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Abstract

Statistical Machine Translation (SMT) is by far the most doant paradigm of Machine
Translation. This can be justified by many reasons, such@asgacy, scalability, compu-
tational efficiency and fast adaptation to new languagesdantains. However, current
approaches of Phrase-based SMT lacks the capabilitiesodtiping more grammatical
translations and handling long-range reordering whilentaaning the grammatical struc-
ture of the translation output. Recently, SMT researchtges] to focus on extending
Phrase-based SMT systems with syntactic knowledge; howteeprevious techniques
have limited capabilities due to introducing redundantiybgguous syntactic structures
and using decoders with limited language models, and wiilyladomputational cost.

In this thesis, we extend Phrase-based SMT with lexicalasyiat descriptions that
localize global syntactic information on the word withomtroducing syntactic redundant
ambiguity. We presente a novel model of Phrase-based SMahwhiegrates linguistic
lexical descriptions —supertags— into the target languagdel and the target side of
the translation model. We conduct extensive experimentsalanguage pairs, Arabic—
English and German—English, which show significant impnogsats over the state-of-
the-art Phrase-based SMT systems.

Moreover, we introduce a novel Incremental Dependencgd&yntactic Language
Model (IDLM) based on wide-coverage CCG incremental pgrsimich we integrate
into a direct translation SMT system. Our proposed appraosadhe first to integrate
full dependency parsing in SMT systems with a very attr@tiomputational cost since it
deploys the linear decoders widely used in Phrase—basedsgM@ms. The experimental

results show a good improvement over a top-ranked stathesit system.
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Chapter 1

Introduction

Statistical Machine Translation (SMT) is by far the most daamt paradigm in machine
translation today. This can be justified by many reasond) siscaccuracy, scalability,
computational efficiency and fast adaptation to new langsand domains. Seeking
better translation quality, SMT has evolved from the IBM ddrased models (Brown
et al., 1988, 1990) to phrase-based models (Zens et al., Xa@hn et al., 2003; Till-
mann and Xia, 2003) . However, Phrase-based SMT lacks thabiry of producing
more grammatical translations and handling long-rangedexong while maintaining the
grammatical structure of the translation output. The maijective of this thesis is to pro-
duce more fluent MT output from Phrase-based SMT by intagyagyntactic structures
into the system. Syntax can help Phrase-based SMT systepredace well-formed
translation output by the use of syntactically-guidedstation models, language models
and reordering techniques.

Recently, SMT researchers started to focus on extendingseHyased SMT systems
with syntactic knowledge; however, early attempts cauystesn performance to dete-
riorate (Koehn et al., 2003). The most recent successfutlements of Phrase-based
SMT with hierarchical structures are (Chiang, 2005; Martale 2006; Zollmann and
Venugopal, 2006).

We argue that these previous techniques have limited dapehdue to three major

drawbacks. Firstly, these approaches either employ maquistically motivated syntax to

1



capture hierarchical reordering phenomena (Chiang, 2608xtend the phrase transla-
tion table with redundantly ambiguous syntactic struureer phrase pairs (Marcu et al.,
2006; Zollmann and Venugopal, 2006). Secondly, they comge the computational ef-
ficiency of the phrase-based system since they depart fremdmputationally efficient
linear decoders to the more computationally costly chageld decoders. Thirdly, they
limit the scalability of the system by their limited capatyilto handle high-order lan-
guage models which have proved to be pivotal to the accurblemse-based systems.

In this thesis, we study the possibility of extending Phiaased SMT systems with
syntactic structures to provide more grammatical trarmtatand better reordering with-
out compromising the advantages of such systems. This lgads our first research
questionRQ1)

RQ1: What is the grammatical representation that can bewitiit Phrase-based SMT
while not introducing redundantly ambiguous syntacticistures?

Extending Phrase-based SMT systems with linguisticallyivated syntax represents
a major difficulty due to the mismatch between the notion gblaase’ in Phrase-based
SMT and the notion of a syntactic constituent in traditiolm@uistics. The problem is
that the phrases in Phrase-based SMT systems are identitiedegard to word align-
ment probabilities and thus do not need to follow any lingaisonstraints. Due to such
mismatches, it is not directly clear how the SMT notion of agsie may be extended with
a tree structure without introducing redundant ambiguigr a non-constituent phrase,
a tree structure representation directly introduces rddahambiguity; multiple, alter-
native subtrees will be associated with the same phraseeat¢hey are merely minor
variants of each other, differing only in subgraphs thatadervery specific contexts of
the phrase.

In this thesis, we explore the possibility of extending Rlerhased SMT with lexicon-
driven approaches to linguistic syntax, namely LexicaliZeee-Adjoining Grammar (Joshi
and Schabes, 1991) and Combinatory Categorial Grammaed®i@n, 2000). In these

approaches, each word is associated with a number of legidalks which consist of



syntactic constructs —supertags (Bangalore and Josh8)39%hat describe such lexi-
cal information as its subcategorization information dmelhierarchy of phrase categories
that the word projects upwards in the parse-tree. Thusetlea#cal syntactic descriptions
localize global syntactic information on the word leveletéfore, they can be assigned to
every word in a phrase without introducing much redundariguonity.

If we have an efficient syntactic representation that fitd wéh Phrase-based SMT,
the question arises as to how to incorporate this into PHvased SMT. This is our second
research questioRQ2

RQ2: How can lexical syntax descriptions be incorporated iRhrase-based SMT
while maintaining its advantages? If this can be done, dbleslp in providing better and
more grammatical translations?

We address this problem by presenting a novel model of Pirased SMT which
integrates linguistic lexical descriptions —supertagsie the target language model and
the target side of the translation model. We examine whégixeral syntactic information
proves useful or not. We carry out extensive experimentswallsand very large training
and test sets for Arabic—English and German—English tatiosl to examine the usage
of LTAG and CCG supertags in different conditions. We coreptire effect of CCG
and LTAG with different data sizes. We examine whether thprowvement provided
by our approach will be sustained with very large amountgahing data, or whether
large amounts of training data would bridge the performagee with our system that
incorporates syntactic knowledge.

We conduct an in-depth manual analysis of the system pediocen We show that
a very wide range of improvements are brought about by theofisesupertags-based
system, including improved reordering, overcoming thelearcy of SMT systems to omit
verbs, improved verbal constructions, proper handling edation, and better syntactic
modeling in general. We show that supertagged Phrase-t&gddprovides sustained
improvements with various data sets and languages.

The encouraging results of our proposed supertagged RPhesssl SMT approach



leads to our next research questRQ3

RQ3: Does Phrase-based SMT need more syntactic knowledg®wr supertagged
approach sufficient for providing syntactic structures t@bkle more grammatical trans-
lations and better reordering?

The supertagged language model replaces the set of Comlyimaperators with
ann-gram language model over the sequence of supertags thuslipg‘almost pars-
ing’ (Bangalore and Joshi, 1999). Originaliglmost parsing’'was proposed for the han-
dling of monolingual strings, where the given sequence afiwalready constructs some
presumed syntactic structure. In the bilingual (machiagagtation) case, the sequence of
candidate target words might not construct a valid syntagttiucture nor a compelling
sequence of associated supertags; therefore, achi@lingst parsing’by deploying a
supertagged-gram language model on the huge space of hypotheses, eapresthe
candidate translations, is more challenging in the mactraeslation case than in the
monolingual parsing case.

We argue that the MT case needs a more sophisticated mech#ras can satisfy
three important aspects. First, it needs to efficiently supfong-range dependencies
and construct full parse structures such that it would endié MT system to distin-
guish between different translation candidates based e tble in constructing the
parse structure and satisfying the syntactic dependen8esond, as is widely known,
Phrase-based SMT systems produce the translation caeslidatementally by process-
ing source words from left-to-right in a Markov fashion; teore, this mechanism should
work in an incremental manner. Third, the mechanism shoelctmputationally efficient
such that it can be integrated into large-scale Phrasedisalgd systems.

While incrementality is crucial for integrating syntax inEMT decoders, it is not
necessary for reranking of SMT output. However, rerankivgr®utput usually does not
provide good improvement due to the fact that SMT decodgmoglanany strategies that
may prune good candidates earlier in the translation psosesh that better translations

may not even be part of a very large n-best candidate set.



Having identified the need for an incremental dependencgegpahat could fit with
Phrase-based SMT, this directly leads to our next researektipnRQ4

RQ4: Can lexical syntax provide more syntactic knowledgePforase-based SMT
through incremental dependency parsing capabilities thatch the nature of Phrase-
based SMT?

We address this problem by introducing a novel incremerggleddency-based lan-
guage model parser. To develop this incremental dependeassyd parser, we create an
incremental version of CCGBank (Hockenmaier and Steed®@@7) and examine its
usefulness for developing a fully incremental parser. Wedct extensive experiments
to examine the proposed incremental parser with regardriousincrementality issues
as well as the accuracy of the parser.

We demonstrate that the proposed parser can be used to plavdlecremental dependency-
based language model (IDLM). We show that this IDLM is detarstic in that it main-
tains a limited number of parsing decisions at each statetwimakes it very efficient
for integration into large-scale Phrase-based SMT systdfagthermore, we show that
it can naturally handle non-constituent constructionsndpdased on CCG. Finally, we
show that the parser always seeks fully connected strigsamd can support long-range
dependencies and a number of interesting syntactic phemoinea fully incremental
left-to-right fashion. However, it remains to be seen wkeetlve can incorporate a lin-
ear though sophisticated incremental parser into PhraseebSMT while maintaining
scalability and computational efficiency. This is the seb our last research question.

RQ5: Is it possible to incorporate full incremental depenceparsing into SMT while
maintaining SMT scalability and computationally efficiégnear decoding?

One major difficulty in extending SMT systems with a sopletied incremental
dependency-based language model is the need for a welkfized model that can ac-
commodate the capabilities of a conventional phrase-bsget@m and the incremental
dependency parsing without compromising any of their athgaes, while at the same

time maintaining a reasonable decoding space. We addriegz¢iblem by proposing an



extension of a discriminative phrase-based SMT model (D)I{it& cheriah and Roukos,
2007) where we represent the incremental parser efficiastlylarge number of features.
We examine the capabilities of the proposed model and shatitttan provide improve-
ments over top-ranked SMT systems. We conduct a detaildgsasaf the system output
to obtain a deeper insight into the system’s performance.

In this thesis, we explore the possibility of improving thartslation quality of Phrase-
based SMT systems by incorporating syntactic structuréisanarget side while dealing
with the non-constituent phrases. Furthermore, we will@sgpthe possibility of incor-
porating syntactic structures into Phrase-based SMT systeithout compromising the
computational efficiency of the linear decoders or the ldagguage models capabilities.
We will explore various levels of syntactic integration tltan provide more syntactic

knowledge to SMT.

1.1 Structure of the Thesis
The remainder of this thesis is organized as follows:

e Chapter 2 introduces an overview of the state-of-the-aiSMT with the noisy
channel model, log-linear phrase-based models and drattlation models. The

chapter also reviews the previous work on incorporatingaymto SMT.
e Chapter 3 introduces an overview of lexical syntax and ized grammars.

e Chapter 4 introduces the concept of lexical syntax for SMd explores how we in-
corporate supertagged translation model and supertaggeam language model
into Phrase-based SMT. Extensive experiments are reptotdd/o pairs of lan-

guages.

e Chapter 5 introduces a novel incremental dependency-basgdage model based
on an incremental version of CCG, and introduces experigmamtevaluating the

proposed parser.



e Chapter 6, discusses the integration of our incrementanidgncy-based language

model into SMT

¢ Finally Chapter 7 concludes and discusses avenues foefutork.

1.2 Publications

A number of publications were based on the work in this thesis

e (Hassan et al., 2006) which is entitled “Syntactic Phraased8l Statistical Machine
Translation” and was published in the Proceedings of th&2B&E Workshop on

Spoken Language Technology.

e (Hassan et al., 2007a) entitled “MaTrEx: the DCU Machinenstation System
for IWSLT 2007” was published in proceedings of the Inteioadl Workshop on

Spoken Language Translation

e (Hassan et al., 2007b) entitled “Integrating Supertags Ritrase based Statistical
Machine Translation” was published in the Proceedings®#tth Annual Meeting

of the Association for Computational Linguistics (ACL-07)

e (Hassan et al., 2008a) entitled “Syntactically LexicaliZ#hrase-based Statistical
Translation” was published in the IEEE Transactions on Au&ipeech and Lan-

guage Processing journal.

e (Hassan et al., 2008b) entitled “A syntactic language mbdskd on incremental
CCG parsing” was published in the Proceedings of the 200&IEfernational
Workshop on Spoken Language Technology.



Chapter 2

State-of-the-art in Statistical Machine

Translation

2.1 Introduction

Machine translation (MT) is the process of using computergdnslate text from one
natural language into another. Statistical machine tediosl (SMT) is an MT paradigm
where translations are generated using statistical modetse parameters are derived
from the analysis of bilingual and monolingual text corporghe idea of performing
SMT by information theory methods was proposed a long timeiagWeaver, 1949),
who proposed that the statistical techniques from inforomatheory and cryptography
might make it possible to use computers to translate texh fome natural language to
another.

Four decades later, in the late 1980’s, a group of IBM reseascrevisited the idea
of using statistical techniques for translation. They weneouraged by the increase in
computing power, the availability of large-scale paratletpora and the lack of progress
by other methods. (Brown et al., 1988, 1990) formulated thE prioblem as a noisy
channel model, which has led to the rise of SMT as we expegigmitay. SMT is now by

far the most dominant paradigm of MT for many reasons, suetasracy, scalability and



fast adaptation to new languages and domains. In this ahaentroduce an overview

of the state-of-the-art in SMT.

2.2 MT Overview

The classical architecture of MT systems follows the Vaugjicangle (Vauquois, 1968).
This representation proposes that there are three maidigara for MT, namely Direct,
Transfer and Interlingua. This classical architecturg@adlin understanding various pro-
cesses that might be used in performing MT; however, MT systerely adhere to this
claimed theoretical framework due to the compromised gmigtassumed during systems
development.

A more recent representation was proposed by (Wu, 2005) hisclwhe presented a
three-dimensional MT model space that focused on the coemisreployed to achieve
the translation rather than on the process of performingtriduasiation. (Wu, 2005)’s
3D-representation consists of three dimensions: stedistersus logical, compositional
versus lexical, and example-based versus schema-based2005) defines SMT as an
MT system that makes nontrivial use of statistics and priibakvhile the logical sys-
tem makes extensive use of logical rules. Compositional lgasicompositional transfer
transduction rules while lexical MT uses lexical transféthwut compositional rules. Fi-
nally, Example-based MT uses a large library of examplesagistation runtime while
Schema-based MT uses abstract schemata during runtime.

Figure 2.1 shows the projection of different SMT systemshis three-dimensional
model. Word-based SMT models represent the statisticalextichl combination, while
Phrase-based SMT systems deploy more collocational ir#tom and therefore move
away from the lexical towards the compositional dimensi#s. more syntactic knowl-
edge is added into Phrase-based SMT, the system is puslieelfunto the compositional
dimension. In the next sections we will review Word-basedlele and Phrase-based

models.



compositiqnal
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® PBSMT with syntactic knowledge
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~~"Word based models

lexical

schema-based example-based

Figure 2.1: Various SMT models projected on the three-dsieral
model space

2.3 The Noisy Channel Model

(Brown et al., 1988, 1990) proposed that the problem of MT learhandled as a noisy
channel model. A target sententeis transferred to a source sentengavhen going
through a noisy channel. If this noisy channel could be medethen translation from
S'toT could be achieved. The machine translation decoder revéreanoisy channel by
reproducing the target senten¢efrom the source sentence As shown in Eqn (2.1),
the source channel model is composed of two componentstathgldation model and the

language model.

T = argmj@XP(T|S) = argmj@xP(S | TYP(T)/P(S)

TranslationModel LanguageM odel

— ~
A arg max P(S|T) P(T) (2.1)

Figure 2.2 demonstrates the SMT system in the training acddieg phases. At train-
ing time, the system uses a parallel corpus to estimatedhnslation model probabilities

and a monolingual corpus to estimate the target languageinpoobabilities. At decod-
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| Source Language Text
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Figure 2.2: SMT system: training and runtime (decoding)

ing time, the two probabilistic components are utilizedhita global search technique to
find the best translation for a given source sentence. Thelaion model can take vari-
ous forms such as word-based, phrase-based and syntak-Gdmselanguage model can
be ann-gram language model, syntax-based language model or hayrobdel that mea-
sures how fluent the target language output is. In the foligvgiections we will review

two forms of translation models: word-based and phraseas

2.3.1 Word-Based Models

In word-based translation models, the translation mod@&dn (2.1) is simply a word-
to-word translation probability which has been estimatedifword alignments that rep-
resent a mapping between source and target words in a pasat&nce pair. Word

alignment is crucial for SMT as the accuracy of the transfatomponent is highly de-
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pendent on it. As shown in Egn (2.2), the translation prolignf a source sentence
S and a target sentend@eéis the sum over all possible alignmemsbetween the source
and the target sentences. (Brown et al., 1988, 1990) prddagealignment models with

different complexity known as IBM Modell — Model5.

