f62 FS5 differences between BM25 document score for the original query and for the query ex-
panded with the feedback term

f63-f71 FS6 minimum, maximum, and average values for mutual information, phi-square-coefficient,
and log-likelihood ratio between term and query terms

f72-f80 FS7 minimum, maximum, and average values for absolute position of the term in a document;
relative position of the term to query terms and the offset of the term

FS8 classification results from basic classifiers

FS9 correctness predictions for basic classifiers

classifier Pc2. The basic classifiers seem to perform similarly
for both P-classification and R-classification.

The low classification accuracy for FS1 may indicate that
there is no obvious relation between the TSV or inverse TSV
rank and the feedback terms to be used. Specifically, results
seem to suggest that other features for ranking terms might
be better and that there is no obvious cutoff for the best
number of terms. The BM25 scores used in FS4 show that
there may be a relation between BM25 document scores and
the quality of the extracted feedback terms.

4.6 Results for Combined Classifiers
The simple combination of classification results does not

achieve a higher accuracy than the best basic classifiers (see
Pcc1 in Table 2 and Rcc1 in Table 3). However, combin-
ing classification results from the basic classifiers with re-
sults from classifiers predicting the correctness of the basic
classifiers improved accuracy significantly. For comparison,
classifiers using all 80 features were also evaluated. These
classifiers yield a performance comparable to or higher than
that of the basic classifiers, but are outperformed for both
P-classification and R-classification for English and German
by the basic classifiers Pc2 and Rc2 and by the combining
classifiers Pcc2 and Rcc2.

Classifiers including the predicted correctness of the clas-
sification as features show a higher accuracy compared to the
basic classifiers. The best P-classification (Pcc2) is achieved
by a combined classifier and yields an accuracy of 82.5% and
an F1-score of 82.4% for both German and English. These
results are considerably higher than the 69% accuracy re-
ported by Cao, Nie and Robertson [3], although their ex-
periments are based on different data. The best combined
classifier (Rcc2) achieved an accuracy of 96.5% and an F1-
score of 96.4% for German (98.6% accuracy and F-Score for
English).

4.7 Estimating the Impact of Classification
A preliminary estimate of the impact of classifying feed-

back terms can be obtained by computing the ratio of good
terms used to all feedback terms used. For the optimal
classification, the ratio is 1 (if only terms of class p are
used). For standard BRF in German, the ratio is 0.342
(2565 out of 7500) for the P-classification and 0.118 for the
R-classification (885 out of 7500). The classifier Pcc1 (Pcc2)
increases the ratio to 0.621 (0.790, respectively). The clas-
sifier Rcc1 (Rcc2) increases the ratio to 0.701 (0.865). For
English, term classification improves the ratio similarly. In
summary, standard blind relevance feedback employs many
bad feedback terms. The combined classifiers using pre-
dicted correctness of basic classifiers show that good and bad
feedback terms can be automatically identified with high ac-
curacy. An improved BRF approach is proposed which fil-
ters out bad terms and employs only good feedback terms.

5. IR EXPERIMENTS
The effect of feedback term classification was evaluated

in IR experiments on the German and English GIRT data,
filtering out different types of feedback terms. The goal of
the classification was to use only good and to discard bad
feedback terms (select/reject decision). The definition of
good varies with the experiment:

• All terms obtained from the standard BRF approach
are considered as good (using feedback terms from the
classes p, z, and n). This corresponds to standard
BRF, where all terms are selected.

• Good BRF terms are those which do not decrease the
metric (classes p and z ).

• Good BRF terms are those which increase the metric
(class p).



Table 2: Classification results for P-classification on German and English data.

Name Feature set German Results English Results

F-Score AUC ACC TP(p) F-Score AUC ACC TP(p)

all FS1-FS7 0.651 0.697 0.651 1417 0.639 0.656 0.639 1415

Pc1 FS1 0.494 0.571 0.494 980 0.504 0.538 0.504 1018
Pc2 FS2, FS4 0.671 0.720 0.671 1526 0.651 0.671 0.651 1436
Pc3 FS1, FS3 0.493 0.571 0.492 976 0.507 0.541 0.508 1029
Pc4 FS4 0.657 0.708 0.657 1500 0.636 0.657 0.637 1395
Pc5 FS5 0.611 0.676 0.612 1316 0.576 0.611 0.576 1177
Pc6 FS6 0.617 0.670 0.618 1270 0.529 0.559 0.528 1094
Pc7 FS1, FS7 0.480 0.561 0.480 959 0.508 0.542 0.508 1039

