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Abstract 
Circulating osteoprotegerin (OPG) promotes bone formation in vivo and correlates with the 

presence of type 2 diabetes, severity of vascular calcification and coronary artery disease. 

Obesity is a risk factor for diabetes and cardiovascular disease but little is known about the 

impact of body weight on circulating OPG. The purpose of these experiments was to evaluate 

the impact of body mass index, vascular dysfunction and insulin sensitivity on circulating 

concentrations of OPG. This thesis investigated; (i) The effect of obesity and insulin sensitivity 

on circulating OPG levels; (ii) The effect of type 2 diabetes and vascular dysfunction on OPG 

levels; (iii) The influence of glycaemic status on circulating OPG concentrations. Briefly, our 

findings were as follows (i) obese subjects who have normal glucose tolerance and are free 

from cardiovascular disease have lower circulating levels of OPG than their lean age matched 

counterparts. (ii) Osteoprotegerin is inversely correlated with insulin sensitivity, adiponectin and 

indicators of total body and visceral adiposity and positively correlated with aerobic fitness. (iii) 

TNF receptor apoptosis inducing ligand (TRAIL) is positively correlated with both fat mass and 

waist circumference, independent of age, gender and BMI. (iv) OPG is significantly higher as is 

IL-6 and hsCRP and adiponectin significantly lower in type 2 diabetics than in age and gender 

matched normoglycemic controls, while there is no difference in TNF-α, TRAIL or sRANKL 

concentrations. (v) Osteoprotegerin is higher in type 2 diabetics after excluding patients with 

previously diagnosed vascular disease, a distinction which could not be made using traditional 

inflammatory markers such as IL-6, hsCRP or TNF-α. (vi). There is no difference in OPG 

concentrations between those with prediabetes and overt type 2 diabetes, however both 

conditions appear to have significantly higher levels than age and BMI matched obese 

normoglycemic controls. (Sipos et al., 2008) Lean subjects have OPG concentrations which are 

similar to that of both prediabetic and type 2 diabetic patients but significantly higher than their 

matched lean counterparts. Circulating OPG is lower in obese, but otherwise healthy subjects, 

and correlates with indices of insulin sensitivity. OPG (but not RANKL or TRAIL) was found to 

be elevated in type 2 diabetes. OPG may have a protective effect on vascular cells and the 

observed decrease in circulating concentrations with increasing BMI could be an early 

biomarker of vascular dysfunction. It remains to be determined whether an increase in insulin 

secretion, insulin resistance, adiposity or systemic inflammation is the main regulatory factor. 
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Obesity poses a major threat to the health of the developed world. The latest figures from the 

World Health Organisation estimate that globally 1.6 billion adults are overweight and as many 

as 400 million are obese, furthermore it is predicted that this will rise to 2.3 billion and 700 

million respectively by 2015 (World Health Organisation, 2000). One of the most devastating 

and insidious conditions associated with obesity is type 2 diabetes. At the turn of the century it 

was estimated that 171 million people worldwide had type 2 diabetes and this is expected to 

rise to 366 million by 2030 (Wild et al., 2004).  

 

Type 2 diabetes mellitus occurs when there is a concordance of insufficient secretion of the 

hormone insulin from the pancreatic β-cells superimposed upon a background of a reduced 

effectiveness of insulin to stimulate cellular glucose uptake (insulin resistance). In addition to its 

role in glucose disposal in a variety of tissue types, insulin is an important vasoactive hormone 

that has pleiotropic actions in skeletal muscle, adipose tissue and vascular endothelium 

(Cavaghan & Polonsky, 2005). The exponential increase in the prevalence of obesity and type 2 

diabetes mellitus is largely due to behavioural and lifestyle changes, with an increased intake of 

high fat foods and lower levels of physical exercise being the main causes (Zimmet & Thomas, 

2003). In addition to these lifestyle factors our genetic heritage has likely influenced the 

progression of these conditions. The mammalian genome has evolved to cope with a constant 

flux of nutrient availability and has allowed for the development of a highly efficient mechanism 

that permits the long-term storage of energy during times of nutritional oversupply. Humans and 

other mammals achieve this by sequestering excess calories to the adipose tissue. A number of 

clinical studies have demonstrated the importance of the distribution of this adipose tissue, in 

particular the contribution of visceral fat accumulation to the development of cardiovascular co-

morbidities such as congestive heart failure, myocardial infarction and stroke (Lakka et al., 

2002), (Kenchaiah et al., 2002). Many cross sectional studies have shown a strong association 

between obesity and type 2 diabetes. This relationship is in part due to increased insulin 

resistance, which is a clear predisposing factor in the development of type 2 diabetes (Olefsky & 

Kolterman, 1981). Insulin resistance is the result of a progressive decrease in receptor and 

post-receptor biological processes in a number of tissue types. These include decreased 

insulin-mediated glucose disposal in skeletal muscle, impaired glucose disposal, increased 

hepatic glucose production and increased lipolytic turnover with reduced fat oxidation in adipose 

tissues (Miller, 2003), (Shuldiner et al., 2001). In obesity there is an increased volume of 
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subcutaneous adipose tissue and a greater accumulation of fatty tissue around the organs in 

the visceral cavity. It has been repeatedly shown that greater total body adiposity and a 

preferential accumulation of visceral adiposity are independently associated with insulin 

resistance (Frayn, 2000), (Kissebah et al., 1982), (Bjorntorp, 1997). It is now well established 

that increased visceral fat is associated with increased morbidity independent of age, ethnicity 

and gender (Okosun et al., 2000), (Nicklas et al., 2004). Up until recently scientists and 

physicians have considered the adipose tissue to be a simple energy storage depot. However 

the alarming rise in obesity and type 2 diabetes towards the end of the last century has resulted 

in a wave of intense scientific study of this tissue type. The adipose tissue secretes a number of 

proteins and cytokines with autocrine, paracrine and endocrine functions. These cytokines 

exercise profuse metabolic influence. In addition to regulating fat mass and nutrient 

homeostasis, these “adipocytokines” are involved in the regulation of glucose and lipid 

metabolism. They exert anti- and pro-inflammatory effects, are involved in blood pressure 

control, haemostasis, bone mass turnover, and thyroid and reproductive regulation (Trayhurn, 

2005), (Rosen & Spiegelman, 2006), (Ahima & Flier, 2000). Increasing evidence suggests that 

these adipocytokines are intrinsically involved in the pathophysiology of obesity-related insulin 

resistance, inflammation and atherosclerosis. In the early 1990s Hotamisligil et al. (1993), 

observed that increased production of tumour necrosis factor– α (TNF-α) was present in several 

models of animal obesity. Two years later the same group found that TNF-α was also present in 

human adipose and muscle tissue and was positively related to insulin resistance and obesity 

(Hotamisligil et al., 1995). Adiponectin is another important adipocytokine that was discovered in 

the mid 1990s by three different research groups (Scherer et al., 1995), (Shapiro & Scherer, 

1998),  (Hu et al., 1996),  (Maeda et al., 1996). Circulating adiponectin is inversely related to 

body mass index (Zhao et al., 2007) and its expression is increased in response to weight loss 

(Reinehr et al., 2004), (Brichard et al., 2003). Interestingly, the globular head of adiponectin is 

structurally homologous to TNF-α and its mRNA expression in 3T3L1 adipocytes is substantially 

decreased in response to incubation with TNF-α (Ruan et al., 2002). A reduction in adiponectin 

and an increase in TNF-α synthesis have been shown to reduce insulin sensitivity (Yamauchi et 

al., 2001), (Valverde et al., 1998), (Feinstein et al., 1993), (Halse et al., 2001) and increase 

vascular dysfunction (Wang et al., 1994).  
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Significant epidemiological data has now accrued suggesting that cardiovascular disease and 

osteoporosis often coexist, implying that there may be a potential a link between bone and 

vascular tissue (Burnett & Vasikaran, 2002), (Koshiyama et al., 2006). Interestingly, several 

proteins such as osteocalcin, osteopontin and bone morphogenic protein, which were once 

thought to be bone-specific in their biological action, have been identified in atherosclerotic 

lesions (Abedin et al., 2004). Such observations have given rise to the suggestion of the 

existence of an interdependent set of connections between cytokines which interact on multiple 

levels and in multiple tissue types, an “Osteo-adipose-vascular” network as it were (Koshiyama 

et al., 2006). One such protein that has garnered considerable interest in recent years is the 

novel molecule osteoprotegerin (OPG). OPG shares an interesting connection with TNF-α, not 

only is it a member of the TNF receptor superfamily (Simonet et al., 1997) but it also appears to 

be upregulated in vitro by TNF-α (Olesen et al., 2005) and downregulated both in vivo 

(Jorgensen et al., 2009) and in vitro (Olesen et al., 2005) by insulin. It is released into the 

circulation as a soluble glycoprotein (Yun et al., 1998) and binds to receptor activator of nuclear 

factor қβ Ligand (RANKL) where it reduces bone resorption by blocking osteoclastogenesis. It 

also binds to another TNF-associated molecule, namely (TNF)-related apoptosis inducing ligand 

(TRAIL) (Corallini et al., 2008), (Emery et al., 1998), the binding of which may lead to the 

preservation of the integrity of the vascular wall by reducing vascular endothelial cell (VEC) 

apoptosis. However, the precise mechanism by which this is accomplished is poorly 

understood. Circulating OPG is significantly higher in patients with type 2 diabetes (Yaturu et 

al., 2008), (Secchiero et al., 2006), (Olesen et al., 2005), (Rasmussen et al., 2006) and 

coronary artery disease (CAD) (Jono et al., 2002), (Schoppet et al., 2003). It is also an 

independent predictor of silent CAD in type 2 diabetes (Avignon et al., 2005) and cardiovascular 

mortality (Browner et al., 2001), (Kiechl et al., 2004), (Ueland et al., 2004), (Omland et al., 

2008). OPG-deficient mice exhibit severe aortic and renal calcification in addition to profound 

osteoporosis (Bucay et al., 1998) suggesting an important link between OPG, vascular 

dysfunction and bone metabolism. All of these novel cytokines and circulating factors signify a 

thorough integration of what were once considered to be insular tissue types with isolated 

physiological pathways contributing independently to preserve metabolic homeostasis. 

 

The overall goal of this thesis is to investigate and evaluate the impact of body mass index 

(Zhao et al., 2007) and insulin sensitivity on circulating concentrations of OPG, TRAIL and 
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RANKL and to investigate how they relate to an established adipose tissue-derived indicator of 

insulin sensitivity; adiponectin, in a healthy cohort free from cardiovascular disease. We shall 

also attempt to examine the impact of diabetes and vascular disease on their circulating 

concentrations while probing how these novel markers relate to other traditional inflammatory 

adipocytokines. Finally we hope to consider the influence of glycaemic status and adiposity 

together on serum levels of OPG and to interrogate if a worsening glycaemic status can 

influence its relationship with adiponectin and systemic inflammation.  
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Experiment I 

An investigation of serum OPG, TRAIL and sRANKL levels and their relationship with indicators 

of adiposity and insulin sensitivity in a healthy, representative Irish cohort. 

Aims 

i. The purpose of this study will be to determine if BMI and insulin sensitivity influence the 

concentrations of serum OPG and TRAIL in subjects who do not have cardiovascular or 

metabolic disease. 

Hypotheses 

i. In a healthy cohort, in the absence of an inflammatory process, OPG may be 

differentially regulated in obesity and. 

ii. OPG will be related to fasting insulin and Oral Glucose Insulin Sensitivity (OGIS). 

 

Experiment II 

The relationship between osteoprotegerin, TRAIL, sRANKL and markers of inflammation in type 

2 diabetes and vascular disease. 

Aims 

i. To measure serum OPG/RANKL/TRAIL in a cohort of well controlled type 2 diabetic 

patients with no evidence of underlying metabolic bone disease and compare them to a 

healthy age and BMI control group. 

ii. To determine whether any differences that may arise can be attributed to the presence 

of underlying vascular disease or inflammation. 

Hypotheses 

i. OPG, along with other traditional inflammatory markers will be higher in type 2 diabetic 

patients.  

ii. OPG will be a sensitive marker of inflammation that can distinguish between diabetics 

and normoglycemic controls irrespective of prior history of vascular disease in these 

patients. 



 7

Experiment III 

The effect of glycaemic status and the underlying inflammatory state on circulating levels of 

OPG and adiponectin. 

Aims 

i. To examine changes in OPG levels across the typical pattern of the pathogenesis of 

type 2 diabetes, examining how OPG relates to insulin resistance and 

hyperinsulinaemia in the obese, pre-diabetic, and type 2 diabetic state 

ii. To investigate the influence of adiposity in combination with the developing 

inflammatory state of associated with the progression from lean – obese – prediabetes 

– type 2 diabetes states. 

Hypotheses 

i. The deteriorating inflammatory state coupled with the sharp rise in hyperinsulinaemia 

observed over the spectrum of glycaemic dysfunction will induce a break in continuity in 

the relationship between OPG, markers of inflammation and indicators of insulin 

sensitivity that have been observed in previous experiments.  

ii. Acute hyperinsulinaemia associated with an oral glucose load may act to suppress 

OPG secretion and that this will be differentially regulated depending of glycaemic 

status.  
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Insulin has emerged as an important regulator of OPG production both in vivo and in vitro 

(Xiang et al., 2007), (Jorgensen et al., 2009), (Olesen et al., 2005). Insulin resistance has also 

been demonstrated to correlate with circulating OPG (Gannage-Yared et al., 2006), (Ugur-Altun 

et al., 2005). Therefore this review will consider in detail, the role of insulin in metabolic control 

and glucose homeostasis, furthermore its perturbations in obesity and type 2 diabetes will be 

interrogated.  Since there is evidence that TNF-α is an important player in OPG regulation and 

as a result of the structural homology of OPG and TRAIL to the TNF-receptor superfamily 

(Simonet et al., 1997), TNF-α and its role in insulin resistance will be discussed in greater detail. 

Additionally, as adiponectin has been shown to correlate with OPG in healthy cohorts 

(Gannage-Yared et al., 2006);(Gannage-Yared et al., 2008) and has been demonstrated to 

stimulate RANKL and inhibit OPG production it will be subject to further consideration in this 

chapter. Finally, the literature exploring the interaction of OPG, RANK, RANKL and TRAIL will 

be subject to a detailed examination. 

 

2.1 Insulin 

Insulin is the primary endocrine regulator of glucose metabolism. It was originally identified and 

extracted by Banting and Best from pancreatic islet cells in 1921 (Banting & Best, 1922c). Its 

biological activity began to be unravelled when it was used to maintain pancreatectomized dogs 

(Banting & Best, 1922a) and treat human patients with type 2 diabetes (Banting & Best, 1922b). 

Islet cells are made of four principal cell types, the glucagon-producing α-cell, the somatostatin-

producing δ-cell and the polypeptide-producing PP-cell. Insulin is released by the β-cells which 

make up 60-80% of all cells of the islets of Langerhans (Figure 2.1), the most important purpose 

of which is the synthesis, storage, and controlled secretion of insulin. When functioning correctly 

the β-cell ensures that there is an immediately available reservoir of insulin that can be quickly 

released in response to increased blood glucose levels. An increase in insulin secretion is 

compensated by augmented insulin biosynthesis, ensuring that insulin levels within the β-cell 

are continually preserved. Thus the biosynthesis and processing of the insulin molecule along 

the secretory pathway of the β-cell is a highly regulated and dynamic process (Rhode et al., 

2005). Insulin is a 6 kDa peptide formed by the C chain cleaved from proinsulin, the precursor of 

which is preproinsulin. Insulin is made up of two polypeptide chains, an “α” chain 21 amino 

acids in length, and a 30 amino acid “β” chain. The quaternary structure of insulin is primarily 
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enabled by two disulphide bonds, its secondary structure is mostly alpha helical (Rhodes, 

2000). It has a half-life of 5 – 8 min and is degraded primarily in the liver and kidneys. Insulin 

secretion is stimulated during nutrient absorption, particularly in response to carbohydrate, by 

release of the neurotransmitter acetylcholine from the vagus nerve. Insulin secretion can also 

be stimulated by gastrin, secretin and specific amino acids such as arginine and leucine and 

lycine, free fatty acids, many pituitary hormones and some steroid hormones. Epinephrine and 

norepinephrine and the neuropeptide galanin also inhibit its secretion (Ferrannini & Mari, 1998). 

 

 

Figure 2.1 Structure  of the  Pancreas  showing  different  types  of  cells  present (Freudenrich et al., 
2009) 
 

 

2.1.1 Regulation of Insulin secretion by Glucose 

Glucose is the most significant physiological molecule involved in the regulation of insulin 

secretion (Porte, Jr. & Pupo, 1969), (Chen & Porte, Jr., 1976), (Ward et al., 1984a). The first 

phase of this process involves glucose entering the β-cells by means of the GLUT-2 transporter. 

The first enzyme in the glycolytic pathway, glucokinase acts as an efficient sensor of ambient 

glucose concentrations. The subsequent metabolism of glucose and an increase in the 
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ATP:ADP ratio depolarises the cell membrane and triggers exocytosis of insulin secretory 

vesicles Insulin release under these circumstances occurs in a biphasic manner, with the first 

phase representing the release of stored insulin in granules primed at the plasma membrane 

and the second phase occurring as a result of further nutrient stimulus (Mayer et al., 2007). 

Glucose stimulated insulin production from the β-cell is dose-dependent with as littlie as 1.4 

units (~50 μg) being secreted in response to an oral glucose load of only 12 g (Waldhausl et al., 

1979), (Eaton et al., 1983), (Nauck et al., 1986). Ordinarily in response to glucose, insulin 

release from the β-cell does not appear to have a linear relationship with glucose concentration, 

instead the relationship appears to be best represented by a sigmoidal curve (Cavaghan & 

Polonsky, 2005), with a threshold corresponding to normal fasting blood glucose concentrations 

and with a rapid increase in the slope for that portion of the dose-response curve corresponding 

to the glucose levels normally found during the postprandial period (Pagliara et al., 1974), 

(Gerich et al., 1974), (Cavaghan & Polonsky, 2005). This sigmoidal pattern of the insulin 

secretory response to glucose has been attributed to a Gaussian distribution of thresholds for 

activation of insulin production among individual β-cells (Salomon & Meda, 1986), (Schmitz et 

al., 1997). A constant rate infusion of intravenous glucose triggers a biphasic release of insulin 

from the β-cell characterised by a rapid initial peak (0-10 min) followed by a second phase in 

which the slope is much less steep and continues to a second peak (180-mins) (Porte, Jr. & 

Pupo, 1969), (Cerasi & Luft, 1967). The importance of first phase insulin kinetics are still 

uncertain but it could be representative of the rapid secretion of the reservoir of immediately 

available insulin stored within the β-cell as previously discussed or may be indicative of a 

temporary increase and subsequent reduction of some metabolic signal for insulin secretion 

(Grodsky, 1972). 

 

2.1.2 Effect of Amino Acids on Insulin Secretion  

Several essential amino acids have been shown to increase insulin secretion without the 

presence of glucose. The most effective secretagogues are leucine, arginine and lysine (Levin 

et al., 1971) with the latter two being the most potent stimulators of β-cell insulin secretion. Even 

though the effects of these amino acids on insulin release are not related to concomitant 

fluctuations in glucose concentrations, the effects are enhanced by glucose (Ward et al., 

1984b), (Kadowaki et al., 1984). β-cell-insulin production has also been assessed in response 
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to a number of amino acid metabolites. α-ketoisocarporate, α-keto-β-methylvalerate, 

Phenylpyruvate and α-ketocaproate appear to increase insulin output from islet cells, and are 

effective without the presence of glucose (Pagliara et al., 1974). 

 

 

2.1.3 Effect of Lipids and Lipid Metabolites on Insulin secretion 

Several studies have demonstrated that the infusion of lipids, fatty acids and their metabolites 

do not acutely raise insulin secretion in the presence of low glucose in vivo (Campillo et al., 

1979), (Conget et al., 1994), (Warnotte et al., 1994). This has been explained by the fact that 

although β-cells are quite capable of oxidizing fatty acids (Berne, 1975), (Tamarit-Rodriguez et 

al., 1984), this does not lead to an increase in the ATP:ADP ratio and as a result does not 

polarize the plasma membrane and increase [Ca2+] (Warnotte et al., 1994). When there is a 

significant concentration of glucose present, it is possible for fatty acids to increase Ca2+ influx 

by opening Ca2+ ion channels. This amplification in the trigger signal can add to the insulin 

secretory potency of fatty acids under such conditions of elevated glucose (Henquin, 2005).  

However other studies have shown a direct stimulatory effect of free fatty acids on insulin 

secretion. Crespin et al., (1973) who infused long-chain fatty acids into the pancreatic arteries of 

dogs and found an acute increase in insulin in pancreatic venous blood (Crespin et al., 1973). 

Moreover, Hennes et al., (1973) demonstrated in healthy, young women that raising plasma 

free fatty acid concentrations from 0.5 to 1.1 mmol.l-1 led to a 17% increase in insulin secretion 

under euglycaemic conditions with no change in insulin clearance. Interestingly, when blood 

glucose concentrations were increased to 7 mmol.l-1 and plasma and free fatty acids to 1.1 

mmol.l-1, the resultant increase in insulin levels was as a result of an increase in insulin 

secretion but also to a decrease in metabolic clearance of insulin. When glucose was raised to 

11 mmol.l-1, the rise in insulin was almost entirely due to a decrease in the clearance of insulin 

clearance (Hennes et al., 1997). Although meals high in carbohydrate potently stimulate insulin 

release, carbohydrate-free fatty meals have little immediate effect on β-cell function (Muller et 

al., 1971). However, interestingly ketone bodies and short and long-chain fatty acids have been 

shown to stimulate insulin secretion from islet cells in vitro and in vivo in humans (Goberna et 

al., 1974), (Crespin et al., 1973), (Boden & Chen, 1999), (Paolisso et al., 1995). The influence of 

elevated free fatty acids on glucose-stimulated-insulin secretion is related to the length of the 
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treatment. Zhou et al., (1994) examined the effects of long-term exposure of pancreatic islets to 

free fatty acids and found that after 48 hours of co-culture with basal glucose (3.3 mmol.l-1), 

insulin secretion had increased several fold. However, during stimulation with a 

supraphysiological glucose concentration of 27 mmol.l-1, secretion was reduced by 30-50% and 

proinsulin synthesis was also decreased by 30-40%  (Zhou & Grill, 1994). Carpentier et al., 

(1999) demonstrated that the insulin resistance as a result of a 90 min increase in free fatty 

acids was met by a suitable rise in insulin secretion. However the compensatory insulin 

secretion-response of the β-cell was not sufficient to cope with the insulin resistance 

accompanying 48 hours of elevated fatty acids (Carpentier et al., 1999). Additional studies have 

demonstrated that the adverse effects of prolonged elevations in free fatty acids on glucose 

induced insulin secretion are not seen in individuals with type 2 diabetes. On the basis of these 

results, it appears that elevated free fatty acids may contribute to the failure of β-cell 

compensation in insulin-resistance (Cavaghan & Polonsky, 2005).  

 

2.1.5 Gut Hormones and the Regulation of Insulin Secretion 

Interestingly, the insulin secretory response is higher after oral than intravenous glucose 

infusion (Tillil et al., 1988), (Faber et al., 1979), (Madsbad et al., 1983), (Shapiro et al., 1987). 

This phenomenon has been known as the incretin effect (Nauck et al., 1986), (Creutzfeldt & 

Ebert, 1985) as the amplified reaction to oral glucose indicated that absorbance of glucose by 

the gut causes (i) an endocrine response or (ii) promotes other intermediary mechanisms that 

lead to improved sensitivity of the β-cell to an equivalent glucose load. Shapiro et al., (1987) 

studied nine healthy volunteers who received a glucose bolus intravenously at a rate designed 

to elicit glucose concentrations which had been previously achieved by an oral glucose load. 

The authors found that the insulin release after an intravenous load was 26% lower than that 

released in response to an oral glucose load (Shapiro et al., 1987). Glucose dependant 

insulinotrophic polypeptide (GIP) and glucagon-like peptide (GLP-1) are two such intestinal 

hormones that increase the release of insulin following glucose ingestion. These hormones are 

released from the intestinal endocrine cells postprandially and travel through the bloodstream to 

reach the β-cells where they act through secondary messengers to increase the sensitivity of 

the islet cells to glucose (Cavaghan & Polonsky, 2005). GLP-1 also inhibits glucagon secretion, 

slows the release of nutrients from the intestine and regulates post-meal satiety. However, 
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although GLP-1 effectively lowers blood glucose, it is rapidly degraded in the circulation by 

dipeptidyl peptidase 4 (Ranganath et al., 1996), (Vilsboll et al., 2002). A decrease in GLP-1 

expression has been implicated in the development of weight gain and obesity. The principle 

reason for this is because of its effect on appetite (Verdich et al., 2001). It has been shown that 

obese subjects have decreased GLP-1 after a meal when compared to lean healthy controls but 

this is reversed after weight loss (Verdich et al., 2001). The mechanism that leads to reduced 

GLP-1 production upon weight gain is not fully understood, but may be related to the insulin 

resistance that accompanies weight gain (Rask et al., 2001). Type 2 diabetes is also 

characterized by impaired gut hormone production which may contribute to the altered rates of 

insulin release evident in the disease (Nauck et al., 1986). A large part of this incretin defect is 

due to the loss of the insulin stimulating effect of GIP (Nauck et al., 1993) even though the 

secretion of GIP is normal in type 2 diabetes, there is a substantial reduction in GLP-1 release 

after a meal but the insulin stimulating effect is retained (Nauck et al., 1993). 

 

2.1.6 Insulin Secretion in Obesity 

Obesity is characterized by compensatory hyperinsulinaemia  (Kissebah et al., 1982) resulting 

from increased insulin production (Meistas et al., 1982), (DeFronzo, 1982) and reduced insulin 

clearance (Meistas et al., 1982), (Faber et al., 1981), (Savage et al., 1979), (DeFronzo, 1982), 

(Rossell et al., 1983). Despite a reduction in clearance rates it appears that hypersecretion is 

the predominant contributor to elevated levels of basal insulin (Polonsky et al., 1988a), (Jones 

et al., 1997).  It also appears that 24 hour insulin secretion rates are 3 or 4 times higher in the 

obese and are strongly correlated with BMI (Polonsky et al., 1988b). Polonsky et al. (1988) 

reported that the temporal pattern of insulin secretion was similar in lean and obese subjects. 

They also found that obese subjects do not have significantly elevated postprandial plasma 

glucose levels and that basal insulin secretion accounted for 50% of total 24 hr insulin secretion, 

interestingly, when the postprandial insulin release was expressed relative to basal insulin 

release, the insulin response was identical between obese and lean subjects, suggesting that 

the elevated secretion of insulin observed in the obese population may be due to an enlarged β-

cell mass rather than hypersensitivity (Cavaghan & Polonsky, 2005). This conclusion is in line 

with the much earlier findings of Ogilvie et al. (1933), who described a pathology of increased 

numbers of islet cells in obese subjects (Oglivie, 1933). This is also in a agreement with finding 
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of a compensatory mechanism of increased β-cell mass by Pick et al. (1998) to maintain 

glucose tolerance in insulin resistant Zucker fatty rats (Pick et al., 1998). Evidence to date would 

therefore suggest that obese subjects exhibit moderate insulin resistance and  tend to be 

hyperinsulineamic but have normal regulatory mechanisms controlling insulin secretion 

(Cavaghan & Polonsky, 2005). 

 

2.1.6 Insulin Secretion in Type 2 Diabetes 

Type 2 diabetes is characterized by hyperinsulinaemia, nevertheless even these elevated levels 

of insulin are too low to compensate for the levels of ambient circulating glucose (Cavaghan & 

Polonsky, 2005). Despite this, many patients in the early stages of type 2 diabetes have enough 

β-cell-insulin-secretory capacity to maintain glucose control with appropriate diet and exercise, 

with or without the use of oral therapeutic agents. The traditional aetiology of overt type 2 

diabetes has been the development of defective β-cell function against a background of 

deteriorating insulin resistance (Weir, 1982), (Reaven, 1984), (Cahill, Jr., 1988), (Polonsky et 

al., 1996), (Kahn, 1998). Pathological investigations of deceased diabetics give further weight to 

this observation (Kloppel et al., 1985), (Clark et al., 1988), (Stefan et al., 1982) underlining that 

inadequate growth of β-cell mass is a mitigating factor in the development of the condition (Pick 

et al., 1998). However, this viewpoint has been questioned and evidence to support a 

simultaneous decrease in secretion and resistance has also been proposed (Weyer et al., 

2001b). The acute insulin and C-peptide response to glucose is blunted or absent and the 

second phase response is significantly impaired (Pfeifer et al., 1981), (Garvey et al., 1985), 

(Ferner et al., 1986), (Nesher et al., 1987). The blunted acute insulin response to glucose 

remains even following improvements in glucose control (Pfeifer et al., 1981), (Garvey, 2006) 

These results suggest the presence of an inherent flaw in the β-cell in type 2 diabetes. Several 

studies have reported that circulating proinsulin is significantly elevated and that this increase 

occurs in tandem with an increased ratio of proinsulin to insulin in circulation (Duckworth & 

Kitabchi, 1972), (Mako et al., 1977), (Ward et al., 1987) supporting the theory that the 

propensity of the β-cell to release a surplus of immature insulin (proinsulin) is an important 

defect in type 2 diabetes. The concentration of proinsulin produced in these patients is related 

to their glycaemic control rather that to the duration of diabetes (Saad et al., 1990). In support of 

this, insulin specific assays report lower insulin concentrations in lean compared with obese 
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subjects with or without diabetes. However, when using a non-specific assay with cross-

reactivity for proinsulin the differences are not apparent (Temple et al., 1989), (Saad et al., 

1990), (Reaven et al., 1993b). Abnormalities in the temporal pattern of insulin secretion in 

patients with type 2 diabetes mellitus have also been demonstrated. Patients with type 2 

diabetes secrete a greater proportion of their daily insulin under basal conditions compared to 

obese, insulin resistant but non diabetic subjects (Cavaghan & Polonsky, 2005), This reduction 

in the proportion of postprandial insulin secretion appears to be related in part to a reduction in 

the amplitude of the secretory pulses of insulin that occur after meals rather than a reduction in 

the number of pulses (Cavaghan & Polonsky, 2005). The rapid oscillatory pattern of insulin 

production by the β-cells is also altered in patients with type 2 diabetes mellitus, who exhibit 

cycles that are shorter and more irregular than the persistent, regular, rapid oscillations present 

in healthy subjects (Lang et al., 1979).. Various therapeutic strategies that improve glycaemic 

control in type 2 diabetics also appear to improve the β-cell secretory response (Garvey et al., 

1985), (Turner & Holman, 1978), (Kosaka et al., 1980), (Hidaka et al., 1982), (Shapiro et al., 

1989). However, even with enhanced glycaemic control, the kinetics of β-cell insulin secretion in 

type 2 diabetics do not become normalized with therapeutic intervention (Garvey et al., 1985), 

(Hidaka et al., 1982), (Shapiro et al., 1989), (Cavaghan & Polonsky, 2005) implying that there is 

likely to be a continued inherent defect in the β-cell.  