P(S|T)=> P(S,A|T) (2.2)

A

In all IBM alignment models a source word can be linked to dyamne target word,
thus these alignment models do not allow many-to-one or rRasmgany alignments.
IBM Modell is the simplest among these models which aim tenlélae word (lexical)
translation model using the alignment links. If we alreadypw the alignment links, we
can estimate the lexical translation model by collectingras, as stated in Egn (2.2), and
performing maximum likelihood estimation. On the other thahwe have the translation
model we can assume the most likely alignment links. Thelprolis that we do not have
either of them. This is a well-known problem, when a modelamg estimated from in-
complete data where there are hidden variables in the mbadéhe case of Modell, we
are trying to estimate the translation probabilities witile alignment links are the hid-
den variables in this problem. IBM Modell uses the ExpestaMaximization (EM)
algorithm (Dempster et al., 1977) to solve this problem.

EM is applied in two steps: the expectation step (E-step)thadnaximization step
(M-step). First, IBM Modell initializes all the translatigprobabilities with a uniform
probability distribution, i.e. each source word can be tla@glation of each target word
with the same uniform initial probability. Then the E-stepapplied by computing the
expected counts for the translation model based on summviagtioe alignments. In the
M-step, the maximum likelihood estimate of the translatiwodel is computed from these
counts. The E-step and M-step are repeated iterativeleaonvergence.

IBM Modell is the simplest among the five models since it ontydeis the lexical

translation probability. IBM Model2 models the word detetiprobability as well by in-
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troducing a null word and estimating the probability of weideing aligned to the null
word. IBM Model3, in addition to modeling lexical transkati and word deletion prob-
ability, models the fertility of each target wotg indicating the number of source words
it may generate. IBM Model4 goes a step further and modelsdlagive positions of
the source and the target words for reordering. Model4 caeigee a source sentenge

from a target sentencé = t,, t,....t; as follows:

1. Each target word; has a particular fertility indicating the number of wordsnay
generate and thus the length $fis the summation of the fertilities of all target

words.

2. Each target word produces a number of source words acwptdiits fertility with

a translation probability.
3. The source words are reordered.

As we described for IBM Modell, EM is used to estimate the paxizrs of all other
models. IBM Model4 is the most widely used model for word afigent. For detailed
information about the mathematical formalization of IBM dets, the reader is referred
to (Brown et al., 1993). IBM models are implemented in theeljdised toolkit GIZA++
(Och and Ney, 2003).

2.4 Phrase-Based Models

2.4.1 Overview

Word-based SMT models have a major disadvantage, namelyhdna do not use any
contextual information for estimating the translationpability. If the translation unit is
larger than a single word, the contextual effects will betaegrd and will help to produce
better translations; moreover this should help with loeardering of words such as noun-

adjective reordering between different languages. PHoased SMT has been proposed

thttp://www.fjoch.com/GIZA++.html
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to overcome these problems where the unit of translatiomyssequence of adjacent
words. As shown in Figure 2.3, Phrase-based SMT systens digrsegmenting the
source sentence into phrases with arbitrary boundariestthaslates the source phrases

into target phrases and finally performs reordering if aggiie.

Figure 2.3: Phrase—based SMT. The Arabic source is segthesttear-
bitrary phrase boundaries then translated to English plsras
which are reordered as needed.

The phrases of Phrase-based SMT are not linguisticallyvaietdl and do not neces-
sarily relate to any constituent phrase structure. In fdetse phrases are called blocks
or clumps in some literature (Tillmann and Xia, 2003); hoerewe will use the term
'phrase’ throughout this thesis, while it should be cleatttve mean the phrase as a
sequence of words unless otherwise stated.

The current paradigm of Phrase-based SMT was proposedfbyadif research groups
(Zens et al., 2002; Tillmann and Xia, 2003; Koehn et al., 30B8wever, there are more
similarities than differences between the various apgresacIn this section, we will re-
view the Phrase-based SMT approach focusing on the commsely techniques in the

research community.

2.4.2 Phrase-based SMT Mathematical Model

Let s andt be an aligned pair of source and target sentences resggcthgeis usually

done in Phrase-based SMT, we assume a set of segmentatoasadfinto phrase pairs.
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We denote withy, , a segmentation of andt. With every segmentation, ;, there is a set
of pairs of position$)(s, t, o) that retains the original ordering inandt of the individual
phrase pairs i, ;. We will write O, andO, as the set of source and target positions in
the pairs inO(s, t, o) respectively.

A given segmentation, and ordering), define a derivation of sentenegan the fol-
lowing sense: the sentencean be obtained by concatenating the phrases according

to the ordelO,,.

t* = arg max P(t|s) = arg max P(s|t)P(t)
TM distortion LM

- sugmgx 32 P(6.To) P(0:10) Fuu)

TM distortion LM
—
% arg max P(¢s | ¢) P(Os | Or) Pin(t) (2.3)

In (2.3), P,,(t) is the target language moddl{/) over word sequences$(O,|0;)
represents the conditional reordering/distortion praldgband P(¢s|¢;) stands for a
probabilistic translation model from target language bafgshrases to source language
bags of phrases under the segmentationinto a bag of phrase pairs. As shown in (2.3),
the sum over segmentations is disregarded for the efficiehoptimization over target
sentence and segmentation pairs.

Instead of the original formulation of the translation plesh as a noisy-channel
model, Phrase-based SMT employs a log-linear interpaiatier a set of features as

will be discussed next.

2.4.3 Log-Linear Representation

As described in the previous section, Phrase-based SMTisterd three probabilistic

components: a phrase translation model (TM), reorderirgjqdion) model and the lan-
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guage model (LM). These components have resulted from sqgpthe noisy channel

representation on the Phrase-based system. Motivateddiggachore components in a
more flexible framework, (Och and Ney, 2002) proposed a ingar representation for
Phrase-based SMT. (Och and Ney, 2002) proposed a simpbficat the direct trans-

lation model proposed in (Papineni et al., 1997, 1998) whisbs Maximum Entropy
(Berger et al., 1996) as a framework for utilizing many featéunctions to model the
direct translation probability?(7'|.5).

(Och and Ney, 2002) represented formula (2.3) as a log+limealel interpolating a

set of feature functions as in (2.4):

. A
tr = argHg%XH Hy(s,t, o) (2.4)
fer
The setF is a finite set of features ankl; are the interpolation weights over feature
functionsH; of the aligned source-target sentence pairs. The set @rdliff featureg”

employed in this approach consists of the following:

e /m: An n-gram language model over target sequentlgs(s,t,0) = P(t) =
[1, P(t;|ti=}), where the language model probabilities are trained oveigelmono-
lingual corpus by Maximum-Likelihood estimation with anpappriate smoothing

technique (Goodman, 2001).

e ¢, 74. A source-target translation table is obtained from a waligned parallel
corpus using phrase extraction heuristics (cf. Sectiorb?.&or every possible seg-
mentationo of the sentence paig, t), two feature weights are employed, namely

Hy(s,t,0) = P(¢s | ¢¢) and its reversélry(s,t,0) = P(¢y | ¢s).

The phrase translation probability distribution is estietsby the relative frequency
of a phrase pair in the multiset of phrase pairs obtained fiteeparallel corpus as

in (2.5):
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_ count(s,t)
), count(s, t)

P(s|t) (2.5)
Herecount() denotes the frequency count in the multiset of phrase pataimed

from the aligned parallel training corpus.

e lex: For every phrase pais;,t;) (see featurep), the system employs a model
H,..(s,t,0) based on estimates &f..(s;|t;) (and the reverse direction) using lex-
ical weights (word-to-word) as described in (Koehn et a002). These weights
provide a measure of the translation relations in the phpaseusing a lexicon of

word-to-word translations obtained during the alignmdmge,
e 0. A phrase reordering modél, (s, t, o) (cf. Section 2.4.6).

e 1. The standard word/phrase penalty,(s, t, o) = exp~ ) which allows for con-

trol over the length of the target senterice

2.4.4 Log-Linear Model Parameter Estimation

The parameters of each component of the log-linear modepooents are estimated in-
dependently. For example, the phrase translation prababiére estimated from a bilin-
gual corpus while the language model probabilities areveded usually from a much
larger monolingual corpus. The various components arepotated in the log-linear
framework by a set of parameters following the Maximum Epyrapproach as shown in
Eqn (2.4).

In the Maximum Entropy framework, each feature is assodiatéh a weight. These
weights can be estimated using iterative search methodsdaafisingle optimal solu-
tion under the maximum entropy principle; however, this anputationally expensive
process. Therefore, (Och, 2003) proposed an approximemmique called Minimum

Error Rate Training (MERT) to estimate the model paramdtara small number of fea-
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tures, which will be discussed in the next section. An ertorction that corresponds
to the translation accuracy (Section 2.7) is defined and ME&imates the log-linear
model parameters such that this error function is minimiz&idg the n-best output of the
MT system.

MERT proceeds as follows:

Initialize all parameters with random values.

Produce the n-best translations using the current paramsete

Compute the error function using reference translations.

Optimize each parameter to minimize the error function e/ffiking all other pa-

rameters.

Iterate over all parameters.

MERT provides a simple and efficient method to estimate thdehparameters; how-
ever, it can only handle a small number of parameters (in tderoof ten (Ittycheriah
and Roukos, 2007)); when the number of parameters incréfasesis no guarantee that

MERT is able to find the most suitable parameter combination.

2.4.5 Phrase Extraction

IBM word alignment models provide word-to-word mapping \da source word can be
aligned to exactly one target word. These alignment modetsod allow for many-to-one
or many-to-many alignments and so the alignments are asymamies. the links of the
alignment are not the same if the source and target languagasapped. As shown in
Figures 2.4-a and 2.4-b, the alignment links are differdmtmthe languages are swapped.
(Och and Ney, 2003) proposed an approach for extractingsphmaappings based
on producing symmetrized alignments from word-based atigmts and then using some
heuristics to extract phrase pairs. First, alignments it llirections (target-source and

source-target) are produced as shown in Figure 2.4-a anotd=ij4-b respectively. Both
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impossible d'extraire une  liste ordonnée des services impossible d'extraire une liste ordonnée des services

could could
not not
get get
an an
ordered ordered
list list
of of
services services
(a) English—French alignment (b) French—English alignimen
impossible d'extraire une liste ordonnée des services impossible d'extraire une liste ordonnée des services
could could
not not
get get
an an
ordered ordered
list list
of of
services services
(c) Intersection of alignments (d) Intersection extendedrtion

Figure 2.4: Extracting Phrase Alignments from Word Aligmtge(from
(Groves & Way, 2005), p.310)
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alignments are intersected to produce a high precisiomiaént as shown in Figure 2.4-
c. The union of the two alignments is used to extend the iattien with more alignment
points using some heuristics such as GROW-DIAGONAL whicanexes all the neigh-
bouring alignment points of the intersections. If the néigiring words are not in the
intersection and if both their source and target words atkerunion, then the alignments
are extended with the union words. Finally, phrase pairgsi@cted from those extended

alignments as shown in Figure 2.4-d.

2.4.6 Reordering

Reordering defines how far the target phrase should movagltranslation. Generally,
the reordering models penalize any movement in the targeskation away from the cor-
responding source position and depend on the language nwm@elge how good this
movementis. The basic reordering model is proposed innf&ifin and Ney, 2003) which
is a linear reordering model that simply skips a number ofs®words/phrases to allow
the movement of the target translation with a particularghign However, this simple ori-
entation model does not depend on the actual phrase itdedhithe relative position be-
tween reordered phrases. More recently, a number of sagdtistl reordering approaches
have been proposed by (Tillmann, 2004), (Kumar and Byrné528nd (Al-Onaizan and
Papineni, 2006). These approaches focus on lexicalizedegng models which model
the reordering based on the phrase itself not on the relptigéion as before. For exam-
ple, the model can provide a probability for each phrase iiva gpntext to be translated
in monotone, swap with the neighbouring phrases or tramskstliscontinuous phrase and
move further.

We think that the models presented above are satisfactomddeling how to penal-
ize the movement of the phrases; however, it depends onriged@e model to judge the
grammaticality of the translation output with this moverméewe think then-gram lan-
guage models limit the capability of reordering models siaon-gram language model

cannot judge the grammaticality of a movement beyondntgeam scope. We believe
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]Maria| no | dio una bofetada | a | la | bruje | verde \

Mary not give a slap to  the witch green
Mt aslap by green witch
no slap B to the
did not give )
the
slap the witch

Figure 2.5: All possible source segmentations with all gmestarget
translations (from (Koehn, 2004))

that more sophisticated language models can enable bettetering using the already

proposed reordering techniques.

2.4.7 Phrase-based Decoder

The task of the Phrase-based SMT decoder is to search forestaranslation given a
source sentence, i.e. to maximize the probability as showime log-linear representation
in Equation (2.4). Publicly available decoders like Pharéoehn, 2004a) and its open
source successor Moses (Koehn et al., 2007) deploy a beach skswoder. The decoding
starts by searching the phrase table for all possible @#insis for all possible fragments
of the given source sentence. As shown in Figure 2.5, mansilplessegmentations for
the source sentence along with many possible translatienavailable from the phrase
table.

Starting with a null hypothesis, the decoder expands thetgsis with the possible
translations of the next source word (or phrase). The reorgés performed according to
any of the approaches discussed in Section 2.4.6. Figureh®Wws possible expansions
of the search space with translation candidates, wheredsteof the translation path is

accumulated together with pointer to the source coveredisvorhe expansion process
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e: witch / e: Mary slap
I \ RS
P:=182

e e: Mary

fo oo fo oo

P P:=182

Figure 2.6: Expanding the decoder hypothesis with possiafeslations
(from (Koehn, 2004))

continues untill there are no more uncovered source wordss [&rge space has to be
searched to obtain the best path.

The search space explodes exponentially due to the rengdend the large number
of translation candidates; (Knight, 1999) showed that elemoding a word-based model
with a bigram language model is an NP-Complete problem. Ssinagegies have to be
used to limit the exponential explosion of the search sp#uerefore, a beam search
pruning strategy is used to prune those hypotheses havighabst and thus reduce the
search space. Moreover, similar hypotheses are combinegtitece further the search
space, if they cover the same source words and share the sagumbe model history.

The decoder calculates a future cost estimation for thewered parts of the source
sentence; at each hypothesis the future cost is estimased loa the translation cost and
the language model cost of the uncovered source words. Talectzst of the hypothesis
is the sum of the actual cost and the future cost and thus thedost can be a good
estimation of the complete hypothesis cost. The decodgrskeenumber of stacks to
keep all partial translations of the target sentence, aath&am search pruning is applied
to all such stacks to keep the most likely hypotheses. Kirta# hypothesis that covers

all source words with the lowest cost is chosen as the madylikanslation.
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2.5 Syntax support for Phrase-based SMT

There exist various approaches for enriching statisticatlabs of translation with hi-
erarchical structure, e.g. (Wu, 1997; Alshawi et al., 200&mada and Knight, 2001;
Koehn et al., 2003; Och et al., 2004; Chiang, 2005; Quirk.e2805; Marcu et al., 2006;
Galley et al., 2006; Zollmann and Venugopal, 2006). We cotrage here specifically
on related approaches that extend Phrase-based SMT syisyeimsorporating syntac-
tic/hierarchical structure.

In contrast to (Koehn et al., 2003), who demonstrated thagusyntax to constrain
their phrase-based system actually harmed its quality,nabeu of researchers have, to
different degrees, reported improvements when grammatiftamation is incorporated

into their models of translation. We will review these aprbes here.

2.5.1 Syntax Support via Reranking

The work described in (Och et al., 2004) is a significant agteat including a variety of
syntactic descriptions in a Phrase-based SMT system dmgwsource language POS tags
for improved reordering, parse tree probability, and teestring, tree-to-tree, subtree-to-
string and supertag-to-supertag features. Of these dynfeatures, only the subtree-
to-string and supertag-to-supertag features gave a modpsivement over the baseline
system when they were included as features for reranking-thest output of the baseline

system.