Pp1 FS1 0.781 0.781 0.781 - 0.798 0.798 0.798 -
Pp2 FS2, FS4 0.806 0.766 0.810 - 0.788 0.760 0.790 -
Pp3 FS1, FS3 0.755 0.755 0.755 - 0.764 0.764 0.764 -
Pp4 FS4 0.794 0.758 0.800 - 0.777 0.751 0.780 -
Pp5 FS5 0.737 0.719 0.739 - 0.689 0.680 0.690 -
Pp6 FS6 0.819 0.800 0.821 - 0.797 0.795 0.797 -
Pp7 FS1, FS7 0.687 0.686 0.687 - 0.715 0.715 0.715 -

Pcc1 FS8 0.679 0.714 0.685 1265 0.636 0.648 0.685 1161
Pcc2 FS8, FS9 0.824 0.848 0.825 1966 0.837 0.848 0.825 2032

Table 3: Classification results for R-classification on German and English data.

Name Feature set German Results English Results

F-Score AUC ACC TP(p) F-Score AUC ACC TP(p)

all FS1-FS7 0.896 0.738 0.896 470 0.961 0.703 0.962 119

Rc1 FS1 0.846 0.631 0.845 312 0.935 0.549 0.935 37
Rc2 FS2, FS4 0.910 0.771 0.912 520 0.967 0.747 0.968 143
Rc3 FS1, FS3 0.849 0.639 0.849 323 0.932 0.539 0.931 32
Rc4 FS4 0.879 0.693 0.883 393 0.962 0.711 0.964 123
Rc5 FS5 0.873 0.662 0.880 333 0.949 0.626 0.951 77
Rc6 FS6 0.836 0.607 0.836 271 0.937 0.560 0.938 43
Rc7 FS1, FS7 0.849 0.642 0.849 329 0.935 0.544 0.936 34

Rp1 FS1 0.926 0.862 0.926 - 0.965 0.862 0.862 -
Rp2 FS2, FS4 0.941 0.793 0.943 - 0.976 0.768 0.977 -
Rp3 FS1, FS3 0.918 0.837 0.919 - 0.968 0.873 0.873 -
Rp4 FS4 0.910 0.750 0.914 - 0.972 0.759 0.759 -
Rp5 FS5 0.900 0.728 0.910 - 0.956 0.731 0.731 -
Rp6 FS6 0.926 0.869 0.926 - 0.967 0.859 0.859 -
Rp7 FS1, FS7 0.913 0.822 0.913 - 0.958 0.823 0.823 -

Rcc1 FS8 0.907 0.722 0.914 417 0.962 0.658 0.967 91
Rcc2 FS8, FS9 0.964 0.906 0.965 734 0.986 0.871 0.986 210

Retrieval experiments corresponding to each of these def-
initions were conducted, filtering out candidate feedback
terms which were predicted to be bad terms. For compar-
ison, baseline experiments without feedback and with feed-
back and experiments with a perfect classification of terms
(Oracle) have been performed, using the classification in the
training data as a gold standard. Results for the retrieval
experiments are given in Table 4, showing the number of
relevant documents at 1000 retrieved documents (rel ret),
MAP, geometric mean average precision, and precision at
10 documents (P@10). For the baseline experiments with
standard BRF, the number of documents assumed to be rel-
evant was set to 20 (R=20). The number of feedback terms
was varied from 5 to 50. Only the best performing baseline
runs are shown (i.e. T = 10 or T = 15). Results which are
significantly better than the IR baseline are indicated by a
∗, results significantly better than the best BRF baseline by
a +. Significance testing was performed using the Wilcoxon
test with p < 0.05.

Experiments based on the simple combination of classifi-
cation results showed a slightly worse performance in com-
parison to standard BRF. A possible explanation is that the
accuracy of the classification results was not high enough.

5.1 IR Experiments for R-classification
The R-classification did not outperform standard BRF.

There are only a few instances affecting the number of rel-
evant and retrieved documents at all, and none was found
which decreased this number for 1000 retrieved documents.
While the classification accuracy might be high enough to
show a significant change in the number of retrieved rel-
evant documents, this effect has not even been observed
when the perfect classification was used in IR experiments.
An interesting observation can be made from the number of
relevant documents retrieved for the English experiments,
where the IR experiment with the optimal classifier (Ropt)
returns less relevant documents than for experiments using
the R-classification. The explanation for this effect is that



Table 4: Selected results for monolingual retrieval experiments on German and English GIRT documents.
For comparison, results from a perfect classification (opt) are included.