 

2.1.7 Insulin Regulation of Glucose Metabolism 

The physiological significance of insulin is mediated through its effect on glucose metabolism in 

the liver, skeletal muscle and adipose tissue. These tissues are largely responsible for the 

control of whole body glucose homeostasis under physiological conditions. Brain cells and 

erythrocytes depend on glucose as their predominant fuel source and metabolise it at the same 

rate during overnight fasting as they do during the postprandial state. Consequently maintaining 

normoglycaemia despite oscillations in endogenous glucose production requires a careful and 

synchronized equilibrium between the regulation of glucose disposal and endogenous glucose 

production (DeFronzo, 1988). The liver, and to a lesser extent the kidneys, release glucose to 

compensate for whole body glucose disposal during rest or overnight fast. Under these 

conditions glucose utilisation by skeletal muscle and adipose tissue is relatively low and lipids 

are oxidised as the primary fuel source. After a meal, glucose and insulin levels are elevated 
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and glucose is transported from the circulation into the skeletal muscle, adipose tissue and liver 

(DeFronzo, 1988), (Konrad et al., 2006). In addition to promoting glucose uptake in muscle and 

adipose tissue, insulin promotes glycogen synthesis in muscle and the liver and the conversion 

of excess carbohydrate to lipid. Insulin concurrently inhibits the breakdown of these molecules 

through glycogenolysis and lipolysis. In a similar fashion, endogenous glucose production is 

curbed by insulin in the liver and kidney through the inhibition of glycogenolysis and 

gluconeogenesis (Gerich et al., 2001), (Moller et al., 2001). More recent studies using gene-

specific knockout animals have confirmed the direct effects of insulin on glucose metabolism. 

Liver insulin receptor knockout mice exhibit decreased endogenous glucose production during a 

hyperinsulinaemic clamp (Michael et al., 2000). Similarly a decrease in insulin-stimulated 

glucose transport and glycogen synthesis in skeletal muscle is evident in mice that have 

undergone ablation of the gene encoding the muscle insulin receptor. Surprisingly glucose 

uptake in adipose tissue is elevated in this model implying perhaps that the hormone’s target 

tissues are coordinated and can adapt in order to maintain whole body glucose homeostasis 

(Kim et al., 2000). 

 

2.2 Insulin Action 

 

2.2.1 Skeletal Muscle 

Ingested glucose has a number of potential fates. It can be oxidized, stored as glycogen in the 

muscle and liver, converted to gluconeogenic precursors or converted to fat by de novo 

lipogenesis. Early studies using indirect calorimetry during a euglycaemic-insulin clamp showed 

the primary role of  nonoxidative glucose disposal in normoglycaemic healthy humans 

(DeFronzo et al., 1981), (DeFronzo, 1992). Ex vivo glycogen concentrations, measured during 

muscle biopsy studies in the presence of high plasma glucose demonstrated that more than half 

of an intravenously administered glucose load was stored as glycogen (Bergstrom & Hultman, 

1967), (Nilsson & Hultman, 1974). Shulman et al. (1990) used 13C magnetic resonance 

spectroscopy (MRS) to directly measure changes in muscle glycogen during hyperglycaemic-

hyperinsulinaemic clamps in conjunction with indirect calorimetry to assess non oxidative 

glucose disposal (Shulman et al., 1990). They demonstrated for the first time that skeletal 

muscle accounted for the majority of insulin-mediated glucose disposal and that greater than 
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80% was subsequently stored as glycogen. 13C MRS has also been used to measure glycogen 

synthesis in normoglycemic individuals following a meal where it was found that skeletal muscle 

was responsible for the disposal of approximately 30% of ingested glucose (Woerle et al., 

2003). Several other studies which measured similar characteristics in type 2 diabetic and 

insulin resistant offspring of diabetics have found that muscle glycogen levels were reduced by 

30% in type 2 diabetics when compared to matched healthy controls (Carey et al., 2003), 

(Shulman et al., 1990). It was also noted that the rate at which glycogen was synthesised in 

skeletal muscle was 50 % lower in diabetics than in matched controls during hyperglycaemic-

hyperinsulinaemic clamps. In addition it was found that postprandial increases in skeletal 

muscle glycogen concentrations were also significantly lower than those found in controls 

(Carey et al., 2003). 

 

Facilitated by insulin, glucose is transported into the myocyte by glucose transporter 4 (GLUT4) 

where it is phosphorylated by hexokinase to Glucose-6-phosphate (G-6-P). G-6-P can then 

undergo anaerobic glycolysis or be converted to glycogen by glycogen synthase.  

Extracellular glucose → intracellular glucose → G-6-P → Glycogen (Savage et al., 2007) 

 

In order to assess the rate limiting steps in glucose transport Rothman et al., (1992) used 13C 

and 31P MRS to monitor intracellular G-6-P concentrations and intramuscular glycogen 

synthesis simultaneously during a hyperinsulinaemic-hyperglycaemic clamp in type 2 diabetics 

(Rothman et al., 1992). The lower concentration of G-6-P in the diabetic subjects despite a 

decreased rate of nonoxidative glucose metabolism suggested that glucose transport or 

phosphorylation, and not glycogen synthesis, were the rate-controlling step in skeletal muscle 

insulin-stimulated glucose (Shulman, 2000). This suggests that a defect in the glucose transport 

mechanism manifests itself before the development of type 2 diabetes in both offspring of 

diabetics and nondiabetic obese females, who together are at increased risk of developing type 

2 diabetes (Savage et al., 2007). Glucose transport into the myocyte is predominantly facilitated 

by the insulin responsive GLUT-4. Glucose phosphorylation however is enabled by hexokinase. 

If hexokinase were the rate controlling step in diabetes then intracellular glucose levels would 

be expected to rise significantly. To investigate this mechanism further and to determine 

whether glucose transport or phosphorylation was the rate controlling step, 13C MRS was used 

to assess intracellular free glucose in muscle (Cline et al., 1999). The authors concluded that 
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intracellular glucose was 1/25 what they might have expected had hexokinase been the primary 

rate controlling enzyme (Cline et al., 1999), These findings give further support to the contention 

that insulin stimulated GLUT-4 translocation to the plasma membrane is the crucial rate limiting 

step in regulating insulin stimulated muscle glycogen synthesis in type 2 diabetes 

 

2.2.2 The Liver 

The liver plays an important role in preserving glucose homeostasis during the constant 

switching between the fed and fasted state. Although peripheral tissues such as the skeletal 

muscle are responsible for the majority of postprandial insulin stimulated glucose disposal, the 

liver also plays an important balancing role by reducing hepatic glucose output and increasing 

the retention of glucose by hepatic glycogenesis (DeFronzo, 1992). While fasting, liver glycogen 

stores are readily used to maintain blood glucose levels. The breakdown of glycogen in the liver  

contributes approximately half of the endogenous glucose production in the initial hours of 

fasting (Petersen et al., 1998), while gluconeogenesis accounts for the other half.  

 

Net Glycogen synthesis is determined by the enzymes, glycogen synthase and glycogen 

phosphorylase. The production and breakdown of hepatic glycogen (glycogen cycling) occurs 

simultaneously (David et al., 1990), (Magnusson et al., 1994), (Petersen et al., 1998). The effect 

of glucose and insulin signalling on glycogen turnover under hypeglucagonaemic conditions 

was investigated using 13C MRS. It was demonstrated that hyperglycaemia decreases net 

hepatic glycogenolysis by inhibiting glycogen phosphorylase. In contrast hyperinsulinaemia 

inhibits net hepatic glycogenolysis primarily by upregulating glycogen synthase (Petersen et al., 

1998). The net rate of glycogen synthesis is dependant on portal vein insulin concentrations. 

Insulin levels in the region of 130 – 170 pmol.l-1 are required for half maximal stimulation of 

glycogen synthesis. Under basal insulin concentrations glucagon was shown to strongly 

regulate net hepatic glycogen synthesis (Roden et al., 1996a).  

 

2.2.3 Adipose Tissue 

Intravenous infusion of insulin results in an immediate and substantial reduction in circulating 

concentrations of non-esterified fatty acids (NEFAs). The effect on NEFAs can be more 

prominent than insulin’s ability to lower blood glucose (Frayn & Karpe, 2006). NEFAs are 
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secreted into the circulation mostly from the breakdown of triglycerides within adipocytes. 

Glycerol is a by-product of this process and its release from adipose tissue is considered to be a 

good indicator of total body lipolysis, particularly because adipocytes express little or no glycerol 

kinase activity (Frayn & Karpe, 2006). The insulin-mediated decrease in circulating NEFA levels 

is an essential part of the synchronization of metabolic processes that occur in the postprandial 

period. After a typical meal, glucose becomes the preferred fuel source for skeletal muscle and 

therefore it is advantageous for substrate competition from fatty acids to be reduced as much as 

possible. In addition, NEFAs provide a very effective stimulus for hepatic gluconeogenesis 

(Boden et al., 1994), (Chen et al., 1999). However, this stimulus would not be helpful in the 

period following a meal when hepatic glucose production must be reduced in order to maintain 

blood glucose at appropriate concentrations. As a result NEFA levels have significant diurnal 

variation. They tend to follow a pattern which is the opposite of insulin secretion with reduced 

postprandial concentrations and an obvious peak prior to the next meal (Frayn & Karpe, 2006). 

Insulin plays an important role in almost all aspects of adipocyte biology. In fact, adipocytes are 

among the most insulin-responsive cells (Kahn & Flier, 2000). Triglyceride storage in adipocytes 

is promoted by insulin in several ways, such as the initiation of the differentiation of 

preadipocytes to adipocytes, upregulation of glucose transport and lipogenesis in more mature 

adipocytes and the inhibition of lipolysis (Kahn & Flier, 2000). Insulin also increases the uptake 

of fatty acids from lipoproteins by enhancing the action of lipoprotein lipase in the adipocyte 

(Fielding & Frayn, 1998). The physiological effects of insulin on adipose tissue are brought 

about by a wide variety of tissue-specific actions, involving both changes in protein 

phosphorylation and function, as well as sudden changes in gene expression (Collins et al., 

2005). Insulin can also affect gene transcription in the adipocyte. The transcription factors 

adipocyte determination and differentiation factor-1 and sterol regulatory element–binding 

protein-1c (ADD-1 / SREBP-1C) also have an important function regulating insulin-mediated 

adipocyte gene expression (Kim et al., 1998), (Shimomura et al., 1999a), (Foretz et al., 1999) 

by activating genes that promote lipogenesis and suppressing those implicated in fatty acid 

oxidation. Other transcription factors, such as those belonging to the forkhead group have also 

been show to play an important role in translating insulin actions to the nucleus (Kops & 

Burgering, 1999).  
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2.2.4 Non-Classical Tissues 

Although the liver, skeletal muscle and adipose tissue account for the majority of insulin-

mediated glucose metabolism, almost all tissue types have insulin receptors. Tissue specific 

knockout models of the insulin receptor have provided further insight into the action of insulin in 

non-classical target tissues such as pancreatic β-cells, the central nervous system and vascular 

endothelial cells.  These tissues may also have a crucial role in controlling whole body insulin 

sensitivity. It has been demonstrated that β-cell-insulin receptor deficient mice have impaired 

glucose tolerance and decreased insulin secretion (Kulkarni et al., 1999). Mice lacking the 

insulin receptor in neural cells demonstrate increased nutrient intake and become obese as a 

result, suggesting that the binding of insulin in the central nervous system may produce an 

anorexogenic effect (Bruning et al., 2000). The counter-regulation of hypoglycaemia involves a 

myriad of hormones and neurotransmitters that are released to provide glucose for the brain, 

while decreasing glucose need in peripheral tissues (Hileman & Bjorbaek, 2006). Increases in 

counter-regulatory hormones such as glucagon, epinephrine, norepinephrine and cortisol take 

place when glucose levels reach ~ <3.6 mM. Symptoms of hypoglycaemia that are neural in 

origin such as sweating, hunger, tingling, weakness, dizziness and cognitive dysfunction begin 

to appear at glucose levels ~ < 3 mM (Mitrakou et al., 1991), (Schwartz et al., 1987). 

Decreasing glucose concentrations also lead to the release of epinephrine from the adrenal 

medulla which stimulates glucose production and limits glucose utilisation through a β2-

adrenergic-receptor-mediated mechanism. Epinephrine can also stimulate the mobilization of 

free fatty acids and inhibit pancreatic β-cell insulin production and secretion (Woods & Porte, 

Jr., 1974). In addition vascular endothelial cells insulin regulates vasodilation and capillary 

recruitment which in turn increase glucose uptake to the muscle bed (Clark et al., 2003). As 

these non classical tissues only make a small contribution to whole body glucose disposal, it 

has been suggested that they play a secondary role in the control of whole body glucose 

metabolism. (Konrad et al., 2006) 

2.3 Insulin Resistance 

Insulin resistance is an important precursor in the pathogenesis of the metabolic syndrome and 

type 2 diabetes mellitus. It can be defined as a state of diminished responsiveness to normal 

circulating concentrations of insulin. In the initial stages pancreatic β-cells secrete an adequate 
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amount of insulin to compensate for insulin resistance and preserve euglycaemia. Eventually, 

however, relative or absolute insulin deficiency ensues leading to hyperglycaemia and type 2 

diabetes (McGarry, 2002). Healthy humans respond to excess energy intake by storing the net 

energy surplus as triglyceride in adipose tissue, predisposing them to weight gain and ultimately 

obesity. This also results in ectopic lipid accumulation in sites such as the liver and skeletal 

muscle, and possibly in pancreatic β-cells and the kidney (Shulman, 2000), (Unger, 2003). One 

explanation for the deposition of intracellular lipid in these tissues is that excess energy 

availability exceeds the storage capacity of the adipose tissue leading to energy overflow 

(Unger, 2003), (Danforth E Jr, 2000). This is further evidenced by the occurrence of ectopic lipid 

accumulation in mice and humans with generalised lipodystrophy (Adams et al., 2004), a severe 

example of insufficient adipose tissue storage capability with excess calorie ingestion. One 

method by which ectopic lipid deposits in lipodystrophic mice can be reduced is to transplant 

adipose tissue from wild type mice. This technique considerably improves insulin sensitivity 

(Gavrilova et al., 2000). Ectopic lipid deposits can also be reduced in lipodystrophic mice and 

humans through the administration of the anorexogenic adipocytokine, leptin (Oral et al., 2002), 

(Shimomura et al., 1999b) leading to a reduction in energy intake and significantly improved 

insulin-stimulated liver and muscle carbohydrate metabolism (Petersen et al., 2002). The 

concept of energy overflow is further supported by the finding that significant weight loss as a 

consequence of liposuction does not improve the metabolic characteristics of obese individuals 

(Klein et al., 2004). The procedure simply reduces adipose tissue storage capability in the face 

of unchanged caloric intake (Savage et al., 2007). However even relatively small reductions in 

weight through diet and exercise can substantially improve insulin sensitivity (Petersen et al., 

2005), (Tamura et al., 2005). 

 

Metabolic derangements of type 2 diabetes have traditionally been viewed as glucocentric, 

however in recent years a more lipocentric approach to the problem has become accepted 

(McGarry, 2002). As well as hyperglycaemia most type 2 diabetics have abnormal lipid storage, 

secretion or metabolism, resulting in elevated circulating free fatty acids and triglycerides as well 

as increased ectopic fat deposits in a variety of tissues including the muscle bed (Reaven, 

1995), (Schalch & Kipnis, 1965). It is less clear if the change in lipid homeostasis is a cause or 

consequence of diabetes (Figure 2.2). There is growing evidence to suggest that excessive fat 

accumulation in muscle and other tissues contributes to the development of insulin resistance 
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and pancreatic β-cell dysfunction in type 2 diabetes (McGarry, 2002). Intravenous lipid infusion 

designed to increase the concentration of plasma fatty acids have been shown to impair both 

oral glucose tolerance (Felber & Golay, 2002) and insulin stimulated glucose disposal (Roden et 

al., 1996b), (Roden et al., 1996a), (Boden, 1997). Interestingly the reduction in insulin sensitivity 

observed during such infusions only seems to manifest itself between 3-5 hours after circulating 

levels of fatty acids begin to increase (Boden, 2001). 

 

Figure 2.2 Pathophysiology of hyperglycaemia and increased circulating fatty acids in type 2 diabetes 
Insulin secretion from the pancreas normally reduces glucose output by the liver, enhances glucose 
uptake by skeletal muscle, and suppresses fatty acid release from fat tissue. The various factors shown 
that contribute to the pathogenesis of type 2 diabetes affect both insulin secretion and insulin action. 
Decreased insulin secretion will reduce insulin signalling in its target tissues. Insulin resistance pathways 
affect the action of insulin in each of the major target tissues, leading to increased circulating fatty acids 
and the hyperglycaemia of diabetes. In turn, the raised concentrations of glucose and fatty acids in the 
bloodstream will feed back to worsen both insulin secretion and insulin resistance (Stumvoll et al., 2005). 
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2.3.1 The Glucose Free Fatty Acid Cycle – Randle / Reverse Randle Hypothesis 

Randle et al. (1963) demonstrated that fatty acids compete with glucose for substrate selection 

in rodent heart muscle (RANDLE et al., 1963). They hypothesized than an increase in lipid 

oxidation might be responsible for insulin resistance by increasing mitochondrial acetyl CoA: 

CoA and NADH: NAD ratios. These biochemical changes would inactivate pyruvate 

dehydrogenase, increase citrate concentrations and inhibit phosphofructokinase and G-6-P 

accumulation. As G-6-P inhibits hexokinase activity there would be an accumulation of 

intracellular glucose and decreased glucose uptake. However this hypothesis has been 

challenged recently (Roden et al., 1996a), (Boden et al., 1994), (Dresner et al., 1999), (Griffin et 

al., 1999). When free fatty acid concentrations were maintained at high concentrations for 5 h 

during a euglycaemic-hyperinsulinaemic clamp the decrease in glucose disposal was 

accompanied by a decrease in G-6-P concentrations (Roden et al., 1996) and not an increase 

as would have been predicted by the Randle Cycle These findings were consistent with those 

observed in type 2 diabetic patients (Rothman et al., 1992). Furthermore, Sidossis et al., (1996) 

challenged the traditional view by proposing a “reverse Randle cycle”. They found that,, contrary  

to the predictions of Randle’s glucose-fatty acid cycle, that the intracellular availability of  

glucose and not fatty acids was the primary determinant of substrate selection (Sidossis & 

Wolfe, 1996).  

 

2.3.2 Influence of Circulating Free Fatty Acids on Glucose Uptake and Glycogen 
Synthesis 

The cellular mechanism responsible for free fatty acid mediated insulin resistance may be an 

inhibition of insulin signalling to GLUT-4 containing vesicles or a decrease GLUT4 trafficking 

between the intracellular compartment and the cell surface (Savage et al., 2007). To investigate 

this mechanism in more detail Dresner et al. (1999), examined various elements of the insulin 

signalling pathway in skeletal muscle biopsies obtained from subjects infused with high levels of 

free fatty acids for 5 h before and during a hyperinsulinaemic-euglycaemic clamp (Dresner et 

al., 1999). Glucose oxidation and glycogen synthesis were 50 - 60% lower after free fatty acid 

infusion when compared to a glycerol control trial. The lipid infusion trial was associated with a 

decrease in intramuscular G-6-P of approximately 90%, suggesting that there had been a 

significant decrease in glucose transport or phosphorylation. Intracellular glucose was 
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decreased in the lipid infusion trial, suggesting that glucose transport is the rate controlling step 

(Savage et al., 2007). Insulin receptor substrate 1 (IRS-1) associated phosphatidylinositol-3 

kinase activity was also decreased under these conditions. Later studies carried out in rodent 

models have suggested that this might be as a result of increased serine phosphorylation of 

IRS-1 (Dresner et al., 1999), (Griffin et al., 1999), (Morino et al., 2005), (Yu et al., 2002). The 

specific nature of the lipid product responsible for fatty acid induced insulin resistance has been 

the subject of some debate but long-chain acyl-coenzyme A (LCCoAs) and diacylglyceride 

(DAG) are thought to be important players. Neschen et al., (2005) found that mitochondrial acyl-

CoA:glycerol-3-phosphate acyltransferase 1 (mtGPAT1) knockout mice have increased hepatic 

insulin sensitivity and LCCoAs but decreased DAG and TG. Their results suggest that DAG may 

mediate fatty acid-induced hepatic insulin resistance (Neschen et al., 2005). Protein Kinase C 

(PKC) is a serine/threonine kinase, activated by DAG and may offer a potential link between 

lipid accumulation and serine phosphorylation of IRS-1 (Griffin et al., 1999), (Schmitz-Peiffer et 

al., 1997). Itani et al., (2002) noted that an accumulation of DAG in skeletal muscle during lipid 

infusions was correlated with an increase in PKC-β11 and PKC-δ expression and activity (Itani 

et al., 2002). Therefore the breakdown in lipid dynamics in type 2 diabetes that lead to an 

increase in LCCoAs and DAG in hepatic and muscle tissue would lead to lipid induced insulin 

resistance (Shulman, 2000).  

 

2.3.3 Skeletal Muscle Insulin Resistance – Defects in Signalling Pathways 

Skeletal muscle metabolic dysfunction occurs early on in pathogenesis of insulin resistance as 

healthy first degree relatives of type 2 diabetics exhibit decreased insulin-stimulated glucose 

uptake (Eriksson et al., 1989), (Vaag et al., 1992). GLUT4 protein content is similar in diabetic 

and non-diabetic skeletal muscle (Eriksson et al., 1989), (Kahn et al., 1992) but the 

translocation of GLUT-4 containing vesicles is impaired (Dohm et al., 1988); (Zierath et al., 

1996). Therefore much of the research has focused on characterising the insulin signalling 

cascade and identifying loci with impaired kinase activity. Tyrosine phosphorylation of the 

insulin receptor has been shown to be decreased (Goodyear et al., 1995) or unchanged in 

diabetic skeletal muscle (Arner et al., 1987), (Krook et al., 2000). Research has consistently 

demonstrated a decrease in IRS-1 tyrosine phosphorylation and IRS-1 associated PI3-K activity 

(Bjornholm et al., 1997), (Kim et al., 1999), (Krook et al., 2000). As well as tyrosine 
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phosphorylation IRS-1 can be phoshorylated at multiple serine theronine residues , which serve 

to either reduce or improve insulin signalling (Gual et al., 2005). Many circulating factors related 

to the insulin resistant state such as free fatty acids and TNF-α, appear to augment IRS-1 serine 

phosphorylation therefore inhibiting its function (Gual et al., 2005), (Hotamisligil et al., 1994b). 

As previously mentioned, accumulation of DAG may impair insulin action by PKC-mediated 

serine phosphorylation of IRS-1. 

 

2.3.4 Hepatic Insulin Resistance 

In insulin resistant type 2 diabetes, elevated fasting blood glucose concentrations are heavily 

influenced by the presence of increased rates of endogenous glucose production (Bogardus et 

al., 1984), (DeFronzo, 1992), (Fery, 1994). This is likely to result from increased 

gluconeogenesis and decreased glycogenolysis. Magnussen et al. (1992) examined net hepatic 

glycogenolysis in poorly controlled type 2 diabetic patients and found that fasting hepatic 

glycogen concentrations were sharply decreased in the diabetics when compared to matched 

controls. Therefore, as well as reduced insulin stimulated muscle glycogen synthesis (Shulman 

et al., 1990), it appears type 2 diabetics also have a reduced capacity to store and/or synthesise 

liver glycogen leading to an increased incidence of elevated postprandial hyperglycaemia. 

These reductions in hepatic glycogen synthesis were linked to a decrease in hepatic 

glycogenolysis and a further 60 % upregulation in the rate of gluconeogenesis (Shulman et al., 

1990). 

 

2.3.5 Insulin Resistance in Adipose Tissue 

Insulin resistance in adipose tissue leads to an increased rate of lipolysis which is accompanied 

by a rise in plasma free fatty acids. The increased circulating free fatty acids impair hepatic and 

skeletal muscle insulin action and β-cell insulin release, leading to the development of type 2 

diabetes mellitus (Reaven, 1988). A degree of mitochondrial dysfunction also contributes to 

insulin resistance (Richardson et al., 2004) by limiting lipid oxidation and promoting intracellular 

accumulation of fatty acyl-CoA and other lipid by-products. Fatty acid oxidation is also impaired 

by the accumulation of intracellular malonyl-CoA, and the downregulation of carnitine 

palmitoyltransferase activity. This accumulation of acyl-CoA impairs insulin action in skeletal 
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muscle which results in even greater insulin resistance (Ferrannini & DeFronzo, 2004), (Schling 

& Loffler, 2002). 

 

2.4 Insulin Resistance and Atherosclerosis 

Haffner et al. (1998) found that the 10-year risk of myocardial infarction (MI) in a normoglycemic 

cohort with no prior history of infarction was less than 4% and increased to 19% for those with a 

previous MI. However, in diabetic subjects who had never had an MI the relative risk was 20% 

and the risk of a second MI was 45% in this cohort (Haffner et al., 1998). Several 

epidemiological studies have also demonstrated that insulin resistance measured using both the 

euglycaemic-hyperinsulinaemic clamp (Bokemark et al., 2001) and the frequently sampled 

intravenous glucose tolerance test (Howard et al., 1996) is an independent risk factor for CVD 

using carotid intima-media thickness as a surrogate measures of atherosclerosis. The European 

Group for the Study of Insulin Resistance is currently conducting a large, multi centre study to 

investigate insulin resistance as an independent risk factor for cardiovascular event rate 

(Cleland & Connell, 2006).  

 

2.5 Hemodynamic Action of Insulin 

In order for insulin to dock with its target receptor on the plasma membrane it must first cross 

the endothelial monolayer (Figure 2.3). Before it can reach the perivascular space, insulin is 

internalized by the vascular endothelial cells (Wiernsperger, 1994) in a poorly understood 

receptor-mediated process (Cersosimo & DeFronzo, 2006). This process can delay insulin-

stimulated glucose uptake in insulin resistance (Bonadonna et al., 1998), (Laakso et al., 1990), 

(Olefsky et al., 1973), (Sjostrand et al., 2002). Studies assessing insulin-mediated glucose 

disposal have demonstrated a substantial delay in obese (Laakso et al., 1990), and type 2 

diabetic patients (Olefsky et al., 1973), (Cersosimo & DeFronzo, 2006) healthy lean controls 

(Bonadonna et al., 1998). Baron et al. (1995) and others (Steinberg et al., 2000) (Baron & 

Brechtel, 1993) have shown that there is a significant increase in leg blood flow during a 

euglycaemic-hyperinsulinaemic clamp at physiological levels in lean,, obese and diabetic 

individuals. When insulin was administered at a rate of 40 or 120 μU.ml-1, leg blood flow 

increased after 240 min by 100% at both infusion rates. The physiological importance of the 
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insulin-mediated vasodilatory response is still unclear (Cersosimo & DeFronzo, 2006), (Yki-

Jarvinen & Utriainen, 1998), as a significant vasodilatory response only begins to happen after 

40-50 min of insulin infusion at supraphysiological concentrations (Ueda et al., 1998). However, 

in patients with coronary artery disease, insulin stimulated glucose uptake in the myocardium is 

significantly impaired (Paternostro et al., 1996). One theory that may be teleologicaly attractive 

is that insulin is a chronic regulator of blood flow in the vascular beds of metabolically active 

tissues (Cleland & Connell, 2006). Such a mechanism would be advantageous as insulin would 

potentially direct fuel substrates such as glucose and fatty acids to important tissues before 

stimulating their cellular uptake. This link is supported by Cleland et al., (1999) who showed a 

positive correlation between insulin sensitivity and insulin-mediated vasodilation in healthy 

normotensive men (Cleland et al., 1999). The mechanism by which this insulin-induced 

vasodilation occurs has become clearer in recent years. It is now recognized that the integrity of 

vascular endothelium must be intact and that the endothelial-derived vasodilator, nitric oxide 

(NO) is an important facilitator of the vascular actions of insulin (Scherrer et al., 1994), (Zeng & 

Quon, 1996), (Landry & Oliver, 2001). In the intact vascular endothelium, arginine is converted 

enzymaticaly to NO by endothelial nitric oxide synthase (eNOS). The activity of NOS is 

increased several fold by insulin responsive cytokines such as IL-1β, IL-6, TNF-α, interferon-γ 

and adenosine (Landry & Oliver, 2001) There is also evidence that nitric oxide synthase is 

directly upregulated in response to a pharmacological dose of insulin in cultured endothelial 

cells (Zeng & Quon, 1996). As previously stated, insulin increases eNOS activity in the vascular 

endothelial cells (VEC) (Zeng & Quon, 1996), (Aljada & Dandona, 2000), (Kuboki et al., 2000), 

In fact all of the components of the insulin signalling cascade are present in endothelial cell 

culture and higher concentrations of insulin will increase the activation of IRS-1, PI3 kinase and 

PKB/AKT (Cleland & Connell, 2006). Adding insulin to VEC cultures leads to an immediate 

increase in NO release and the uptake of L-arginine by it’s specific receptor transporter 

(Sobrevia et al., 1996). Insulin stimulated NO production can be achieved at physiological 

concentrations (Cleland & Connell, 2006), (Cleland et al., 1999).  

 

The insulin-mediated pathway that regulates eNOS activity/synthesis may be similar in adipose 

tissue and skeletal muscle. The similar regulation of the insulin signalling cascade in the 

vascular endothelium and adipocytes suggests that insulin resistance and endothelial 

dysfunction may be linked. A direct association between insulin resistance and eNOS 
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availability in healthy males (Petrie et al., 1996), type 2 diabetic or hypertensive subjects 

(Cleland et al., 2000) has been observed. There is also evidence from animal studies for a 

direct vasoactive function of insulin. Defective endothelium-dependent vasodilation has been 

shown in IRS-1 knockout mice (Abe et al., 1998) and insulin signalling is impaired in the 

vascular endothelium of the Zucker fatty rat (Jiang et al., 1999). The fact that insulin signalling is 

essential for the normal function of most metabolically active tissues, such as skeletal muscle, 

adipose tissue and the vascular endothelium means it is reasonable to assume that there is 

significant insulin-mediated crosstalk between these tissues that may influence the development 

of endothelial dysfunction. In addition, insulin resistance and endothelial function can improve in 

response to a variety of interventions and treatments, such as exercise, weight loss and 

pharmacotherapy. The adipose tissue secretes a multitude of adipocytokines that can act to 

regulate insulin sensitivity and endothelial function. TNF-α is one such adipocytokine that can 

induce insulin resistance by disruption of the insulin signalling cascade (Valverde et al., 1998), 

(Feinstein et al., 1993), (Halse et al., 2001), while simultaneously promoting endothelial 

dysfunction (Wang et al., 1994). This TNF-α-mediated effect on endothelial function may be the 

result of nuclear factor-κβ (NF-κβ) activation (Ruan et al., 2002). Cytokines such as  IL-1β and 

TNF-α, that stimulate NF-κβ, can also be directly activated by the NF-κβ pathway, 

demonstrating some auto-regulation in this signalling cascade (Yamamoto & Gaynor, 2001). 

Insulin has been shown to have a potent anti-inflammatory effect in vitro by inhibition of the NF-

κβ pathway and up-regulation of the inhibitor of nuclear factor κβ (Iκβ) (Dandona et al., 2001) 

Thiazolidinediones (TZDs) which reduce NF-κβ production, block TNF-α induced insulin 

resistance (Peraldi et al., 1997). Additionally aspirin, which is known to up regulate Iκβ, reduces 

insulin resistance and supports the belief that it is an important molecule, linking insulin 

signalling, endothelial dysfunction and the inflammatory process  (Hundal et al., 2002), 

(Brandstrom et al., 1998). 
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Figure 2.3 Hemodynamic actions of insulin. The time-course of insulin’s hemodynamic action is closely 
integrated with its metabolic effects. Following its passage through the endothelial barrier, insulin promotes 
precapillary sphincter tone relaxation with capillary dilatation. As a result, more microvessels are recruited, 
the capillary network is expanded, and peripheral microvascular perfusion increases. Insulin then diffuses 
into the interstitial fluid more readily, and the exposure of the target tissues to insulin is magnified, resulting 
in an increase in insulin-mediated glucose metabolism, (reproduced from (Cersosimo & DeFronzo, 2006). 
 

2.6 Adipocytokines 

The discovery of adipose tissue-derived cytokines (adipocytokines), which regulate skeletal 

muscle and hepatic glucose metabolism and insulin sensitivity (Figure 2.4) (Fruhbeck et al., 

2001), (Havel, 2004) has given new insight into the important endocrine function of adipose 

tissue. Adiponectin increases insulin sensitivity by suppressing hepatic glucose production as 

well as increasing glucose uptake by skeletal muscle (Combs et al., 2001), (Tomas et al., 2002). 