2.5.2 Hierarchical Phrase-Based Translation

(Chiang, 2005) introduced an approach for incorporatingayinto Phrase-based SMT,
targeting mainly phrase reordering. (Chiang, 2005) wagiteework to demonstrate any
improvement when adding hierarchical structure to Phlzsseed SMT. In this approach,
hierarchical phrase transduction probabilities are usedandle a range of reordering

phenomena in the correct fashion. (Chiang, 2005) proposgeharalized form of the
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phrases where a synchronous context-free grammar is ugaovame the ability of in-

serting a sub-phrase into a larger phrase. The derivedduatisn grammar does not rely
on any linguistic annotations or assumptions, so that tet&s<’ induced is not linguis-

tically motivated and does not necessarily capture gramcalgireferences in the output
target sentences. In fact all the phrases have a single ajagion category and thus
each phrase can be substituted for any other phrase anegeam language model is
used to judge the resulting phrases. This approach recuirkart-based decoding which
has much more computational cost than the beam search dgaaskd for Phrase-based
SMT (cf. Section 2.4.7). Furthermore, (Chiang, 2005) usadall language model to

avoid the complex search requirements when adding a faggam language model.

2.5.3 Syntactified Phrase-based MT (SPMT)

Even more recently, (Galley et al., 2006) and (Marcu et &Q6) present two similar
extensions of Phrase-based SMT systems with syntactictsteuon the target language
side. Both employ tree-to-string (so-called xRS) trangdsicbut their methods of acquir-
ing the xRS rules and training them are somewhat differen{Galley et al., 2006), the
target subtrees are obtained by cutting up the syntacts ireéo subtrees while maintain-
ing a translation correspondence with the source languaigg sin (Marcu et al., 2006),
‘syntactified’ target language phrases are extracted bgvetsal of the parse tree guided
by manually specified rules regarding the likelihood of xR&é&t structure boundaries.
Because of the conceptual and technical similarities betwibese two approaches, we
next concentrate on the approach presented in (Marcu 04IG).

In (Marcu et al., 2006), it is demonstrated that ‘syntadifiarget language phrases
can improve translation quality for Chinese—English. Acsi@stic, top-down transduction
process is employed that assigns a joint probability to acssgentence and each of
its alternative syntactified translations; this is done pgcdfying a rewriting process of
the target parse-tree into a source sentence. The rewtrangduction process is driven

by xRS rules, each consisting of a pair of a source phrase gpdraally) lexicalized
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target sub-tree, termed a syntactified target phrase byqMetral., 2006). This approach
depends on inducing millions of xRS rules from parallel datewever, they note that
28% of the phrase pairs cannot be directly associated wighaRes, so that this large
proportion of the phrase pairs can only be dealt with ina@nhocmanner. Similar to

(Chiang, 2005), SPMT requires a chart-based decoding wiasha high computational

cost.

2.5.4 Syntax-Augmented Machine Translation

(Zollmann and Venugopal, 2006) extended the work introdus€Chiang, 2005) by aug-
menting the hierarchical phrases with syntactic categatezived from parsing the target
side of a parallel corpus. They associate a target parséoireach training sentence pair
with a search lattice constructed from the existing phresestations on the correspond-
ing source sentence. (Zollmann and Venugopal, 2006) usedsaipto parse the target
side of the parallel corpus to produce a syntactically nawéd bilingual synchronous
grammar like (Chiang, 2005). Similar to (Marcu et al., 2Qa&)nstituent target phrases
are assigned the associated subtrees while heuristicsadeto assign partial rewriting
rules for the non-constituent phrases. Similar to (Chi@@§5), a chart-based parser with

a limited language model is used.

2.6 Direct Translation Models

2.6.1 Limitations of Log-Linear Phrase-based Model

First, we will define generative and discriminative modglis two machine learning
techniques. Both models use some input to produce sometpugpuve want to learn a
function to mapX — > Y which is equivalent to learning (Y| X).

A generative model is a probabilistic model that estimatgist@ibution over all inputs
and outputs; this probability distribution is defined asiatjprobability between all input

and output variables. We then mode{X |Y) and P(Y"); through the use of Bayes’ rule
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we can estimaté’(Y'|X). The generative models are so called because the distnibuti
P(X]Y') describes how to generate an inpatfor a given outpu”. Generative models
enjoy very computationally efficient methods for estimgtihe model parameters as they
use maximum likelihood estimation directly on the obserdath; however, the joint
distribution limits the model capability as each input antpat has to be modelled jointly.

On the other hand, the discriminative models provide a moti#ie output variables
conditioned on the observed variables, i.e. they direcitylet P(Y|X). These models
are called discriminative since they can discriminate leetvdifferent possible outputs
given a particular input. This is usually done by definingrgéanumber of feature func-
tions on the input-output variables. The main disadvantdigjee discriminative models is
the high computational cost required for training the Iaspace of parameters associated
with the feature functions.

In the light of these definitions, the noisy-channel modelésrly a generative model
where we model a joint probability of source and target wpaagl using Bayes’ rule we
estimate the translation probability. On the other hand,ltig-linear representation of
Phrase-based SMT is neither a generative model nor a disative model. In fact, it
deploys a discriminative framework in which a limited numié features can be com-
bined while using generative components as the featurdiumsc As we discussed in
Sections 2.4.3 and 2.4.4, simplification assumptions wexdento facilitate the parame-
ter estimation process which led to limit the potential af thodel.

The log-linear representation with MERT estimation hasb&ilely used in Phrase-
based SMT research since it has been introduced. Howevem@jor drawbacks limit
its utilization in modeling better MT systems. First, thegraeters of the systems’ com-
ponents are independent and cannot be correlated. Sebendcapability of handling a
large number of features; as a matter of fact, along withratsearchers (Chiang et al.,
2008), we think that the log-linear representation with lingted capability of MERT
represents the bottleneck of further serious developnigettures rich SMT systems.

Fortunately, the log-linear representation of Phraseth&MT was based on a fully
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discriminative SMT approach proposed in (Papineni et &971 1998). Next, we will
review this approach along with a more recent developmesgdban it (Ittycheriah and

Roukos, 2007).

2.6.2 Direct Translation Model

(Papineni et al., 1997) proposed a Direct Translation M¢BdIM) which models the

a posterioriconditional distributionP(7'|S) as a discriminative model. DTM has three
components: a prior conditional distributiéh(7'|.S) , features that capture the translation
and language model effects in a unified framework, and fivedlights of the features that
can be estimated by Maximum Entropy (Berger et al., 1996).

DTM provides a very powerful framework for modeling MT by lizing a large num-
ber of features which can capture different levels of catiehs between various effects in
the MT system. Moreover, the estimation of the feature wisighfully data-driven. This
representation turns the problem of MT into a sequentiasifecation problem in which
the classifier deploys various features from the source andidate target translation to
specify a sequence of decisions that finally result in anwdugyget string.

As shown in Egn (2.6), the feature functiong.S, 7') are defined over source and tar-
get. These feature functions may represent any view of theee@nd target phrases such
as POS tags, parsing information and morphological inféiona Each feature function
is associated with a weigh\; which specifies how much this feature contributes to the
overall translation probability. It is worth noting thattberm.Z in the formula is the nor-
malization factor which is needed to produce a well-formeabgbility distribution. This
term is responsible for the high computational cost of tragrMaximum Entropy models.
Fortunately, the normalization factor is not required ataténg time as it is constant for

a givens.

T = argmj@xP(T\S) =1/Z epo)\iqbi(S, T) (2.6)
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2.6.3 Direct Translation Model 2 (DTM2)
DTM2 Overview

Recently, (Ittycheriah and Roukos, 2007) introduced Dif@anslation Model 2 (DTM2)
which outperforms state of-the-art Phrase-based SMT systgy handling the Phrase-
based SMT problem as a direct translation model, using mimmmumber of phrases
with no overlap and finally training the whole set of milliooksystem parameters using
the Maximum Entropy framework.

Direct Translation Model (DTM) models tha posteriori conditional distribution
P(T|S) instead ofP(S|T") as in the source channel approach. DTM has three compo-
nents: a prior conditional distributioR,(7'|.S) , features that capture the translation and
language model effects in a unified framework and finally Wesgf the features that can
be estimated by the Maximum Entropy (Berger et al., 199@)rieie.

As shown in Equation (2.6), Phrase-based SMT is represestactlassification prob-
lem with arbitrary features defined over source and targetred\dpecifically, the reorder-

ing and prior phrase probabilities are represented as sio&quation (2.7).

P(T|S) = Py(T, J|S)/Z exp)  Nigi(T,J,S) (2.7)

Here F, is the prior distribution for the phrase probability whichusually the phrase
normalized counts used in any conventional Phrase-bas@dsgstem, and’ is the skip
reordering factor for this phrase pair which representguhg from the previous source

word.

DTM2 Phrase Structure

Phrase extraction as outlined in Section 2.4.5 results ingetphrase table with large
overlaps between the extracted phrases, such that longasgshoverlap with smaller

sub-phrases. (Chiang, 2005) extended the phrase-paiisrardhical phrase-pairs (cf.
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Section 2.5), where a grammar with a single non-terminaiaithe embedding of phrase
pairs; however, the phrase pairs still have the overlaplprob DTM2 proposed a simi-
lar phrase structure to the one proposed in (Chiang, 2008¢ wblving the overlapping
problem by maintaining the minimum possible number of pésdsy following the con-
cept introduced earlier in (Brown et al., 1993). Simply, dtiword target phrase should
be included if it is sufficiently different from a word-by-wa translation. Figure 2.7

shows some examples of the phrase pairs in DTM2.

LU | of the X committee

g sl central

ol of the X Party

Figure 2.7: Phrase structures in DTM2. X represents a Viariebthe
target phrase. From (Ittycheriah and Roukos, 2007)

DTM2 Features

DTM2 provides a flexible framework for any feature type. @untty it deploys five types

of features:

e Lexical Features: these are micro features that examinesaund target words of

the phrases.

e Lexical Context Features: these features encode the darftire source and target

phrases (i.e. previous and next source and previous target)

e Source Morphological Features: these features encodehological and segmen-

tation characteristics of the source words.

e Part-of-Speech Features: these features encode sourtargetdPOS tags effects

as well as POS tags of the surrounding contexts.
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DTM2 Decoder

The decoder adopted in (Ittycheriah and Roukos, 2007) iemlsearch decoder similar
to decoders used in standard Phrase-based log-lineansysteeh as (Tillmann and Ney,
2003) and (Koehn, 2004a). There are two main differencesdet DTM2 decoder and
standard Phrase-based SMT decoders. First, DTM2 deployaian Entropy proba-
bilistic models to obtain the translation costs and vari@asures costs by deploying the
features described above. Second, the DTM2 decoder hgpialases with variables, as
shown in Figure 2.7. When a decoding path is expanded withi@splwith variables, the
next extensions of this path can either substitute thisabéior further extend it with an-
other phrase. The languge model can be added as a Maximuopli¢ature; however,
this would limit the language modeling to the target sidehaf parallel corpus. To over-
come this limitation, the translation model is combinedwvanhn-gram language model
as a log-linear combination to allow the use of language nsdoig@lt from a very large

monolingual corpus.

2.7 MT Evaluation Overview

Evaluation of MT output is a very hard task as it is a subjexéivaluation and there are no
known measures that can easily be checked to indicate hoditedranslation is. Evalu-
ation metrics have been proposed which try to measure thsléton output while corre-
lating with human judgments. Bilingual Evaluation Undadst (BLEU) which has been
proposed in (Papineni et al., 2002) is the most widely usatuation metric. BLEU score
measures the translation quality by calculating the genareeans oh-gram agreements
between the output translation and one or more referenosl&i@ons. To account for the
deletion of words and penalize translations with high miec but low recall, the BLEU
score includes a brevity penalty factor that penalizesstedions shorter than the refer-
ences.

Many variations have been proposed to extend the BLEU scBm. example, in
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METEOR (Banerjee and Lavie, 2005) the focus is on recall lopiiporating the use of
stemming and synonyms from Wordnet to match similar targaations. More recently,
an extension of BLEU score to measure the dependency metdbietween the translation
and the references was proposed in (Owczarzak et al., 200%)way, the automatic
evaluation of MT remains a highly controversial issue du¢htlack of an acceptable
measure that can capture translation variations.

More recently, human evaluation such Human TranslatioorBRiate (HTER) is be-
ing used in large-scale evaluations. HTER is a human-basesion of the Translation
Error Rate (TER) metric, where a human calculates the mimimumber of insertions,
deletions and substitutions needed to correct the traoslautput according to some
guidelines. While it is gaining acceptance, it is not ava#afor everyday tasks for all

researchers.

2.8 Summary

SMT has evolved from the word-based models (Brown et al.8319890) to Phrase-based
models (Zens et al., 2002; Tillmann and Xia, 2003; Koehn.e803). Then, motivated
by seeking more grammatical translations and better reimgleresearchers started to
integrate syntax into Phrase-based SMT (Chiang, 2005; Metral., 2006; Zollmann and
Venugopal, 2006). More recently, DTM2 (Ittycheriah and Ras; 2007) was proposed
to allow for the integration of richer features into phrdsesed SMT.

All the approaches proposed for incorporating syntax irtcaBe-based SMT (Chi-
ang, 2005; Marcu et al., 2006; Zollmann and Venugopal, 26B&)e common drawbacks.
First: they all use synchronous PCFG which does not matckcoastituent phrases com-
monly used in Phrase-based SMT and therefore the approashedly resort to some
heuristics to annotate such phrases with syntactic strest$econdly, all of them deploy
chart-based decoders with a very high computational casipeoed with Phrase-based

beam search decoders. Third, the proposed approaches/dep#ll language models
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compared to what is usually used in Phrase-based systemsttthe decoding complex-
ity.

In this thesis, we explore the possibility of improving Pdeebased SMT systems
translation quality by incorporating syntactic structumen the target sentences while
dealing with the non-constituent phrases. Furthermorewlleexplore the possibility
of incorporating syntactic structures into Phrase-based Systems without sacrific-
ing the computational efficiency of the linear decoders erc¢hpabilities of high-order
language models. We will explore various levels of syntasttegration. First, incor-
porating lexical syntax translation model angjram language model into Phrase-based
SMT is explored in Chapter 4. Second, in Chapter 5, we inttedanovel incremental
dependency-based language model. Third, we incorporatetihemental dependency-
based language model into SMT in Chapter 6. In the next chapéewill introduce an

over view of the lexical syntax and lexicalized grammarsrapphes used in this thesis.
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Chapter 3

Lexical Syntax Overview

3.1 Syntax and Parsing

The syntax of a language defines the rules and principlesgthagrn the grammatical
structure of a sentence in that language. Syntax can dengrémmaticality of a sen-
tence on many different levels: constituency, dependealations and logical/semantic
structure.

Constituency is where a group of words function as a singlewithin a structure,
e.g. a noun phrase such as “the time of the elections” repteseconstituent which acts
as single unit and thus the syntax can describe the non+eoadering of constituents
within a structure.

Dependency grammars model the relations between wordsetitieents in the syn-
tax structure using the subcategorization informatiorr. &@mple subcategorization in-
formation of a di-transitive verb like “give” in a sentengclkd “I give him a pen” should
encode that the verb has a subject “I” and two objects “hind ‘@npen”. Thus, the de-
pendency grammars define the syntax structure as a set ofrgréral relations between
a word and its dependents.

Finally the syntax or the dependency structure can provitgal representation
between words by predicate argument relations as a sentaptesentation.

Having defined the role of syntactic structure, this is msdiusing parsing i.e. ana-
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S NP VP s non — terminal
VP——=Verb NP : non — terminal
Verb——ceat s terminal

Figure 3.1: CFG production rules.

lyzing a sentence to determine its grammatical structuant€xt-Free Grammar (CFG)
is the most commonly used syntactic representation forp@ar<CFG is represented by
production rules on terminals (words) and non-terminadd tpresent more generalized
structures. Figure 3.1 shows some examples of CFG produtles. Probabilistic CFG
(PCFG) assigns a probability for each of the grammar pradanctiles. The state-of-the-

art parsers (Collins, 1999; Charniak, 2000) are based od-leécalized PCFG.

3.2 Lexicalized Grammars

Modern linguistic theory proposes lexicalized grammars/imch a syntactic parser has
access to an extensive lexicon of word-structure pairs aschal set of operations to
manipulate and combine the lexical entries into parses. stihetures of a lexicalized
grammar can be elementary trees, sub-graphs and etc. Eactust is associated with
a lexical item, thus the whole grammar is defined on the lexitich associates the
lexical items to its corresponding structures. A finite dederations is used to combine
the elementary structures together. In contrast to otheangrars such as CFG, there are
no grammar rules defined on the non-lexical level at all.
Lexicalized grammars encode the dependency, syntactisuw@mnchtegorization infor-

mation on the lexical level, such that the grammar localihedong-range dependencies.
Lexicalized grammars perform this localization by encgdafi the arguments needed by

the associated lexical item but no more arguments thanMatover, lexicalized gram-
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mars factor out recursive structures into different eletagnobjects. Consider example
(3.1), where the elementary structure associated witheéneresignedshould contain an
argument which is linked to the subjeafficer. While this is a long-range dependency, it

has been localized on the lexical level using the elemerstangture.

Theofficer who is in charge of the operatioasigned (3.1)

These characteristics turned out to be pivotal for our aggmaof integrating syntax
into SMT systems as we will discuss in this thesis. In thigoatéia we review two lexical-

ized grammars: LTAG and CCG. Both have been used in the wark éur this thesis.