Run BRF terms German Results English Results

rel ret MAP GMAP P@10 rel ret MAP GMAP P@10

baseline N/A 11257 0.3331 0.2174 0.6273 10829 0.3330 0.2050 0.5720
baseline T=10, p,z,n 13241 0.3972∗ 0.2547 0.6367 10951 0.3410 0.1723 0.5807
baseline T=15, p,z,n 13326 0.3979∗ 0.2564 0.6340 10944 0.3387 0.1717 0.5813

Pcc1 p 12999 0.3898∗ 0.2734 0.6567 11214 0.3629∗+ 0.2076 0.5967
Pcc1 p,z 12998 0.3902∗ 0.2781 0.6573 11199 0.3633∗+ 0.2073 0.5947
Pcc2 p 13651 0.4416∗+ 0.3264 0.6973 11702 0.4084∗+ 0.2605 0.6487
Pcc2 p,z 13656 0.4402∗+ 0.3245 0.6927 11692 0.4079∗+ 0.2579 0.6487

Popt p 14115 0.4922∗+ 0.3905 0.7547 12034 0.4515∗+ 0.3127 0.6987
Popt p,z 14100 0.4865∗+ 0.3762 0.7500 12034 0.4484∗+ 0.3057 0.6980

Rcc1 p 12632 0.3664∗ 0.2391 0.6260 10814 0.3378 0.1911 0.5833
Rcc2 p 13149 0.3876∗ 0.2665 0.6393 10940 0.3417 0.1930 0.5853

Ropt p 13297 0.3981∗ 0.2791 0.6600 10657 0.3367 0.1876 0.5720

while a single term might not contribute to the number of
relevant documents, a set of feedback terms adds more con-
text information to the query, which may result in higher
ranked relevant documents. Thus, while terms may not in-
dividually be selective of relevant context, combinations of
such terms may be highly effective. In summary, all term
classification experiments aiming at increasing this number
returned a lower number of relevant documents than most
of the standard BRF approaches.

5.2 IR Experiments for P-classification
The best P-classification is based on the combined classi-

fier (Pcc2) and returns significantly better results than stan-
dard BRF. For the P-classification, even other performance
metrics were slightly higher than for standard BRF experi-
ments and for experiments with the R-classification.

There are only small differences in the results for exper-
iments using terms of class p and experiments using both
terms with p and z. Experiments using terms predicted not
to affect precision (class z ) did not affect any retrieval met-
ric significantly compared to experiments using only class p.
However, in some use cases e.g. for tasks such as machine
translation in cross-lingual IR or in word sense disambigua-
tion, these additional terms might provide useful context
information.

Selecting only terms of class p for the perfect P-classification
yields significantly better results than in any other experi-
ment (0.4922 MAP). Interestingly, experiments with the per-
fect P-classification also return a higher number of relevant
and retrieved documents than the perfect R-classification,
which was meant to maximize this metric.

Improvements with BRF seem to be more difficult for the
English GIRT data. The main reasons for this are that in
BRF for German, more compounds, compound constituents,
and (understemmed) morphologic variants are added as (good)
feedback terms. English has a less rich morphology and thus,
less improvement using BRF may be possible, because a so-
called topic shift may be caused by unrelated terms.

Finally, the optimal P-classification shows that there is
still room for performance gain if the classification can be
further improved. For German, only 89.7% of the optimal
MAP was achieved (90.4% for English).

6. CONCLUSION AND OUTLOOK
As a conclusion, attempts to answer the three research

questions given in the introduction shall be presented. Few
BRF terms (on their own) seem to affect IR performance at
all. While no terms have been identified which decrease the
number of relevant and retrieved documents, precision may
degrade if a single term is added to the query. Hence, the
distinction between terms which increase, decrease or do not
change a performance metric is meaningful.

The classification of feedback terms into good and bad
terms proves to be difficult, even when combining classifi-
cations on different feature sets. Using classifications from
basic classifiers together with predictions on the correctness
of the classifications as features increases accuracy consid-
erably. Thus, an automatic classification of good and bad
terms with reasonable accuracy is possible, but classification
must be highly accurate to show significant improvements
for IR.

The notion of BRF primarily being a recall-enhancing de-
vice should be carefully reconsidered. While the general use-
fulness of BRF may be conversely dicussed [1], traditional
BRF has been found to improve IR effectiveness only slightly
or only for certain topics. In contrast, the experiments in
this paper support the findings reported by Cao, Nie and
Robertson [3]: selecting feedback terms by their predicted
impact on average precision is found to improve MAP sig-
nificantly. It was also found that other performance metrics
are improved as well.

The approach presented in this paper is not limited to
BRF, but can also be used for relevance feedback, where
user judgments are typically made on a per-document basis,
but terms are extracted using similar heuristics as in BRF.
Future work will include selecting feedback terms by taking
the confidence score of classification into account and inves-
tigating the behaviour of this approach on a larger corpus
(i.e. TREC ad hoc retrieval).
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