Adiponectin also acts on the vascular endothelium and shows significant promise as a mediator 

of both vascular and metabolic function (Yamauchi et al., 2001). Leptin, signals through its 

receptors in the arcuate nucleus of the hypothalamus to decrease food intake and increase 

energy expenditure (Leibel, 2002). It has been suggested that leptin may also have a role in 

regulating peripheral insulin sensitivity (Ceddia et al., 2002). Insulin positively regulates the 

gene expression and secretion of leptin from adipose tissue (Fasshauer et al., 2002), (Stefan & 

Stumvoll, 2002). Changes in the plasma concentrations of these adipocytokines provide 

evidence of a secondary regulator of glucose metabolism that complements insulin action. In 

addition, several other adipocytokines have been implicated in metabolic and endothelial 
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dysfunction (Stears & Byrne, 2001), (Saltiel & Kahn, 2001), (Shulman, 2000), IL-6, a powerful 

inducer of hepatic CRP production, has been associated with diabetes and CVD in many 

longitudinal and cross-sectional epidemiological studies (Bermudez et al., 2002), (Han et al., 

2002), (Festa et al., 2002) and there is also good support for a connection between IL-6 

synthesis and insulin resistance (Bastard et al., 2002). It has also been demonstrated that leptin 

is an active regulator of insulin sensitivity and acts directly on the vascular endothelium 

(Mantzoros, 1999), (Shimomura et al., 1999b) (Steppan et al., 2001).  

 

 

 
Figure 2.4 Adipocytes secrete proteins with varied effects on glucose homeostasis.  Adipocyte-derived 
proteins with anti-diabetic action (green arrows) include leptin, adiponectin, omentin and visfatin. Other 
factors tend to raise blood glucose (Lincz et al., 2001), including resistin, TNF-α and RBP4. TNF-α and 
human resistin are probably secreted by non-adipocytes within the fat pad. IL, interleukin. (adapted from 
(Rosen & Spiegelman, 2006) 

 

2.6.1 TNF-α Structure and Function 

TNF-α was initially depicted as an endotoxin-induced serum factor that promoted necrosis in 

tumours (Carswell et al., 1975). It has more recently been perceived as an important regulatory 

cytokine of inflammatory processes, cell survival and apoptosis, production of secondary 

cytokines, such as IL-1 and IL-6, and induction of insulin resistance in a variety of clinical 

settings. TNF-α is synthesized as a monomeric 26 kDa molecule which is bound to the plasma 



 32

membrane (Kriegler et al., 1988). Proteolytic cleavage by the TNF-α converting enzyme (TACE) 

of the membrane-bound precursor protein leads to the release of the TNF-α molecule into the 

circulation as a biologically active 17 kDa protein (Collins et al., 2005), where it multimerizes to 

form a 51 kDa homotrimer (Kriegler et al., 1988), (Beutler, 1995), (Xu et al., 1999), (Clarke & 

Mohamed-Ali, 2006). (Maskos et al., 1998) (Black et al., 1997). Even before the molecule was 

specifically named, TNF-α had long been associated with insulin resistance (Pekala et al., 

1983). Many studies have demonstrated both an epidemiological and mechanistic link between 

adipose tissue-TNF-α secretion, obesity and insulin resistance in human and animal models. 

(Hotamisligil et al., 1995), (Hotamisligil et al., 1994a). 

 

2.6.2 The role of TNF-α in Insulin Resistance 

A negative role for TNF-α in insulin resistance is evidenced by the fact that knockout of TNF-α 

functionality leads to an improvement in insulin sensitivity and maintenance of glucose 

homeostasis in obese mice (Uysal et al., 1997). In addition, TNF-α infusion in healthy humans 

leads to skeletal muscle insulin resistance, impaired insulin signalling and decreased glucose 

uptake (Plomgaard et al., 2005). The biological activity of TNF-α is mediated by two specific 

receptors, TNF receptor-1 (Chen & Goeddel, 2002) and TNF receptor-2 (TNF-R2) that are 

present on the membranes of almost all cell types. Both TNF-α and its membrane receptors are 

significantly elevated in obesity and insulin resistance (Hofmann et al., 1994). There is 

substantial data demonstrating its capacity to negatively regulate components of the insulin 

signalling pathway (Clarke & Mohamed-Ali, 2006). TNF-α reduces adipocyte mRNA expression 

and secretion of GLUT-4 (Stephens & Pekala, 1991), (Ohsumi et al., 1994), (Hauner et al., 

1995) and reduces insulin-mediated glucose uptake by the adipocyte. Feinstein et al. (1993) 

demonstrated one mechanism by which TNF-α reduces insulin sensitivity. Incubating insulin-

sensitive rat hepatoma cells with TNF-α for 1 hour led to a 65% decrease in insulin-induced 

tyrosine phosphorylation of the insulin receptor beta-subunit and IRS-1, and an upregulation in 

serine phosphorylation, thus preventing the tyrosine phosphorylation cascade (Feinstein et al., 

1993). In vitro, TZDs lead to a considerable reduction in TNF-α expression in adipocytes 

(Okuno et al., 1998). In this model TZD administration also inhibits TNF-α-induced decreases in 

GLUT-4 expression, (Ohsumi et al., 1994) and can augment IRS-1 tyrosine phosphorylation. 

(Peraldi et al., 1997), (Iwata et al., 2001), (Solomon et al., 1997), (Shibasaki et al., 2003). This 
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mechanism seems to be mediated by downstream actions on PPARγ (Clarke & Mohamed-Ali, 

2006). TZDs have also been demonstrated to have positive effects on secondary mechanisms 

of TNF-α induced-insulin resistance, such as reduced levels of systemic free fatty acids and an 

increase in lipoprotein lipase expression (Shibasaki et al., 2003), (Porat, 1989),  (Kroder et al., 

1996). TNF-α has also been shown to inhibit insulin signalling and reduce insulin action in 

skeletal muscle (Lang et al., 1992), (Nolte et al., 1998), (del Aguila et al., 1999), (Halse et al., 

2001), (Li & Reid, 2001). In a similar fashion TNF-α induces insulin resistance in hepatic tissues 

by reducing tyrosine phosphorylation (Solomon et al., 2001), (Lang et al., 1992). Hence the 

three most important tissues involved in insulin-stimulated glucose disposal are targets for TNF-

α induced insulin resistance. In addition, TNF-α considerably augments the expression of  IL-6, 

(Stephens et al., 1992), (Fasshauer et al., 2003) decreases the expression of adiponectin 

(Maeda et al., 2001) and resistin (Fasshauer et al., 2001), (Shojima et al., 2002), and is 

correlated with elevated leptin concentrations (Bullo et al., 2002). TNF-α can also reduce the 

sequestering of lipid in adipocytes because it upregulates premature adipocyte apoptosis, thus 

reducing space for excess lipid storage. This results in pre-existing adipocytes being burdened 

by the excess lipid and in turn diverting it to other tissues, such as skeletal muscle and the liver 

(Prins et al., 1997), (Niesler et al., 1998). TZDs also appear to ameliorate the TNF-α-induced 

adipocyte apoptosis. This leads to an increased number of smaller fat cells, without reducing 

the total mass of adipose tissue (Okuno et al., 1998).  

 

2.6.3 Downstream Signalling of TNF-α 

TNF-α binding to the TNF-R1 on the cell surface results in the activation of two important 

transcription factors (c-Jun and NF-κβ) that consequently activate several genes implicated in 

the inflammatory pathway, the stress response and cell growth and development. TNF-α 

binding causes structural alterations to the receptor, which result in the recruitment of the 

adaptor protein; TNF receptor-associated death domain (TRADD) (Chen & Goeddel, 2002). 

TRADD then promotes the ligation of other adaptor proteins, such as receptor-interacting 

protein (RIP) and TNF receptor-associated factor 2 (Kanazawa & Kudo, 2005), leading to the 

eventual activation of c-Jun NH2-terminal kinase (JNK) and NF-κβ pathways (Chen & Goeddel, 

2002) (Figure 2.5). 
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Figure 2.5 TNF-α signal transduction pathway. Initiation of TNF-α signaling leads to activation of two major 
pathways; JNK and NF-κβ. Both of which have been implicated in the negative regulation of insulin 
signalling Engagement of TNF with its cognate receptor TNF-R1 results in the formation of a receptor-
proximal complex containing the important adaptor proteins TRADD, TRAF2, RIP. These adaptor proteins 
in turn recruit additional key pathway-specific enzymes. Activation of the IKK complex leads to 
phosphorylation of IKβ, which marks it for ubiquitination and proteasomal degradation. This sequence of 
events permits NF-κβ to enter the nucleus and regulate gene expression.  

 

2.6.4 Adiponectin Structure and Function 

Recent research indicates that the adipocytokine, adiponectin regulates insulin sensitivity and 

has a role in carbohydrate and lipid metabolism (Kralisch et al., 2005), (Jazet et al., 2003) as 

well as anti-atherogenic and anti-inflammatory processes (Havel, 2004), (Trujillo & Scherer, 

2005). Adiponectin was discovered almost simultaneously by four different laboratories in 1995. 

It was first identified as a protein synthesised and secreted by cultured 3T3-L1 adipocytes 

(Scherer et al., 1995) and was named adipocyte complement related protein 30kDa (ACRP30) 

because of it’s sequence homology to complement C1q and structural homology to TNF-α 

(Shapiro & Scherer, 1998). It was also named adipoQ (Hu et al., 1996), adipose most abundant 

gene transcript 1: APM1 (Maeda et al., 1996) and gelatine-binding protein 28 kDa: GBP28 

(Nakano et al., 1996). It is 247 amino acids long and is secreted by adipocytes (Scherer et al., 

1995). Structurally adiponectin consists of 3 distinct domains; a globular domain at the C 

terminus, a signal sequence near the N terminus, and a collagenous domain. Three of these 
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collagen like domains bind together to form a trimer and four to six of these trimers bind 

together to form a multimer. In circulation adiponectin exists in three forms (i) as a hexamer (two 

bound trimers) called low molecular weight (LMW), (ii) as an oligomer of high molecular weight 

(HMW, and (iii) in the globular form. Although all of these are present in plasma, HMW 

adiponectin is considered to have the most potent biological activity (Pajvani et al., 2003), (Tsao 

et al., 2003). Adiponectin is the most abundant protein secreted by the adipose tissue. Plasma 

concentrations range from 5 – 30 µg/ml in humans. Unusually by comparison to most other 

adipocytokines, adiponectin decreases concurrently with obesity and increases in response to 

weight loss (Reinehr et al., 2004), (Brichard et al., 2003). 

 

2.6.5 Adiponectin in Obesity, Type 2 Diabetes and Cardiovascular Disease 

Plasma concentrations of adiponectin are negatively correlated with body mass index (Hu et al., 

1996), (Kern et al., 2003), (Matsubara et al., 2003), (Milan et al., 2002), (Yang et al., 2002). 

Concentrations are also lower in type 2 diabetes mellitus patients than in age and BMI matched 

controls (Hotta et al., 2000) and have been shown to correlate strongly with insulin sensitivity, 

implying that low levels of adiponectin are linked to insulin resistance (Stefan et al., 2002). As 

adiponectin expression is specific to the adipocyte a changes in adipose tissue mass can alter 

serum adiponectin levels. Weight loss significantly increases the expression of adiponectin 

(Lazzer et al., 2005) but weight gain has the opposite effect (Weyer et al., 2001a). Plasma 

adiponectin levels are approximately 40% higher in women than in men. This is thought to be a 

result of androgenic suppression (Combs et al., 2003), (Nishizawa et al., 2002). Additionally 

women have higher ratios of HMW adiponectin than men (Pajvani et al., 2003). Adiponectin is 

reduced in cardiovascular disease (Ouchi et al., 1999) and in type 2 diabetes mellitus (Hotta et 

al., 2000). Evidence from longitudinal studies suggest that low levels of adiponectin are 

predictive of later development of type 2 diabetes (Spranger et al., 2003), (Lindsay et al., 2002) 

and myocardial infarction (Pischon et al., 2004) 

 

2.6.6 Adiponectin Signalling 

Adiponectin signals through two recently cloned receptors, AdipoR1 and AdipoR2 which are 

predominantly expressed in skeletal muscle and hepatic tissue respectively (Yamauchi et al., 

2003) but have also been found in the brain, macrophages and atherosclerotic lesions. AdipoR1 
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has a high affinity for the globular form of adiponectin, which acts on skeletal muscles to 

increase glucose uptake and oxidation as well as lipid oxidation (Lihn et al., 2005), (Lara-Castro 

et al., 2006). The activation of these receptors leads to the phosphorylation and activation of 

AMP-activated protein kinases (AMPK) and peroxisome proliferator-activated receptor-gamma 

(PPARγ) (Yamauchi et al., 2003). This results in an upregulation of proteins involved in fatty 

acid transport and oxidation such as CD36, acetyl-coenzyme A oxidase, uncoupling protein-2, 

and PPARα, leading to an increase in β-oxidation (Kadowaki & Yamauchi, 2005). Consequently 

there is a reduced concentration of intramuscular triglycerides and a decrease in plasma free 

fatty acids and FA influx in the liver.  

 

Elevated intramuscular triglyceride concentrations or decreased IMTG turnover impede insulin 

signalling and GLUT-4 translocation by increasing serine phosphorylation of the insulin receptor 

and IRS-1. Therefore reductions in fatty acid concentrations improvement insulin signalling and 

insulin sensitivity (Jequier, 1998), (Frayn, 2003). In the liver, AdipoR2 has a greater affinity for 

full-length adiponectin. Adiponectin activated AMPK reduces the expression of enzymes 

involved in gluconeogenesis such as glucose-6-phosphase. This in turn reduces hepatic 

glucose production and output, which contributes to whole body glucose homeostasis and thus 

enhances insulin sensitivity (Kralisch et al., 2005), (Jazet et al., 2003), (Havel, 2004), 

(Yamauchi et al., 2003) (Figure 2.6). 
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Figure 2.6 Adiponectin can activate AMPK and PPARα in the liver and skeletal muscle. In skeletal muscle, 
both globular and full-length adiponectin activate AMPK, thereby stimulating phosphorylation of ACC, fatty-
acid oxidation, and glucose uptake. Adiponectin activates PPARα, thereby also stimulating fatty-acid 
oxidation and decreasing tissue TG content in muscle. In the liver, only full-length adiponectin activates 
AMPK, thereby reducing molecules involved in gluconeogenesis and increasing phosphorylation of ACC 
and fatty-acid oxidation. Adiponectin activates PPARα, thereby stimulating fatty-acid oxidation and 
decreasing tissue TG content in the liver (Kadowaki & Yamauchi, 2005). 
 

Emerging evidence suggests that weight loss not only increases total adiponectin but possibly, 

also influences the ratio of the different adiponectin isoforms. A recent study has reported that 

obese subjects who participated 6 month dietary restriction weight loss programme had 

significantly greater HMW adiponectin (0.37 ± 0.07 vs. 0.49 ± 0.08 µ.ml-1), MMW (2.3 ± 0.2 vs. 

2.9 ± 0.3 µ.ml-1) but not LMW adiponectin (Bobbert et al., 2005). Several other studies have 

demonstrated a similar increase in HMW adiponectin after biliopancreatic bypass in obese 

subjects (Salani et al., 2006) and after hypocaloric diet-induced weight loss in obese and 

overweight postmenopausal women (Polak et al., 2007). The expression of HMW isoforms is 

also increased in murine adipocytes following treatment with the PPARγ agonist, pioglitazone 

(Bodles et al., 2006). Indeed many of the inverse relationships identified between total 

adiponectin and measures of insulin resistance (Hara et al., 2006), (Katsuki et al., 2006) obesity 

(Araki et al., 2006) and other markers of metabolic dysregulation (Aso et al., 2006) are stronger 

with the HMW isoform. Studies have consistently demonstrated an inverse relationship between 

adiponectin and insulin resistance (Cnop et al., 2003), (Matsubara et al., 2003). Hotta et al., 

(2001) generated a genetically modified model of type 2 diabetes in rhesus monkeys, and found 

that plasma adiponectin decreased with the onset and development of insulin resistance. Lihn 
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et al., (2003) found that first degree relatives of subjects with type 2 diabetes were 

characterised by reduced adiponectin mRNA expression in the adipose tissue (Lihn et al., 

2003a). 

 

Interestingly, insulin resistance is a feature of obesity but also lipodystrophy, a condition where 

adipose tissue is partially or totally depleted (Carr et al., 1998). Both lipodystrophy and HIV-

associated dystrophy syndrome is correlated with reduced plasma adiponectin and mRNA 

expression in adipose tissue (Lihn et al., 2003b), (Tong et al., 2003) This suggests that reduced 

adiponectin may play an important role in the pathogenesis of insulin resistance in 

lipodystrophy. Yamauchi et al., (2001) administered recombinant adiponectin to lipodystrophic, 

insulin resistant mice with no detectable plasma adiponectin. Adiponectin reduced blood 

glucose and insulin concentrations by suppressing hepatic glucose production and increased 

the expression of genes involved in lipid transport and fatty acid oxidation. The content of 

muscle and liver triglyceride was reduced and insulin resistance was almost completely 

reversed. These results suggest that insulin resistance in lipodystrophy may result from a lack of 

adiponectin production (Yamauchi et al., 2001). 

 

2.6.7 Adiponectin and Atherosclerosis 

The antiatherogenic properties of adiponectin have also been shown in animal models. 

Adiponectin knockout mice develop more severe intimal thickening in response to endothelial 

injury than wild-type mice (Okamoto et al., 2002). Additionally, increased expression of 

adiponectin by adenovirus transfection reduces the formation of atherosclerotic plaques in 

apolipoprotein E knock out mice (Matsuda et al., 2002). As adiponectin circulates in large 

quantities, it comes in contact with the vascular endothelium all over the body. 

Immunohistochemical staining of vascular cells with antibodies to adiponectin show no 

adiponectin protein in normal rabbits. However immunohistochemical staining with adiponectin 

antibodies revealed high levels of adiponectin in balloon injured vascular walls, indicating that 

adiponectin may play a restorative role in endothelial vascular injury (Okamoto et al., 2002). 

 

Investigations of its cellular actions have revealed that adiponectin exerts many important 

antiatherogenic effects. When the vascular endothelium is injured by aggravating factors such 
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as oxidised low density lipoprotein (LDL), chemical substances and mechanical stress, 

adiponectin accumulates in the subendothelial intima by binding to collagen in the extracellular 

matrix. Adiponectin suppresses monocyte binding by downregulating the production of 

endothelial adhesion molecules such as vascular cell adhesion molecule 1 (VCAM1), 

intracellular cell adhesion molecule 1 (ICAM1) and E-selectin through inhibition of Nuclear 

Factor ĸβ (Ouchi et al., 2000). It appears that adiponectin also attenuates the proliferation of 

smooth muscle cells into the intimal space (an important step in the development of 

atherosclerotic plaques) by inhibiting mitogen-activated protein kinase (Arita et al., 2002). 

Furthermore, adiponectin appears to directly stimulate nitric oxide in endothelial cells (Shimada 

et al., 2004) which is a vasodilator and facilitates normal endothelial function.  

 

2.6.8 Adiponectin and Exercise 

Exercise mediated weight loss significantly increases serum adiponectin, which is also 

accompanied by increases in insulin sensitivity (Yatagai et al., 2003). However it is not known if 

increased adiponectin is a cause or consequence of exercise-mediated insulin sensitivity. 

Yatagai et al., (2003) studied twelve non-obese sedentary men before and after a 6-week 

training programme that involved stationary cycling at lactate threshold for 60 minutes per day, 

5 days per week. Following the training programme VO2max and lactate threshold increased, BMI 

and body fat mass remained unchanged, fasting glucose and insulin decreased indicating 

increased insulin sensitivity, but adiponectin concentrations either remained the same or 

showed a slight decrease. These results suggest that increased insulin sensitivity following 

exercise training is not due to increased serum adiponectin and also implies that adiponectin 

concentrations may only increase following exercise training that induces weight loss (Yatagai 

et al., 2003), (Hulver et al., 2002).  

 

These results seem to contradict other studies examining the effect of exercise training on 

adiponectin levels. Fatouros et al., (2005) examined the effect of a 6-month resistance training 

programme on adiponectin in overweight inactive elderly adults. The subjects were randomly 

assigned to a control group, a low intensity group (45-50% 1RM), a moderate intensity group 

(60-65% 1 RM), or a high intensity group (80-85% 1 RM) group where they completed 3 sets of 

10 exercises, 3 days per week for 6 months. Strength, maximal oxygen consumption, and 
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insulin sensitivity increased following the intervention and this was accompanied by a decrease 

in BMI. Circulating adiponectin increased in the moderate and high intensity groups but not in 

the low intensity group, although this was associated with increased insulin sensitivity and 

decreased BMI (Fatouros et al., 2005). Monzillo et al. (2003) showed weight loss induced by 

exercise and caloric restriction increased adiponectin levels similarly in diabetic and non-

diabetic groups (Monzillo et al., 2003).   

  

Hara et al., (2005) investigated the effect of exercise training on young obese men who were 

divided into either an aerobic training group, an aerobic and resistance training group, or a 

control group. The aerobic exercise group underwent 8 weeks of training, 3 times per week, for 

more than 30 minutes at ventilatory threshold. The resistance and endurance exercise group 

underwent the same aerobic training in addition to 2 or 3 resistance training sessions consisting 

of 3 sets of 10 repetitions of 14 exercises at 80% of 1 RM. Adiponectin levels did increase but 

this increase was due to decreased body composition associated with exercise training (Hara et 

al., 2005). Current evidence suggests that increases in adiponectin, which occur with exercise 

training, are related to changes in adiposity rather than the exercise training itself. This is 

supported by the fact that serum adiponectin remained unchanged following a single bout of 

aerobic exercise despite increased insulin sensitivity that occurred immediately after exercise 

(Jamurtas et al., 2006).  

 

2.7 Osteoprotegerin, RANKL and TRAIL 

 

2.7.1 Structure and Function of OPG 

OPG is a soluble glycoprotein and member of the TNF-receptor superfamily that is 

characterized by its ability to bind to RANKL and TRAIL (Corallini et al., 2008), (Emery et al., 

1998). It exists as a 60-kd monomeric structure or as a disulfide linked 120-kd homodimer and 

is encoded on chromosome 8q (Yun et al., 1998). In contrast to other members of the TNF 

receptor superfamily, OPG does not have specific transmembrane or cytoplasmic domains. It is 

instead secreted into the circulation as a soluble receptor (Yun et al., 1998), (Corallini et al., 

2008). OPG consists of 401 amino acids, however the cleaving of a 21-amino acid signal 

peptide leads to the formation of a mature 380 amino acid form (Simonet et al., 1997). OPG 
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also distinguishes itself from other members of the TNF-receptor superfamily because it 

maintains biological activity in its soluble, circulating form. It was identified in 1997-1998 

simultaneously by two separate groups (Simonet et al., 1997), (Tsuda et al., 1997) and has had 

a number of synonyms including osteoclastogenesis inhibitory factor (OCIF), TNF receptor like 

molecule 1 (Kwon et al., 1998), and follicular dendritic cell-associated receptor 1 (FDCR-1). 

However, OPG is now the accepted term for this glycoprotein. At the time of discovery both 

groups demonstrated an important role for OPG in the regulation of bone turnover as a result of 

its direct inhibition of osteoclastogenesis (Simonet et al., 1997), (Tsuda et al., 1997), (Reid & 

Holen, 2009). It consists of 4 amino-terminal cysteine rich domains that are structurally similar to 

the extracellular portions of other associates in the TNF receptor superfamily. The carboxy-

terminal incorporates portions 5 and 6, that are death domain homologous regions (Baker & 

Reddy, 1998) (Figure 2.7) 

 

Figure 2.7 Schematic representation of the structure of OPG. Main domains and their biochemical and/or 
functional properties are indicated. NH2 indicates amino-terminus; COOH, carboxy-terminus (reproduced 
from (Corallini et al., 2008). 

 

2.7.2 Role of the OPG/RANK/RANKL axis in Bone Turnover: Evidence from mouse 
studies 

A physiological role for OPG in regulating bone formation and resorption was initially 

demonstrated when OPG deficient mice, produced by targeted disruption of the gene were 

viable and fertile but developed profound bone loss, marked destruction of growth plates and 

reduced trabecular femur bone mass (Bucay et al., 1998). In this study the authors further noted 

that the elevated mortality of these adolescent mice was related to an increased occurrence of 

vertebral or endochondral fractures. Interestingly the offspring of surviving, female double 

knockout mice gave birth to histologicaly normal double knockout offspring, suggesting that 

OPG is not essential for normal foetal development. Besides the effect on bone quality and 

elevated alkaline phosphatase, mice who survived to 6 months appeared to have no untypical 



 42

haematological or biochemical characteristics. In a similar study Mizuno et al., (1998) also 

created an OPG homozygous mouse: they found no histopathological abnormalities in the 

femurs of these mice at 5 weeks. However there was a marked increase in osteoclast size, 

number and proliferation, coupled with a progressive loss of trabecular femoral bone found 

between 8 and 13 weeks, suggesting that the early osteoporotic phenotype observed in these 

adolescent mice is likely due to an increase in osteoclastogenesis. (Mizuno et al., 1998). A 

putative role for OPG in this process was first elucidated in a classical study by Simonet et al. 

(1997) who created OPG-overexpressing mice. At 10 weeks, other than an enlarged spleen 

(~38%), these mice were phenotypically no different from their normal littermates; however they 

showed signs of profound osteopetrosis characterized by significant radio-opacity of the long 

bones, vertebrae, and pelvis when compared to their ordinary littermates. Mice that highly 

express the OPG transgene displayed obvious signs of osteopetrosis by x-ray at birth, the 

severity of which increased significantly into adolescence and adulthood. Despite this increase 

in radio-density, there was no irregularity in tooth eruption, a symptom commonly observed in 

ostepetrotic mice (Yoshida et al., 1990), (Soriano et al., 1991). In order to investigate the effect 

of OPG on healthy mice, Simonet et al. (1997) administered recombinant OPG to 4 week old 

wild-type mice and found that after 7 days they had a 3 fold increase (31.1% versus 12.0%) in 

trabecular bone of the proximal tibial metaphysis when compared to controls (Simonet et al., 

1997). The authors further clarified a role for OPG in the regulation of bone formation 

demonstrating that the administration of recombinant OPG blocks differentiation of precursor 

cells into osteoclasts in a dose dependant manner in vitro. Additionally the authors underlined a 

possible clinical application of recombinant OPG by illustrating the potential for OPG therapy to 

ameliorate the bone loss that one would expect in ovariectomized rats, where bone volume in 

the proximal tibial metaphysis was increased in OPG treated rats relative to controls (Simonet et 

al., 1997).  

 

2.7.3 The RANK/OPG/RANKL Axis 

The mechanism of action for OPG has been well described. Osteoblasts and their precursor 

cells, stromal cells express the homotrimeric, transmembrane protein; RANKL, particularly in 

regions where there is active bone remodelling or inflammatory osteolysis (Hofbauer & 

Schoppet, 2004). RANKL is a 316 amino acids sequence that is abundantly expressed in 
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osteoblastic / stromal cells, and T cells in lymph tissue (Figure 2.8). RANKL appears in 

circulation after being secreted by T cells or following proteolytic cleavage from cell surfaces 

(Hofbauer & Heufelder, 2001), (Walsh & Choi, 2003), (Schoppet et al., 2002). RANKL 

stimulates RANK, a transmembrane receptor, consisting of 616 amino acids that is found on the 

surface of cells with a monocyte/macrophage lineage, such as dendritic cells and osteoclasts 

and their precursors (Dougall et al., 1999). RANKL binds to RANK on osteoclast precursors and 

more mature osteoclasts, upregulating intracellular pathways that increase proliferation and 

survival of osteoclasts leading to activation of osteoclastogenic processes, increased bone 

resorption and bone loss. Generally an increase in RANKL is associated with a decrease in 

OPG, such that the ratio of RANKL to OPG changes in favour of osteoclastogenesis. Many 

papers have given credence to the claim that the RANKL to OPG ratio is an important 

determinant of bone density (Hofbauer & Schoppet, 2004). Both stromal cells and osteoblasts 

secrete OPG as a homodimer, which acts as a decoy receptor, binding to RANKL, thus blocking 

the resultant inhibition of osteoclastogenesis and bone loss (Corallini et al., 2008). In vitro 

investigations have demonstrated the importance of OPG dimerisation for this process. 

Homodimeric OPG binds strongly (KD � 10nM) with homotrimeric RANKL to form stable dimer-

trimer compounds. 
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Figure 2.8 Crystal structure of RANKL. (a) Ribbon diagram of the RANKL trimer, shown with the β-strands 
(green) and connecting loops (orange) of one RANKL monomer. The other two RANKL monomers are 
cyan and magenta, respectively. (b) In this view, oriented identically to a, the RANKL transmembrane stalk 
projects to the top of the image, while the membrane-distal region is toward the bottom. The homotrimer 
exhibits the shape of a truncated pyramid, being slightly wider at the membrane proximal end. (c) Ribbon 
diagram of the RANKL trimer viewed down the axis of threefold symmetry, oriented with the membrane-
distal face forward. The secondary structure of monomer X is labelled as in a. (d) The RANKL trimer, 
shown with the molecular surfaces of monomers X, Y, and Z colored in green, cyan, and magenta, 
respectively. The orientation of the molecule is identical to that in c. from (Lam et al., 2001) 
 

Schneeweis et al., (2005) showed, using sedimentation velocity analysis that 1:2 OPG-RANKL 

complexes were not formed in mixtures containing a 2-fold molar excess of RANKL over OPG, 

implying that both of the OPG monomers in the homodimer cannot bind to a separate RANKL 

trimer simultaneously. However, 2:1 OPG-RANKL complexes did emerge when OPG was 

present at a 2-fold molar excess over RANKL. Moreover, the authors found that the second 

OPG dimer displayed a significant loss of affinity (KD – 3μM). The authors concluded that the 

most likely explanation based on these findings was that the high affinity OPG-RANKL binding 

is dependant on avidity. Two of the OPG monomers in each dimer bind to two out of three of the 

RANKL monomers in each trimeric structure. Only one monomer in the second OPG molecule 

is able to weakly interact with the third and only available RANKL monomer (Schneeweis et al., 

2005). 
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2.7.4 RANKL / RANK Molecular Pathway Inducing Osteoclastogenesis 

The regulatory role of RANKL in bone resorption and formation has also been shown in vivo, 

Baud'huin et al., (2007) demonstrated that administration of RANKL to adult mice induces bone 

resorption, whilst mice deficient in functional RANKL develop osteoporosis (Baud'huin et al., 

2007). A crucial mechanism in promoting the resorptive action of osteoclasts is the binding of 

RANK to RANKL. As an affiliate of the TNF receptor superfamily, RANK does not have any 

kinase activity, therefore it is necessary for RANK to enlist the help of associated factors to 

transduce the signals after binding to its ligand (Leibbrandt & Penninger, 2008). Binding of 

RANK to its ligand leads to the translocation of TNF receptor-associated factors (TRAFs) to the 

intracellular surface of RANK. RANK has been shown to associate with TRAFs 1 – 6 during in 

vitro experiments (Darnay et al., 1998), (Galibert et al., 1998), (Wong et al., 1998), (Leibbrandt 

& Penninger, 2008). The cytoplasmic domain of RANK has several TRAF binding sites that 

cluster in specific regions. The areas enclosed by the amino acids 235–358 and 359–531 bind 

the TRAF6 adaptor molecule and the 532–625 region contains several binding locations for 

TRAFs 2, 5, and 6 (Darnay et al., 1998), (Wong et al., 1998), (Wong et al., 1999). However, 

only TRAF6 interacts with the membrane-proximal region of the RANK cytoplasmic domain 

which is distinct from other TRAFs. The functional significance of these TRAF binding domains 

is to initiate RANK-induced NF-κβ and c-Jun NH2-terminal kinase (JNK) activation. Deletion of 

the TRAF6 binding site of RANK almost completely blocked the RANK-dependent activation of 

NF-κβ (Galibert et al., 1998). However, JNK activation was intact and demonstrating that 

interactions with TRAF6 are essential for NF-κβ but not JNK pathway activation (Darnay et al., 

1998), (Wong et al., 1998), (Galibert et al., 1998), (Lee et al., 2000). Armstrong et al. (2009) 

used genetically modified gene constructs of RANK that selectively inhibited TRAF protein 

binding, to show that TRAF6 was the only functional TRAF protein downstream of RANK 

affecting osteoclast differentiation. The interaction of RANK with TRAF6 however was extremely 

important for the formation of cytoskeletal structures and the resorptive activity of osteoclasts 

(Armstrong et al., 2002). Lomaga et al., (1999) found that viable TRAF6 double knockout mice 

appeared phenotypically normal at birth but did not mature and died soon after birth. The 

TRAF6−/− animals that lived longer than 14 days had a 20 - 30% reduction in body mass and 

length. In addition, they had modest enlargement of the heart and liver which was accompanied 

by significant splenomegaly, represented by an increase in organ size of 2 – 6 fold compared to 

wild type littermates. X-ray examination of these mice showed that their long bones and 
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vertebral bodies were radio-opaque. The long bones, especially the femur, were reduced in 

length and exhibited a distinct broadening at the ends attributable to a failure in bone modelling, 

indicative of osteopetrosis. Molars and incisors of the double knockout animals had failed to 

erupt which is, again, common in osteopetrotic mice (Popoff & Marks, Jr., 1995), as bone 

resorption allows for the opening of a channel through the jawbone for teeth to grow. Peripheral 

quantitative computed tomography analysis of the proximal tibial bone metaphyisis showed a 

significant increase in bone mass in double knockout compared to the transgenic mice (Lomaga 

et al., 1999). These findings were strengthened by Naito et al. (1999) who also found that in 

addition to premature mortality and runting, TRAF6 double knockout mice had limited bone 

marrow cavities consisting of mostly spongy bone. Further histological analysis highlighted 

abnormal bone formation and thickened epiphyseal growth plates. Like Lomaga et al., (1998), 

the authors attributed this profound osteopetrosis to a failure of osteoclast precursors to 

differentiate into mature osteoclasts in response to RANKL. (Lomaga et al., 1999), (Naito et al., 

1999). 