3.3 Lexicalized Tree Adjoining Grammar

In Lexicalized Tree Adjoining Grammar (LTAG) (Joshi and &bkes, 1991) a lexical de-
scription is an elementary tree structure as shown in Fi@ue Each elementary tree
represents a possible tree structure for the word. The eltamnetree represents a com-
plex syntax description that localized the syntactic anuas#ic (predicate-argument)
constrains using subcategorization information. Theeet&o kinds of elementary trees:
initial trees and auxiliary trees. Initial trees are phrssacture trees which contain no re-
cursion, while auxiliary trees represent phrase struoiitie recursion. Figure 3.2 shows
initial trees denoted by and auxiliary trees denoted I3y The LTAG subcategorization
information is most clearly available in the vearxludeswhich takes a subject NP to its
left and an object NP to its right.

LTAG elementary trees can be combined using two operatisusstitution and ad-
junction. The substitution operation is used to insert atiaintree into an elementary
tree. The adjunction operation is used to attach an auxiliae to an elementary tree. In
the lower part of Figure 3.2 the parse tree derived from comnlgi the elementary trees

by substitution and adjunction operations is shown. This@#ee is called the derived
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NP

N NP NP S NP
D NF P | o~ |
| N NP* N NP VP N
The | | PN |
purchase price \|/ NP taxes
includes
I} 15} Q Q Q
S
NP VP
/\ /\
D NP \Y NP

|
T|he N/\NP includes N
| | |
purchase N taxes

price

Figure 3.2: LTAG elementary trees for the sentence with tese tree
resulting from combining the elementary trees (from (Has-
san et al., 2008a))
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tree which represents the resulting phrase structure frambining the elementary trees
during the derivation process. The derived tree neithepees the elementary struc-
tures used in the derivation nor the operations used to awgrthiem. On the other hand,
the derivation tree encodes the elementary structureshendperations used during the
derivation process. Figure 3.3 shows the derivation treéh®phrase structure shown in

Figure 3.2.

azinclude

N

a:price a:taxes

(G:purchase (:The

Figure 3.3: LTAG derivation tree that produced the parse tneFigure
3.2. Initial trees are inserted using substitution and laaryi
trees are inserted by adjunctions.

3.3.1 LTAG Supertagging

The term “supertagging” (Bangalore and Joshi, 1999) rdtetagging each of the words
of a sentence with a supertag which represents the elenyen¢ar associated with the
lexical item. When well-formed, an ordered sequence of gage can be viewed as a
compact representation of a small set of constituentspalsat can be obtained by as-
sembling the supertags together using the appropriate icatabby operators (such as sub-
stitution and adjunction in LTAG). Similar to POS tagginetprocess ofupertagging
an input utterance proceeds with statistics that are basatieoprobability of a word-
supertag pair given their Markovian or local context (Bdogaand Joshi, 1999). When
supertagging is performed, most of the ambiguity in cortsing the parse structure is
almost eliminated and the combinatory operators can be tosednstruct the structure
using the assigned supertags (hence why this approachlesi G@imost parsing). In
fact, (Nasr and Rambow, 2004) have quantified #host parsing’to be 97.7% depen-

dency accuracy of the full parsing accuracy when using tleecbsupertags. The main
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difference with full parsing is that supertagging the inptierance need not result in a
fully connected graph.

An LTAG parser may be used to perform the adjunction and #ulish operations
to construct the syntactic tree. More efficiently, (BangaJ®000) proposed a simpler
method to construct the tree called "Light Weight Depengefigalyzer“ that can con-
struct the derivation tree using the dependency informagiocoded in the supertags via
deterministic methods.

The original LTAG-based supertagger of (Bangalore andiJd€199) is a standard
HMM tagger. A more recent version of the LTAG supertagger n@slore et al., 2005)
conditions a supertag on a vector of features represerirmgntext and employs a Maxi-
mum Entropy classifier (Berger et al., 1996). The supertagyewxtracted from the Penn

Treebank (Marcus et al., 1993) by (Chen et al., 2006).

3.4 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steedman, 2000)exiaalized grammati-
cal theory based on Categorial Grammar and lambda-cal¢ajdskiewicz, 1935; Bar-
Hillel, 1953). The CCG lexical entries define syntactic gatges which encode syntactic
valency and directionality; these categories can be autpddyy a semantic representa-
tion to provide compositional semantics with a completedysparent interface between
surface syntax and logical semantics.

CCG syntactic categories can be associated with a sematgipietation with the
same type of the syntactic category. These semantic caegare represented ik
calculus with predicate-argument information in a comgdletransparent interface with
the syntactic representation such that it can provide caitipoal semantics through the
syntactic structure. Although in this thesis we focus ontysyntactic structures, CCG
provides the possibility of expanding the work presentethis thesis to semantic repre-

sentation as well.

38



The purchase price includes taxes

NP/NP (NP) NP (SNP)/NP NP

> FA —— > FA
S\NP

> FA

NP

BA

S

Figure 3.4. CCG Supertags and the derivation combining tipesags
into a parse-tree.

Each word is associated with syntactic categories whicmdéifs syntactic behaviour
in different contexts. There are two kinds of syntactic gatees: atomic categories and
complex categories. Atomic categories are simple categauch a5, NP, PP and
N. Complex categories are functors; for example a complesgeay like X /Y will take
argument” to its right side resulting in categotry .

As shown in Figure 3.4, the notatiary 5 anda/)\ 5 represents a predicate/functer
that expects an argumenptto the right and left respectively. A sequence of supertags
[3 «\f] can be combined by Backward application resulting igsimilarly for Forward
applicationja/5 [3]). The derivation shown corresponds to the (upside-dowrgepizee
shown in the lower part of Fig. 3.2.

It is worth noting that any complete or partial derivatioas®y associated with struc-
ture which makes CCG very appealing for handling non-ctunstit phrase structure and

for incremental parsing as well.

3.4.1 CCG Combinatory Operators

CCG has three types of operators: application operatorsposition operators and type

raising. We will review here some of the CCG operators.

Application Operators

e Forward Application £ A): this operator performs the forward application com-
binatory rule for CCG as defined in (Steedman, 2000). As shiow(3.2) and

(3.3), if a constituent with categody /Y is immediately followed by a constituent
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with categoryY’, the operato” A can be used to combine them to construct a new

constituent with category.

X/Y Y (3.2)
—> FA
The cat (3.3)
NP/NP NP
—— > FA
NP

e Backward Application BA): this operator performs the backward application com-
binatory rule, as defined for CCG (Steedman, 2000), on twegcaies. If a con-
stituent with categonX'\ Y is immediately preceded by a constituent with category
Y, the operatoB A can combine them to construct a new constituent with cayegor

X, as illustrated in examples (3.4) and (3.5).

Y X\Y (3.4)
—< BA
X
John sleeps (3.5)
NP S\NP
< BA
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Compositional Operators

e Forward Compositionf(C): this operator is the compositional version of thel
operator and it performs the Forward Composition combiryatole on two com-
plex categories, as defined in (Steedman, 2000). Consid&r 48d (3.7), where
if a constituent with categorX' /Y is immediately followed by a constituent with
categoryY/Z, the operato'C' can combine them to construct a new constituent

with categoryX/Z.

X/)Y Y/Z (3.6)
X /Z > FC
The tall man (3.7)

NP/NP NP/NP NP

T NP/NP

e Backward Composition®C): this operator is the compositional version of thel
operator and it performs the Backward Composition combiryatule as defined in
(Steedman, 2000). If a constituent with categbi}Z is immediately followed by
a constituent with categor¥'\ Y, the operato3C' can combine them to construct

a new constituent with category/Z, as illustrated in examples (3.8 and 3.9).

Y/Z X\Y (3.8)

< BC

X/Z
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NP/PP S\NP (3.9)

< BC

S/PP

Type Raising (I'R):

Type raising captures long-range dependencies and islysisald with composition op-
erators. (Steedman, 2000) defines Type Raising as a unay Ifud constituent with
categoryX /Y is immediately preceded by a constituent with categoisuch thatX /Y
has a long-range dependency on the right side to a catégdhen Type Raising is used
to raise the category to categoryy'.

Examples (3.10) and (3.11) demonstrate type raising witwded composition, the
subjectN P is type raised t&' and then forward composed witls\ N P) /N P) to com-
poseS/NP.

X (Y\X)/z (3.10)
X/Z
He bought (3.11)

NP (S\NP) /NP

S/NP
3.4.2 CCG Supertagging

Based on the supertagging approach in (Bangalore and J&49), (Clark and Curran,
2004) introduced a CCG supertagger using Maximum Entropgsification techniques.
The CCG supertags are the atomic and complex categoriesiagsbwith each word.

(Clark and Curran, 2004) used supertagging before parsiaghieve accurate and effi-
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cient parsing results. Similar to the LTAG supertagging, slupertagger uses statistical
sequence tagging techniques to assign a limited numbexioaleategories to each word
in the sentence and therefore the parser can search in madisbee space to assign the
parse structure. The CCG supertags were automaticallpetett from the Penn Tree-

bank (Marcus et al., 1993) by (Hockenmaier and Steedmary,)200

3.5 Comparison between LTAG and CCG

Many researchers have indicated the similarity betweend &d CCG since both gram-
mars are mildly context-sensitive grammars. In fact, thheckd descriptions of both gram-
mars are equivalent, i.e. the LTAG elementary trees arevatgrit to CCG categories such
that the same dependency arguments are represented atfld@helementary trees and
CCG categories as well. Based on this similarity, (DoranBawlgalore, 1994) introduced
a methodology for bootstrapping CCG categories from LTAGedntary trees. However,
as they pointed out the LTAG derived trees represent a mgié structure than CCG
flexible derivations. In the context of supertagging, thitfedence seems minor and not
so relevant; while for full parsing these differences areerwucial. On the one hand, the
more flexible CCG derivations complicate the parsing pre@smore structures should
be considered (Clark and Curran, 2007). On the other hasdntire flexible derivations
can facilitate incremental and partial parsing (Hockeranand Steedman, 2007).

The CCG Combinatory Operators assemble lexical entriestheg into derivation-
trees; each partial or complete syntactic derivation gpoads directly to a structure.
For example, strings such a3ohn likes” have a natural interpretation as constituents.
(Doran and Bangalore, 1994) highlighted that the flexiypitift CCG derivations allows
the handling of non-constituent constructions that LTAGrea handle, which is due
to the fact that LTAG trees represent rigid structures wkileéG categories allow more
flexibility in the derivation process. Unlike many otherdunstic theories, this flexibility

gives CCG an advantage over other grammatical formalisnaimdhng non-constituent
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constructions. It is worth noting that the capability of C@&handle non-constituent
constructions comes at a price, namely introducing moreaspsi parses and accordingly

leading to more complicated parsing than LTAG.

3.6 Syntactic Language Models

Our main interest in lexicalized grammar is to develop sgtitaranslation and language
models for enhancing MT output. In this section we will revithe previous work of
syntactic language models and then discuss the potentetiofl syntax for developing

language models for machine translation.

3.6.1 Previous work

A number of researchers have introduced work that incotpsrsyntactic language mod-
els into speech recognition systems. The Structured Layjgglodel (Chelba, 2000)
and (Xu et al., 2002) proposed an incremental shift-redwaegy which conditions the
probability of words on previous lexical heads, rather tpagvious words as in-gram
language models. The probability of the word is the weiglgeth of its conditional
probabilities from possible parses.

(Roark, 2001) proposed an incremental top-down and leftegarser that generates
conditional word probabilities. He deployed parse proliéds directly to calculate the
string probabilities. (Collins et al., 2005) extended (Ro&001) by using a discrimina-
tive approach to estimate the model with more syntactiafest

(Charniak, 2001) proposed a head-driven parsing apprdeathdirectly used gen-
erative PCFG models as language models which made use of-mecremental, head-
driven statistical parser to produce string probabiliti@harniak et al., 2003) integrated
the model proposed in (Charniak, 2001) into a syntax-bas@&dsistem (Yamada and
Knight, 2001) on a very small scale.

All the previous approaches depend on non-deterministicrigues to grow a huge
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number of partial derivations which is unmanageable fogdascale applications such
as MT. This has limited the usability of these approacheseiy vmall tasks and/or
re-ranking of systems outputs. Another major aspect is ithadét of the previous ap-
proaches deploy PCFG which can not handle non-constitu@rgtictions commonly
used in Phrase-based SMT systems (cf. Section 2.4). Mard®@&G is not lexicalized
and thus cannot naturally provide a complete account facdéxand syntactic effects.

Lexicalized modifications of PCFG complicates the parsiragess further.

3.6.2 Lexical Syntax Language Models

Lexical syntax offers a very appealing representationdoguage modeling since it has
four distinct advantages that can help in providing effitianguage modeling. First, all
syntactic information is localized on the lexical level ahds it can match word or multi-
word level. Second, since lexical syntax localizes the ddpacy information, there is no
need to encode more complicated syntactic information erhtgher level of the struc-
tures. This is a major advantage, since it can allow addimgasywithout explicit need
for high-level search of the possible structures (i.e. tparsing). Third, lexical syntax
can seamlessly provide dependency information using theasegorization information
encoded in the categories; therefore dependency infoomégirepresented on the lexical
level. A language model can make use of such information timage the most likely
word sequence based on satisfying the dependency relatlemsth, as we discussed
previously, supertagging can limit the ambiguity in the gibke structures and therefore
lexical syntax with supertagging will not grow a huge numbigpartial derivations when
scoring possible structures for a language model, in cehtaathe case with previously

discussed syntactic language models.
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3.7 Summary

Lexical syntax represents a very appealing grammatical&ism for exploring different
forms of syntactic language models to enhance Phrase-{sd@&dsystems. In this the-
sis, we will examine the utilization of lexical syntax in torms. First, incorporating
supertagging in the translation model andregram supertagging language model into
Phrase-based SMT is explored in Chapter 4. Second, in Gtfapies introduce a novel
syntactic language model based on incremental CCG par$imigd, we incorporate the

incremental parsing language model into SMT in Chapter 6.
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Chapter 4

Syntactic Phrase-based SMT: The

Supertagging Approach

4.1 Introduction

Recently, SMT researchers have started to focus on extgrRhinase-based Statistical
Machine Translation (henceforth Phrase-based SMT) systéth syntactic knowledge;
however, some of the early attempts caused system perfoertardeteriorate (Koehn
etal., 2003). The most recent successful enrichment osleHvased SMT with hierarchi-
cal structure either employ non-linguistically motivawghtax for capturing hierarchical
reordering phenomena (Chiang, 2005) or extend the phrasslation table with redun-
dantly ambiguous syntactic structures over phrase paie¢iet al., 2006; Zollmann
and Venugopal, 2006).

In this thesis, we study the question as to whethelakigal descriptions developed
in linguistic theory can benefit the translation quality bi&se-based SMT system by im-
proving the syntactic structure of the target sentenceseXj#ore various levels of syn-
tactic integration in a Phrase-based SMT system. Firsgrparating supertags into the
translation model and the language model of Phrase-basddiSékplored in this chap-

ter. Second, in Chapter 5, we introduce a novel incremerjaéddency-based language
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model based on incremental CCG parsing. Third, we introducemental dependency-
based SMT model by incorporating incremental parsing inettanslation model along
with incremental dependency-based language model, aslossa Chapter 6.

In section 4.2 of this chapter, we discuss the main problezgarding integrating
syntax into Phrase-based SMT and demonstrate how lexictdsia able to resolve these
issues. In the rest of this chapter, we introduce our appré@dntegrating supertags into

the translation model and the language model of Phrased l%idd.

4.2 Syntax and Phrase based SMT

Over the last few years, Phrase-based SMT has been the mostatd paradigm within
the field of Machine Translation (MT). As we discussed in #ec?.4, Phrase-based SMT
systems demonstrate better accuracy and scalability tmaontaer MT paradigm. How-
ever, it has proven difficult to incorporate linguisticathotivated syntactic knowledge in
order to obtain better quality translation output from Riedased SMT systems.

In Section 2.5, we reviewed various approaches for incafog syntax into Phrase-
based SMT. For example, (Koehn et al., 2003) demonstratgdattding syntactic con-
straints harmed the quality of their Phrase-based SMT sygi@ch et al., 2004) explored
the effectiveness of deploying a large set of syntactiauestfor re-ranking the transla-
tion output; only lexicalized subtrees and supertags gav®dest improvement among
all features. (Chiang, 2005) induced hierarchical rulesr dlve phrases that could capture
a number of reordering phenomena. However, the inducedstjatstructures are not
linguistically motivated and do not necessarily capturangmatical preferences. More
recently, (Marcu et al., 2006) employed a constrained yetasyically justified phrase-
translation table in which the target language side of agghpair constitutes a partially
lexicalized syntactic structure. They induced millionssghtactic structures associated
with the target phrase table; however, they resorted to dmnestics to obtain syntactic

structures for the non-constituent target phrases whiostesznt a huge part (28%) of their
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phrase table. Finally, (Zollmann and Venugopal, 2006) eXéel the work introduced in
(Chiang, 2005) by augmenting the hierarchical phrases syititactic categories derived
from parsing the target side of a parallel corpus. SimilgMarcu et al., 2006), heuristics

were used to assign partial rewriting rules to the non-agtresit phrases.