 

The contributions of TRAF2 and TRAF5 to osteoclastogenesis seem to be relatively small. 

TRAF2−/− liver derived progenitor cells have only marginally reduced multinuclear osteoclasts 

accumulation and the activation of NF-κβ and JNK by RANKL was comparable to normal 

controls. Similarly, TRAF5 deficient cells only had a mild defect in osteoclastogenesis, and NF-

κβ and JNK activation was not affected by RANK stimulation. (Kanazawa & Kudo, 2005), 

(Kanazawa et al., 2003). There are at least seven distinct pathways activated by RANK-induced 

protein kinase signalling; four of them directly induce osteoclastogenesis; inhibitor of NF-κβ 

kinase/NF-κβ, c-Jun amino-terminal kinase/activator protein-1, c-myc, calcineurin/nuclear factor 

of activated T cells (NFATc1). There are three others that directly mediate osteoclast activation 

(src and MKK6/p38/ MITF) and survival (src and extracellular signal-regulated kinase) (Boyce & 

Xing, 2007). These studies indicate that TRAF6 is the most important adaptor molecule linking 

RANK signalling to the NF−κβ osteoclastogenesis pathway and that other TRAFs may 

circumvent and compensate for TRAF6-deficiency (Leibbrandt & Penninger, 2008). In addition 

to TRAFs, there are other adapter molecules that bind to RANK to induce signalling in this 

pathway. This in turn results in the activation of the transcription factor NF-κβ. (Matsumoto et 

al., 2000), (Xing et al., 2002). Growth factor receptor-bound protein 2 (Grb-2) associated binder 
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2 (Wada et al., 2005) is one of a family of adapter proteins phosphorylated at tyrosine residues 

that leads to the recruitment of a variety of signalling molecules with steroid receptor coactivator 

2 (Src 2) homology domains. Loss of Gab2 results in reduced RANKL/RANK-induced osteoclast 

differentiation, decreased bone resorption, and mild osteopetrosis (Boyce & Xing, 2007), (Wada 

et al., 2005), suggesting that it is an important player in RANKL-induced osteoclastogenesis 

(Wada et al., 2005).   

 

The vital role of NF-κβ/activator protein-1/ (NFATc1) signalling for osteoclast formation was 

revealed after genetic disruption of the p50 and p52 subunits of NF-κβ and of the immediate 

early gene transcript, c-Fos (Karsenty & Wagner, 2002). A subsequent study that transferred 

NFATc1-/- stem cells to cFos-/- mice resulted in osteoclast formation (Takayanagi et al., 2002). 

Over expression of a constitutively active form of NFATc1 induces osteoclast formation by 

Macrophage-Colonly Stimulating Factor (M-CSF) treated Fos-/- or NF-κβ p50/p52-/- osteoclast 

precursors in the absence of RANKL (Yao et al., 2005) indicating that it is downstream from NF-

κβ and c-Fos (Figure 2.9). On the basis of all of these studies, NFATc1 has been described as 

a master regulator of osteoclastogenesis (Boyce & Xing, 2007), (Takayanagi et al., 2002). 
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Figure 2.9 The essential signaling pathway for normal osteoclastogenesis. Under physiologic conditions, 
RANKL produced by osteoblasts binds to RANK on the surface of osteoclast precursors and recruits the 
adaptor protein TRAF6, leading to NF-κβ activation and translocation to the nucleus. NF-κβ increases c-
Fos expression and c-Fos interacts with NFATc1 to trigger the transcription of osteoclastogenic genes. 
OPG inhibits the initiation of the process by binding to RANKL. NFAT, nuclear factor of activated T cells; 
NF-κβ, nuclear factor-κB; OPG, osteoprotegerin; RANKL, receptor activator of nuclear factor-κB ligand; 
TRAF, tumor necrosis factor receptor associated factor. (adapted from (Boyce & Xing, 2007) and 
(Hofbauer & Schoppet, 2004) 

 

2.7.5 Disorders of RANKL/OPG/RANK Signalling 

Disequilibrium in the RANKL/OPG fraction or signalling contributes to the clinical pathology of 

many disorders of the skeleton, where increased bone resorption/formation, or inappropriate 

bone remodelling are a factor (Hofbauer & Schoppet, 2004). This is supported by Whyte el al. 

(2002) who demonstrated a loss in osteoprotective function for homozygous deletions of 100 kb 

of OPG in patients with the autosomal-recessive disorder; Juvenile Paget’s Disease a condition 

in which increased resorption, severe osteopaenia, and persistent fractures are primary 

symptoms (Whyte et al., 2002). It is further supported by the identification of an inactivating 

deletion in exon 3 of OPG in which idiopathic hyperphosphatasia, which is an autosomal-

recessive disease typified by increased bone resorption, deformities of long bones, kyphosis, 

and acetabular protrusion (Cundy et al., 2002), (Daroszewska et al., 2004), (Boyce & Xing, 

2007). The central role of defective OPG signalling and secretion in Juvenile Paget’s Disease 
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was verified by Cundy et al., (2005) where the weekly subcutaneous administration of  

recombinant OPG to two adult siblings with Juvenile Paget’s Disease led to a decrease in the 

speed of bone resorption, a decrease in skeletal bisphosphonate retention by 37 and 55 % 

respectively and improved radio-density upon examination by x-ray (Cundy et al., 2005).  

 

In addition, in vivo models such as the T-cell-dependent model of rat adjuvant arthritis (Kong et 

al., 1999) and collagen induced arthritis (Schett et al., 2003) are both characterized by severe 

joint inflammation, bone and cartilage destruction and crippling. Blocking RANKL by 

osteoprotegerin treatment at the onset of disease prevents bone and cartilage destruction but 

interestingly not inflammation (Kong et al., 1999). In addition, blockade of this pathway has 

been shown to prevent bone and tooth loss in an animal model of periodontal disease, without 

having any significant effect on the immune process (Teng et al., 2000). More recent animal 

models have used combination therapy to block RANKL with the administration of OPG in 

conjunction with the blockade of various inflammatory agents, including; IL-1 and TNF-α and 

found that with the use of these two treatments in tandem significantly reduces bone loss and 

systemic inflammation (Zwerina et al., 2004). 

 

There have been several studies in postmenopausal women that have attempted to investigate 

the relationship between circulating OPG and Bone Mineral Density (BMD). However the 

findings from these studies are conflicting. Circulating OPG has been shown to increase 

(Rogers et al., 2002) or decrease with osteoporosis and be negatively correlated to BMD. 

Mezquita et al., (2005) studied a cohort of 206 postmenopausal women and found that lower 

concentrations of circulating OPG were positively related to low BMD as well as prevalence of 

vertebral fracture (Mezquita-Raya et al., 2005). However a study by Yano et al. (1999) 

comparing serum OPG in Japanese men and women found that serum OPG was significantly 

increased in postmenopausal women who were osteoporotic (Yano et al., 1999). A possible 

reason for the differences between these studies could be the difference in experimental design 

and different populations utilized. (Reid & Holen, 2009) 

 

In addition to the severe osteoporosis observed in OPG deficient mice (Mizuno et al., 1998), 

OPG knockout mice appear to exhibit significant renal and aortic calcification (Bucay et al., 

1998). Furthermore, administration of recombinant OPG to rodents appears to prevent the 
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onset of arterial calcification induced by warfarin treatment or high doses of vitamin D (Price et 

al., 2001). Arterial calcification usually complicates chronic atherosclerosis and it appears to be 

accelerated in these mice, suggesting that OPG may play an important role in protecting large 

blood vessels from medial calcification and other complications of atherosclerosis (Bucay et al., 

1998). The relationship between osteoporosis and vascular calcification in these animal models 

of OPG deficiency is somewhat reminiscent of the clinical setting where these conditions often 

occur congruently (Hofbauer et al., 2007). Longitudinal analysis of bone loss and vascular 

calcification over a 25-year period in the Framingham Heart Study showed that women with the 

greatest magnitude of bone loss had the most severe progression of abdominal aortic 

calcification (Kiel et al., 2001). Furthermore a cross sectional study in 2,348 postmenopausal 

women revealed that aortic calcification strongly predicts low bone mineral density and 

occurrence of fractures. A subgroup of 228 women within this cohort who were longitudinally 

observed showed that the percentage yearly increase in aortic calcification accounted for 

almost half of the variance in the percentage rate of bone loss. Additionally a strong graded 

association was observed between the progression of vascular calcification and bone loss for 

each quartile. Women in the highest aortic calcification-quartile had four times greater yearly 

bone loss than women in the lowest quartile (Schulz et al., 2004). 

 

2.7.6 OPG Expression and Function in the Vascular System  

Evidently the RANKL/RANK/OPG triad is an important player in the homeostatic control of the 

immune and skeletal systems. Research in recent years has also begun to shed light on an 

equally intriguing role for this axis in the homeostasis of the vascular environment. Many of the 

same signals that modulate RANKL and OPG, both immunomodulatory and osteogenic in 

origin, may also regulate their expression in the vascular endothelium. As well as the typical 

activity of OPG in boney tissues, OPG expression and secretion is also found at high 

concentrations in the arterial wall, where the content in aortic extracts is reported to be 500 – 

1000 times greater than those found in the circulation (Olesen et al., 2005), (Knudsen et al., 

2003), a similar concentration to that found in bone. It has also been demonstrated that both 

micro/macro vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) 

secrete OPG (Collin-Osdoby et al., 2001), (Secchiero et al., 2006), (Zhang et al., 2002). A 

number of potential growth factors and inflammatory cytokines which are thought to be key 
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players in the pathogenesis of atherosclerosis and coronary artery disease have also been 

implicated in the regulation of OPG in the vascular wall. VEC-expression of OPG can be 

induced by the addition of the inflammatory cytokines; TNF-α, IL-1α, IL-1β, activated integrin 

αvβ3 and additionally porphyromonas gingivalis, an initiating activator of periodontal disease. 

(Kobayashi-Sakamoto et al., 2004), (Secchiero et al., 2006), (Ben-Tal et al., 2007). Collin-

Osdoby et al. (2001) demonstrated that human microvascular ECs express mRNA transcripts 

for both RANKL and OPG. In addition they showed that RANKL and OPG mRNA are 

significantly and dose-dependently upregulated in response to TNF-α and IL-1 as measured by 

semi-quantitative real time PCR. Further analysis of the time course of OPG and RANKL mRNA 

expression revealed that the rise in RANKL expression was first observed at 10 hours after the 

addition of TNF-α and by 24 hours, had risen to a peak of 3–6-fold in comparison to untreated 

VECs. These levels of expression continued between 48 and 72 hours when continuously co-

cultured with TNF-α. Removal of the cytokine after 24 hours led to a sustained decline in 

RANKL expression, however levels were still elevated by as much as 2-fold after 48 hours. 

OPG mRNA levels in VEC rose more swiftly in response to TNF-α. Elevated OPG mRNA levels 

were apparent within 1 hour, reached their highest level by 10 hours, but declined to 

approximately half their maximum values at 24 hours, and thereafter fell more slowly up to 72 

hours. Despite this, OPG mRNA levels were ten times higher than the unconditioned VECs. 

OPG mRNA levels quickly returned to concentrations similar to that of untreated VECs after 

withdrawal of TNF-α treated media. (Collin-Osdoby et al., 2001).  

 

2.7.7 Expression of OPG in Vascular Endothelial Cells 

Zannettino et al., (2005) have identified the site of OPG endothelial intracellular localisation to 

compartments known as Weibel-Palade Bodies (WPBs). They also observed that OPG was 

physically associated with von Willebrand Factor both in WPBs and in serum  (Zannettino et al., 

2005). Following thrombogenic and inflammatory insult with cytokines such as TNF-α, and IL-

1β, the contents of WPBs quickly translocate to the plasma membrane and extracellular space, 

where they promote migration of leukocytes and platelets to inflammatory sites and areas of 

thrombus formation (Arnaout, 1993), (Wagner, 1993), strongly suggesting a vasoactive role for 

OPG in maintaining haemostasis and possibly in the prevention of vascular injury and 

inflammation. In VECs, activation of integrin αvβ3 and porphyromonas gingivalis appear to 
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augment OPG expression levels via initiation of the NF-κβ transcription pathway (Kobayashi-

Sakamoto et al., 2004); (Malyankar et al., 2000); TNF-α and IL-1α also activate signalling 

pathways that result in NF-κβ activation suggesting that activation of this transcription pathway 

may be an important step in modulating production of endothelial cell OPG (Baud & Karin, 

2001), (Wesche et al., 1997). 

 

2.7.8 Expression of OPG in Vascular Smooth Muscle Cells 

Within the general vasculature however, OPG is more highly expressed in VSMCs compared to 

ECs, with VSMCs secreting up to 20-30 times that of endothelial cells. (Zhang et al., 2002). 

Interestingly the specific area of OPG activity in the arterial architecture seems to be important 

as higher concentrations have been found in the tunica media of diabetics relative to 

normoglycaemic controls, however no difference in OPG concentration was observed in the 

same cohort when intimal tissue was compared (Golledge et al., 2004). In vascular smooth 

muscle cells, a number of cytokines have been shown to augment OPG expression, including 

TNF-α, IL-1β, insulin, basic fibroblast growth factor (bFGF), platelet-derived growth factor 

(PDGF), and angiotensin II (Collin-Osdoby et al., 2001), (Olesen et al., 2005), (Ben-Tal et al., 

2007), (Zhang et al., 2002) (Figure 2.10). 

 

Zhang et al. (2002) demonstrated that PDGF-induced OPG gene expression in VSMCs could 

be blocked by inhibition of the PI3-kinase/AKT and p38/MAPK signalling pathways but that 

inhibition of NF-κβ did not attenuate PDGF-mediated OPG increases in VSMCs (Zhang et al., 

2002). This contrast with the NF-κβ pathway that upregulates OPG in VECs and suggests that 

other pathways are important in OPG production in VSMCs. Olesen et al. (2005) also found that 

TNF-α increased the amount of OPG produced from the VSMCs (Olesen et al., 2005) but OPG 

secretion was attenuated by the addition of insulin to the media. Recent work by this group 

demonstrated that the addition sRANKL to VSMC cultures led to a decrease in the activation of 

the insulin signalling pathway by reducing the activity of 16 of the 52 genes that were 

upregulated in by insulin. Interestingly knock down of OPG production by the addition of siRNA 

did not affect the insulin signalling pathway (Olesen et al., 2009). OPG production in VSMCs 

has also been shown to be reduced by peroxisome proliferator-activated receptor gamma 

(PPARγ) antagonists (Fu et al., 2002). The authors found that OPG expression was inhibited by 
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PPARγ ligands in human VSMCs and that this effect was completely abolished by a PPARγ 

antagonist. Moreover overexpression of PPARγ in these cells by transfection of an adenovirus 

considerably decreased OPG expression (Fu et al., 2002).  

 

There is now accumulating evidence to suggest a role for OPG in the regulation of VEC survival 

(Malyankar et al., 2000), (Cross et al., 2006), (Pritzker et al., 2004). However the specific means 

by which, OPG reduces VEC apoptosis has not yet been fully elucidated. It is unlikely that this 

involves protection from apoptosis induced by OPGs second cognate ligand, TRAIL, as a 

number of studies have found that ECs are resistant to apoptosis induction by TRAIL, and are 

only sensitized to TRAIL-induced apoptosis under harsh conditions such as serum deprivation 

(Secchiero et al., 2003), (Scatena & Giachelli, 2002). Only one group have implicated TRAIL 

inhibition in the OPG-mediated reduction in EC apoptosis (Pritzker et al., 2004), TRAIL will be 

discussed in more detail later in this chapter. Other groups have not found TRAIL to be present 

in EC cultures at all (Cross et al., 2006), (Zauli et al., 2007). Malyankar et al. (2000) reported 

that ECs plated on osteopontin had increasing OPG mRNA and protein secretion and a 

resultant reduction in EC apoptosis (Malyankar et al., 2000). In addition Cross et al. (2006) 

found that OPG enhanced EC growth and differentiation in addition to promoting the growth of 

cord-like arrangements on a matrigel base (Cross et al., 2006) 

 

Several studies have demonstrated that in chronic exposure to inflammatory cytokines such as 

in rheumatoid arthritis, multiple myeloma, diabetes, or hyperlipidaemia, OPG synthesis and 

storage in ECs has been shown to be low, or  indeed, absent altogether (Browner et al., 2001), 

(Giuliani et al., 2001), (Wallin et al., 2001). One possibility is that this may be as a consequence 

of the continued secretion of OPG leading to a significant depletion of vascular endothelial 

intracellular content after an extended time. 
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Figure 2.10 OPG, RANKL and RANK Expresion in the Vascular Endothelium. In the vascular system, 
RANKL and RANK are expressed by endothelial cells. RANKL /RANK interactions regulate endothelial 
survival and apoptosis. RANKL may be blocked by OPG, which is secreted by endothelial and smooth 
muscle cells. The physiological role of the OPG/RANKL /RANK system in the vascular wall and 
interactions with other ligands are currently under investigation. Adapted from (Hofbauer & Schoppet, 
2004). 
 

 

The specific area of OPG activity in the arterial architecture is important, as higher 

concentrations have been found in the tunica media but not intimal tissue of diabetics relative to 

normoglycaemic controls (Golledge et al., 2004). This phenomenon of medial compared to 

intimal calcification was further studied by Schoppet et al. (2004) who found increased 

expression of OPG (but not RANKL) around areas of intimal and medial calcification in samples 

from patients with Monckeberg’s sclerosis which is characterized by medial calcification but not 

in patients with atherosclerosis where intimal calcification is more common (Schoppet et al., 

2004). These findings were similar to those of Dhore et al., (2001) and again suggest that OPG 

may be involved in the process of vascular calcification (Dhore et al., 2001).   

 

Subsequent to their earlier work (Olesen et al., 2005), Olesen et al. (2007) showed that the 

addition of β-glycerophosphate to VSMC cultures led to significant calcification and as assessed 

by the measurement of total cellular calcium content was increased still further by the addition 

of insulin at a concentration of 1000 μU.ml-1. Interestingly the authors showed that there was a 

concomitant reduction in OPG expression, suggesting that this down-regulation of OPG may 
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play some role in the increased calcification (Olesen et al., 2007). Unlike their previous study 

(Olesen et al., 2005), lower levels of insulin (200 μU.ml-1) did not effect OPG secretion and the 

authors proposed this may have been due to the fact that the latter study was performed in the 

presence of serum or that the effects of insulin on OPG may be different depending on the 

degree of hyperinsulinaemia.  

 

Induction of diabetes by streptozotocin led to an increase in detectable OPG levels and a fall in 

free RANKL concentration in apo-E null mice, and the addition of TNF-α (but not glucose or 

insulin) stimulated OPG release from human umbilical vein endothelial cells (Secchiero et al., 

2006). Using samples from human atherosclerotic plaque obtained at the site of rupture during 

an acute myocardial infarction and plaque from apoE knockout mice, Sandberg et al., (2006) 

showed increased activity of the OPG/RANKL/RANK system. In addition they showed that 

RANKL increased the release of chemoattractant peptide-1 in mononuclear cells of patients 

with unstable angina and also stimulated matrix metalloproteinase activity in VSMCs (Sandberg 

et al., 2006).  Other factors influencing the secretion and expression of OPG and RANKL 

include the bone morphogenetic proteins BMP-2 and BMP-7 as well as transforming growth 

factor β1 (TGFβ1). All of these reduce OPG secretion and mRNA expression but BMP-2 and 

BMP-7 increase RANKL mRNA while TGFβ1 reduced RANKL. To address the question of 

whether OPG is elevated in states of atherosclerosis and vascular calcification as a 

compensatory mechanism or if it is playing a negative role in the pathogenesis of these 

conditions, Zauli et al., (2007) examined the effect of OPG on adhesion of pro-inflammatory 

cytokines to endothelial cells (Zauli et al., 2007). They found that OPG promotes the adhesion 

of primary polymorphonuclear neutrophills and leukaemic HL60 cells to endothelial cells in vitro, 

and they confirmed these findings in vivo in rat mesentery. The authors concluded that OPG 

may play a deleterious role in endothelial pathophysiology by instigating leukocyte adhesion to 

the endothelium which is thought to be an early step in the causation of endothelial dysfunction. 

On the other hand, Bennett et al. (2006) found that OPG-deficient ApoE-/- mice developed larger 

atherosclerotic lesions in addition to more vascular calcification than their OPG+/+ littermates 

and that it acted as a survival factor for serum-deprived smooth muscle cells (Bennett et al., 

2006). The exact role of OPG in the process of atherosclerosis was further examined by 

Moroney et al., (2008). They fed atherogenic LDL receptor knockout mice a high-fat diet and 

treated them with recombinant OPG or vehicle. The vehicle-treated mice developed 
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atherosclerosis with associated calcification and their OPG levels rose in parallel.  The degree 

of calcification, but not atherosclerosis was significantly reduced in the mice given recombinant 

OPG. The authors concluded that these results supported the theory that OPG inhibits vascular 

calcification, and may act as a marker (rather than a mediator) of atherosclerosis progression 

(Morony et al., 2008).  It also appears that, in addition to slowing vascular calcification and 

possibly mediating atherosclerosis, OPG may be a pro-angiogenic factor (McGonigle et al., 

2009). When added in vitro to a rat aortic ring model of angiogenesis OPG increased neo-

angiogenesis, an effect that was abrogated by pre-incubation with RANKL or TRAIL. 

Additionally, RANKL induced apoptosis on the endothelial cells. Circulating OPG has been 

shown to be significantly higher in patients with type 2 diabetes (Yaturu et al., 2008), (Secchiero 

et al., 2006), (Olesen et al., 2005), (Rasmussen et al., 2006), and is higher in the tunica media 

of type 2 diabetics than matched normal controls (Olesen et al., 2005). Moreover, OPG is higher 

in individuals with severe Peripheral Artery Disease (PAD) than in those classified as having a 

mild to moderate PAD (Ziegler et al., 2005), additionally it has also been shown that OPG can 

independently predict silent coronary artery disease in type 2 diabetic patients (Avignon et al., 

2005). 

 

Many of the same signals that modulate RANKL and OPG in bone or immune cells may also 

regulate their expression in vascular cells. From an indirect perspective, it is likely that the 

RANKL/RANK/OPG axis exerts important effects on the vascular system through 

immunomodulatory and osteogenesis-related mechanisms. Despite the seemingly therapeutic 

effect, the exact mechanism by which OPG acts to protect the vascular wall remains elusive. 

However there is growing evidence to suggest that OPG may play a part in the regulation of EC 

survival/apoptosis in cell models (Pritzker et al., 2004), (Scatena & Giachelli, 2002). It has been 

suggested that the pro-survival action of OPG on ECs may in part be due to inhibition of TRAIL-

mediated apoptosis (Corallini et al., 2008), although several studies have suggested that ECs 

are resistant to TRAIL-induced apoptosis under normal physiological conditions (Scatena & 

Giachelli, 2002), (Secchiero et al., 2003). OPG can promote EC (Cross et al., 2006), (Malyankar 

et al., 2000) and VSMC survival by a mechanism which may involve the blocking of TRAIL-

induced apoptosis in these cells lines. Furthermore, in vitro evidence shows that OPG can 

increase matrix metalloproteinase-9 activity in macrophages and smooth muscle cells and act 

as a survival factor for serum-deprived smooth muscle cells (Bennett et al., 2006). A common 
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feature of atherosclerosis is the dysfunction and death of vascular cells (Littlewood & Bennett, 

2003), (Reid & Holen, 2009). Therefore, the capability of OPG to improve survival of vascular 

smooth muscle and endothelial cells implies that it may play some protective role in this 

progression.  

 

2.7.9 Serum OPG and Insulin Sensitivity / Resistance 

There have been a number of studies which have attempted to elucidate the relationship 

between serum OPG and insulin sensitivity/resistance.  In a study of 286 women with a mean 

age of 52 years, Oh et al. (2005) found that LDL, total cholesterol, follicle stimulating hormone 

as well as age and waist to hip ratio were positively correlated with OPG, but there was no 

relationship between OPG and fasting glucose, fasting insulin, or insulin sensitivity (Oh et al., 

2005). Ugur-Altun et al. (2004) also investigated the relationship between OPG and insulin 

resistance using the HOMA-IR model in 50 obese and 24 lean individuals who were not taking 

any medications. The authors found that OPG was lowest in the most insulin resistant obese 

group, and that OPG correlated negatively with insulin resistance, as measured by HOMA-IR 

(Ugur-Altun et al., 2004). Gannage-Yared et al. (2006) had similar findings in a study of 151 

older men where they found a weak positive correlation between OPG and insulin sensitivity 

using the Quantitative Insulin Sensitivity Index (QUICKI), in addition the authors found a, weak 

correlation with (positive) adiponectin and (negative) triglycerides (Gannage-Yared et al., 2006). 

The same group subsequently investigated  a relationship between OPG and insulin resistance 

in an obese cohort of patients undergoing bariatric surgery (Gannage-Yared et al., 2008). Unlike 

the matched non-obese group, OPG showed a correlation with HOMA-IR even with adjustment 

for age and presence of diabetes. Multiple linear regression revealed that the acute phase 

reactant and marker of vascular in inflammation, CRP in addition to HOMA-IR were 

independent predictors of OPG concentration, a relationship which had not been observed in 

previous studies (Ugur-Altun et al., 2004), (Browner et al., 2001). This contrasted with the 

negative correlation seen between OPG and HOMA-IR in an obese population in an earlier 

study (Ugur-Altun et al., 2004), and the positive correlation between OPG and QUICKI in the 

same group’s previous work (Gannage-Yared et al., 2006). The authors speculated that the 

small numbers in the HOMA paper (n=12 of obese with high HOMA) (Ugur-Altun et al., 2004), 

and the different population studied in their previous paper (ie elderly males) (Gannage-Yared 
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et al., 2006) might account for the differences (Gannage-Yared et al., 2008). Considering these 

somewhat contradictory results some caution should be exercised when comparing findings 

from different studies. Several studies have used commercially available assays that measure 

unbound and uncomplexed forms of both sRANKL or OPG (Xiang et al., 2006), (Knudsen et al., 

2003), (Rasmussen et al., 2006), (Jorgensen et al., 2009). The data which is the subject of this 

body of work refers to free soluble RANKL and total OPG. This OPG assay measures both 

monomeric and dimeric isoforms of OPG, including OPG bound to RANKL and TRAIL and has 

been used to measure total OPG in many cohorts (Gannage-Yared et al., 2006), (Gannage-

Yared et al., 2008), (Anand et al., 2006), (Schoppet et al., 2003). In addition because of the non 

standard units of measurements used in other commercial ELISA assays and the difficulty in 

ascribing an exact molecular weight to the OPG-isoforms which they measure i.e. bound or 

unbound, monomeric or dimeric, the process of converting these values to SI units is somewhat 

complicated. Therefore previous studies that have exclusively measured uncomplexed OPG 

may unintentionally have excluded a large portion of the biologically active total circulating OPG 

which has either bound to TRAIL or RANKL or indeed has undergone some other unspecific 

binding. Recombinant OPG with a molecular weight of 19.9kD was used to calibrate the ELISA 

plates in these studies. This is identical to the extra cellular domain of RANK (TNF-receptor 

family). This in turn is identical to OPG. The precoated monoclonal anti-OPG capture antibody 

bound to the microtiter plate, binds to circulating OPG. The detection antibody is a biotinylated 

polyclonal anti-Osteoprotegerin antibody. The ELISA used in these experiments measures free 

OPG and complexed OPG-RANKL, since the binding site of the capture antibody lies outside of 

the binding site to sRANKL. The OPG ELISA detects the monomeric as well as the dimeric form 

of OPG. In the literature there is some discrepancy on the molecular weight of OPG. Molecular 

weights from 120 kD down to 35 kD can be found. The reason for this discrepancy are due to 

how the MW was determined either using isolation, SDS Page or DNA determination. 

 

2.7.10 Tumour Necrosis Factor Receptor Apoptosis Inducing Ligand (TRAIL) 

In addition to the essential role governing RANK–RANKL ligation in bone, OPG can also 

promote cell survival by binding to TRAIL. As OPG also acts as a soluble receptor for TRAIL 

(Emery et al., 1998) and since TRAIL is able to preferentially induce tumour cell apoptosis over 

normal cells, there has been much interest in its potential as a cancer chemotherapeutic (Smyth 
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et al., 2003), (Takeda et al., 2002). The physiological importance of TRAIL-OPG connections is 

highlighted by the fact that OPG can bind to TRAIL with a similar affinity to that of RANKL under 

normal physiological conditions (Vitovski et al., 2007). TRAIL is expressed and secreted by 

immune cells such as T cells that can penetrate the tumourous cellular environment (Reid & 

Holen, 2009). TRAIL that has been secreted by these T cells can bind to the death receptor-

regions 4 and 5 expressed on the surface of tumour cells. These receptors enclose extracellular 

death domains that initiate apoptotic signalling cascades, leading to specific programmed 

tumour-cell apoptosis. Two other membrane-bound decoy receptors for TRAIL have been 

found, DcR1 and DcR2. However little is known about their biological activity and in this context 

they do not seem to play a major role. DcR1 does not have a cytoplasmic domain and the DcR2 

cytoplasmic apoptotic region appears to be truncated and inactivated (Marsters et al., 1999), 

(Sheridan et al., 1997), (Reid & Holen, 2009). In vitro evidence suggests OPG may also 

promote survival in malignant tumours and cancer cell lines. (Wiley et al., 1995). OPG may be 

involved in survival of a number of tumour cell types in this way (Holen et al., 2002). Neville-

Webbe et al., (2004) demonstrated that OPG production from bone marrow stromal cells 

isolated from breast cancer patients was sufficient to increase survival of breast cancer cells 

that reach the bone microenvironment as part of the metastatic process. The authors suggested 

that OPG production may protect breast cancer cells from undergoing TRAIL induced apoptosis 

(Neville-Webbe et al., 2004). Furthermore, Shipman et al., (2003) demonstrated that TRAIL-

induced apoptosis could be prevented in myeloma cells by the addition of recombinant OPG, an 

effect which seemed to be reversed by the addition of sRANKL (Shipman & Croucher, 2003). 

This may be important for tumour cells to escape apoptosis, since host immune cells present in 

the tumourous cellular environment produce TRAIL, and in vivo data suggests this to be 

important in promoting anti-tumour action (Almasan & Ashkenazi, 2003), (Griffith et al., 1999), 

(Takeda et al., 2002). Therefore, secretion of OPG by tumour cells may be a possible 

mechanism of defence by these cells to TRAIL-induced apoptosis (Holen et al., 2002). 

However, there is still some doubt about this mechanism and some authors consider it unlikely 

to be related to its binding and neutralization of TRAIL, as TRAIL quickly induces apoptosis in a 

number of such cell lines and primary tumours but interestingly, it appears to demonstrates little 

or no toxicity to normal healthy cell lines (Corallini et al., 2008), (Reid & Holen, 2009). However 

emerging evidence suggests that circulating TRAIL may be related to body composition and 

lipid status. Choi et al., (2004) found that TRAIL was higher in individuals who had greater total 
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body fat and that it was positively correlated with LDL cholesterol (Choi et al., 2004). TRAIL also 

exerts an effect at the level of the vascular wall with some studies suggesting it may contribute 

to plaque instability. Sato et al. (2006) found that the dominant plaque residing T cells, CD4 T’s 

induce rapid apoptosis in cultured VSMCs by TRAIL expression which activates death receptors 

on the surface of VSMCs (Sato et al., 2006). The addition of OPG appears to promote survival 

of cultured VEC (Cross et al., 2006), (Malyankar et al., 2000), (Pritzker et al., 2004), though the 

exact means by which this is accomplished is still unclear. It may be related to a reduction in 

TRAIL-induced apoptosis (Pritzker et al., 2004). However, other studies have not found TRAIL 

to be present in VEC cultures (Cross et al., 2006), (Zauli et al., 2007). These conflicting findings 

may suggest an alternative pathway by which OPG promotes survival of this cell type. 

Furthermore, healthy VECs seem to be resistant to TRAIL-induced apoptosis, which concur with 

the notion that non-malignant cells are unresponsive to TRAIL (Cross et al., 2006). It is probable 

that OPG has other binding partners as well as TRAIL and RANKL. In this regard, it appears 

that OPG can promote leukocyte adhesion to the endothelial cell surface and this could be 

induced via interaction between the endothelial cell monolayer and the OPG heparin-binding 

domain. At this point however a binding associate for OPG in this process has yet to be 

identified. A potential mechanism that may mediate this activity is the interaction between 

proteoglycans containing heparan sulphate, such as syndecan-1, which can undergo ligation 

with several heparin-binding proteins, one of which is OPG (Borset et al., 2000). 

 

2.7.11 The Bone – Vascular Calcification Paradox 

Vascular calcification is an active, cellularly controlled process in which mineral is ectopically 

deposited predominantly in the larger elastic and muscular arteries, such as the aorta, the 

coronary, carotid and iliofemoral arteries as well as in the cardiac valves more and more the 

advancement of this process has been recognised as a risk factor for cardiovascular disease 

(Arad et al., 2005) and mortality (Budoff et al., 2007). Interestingly, localized arterial 

mineralization is often observed in conjunction with a significant decrease in bone mineral 

density or increased bone turnover. This paradoxical inverse relationship, is best typified by the 

concomitant occurrence of osteoporosis and chronic kidney disease, and is often referred to as 

a “the calcification paradox” (Persy & D'Haese, 2009). Ectopic vessel mineralization can occur 
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in either in the tunica intima or in the tunica media of the artery. The idiosyncratic characteristics 

of both of these forms of vascular calcification are described in Figure 2.x 

Intima calcification  Media calcification
 

Atherosclerosis    Arteriosclerosis or Monckeberg’s sclerosis 
 

Calcification  Focal, in plaques    Generalized 
pattern  
 
 
 
 
 
 
 
 
Risk factors  Dyslipidemia, hypercholesterolemia  Aging, diabetes, renal failure, osteoporosis,  

hypertension 
 
Molecular  Lipid accumulation    Transdifferentiation of VSMCs into bone-like cells 
mechanisms Foam cell formation    (osteoblast-chondrocyte and osteoclast-like cells)  

Inflammation     Ca, P, vitamin D metabolism 
Oxidative stress    Loss of calcification inhibitors  
Apoptosis    (pyrophosphate, MGP, fetuin) 

      
Result   Plaque formation: stenosis   Arterial stiffening: increased pulse pressure, 

` Plaque calcification: controversial elevated pulse wave velocity  
effect on plaque stability, possibly 
relating to the localization of 
calcification 

 
Complication Ischemia, infarction    Systolic hypertension, left ventricular hypertrophy  

Figure 2.11 Ectopic vessel mineralization can be localized to either in the tunica intima or in the tunica 
media of the vessel. Intima calcification is associated with atherosclerosis and results in focal calcification 
of atherosclerotic plaques, whereas media calcification (arteriosclerosis or Monckeberg’s sclerosis) is more 
generalized and is found mainly in the elderly and in patients with CKD, osteoporosis, hypertension or 
diabetes mellitus. Monckeberg’s sclerosis leads to vessel stiffening, which is characterized by increases in 
pulse pressure and pulse wave velocity and is associated with increased cardiovascular risk. Adapted from 
(Persy & D'Haese, 2009) 
 

In General, however these two structurally distinct forms of vascular calcification are not 

differentiated in cross-sectional or longitudinal epidemiological studies, an important factor 

which must be considered when interpreting results from such studies. London et al. (2003) 

delineated the two forms of calcification morphologically using plain x-ray images and found that 

the increasing severity led to an elevated mortality risk in patients undergoing haemodialysis 

(London et al., 2003). As previously mentioned ectopic calcification in the vasculature is often 

occurs in conjunction with decreased bone mineral density or increased bone turnover. This 

conflicting association has been found in the general population (Hyder et al., 2007), in 

osteoporosis and CKD patients (Raggi et al., 2007;Toussaint et al., 2008) and in more rare 

conditions such as Paget’s disease (Laroche & Delmotte, 2005). An inverse correlation between 

BMD and vascular calcification has also been observed several cross-sectional and longitudinal 

studies using different techniques in postmenopausal osteoporosis, Additionally, several studies 

have reported that this calcification is in fact correlated with the occurrence of fragility fractures 

(Bagger et al., 2006;Schulz et al., 2004) 
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Moreover, in a large prospective study of over six thousand postmenopausal women Kado et al. 

(2000) using DEXA scanning found that for each decrease of one standard deviation in BMD, 

risk of cardiovascular mortality was amplified by 30% (Kado et al., 2000). It appears this 

relationship is not merely a phenomenon exclusive to osteoporosis, it was also observed by 

Farhat et al. (2006) in a cohort of healthy perimenopausal subjects with a low prevalence of 

osteoporosis (Farhat et al., 2006) as well as in a heterogeneous cohort of healthy men and 

women (Hyder et al., 2007). Vascular calcification is a feature of the increased cardiovascular 

morbidity and mortality observed in patients with CKD (Schiffrin et al., 2007). In addition to 

increased calcification of atherosclerotic plaques, patients on dialysis also show characteristic 

calcifications of the tunica, contributing to their elevated cardiovascular mortality (London et al., 

2003). Calcification quickly progresses in both dialysis (Goodman et al., 2000) and end stage 

renal disease (Sigrist et al., 2007). Increased circulating phosphate levels, elevated 

concentrations of calcium as well as high parathyroid hormone (PTH) concentrations have been 

acknowledged as risk factors for vascular calcification and mortality in patients with CKD, as 

well as the administration of calcium-containing phosphate binders and vitamin D metabolites 

(Ganesh et al., 2001;Kestenbaum et al., 2005) The decline in renal function associated with the 

progression of CKD often leads to the development of metabolic bone disease traditionally 

grouped under the name renal osteodystrophy. Monckeberg’s sclerosis was first described in 

the mid nineteenth century and is a cell-mediated process (Steitz et al., 2001) whereby VSMCs 

deposit hydroxyapatite in the tunica media (Wada et al., 1999). The subject of bone 

mineralization and localized mineralization of the vasculature, with the transformation of 

vascular cells to bone-like cells that express a number of bone related proteins, such as bone 

sialoprotein, osteocalcin and alkaline phosphatase. Interestingly though, in vivo evidence 

suggests that these simultaneous expression patterns appear to have accumulate to 

contradictory results, leading to vascular calcification, whereas bone formation is actually 

impaired or disturbed. 

 

Opposing regulation of the OPG–RANK–RANKL triad in bone and vasculature by transforming 

growth factor b fibrogenic hormone (TFG-β) might be one mechanism to explain this 

calcification paradox. TGF-β increases RANKL expression and reduces OPG expression in ECs 

but reduces RANKL in cells of an osteoblastic lineage (Hofbauer & Heufelder, 2001) leading to 
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an increase in the OPG/RANKL ratio in bone, inhibiting osteoclastic bone resorption, and 

decreases the OPG/RANKL ratio in blood vessels, decreasing the potential calcification 

inhibition possible with OPG.  

 

 

2.7.12 Therapeutic Role for OPG 

Simonet et al. (1997) first confirmed the role of OPG in the regulation of bone formation 

demonstrating that the administration of recombinant OPG blocks differentiation of precursor 

cells into osteoclasts in a dose dependant manner in vitro. The authors also outlined a possible 

clinical application of recombinant OPG by suggesting a potential for OPG therapy to ameliorate 

the bone loss that one would expect in ovariectomized rats, where bone volume in the proximal 

tibial metaphysis was increased in OPG treated rats relative to controls (Simonet et al., 1997). 

Since this discovery there has been much interest in the use of OPG and or manipulation of the 

RANKL/RANK/OPG axis to treat bone related disorders.  Evidence from both animal and in vivo 

studies have shown that RANKL expression can be reduced by 17β-estradiol (Eghbali-

Fatourechi et al., 2003) and that its biological activity can be ameliorated by introducing a 

barrier so it can not effectively bind to its receptor. This can be achieved by administration of 

peptides which mimic the function of OPG and include soluble RANK fusion proteins, (Hsu et 

al., 1999), (Oyajobi et al., 2001), OPG fusion proteins, (Simonet et al., 1997), (Kong et al., 

1999), (Teng et al., 2000), (Honore et al., 2000), or antibodies to RANKL. In addition post-

receptor signalling after RANK-RANKL binding to the c-Jun pathway can also be interrupted by 

the addition of estrogen to stromal cells (Shevde et al., 2000). What's more, in vitro OPG 

secretion can also be upregulated in response to 17β-estradiol (Hofbauer et al., 1999), the oral 

selective estrogen receptor modulator; raloxifene (Viereck et al., 2003) and bisphosphonates 

(Hofbauer & Schoppet, 2004). Therapeutic efficacy has focused on OPG-Fc and RANK-Fc 

fusion proteins. Synthetic OPG fusion proteins do not have a heparin-binding region and as a 

result they are less prone to sequestration than naturally circulating OPG (Standal et al., 2002). 

However, because OPG has the ability to bind RANKL and TRAIL, RANK-Fc fusion protein may 

be a more desirable modality for therapeutic inhibition of this pathway as it has no effect on 

TRAIL signalling (Oyajobi et al., 2001). However OPG-Fc and RANK-Fc fusion proteins seem to 

be successful and without adverse side effects in animal models of arthritis (Kong et al., 1999) 
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and osteoporosis (Simonet et al., 1997), bone disease caused by multiple myeloma (Sezer et 

al., 2003) and bone metastases (Honore et al., 2000). One randomized controlled trial has 

investigated the acute effects of OPG-Fc fusion protein on markers of bone turnover. Bekker et 

al., (2001) examined the effect of a single dose of OPG-Fc administered subcutaneously on 

biochemical markers of bone resorption in postmenopausal osteoporotic women. Participants 

were followed up after 85 days and it was found that OPG treatment led to a substantial and 

prolonged reduction of bone resorption as indicated by a reduction of 80% in urinary excretion 

of deoxypyridinoline concentrations and an increase in bone formation markers of 20% as 

indicated an increase in serum levels of osteocalcin (Bekker et al., 2001). Another study which 

compared the effects of an OPG bolus against the bisphosphonate, pamidronate in 28 patients 

with myeloma related bone disease and in 26 women with multiple bone metastases as a result 

of breast cancer, with a follow-up of 6 months. The authors found that that urinary N-telopeptide 

(a marker of bone resorption) was reduced in OPG treated breast cancer patients by 74% and 

by 47% in the other group. This was similar to the outcomes observed in the bisphosphonate 

treated group (Body et al., 2003). Administration of OPG-Fc fusion protein  in such trials has 

only a few side effects, such as hypocalcaemia, and in only a few exceptional cases it has led to 

the production of anti-OPG antibodies, none of these side effects have been observed in 

patients who have had RANK-Fc fusion proteins (Bekker et al., 2005) The potential for this 

mechanism as a therapeutic target has led to the development of a human monoclonal IgG2 

antibody to RANKL, AMG162 (Denosumab). Denosumab selectively binds to RANKL but does 

not cross react with TNF-α, TNFβ, CD40 ligand, or TRAIL (Dougall & Chaisson, 2006). After 

binding to RANKL, denosumab blocks the interaction between RANKL and RANK, a 

mechanism similar to that of endogenous OPG. Denosumab is currently in Phase II clinical trials 

for postmenopausal women with osteoporosis (Bone et al., 2008), breast cancer-related bone 

metastases (Lipton et al., 2007) and structural damage in patients with rheumatoid arthritis 

(Cohen et al., 2008). McClung et al., (2006) showed that subcutaneous administration of 

denosumab at either 12 or 26 week intervals to more than four hundred postmenopausal 

women with low bone mineral density led to a continued reduction in bone resorption and a swift 

and significant increase in BMD. (McClung et al., 2006). In a two year study conducted by Bone 

et al., (2008) over three hundred postmenopausal patients with osteoporosis receiving 6-

monthly subcutaneous administration of Denosumab showed significantly increased BMD and 

reduction in indicators of bone resorption both in early and late postmenopausal osteoporotic 



 65

females (Bone et al., 2008). Similar positive results have been obtained in a study in patients 

with breast cancer and multiple myeloma who have radiographicly verified bone lesions. A one 

time dose of Denosumab led to an immediate and continued reduction in bone resorption (Body 

et al., 2006). No data are currently available on whether this new therapeutic compound can 

also regress vascular calcifications, an issue that is worth investigating in view of the potential 

role of the OPG–RANK–RANKL triad in the development of vascular calcification.The possibility 

of using OPG or manipulating this axis for the treatment of vascular disease or calcification is 

somewhat more complex. OPG has been shown to act in an autocrine manner to reduce 

apoptosis and increase survival of endothelial cells (Malyankar et al., 2000). However, it 

appears that RANK and RANKL are absent in tissue from arterial walls of wild-type mice and 

only appear to be present in calcified atherosclerotic plaques of OPG-deficient mice (Min et al., 

2000). There has been little evidence to date that RANK and its ligand play an important role in 

the biology of human vascular diseases. Furthermore, the molecular mechanisms involved and 

the mode of action by which OPG is engaged in the process of vascular disease and 

dysfunctions are still unclear.  

 

2.8 General Summary 

There has been a dramatic increase in the prevalence of obesity during the past two decades. 

Increased adiposity is associated with the development of insulin resistance and type 2 

diabetes. Type 2 diabetes occurs when there is inadequate insulin secretion from the β-cells in 

tandem with increased insulin resistance in multiple tissues. In addition to its role in glucose 

disposal, insulin is an important vasoactive hormone that exerts pleiotropic actions in skeletal 

muscle, adipose tissue and vascular endothelium. In recent years there has been intense study 

of the biological activity of the adipose tissue, as a result of which it is now recognised that the 

adipose tissue is an active metabolic organ, releasing adipocytokines into the circulation, which 

influence insulin action and contribute to vascular dysfunction. Adiponectin and TNF-α are two 

such adipocytokines that which in addition to insulin also appear to regulate OPG production 

and secretion. Insulin resistance has also been demonstrated to correlate with circulating OPG. 

The role played by OPG, RANK and RANKL in bone turnover and bone-related disease has 

been the subject of extensive research. Most of these studies show that OPG exerts a 

protective effect on bone via inhibition of bone resorption. OPG also appears to be an important 
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player in the vasculature and may prevent processes involved in the pathogenesis of 

atherosclerosis. There is some evidence, albeit controversial to suggest that this may be 

achieved via its ability to promote VEC survival by acting as a decoy receptor for TRAIL. The 

interaction between these families of molecules and the evidence demonstrating significant 

cross-talk between their metabolic pathways provides support for the premise that they form a 

complex array of interconnected cytokines involved in physiological regulation in multiple tissue 

types. 
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Chapter III An investigation of 
serum OPG, TRAIL and sRANKL 
levels and their relationship with 
adiposity and indicators of insulin 
sensitivity in a healthy Irish 
cohort. 
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3.1 Introduction 

Rationale 

Circulating OPG has been shown to be significantly higher in patients with type 2 diabetes 

(Yaturu et al., 2008), (Secchiero et al., 2006), (Olesen et al., 2005), (Rasmussen et al., 2006), 

and is higher in the tunica media of type 2 diabetics than matched normal controls (Olesen et 

al., 2005). In addition, OPG is higher in individuals with severe Peripheral Artery Disease (PAD) 

than those classified as mild to moderate PAD (Ziegler et al., 2005). Indeed it has also been 

shown that OPG can independently predict silent coronary artery disease (Griffin et al., 1999) in 

type 2 diabetic patients (Avignon et al., 2005). Despite the higher circulating and tissue 

concentrations of OPG in metabolic and cardiovascular disease patients there has been little 

research on high risk obese subjects. Gannage-Yared et al. (2006) examined the relationship 

between OPG and components of the metabolic syndrome in 151 healthy ageing men. Contrary 

to many previous studies, they found that OPG was inversely correlated with fasting plasma 

glucose and insulin sensitivity and positively correlated with adiponectin. Despite their 

classification of this population as healthy, over 60% of this cohort had the metabolic syndrome, 

28% had hypertension and 15% had previously diagnosed coronary artery disease (Gannage-

Yared et al., 2006). There has been significant research in diseased populations demonstrating 

that OPG is associated with the presence and severity of CAD and cardiovascular mortality 

(Browner et al., 2001), (Jono et al., 2002), (Kiechl et al., 2004), (Omland et al., 2008), (Schoppet 

et al., 2003), (Ueland et al., 2004). There have, however been few published papers that have 

examined the relationship between insulin sensitivity, adiposity and OPG in a normal population 

free from overt cardio-metabolic disease.  

 

Aims 

The purpose of this study was to determine if BMI and insulin sensitivity influence the 

concentrations of serum OPG and TRAIL in subjects who do not have cardiovascular or 

metabolic disease. 
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Hypothesis 

We tested the hypothesis that in a healthy cohort circulating OPG would be lower in obese 

subjects and inversely related to insulin resistance. 

 

3.2 Materials and Methods 

3.2.1 Experimental Design Overview 

One hundred and thirty six subjects volunteered to participate in the study. Of these thirty six 

were excluded because of undiagnosed hypertension, impaired glucose tolerance, and 

abnormal ECG. Subjects visited the laboratory on two separate occasions, separated by at least 

4 days. On the first occasion they reported to the laboratory in the morning following an 

overnight fast. Subjects were interviewed by a physician, had anthropometric measurements 

and a 2 hr oral glucose tolerance test. On the second visit, subjects reported to the laboratory 

approximately 3 hr following a meal. They had a resting 12-lead ECG followed by an ECG 

stress test with oxygen consumption (Figure 3.1). 
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Figure 3.1 Schematic of experimental design for experiment I 

 

3.2.2 Participant Recruitment  

Participants were recruited by means of an open call for volunteers who were free from 

cardiovascular and metabolic disease. A plain language statement was given to those 

expressing an interest in the study, after which a briefing meeting was scheduled to allow for 

questions to be asked in relation to the study and written informed consent was provided by 

individuals wishing to participate. In total 136 subjects volunteered to participate in the study. Of 

these 36 were excluded because of undiagnosed hypertension, impaired glucose tolerance, and 
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abnormal ECG. The final cohort that met the inclusion criteria consisted of 100 subjects, aged 

22-74 yrs. This group comprised a similar number of males (n=51) and females (n=49) and the 

distribution of normal weight (n=36), overweight (n=41) and obese (n=23) subjects is similar to 

the Irish adult population (Morgan et al., 2008). The study was approved by the Dublin City 

University Research Ethics Committee and conformed to the Declaration of Helsinki. Finally, 

each participant completed a health history questionnaire and underwent medical screening 

examination see (Appendix 2, 3, 4). 

 

3.2.3 Exercise Stress Test and Maximal Oxygen uptake 

Following the medical examination all subjects underwent a multistage exercise treadmill test 

using a modified Bruce protocol. All exercise tests took place under standard laboratory 

conditions (19-21°C, 40-55% relative humidity). Expired oxygen, carbon dioxide, ventilatory 

volume, respiratory exchange ratios and VO2max were determined by indirect calorimetry 

(Sensormedics Vmax 229, Sensormedics Corp., Yorba Linda CA). Systolic and diastolic blood 

pressure was measured using a sphygmomanometer and recorded when the subject was 

standing immediately before testing and during the last minute of each exercise stage. Electrical 

activity of the heart was also recorded at rest and at the end of each stage. Subjects exercised 

until reaching volitional fatigue. The test was deemed to be maximal if two or more of the 

following criteria were satisfied (i) plateau of oxygen consumption (increase of less than 2 ml.kg-

1.min-1), (ii) heart rate within 10 beats of the subjects’ age predicted maximum heart rate (220 

bpm – age in years) and (iii) respiratory exchange ratio > 1.10. VO2 
max was determined to be 

the highest minute average recorded for oxygen uptake during the test. 

 

3.2.4 Anthropometric and body composition measurements 

Height and body mass were measured to the nearest 0.1 cm and 0.1 kg respectively (SECA, 

Hamburg, Germany). Subjects were weighed barefoot and with minimal clothing. Harpenden 

Skinfold Callipers (British Indicators, 15 9LB. England) were used to measure double thickness 

subcutaneous adipose tissue on the right side of the body at seven sites. Waist and Hip 

circumferences were measured to the nearest 0.1 cm. Waist circumference was taken midway 

between the lowest rib (laterally) and the iliocristale landmark. Hip circumference was measured 

at the greatest protrubence of the gluteals. Body density was calculated by the method of 
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Jackson & Pollock (1985) (Jackson & Pollock, 1978) based on the sum of seven skinfolds 

(tricep, subscapular, mid-axillary, pectoral, suprailiac, abdominal, thigh). Percentage body fat 

was calculated from the equation of Siri (Suzuki et al., 2004). 

 

3.2.5 Glucose Tolerance and Insulin Sensitivity 

In order to rule out previously undiagnosed type 2 diabetes, impaired fasting glucose or 

impaired glucose tolerance, subjects underwent a standard 2 hr Oral Glucose Tolerance Test. 

(OGTT) (Reinauer et al., 2002). The 75 g (113 ml) anhydrous glucose equivalent (Polycal; 

Nutricia Clinical, Trowbridge, United Kingdom) was consumed in 300 ml of water within 5 min. 

Blood samples were taken prior to and at 30, 60, 90 and 120 min after the glucose load. Total 

area under curve (AUC) for glucose and insulin was determined by the trapezoidal method (Tai, 

1994) and HOMA-IR was used as an indicator of insulin resistance (Matthews et al., 1985). 

Insulin Sensitivity was estimated using the validated Oral Glucose Insulin Sensitivity (OGIS) 

predictive model (Mari et al., 2001) 

 

3.2.6 Collection of Blood Samples 

Prior to the OGTT subjects had a 20 or 22 GA indwelling cannula (BD VialonTM, Biomaterial, 

Spain) introduced into a prominent forearm vein for blood sampling. Samples for glucose 

analysis were collected in grey top plasma tubes (BD Vacutainer®, 10 mg sodium fluoride, 8 mg 

potassium oxalate). Samples for insulin determination and other analytes were collected in red 

top serum tubes (BD Vacutainer®). Blood samples were collected 10 min before the oral 

glucose load and, 30, 60, 90 and 120 min after. Lines were flushed with saline solution after 

each blood draw and approximately 2.5 ml of blood was evacuated as waste at each time point 

before collection of analytical samples. Serum was allowed to stand for 30 min before 

centrifugation at 3000 r.p.m-1 (Dovio et al., 2007) for 15 min at 4ºC at which point aliquots were 

stored at -80○C for further analysis.  

 

3.2.7 Biochemical Analysis and Assays 

Plasma glucose was measured using the glucose oxidase method (YSI 2300 Stat Plus, Yellow 

Springs, Ohio). Serum insulin was measured with a commercially available fluoroimmunoassay 
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(Delphia; Perkin Elmer, Wallac, Turku, Finland).  Serum OPG, total sRANKL (Biomedica, 

Vienna, Austria), TRAIL and adiponectin (R&D Systems Inc., Minneapolis, MN), were measured 

using commercially available ELISA kits. The minimal detectable limit for OPG was 0.014 pmol.l-

1, 0.02 pmol.l-1 for total sRANKL, 0.246 ng.ml-1 for adiponectin and 2.86 ng.ml-1 for TRAIL. The 

intra and inter assay coefficients of variance were <6 % for OPG and total sRANKL and <5 % 

for Adiponectin and TRAIL. High sensitivity C-Reactive Protein (hsCRP), triglycerides, High 

Density Lipoprotein (HDL), Low Density Lipoprotein (LDL) and total cholesterol were measured 

with Randox reagents on the Randox-Daytona automated analyser using a spectro-photometric 

method (Randox, Antrim, Northern Ireland). 

 

3.2.8 Statistical Procedures  

SPSS 15.0 for Windows (SPSS Inc., USA) was used for statistical analysis. Data are reported 

as means ± SEM. Normally distributed variables were explored using simple bivariate or partial 

regression. Non-normally distributed variables including fasting glucose, insulin, 2 hr insulin, 

AUC glucose, AUC insulin, HOMA IR, adiponectin, sRANKL, low density lipoprotein and high 

density lipoprotein were log-transformed. The degree of relationship was calculated using 

Pearson’s product moment (r). Participants were classified as normal weight, overweight or 

obese based on their BMI. A one-way analysis of covariance (ANCOVA) was used to examine 

differences between BMI categories with age and gender as covariates. Bonferroni’s post hoc 

test was applied to determine differences among means. Statistical significance was set at 

p<0.05. 
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3.2.9 Subject Characteristics 

Physical and metabolic characteristics for male and female subjects are presented in Table 3.1 

and for the normal weight, overweight and obese subjects are presented in Table 3.2. 

 

Table 3.1 Selected Characteristics of Subjects broken down by gender. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BMI (Body mass index), BP (blood pressure), VO2 max, (maximal oxygen consumption).Values 
are mean ± SEM. * p < 0.05 vs. Normal weight. † p < 0.05 vs. Overweight. 

 

Table 3.2 Selected Anthropometric and Cardiovascular Characteristics of Subjects 

BMI (Body mass index), BP (blood pressure), VO2 max, (maximal oxygen consumption).Values 
are mean ± SEM. * p < 0.05 vs. Normal weight. † p < 0.05 vs. Overweight. 

 Male Female 

 (53) (57) 

Age (years) 44.5 ± 1.5 47.7 ± 1.8 

BMI (kg.m-2) 27.0 ± 0.4 25.7 ± 0.5  

Waist Circumference (cm) 92.4 ± 1.3 84.2 ± 1.9 * 

Waist to Hip Ratio 0.90 ± 0.01 0.83 ± 0.01 * 

Body fat (%) 21.6 ± 0.9 29 ± 1.2 * 

VO2 max (ml.kg.min-1) 41.6 ± 1.5 32.0 ± 1.2 * 

Systolic BP (mmHg) 123.2 ± 1.6 119.5 ± 1.9 

Diastolic BP (mmHg) 77.8 ± 1.2 75.2 ± 1.5 

 Normal weight Overweight Obese 

 (36) (41) (23) 

Gender (male/female) 19/17 19/22 11/12 

Age (years) 44.4 ± 1.5 46.7 ± 2.0 47.2 ± 2.8 

BMI (kg.m-2) 22.8 ± 0.2 26.7 ± 0.2 * 31.4 ± 0.3 * † 

Waist Circumference (cm) 78.5 ± 1.2 89.8 ± 1.2 * 102.2 ± 2.0 * † 

Waist to Hip Ratio 0.82 ± 0.01 0.87 ± 0.01 * 0.93 ± 0.02 * † 

Body fat (%) 19.6 ± 1.15 27 ± 1.16 * 31.9 ± 1.5 * † 

VO2 max (ml.kg.min-1) 41.5 ± 1.9 37.5 ± 1.5 29.6 ± 1.7 * † 

Systolic BP (mmHg) 117.1 ± 2.2 120.4 ± 1.6 130.3 ± 2.2 * † 

Diastolic BP (mmHg) 74.0 ± 1.5 76.5 ± 1.4 80.6  ± 2.1 * 
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3.3 Results 

3.3.1 Physical Characteristics 

Age and gender distribution was similar for the three groups but there were significant 

differences in BMI, % body fat, waist circumference and waist-to-hip ratio. In addition, the obese 

group had significantly higher systolic and diastolic blood pressure and lower aerobic capacity 

compared with the other two groups Table 3.2. Glucose and Insulin kinetics during the OGTT 

are presented in Figure 3.1. 
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Figure 3.1 Insulin (A) and Glucose (B) kinetics in response to a 75 g Oral Glucose Tolerance Test in age 
and gender matched; Obese ♦, overweight ▲ and lean subjects ■. 

 

3.3.2 Metabolic Phenotype 

All subjects had normal glucose tolerance but the obese group had significantly higher fasting 

glucose, insulin and triglycerides compared to the other groups. They also had a greater 

glucose and insulin response to the OGTT and had lower insulin sensitivity, as determined by 

OGIS and HOMA-IR. Circulating adiponectin was significantly lower in males compared to 

females (4.99 ± 0.35 vs. 10.06 ± 0.71 μg.ml-1, p < 0.001) and in overweight and obese subjects 

compared to controls (Table 3.3). 

 

Table 3.3 Metabolic Markers and Indicators of Insulin Sensitivity.  

  Normal weight Overweight Obese 

Fasting Glucose (mmol.l-1) 4.8 ± 0.1 5.0 ± 0.1 5.3 ± 0.1 * † 

Fasting Insulin (ρmol.l-1) 26.4 ± 3.5 38.2 ± 4.2 * 51.3 ± 5.6 * 

Triglycerides (mmol.l-1) 0.97 ± 0.05 1.32 ± 0.10 * 1.55 ± 0.15 * 

HOMA-IR 0.83 ± 0.12 1.25 ± 0.14 * 1.8 ± 0.2 * † 

OGIS (ml.min.m-2) 533 ± 11 512 ± 9 451 ± 11 * † 

AUC Glucose (mmol.l.min) 671 ± 18 738 ± 19 * 831 ± 36 * † 

AUC Insulin (pmol.l.min) 20487 ± 2444 29585 ± 4285 42336 ± 4979 * † 

hs-CRP (mg.L-1) 0.92 ± 0.18 0.92 ± 0.08 1.16 ± 0.15 

Adiponectin (μg.ml-1) 9.9 ± 0.9 6.6 ± 0.5 * 4.8 ± 0.5 * 

TRAIL (ρg.ml-1) 72.2 ± 5.4 81.6 ± 3.9 82.4 ± 6.9 

sRANKL (ρg.ml-1) 3.4 ± 0.6 3.0 ± 0.4 2.9 ± 0.7 

HOMA-IR (Matthews et al., 1985), OGIS (Mari et al., 2001), AUC Glucose (area under the 
glucose curve after 2 hr), AUC Insulin (area under the insulin curve after 2 hr), hs-CRP (high 
sensitivity C-Reactive Protein), TRAIL (TNF-related apoptosis inducing ligand), sRANKL 
(soluble receptor activator of NF-κβ ligand). Values are mean ± SEM. *p < 0.05 vs. Normal 
weight. †p < 0.05 vs. Overweight. 
 