([ The president meeﬁs [[Saudi] [[economic officiald]

R e

Figure 4.1: Arabic and English aligned phrase pairs with Emglish
constituent structure (from (Hassan et al., 2008a)).

One major difficulty in extending Phrase-based SMT systeittshmguistically mo-
tivated syntax is the mismatch between the notion of a ‘@iresPhrase-based SMT
systems (any sequence of words defined by the word alignmappimg) and the notion
of a syntactic constituent in traditional linguistics. Weegent an example in Figure 4.1,
which demonstrates clearly that while the first Arabic—Estgthunk alignment contains
both the English subject NP as well as the main v@itiee president meets’this is not
conventionally accepted as a constituent in English syntegontrast, in the same exam-
ple, we see that the part of the object Nfeonomic officials”—the 3rd English chunk
which maps to the second Arabic chunk— is usually interpreie a constituent in En-
glish syntax. The problem is that the phrases in Phrasedl#algd systems are identified
with regard to word alignment probabilities which need raldw any linguistic conven-
tion.

Figure 4.2 exemplifies the problem of associating a treegira with non-constituent
phrases such as those commonly assumed in treebanks atidgepasers. If we tried
to associate a subtree with the non-constituent pHidse president meets'the subtree
must also include the three encircled nodes in the figure s@ltleree nodes constitutes

an objeciNP (marked obj) and two adjuncts BP and the other encirclelP). Generally
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A | ] ]

‘ The président méets‘ ‘SéudiHeconomic officialsH in'Riyath next Wee‘

Figure 4.2: Mismatch between PBSMT phrases and tree stesc{irom
(Hassan et al., 2008a)).

speaking, any of the sentences accepted by the regularssiqmné The pr esi dent
meets NP [ PP] * [ NP] %) that occurs in the training data will imply a new subtree
for the phrase in question. The resulting subtrees différ with respect to the number of
adjuncts included under th&P. We refer to this as redundant syntactic ambiguity, because
these subtrees unnecessarily partition the contexts atidtgts of this phrase. Such re-
dundancy represents an obstacle for any generalizatioevtamstances and complicates
the model both statistically and computationally. It is thonoting that this redundant
subtrees are not lexicalized; usually these subtrees wiilexicalized which could lead

to even more redundancy.

Due to such mismatches, it is not directly clear how the SMTiomoof a phrase
may be extended with txee structure without introducing redundant ambiguity. For a
non-constituent phrase, a tree structure representatiectly introduces redundant am-
biguity; multiple, alternative subtrees will be assocthwth the same phrase, whereas
they are merely minor variants of each other, differing danlgubgraphs that denote very
specific contexts of the phrase.

The alternative, therefore, is to look for syntactic dgsttoins that do not produce re-
dundant ambiguity in the phrase translation pairs. Thesgasyic descriptions must en-
sure an adequate and efficient representation of syntamigti@ints on the word/lexeme
level; moreover, these syntactic descriptions should e taldocalize the global depen-

dencies on the local, word/lexeme level. Accordingly, wplere a syntactic localization

50



of Phrase-based SMT systems based on lexicon-driven agm@edo linguistic syntax,
l.e. Lexicalized Tree-Adjoining Grammar (Joshi and Sclsali®91) and Combinatory
Categorial Grammar (Steedman, 2000). In these linguigfica@aches, it is assumed that
the grammar consists of a very rich lexicon and a small setoailinatory operators
that assemble lexical entries together into parse-trebesd& operators neither carry nor
presuppose further linguistic knowledge beyond what tleeta contains. The lexical
entries consist of syntactic constructs (supertags) testribe such lexical information
as the POS tag of the word, its subcategorization informadiad the hierarchy of phrase
categories that the word projects upwards in the parse-tree

In this chapter, we present a syntactic lexicalization ofaBa-based SMT systems
based on supertags called Supertagged Phrase-based SM padvidesalmost pars-
ing’ to Phrase-based SMT by incorporating supertags in thel&i@os model as well as

in then-gram language model.

4.3 Supertagging for Phrase-based SMT

Lexical syntax deploys rich syntax descriptions —supertaghat match individual words,
and a limited set of Combinatory Operators which are useaioline supertags into a
set of constituents/derivations. The supertagging laggumaodel (Bangalore and Joshi,
1999) replaces the set of combinatory operators with theemaloust and efficient, sta-
tistical n-gram language model over the sequence of supertags ‘éhmgst parsing).
Supertagging language models can be implemented using-§tate technology, e.g.
Markov Models, using probabilities based on the local cxindé the supertags such that
an approximation to the syntactic structure is providecer€hare currently two supertag-
ging approaches: LTAG-based (Bangalore and Joshi, 1990 &G-based (Clark and
Curran, 2004); the reader is referred to Chapter 3 for a thginaaccount of supertagging,
LTAG and CCG.

Supertagging has two very interesting properties whichemeéspecially suitable for
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extending Phrase-based SMT with syntax. Firstly, a supsgguence can be constructed
for any phrase found in a text, whether the phrase corresptmd syntactic constituent
or not. This implies that the target side of the phrase pairshe augmented by supertags
in a straightforward manner by annotating the parallel aerwith supertag sequences.
Secondly, a supertag provides an extenkgadal description of the neighbourhood and
dependents of a word. Therefore, co-occurrence statisties supertags may provide a
good approximation of the syntactic validity of a concateraof two phrases, leading
to more fluent output. In addition to integrating the Markavisupertagging approach in
Phrase-based SMT, we explore the utility of a new surfacengraticality measure based
on combinatory operators.

In this chapter, we examine the effectiveness of extendistat-of-the-art Phrase-
based SMT system with both LTAG and CCG supertags on thettimgguage side. In
order to avoid sparseness, we smooth the supertagged cemtpdhoth language model
and target side of the translation table) with backed-offiponents, including the com-
ponents of a standard Phrase-based SMT system.

The remainder of the chapter is organized as follows. Ini@ect.4 we discuss
the differences between Supertagged Phrase-based SMTraridys work on enrich-
ing Phrase-based SMT systems with syntactic structure.ed¢tio 4.5, we detail our
approach. Section 4.6 describes the experiments carriedagether with the results

obtained. Section 4.7 concludes, and discusses openapgesti

4.4 Why Supertagged Phrase-based SMT?

There exist various approaches to incorporate syntax ihtage-based SMT, e.g. (Chi-
ang, 2005), (Marcu et al., 2006) and (Zollmann and Venugd#6). As we have re-
viewed these approaches in Section 2.5, we will focus hereoamparing our approach
with (Marcu et al., 2006) and (Zollmann and Venugopal, 200bich has extended (Chi-

ang, 2005) by adding syntactic categories derived fromipgithe target side of the par-
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allel data.

While the work described in (Marcu et al., 2006) and (Zollmand Venugopal, 2006)
have much in common with the approach proposed in this chégteh as the syntactified
target phrases), there remain a number of significant eiffegs. Firstly, both approaches
deployedad hocmanually specified rules to induce parse-chunks to accoynplarases;
however, in our approach we utilize a more sophisticatedfandalized syntactic repre-
sentation that localizes global syntactic information degloys rich lexical descriptions
that match individual words/lexemes straightforwardlysépertag can, therefore, be as-
signed to every word in a phrase. On the one hand, the coregciesice of supertags
could be assembled (using only a small set of combinatoryabmes) into a small set of
constituents/parse&(most parsing). On the other hand, because supertags are lexical
entries, they facilitate robust syntactic processingngdviarkov models, for instance)
which does not necessarily aim at building a fully connedjeapbh and which avoids
redundant structural ambiguity.

A second major difference with (Marcu et al., 2006) and (@alhn and Venugopal,
2006) is that our supertag-enriched source—target phia@ise fpave not been generalized
into any transduction rules that work with abstract categgorSuch transduction rules are
usually aimed at providing a treatment of phrase reordeNigile it is certainly possible
to extend our approach towards a transduction system, odehmcurrently targeted at
more grammatical output given the standard reorderingniecies used in mainstream
Phrase-based SMT systems (cf. 2.4.6).

Thirdly, our model works with fully lexicalized syntactieedcriptions and retains all
phrase pairs used by the standard Phrase-based SMT systehedmwith linguistic syn-
tactic descriptions. Fourthly, supertagging is more effitithan actual parsing or tree
transduction both in training and at run-time. Fifthly, wepiby a log-linear, left-to-
right decoder (Tillmann and Ney, 2003), unlike (Marcu et 2006) and (Zollmann and
Venugopal, 2006) who used a CKY-style decoder with high aatetjional cost and small

language models. Finally, unlike both approaches, we haveeed to resort tad hoc
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tree-rewriting measures in order to provide a better irtigoa between (‘normal’ Phrase-
based SMT) and transduction rules.

In this chapter, we describe a different approach to olatgimore grammatical output
using supertags, and provide stronger evidence for thieicefeness on large data sets for
more language pairs. This chapter describes in detail awuiqgus work in (Hassan et al.,
2006), where we gave preliminary results on the effectigsra# our method using LTAG
supertags, and (Hassan et al., 2007b), where we added wdllC@) used larger data
sets, used a different decoder, showed greater improvepestvell as providing details
on possible upper bounds with the method, and discussiohswrthe two supertaggers
might be combined into one model; and finally, our work in (s et al., 2008a) pro-
vided experiments on German—English translation and a ta@ugh analysis of the
system.

Following our initial results on integrating supertagsifthrase-based SMT (Hassan
et al., 2006), (Birch et al., 2007) presented a factored@agr for Dutch—to—English em-
ploying CCG supertags as one of the factored translationetsod a log-linear model in
a completely different fashion than in the present workytaémployed the supertags as
a factored translation model as implemented in Moses (cbefi et al., 2007)). Posi-
tively, they report improved translation output when stiggs are included on the target
language side, and also when (separately) they are inclodléoe source language side.
Interestingly, however, in an analysis of the empiricabitss (Birch et al., 2007) conclude
that most of the improvement given by supertags can be addtaumen using an improved
reordering model. While we do not exclude the possibilitgtthetter reordering is one
of the ways in which supertags improve over standard PHrased SMT systems, our
empirical analysis in section 4.6 indicates that this aot®dor only about 20% of the
cases in which supertags provide improved output. In ang,e@s believe that supertags
constitute a more promising, linguistically motivated v for improving reordering
based on the existing reordering techniques as it can prdwadter language modeling

for judging the movements proposed by the reordering moghlsh cannot usually be
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judged by am-gram language model.

4.5 Our Approach: Supertagged Phrase-based SMT

We extend the baseline Phrase-based SMT described in ®cdfiovith lexical syntactic
representations(pertag} (cf. Sections 3.3 and 3.4) both in the language model as well

as in the phrase translation model.

4.5.1 A Supertag-Based SMT model

Our baseline system is based on the system described iroS&cti where bidirectional
word alignments are used to obtain lexical phrase tramslgiairs using heuristics pre-
sented in (Och and Ney, 2003) and (Koehn et al., 2003) (cf.ti®e2.4.5 for more
details).

Our extension of the baseline model includes supertagsibakie phrase translation
table and in the language model. As for the translation talseemploy an LTAG su-
pertagger (cf. Section 3.3) and a CCG supertagger (cf. @e8t#) to enrich the English
side of the parallel training corpus with the 1-best sugesiaquence per sentence. Then
we extract phrase pairs together with the co-occurring Bhgdupertag sequence from
this corpus using the usual phrase extraction method inseHrased SMT (cf. Section
2.4.5). For each extracted lexical phrase pair, we extreetbrresponding supertagged
phrase pairs from the supertagged target sequence in theng@orpus. For each lexi-
cal phrase pair, there is at least one corresponding s@gedsphrase pair, i.e. a phrase
pair in which the target phrase is supertagged. It is worttingathat the word align-
ment is done on the lexical words only as in the baseline sysifhe target side of the
training corpus is augmented with supertag sequencesthteslignment process then
the phrase extraction is performed on the supertaggedttsige of the training data to
extract phrases with associated supertag sequences.

As for the supertagged language model, we employ the tweadentioned supertag-
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gers to provide supertag sequences for a very large mon@lrignglish corpus, from
which we train a 5-gram language model over supertags toilcgun HMM supertag-
ger (Bangalore and Joshi, 1999). This provides us with twoMH8lipertagging systems
(CCG and LTAG) which are trained on large amount of monoladgarget language
data. This reduces the problems of sparseness in the lermadél, and provides useful
language model probabilities for integration within oupsuagged Phrase-based SMT
model, described in the next section.

Using the supertagged translation table and language madglired as described
above, we proceed with extending the baseline model destiilb Section 2.4. Next
we define the probabilistic model that accompanies thisagyiat lexicalization of the
baseline model.

Let ST represents a supertag sequence of the same length as asang@tce.
Because the target sentences in the parallel corpus areupemtagged, we extrasu-
pertagged phrase pairs.e. phrase pairs in which the target phrase is supertaggéd
will use the same notationfor a segmentation into supertagged phrase paiede, sr
just as in the standard Phrase-based SMT (cf. Section 2.4).

In our model formulation, we employ the noisy-channel appfoas the background
against which we specify the log-linear formulation. Thasgechannel formulation

would extend the noisy-channel model described in Sectib@a®in Equation(4.1):

Q

arg max Z P(s|t,ST)Psp(t,ST)
ST

argmax P(s|t,ST)Psr(t,ST) =~
t,ST
TM w.sup.tags diStOjttiOn LM w.sup.tags

—_— .~ )\\/—/‘ ~
e Nr P(¢s | ¢rs7) P(Os | O)™ Psr(t, ST) (4.1)

In the first approximation we decide to avoid the complexitgamming over the su-
pertag sequences for a target sentence. In the second apptimn, just as in the baseline
model, we do not sum over segmentations into phrases andbtider (i.e. derivations),

but rather again take a computationally more attractive@pmation. These approxima-
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tions carry over to the log-linear model formulation thatlesscribed next as an extension
of equation the baseline log-linear formulation as in (4vRjch has been described in

Section 2.4.

. P
t* = arg max H Hy(s,t, o) 4.2)
fer
Because we do not sum over supertag sequences in (4.1)athesfeveight functions

H¢(s,t,0,5T) in the log-linear model formulation (equation (4.2)) nowaiccess to

sequences of target language supertag sequéicess in (4.3):

t* = arg max I #s(s.t.0.ST) (4.3)
T feF

Our model interpolates (log-linearly) a novel setsafpertagged featurewith the
features of the baseline model. More formally, our model leypa feature sef’ =
F U F that extends the standard Phrase-based model’s featufé (§isted in Section

2.4) with the following set of supertagged featurés )

e [i.s:] The functionHy,, (s, t,0,ST) = P(ST) is a Markov supertagging model

over sequences of supertags as in (4.4):

n

P(ST) = ] p(stilsti"}) (4.4)

i=1

HereST = st ...st,. The parameters(st;|st'"}) are estimated using Maximum-
Likelihood with Kneser-Ney smoothing (Kneser and Ney, 19%ote that because
the five-grams in this model are over supertags, this modwildhsuffer less from
data sparseness than a five-gram language model over wardsak follows, we
will refer to this Markov model over supertag sequences leyténm ‘supertagged

language model'.
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o [¢.st,r¢.st] A weight function Hy (s, t,0,5T) = P(¢s | ¢rs7) and its reverse
H

T¢.st

(s,t,0,ST) = P(¢rs7 | ). The supertagged phrase translation probability

is approximated in the usual way:

P(¢s | drs1) = IT  psilt,sT) (4.5)

(85,t; ST;YE(Ds X Pt 5T)

P($rs7 | ¢5) & II  »t. ST s) (4.6)

(84,t; ST;YE(Ds X Pt 5T)

In both (4.5) and (4.6)(s;,t;, ST;) is a supertagged phrase pair consisting of the
phrase pairs;, ;) in which ¢; is supertagged witty7;. As usual, the parameters
p(s | t,ST) andp(t, ST | s) are estimated by means of the relative frequency in
the multiset of all supertagged phrase pairs extracted thenparallel corpus, as in
(4.7) and (4.8) :

count(s,t,ST)

p(s [4,5T) = >, count(s,t,ST)

4.7)

_ count(s,t,ST)
p(t. ST | ) = > .7 count(s,t, ST) (4.8)

e [Smoothing: z.¢.st, x.r¢.st] We employ two more feature functions.¢.st and
x.r¢.st) capturing the statistics(s; | S7;) andp(ST; | s;), which in effect smooth
the feature functions.st andr¢.st. Because the baseline phrase-table probability
(p(s; | t;)) is also a feature function in our model, interpolating witls; | ST;)
can be seen as smoothip(s; | t;, ST;) using the approximatiop(s; | t;, ST;) ~
p(si | t;) x p(s; | ST;)/p(s;), where the probability of the sourggs; ) is discarded
as it does not alter the maximization over supertagged taggiences. Similarly,

the featurep(ST; | s;) can be seen to smooth the reverse probahility, ST; | s;)
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in equation (4.6) as in the approximatip(Y;, ST; | s;) =~ p(t; | s;) x p(ST; | s;).
A model in which we omit these two smoothing components (i(@; | S7;) and
p(ST; | s;)) turns out to be less optimal than this formulation (but stiftperforms

the baseline system).

It is important to highlight that the interpolation of thenlguage and phrase-translation
table component features of the baseline mae] ¢ andr) in our model can be seen as
smoothing of the corresponding supertagged componghnts @ndq¢.st, r¢.st, respec-
tively).

Figure 4.3 illustrates the main differences between thelbss system and our su-
pertagged system. As shown in part (A) of the figure, the lr@se&mploys a five-gram
language model over English words. In part (B), our supgedgystem employs a five-
gram model over supertags and feature functions of supgrthghrase-pairs. Further-
more, we add smoothing feature functions (as shown in pait W@h statistics over
supertagged phrase-pairs where we marginalize over st target phrases by using

five-grams on supertags without the lexical items.

4.5.2 Language Models with a Grammaticality Factor

As is usual withn-gram language models, the probabilities of the superth¢pyeguage
model are smoothed to provide better estimation for unaeskesequences. While smooth-
ing then-gram statistics is essential, the language model maydesfe grammatical su-
pertag sequences over more grammatical ones. Recall tiasfertags encode valency
and directionality information for the arguments; thisamhation can be used to construct
an ‘almost parse’ with the help of external CCG compositiparators. We are interested
in examining the effect of applying the combinatory operatmn the supertags sequence,
such that we measure the grammaticality of the sequencd bagbe number of violated
operators. We opt to examine this effect by integrating aafigrierm into the language
model which expresses the extent to which the formal contiposbperators are violated

in a sequence of supertags. In general, the kind of violatibat can arise between two
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Figure 4.3: Supertagged PBSMT system (from (Hassan etQ{18d))
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consecutive supertags can be characterized as “type-ituksesi between the argument
that one supertag expects to its left (right) and the sugextéually occurring to its left
(respectively right).

Ideally, the more violations, the less grammatical the seqa of supertags is deemed
to be according to the grammar. This is due to the observétiainthese violations rep-
resent non-satisfied dependency relations in this conlieistnot to be taken for granted,
though, that the formal grammaticality criteria (measunece in terms of compositional-
ity) should coincide with better translation output or atbegrammatical sequence.

The penalty factor that we experiment with here is added astaffe in the log-linear
model, although we do not tune this parameter, insteadhglyn the supertag LM feature
weight. The penalty term measures the ratio of the numbemnobentered violations
over all adjacent supertag pairs to the total number of &digpairs in a sequence of
supertags. For a supertag sequence of ledgtiwhich hasV operator violations (as
measured by the CCG system), the language médeill be adjusted to becom&x
wherePx = P x (1 — 25).

This term is, of course, no longer a simple, smoothed maxirhik@ihood estimate
of a language model, nor is it a true probability. Neverths]ehis mechanism provides a
simple, efficient integration of a global compositionalgigrmaticality) measure into the
n-gram language model over supertags.

As illustrated in Figure 4.4, the sentence with a possibpesiag sequence (not correct
sequence). The sentence length is six words/i.e. 5 operator applications in total over
pairs of adjacent supertags. The supertajefieves” demands directly to its right an
(N P) with Forward Application; however, it finds @ P/N P) instead. This counts as a
single violationV = 1, since all other pairs of adjacent words have supertagsih#th
under Forward and Backward application. Note that the sagéhat fits best in the given
sequence fotbelieves” is (S\ N P)/P P, which would be appropriate for a sentence such
as“He believes in me”

While measuring the grammaticality of a target languageesee by penalizing the
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He Dbelieves in what he said
N (S\NP)/NP PP/NP NP/(S/NP) NP (S\NP)/NP
— > FA

Figure 4.4: A grammatical violation example.

supertags LM, based on the number of grammatical violatioight be viewed as some-
whatad hog it has provided us with better insight into the usabilitycombinatory oper-

ators for our models. As a matter of fact, our observatioomfusing this method have
reformed our research agenda for the rest of this thesis,eawiW discuss in the next

chapter.

4.5.3 Supertagged Phrase-based Decoder

The decoder used in this chapter is Moses (Koehn et al., 2803y-linear decoder sim-
ilar to Pharaoh (Koehn, 2004a), modified to accommodateragphrase probabilities
and supertag language models. It is worth noting that whibs@&s implements factored
translation models, in this work we do not avail of this fuooglity. In our preliminary
results (Hassan et al., 2006), we built a decoder using thO@B®amework (Patry et al.,
2006). After the development of Moses, we switched to it esrituch faster than MOOD

framework.

4.6 Experiments

4.6.1 Arabic—to—English

In this section we evaluate the effect of lexical syntax @mstation quality. A number
of experiments were carried out on the NIST open domain neavsslation task from
Arabic—to—English, with the aim of examining the effect n€orporating both supertag-

ging approaches (CCG or LTAG) in our models with varying dstes.
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Data and Settings

The experiments were conducted for Arabic—to—Englishsiation and tested on the
NIST 2005 evaluation set. The systems were trained on the ARGic—English parallel
corpus; we used the news part (130K sentences, about 5millbods) to train systems
with what we call thesmalldata set, and the news together with a large part of the UN
data (2 million sentences, about 50 million words) for expents withlarge data sets.

Then-gram target LM and the supertag LM were built using 250M vedrdm the En-
glish GigaWord Corpus using the SRILM toolkit (Stolcke, 206 This differs from our
previous work in (Hassan et al., 2006), where just 25M wordbe English GigaWord
Corpus was used for building both target LMs. For the LTAGestggs experiments, we
used the most recent LTAG English supertagdBangalore et al., 2005) to tag the En-
glish part of the parallel data and the monolingual LM datisisBupertagger is a MaxEnt
supertagger employing more than 5000 different superiagée large data that we su-
pertagged (more than 300M words), we encountered 3994reliffesupertags. For the
CCG supertag experiments, we used the CCG supertaggerark(@hd Curran, 2004)
and the ‘C&C’ tools to tag the English part of the parallel corpus as well as th&CC
supertag LM data.

The NIST MTO3 test set was used for development, partigulanr optimizing the
interpolation weights using Minimum Error Rate Training HRT) (cf. Section 2.4.4)
using the Moses scripts. As we described in Section 2.4, disellme system deploys
6 log-linear features, while our Supertagged Phrase-bagstgm (Section 4.5) added
5 more features. Thus our system has to tune 11 features NHERI. We found that
MERT was not able to tune this relatively large number ofdead in one batch; thus we
resorted to running MERT in several batches trying to tunelesst of the parameters at
each time, i.e. tuning translation parameters in a batchtlaed fix them and tune the

language model parameter in the next batch and so on. Whileakze that this is not

thttp://www.speech.sri.com/projects/srilm/

2This supertagger employs a more elaborate supertag sethkaoriginal supertagger employed in
(Hassan et al., 2007hb).

3http://svn.ask.it.usyd.edu.au/trac/candc
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the best solution for this problem, but we had to deal witmithisad hocmanner. As
we discussed in Section 2.6.1 this is a real limitation of ME#Rtimation for log-linear

models as has just been highlighted in (Chiang et al., 2008).

Baseline System

The baseline system is a state-of-the-art Phrase-baseds$dt@m as described in Sec-
tion 2.4. Our baseline uses GIZA%{Och and Ney, 2003) to obtain word-level align-
ments in both language directions. The bidirectional wdighanent is used to obtain
phrase translation pairs using heuristics presented ih @d Ney, 2003). More specif-
ically, we use the intersection of the bidirectional GlZAalkgnments and Grow-Diag
heuristics to expand the alignments by adding direct neaghland diagonal neighbour
alignment points (cf. Section 2.4.5 for more details). Theskl framework (Koehn et al.,
2007) is used for phrase extraction and decoding.

We built two baseline systems with two different-sizedrinag sets: ‘Base-SMALL
(5 million words) and ‘Base-LARGE’ (50 million words) as aetoed in the previous sec-
tion. Both systems use a 5-gram language model with Knesgreliscounting (Kneser
and Ney, 1995; Goodman, 2001) built using 250 million wonasf the English Giga-
Word Corpus. Table 4.1 presents the BLEU scores (Papinahi 2002) for both systems
on the NIST 2005 MT Evaluation test set.

System BLEU Score
Base-SMALL 40.08
Base-LARGE 44.18

Table 4.1: Baseline systems’ BLEU scores

Note that these scores (especially the latter) are indieati quite good quality sys-

tems already.

“http:/lwww.fjoch.com/GIZA++.html
Shittp://www.statmt.org/moses/.
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Baseline vs. Supertags on Small Data Sets

We compared the translation quality of the baseline syswitisthe LTAG and CCG
supertags systems (LTAG-SMALL and CCG-SMALL). The resalesgivenin Table 4.2.

System BLEU Score
Base-SMALL 40.08
LTAG-SMALL 42.52
CCG-SMALL 41.74

Table 4.2: LTAG and CCG systems on small data

All systems were trained on the same parallel data. The LTA@”ag-based system
outperforms the baseline by 2.44 BLEU points absolute (@f&Grelative), while the

CCG supertag-based system scores 1.66 BLEU points oveiatdddie (4.1% relative).
These statistically significant improvements (using bimagsresampling (Koehn, 2004b))

indicate that the rich information in supertags helps sddetter translation candidates.

POS Tags vs. Supertags

A supertag is a complex tag that localizes the dependencyrenslyntactic information
from the context, whereas a normal POS tag just describggetheral syntactic category
of the word without further constraints. In this experimeve compared the effect of

using supertags and POS tags on translation quality. As eaeén in Table 4.3, while

System BLEU Score
Base-SMALL 40.08

POS-SMALL 40.73
LTAG-SMALL 42.52

Table 4.3: Comparing the effect of supertags and POS tags

the POS tags help (by 0.65 BLEU points, or 1.7% relative iasecover the baseline),

they clearly underperform compared to the supertag moget @ relative).
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The Usefulness of a Supertagged LM

In these experiments we studied the effect of the two add&dre (cost) functions: su-
pertagged translation and language models. We comparedasedine system to the
supertags system with the supertag phrase-table protydtili without the supertag LM.
Table 4.4 shows the performance of the baseline system {8lsigd_L), the LTAG sys-
tem without supertagged language model (LTAG-TM-ONLY) ahd LTAG-SMALL

system with both supertagged language and translation Isxodde results presented

System BLEU Score
Base-SMALL 40.08
LTAG-TM-ONLY 41.46
LTAG-SMALL 42.52

Table 4.4: The effect of supertagged components

in Table 4.4 indicate that the improvement is due to a shaoadribution between the
supertagged translation and language models: adding th& O™ improves the BLEU
score by 1.38 points (3.45% relative) over the baselineh Wie LTAG LM improving
BLEU score by a further 1.06 points (a further 2.65% incr¢ase

Scalability: Larger Training Corpora

Outperforming a Phrase-based SMT system on small amourttsioing data is less
impressive than doing so on really large data sets. Thesssere concern scalability
as well as the question as to whether the Phrase-based ShEhsigsable to bridge the
performance gap with the supertagged system when reagolaadé sizes of training
data are used. To this end, we trained the systems on 2 mdkatences of parallel
data, deploying LTAG supertags and CCG supertags. Tablprég€ents the comparison
between these systems and the baseline trained on the sameTdee LTAG system
improves by 1.82 BLEU points (4.1% relative), but the CCGieysgives an even larger
increase: 1.91 BLEU points (4.3% relative). While the reaimprovement score for

CCG is a little higher than with the smaller data set, for LTAG slightly lower (6.1%
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on the smaller data set). Nonetheless, the fact that sestainreases are to be found at all
is probably due to observing more data with different swgggdontexts, which enables
the models to select better target language phrases. Tieeedife between the LTAG

system and the CCG system is statistically insignificant.

System BLEU Score
Base-LARGE 44.18
LTAG-LARGE 46.00
CCG-LARGE 46.09

Table 4.5: Performance on large training data

Adding a grammaticality factor

As described in Section 4.5.2, we integrate a grammatyciadtor based on two standard
CCG combination operations, namely Forward and Backwarliégtion, and Forward
Composition. Table 4.6 compares the results of the basdeeCCG with am-gram
LM-only system (CCG-LARGE) and CCG-LARGE with this ‘gramticalized’ LM sys-
tem (CCG-LARGE-GRAM). We see that bringing the grammatigaésts to bear on the
supertagged system gives a further improvement of 0.79 BpBidts, a 1.7% relative
increase, culminating in an overall increase of 2.7 BLEUngmior a 6.1% relative im-

provement over the baseline system.

System BLEU Score
Base-LARGE 44.18
CCG-LARGE 46.09

CCG-LARGE-GRAM 46.88

Table 4.6: CCG with grammaticality factor (CCG-LARGE-GRAM

Combining LTAG and CCG Supertags

A natural question to ask is whether LTAG and CCG supertaggkaying similar (over-
lapping, or conflicting) roles in practice. Using an oraaechoose the best output of

the two systems gives an average per-sentence BLEU scor Dfiddicating that the
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System BLEU Score
CCG-Large 41.03
LTAG-Large 40.87

LTAG-CCG-Oracle 44.10

Table 4.7: Sentence average BLEU score for CCG, LTAG andlerac
with both

combination provides significant room for improvement (¢able 4.7). However, our
efforts to build a system that benefits from the combinatimhrobt give any significant
performance change. We investigated two issues that megltto this: the interpolation
mechanism, and the conflict between LTAG and CCG constraints
We tried different ways of interpolating LTAG and CCG modetise LTAG-CCG

system in Table 4.8 uses log-linear interpolation while GRECG2 uses additive inter-
polation by averaging both LTAG and CCG scores before itatpg with other systems
components. Both systems results fall below that of thellmessystem. System LTAG-
CCG3 deploys both a CCG language model and a CCG translatatelmbut it uses
only the LTAG translation model. The score of LTAG-CCG3 isr&what better than the
baseline, but remains lower than both the LTAG and CCG sootesn deployed sepa-
rately. Obviously, more sophisticated ways of combining two could result in better

performance than a simple interpolation of the components.

System BLEU Score
Base-LARGE 44.18

LTAG-LARGE 46.00
CCG-LARGE 46.09
LTAG-CCG 41.81
LTAG-CCG2 42.86
LTAG-CCG3 44.93

Table 4.8: Sentence average BLEU score for CCG, LTAG andlerac
with both

Conflicts between LTAG and CCG constraints may lead to sueltieyiven the need
to satisfy different, and possibly contradicting consttai In any case, this experiment

indicates that combining constraints from different graatical formalisms should be
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done with care. Figure 4.5 demonstrates an example wher&ldAd CCG outputs
contradict. Both the LTAG and CCG systems preferaedihorities reported thatather
than the baselinthe authorities thatbut the LTAG and CCG constraints conflict on the
subphrasallowed ... family .. This may have resulted from obtaining bad subphrases

when combining both approaches.

Source: §,ledl o lile 5150 Ll JlaiVL J coe G ollalldl o5l
G o dl dnaall

Reference The authorities said he was allowed to contact family mesbgrphone
from the armored vehicle he was in.

Baseline the authorities that it had allowed him to communicate bynghavith his
family of the armored car where

LTAG : authorities reported that it had allowed him to contact biepthone with his
family of armored car where

CCG: authorities reported that it had enabled him to communidat@hone his family
members of the armored car where

LTAG+CCG : authorities reported that it had allowed him by telephon@tect his
family of the car of armored personnel where

Figure 4.5: Conflict of CCG and LTAG when combined

Systems Output Analysis

In order to acquire a deeper insight into the effect of theestalg components on system
output, as well as where they might not help, we conductedraualanalysis of a subset
of the system’s output against the baseline and refereanslations. To select interesting
cases, we employed a threshold (20 BLEU points) as the miriffierence between the
sentence-level BLEU score of the CCG-LARGE system and titaedBase-LARGE sys-
tem. There are only 41 cases where (Base-LARGECG-LARGE)> 20. From the 76
cases where (CCG-LARGE Base-LARGE)> 20 we randomly sampled 50 sentences.
We inspected both sets of cases manually against the reéeteanslation, with the aim
of finding an explanation as to why supertags improved ovebtseline and vice versa.
Naturally we tried to find a mutually exclusive classificatiof the test cases. Where this

was not possible we employ a general bucket called “Othesores.
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N=50 test sentences

Reason # %
Inserting verb omitted by baseline 11 22%
Better reordering 11 22%
Better word/phrase selection 5 10%
Other reasons 23 46%

Table 4.9: How CCG improves over baseline

Table 4.9 exhibits the reasons for improved output for thescl§ased system over
the baseline system. Only 22% of the cases are due to impmadering, mainly
verb/subject and noun/adjective, as illustrated in Figufe The CCG system correctly
includes a verb which was omitted by the baseline systemd @Pcases; this concerns

verbs such asaid, concluded, is, signeetc., as shown in Figure 4.7.