3.3.3 Osteoprotegerin  

Circulating OPG was lower in males than in females (5.13 ± 0.20 vs. 6.07 ± 0.23 ρmol.l-1, p = 

0.003). There was a significant decrease in OPG in the obese compared with normal weight 

and overweight groups (Figure 3.2). Neither TRAIL nor sRANKL were significantly different 
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between BMI categories (Table 3.3). There was no significant relationship between OPG and 

age, however as previous studies have consistently shown a correlation between age and OPG 

(Khosla et al., 2002), (Szulc et al., 2001), (Kudlacek et al., 2003), we controlled for age in 

addition to gender in all subsequent analysis. For correlation analysis, this was achieved in 

SPSS using the partial correlation function, which, in addition to examining the relationships 

between variables of interest, allows the user to control for the potential bias that may be 

caused by confounding variables such as gender, age, ethnicity etc. A similar method whereby 

potential covariates are adjusted for in SPSS is used when comparing between three or more 

groups (ANCOVA) 
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Figure 3.2 Osteprotegerin for Normal weight, Overweight and Obese subjects. Values are mean ± SEM.*p 
<0.05 vs. Normal weight, †p < 0.05 vs. Overweight. 
 

3.3.4 Correlation Analysis  

OPG showed a significant inverse correlation with BMI and waist circumference (Figure 3.3) and 

a positive relationship with VO2max. There were also significant relationships between OPG and 

several other metabolic indices including a significant inverse correlation with fasting glucose, 
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fasting insulin, AUC glucose, AUC insulin, HOMA-IR and was positively correlated with OGIS 

and adiponectin (Table 3.4). The correlation between OPG and adiponectin persisted after 

additional adjustment for BMI. Controlling for age and gender, TRAIL was significantly related to 

fat mass (r = 0.255, p < 0.05) and waist circumference (r = 0.207, p < 0.05), these relationships 

were maintained after additional adjustment for BMI. (r = 0.373, p < 0.001), (r = 0.257, p < 0.05). 
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Figure 3.3 Relationship between A) OPG and BMI, B) OPG and waist circumference. 
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Table 3.4 Age and Gender Adjusted Correlations Between OPG and Anthropometric 
and Metabolic Indices. 

 r p  

BMI (kg.m-2) -0.331 ***   

Waist Circumference (cm) -0.268 **   

VO2 max (ml.kg.min-1)  0.237 *   

Fasting Glucose (mmol.l-1) -0.248 *   

Fasting Insulin (ρmol.l-1) -0.202 **   

AUC Glucose (mmol.l.min) -0.279 **   

AUC Insulin (pmol.l.min) -0.271 **   

HOMA-IR -0.222 *   

OGIS (ml.min.m-2)   0.221 *   

Adiponectin (μg.ml-1)   0.391 ***   

BMI (Body mass index), VO2 max, (maximal oxygen consumption), AUC Glucose (area under the 
glucose curve), AUC Insulin (area under the insulin curve), HOMA-IR (Matthews et al., 1985), 
OGIS (Mari et al., 2001). *p < 0.05, **p < 0.01, ***p < 0.001 
 

3.4 Summary 

The main findings of Experiment I are that obese subjects who are normal glucose tolerant and 

free from cardiovascular disease, have lower circulating osteoprotegerin when compared with 

normal weight and overweight individuals. In this cohort OPG is positively correlated with 

adiponectin and insulin sensitivity. 
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Disease. 
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4.1 Introduction 

Rationale 

Type 2 diabetes mellitus is associated with an accelerated pathogenesis of atherosclerosis and 

a more than threefold increased risk of cardiovascular disease (Kannel & McGee, 1979).  

Arterial calcification is a prominent feature of atherosclerosis and common in patients with type 

2 diabetes (Chen & Moe, 2003). It is an independent risk factor for cardiovascular mortality in 

both newly diagnosed (Niskanen et al., 1994) and established type 2 diabetes (Lehto et al., 

1996).  Arterial calcification of the tunica media was first identified almost a century ago, but our 

understanding that this may be an active, rather than a passive, carefully-regulated process has 

further developed in recent times with the identification of a possible role for the 

OPG/RANKL/TRAIL pathway in this process (Doherty et al., 2004). Studies of serum RANKL 

have been inconclusive, with both increased (Kiechl et al., 2007) and reduced (Schoppet et al., 

2003) risk of CVD disease being reported with elevated levels of RANKL concentration.  Only 

one paper has measured RANKL levels in individuals with type 2 diabetes, finding no difference 

from healthy individuals (Secchiero et al., 2006). TRAIL also appears to affect the vasculature 

and may contribute to plaque instability (Sato et al., 2006), though others have shown that 

administration of TRAIL to atherogenic Apo E-/- mice induced plaque regression and 

stabilisation of residual plaques (Secchiero et al., 2006). Whether serum OPG, RANKL and 

TRAIL are higher in patients with type 2 diabetes compared to non-diabetic individuals is still 

under investigation.  Studies to date suggest higher serum OPG levels in type 2 diabetes but 

these studies have often mixed groups of diabetic and non diabetic patients, examined OPG in 

patients with diabetes related microvascular complications, and have poorly defined control 

groups with no attempt to control for underlying metabolic bone disease, which could affect 

serum OPG and RANKL levels. It is well-accepted that inflammation plays an important role in 

the pathogenesis of diabetes and IL-6 and hsCRP are frequently used to gain a measure of the 

degree of underlying inflammation (Wellen & Hotamisligil, 2005).  Whether OPG/RANKL/TRAIL 

could be a reflection of low-grade vascular inflammation in individuals with diabetes is not 

known.  
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Aims 

The aim of this experiment was to measure serum OPG/RANKL/TRAIL in a cohort of well 

controlled type 2 diabetic patients with no evidence of underlying metabolic bone disease and 

compare them to a healthy age and BMI control group. We also determined if any differences 

could be attributed to the presence of underlying vascular disease or inflammation. 

 

Hypothesis 

We hypothesised that OPG, along with other traditional inflammatory markers would be higher 

in type 2 diabetic patients. We also tested the hypothesis that OPG would be a sensitive marker 

of inflammation that would distinguish between diabetics and normoglycemic controls 

irrespective of prior history of vascular disease in these patients.  

 

4.2 Materials and Methods 

4.2.1 Experimental Design Overview 

One Hundred and ten subjects volunteered to participate in this study. Fifty eight 

normoglycemic, healthy subjects free from CVD were recruited from Dublin City University and 

sixty two patients with type 2 diabetes were recruited from the diabetes clinic in Beaumont 

Hospital. A plain language statement was given to those expressing an interest in the study, 

after which a briefing meeting was scheduled to allow for questions to be asked about the study 

and written informed consent was provided by individuals wishing to participate. Subjects 

reported to the laboratory in the morning following an overnight fast at which point fasting blood 

samples were collected. Subjects were interviewed by a physician and had anthropometric 

measurements taken. Oral glucose tolerance tests (OGTT) to ensure normal glucose tolerance 

and exercise stress tests (see previous chapter for method) were performed on all of the 

healthy controls to rule out undiagnosed hyperglycaemia or CVD Full clinical history and 

physical examination were performed on all study subjects. The study was approved by the 

Dublin City University Research Ethics and Beaumont Hospital Ethics Committee and 

conformed to the Declaration of Helsinki. Finally, each participant completed a health history 

questionnaire underwent a medical screening examination. 
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4.2.2 Assessment of Bone Mineral Density 

Bone mineral density (BMD) was measured using the GE Lunar Prodigy 2 DEXA scanner (GE 

Medical Systems, UK). Participants were positioned as per manufacturer instructions and bone 

mineral density was reported as grams of bone mineral content (BMC) per projected area (g.cm-

2) The mean of the lumber spine (L1 – L4) and the total BMD at the femur were used to classify 

patients according to WHO criteria (Brown & Josse, 2002). A sub-group of 66 participants (53% 

and 57% of those with and without diabetes respectively) underwent DEXA scanning. It was 

originally intended to conduct a DEXA scan on all participants in this experiment, however due 

to serious flooding in August 2008 the DEXA scanner was rendered unusable. A new DEXA 

scanner was acquired, but after initial quality control measures it was found that there were 

significant irregularities in the results being produced. It was felt at this time that the results 

measured on the two separate machines were not comparable and therefore only those scans 

taken on the original machine were used for analysis. 

 

4.2.3 Statistical Procedures  

SPSS 15.0 for Windows (SPSS Inc., USA) was used for statistical analysis. Data are reported 

as means ± SEM. Non-normally distributed variables including (fasting plasma glucose, IL-6, 

and hsCRP) were log-transformed for the purpose of analysis. Differences between groups 

were assessed using the unpaired Student t-test. The degree of relationship was calculated 

using Pearson’s product moment (r).  All data presented are adjusted for age and gender. 

Multiple linear regression analysis was performed with OPG as the dependent variable and age, 

gender, BMI, waist circumference, blood pressure, fasting glucose, total and LDL cholesterol, 

TRAIL, hsCRP, IL-6 as the independent variables.  A p<0.05 was taken as indicative of 

statistical significance.  Statistical analysis was carried out using SPSS statistical package 

(version 15.0; SPSS Inc., Chicago IL, USA). 
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4.2.4 Subject Characteristics 

Demographics for the type 2 diabetic patients and healthy controls are described in Table 4.1.  

Patients were matched for age, gender and BMI. 

 

Table 4.1 Subject Characteristics 

 Normal Type 2 Diabetes 

N 58 62 

Age (years) 55.6 ± 1.2 58.31.2 

Gender (M:F) 28:30 40:22 

BMI (kg/m2) 29.5 ± 0.4 30.0 ± 0.5 

Waist Circumference (cm) 101.3 ± 1.4 105.0 ± 1.3 ~ 

BMI (Body mass index), Values are mean ± SEM. ~ p = 0.06
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4.3 Results 
 

Subject Metabolic and Cardiovascular Characteristicsare presented in Table 4.2. Waist 

circumference, systolic blood pressure, medication use (anti-hypertensive, statin, ACE 

inhibitor/ARB, and aspirin use), fasting plasma glucose and triglycerides were all significantly 

higher in diabetics, while total HDL and LDL cholesterol were lower. Characteristics of the 

disease state, medication and complications of the type 2 diabetics are presented in Table 4.3.  

 

Table 4.2 Subject Metabolic and Cardiovascular Characteristics. 

 Normal Type 2 Diabetes 

N 58 62 

Waist Circumference (cm) 101.3 ± 1.4 105.0 ± 1.3 ~ 

Systolic BP (mmHg) 131.14 ± 2.53 142.3 ± 2.26 *** 

Diastolic BP (mmHg) 81.8 ± 1.4 80.26 ± 1.26 

Current smokers 4.7% 9.8% 

Anti-hypertensive use 13.2% 86.7% *** 

ACE/ARB use 8.6% 67.2% *** 

Statin use 15.1% 82.0% *** 

Aspirin use 5.7% 78.7% *** 

Fasting glucose (mmol.l-1) 5.2 ± 0.2 7.9 ± 0.2 *** 

Total Cholesterol (mmol.l-1) 5.4 ± 0.1 4.1 ± 0.1 *** 

LDL Cholesterol (mmol.l-1) 3.4 ± 0.1 2.0 ± 0.1 *** 

HDL Cholesterol (mmol.l-1) 1.4 ± 0.04 1.2 ± 0.04 *** 

Triglycerides (mmol.l-1) 1.4 ± 0.1 2.0 ± 0.1 *** 

TNF-α (pg/ml) 1.5 ± 0.3 1.4 ± 0.3 

BP (blood pressure), LDL (Low density lipoprotein), HDL (Hofbauer et al., 2002), TNF-α 
(Tumour necrosis factor alpha) Values are mean ± SEM, *p < 0.05, *p < 0.05, **p < 0.01, ***p < 
0.001 vs. Type 2 diabetes 
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Table 4.3 Characteristics of the Disease State in Patients with Type 2 Diabetes.  

 Median (range) or n (%) 
 

Duration of diabetes (years) 7 (1-20) 

HbA1c (%) 7 (5.1-10) 

Insulin treated 12 (19.67%) 

Metformin treated 37 (60.66%) 

Sulphonylurea treated 21 (34.43%) 

TZD treated 3 (5.92%) 

Diet alone 8 (13.12%) 

Microvascular complications 15 (24.19%) 

Macrovascular complications 20(32.26%) 

HbA1c (haemoglobin A1c), TZD (Thiazolidinediones) 

 

4.3.3 Effect of Glycaemic Status on Inflammatory Markers 

OPG (5.7 ± 0.2 vs. 4.9 ± 0.2 pmol.l-1; p < 0.05), IL-6 (3.0 ± 0.4 vs. 1.8 ± 0.4 pg.ml-1, p < 0.05) 

and hsCRP (2.2 ± 0.3 vs. 1.6 ± 0.3 mg.L-1, p < 0.05) were significantly higher in type 2 diabetic 

patients and adiponectin was significantly lower (4.8 ± 0.5 vs. 7.2 ± 0.5 μg.ml-1; p < 0.05) 

compared to the healthy non-diabetic controls and there were no differences in serum TRAIL or 

RANKL between those with or without diabetes (Figure 4.1). 
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Figure 4.1 Circuling concentrations of (A) Osteoprotegerin, (B) TRAIL, (C) sRANKL (D) hsCRP, (E) IL-6 
and (F) Adiponectin in Type 2 diabetics and in age and BMI matched normoglycemic healthy controls. 
Data are presented as mean ± SEM. *p < 0.05 vs. Type 2 diabetes. 
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4.3.4 Gender Breakdown 

In the entire group, OPG (5.77 ± 0.26 vs. 5.05 ± 0.18 pmol.l-1, p < 0.05) and adiponectin (7.80 ± 

0.66 vs. 4.23 ± 0.37 μg.ml-1, p < 0.0001) were higher in women than men. There were no 

significant gender differences for TRAIL, hsCRP, sRANKL or IL-6. OPG was correlated with age 

(r = 0.247, p < 0.05).  

 

4.3.5 Correlation Analysis 

TRAIL was correlated with LDL (r = 0.303, p < 0.01) and waist circumference (r = 0.202, p < 

0.05). In the healthy control group, controlling for gender there was a correlation between OPG 

and age (r = 0.364, p < 0.01). When both age and gender were controlled for, OPG was 

correlated with waist circumference (r = -0.262, p < 0.05), adiponectin (r = 0.366, p < 0.01), total 

cholesterol (r = 0.380, p < 0.01), LDL (r = -0.336, p < 0.05), fasting plasma glucose (r = -0.363, 

p < 0.05) and showed a strong tendency towards a significant inverse correlation with TRAIL (r 

= -0.294, p = 0.053), Left Hip BMD (r = -0.320, p = 0.079) and right hip BMD (r = -0.326, p = 

0.074). None of these relationships with OPG were evident in the type 2 diabetic cohort. TRAIL 

was however correlated with LDL (r = 0.325, p < 0.05) 

 

4.3.6 Subset Analysis on the Effect of Vascular Disease on Inflammatory Markers 

To investigate whether the elevated OPG, IL-6 and hsCRP observed in the diabetes group was 

due to the higher prevalence of vascular disease within this group, we compared mean values 

of these proteins, after exclusion of type 2 diabetes patients with either micro- or macro-

vascular disease (Table 4.4).  OPG was still significantly higher in those with diabetes (5.68 ± 

0.25 vs. 4.93 ± 0.2 pmol.l-1, p < 0.05) than normal controls, while the significant difference 

previously seen with IL-6 (2.29 ± 0.26 vs. 1.95 ± 0.23 pg.ml-1, p = 0.24) and hsCRP (1.93 ± 0.27 

vs. 1.59 ± 0.24 mg.L-1, p = 0.37) were now lost. In this group OPG correlated with IL-6 after 

correction for age and gender (r = 0.24, p < 0.05), but this association was lost after correction 

for glycaemic status.  There was no correlation between RANKL or TRAIL and IL-6, or hsCRP in 

either group. 
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Table 4.4 OPG, RANKL, TRAIL, IL-6 and hsCRP in Type 2 diabetics and Healthy Controls in 
subjects free from vascular disease. 

 Type 2 Diabetes  Normal 

 

N 38 58 

Age (years) 56.0 ± 1.6 55.6 ± 1.2 

Gender (M:F)  23:15 28:30 

BMI (kg.m-2) 30.61 ± 0.6 29.48 ± 0.42 

OPG (pmol.l-1) 5.68 ± 0.25 4.93 ± 0.20* 

TRAIL (ng.ml-1) 76.74 ± 4.33 82.19 ± 3.77 

RANKL (pmol.l-1) 2.25 ± 0.47 2.60 ± 0.43 

IL-6 (pg.ml-1) 2.29 ± 0.26 1.95 ± 0.23 

hsCRP (mg.l-1) 1.93 ± 0.27 1.59 ± 0.24 

TNF-α (pg.ml-1) 1.42 ± 0.28 1.43 ± 0.26 

BMI (Body mass index), TRAIL (TNF-related apoptosis inducing ligand), sRANKL (soluble 
receptor activator of NF-κβ ligand), Interleukin 6 (IL-6), hsCRP (high sensitivity c-reactive 
protein), TNF-α (Tumour necrosis factor alpha). Values are mean ± SEM. * p < 0.05 vs. Type 2 
Diabetes 
 

4.3.7 Bone Mineral Density and markers of inflammation 

In the subset of 66 participants (53% and 57% of those with and without diabetes respectively) 

that underwent DEXA scanning, there was no significant difference between OPG, adiponectin, 

sRANKL and TRAIL between those who were osteopaenic and those who had BMD in the 

normal range.  

 

4.4 Summary 

The main findings of Experiment II are that OPG but not RANKL or TRAIL is significantly 

increased in type 2 diabetes.  IL-6 and hsCRP is higher in individuals with diabetes and 

adiponectin is lower, but unlike OPG, they are no longer different when subjects with vascular 

disease are excluded. 
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5.1 Introduction 

Rationale 

Type 2 diabetes, impaired glucose tolerance and obesity are characterized by fasting and 

postprandial hyperinsulinaemia (Reaven et al., 1993a), (Cavaghan & Polonsky, 2005) and 

insulin resistance. Unravelling the specific metabolic effects of elevated circulating insulin from 

failing insulin action remains challenging. However, several large, longitudinal studies have 

described a link between hyperinsulinaemia and the development of cardiovascular disease. 

(Pyorala et al., 1985), (Welborn & Wearne, 1979), (Eschwege et al., 1985). As well as its 

traditional glucose lowering role, insulin is a vasoactive peptide capable of exerting significant 

hemodynamic effects (Cersosimo & DeFronzo, 2006) including increased sympathetic activity, 

renal sodium retention, and vascular smooth muscle cell proliferation. (Goalstone et al., 1998), 

(Kawasaki et al., 2000). Indeed the activity of endothelial nitric oxide synthase, a potent 

vasodilator is increased several fold by insulin responsive cytokines such as IL-1β, IL-6, TNF-α, 

interferon-γ and adenosine (Landry & Oliver, 2001). The Framingham Offspring Study (Meigs et 

al., 2000) showed that there was a consistent relationship between hyperinsulinaemia and the 

procoagulant state, which was evaluated by measuring PAI-1, tissue plasminogen activator, von 

Willebrand factor, fibrinogen, plasma viscosity, and factor VII antigen (Uwaifo & Ratner, 2003). 

Nevertheless, other studies have found that that arterial infusion of insulin leads to an up 

regulation of both endothelin, a vasoconstrictor, and the vasodilator nitric oxide (Cardillo et al., 

1999). Recent studies have suggested an important role for insulin in the inhibition of OPG 

expression and secretion. Olesen et al. (2005) demonstrated in vitro that human vascular 

smooth muscle cells incubated with insulin exhibit markedly reduced OPG production when 

compared to controls (Olesen et al., 2005). One in vivo study which examined the effect of 6 

months of insulin therapy in young type 1 diabetics on OPG levels and endothelial function via 

flow-mediated endothelium-dependent arterial dilation found that OPG decreased significantly in 

these patients and that this decrease was strongly correlated with the change in flow-mediated 

endothelium-dependant arterial dilation (Xiang et al., 2007). Another very recent paper has also 

demonstrated an acute effect of insulin administration in reducing OPG secretion to the 

circulation in lean, type 2 diabetic and obese subjects during a euglycaemic-hyperinsulinaemic 

clamp. It was found that serum OPG was markedly reduced in all three groups and that the lean 

control group showed a significantly greater decrease than the type 2 diabetic and obese 
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subjects (Jorgensen et al., 2009). Interaction between insulin and the OPG / RANKL / RANK / 

TRAIL axis may be one mechanism by which elevated fasting and postprandial 

hyperinsulinaemia can independently affect the development of cardiovascular disease.  

 

Aims 

The purpose of this study was to examine changes in circulating OPG levels with varying 

degrees of glucose tolerance and to investigate the influence of adiposity and inflammatory 

processes on OPG concentrations. 

 

Hypothesis 

We hypothesized that the deteriorating inflammatory state coupled with the sharp rise in 

hyperinsulinaemia with decreasing glucose tolerance would uncouple the relationship between 

OPG and insulin sensitivity that we observed in our previous experiments. We also propose that 

acute hyperinsulinaemia associated with an oral glucose load may act to suppress OPG 

secretion and that this regulation would be differentially regulated dependant of glycaemic 

status.  

 

5.2 Materials and Methods 

 

5.2.1 Experimental Design Overview 

Sixty one male subjects were recruited to participate in this study. Twenty patients with type 2 

diabetes and twenty male patients with either impaired glucose tolerance or impaired fasting 

glucose were recruited from the diabetes clinic in Beaumont Hospital. An additional twenty one 

healthy obese male subjects free from CVD were recruited from Dublin City University. All three 

groups were age and BMI matched. In addition, data from twenty one lean age matched 

subjects who were part of the cohort used in the Experiment 1 were also included in the data 

set (Figures 5.1 and 5.4) for comparative purposes. Ethical approval was obtained from the 

Beaumont hospital and Dublin City University Research Ethics Committee. Volunteers were 

excluded if they had evidence of malignancy, renal impairment (serum creatinine >120 μmol.l-1), 

type 1 diabetes, pregnancy, any disorder of calcium metabolism (i.e. hyper- or hypo-calcaemia), 



 93

previous diagnosis of osteoporosis or use of medications affecting bone metabolism (i.e. 

calcium, vitamin D, bisphosphonates, oestrogen preparations, strontium, parathyroid hormone), 

recent (within previous 6 months) history of a macrovascular event (defined as an acute 

coronary syndrome, transient ischaemic attack, stroke, lower limb ischaemic event or any 

vascular interventional procedure), and osteoporosis on DEXA scan. Subjects reported to the 

laboratory in the morning following an overnight fast at which point fasting blood samples were 

collected. Oral glucose tolerance tests (OGTT) to assess glycaemic status were carried out on 

all subjects. Subjects were interviewed by a physician and had anthropometric measurements 

taken. A full clinical history and physical examination were performed by a medical doctor on all 

study subjects.  

 

5.2.2 Assessment of Glycaemic Status 

Subjects were assigned to a category of either normoglycaemia (NGT Obese), impaired 

glucose tolerance/impaired fasting glucose (IFG / IGT) or type 2 diabetes based on previous 

clinical history and WHO guidelines for an OGTT (Reinauer et al., 2002). In brief; subjects were 

classified with impaired fasting glucose if they had fasting blood glucose between 6.1 and 6.9 

mmol.l-1. They were considered to have impaired glucose tolerance if their fasting plasma 

glucose was ≤ 7.0 mmol.l-1 and their 2 hr plasma glucose was between 7.8 and 11.0 mmol.l-1. 

They were adjudged to be diabetic if either their fasting glucose was ≥ 7.0 mmol.l-1 and/or their 2 

hr plasma glucose was ≥ 11.0 mmol.l-1. Normal glucose tolerance (NGT) was considered to be a 

fasting plasma glucose < 6.1 mmol.l-1 and a 2 hr plasma glucose less than 7.8 mmol.l-1 in 

conjunction with a medical examination and interview which did not show any prior history of 

glycaemic dysfunction. All blood sampling and biochemical analysis were carried out as 

described previously in section 3.2.6 and 3.2.7. 

 

5.2.3 Statistical Procedures  

SPSS 15.0 for Windows (SPSS Inc., USA) was used for statistical analysis. Data are reported 

as means ± SEM. Normally distributed variables were explored using simple bivariate or partial 

regression. Non-normally distributed variables were log-transformed. A one-way analysis of 

covariance (ANCOVA) was used to examine differences between glycaemic categories with 
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age as a covariate. Bonferroni’s post hoc test was applied to determine differences among 

means. Statistical significance was set at p<0.05. 

 

5.2.4 Subject Characteristics 

Age and BMI for all subjects are presented in Table 5.1.There was no significant difference 

between groups for age or BMI. 

 

Table 5.1 Subject Characteristics 

 Type 2 Diabetes IGT / IFG NGT Obese 

 (20) (20) (21) 

Age (years) 56.2 ± 2.1 56.8 ± 2.3 53.8 ± 2.2 

BMI (kg.m-2) 30.5 ± 0.6 30.5 ± 0.8  30.2 ± 0.5  

BMI (Body mass index) 
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5.3 Results 

5.3.1 Markers of Insulin Sensitivity 

Indicators of metabolic function and insulin sensitivity are presented in Table 5.2 for the three 

subject groups. In order to assess the potential influence of adiposity and relative insulin 

resistance on circulating OPG levels in clinically normal glucose tolerant subjects, twenty one 

lean age matched males from experiment 1 were included later for further analysis (Figure 5.1)  

 

Table 5.2 Subject Characteristics and indicators of insulin sensitivity.  

 Type 2 Diabetes IGT / IFG NGT Obese 

 (20) (20) (21) 

Fasting Glucose (mmol.l-1) 7.4 ± 0.2 6.2 ± 0.1 * 5.2 ± 0.1 * † 

Fasting Insulin (pmol.l-1) 118.8 ± 15.6 127.7 ± 12.6 39.9 ± 4.3 * † 

2 hr Glucose (mmol.l-1) 12.6 ± 0.7 8.6 ± 0.3 * 5.1 ± 0.3 * † 

2 hr Insulin (pmol.l-1) 493.4 ± 74.5 526.8 ± 55.2 39.6 ± 24.6 * † 

HOMA-IR 6.4 ± 0.8 5.8 ± 0.6 * 1.6 ± 0.2 * † 

OGIS (ml.min.m-2) 289 ± 10 332 ± 10 424 ± 9 * † 

AUC Glucose (mmol.l.min) 1593 ± 62 1218 ± 30 * 816 ± 32 * † 

AUC Insulin (pmol.l.min) 64475 ± 9176 60693 ± 6032 29677 ± 3492 * † 

NGT (Normal Glucose Tolerance), HOMA-IR (Matthews et al., 1985), OGIS (Mari et al., 2001), 
AUC Glucose (area under the glucose curve), AUC Insulin (area under the insulin curve). 
Values are mean ± SEM. * p < 0.05 vs. Type 2 Diabetes, †   p < 0.05 vs. IGT / IFG.  
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Characteristics of the disease state and medication of the type 2 diabetics are presented in 

Table 5.3 

 

Table 5.3 Characteristics of the Disease State in Patients with Type 2 Diabetes.  

 Median (range) or n (%) 
 

Duration of diabetes (years) 5 (1-13) 

Insulin treated 3 (15%) 

Metformin treated 16 (80%) 

Sulphonylurea treated 5 (25%) 

TZD treated 1(5%) 

Diet alone 2 (10%) 

TZD (Thiazolidinediones) 
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Figure 5.1 Insulin (A) and Glucose (B) kinetics in response to a 75 g Oral Glucose Tolerance Test in Type 
2 diabetics ▲ , those with Impaired Glucose Tolerance or Impaired Fasting Glucose (Pomplun et al., 2007) 
♦ , age and BMI matched normoglycemic controls ● and a lean age matched control group ■. 
 

5.3.2 Insulin, Glucose, OPG and hsCRP Kinetics in Response to the OGTT 

The type 2 diabetics and the IGT/IFG group had significantly higher plasma insulin 

concentrations at all time points than both the age and BMI matched group or the lean age 
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matched group p < 0.01. There was no significant difference in plasma insulin levels at any time 

point between the type 2 diabetics and IGT/IFG group or between the two normoglycemic 

groups. Plasma glucose was significantly higher in the type 2 diabetic group at all time points (p 

< 0.01) and  IGT/IFG plasma glucose levels were significantly higher at all time points that the 

two normoglycaemic groups (p < 0.01). There was no significant difference in plasma glucose 

levels between the obese and lean normoglycaemic groups (Figure 5.1). However there were 

significant differences in fasting glucose, fasting insulin, HOMA-IR, OGIS as well other 

indicators of insulin sensitivity and glycaemic control between the groups (Table 5.1). There was 

no significant change in hsCRP in response to the OGTT in any of the glycaemic conditions. 

OPG was significantly reduced in response to the oral glucose load in the IFG / IGT but was 

unchanged in type 2 diabetics and normoglycemic obese subjects (Figure 5.2). 

 

5.3.3 hsCRP and Insulin Sensitivity 

OGIS (424 ± 9 vs. 332 ± 10, p < 0.05 and vs. 289 ± 10 ml.min.m-2, p < 0.05) and adiponectin 

(4.3 ± 0.3 vs. 3.1 ± 0.3, p < 0.05 and vs. 2.9 ± 0.2 μg.ml-1, p < 0.05) were significantly higher in 

healthy age and BMI controls than in either IGT / IFG subjects or type 2 diabetics. hsCRP was 

significantly lower in the healthy matched control group (1.2 ± 0.2 vs. 4.6 ±  0.9 mg.L-1 p < 0.05) 

and the IGT / IFG group (2.4 ± 0.7 vs. 4.6 ±  0.9 mg.L-1, p < 0.05). There was no significant 

difference in hsCRP levels between the healthy matched control group and the IGT / IFG 

subjects. OPG (4.7 ± 0.3 vs. 6.0 ± 0.5, p < 0.05 and vs. 6.3 ± 0.3 pmol.l-1, p < 0.05) was 

significantly lower in healthy controls than in either IGT / IFG subjects or type 2 diabetics. There 

was no significant difference in OPG levels between the type 2 diabetics and IGT/IFG groups 

(Figure 5.1). In order to assess the independent effect of obesity on circulating OPG levels, a 

fourth group of age matched lean controls from Experiment 1 were included for analysis. OPG 

levels in this group of age matched normoglycemic lean males were then compared to the other 

groups. The lean control group had significantly higher levels of OPG than the obese 

normoglycemic group, however there was no significant difference between this group (6.0 ± 0.3 

pmol.l-1) and either the type 2 diabetics (6.3 ± 0.3 pmol.l-1) or the IGT / IFG groups (6.0 ± 0.5 

pmol.l-1) (Figure 5.2). This finding which may be explained by the relative fasting and 

postprandial hyperinsulinaemia, that although not of clinical significance may still be sufficient to 

suppress OPG production and secretion and in the absence of a significant inflammatory state 
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to give impetus to increased OPG production as indicated by what would be considered normal 

hsCRP levels. 
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Figure 5.2 Circulating concentrations of Osteoprotegerin (A), (B), (C) and hsCRP (D), (E), (F) in Type 2 
diabetics, pre-diabetic (IFG/IGT) and normoglycemic obese controls at baseline and 2hrs after a 75 g oral 
glucose load (OGTT). 
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Figure 5.3 Differences in markers of insulin sensitivity and systemic inflammation in Type 2 diabetics, 
those with Impaired Glucose Tolerance (Pomplun et al., 2007) or Impaired Fasting Glucose (IFG) and age 
and BMI matched normoglycemic controls (A) Oral Glucose Insulin Sensitivity (OGIS), (B) high sensitivity 
C-reactive Proteins (hsCRP), (C) Osteprotegerin (D) Adiponectin. *p < 0.05 vs. Type 2 diabetes, † p < 0.05 
vs. IGT / IFG. 
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Figure 5.4 Osteprotegerin in Type 2 diabetics, those with Impaired Glucose Tolerance or Impaired Fasting 
Glucose (IGT/ IFG), age and BMI matched normoglycemic subjects (NGT Obese) and an age matched 
normoglycemic lean control group (Nissen & Sharp, 2003). 
 
 

5.4 Summary  

The main findings of Experiment III are that there is no difference in OPG between prediabetic 

and type 2 diabetic cohorts, but both have higher levels than matched obese controls. 

Interestingly, OPG in lean insulin-sensitive subjects is comparable to that of the pre-diabetic and 

type 2 diabetic patients but significantly higher than their matched lean counterparts. 
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Chapter VI General Discussion 
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The goal of this thesis was to investigate changes in Osteprotegerin concentrations in various 

stages of metabolic dysfunction, including obesity, insulin resistance and cardiovascular 

disease. The principle findings of the experimental studies presented here were as follows. 

 

Experiment I 

I. Obese subjects who have normal glucose tolerance and are free from cardiovascular 

disease have lower circulating levels of OPG than their lean age matched counterparts. 

II. Osteoprotegerin is inversely correlated with insulin sensitivity, adiponectin and 

indicators of total body and visceral adiposity and positively correlated with aerobic 

fitness. 

III. TRAIL is positively correlated with both fat mass and waist circumference, independent 

of age, gender and BMI. 

 

Experiment II 

IV. Osteprotegerin and IL-6 are significantly higher as and adiponectin significantly lower in 

type 2 diabetics than in age and gender matched normoglycemic controls, while there is 

no difference in TNF-α, TRAIL or sRANKL concentrations. 

V. Osteoprotegerin is higher in type 2 diabetics after excluding patients with previously 

diagnosed vascular disease, a distinction which could not be made using traditional 

inflammatory markers such as IL-6, hsCRP or TNF-α. 

 

Experiment III 

VI. There is no difference in OPG concentrations between those with prediabetes and overt 

type 2 diabetes, however both conditions appear to have significantly higher levels of 

OPG than age and BMI matched obese normoglycemic controls. 

VII. Interestingly, lean normoglycemic subjects have OPG concentrations which are similar 

to that of both pre-diabetic and type 2 diabetic patients but significantly higher than their 

matched obese counterparts.  
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The most significant finding from this series of experiments is the differential regulation of 

circulating OPG in obese and diabetic patients as presented in Figure 5.4. Circulating OPG has 

been reported to be significantly higher in patients with type 2 diabetes (Yaturu et al., 2008), 

(Secchiero et al., 2006), (Olesen et al., 2005), (Rasmussen et al., 2006), to correlate with the 

presence of coronary artery disease (Jono et al., 2002), (Schoppet et al., 2003), and to be an 

independent predictor of cardiovascular mortality (Browner et al., 2001), (Kiechl et al., 2004), 

(Ueland et al., 2004), (Omland et al., 2008). Indeed it has also been shown that OPG can 

independently predict silent coronary artery disease in type 2 diabetic patients (Avignon et al., 

2005). However, in the majority of studies the control groups are often age and BMI matched. 

Therefore, the assumption that circulating OPG progressively increases with increasing weight 

and insulin resistance may not be correct. There have been few published papers that have 

examined the relationship between adiposity, insulin sensitivity and OPG in a normal population 

free from overt cardio-metabolic disease. The findings from this thesis demonstrate an 

uncoupling of an insulin or insulin resistant mediated decrease in circulating OPG and suggest 

that elevated OPG in diabetic patients may be the result of inflammatory processes. 

 

In Experiment I we tested the hypothesis that in a healthy cohort, in the absence of a significant 

inflammatory promoter, that OPG may be differentially regulated in obesity and, that OPG may 

be chronically related to fasting and postprandial insulin excursions as assessed by an oral 

glucose tolerance test. Our findings from Experiment I indicate that obese subjects with normal 

glucose tolerance who are free from cardiovascular disease as confirmed by an exercise stress 

test and medical examination have lower circulating OPG compared with matched normal 

weight and overweight individuals. We also observed a positive relationship between OPG and 

adiponectin which was mirrored by concomitant inverse relationships with glucose stimulated 

insulin secretion in addition to similar significant negative relationships with both fasting insulin 

and glucose. These findings would at first seem to be at odds with previous studies that have 

found a positive relationship between circulating OPG levels and metabolic dysfunction (Anand 

et al., 2006), (Avignon et al., 2005), (Knudsen et al., 2003), (Terekeci et al., 2009), (Browner et 

al., 2001), (Jono et al., 2002), (Kiechl et al., 2004), (Schoppet et al., 2003), (Ziegler et al., 2005). 

A number of growth factors and inflammatory cytokines which are key players in the 

pathogenesis of atherosclerosis and coronary artery disease have also been implicated in the 

regulation of OPG in the vascular wall. Vascular endothelial cell-expression of OPG can be 
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induced by the addition of the inflammatory cytokines; TNF-α, IL-1α and IL-1β, (Secchiero et al., 

2006), (Ben-Tal et al., 2007). In vascular smooth muscle cells, a number of cytokines have been 

shown to augment OPG expression in vitro, including TNF-α, IL-1β, basic fibroblast growth 

factor (bFGF), platelet-derived growth factor (PDGF), and angiotensin II (Collin-Osdoby et al., 

2001), (Olesen et al., 2005), (Ben-Tal et al., 2007), (Zhang et al., 2002). A recent study by 

Olesen et al., (2005) also suggested an important role for insulin itself in the inhibition of OPG 

expression and secretion and demonstrated in vitro that human vascular smooth muscle cells 

incubated with insulin exhibit markedly reduced OPG production when compared to controls 

(Olesen et al., 2005). One in vivo study examined the effect of 6 months of insulin therapy in 

young type 1 diabetics on OPG levels and endothelial function and found that OPG decreased 

significantly (Xiang et al., 2007). Another very recent paper has also observed a negative effect 

of acute insulin administration on OPG secretion to the circulation of lean, type 2 diabetic and 

obese subjects during a hyperinsulinaemic-euglycaemic clamp (Jorgensen et al., 2009). By 

excluding subjects with metabolic or cardiovascular disease and therefore those with a 

significant underlying inflammatory process, we have demonstrated for the first time that subtle, 

sub-clinical, changes in fasting ambient insulin or insulin sensitivity coincide with a reduction in 

circulating OPG concentrations. Previously the role of obesity in the regulation of circulating 

osteoprotegerin has not been clear. Some studies report a decrease in OPG in obese subjects 

compared to lean controls (Ugur-Altun et al., 2005), (Holecki et al., 2007) but other studies have 

not found a relationship between OPG and BMI (Gannage-Yared et al., 2006), (Gannage-Yared 

et al., 2008), (Jorgensen et al., 2009). Weight gain is accompanied by a number of metabolic 

alterations including a decrease in insulin sensitivity. Ugur-Altan et al., (2005) divided a group of 

obese healthy subjects into tertiles based on insulin resistance as assessed using the HOMA-IR 

method and compared these groups to lean control subjects. When OPG was corrected for BMI 

it was significantly lower in all obese tertiles compared to lean controls. They also found that 

OPG was significantly lower in the least insulin sensitive obese tertile compared to the most 

sensitive. In Experiment I, insulin sensitivity was significantly lower in obese compared with 

overweight and normal weight groups and there was a positive relationship between OPG and 

insulin sensitivity for all subjects (Ugur-Altun et al., 2005). We found an inverse relationship 

between fasting OPG and the area under the curve for glucose and insulin during the OGTT in 

support of recent studies suggesting that elevated insulin may be an important effector exerting 

downward pressure on circulating OPG concentrations. When Jorgensen et al., (2009) reported 
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a decrease in OPG in response to hyperinsulinaemia, the magnitude of OPG-lowering effects of 

insulin was decreased by approximately 50 % in the obese and type 2 diabetic groups 

compared to lean controls (Jorgensen et al., 2009). A decrease in OPG has also been reported 

in lean and morbidly obese subjects following an oral glucose tolerance test (Hofso et al., 2009) 

and in lean males following a hyperglycaemic clamp (Knudsen et al., 2007). In this study, 

Knudsen et al., (2007) found that the decrease in OPG was related to the change in serum 

insulin and not glucose during the hyperglycaemic clamp. Therefore, subtle increases in fasting 

insulin secretion, as observed in Experiment I, may be adequate to decrease chronic OPG 

production in an obese normoglycemic cohort. If insulin sensitivity was a major regulator of 

serum OPG, exercise training or weight loss might be expected to induce a change in its 

circulating concentrations. We found a positive correlation between OPG and aerobic fitness 

which might suggest that exercise training may increase serum OPG in healthy subjects. 

However, other studies using a dietary restriction-induced weight loss intervention reported a 

further decrease in OPG (Holecki et al., 2007) or no change as a result of gastric banding 

(Gannage-Yared et al., 2008). No studies that we are aware of, have, as of yet examined the 

impact of exercise training on levels of circulating OPG. 

 

The positive relationship between OPG and adiponectin was robust and maintained after 

additional correction for BMI. Adiponectin is an adipocyte-specific endocrine protein with anti-

inflammatory and insulin sensitising actions. Circulating adiponectin is lower in obese subjects 

compared to lean controls and is also decreased with cardiovascular disease and type 2 

diabetes. It is not yet known if adiponectin secretion and OPG appearance are directly related 

physiological processes in vivo or if the positive correlation between OPG and adiponectin 

reported here, and in other studies (Gannage-Yared et al., 2006), (Gannage-Yared et al., 2008), 

is evident only in healthy cohorts. Interestingly receptors for adiponectin are present in both 

osteoblasts and osteoclasts, suggesting that adiponectin influences bone metabolism in an 

autocrine / paracrine as well as an endocrine manner (Berner et al., 2004), (Shinoda et al., 

2006). There is now also evidence of a similar role for OPG in adipose tissue. An et al., (2007) 

demonstrated that OPG and RANKL are expressed in differentiating 3T3L1 adipocytes and that 

OPG mRNA expression in this cell model could be attenuated in response to insulin and 

increased in response to TNF-α, much the same as in the VSMC model (Olesen et al., 2005). 

Interestingly, the treatment of these cells with the insulin-sensitizer, rosiglitazone, led to a dose-
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dependant decrease in OPG mRNA (An et al., 2007). Recombinant adiponectin increases bone 

resorption in vitro by reducing osteoblast formation through RANKL secretion and the inhibition 

of OPG production (Luo et al., 2006). The majority of published human studies on the subject 

also indicate that adiponectin is a negative regulator of BMD in both men and women (Misra et 

al., 2007), (Peng et al., 2008), (Lenchik et al., 2003), (Jurimae & Jurimae, 2007), (Richards et 

al., 2007). This negative effect may be mediated by the promotion of bone resorption (Peng et 

al., 2008). However, some studies have shown a positive effect of adiponectin on BMD (Tamura 

et al., 2007) or no effect (Oh et al., 2004). The relationship observed in Experiment I between 

OPG and adiponectin may be indicative of consistently elevated BMDs in obese relative to lean 

populations. 

 

Circulating TRAIL and RANKL are ligands for the soluble OPG receptor. We found a positive 

relationship between TRAIL, fat mass and waist circumference but did not observe a difference 

across BMI categories. TRAIL may exert an effect at the level of the vascular wall and in vitro 

evidence suggests that it can promote apoptosis in vascular smooth muscle cells, leading to 

increased plaque instability (Sato et al., 2006). On the other hand, OPG appears to promote 

endothelial cell survival (Cross et al., 2006), (Malyankar et al., 2000), possibly by inhibition of 

TRAIL-induced apoptosis (Pritzker et al., 2004). We did not find any significant changes or 

relationships for the other OPG ligand, sRANKL. This may be due to the fact that our subject 

cohort were healthy as other studies have reported elevated RANKL to be associated with 

increased (Kiechl et al., 2007) and decreased (Schoppet et al., 2003) cardiovascular disease 

risk. This inconsistency may also result from different assay methodologies. Several studies 

have used commercially available assays that measure unbound and uncomplexed forms of 

both RANKL or OPG (Xiang et al., 2006), (Knudsen et al., 2003), (Rasmussen et al., 2006), 

(Jorgensen et al., 2009). The RANKL assay used in these experiments measured soluble 

RANKL (sRANKL) i.e. bound to OPG in addition to the free component. The OPG assay used in 

this body of work measured both total OPG, including OPG bound to RANKL and TRAIL and 

has been used to measure OPG in many cohorts (Gannage-Yared et al., 2006), (Gannage-

Yared et al., 2008), (Anand et al., 2006), (Schoppet et al., 2003). It is problematic to compare 

the OPG concentrations from studies that have used different commercially available assays 

because of the difficulty in ascribing an exact molecular weight to the OPG-isoforms measured 

in different assays, thus making a conversion from non-SI to SI units problematic. Therefore, 
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previous studies that have exclusively measured uncomplexed OPG may have unintentionally 

excluded a large portion of the biologically active circulating OPG that has either bound to 

TRAIL or RANKL or indeed has undergone some other non-specific binding. Therefore changes 

in circulating free OPG observed in some previous studies in response to either insulin therapy 

or acute insulin infusion are as likely to reflect changes in the concentrations of known ligands, 

RANKL or TRAIL and thus their increased binding to OPG. 

 

Type 2 diabetes mellitus is associated with accelerated atherosclerosis and a threefold 

increased risk of cardiovascular disease (Kannel & McGee, 1979). Arterial calcification, a 

prominent feature of atherosclerosis, is prevalent and extensive in patients with diabetes (Chen 

& Moe, 2003) and is an independent predictor of cardiovascular mortality in both newly 

diagnosed (Niskanen et al., 1994) and established type 2 diabetes (Lehto et al., 1996). OPG-

knockout mice development osteoporosis and marked vascular calcification of the aorta and 

renal arteries (Bucay et al., 1998). Administration of recombinant OPG reverses arterial 

calcification (Min et al., 2000), (Price et al., 2001) and suggests that OPG plays an active role in 

the prevention of vascular calcification. The purpose of Experiment II was to measure serum 

OPG/RANKL/TRAIL in a cohort of well controlled type 2 diabetic patients with no evidence of 

underlying metabolic bone disease, comparing them to an equivalent age and BMI matched, 

normoglycemic, and healthy cohort and to determine whether any differences in OPG relate to 

the presence of underlying vascular disease or inflammation. We found that OPG, IL-6 and 

hsCRP (but not RANKL or TRAIL) were higher in patients with diabetes than in controls. OPG 

correlated with age and fasting glucose in healthy controls, but not in those with diabetes. After 

exclusion of diabetic subjects who had a previous history of vascular disease, OPG was still 

higher in those with diabetes, but IL-6 and hsCRP were no longer significantly different. Our 

findings from Experiment II indicate that OPG is significantly higher in diabetic patients, 

regardless of the presence or absence of diabetes related complications, when compared to an 

age and BMI matched control group with normal glucose tolerance. We did not find a significant 

difference between diabetics and healthy subjects for TNF-α irrespective of prior history of 

vascular dysfunction. Despite the fact that TNF-α is considered to be a potent promoter of OPG 

production, this result is perhaps not surprising as although increased TNF-α expression in 

obesity is evident in adipose tissue, muscle, and macrophages. Several studies, indicate that 

circulating TNF-α concentrations are not elevated in obese rodents and humans (Xu et al., 
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2002), (Cawthorn & Sethi, 2008). This finding has suggested that adipose tissue does not 

release TNF-α systemically in great quantities, which might imply that TNF-α exerts its effects 

locally rather than in an endocrine manner. Analysis and interpretation of the circulating 

concentrations of TNF-α in both obesity and type 2 diabetes have been somewhat complicated 

by the fact that even when using ELISA based assays from the same manufacturer some 

studies have reported values based on the use of assays that have measured high sensitivity 

TNF-α (Ng et al., 1999), (Plomgaard et al., 2007) and others have reported values using 

standard TNF-α assays (MacEneaney et al., 2009). It is likely that given the nature of the small 

changes in TNF-α observed in human studies that a high sensitivity assay such as that 

employed here would be more appropriate to assess circulating levels in healthy populations. 

For these reasons, after we found that there were no differences in TNF-α levels between the 

diabetic and normoglycaemic groups, we decided it would not be prudent to measure TNF-α 

prospectively in Experiment III or retrospectively in Experiment 1. 

 

No difference was observed in sRANKL or TRAIL between the two groups, suggesting that their 

role as a biomarker, specifically of metabolic dysfunction may be limited. To the best of our 

knowledge, this is the first study to investigate the triumvirate of OPG/RANKL/TRAIL in such 

detail in patients with type 2 diabetes. Our findings for OPG in this cohort are in agreement with 

those of Xiang et al., (2006) and Kim et al., (2005) who found higher serum OPG in patients 

with diet controlled diabetes and no history of vascular disease (Xiang et al., 2006), (Kim et al., 

2005). Both of these studies contained patients with newly-diagnosed diabetes, and it is not 

known the effect, if any, of glucose toxicity at diagnosis on serum OPG levels. Previous studies 

examining the relationship between OPG, RANKL, TRAIL and diabetes have had conflicting 

results. Some of the earlier studies investigating the role of OPG as a marker of cardiovascular 

disease did not include a homogeneous group of type 2 diabetics and no effort was made to 

exclude patients with underlying metabolic bone disease or who were on medications which 

could have interfered with bone metabolism (Schoppet et al., 2003), (Browner et al., 2001), 

(Kiechl et al., 2004), (Omland et al., 2008). This may be why an increase in circulating OPG has 

been consistently linked with the onset, progression and severity of cardiovascular disease 

(Jono et al., 2002), (Schoppet et al., 2003). OPG is an independent risk factor for incident 

cardiovascular disease (Kiechl et al., 2004), (Ueland et al., 2004), heart failure (Omland et al., 

2008), (Ueland et al., 2004), all cause (Browner et al., 2001) and vascular mortality (Kiechl et 
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al., 2004), (Omland et al., 2008), (Ueland et al., 2009). When the severity of vascular disease is 

assessed by coronary angiography, circulating OPG increases proportionally with the number of 

diseased vessels (Jono et al., 2002), (Schoppet et al., 2003). In patients with type 2 diabetes 

OPG is increased in some (Browner et al., 2001), (Xiang et al., 2006) but not all (Jorgensen et 

al., 2009) studies. The reason for this may be related to the presence or absence of micro and 

macrovascular complications in the studied groups. In studies that used a non-diabetic control 

group, circulating OPG was similar between controls and diabetic patients without vascular 

complications (Knudsen et al., 2003), (Terekeci et al., 2009), while other studies have shown 

significantly higher OPG in diabetes patients with asymptomatic silent coronary artery disease 

(Avignon et al., 2005), (Avignon et al., 2007) or microvascular complications including 

microalbuminuria (Xiang et al., 2006), retinopathy (Knudsen et al., 2003) and neuropathy 

(Terekeci et al., 2009). It is not known why circulating OPG is increased with type 2 diabetes 

and why this response is in contrast to obesity-related changes. It may be related to the 

increased presence of pro-inflammatory cytokines as the in vitro incubation of human vascular 

smooth muscle cells (Olesen et al., 2005) and human microvascular endothelial cells 

(Secchiero et al., 2006), (Collin-Osdoby et al., 2001) with TNF-α , but not glucose, increases 

OPG production. This would also support the suggestion that OPG protects against the 

development of vascular damage as OPG-deficient mice have increased arterial calcification 

(Bennett et al., 2006) that can be reversed following OPG replacement (Price et al., 2001). In 

Experiment II when the diabetic and normoglycemic groups were combined and analyzed 

together, OPG correlated positively with age and adiponectin and was inversely related to waist 

circumference, total cholesterol and fasting plasma glucose. However, none of these 

relationships were found when the diabetic group were analyzed in isolation. The finding of an 

inverse relationship between adiponectin and OPG in the grouped data is reminiscent of our 

finding in Experiment I. It appears that diabetes, possibly as a result of the inflammatory state or 

ambient hyperinsulinaemia, may ‘uncouple’ the positive relationship between OPG and insulin 

sensitivity observed in healthy groups. 

 

The role of insulin in this process is important but difficult to definitively prove in dynamic human 

experiments. The vasoactive role of insulin is mediated by the regulation of a number of 

important inflammatory cytokines that promote increase endothelial nitric oxide synthase activity 

(Landry & Oliver, 2001). Insulin may have an even wider role in the metabolic regulation of non 
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traditional tissues such as bone and the vascular endothelium. The relationship between 

glycaemic status and bone metabolism is complex and has been poorly understood. Despite 

higher BMD in diabetes, the risk of fractures in patients with type 2 diabetes is significantly 

increased (Carnevale et al., 2004). Indeed recent observations suggest that bone resorption is 

acutely reduced in the postprandial period (Clowes et al., 2002) and after an oral glucose load 

(Bjarnason et al., 2002). Clowes et al., (2002) demonstrated that a hyperinsulinaemic-

hypoglycaemic clamp led to a significant reduction in markers of bone turnover. The purpose of 

Experiment III was to investigate if and how OPG changes with progressive insulin resistance. 

In addition, we sought to examine if an acute differential effect of an oral glucose load and the 

resultant transient hyperinsulinaemia on circulating OPG could be identified. Our findings 

indicate that there was no significant change in hsCRP, a traditional marker of inflammation in 

response to a glucose load in the total cohort or in any of the specific groups. When the total 

group was analyzed in Experiment III we did not find a difference between OPG at baseline and 

120-min after the glucose challenge. Nevertheless OPG was positively correlated with AUC 

insulin and HOMA-IR which conflicts with our findings from Experiment 1. However, when 

glycaemic status was statistically controlled for using a partial correlation analysis, these 

relationships were lost.  

 

There was no significant change in OPG levels in either the normoglycemic-obese category or 

in the type 2 diabetics. Interestingly, circulating OPG levels did decrease 2 hrs after glucose 

consumption in the IFG / IGT group. At baseline OPG was lower in the normoglycemic obese 

group than the other categories and there were no significant differences between the lean, type 

2 diabetic, and IFG/IGT groups. We found that glucose intolerance was associated with lower 

adiponectin levels and higher hsCRP levels. The finding of increased adiponectin in obese-

normoglycaemic relative to pre-diabetic and type 2 diabetics is supported by Hofso et al., (2009) 

who also showed that adiponectin was lower in lean and morbidly obese normoglycemic 

subjects than pre-diabetic or new onset diabetes patients matched for age and BMI. Hofso et 

al., (2009) also saw that lean subjects had significantly lower CRP levels than their obese and 

pre-diabetic counterparts and that diabetics had significantly elevated CRP levels compared to 

the other groups, a finding which is consistent with our observations in Experiment III. 

Interestingly using an assay which measures unbound OPG, the authors did not find any 

significant difference between groups for circulating fasting OPG which again may indicate an 
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inherent problem for reports that have studied OPG dynamics in that there are two widely used 

assays which measure very different forms of the glycoprotein yet attempt to draw comparable 

conclusions. 

 

Taken together the results of this thesis would cast doubt on the generalized assumption of a 

progressive increase in circulating OPG with metabolic and cardiovascular disease. We suggest 

that the relationships observed in previous studies are specific and cogent only for the 

metabolic phenotype under investigation. Here we postulate one possible explanation for the 

often contradictory reports in the literature is that as an individual progresses from being lean 

and insulin sensitive to obese and relatively but NOT clinically insulin resistant, that fasting and 

postprandial hyperinsulinaemia suppress OPG production and secretion, as indicated by our 

findings in Experiment I and supported by others (Ugur-Altun et al., 2005). As the individual 

progresses to develop type 2 diabetes the appearance of an array of inflammatory cytokines 

which have been demonstrated to promote OPG secretion from several tissue types becomes 

the dominant regulator of OPG appearance. We therefore suggest that in place of the 

previously proposed observation of a linear relationship between OPG and disease progression 

that a V shaped function is more likely (Figure 6.1), with decreasing OPG as a result of 

hyperinsulinaemia in obesity and elevated OPG occurring in response to the onset and the 

worsening state of chronic inflammation, a characteristic of progressive dysglycaemia, and as 

evidenced by our findings in Experiment III.  
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Figure 6.1 Postulated model for the V-shaped regulation of OPG in response to hyperinsulinaemia and the 
inflammatory process. The progression from lean and insulin sensitive to obese and hyperinsulinemic with 
a significant inflammatory process leads to an insulin-mediated suppression of OPG production. The 
inflammatory process associated with the development of type 2 diabetes leads to an increase in OPG 
secretion. 
 
 

Increasingly it has been recognized that adipose tissue is an active metabolic tissue releasing 

cytokines such as adiponectin, TNF-α, IL-6, leptin and many others that have pleiotropic 

endocrine actions in the circulation, which can affect insulin sensitivity positively or negatively 

and contribute to vascular dysfunction. The vascular endothelium, like adipose tissue, can also 

produce and release glycoproteins yet little is known about the biological interaction of such 

factors. Although there have been significant advances in our understanding of these signalling 

mechanisms at the molecular and cellular level, we have not developed an integrated 

understanding of biological processes. 

 

It appears that insulin reliably suppresses OPG production under a wide variety of in vitro and in 

vivo conditions (An et al., 2007) and is also upregulated by a number of inflammatory mediators. 

Recombinant adiponectin reduces osteoblast formation via a mechanism whereby RANKL 
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mRNA production is increased and OPG decreased in cultured human osteoblasts (Luo et al., 

2006). There is also considerable epidemiological evidence that shows a consistent inverse 

relationship between adiponectin and BMD (Misra et al., 2007), (Peng et al., 2008), (Lenchik et 

al., 2003), (Jurimae & Jurimae, 2007), (Richards et al., 2007). When this is considered in 

conjunction with the fact that TNF-α appears to potently suppress adiponectin mRNA production 

in adipocytes (Ruan et al., 2002), one can begin to see that OPG may be an excellent example 

of a protein who’s regulation sits at the nexus of what were once considered to be disparate and 

insular metabolic tissues. Despite substantial advances in our comprehension of the integrative 

nature of metabolic homeostasis and dysfunction in health in disease in the last 20 years, we 

are still only beginning to understand the true extent of this integration. The findings in this 

thesis suggest that OPG production and secretion is subject to complex regulation by mediators 

produced from an array of tissue types, and that its perturbations in dysglycaemia, 

cardiovascular disease, arterial calcification as well as osteogenic disorders give evidence for a 

complex adipose-vascular-osteo-inusulinar axis.  

 

There are a number of limitations to the present series of experiments and generally to the field 

of in vivo research into OPG. As has previously been discussed OPG secretion can be 

attributed to a number of cellular sources and tissues. All of the literature to date describing 

OPG in human models of disease has measured circulating OPG, which may be too crude a 

measure. Currently there is no method to categorically attribute circulating levels to OPG to a 

particular cellular source or indeed pathology, a criticism which is equally valid for the data 

presented here. As mentioned earlier in this manuscript there is a discrepancy in the type of 

assays used in such studies, where some report unbound OPG and others including the work 

presented here report total OPG, making meta-analysis of the full body of literature on the 

subject difficult. It would be useful if future studies that examined the effect of either therapeutic 

intervention or in vitro manipulation on OPG production were to measure both total and 

unbound OPG in addition to TRAIL and RANKL to assess the true dynamic nature of this family 

of molecules in response to a variety of stimuli.  In conclusion, the results from this thesis 

suggest that an obesity-related decrease in insulin sensitivity or an increase in insulin secretion 

coincides with reduced circulating OPG in normoglycemic individuals. Furthermore, in this 

population OPG is positively correlated with insulin sensitivity and adiponectin. We also present 

evidence that these relationships are not maintained, possibly due to the systemic inflammation 
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found in pre-diabetes and type 2 diabetes, whereupon OPG is elevated relative to obese males 

with moderate hyperinsulinaemia but is not significantly different from lean males with low 

fasting insulin and negligible systemic inflammation. To What effect this fall in serum OPG, in 

association with increasing adiposity observed here, may have on vascular function in healthy 

subjects and why and how OPG increases in diabetic and non-diabetic patients with 

documented vascular disease appears to be complex and requires further study.  
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Appendix A Preparation Instructions for the OGTT 

 

 
 

 
 
 

Preparation for your Oral Glucose Tolerance Test 
 

1. You will be asked to attend room XB30 (Metabolic 
Research Unit) situated in the basement of the Science 
Block 

 
2. You should ensure that your diet in the 3 days prior to 

your visit is unrestricted and rich in carbohydrates 
 

3. You should not engage in any strenuous physical activity 
in the 24 hours prior to your visit to the lab 

 
4. You should ensure that you have fasted for 12 hrs prior 

to your visit to the lab, consuming only water in this time 
and during the test. 

 
5. You should ensure that you wear loose fitting 

comfortable clothes for the test 
 

6. You should not take any medication on the morning of 
or during the test 

 
7. You should refrain from smoking on the morning of or 

during the test 
 
Other notes: 
We have set up an email station that you can use for work 
purposes during your Oral Glucose Tolerance Test. There are 
also a number of live network points in the room which you 
are free to make use of should you require them. 
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Appendix B Data Collection Sheet 
 

 
 

 
 
Check List 
 

Consent signed     � 
OGTT       � 
Medical Screening    � 
Resting Blood Pressure   � 
Skin folds      � 
Circumferences     � 
Spirometry      � 
Resting ECG     � 
Aerobic fitness test    � 
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Start Time:  _______________   Blood Pressure ___  / ___    D.O.B.  ___ /____ /_____
 Sex: M   /   F 
 
Room Temp ______ Pressure ______ mmHg  Height:_______m Weight: 
_____kg 

 
Pre test check list 

 

Consent signed: � 12 hr fast: � Dietary advice: � No smoking: � No medication: � 
 
Resting Blood Samples 
 

Purple x 2: �  Green x 1: �   Blue x 2: �  Red x 3: � 
 

Check Time Time Comments Sample 1 Sample 2 mean Insulin 

�  -10     � 

�  0 75g CHO    � 

�  30     � 

�  60     � 

�  90     � 

�  120     � 

�  180     � 
 
 
Finish Time: _______________ 
 
Circumferences      
 1 2 3 Ave.  1 2 3 Ave. 

Bicep     Hips     

Chest     Thigh     

Waist     Calf     

 
Skin Folds 
 Measurement 1 Measurement 2 Measurement 3 Ave. 