Source: Bemle Lad oagd Ll = dows JI GBI O Ooila] J6 ¢ asle 0
Lol r\J:._c\!\ =

Reference For his part, lvanov said that Sino-Russian relations handergone marked
progress in recent years.

Baseline For his part , said lvanov that russian-chinese relationtwssed a remark-
able progress during the past years .

CCG: For his part , lvanov said that russian-chinese relationgnessed a remarkable
progress during the past years .

Figure 4.6: Improved Reordering in the CCG system

z

Source: sl sixd 1 oo G ool el g Bl Gas ple (5221
i

Reference Annan opened an internal investigation in February but edied it in
March in preparation for a broader, independent investigat

Baseline: Annan was to internally in February but abolished in Marchaaprelude to
broader and independent .

CCG: Annan conducted an internal inquiry in February but aboéghin March in
preparation for broader and independent .

Figure 4.7: Overcoming missing verbs in the CCG system

Omitting verbs turns out to be a problem for the baselinessygsee Figure 4.8). Both

supertagged systems have a more grammatically strict &ageggmodel than a standard
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word-level Markov model, and so exhibit a preference (in@@&G system especially) for
the insertion of a verb with a similar meaning to that corgdim the reference sentence.
We think that the improvement of restoring omitted verbsus tb the fact that verbs have
rich supertag structures that encode full syntactic intion and therefore can directly

influence the system to opt for a more syntactic output.

Source Llll &)l Lolate 95 Je Olold] a5

Reference The two sides highlighted the role of the World Trade Orgaingn
Baseline: The two sides on the role of the World Trade Organization ( WTO
LTAG : The two sides on the role of the World Trade Organization

CCG: The two parties reaffirmed the role of the World Trade Orgatian

Figure 4.8: Baseline system omits verbs while supertagesysan pro-
duce them

Apart from improvements with these verbs, the CCG systeneseh better output
due to improved word/phrase selection in about 10% of cases.large number (48%)
of cases, the CCG system improvement is accounted for by d@uof reasons, e.g.
selecting the correct form of verb (cf. Figure 4.9, where we illed’ vs. ‘killing’,
among other improvements), restoring negation (cf. Figutd), improved grammatical-
ity (cf. Figure 4.12), and a variety of other reasons (cf.ufgg4.10). Although restoring
the negation may not be the direct effect of supertags uthigecase with restoring verb
since the negations do not have rich supertag structurethinlethat such improvements
are due to the fact that we are using a log-linear model witaregety of features; A small
change in the cost of any of these features may influence sterayto produce a better
translation.

Table 4.10 shows the reasons as to why the baseline systew igiproved output
compared to the CCG-based system. In 14.6% of cases, thetaitfhe CCG system
reads better than the baseline and conveys the correct nggamit the baseline matches
the reference translation more closely. Another 12.1% efcdses concern long NPs and
PPs for which supertaggers do not offer a good treatment; @D@s to prefer briefer

translations in such cases. In another 7.3% of instancesSC@G system inserts extra
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Source: ixy )l Jls> #5755 J5YI s pa® Osde Vo Jiie s gLl el

Reference This dispute has killed at least 1.5 million people and dispt approxi-
mately four million people.

Baseline: The conflict on the 1.5 killing of at least a million people d@hd displacement
of some four million people .

CCG: The conflict killed at least 1.5 million people and the digglaent of about four
million people .

Figure 4.9: Improved Verb Forms in the CCG system

Source -Y+ o ¥ gle / LI Al 3 & e ST bodu e ldaieYl oda &2l
Reference These attacks have resulted in over 100 deaths since May 2003

Baseline:In the attacks left more than 2003 people killed since May .
CCG: Resulted in these attacks on more than one hundred deattesgiay 2003 .

Figure 4.10: Improved translation in general in the CCGayst

Source sl eV 3o o) Clbgadly Judl: ule seas

Reference Mahmoud Abbas: The Wall And Settlements Will Not Bring Issaeurity
Baseline:Mahmoud Abbas , the wall and settlements will provide séctwilsrael
CCG: Mahmoud Abbas : the wall and settlements will not provideiggcfor Israel

Figure 4.11: Restored negation in the CCG system

Source § Blxall & > Jg> o &l ol Juo e (o D Ve LU
bl il oYW & aw L ol dez Wl uf QN C..ablbdbwu

Glblidy dJ_iJ‘ J.AL-J‘

Reference Rabat 1-14 (AFP) - A sharp debate is raging in Morocco on tieediom of
the press with regard to matters connected personally t@Hohamed VI following
the publication of articles criticizing the Moroccan moghis income and activities.

Baseline: Rabat 14-1 ( afp ) - was a sharp controversy in morocco on piregsiom in
terms of topics affecting king Mohamed VI himself after [@hohg articles critical of
the revenues of the moroccan .

CCG: Rabat 14-1 (afp) - a sharp controversy in Morocco on pressdan in respect of
topics affecting king Mohamed VI personally after the peadion of articles criticizing
the moroccan monarch revenues.

Figure 4.12: Better syntactic modelling in the CCG system

72



function words (e.g. “of”, “that”, “which”) which are not arable in the reference trans-
lation. In another 7.3% of the cases, the CCG supertaggecwasonted with an Out-
Of-Vocabulary item which lead to a deterioration in supggiag output. Verb confusion
(5.1%), where one verb is nested under another (e.g. “said™eeturned” in “He said
that life has almost returned to normal”), also constititggoblem for the CCG-based
system, as it tries simultaneously to satisfy the argumpatifications of both verbs,

which are often incompatible.

N=41 test sentences

Reason # ~%
Better CCG output that matches less with reference 6 14.6%
Long NPs and PPs 5 12.1%
CCG wrongly inserting function words 3 7.3%
Supertagger facing OOV 3 7.3%
Verb-confusion 2 51%
Other reasons 22 53.6%

Table 4.10: How Baseline improves over CCG

In general we observed that supertagging seems to help rhesttive baseline system
already has reasonable alternative translations; wh@ertagging improves the selection
of a better translation. Whenever the baseline system farivesd starting point (mostly
when translation involves many short phrases), the CCGriagsedo not help much; in
fact, the CCG supertags may even lead to slightly worse otitain the baseline in such
cases. This analysis is not surprising for two reasonstlfisupertags offer a syntactic
improvement over the baseline system mainly with regarcdhéogrammaticality of the
output via constructingalmost parsing: Secondly, when the input sentence consists
of unseen combinations of words/phrases relative to theitigidata, the phrase-based
systems perform the translation using the smallest phifasesl in the training data (in
the worst-case, word-to-word translation). In this case, supertagged Phrase-based
SMT helps a little as the translation candidates are not goadigh to construcalmost
parsing’. It might be helpful to use an approach based on the confidecme of the

baseline system such that we may be able to decide when actimiaodel should be
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used or not.

While on average our system selects more grammatical otltpatthe baseline, it is
still limited to the same set of hypothesis translationg tzan be built by the standard
reordering mechanism used in the baseline system. Noest)eh last year's IWSLT-07
evaluation, it was encouraging that our supertags-basabiérEnglish system described
in (Hassan et al., 2007a) was ranked first by some margin inuhean evaluation, despite
this clear advantage of more fluent output not carrying oweghé automatic evaluation

Scores.

4.6.2 German-to—English

In order to examine the applicability of our method to otteerduage pairs, we carried out
a number of experiments on German—to—English. The datawasdhat of the shared
task of the ACL 2007 MT Workshop (WMT 200%)comprising over 1 million sentence
pairs of Europarl (Koehn, 2005) and (much smaller, about llianiwords) news com-
mentary data, giving a total of around 22 million words focle#é&anguage.

The language models (batkgram and supertag-based) were trained on the 39 million
words of English monolingual data. The standard setup fervtbrkshop was used to
build the baseline system, and we built a CCG supertagsmyist¢he same manner as
described in section 4.5. We used devset2006 (2000 ses)dncparameter tuning using
Minimum Error Rate Training (MERT) (cf. section 2.4.4), ahestset-2006 for testing.
Each of the test sets was composed of 2000 sentences.

The results are contained in Table 4.11:

System BLEU Score
Baseline 27.07
CCG Supertags 27.55
Baseline (w/o Brevity Penalty) 27.34
CCG Supertags (w/o Brevity Penalty) 29.47

Table 4.11: CCG Supertags System for German—English

Shittp://www.statmt.org/wmt07/shared-task.html
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Here we can see that the CCG supertags system improves ommskéne by 0.48
BLEU points, a 1.77% relative increase in performance. At first glance this result
might be seen as disappointing compared to the Arabic—&mgtiores, there are a number
of explanations for the relative discrepancies.

Firstly, for Arabic—English there were 4 reference tratistas for the MTO5 testset
against which the output sentences were evaluated, whime&erman—English, there
exists just a single reference.

Secondly, the translation output from the CCG supertaggesysends to be shorter
in sentence length than the single reference and so is hjggralized by the brevity
penalty in the BLEU metric (cf. Section 2.7). This can be sbgrthe final row of
results in Table 4.11, where we observe an increase in BLBtesaf 2.4 points, an 8.9%
relative improvement, compared to the baseline performawtien the negative effects
of the brevity penalty are disregardédh this light, an improvement of around 0.5 BLEU
points, even taking into account the effect of the brevitgglgy, is a good improvement
for a single reference testset for any language pair.

Figure 4.13 provides a good example of the sorts of improvesnehich a supertag-
enriched model of translation provides compared to a bas@hrase-based SMT system.
The supertagged model provided enhancements with respeéctatment of negation,
reordering, better verb treatment and overall a more syictéranslation. The baseline
wrongly omits “not”, and does not capture the collocationdiivh report”. It can be seen
that the CCG system generates good verb strings (“is beingpgely forgotten”), and
in general provides more fluent and intelligible output, rews this 49-word German
sentence.

Figure 4.14 shows that just like for Arabic—English (cf. &g 4.7), the tendency
for SMT systems to omit verbs in translation is overcome whgpertags are deployed.
Firstly we see that “is to be” is correctly inserted in the sudinate clause, and also that

in the relative clause, “which does not belong” appears ndee the translation perfectly

"The baseline score has not been much affected by the bresitglty as the translation is slightly
shorter than the reference.

75



Source Ich habe nicht@ir den Bericht Mann gestimmt, denn bei allem &atsich
notwendigen Streben nach Gleichbehandlung in Basigung und Beruf braucht
deswegen noch nicht itdbereifer so weit gegangen zu werden, dass der Schutz der
Freiheiten und die Achtung des Rechtsstaates dailkgwn Vergessenheit geraten.

Reference | have not voted for the Mann report because, while it is intleecessary
to seek equal treatment for people in employment and ociumpét is also necessary
to refrain from pushing zeal to the point of abandoning athggction of freedoms and
all respect for the rule of law.

Baseline: | have voted in favour of the report because , in particulargmms actually
needed quest for equal treatment in employment and ocaupiatitherefore not yet in
excess of zeal went so far as to say , the protection of freedowhrespect for the rule
of law is completely forgotten .

CCG: | have not voted for the Mann report because , in fact , withtladl necessary
search for equal treatment in employment and occupatiohdeefore not yet gone so
far in excess of zeal , that the protection of freedoms angle@sor the rule of law is
being completely forgotten .

Figure 4.13: Improved performance of the CCG system for Germ
English.
intelligible. Note, of course, that this latter improvene&oes not perfectly match the
reference, so will not receive the full benefit when it coneeart increase in BLEU score,

despite being a perfectly acceptable translation.

Source Wenn die Richtlinie annehmbar und durighfbar sein soll, darf sie nicht mit
Literatur und Wunschdenkéiberlastet werden, die in einem legislativen Text nichts zu
suchen haben.

Reference If the directive is to be adopted and implemented, it musbe@ncumbered
with a literary approach and wishful thinking, which havepiace in a legal document.

Baseline: If the directive acceptable and is going to be possible , isitmot be over-
loaded with literature and wishful thinking , not in a legisive text .

CCG: If the directive is to be reasonable and workable , it mustbebverloaded with
literature and wishful thinking , which does not belong iregilative text .

Figure 4.14: Overcoming missing verbs in the CCG system fm@an—
English

4.7 Conclusions and Open Questions

SMT practitioners have on the whole found it difficult to igtate syntax into their sys-

tems mainly because of the mismatch between the notions 8Manphrase and a con-
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stituent in mainstream linguistics. The main difficultydien devising some syntactic
structure that fits with phrases but does not admit (muchynmddnt ambiguity into the
phrase translation table. Such redundancy leads to egar k@ables, more complex prob-
ability models and less efficient decoding.

In this chapter, we have presented a novel model of Phrasedl@MT which inte-
grates linguistic lexical descriptions, supertags, ifite target language model and the
target side of the translation model. Supertags fit seamlesth Phrase-based SMT as
they are lexical, linguistically rich and can be used in &t Hidden Markov Models
(Rabiner, 1989) as well as full parsing models. Howeverenity there are only a few
languages for which supertag-sets and supertaggers wkist) limits the current appli-
cability of our model to translation to such languages.

We believe that our use of supertags in the experiments abedun this chapter ex-
emplifies the importance of lexical syntactic informatiacls as subcategorization frames
for improved translation output. Much of this lexical infoation can be acquired without
the need for full parsing or treebanking.

We have carried out extensive experiments on small and aegge ltraining and test
sets for Arabic—English translation. While using LTAG supgs gives the best improve-
ment over a state-of-the-art Phrase-based SMT systemdantialler data set, using CCG
supertags works best on the large training set. Adding graticality factors based on
algebraic compositional operators gives the best resaitaty 46.88 BLEU, or a 6.1%
relative increase over the baseline. This result compageg favourably with the best
systems on the NIST 2005 Arabic—-English task.

The experiments on very large training data are importanabse they provide evi-
dence that ever increasing amounts of data (and correspgigdiarger phrase-translation
tables) will not bridge the performance gap with a systen ith@rporates syntactic in-
formation about phrase combination/ordering.

In addition, we demonstrated the applicability of our agmio to another language

pair, namely German—English. Our CCG supertags model ivgsrover the baseline
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Phrase-based SMT system by 0.48 BLEU points, a 1.77% relairease. This is a
satisfactory improvement when one takes into account thigtane reference translation
was available for this 2000-sentence testset. Nonethelds the severe effect of the
BLEU brevity penalty is disregarded, we observed an in@dasBLEU score of 2.4
points, an 8.9% relative improvement, compared to the bespkerformance.

In this chapter we showed that integrating lexical syntathatranslation model and
language model of a Phrase-based SMT system have causslticanquality to im-
prove. We showed that a supertagged translation model ggdvimprovements on its
own, and more improvement was observed when used with thertsigged language
model. Our analysis of the translation output showed thatrg wide range of improve-
ments were brought about by the use of a supertags-baseshsyistcluding improved
reordering, overcoming the tendency of SMT systems to omibs, improved verbal
constructions, proper handling of negation, and well-fednsyntactic output in general.
In this regard, we noted that in a recent large-scale opeluaian, the output from our
Arabic—English supertags-based system (Hassan et alfa20@s preferred by human
evaluators, although given the remaining differences betwthe output and the reference
translations, this does not always result in improvemenBLEU score.

Having addressed the question as to wheather lexical sgarake of use in Phrase-
based SMT; we now move our attention to the related questibwiether lexical syntax
can provide Phrase-based SMT with full parsing capabilitg @hether this is needed
by Phrase-based SMT systems. We will try to answer thesetiqnesn the next two

chapters.
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Chapter 5

Incremental Dependency-based

Language Modeling

5.1 Introduction

In Chapter 4, we described our supertagged Phrase-basedr&iddl which integrated a
supertagged translation model andragram supertagged language model into a baseline
Phrase-based SMT system; this integration significantiyraved the translation accu-
racy. Perhaps surprisingly, we also showed that addinglsitmguristic grammaticality
measures can further improve the translation accuracys lihexpected improvement
highlighted a drawback of supertagged language modelse ieeno guarantee that the
sequence of proposed supertagged phrases constitutad awghctic constituent. An-
other more serious, though expected, drawback is that &gged language models can-
not handle long-range dependencies. In this chapter, wednte a solution for those
problems: an incremental dependency-based language rihadednables the seamless
integration of incremental dependency parsing into Phbesed SMT systems.