Triceps     

Pectoralis     

Subscapular     

Abdominal     

Midaxillary     

Suprailiac     

Thigh     

 
 
Signature of Tester:  __________________________ 
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Aerobic Fitness Assessment 
 

Temp: ______○C   Barometric Pressure: _____mmHg 
 
Date of Birth: ____ /____ /______   Sex M / F 

 

Height: ____ m      Weight: ______ kg 
 
RBP: Manual   1___ / ___ 2___ / ___ 3___ / ___ 4___ / ___ 
 
RBP: Automated  1___ / ___ 2___ / ___ 3___ / ___ 4___ / ___ 
 
 

Consent signed: �  Medical history: �  Resting ECG: � 
 
Protocol used ______________ 
 

Stage RPE HR BP 

Warm up    

1    

2    

3    

4    

5    

6    

7    

8    

10    

11    

12    

13    

14    

15    

16    
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Appendix C Preparticpation Screening 

 
Department: School of Health and Human Performance, Dublin City University 
 
Principal investigators 
Dr. Donal O’Gorman   (01 7008060),  donal.ogorman@dcu.ie  
Mr David Ashley BSc.   (01 7008472),  david.ashley2@mail.dcu.ie,  
Prof. Niall Moyna   (01 7008802),  niall.moyna@dcu.ie,  
Dr. Noel McCaffrey MD   (01 7008187),  noel.mccaffrey@dcu.ie  
 
 

Pre-participation screening form 

First name       Surname 

_____________________     ______________________ 

 

Telephone Home  Telephone Work  Telephone Mobile 

________________  _______________  _______________ 

Email 

______________________________ 

Estimate your height    Estimate your weight 

_______ft   ____in    _____st  _____lbs 

Have you ever been told by a doctor that you have diabetes? Yes□  No□ 

Have you ever been told by a doctor you have a heart condition? Yes□  No□ 



 162

Appendix D Physician’s Medical Screening Form 

 
 

 

DATE �� �� ���� 

CONTACT DETAILS) 

Last name: _____________________  First name: ______________ 

Date of birth:________________   Age _________   

Address: 
 _______________________________________________________ 

 

Mobile __________________  Work:_______________ 

Home:________________ 

Email Address:   _______________________________ 

 

Next of kin 

Name        Contact tel:    

 

Relationship to you       
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MEDICAL HISTORY (PHYSICIAN ADMINISTERED) 

 
 
2.  Have you ever had any of the following (tick box)? Yes  No 
 a) A heart attack     □  □ 

b) Heart surgery     □  □ 

c) An angiogram     □  □ 

d) Insertion of a stent     □  □ 

e) Treatment of an irregular heart beat  □  □ 

f) A blackout (loss of consciousness)  □  □ 

 

3. Please list any other medical conditions you suffer from  
at present or have suffered from in the past 
1.            

2.            

3.            

4.            

 
1.  Do you suffer from any of the following (tick box)?  Yes  No 
 a) High blood pressure (hypertension)   □  □ 

 b) Angina       □  □ 
  i.e  chest pain, neck pain, jaw pain, arm pain  

or undue breathless on exertion 
   (such as walking fast or walking up a hill) 
 c) Heart disease of any sort     □  □ 

  e.g.  heart attack 
blocked blood vessels to the heart 
abnormal heart rhythm 

 d) Peripheral vascular disease    □  □ 

e.g.  intermittent claudication (calf pain on walking) 
stroke 

 e) Elevated blood cholesterol or triglycerides  □  □ 

 f) Diabetes       □  □ 
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4.  List any medications which you are now taking 
             

             

             

 
 
5. Your family history 
 
Do any of your first degree relatives (parents, brothers, sisters) 
suffer from any of the following (tick box if yes)? 
        Yes  No 

a) heart disease   □  □  

   

b) high blood pressure   □  □ 

c) diabetes    □  □ 

 
Has any first degree relative of yours died from heart disease? Yes □ 

         No   □ 
 

 
6. Alcohol / Cigarettes 
 
Do you consume alcohol regularly? Yes  □    No  □  
 

If yes, how many units per week? ______________ 
 
 
Do you smoke?    Yes  □    No  □  

  
 

If yes, how many cigarettes a day? ______________ 
 
 

7.  Your Exercise Pattern 
 
Do you take part in regular exercise of physical activity ?   Yes  □   No  

□  
If yes, give details (how often per week, duration per session) 
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PHYSICAL EXAMINATION 
 
 

Blood Pressure ___  / ____  Pulse____ 
  
 

GENERAL APPEARANCE 
 

Subject looks:  Healthy____ Not healthy___ Very ill____ 
 
 
 
SUMMARY FINDINGS 
    Nothing    Details if Abnormal 
    Abnormal    
    Found   
 
HEAD AND NECK     □         
 
             
 
CHEST AND LUNGS    □         
 
             
 
HEART      □         
 
             
 
ABDOMEN      □          
 
             
 
EXTREMITIES     □         
        
             
 
NEUROMUSCULAR    □         
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RESTING ECG 
 
Descriptive Analysis: 
 
Rate:    ______bpm  

Rhythm:  __________________________ 

Arrhythmias  __________________________ 

   __________________________ 

   __________________________ 

 

Clinical Impression: 

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

______________________________ 

 
 
 

According to the medical history and physical exam, does subject qualify for this 
research study?  
 

Yes � 

No � 
 

Comments: 
_____________________________________________________    

_____________________________________________________    

 
 

     

 
 
   ___________________________ ____________ 

Physician's signature    (Date) 
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Appendix E Viva presentation 

Thesis overview, April 2010Thesis overview, April 2010

David AshleyDavid Ashley

The Role of Serum Osteoprotegerin as a The Role of Serum Osteoprotegerin as a 
Biomarker of Metabolic Dysfunction in Biomarker of Metabolic Dysfunction in 
Obesity and Type 2 DiabetesObesity and Type 2 Diabetes

 
 

IntroductionIntroduction
Increasing prevalence of Obesity & Type 2 DiabetesIncreasing prevalence of Obesity & Type 2 Diabetes
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1)The International Diabetes 
Federation, Diabetes Atlas 
Fourth Edition (2009). 
2)The International Diabetes 
Federation, Diabetes Atlas 
Second Edition (2006).
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IntroductionIntroduction
PathophysiologicalPathophysiological features of Type 2 Diabetesfeatures of Type 2 Diabetes

Impaired
insulin secretion

HYPERGLYCAEMIAHYPERGLYCAEMIA

Adapted from: Stumvoll M, et al. Lancet. 2005;365:1333-46.

Decreased
incretin effect

Increased
hepatic glucose

production

Decreased glucose
uptake

Increased FA
Production

↓↓ insulin secretion

↑↑ insulin resistance

Increased
lipolysis

 

Resistin

TNF- α

IL-6

RBP-4

Pro-hyperglycaemic

Leptin

Adiponectin

Visfatin

Omentin

Anti-hyperglycaemic

 



 171

ADIPONECTIN

Lean    Obese

Female Male

Inflammation

Type II Diabetes

Cardiovascular
Disease

Insulin Sensitive

Insulin Resistant

PPARγ agonist

Treatment

Lipodystrophy

Adiponectin is unique in that its expression is Adiponectin is unique in that its expression is 
suppressed with obesity and is associated with insulin suppressed with obesity and is associated with insulin 
sensitivity and protection against Type 2 diabetes and sensitivity and protection against Type 2 diabetes and 

Cardiovascular DiseaseCardiovascular Disease
 

IntroductionIntroduction
Adipose Tissue, Cardiovascular Disease and BoneAdipose Tissue, Cardiovascular Disease and Bone

• Adipocytokines are involved in the regulation of glucose and 
lipid metabolism. 

• They exert anti‐ and pro‐inflammatory effects and are involved 
in blood pressure control, haemostasis and bone mass turnover

• Evidence suggests that CVD and osteoporosis often coexist

• Several proteins such as osteocalcin, osteopontin and bone 
morphogenic protein, which were once thought to be bone‐
specific in their biological action, have been identified in 
atherosclerotic lesions. 

• Such observations have given rise to the suggestion of the 
existence of an “Osteo‐adipose‐vascular” network 

• One such protein that has garnered considerable interest in 
recent years is the novel glycoprotein osteoprotegerin (OPG) 
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OPG knockout

Wild-type

IntroductionIntroduction
Osteoprotegerin (OPG)Osteoprotegerin (OPG)

• OPG knockout mice develop severe osteoporosis in addition to 
vascular calcification 

• This suggests a protective role for OPG in the vascular system,

• There is emerging evidence for its involvement in the vascular 
system, with its expression observed in vascular tissues 

• In vitro studies have demonstrated the ability of pro‐
inflammatory cytokines to upregulate OPG levels in both 
endothelial and vascular smooth muscle cells

• Suggesting a role for OPG in vascular disease, since 
inflammatory factors are thought to be key to the progression 
of CAD and atherosclerosis

 

Osteoblast

TRAF 6 NF-κB

NF-κB
C-Fos

NFATc1
Osteoclastogenic

genes

OPG

RANK

Osteoclast p
recursor

Nucleus

RANKL
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TRAF 6 NF-κB

NF-κB
C-Fos

NFATc1 Osteoclastogenic
genes

OPG

RANK

Osteoclast precursor

Nucleus

RANKL

Stromal Cell or 
mature Osteoblast

 
 

OPG EC OPG EC 
productionproduction

Increased by
IL-1, TNF-α

OPG VSMC OPG VSMC 
productionproduction

Increased by
PDGF and TNF-α

Decreased by
Glucocorticoids
Cyclosporin A
Troglitazone

Insulin

Endothelial cell

Smooth Muscle Cell

RANKL

RANK

Endothelial cell

RANKL expressionRANKL expression

Increased by IL-1 and TNF-α

Vascular SystemVascular System
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To investigate the role of OPG in obesity and metabolic To investigate the role of OPG in obesity and metabolic 
dysfunction and to further elucidate and explore the dysfunction and to further elucidate and explore the 
relationship between the OPG / RANK / TRAIL axis and relationship between the OPG / RANK / TRAIL axis and 
established markers of inflammation and insulin sensitivityestablished markers of inflammation and insulin sensitivity

Examine the impact of diabetes and vascular disease on Examine the impact of diabetes and vascular disease on 
their circulating concentrations while probing how these their circulating concentrations while probing how these 
novel markers relate to other traditional inflammatory novel markers relate to other traditional inflammatory 
markers and adipocytokines. markers and adipocytokines. 

Study the influence of glycaemic status and adiposity Study the influence of glycaemic status and adiposity 
together on serum levels of OPG and to interrogate if a together on serum levels of OPG and to interrogate if a 
worsening glycaemic status can influence its relationship worsening glycaemic status can influence its relationship 
with adiponectin and systemic inflammation.with adiponectin and systemic inflammation.

IntroductionIntroduction
Thesis Aims & objectivesThesis Aims & objectives

 
 

Experiment IExperiment I

An investigation of serum OPG, TRAIL and An investigation of serum OPG, TRAIL and 
sRANKL levels and their relationship with sRANKL levels and their relationship with 
indicators of adiposity and insulin sensitivity indicators of adiposity and insulin sensitivity 
in a healthy, representative Irish cohort.in a healthy, representative Irish cohort.
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•• Circulating OPG is significantly higher in patients with type 2 Circulating OPG is significantly higher in patients with type 2 diabetes and is higher diabetes and is higher 
in the tunica media of type 2 diabetics than matched normal contin the tunica media of type 2 diabetics than matched normal controlsrols

•• It has also been shown that circulating concentrations of OPG caIt has also been shown that circulating concentrations of OPG can independently n independently 
predict silent CAD in type 2 diabetic patientspredict silent CAD in type 2 diabetic patients

•• Despite the higher circulating and tissue concentrations of OPG Despite the higher circulating and tissue concentrations of OPG in patients with CVD in patients with CVD 
there has been little research on high risk obese subjectsthere has been little research on high risk obese subjects

•• GannageGannage‐‐YaredYared et al. (2006) examined the relationship between OPG and et al. (2006) examined the relationship between OPG and 
components of the metabolic syndrome in 151 healthy ageing men. components of the metabolic syndrome in 151 healthy ageing men. 

•• They found that OPG was inversely correlated with fasting plasmaThey found that OPG was inversely correlated with fasting plasma glucose and glucose and 
insulin sensitivity and positively correlated with adiponectin.insulin sensitivity and positively correlated with adiponectin.

•• Most of the research to date which has indicated that OPG is assMost of the research to date which has indicated that OPG is associated with a ociated with a 
negative coronary outlook has been conducted in patients with unnegative coronary outlook has been conducted in patients with underlying CVD derlying CVD 

•• Few published papers have examined the relationship between insuFew published papers have examined the relationship between insulin sensitivity, lin sensitivity, 
adiposity and OPG in a healthy population free from CVDadiposity and OPG in a healthy population free from CVD

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

Introduction/rationaleIntroduction/rationale

 
 

Aims
The purpose of this study was to determine if BMI and 
insulin sensitivity influence the concentrations of serum 
OPG and TRAIL in subjects who do not have 
cardiovascular or metabolic disease.

Hypothesis
That in a healthy cohort, circulating OPG would be 
lower in obese subjects and inversely related to insulin 
resistance.

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

Introduction/rationaleIntroduction/rationale
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•• 136 subjects136 subjects

•• 36 excluded because of undiagnosed hypertension,      36 excluded because of undiagnosed hypertension,      
impaired glucose tolerance or abnormal ECGimpaired glucose tolerance or abnormal ECG

12 hr overnight fast
No Smoking
or caffeine

No strenuous exercise
= 4 days between visits

Initial Briefing 
Meeting

VISIT 1
Anthropometrics
OGTT 2 hr
Fasting Blood Samples
Resting Blood Pressure

Medical Screening
Resting ECG
Risk Assessment

VISIT 2

Exercise Test

12 hr overnight fast
No Smoking
or caffeine

No strenuous exercise
= 4 days between visits

Initial Briefing 
Meeting

VISIT 1
Anthropometrics
OGTT 2 hr
Fasting Blood Samples
Resting Blood Pressure

Medical Screening
Resting ECG
Risk Assessment

VISIT 2

Exercise Test
Initial Briefing 

Meeting

VISIT 1
Anthropometrics
OGTT 2 hr
Fasting Blood Samples
Resting Blood Pressure

Medical Screening
Resting ECG
Risk Assessment

VISIT 2

Exercise Test

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

Experimental DesignExperimental Design

 
 

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

MethodsMethods

• Glucose  Dual channel YSI 2300

• Insulin AutoDELFIA® Perkin Elmer FIA

• Adiponectin, 

IL‐6 and TRAIL ELISA, RnD

• CRP Immunonephelometry (Randox)
• Lipids Spectrophotometric analysis (Randox)

• OPG ELISA, Biomedica

• sRANKL ELISA, Biomedica
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Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

ResultsResults

Table 3.1 Selected Anthropometric and Cardiovascular Characteristics of Subjects 

 

 Normal weight Overweight Obese 

 (36) (41) (23) 

Gender (male/female) 19/17 19/22 11/12 

Age (years) 44.4 ± 1.5 46.7 ± 2.0 47.2 ± 2.8 

BMI (kg.m-2) 22.8 ± 0.2 26.7 ± 0.2 * 31.4 ± 0.3 * † 

Waist Circumference (cm) 78.5 ± 1.2 89.8 ± 1.2 * 102.2 ± 2.0 * † 

Waist to Hip Ratio 0.82 ± 0.01 0.87 ± 0.01 * 0.93 ± 0.02 * † 

Body fat (%) 19.6 ± 1.15 27 ± 1.16 * 31.9 ± 1.5 * † 

VO2 max (ml.kg.min-1) 41.5 ± 1.9 37.5 ± 1.5 29.6 ± 1.7 * † 

Systolic BP (mmHg) 117.1 ± 2.2 120.4 ± 1.6 130.3 ± 2.2 * † 

Diastolic BP (mmHg) 74.0 ± 1.5 76.5 ± 1.4 80.6  ± 2.1 * 

Subject CharacteristicsSubject Characteristics

 
 

Metabolic dataMetabolic data

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

ResultsResults
Table 3.2 Metabolic Markers and Indicators of Insulin Sensitivity.  

  Normal weight Overweight Obese 

Fasting Glucose (mmol.l-1) 4.8 ± 0.1 5.0 ± 0.1 5.3 ± 0.1 * † 

Fasting Insulin (ρmol.l-1) 26.4 ± 3.5 38.2 ± 4.2 * 51.3 ± 5.6 * 

Triglycerides (mmol.l-1) 0.97 ± 0.05 1.32 ± 0.10 * 1.55 ± 0.15 * 

HOMA-IR 0.83 ± 0.12 1.25 ± 0.14 * 1.8 ± 0.2 * † 

OGIS (ml.min.m-2) 533 ± 11 512 ± 9 451 ± 11 * † 

AUC Glucose (mmol.l.min) 671 ± 18 738 ± 19 * 831 ± 36 * † 

AUC Insulin (pmol.l.min) 20487 ± 2444 29585 ± 4285 42336 ± 4979 * † 

hs-CRP (mg.L-1) 0.92 ± 0.18 0.92 ± 0.08 1.16 ± 0.15 

Adiponectin (μg.ml-1) 9.9 ± 0.9 6.6 ± 0.5 * 4.8 ± 0.5 * 

TRAIL (ρg.ml-1) 72.2 ± 5.4 81.6 ± 3.9 82.4 ± 6.9 

sRANKL (ρg.ml-1) 3.4 ± 0.6 3.0 ± 0.4 2.9 ± 0.7 
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TRAILTRAIL

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

ResultsResults

• TRAIL was significantly related to

• Fat mass (r = 0.255, p < 0.05)

• Waist circumference (r = 0.207, p < 0.05)

 
 

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

ResultsResults
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Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

ResultsResults
OsteoprotegerinOsteoprotegerin‐‐ Correlation AnalysisCorrelation Analysis

Table 3.3 Age and Gender Adjusted Correlations Between OPG and Anthropometric 
and Metabolic Indices. 

 r p  

BMI (kg.m-2) -0.331 ***   

Waist Circumference (cm) -0.268 **   

VO2 max (ml.kg.min-1)  0.237 *   

Fasting Glucose (mmol.l-1) -0.248 *   

Fasting Insulin (ρmol.l-1) -0.202 **   

AUC Glucose (mmol.l.min) -0.279 **   

AUC Insulin (pmol.l.min) -0.271 **   

HOMA-IR -0.222 *   

OGIS (ml.min.m-2)   0.221 *   

Adiponectin (μg.ml-1)   0.391 ***   

 
 

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

ResultsResults
Osteoprotegerin and AdiposityOsteoprotegerin and Adiposity
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r = -0.348, p< 0.001, controlling for 
age and gender, r = -0.268, p =0.008

r = -0.348, p< 0.001, controlling for 
age and gender, r = -0.331, p =0.001
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The main findings of Experiment I are that obese 
subjects who are normal glucose tolerant and free 
from CVD, have lower circulating OPG when 
compared with normal weight and overweight 
individuals. In this cohort OPG is positively 
correlated with adiponectin and insulin sensitivity.

Experiment I Experiment I –– Healthy Cohort OPG / TRAIL / sRANKL  and AdiponectinHealthy Cohort OPG / TRAIL / sRANKL  and Adiponectin

SummarySummary

 
 

Experiment IIExperiment II

The relationship between OPG, TRAIL, The relationship between OPG, TRAIL, 
sRANKL and markers of inflammation in Type sRANKL and markers of inflammation in Type 
2 Diabetes and Vascular Disease.2 Diabetes and Vascular Disease.
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110 subjects volunteered to participate in this study. 

58 normoglycemic, healthy subjects free from CVD were recruited from DCU

62 patients with type 2 diabetes were recruited from the diabetes clinic in 
Beaumont Hospital. 

OGTT to ensure normal glucose tolerance and exercise stress tests were 
performed on all of the healthy controls to rule out undiagnosed
hyperglycaemia or CVD

Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

Experimental designExperimental design

58 NGT

62 T2DMs
Age and 

BMI 
Matched Medical screening including OGTT and 

GXT to rule out CVD or undiagnosed 
IGT or T2DM

Subset
Exclusion of Hx of 
Micro/macro VD Age and 

BMI 
Matched

Fasting bloods 
and detailed 
screening

 
 

• Arterial calcification is a prominent feature of atherosclerosis and common in 
patients with type 2 diabetes. 

• Our understanding of this process has further developed in recent times with the 
identification of a possible role for the OPG/RANKL/TRAIL axis in the process

• Studies of serum RANKL have been inconclusive, with both increased and reduced 
risk of CVD disease being reported with elevated concentrations

• Only one paper has measured RANKL levels in individuals with type 2 diabetes, 
finding no difference from healthy individual (Secchiero et al., 2006). 

• Studies to date suggest higher serum OPG levels in type 2 diabetes

• However many of these studies have had poorly defined control groups 

• IL‐6 and hsCRP are frequently used to gain a measure of the degree of underlying 
inflammation

• Whether OPG, RANKL or TRAIL could reflect low‐grade vascular inflammation in 
individuals with diabetes is not yet known

Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

Introduction/rationaleIntroduction/rationale
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Subject Subject 
CharacteristicsCharacteristics

Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

ResultsResults Table 4.1 Subject Metabolic and Cardiovascular Characteristics. 

 Normal Type 2 Diabetes 

N 58 62 

Age (years) 55.6 ± 1.2 58.31.2 

Gender (M:F) 28:30 40:22 

BMI (kg/m2) 29.5 ± 0.4 30.0 ± 0.5 

Waist Circumference (cm) 101.3 ± 1.4 105.0 ± 1.3 ~ 

Systolic BP (mmHg) 131.14 ± 2.53 142.3 ± 2.26 *** 

Diastolic BP (mmHg) 81.8 ± 1.4 80.26 ± 1.26 

Current smokers 4.7% 9.8% 

Anti-hypertensive use 13.2% 86.7% *** 

ACE/ARB use 8.6% 67.2% *** 

Statin use 15.1% 82.0% *** 

Aspirin use 5.7% 78.7% *** 

Fasting glucose (mmol.l-1) 5.2 ± 0.2 7.9 ± 0.2 *** 

Total Cholesterol (mmol.l-1) 5.4 ± 0.1 4.1 ± 0.1 *** 

LDL Cholesterol (mmol.l-1) 3.4 ± 0.1 2.0 ± 0.1 *** 

HDL Cholesterol (mmol.l-1) 1.4 ± 0.04 1.2 ± 0.04 *** 

Triglycerides (mmol.l-1) 1.4 ± 0.1 2.0 ± 0.1 *** 

TNF-α (pg/ml) 1.5 ± 0.3 1.4 ± 0.3 

  
 

Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

Experimental designExperimental design

• TRAIL was correlated with LDL (r = 0.303, p < 0.01) and waist circumference 
(r = 0.202, p < 0.05). . 

• In the healthy control group, controlling for gender there was a correlation 
between OPG and age (r = 0.364, p < 0.01)

• When both age and gender were controlled for, OPG was correlated with 
– waist circumference (r = ‐0.262, p < 0.05), 
– adiponectin (r = 0.366, p < 0.01), 
– total cholesterol (r = 0.380, p < 0.01), 
– LDL (r = ‐0.336, p < 0.05), 
– fasting plasma glucose (r = ‐0.363, p < 0.05)
– TRAIL strong trend (r = ‐0.294, p = 0.053)

• None of these relationships with OPG were evident in the type 2 diabetic 
cohort 

Correlation AnalysisCorrelation Analysis
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Metabolic dataMetabolic data

Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

ResultsResults

Table 4.2 Characteristics of the Disease State in Patients with Type 2 Diabetes. 

 Median (range) or n (%) 
 

Duration of diabetes (years) 7 (1-20) 

HbA1c (%) 7 (5.1-10) 

Insulin treated 12 (19.67%) 

Metformin treated 37 (60.66%) 

Sulphonylurea treated 21 (34.43%) 

TZD treated 3 (5.92%) 

Diet alone 8 (13.12%) 

Microvascular complications 15 (24.19%) 

Macrovascular complications 20(32.26%) 

 
 

 

3

4

5

6

7

Type 2 Diabetes Healthy Control

O
st

eo
pr

ot
eg

er
in

 (p
m

ol
. l-1

)

40

50

60

70

80

90

Type 2 Diabetes Healthy Control

TR
A

IL
 (n

g. m
l-1

)

0

1

2

3

4

Type 2 Diabetes Healthy Control

sR
A

N
K

L 
(p

m
ol

. l-1
)

1

2

3

Type 2 Diabetes Healthy Control

hs
C

R
P 

(m
g. l-1

)

A B

C D

*

*

Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

Results Results –– OPG / TRAIL / sRANKL and hsCRPOPG / TRAIL / sRANKL and hsCRP
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Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

Results Results –– AdipocytokinesAdipocytokines
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Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

Vascular Disease and inflammatory markersVascular Disease and inflammatory markers

Subset Analysis on the Effect of Vascular Disease on InflammatorSubset Analysis on the Effect of Vascular Disease on Inflammatory Markersy Markers

To investigate whether the elevated OPG, IL‐6 and hsCRP observed in the 
diabetes group was due to the higher prevalence of vascular disease within this 
group, we compared mean values of these proteins, after exclusion of type 2 
diabetes patients with either documented micro‐ or macro‐vascular disease.

• OPG was still significantly higher in type 2 diabetics than 
normal controls 

• The significant difference previously seen with IL‐6 and 
hsCRP was no longer present

• In this group OPG correlated with IL‐6 after correction for 
age and gender (r = 0.24, p < 0.05), but this association was 
lost after correction for glycaemic status.  

• There was no correlation between RANKL or TRAIL and IL‐6, 
or hsCRP in either group.
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Experiment II Experiment II –– OPG, inflammatory markers and type 2 diabetesOPG, inflammatory markers and type 2 diabetes

SummarySummary

The main findings of Experiment II are that OPG but not The main findings of Experiment II are that OPG but not 
RANKL or TRAIL is significantly increased in type 2 RANKL or TRAIL is significantly increased in type 2 
diabetes.  ILdiabetes.  IL--6 and hsCRP is higher in individuals with 6 and hsCRP is higher in individuals with 
diabetes and adiponectin is lower, but unlike OPG, they are diabetes and adiponectin is lower, but unlike OPG, they are 
no longer different when subjects with vascular disease are no longer different when subjects with vascular disease are 
excluded.excluded.

  
 

Experiment IIIExperiment III

The effect of Obesity, Glycaemic Status and The effect of Obesity, Glycaemic Status and 
an acute glucose load on circulating an acute glucose load on circulating 
concentrations of OPGconcentrations of OPG
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Experiment III Experiment III ––Glycaemic Status, glucose loading and OPG Glycaemic Status, glucose loading and OPG 

Introduction/rationaleIntroduction/rationale

AimsAims
To examine changes in OPG levels with varying degrees To examine changes in OPG levels with varying degrees 
of glucose tolerance and to investigate the influence of of glucose tolerance and to investigate the influence of 
adiposity and inflammatory processes on OPG adiposity and inflammatory processes on OPG 
concentrations.concentrations.

HypothesisHypothesis
The deteriorating inflammatory state coupled with the The deteriorating inflammatory state coupled with the 
sharp rise in hyperinsulinaemia with decreasing sharp rise in hyperinsulinaemia with decreasing 
glucose tolerance uncouples the relationship between glucose tolerance uncouples the relationship between 
OPG and insulin sensitivity that was observed in OPG and insulin sensitivity that was observed in 
Experiment I and IIExperiment I and II

 
 

• As well as its role in maintaining normoglycemia, insulin is a vasoactive peptide 
capable of exerting pleiotropic hemodynamic effects

• Recent studies have suggested an important role for insulin in the inhibition of OPG 
expression and secretion.

• Olesen et al. (2005) showed that vascular smooth muscle cells incubated with 
insulin exhibit markedly reduced OPG production compared to controls 

• Xiang et al. (2007) found that OPG was decreased in response to 6 months of insulin 
therapy in young type 1 diabetics and that this decrease was strongly correlated 
with changes in endothelial function.

• Jorgensen et al. (2009) examined the effect of insulin infusion (hyperinsulinaemic 
clamp) on OPG production in lean, type 2 diabetic and obese subjects

• OPG was markedly reduced in all groups and but the lean control group showed a 
significantly greater decrease than the type 2 diabetic and obese subjects.

• Interaction between insulin and the OPG / RANKL / RANK / TRAIL axis may be one 
mechanism by which elevated fasting and postprandial hyperinsulinaemia can 
independently affect the development of cardiovascular disease.

Experiment III Experiment III ––Glycaemic Status, glucose loading and OPGGlycaemic Status, glucose loading and OPG

Introduction/rationaleIntroduction/rationale
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Subject CharacteristicsSubject Characteristics

Experiment III Experiment III ––Glycaemic Status, glucose loading and OPG Glycaemic Status, glucose loading and OPG 

ResultsResults

Table 5.1 Subject Characteristics and indicators of insulin sensitivity.  

 Type 2 Diabetes IGT / IFG NGT Obese 

 (20) (20) (21) 

Age (years) 56.2 ± 2.1 56.8 ± 2.3 53.8 ± 2.2 

BMI (kg.m-2) 30.5 ± 0.6 30.5 ± 0.8  30.2 ± 0.5  

Fasting Glucose (mmol.l-1) 7.4 ± 0.2 6.2 ± 0.1 * 5.2 ± 0.1 * † 

Fasting Insulin (pmol.l-1) 118.8 ± 15.6 127.7 ± 12.6 39.9 ± 4.3 * † 

2 hr Glucose (mmol.l-1) 12.6 ± 0.7 8.6 ± 0.3 * 5.1 ± 0.3 * † 

2 hr Insulin (pmol.l-1) 493.4 ± 74.5 526.8 ± 55.2 39.6 ± 24.6 * † 

HOMA-IR 6.4 ± 0.8 5.8 ± 0.6 * 1.6 ± 0.2 * † 

OGIS (ml.min.m-2) 289 ± 10 332 ± 10 424 ± 9 * † 

AUC Glucose (mmol.l.min) 1593 ± 62 1218 ± 30 * 816 ± 32 * † 

AUC Insulin (pmol.l.min) 64475 ± 9176 60693 ± 6032 29677 ± 3492 * † 

  
 

61 male subjects were recruited to participate in this study

20 patients with type 2 diabetes
20 patients with either IGT/IFG
21 healthy obese male subjects free from CVD were recruited from DCU 
All three groups were age and BMI matched. 

Data from 21 lean age matched subjects from experiment I were also included 
in the later analysis 

Experiment II Experiment II –– OPG inflammatory markers and type 2 diabetesOPG inflammatory markers and type 2 diabetes

Experimental designExperimental design

21 NGT Obese

20 IGT/IFG
Age and 

BMI 
Matched

Medical screening 
including OGTT and GXT 

to rule out CVD or 
undiagnosed IGT or T2DM

20 T2DMs

21 NGT Lean from Experiment I
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Experiment III Experiment III ––Glycaemic Status, glucose loading and OPG Glycaemic Status, glucose loading and OPG 

Results Results –– OPGOPG
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OGIS and adiponectin were 
significantly higher in healthy 
age and BMI matched controls 
than in either IGT / IFG subjects 
or type 2 diabetics 

hsCRP was significantly lower in 
the healthy matched control 
group and the IGT / IFG group

OPG was significantly lower in 
the NGT Obese group

 
 

• There was no 
significant change in 
hsCRP in response to 
the OGTT in any of the 
glycaemic conditions. 

Experiment III Experiment III ––Glycaemic Status, glucose loading and OPG Glycaemic Status, glucose loading and OPG 

Results Results –– OPGOPG
• OPG was significantly 

reduced in response to the 
oral glucose load in the IFG / 
IGT group but was 
unchanged in type 2 
diabetics and normoglycemic 
obese subjects
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Experiment III Experiment III ––Glycaemic Status, glucose loading and OPG Glycaemic Status, glucose loading and OPG 

Results Results –– OPG OPG 

 
 

Experiment III Experiment III –– Glycaemic Status, glucose loading and OPGGlycaemic Status, glucose loading and OPG

SummarySummary

The main findings of Experiment III are that there is no The main findings of Experiment III are that there is no 
difference in OPG between difference in OPG between prediabeticprediabetic and type 2 diabetic and type 2 diabetic 
cohorts, but both have higher levels than matched obese cohorts, but both have higher levels than matched obese 
controls. Interestingly, OPG in lean insulincontrols. Interestingly, OPG in lean insulin--sensitive sensitive 
subjects is comparable to that of the presubjects is comparable to that of the pre--diabetic and type 2 diabetic and type 2 
diabetic patients but significantly higher than their matched diabetic patients but significantly higher than their matched 
lean counterparts.lean counterparts.
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General Discussion and ConclusionGeneral Discussion and Conclusion
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General discussionGeneral discussion

Future directionsFuture directions

Future studies that examine the effect of either 
therapeutic intervention or in vitromanipulation on OPG 
production should measure both total and unbound OPG 
in addition to TRAIL and RANKL an order to assess the 
true dynamic nature of this family of molecules in 
response to a variety of stimuli.  
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