In this chapter, we introduce a novel Incremental Depengidased Language Model
(IDLM) using CCG incremental parsing. In Chapter 6, we wilbsy how our proposed
IDLM is integrated into the SMT model.
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5.2 Incremental Dependency-based Language Model for

MT

5.2.1 From Supertagged to Dependency-based Language Moslel

Lexical syntax deploys rich syntax descriptions —supertaghat match individual words,
and a limited set of Combinatory Operators which are useatoline supertags into a
set of constituents/parses. The supertagging languagelmeqalaces the set of Combi-
natory Operators with an-gram language model over the sequence of supertags (thus
‘almost parsing). Originally, ‘almost parsing’had been proposed for handling monolin-
gual strings, where the given sequence of words alreadytremts a presumed syntactic
structure (Bangalore and Joshi, 1999). In the bilingual —MTase, the sequence of
candidate target words might not construct a valid syntagitiucture nor a compelling
sequence of associated supertags; therefore, achi@lingst parsing’by deploying a
supertagged-gram language model on the huge space of hypotheses, eapiresthe
candidate translations, is more challenging in the MT chaa tn the monolingual pars-
ing case.

We argue that the MT case needs a more sophisticated mech#dras can satisfy
three important aspects. First, it needs to efficiently supfong-range dependencies
and construct full parse structures such that it would endéiek MT system to distin-
guish between different translation candidates based e tble in constructing the
parse structure and satisfying the syntactic dependen&esond, as is widely known,
Phrase-based SMT systems produce the translation caeslidatementally by process-
ing source words from left-to-right in a Markov fashion; tefre, this mechanism should
work in an incremental manner. Third, the mechanism shoalcmputationally efficient
such that it can be integrated into large-scale Phrasedl&igd systems.

In this chapter, we introduce an incremental dependensgdlnguage model which
deploys CCG incremental parsing mechanism to construgtdnging structure step-by-

step, where each step represents the accumulation of gaisaisions as the parsecre-
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mentallyconsumes the input word-by-word from left-to-right. Theposed dependency-
based language model complies with the Markovian naturehohde-based SMT de-
coders; therefore, it has the potential to be integratethkessly with such systems. Fur-
thermore, it is based on a deterministic parsing approaehitimaintains a limited num-
ber of parse decisions at each parsing step which makesyieWfezient computationally.
In the next section we will briefly introduce our proposedréraental Dependency-based

Language Model (IDLM).

5.2.2 IDLM Overview

An incremental model of syntax and semantics constructias proposed in (Milward,

1994a). In this model the syntactic process is representea sequence of transitions
between adjacent syntactic/semantic states. The syntaptiesentation is built step-by-
step, hence incremental, from left-to-right while trawegsthe input string as shown in

(5.1). The syntactic state contains all the dependencynrdtion about fragments that
have already been processed so far. The parser producesdumhected intermediate
structuresncrementallywhile moving from one word to the next. As (Milward, 1994a)
indicated the model can be seen as a Markov model with an ualonumber of states

(in principle).

Y A N - S, s, (5.1)

Before we go further in describing our proposed IDLM, let ustfclarify some no-
tions regarding incremental parsing, left-to-right pagsand lookahead. Incremental de-
pendency parsing is the process of constructing the depegpdgaph step-by-step, so
that at each step the constructed partial graph is neveedlt revised in any later step.
On the other hand, the construction of the incremental d#gecy graph does not have

to be strictly left-to-right. In fact, it can be left-to-iing, right-to-left or even bidirectional
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as long as the incrementality condition mentioned aboveastained. Moreover, in-
cremental parsers may have access only to a fixed, limitedowmirof lookahead words.
In other words, an incremental parser may delay decisiohsnaly not delay decisions
indefinitely, i.e. requiring lookahead for the whole ser&nincremental parsers without
lookahead information decide what is the next expansiongaéependency graph without
access to any words to the right of the current word. By cattgzarsers with lookahead
have access to a limited number of words to the right of theecirword. As a matter
of fact, the lookahead is equivalent to buffering a numbewofds before processing
them; as stated by (Marcus et al., 1983), a deterministisgraran buffer and examine
a small number of words before adding them to the existingctire. Based on these
definitions, we call an incremental, left-to-right parsatheut lookahead information a
fully incremental parserwhile we call an incremental left-to-right parser with lied
lookahead capability weakly incremental parsett is worth noting that fully incremen-
tal parsers are cognitively plausible (Marslen-Wilson739Sturt and Lombardo, 2004),
while weakly incremental parsers can serve well for syriiagzed language modeling
where a context of the word is usually provided for scoring.

Our IDLM is an embodiment of the theoretical representatatiined above, where
we use an incremental parser based on CCG as the grammaficakentation of the
syntactic/semantic states and the transition actiondehdtfrom a state to another.

As shown in (5.2), each word; is associated with a lexical syntactic/semantic de-
scriptorst;. At each transition, a parsing actionis associated with that transition, which
transforms the current parse-stateto the next staté, . ; which in turn represents a new
partial syntactic derivation. When the last word is enceued, a final staté),, represents
the final syntactic structure for the given sequence of wo&igh a sequence of parsing

actions constructs the parsing derivation step-by-step.

Sp—2> S — 25 Gl Si%;szsi“ ............. S, (5.2)

wi,st1 w2,st2
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We use incremental CCG as our grammatical representatntbat the lexical de-
scriptorst; is represented by a CCG supertag, and the parsing agtismepresented by
a CCG Combinatory Operator with the statebeing a composite CCG category. Each
states; is determined exactly by the previous state; and a choice of a supertag and
an operatop;. Therefore, the probability?(1V, S) of a word sequencl” and associated
final parse-state sequenSewhich represents a possible derivation, can be described a

in Eqn (5.3):

Word Predictor Supertagger Operator Tagger
7\

P(w;|Wi1Si-1) . P(sti|W;) . P(0,|Wi, Si_1, ST;) (5.3)

:::

P(W,S) =

=1

This probability represents the product of the producticobpbilities at each parse-state

and is similar to the structured language model representat (Chelba, 2000):

o P(w;|W;_1S;_1) is the probability ofw; given the previous sequence of woids_,

and the previous sequence of states .

e P(st;|W;) is the lexical descriptor (supertag;) probability given the word se-
qguencelV; up to the current position. This is represented by a sequegger

(supertagger) in our CCG incremental parser.

e P(0;|W;, S;_1,ST;) represents the parsing action (operatgr probability given
the previous words, supertags and state sequences up torteatgosition. This

is represented by a sequence operator tagger in our CCGneatal parser.

It is worth noting that the proposed language model parseetsrministic, in the
sense that it maintains a limited number of parse-stately @me here) that represent
possible parsing decisions at each word position. Thisaataristic is very important for
incorporating IDLM into large-scale MT systems due to itsnputational efficiency.

In this chapter we discuss in detail the our work introducedtiassan et al., 2008b).

In the remainder of this chapter, we will describe the meatsof this incremental parser,
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while the deployment of IDLM in MT systems will be introducedChapter 6.

In Section 5.3, we will review the related work on syntaxdxhtanguage models as
well as incremental parsing. In Section 5.4 we will introduwaur incremental parsing
approach in detail. In Section 5.5, we will describe the $farmation of the CCGbank
derivations into the incremental derivations needed ferititremental parser. In Sec-
tion 5.6, we will describe the implementation details of maremental parser. We will
present our parser evaluation in Section 5.7 and finallyideogome discussion in Sec-

tion 5.8.

5.3 Related Work

Many psycholinguists have claimed that the meaning of aeseetcan be obtained be-
fore all words in the utterance have been heard (e.g. (Ma&l#son, 1973; Sturt and
Lombardo, 2004)). Incrementality in parsing has also beepgsed for real-time appli-
cations such as speech-to-speech translation, wheresanafithe input utterance needs
to be updated on a regular basis. In this section, we willudis¢he differences between
our proposed IDLM and the previously proposed syntactiglege model approaches
(cf. Section 3.6). Then we will review related work intro@ulcfor incremental parsing

in general.

5.3.1 Syntax-based Language Models

In Section 3.6, we reviewed previous work that incorporatgdtactic language mod-
els into speech recognition systems and MT systems such hslb@ 2000; Charniak,
2001; Roark, 2001; Wang et al., 2004; Xu et al., 2002; Coléhal., 2005). All these
approaches were evaluated only on small-scale speechniéoogtasks. As for MT,

only (Charniak et al., 2003) integrated the model propose(Charniak, 2001) into a
syntax-based MT system (Yamada and Knight, 2001). All tlevipus approaches de-

pend on non-deterministic techniques to grow a huge nunflartal derivations which
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is unmanageable for large-scale applications such as Mpewch recognition. This has

limited the usability of these approaches to very smalldaskd/or re-ranking of system

output. Another major aspect is that the previous appraadbploy CFG or dependency
grammar that cannot handle non-constituent constructioRerase-based SMT systems
(cf. Section 2.4).

Our proposed IDLM differs from this related work in four majespects:

e It is based on incremental parsing that seamlessly mattieeimecremental nature

of SMT decoders.

e It is deterministic, in the sense that it maintains a limiteamber of parse-states
that represent possible parsing decisions at each wortigrast his characteristic
IS very important for incorporating IDLM into large-scaleTvsystems due to its

computational efficiency.

e The grammatical representation is based on CCG structunehwenable the han-

dling of non-constituent constructions.

e The parser seeks out intermediate connected structurgss previous approaches
which deployed dependency relations or head words to esgblax-based proba-

bilities into the language model.

5.3.2 Incremental Parsing: Related Work

As we are using incremental parsing for our IDLM, we will rewi here the most relevant
work for incremental parsing. Most current parsers do nckleathe problem of sentence
analysis in an incremental fashion. State-of-the-artgrarsuch as (Collins, 1999) and
(Charniak, 2000) require the derivation of a packed parsestovia dynamic program-
ming, prior to a probabilistic disambiguation of the fullidence. As the packing of the
parse forest is largely non-deterministic, incremengasitnot an option here.

In contrast, partial parsers such as (Abney, 1991) do npiutat full sequence of con-

nected phrases, which causes the constraint of increntgrtafail for a quite different
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reason.

(Nivre, 2004) suggests that deterministic dependencyma(e.g. (Yamada and Mat-
sumoto, 2003)) is an intermediate solution between full padial parsing, in that the
building of a full parse of the input string is the aim, whilethe same time remaining
robust, efficient and deterministic.

(Nivre, 2004) describes an incremental approach to detestic dependency parsing.
While strict incrementality was not possible using his feamork, as far as well-formed
utterances are concerned, the degree of incrementalitghanibiachievable approaches
90%.

(Ratnaparkhi, 1997) proposed a linear time model based orivian Entropy frame-
work to determine chunks and higher syntactic structuresydver he used multiple
passes over the input string. Based on (Nivre, 2004) andnépatkhi, 1997), (Sagae and
Lavie, 2006) introduced a statistical shift-reduce patbat uses a probabilistic frame-
work to determine the shift and reduce actions and keep pielpiossible parse decisions
that are handled by a beam strategy.

(Shen and Joshi, 2005) use the term ‘semi-incrementalfes te parsers (both left-
corner (e.g. (Collins and Roark, 2004)) and head-corngt (amada and Matsumoto,
2003))) which permit multiple iterations of left-to-rightans, rather than just one.

In contrast to these models, (Shen and Joshi, 2005) inteoalu@pproach for fully in-
cremental parsing of spinal Lexicalized Tree Adjoining @raar (LTAG), which supports
full adjunction, a dynamic treatment of coordination, asl\&e non-projective dependen-
cies. (Shen and Joshi, 2005) observe that their model afinental parsing with LTAG is
very closely related to the supertagging approach of (Blangand Joshi, 1999), except
that while supertagging can be seen as a two-stage appragodr{agging and composi-
tion of the complete derivation via the elementary tregmytincorporate the supertagger
and dependency analyser dynamically in a similar way to ¢Réore, 2000). While the
work described in (Shen and Joshi, 2005) has much in commtimtiae approach pro-

posed in this chapter, such as using supertagging and usisgjfecations techniques to
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assign the parsing actions, there remain two significafgrdifices that limit the capabil-
ity of using this parser in language modeling. Firstly, (8la@d Joshi, 2005) requires full
access to the sentence and thus may delay parsing decisiefinitely. Secondly, the
parser uses a stack of disconnected derivations to reprseleft context similar to (Xu
et al., 2002), which further complicates its usage for laaggimodeling.

Incremental parsing was applied to Categorial Grammar iitwtd, 1995) using a
state-transition (or dynamic) processing model, wheréd esdate consists of a syntactic
type together with an associated semantic value. In (Mdw&a994a), a generic approach
for dynamic syntax and incremental parsing is proposeddasen infinite state Markov
representation.

The model of incremental parsing for CCG that we propose tselargely inspired
by ideas presented in (Milward, 1995), (Bangalore and Jd€819) and (Bangalore,
2000), in that we use a state-transition model, based orfiaitéstate Markov represen-
tation, using CCG supertags and learning the parsing ectabeach step. We describe
our approach in the next three sections, together with éx@erts demonstrating the ef-

fectiveness of this method.

5.4 Incremental Parsing for CCG

In this work, the incremental parsing process is represkeioyean infinite Markov model.
A parsing derivation is built step-by-step, where the warlsresent the transitions be-
tween states, and each state represents the partial paesivgtion constructed so far.
Furthermore, each state is associated with a composite @@&gary such that the num-
ber of possible states is (in principle) unbounded. The dex@CG category defines the
required arguments at the current state, while the pardiedipg derivation represents the
partial dependency interpretation constructed so far.

The incremental parsing process consists of the construatf such dependency

graphs in a step-by-step manner. At each state the parp@ndiency structure can be
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John  likes  Mary

(S~ (50—~ ()~ (3
Caty Caty Cats
So

5 G — )
5 o) — () — o)

Figure 5.1: lllustration of the incremental parser repreggon and the
associated intermediate dependency graphs at each state.

represented as a directed graph with nodes representirdsvaoid arcs representing de-
pendency relations. Given a string of words, a sequence apanterpretations and
associated dependency graphs can be established. Wheasthveord in the sentence
has been processed, the graph represents the dependestyrstof the whole sentence.
It is worth mentioning that the model presented here is nstricted to fully connected
graphs, i.e. during parsing, the proposed incrementalepaan quite naturally handle
partially connected graphs.

Figure 5.1 illustrates the incremental parsing represemtaAt the initial stateS,, the
dependency graph is simply the node representing the fingtWohn” . The transition to
the next state, is triggered by the verllikes” , where the dependency graph associated
with stateS; shows the realized dependency betwdies” and“John”. Finally the last
word triggers the final state, and the parser is able to cocistine full dependency graph
which is associated with the last state Each state is associated with a complex CCG
categoryCatl, Cat2andCat3respectively.

The proposed approach deploys three modules in a cascadestétisticaSupertag-
ger, (2) a statisticaDperator taggerand (3) a deterministiParsing State Realizer

Figure 5.2 illustrates the operation of the cascaded achite. First the supertagger
assigns a possible supertag sequence to the words, shownthedvords. Second, the
operator tagger assigns a sequence of left-to-right opesaghown on the arrows’ heads,

which are able to satisfy the required dependency struckinally, the deterministic state
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John likes Mary
S, NP (S\NP)/NP NP

—> NOP

Sl: NP

— > TRFC
S,: S/NP
> FA

53: S

Figure 5.2: A sentence and a possible supertag sequencatapge-
guence and state sequence. NOP: No Operation; TRFC:
Type-Raise Forward Composition; FA: Forward Application.

realizer constructs the parse-states and the associgpesdaiEncy graph incrementally,
using the two assigned sequences.

The supertagger and the operator tagger have to be trainedt-do-right incremental
CCG derivations. In order to obtain such data, we transfdrthe CCGbank (Hocken-
maier and Steedman, 2007) from normal form derivationsriotht left-to-right deriva-
tions that can satisfy the dependencies in the CCGbank. @kiesection presents the
transformation technique that we developed to obtain tipecgguiate training data.

Figure 5.3-a illustrates the transformation and trainingge of the incremental parser;
the CCGbank with associated dependency structures iddramsd into two sequences
of supertags and operators. The supertags sequence iousad t MaxEnt supertagger
and the operators sequence is used to train a MaxEnt opéagtyper; this is described in
detail in Section 5.6.1.

Figure 5.3-b illustrates the runtime parsing operationhaf incremental parser; the
supertagger and the operator tagger are used in a cascasiEdo appropriate supertag
and operator sequences to the given sentence. Both sugrtagperator sequences
are fed into the state realizer to construct the incremeguaeding and the corresponding

dependency graph step-by-step. This is described in deta#éction 5.6.2.

5.4.1 Merits of CCG for Incrementality?

We present a novel approach for wide-coverage incremeatsimy based on CCG. As we

described in Chapter 3, there are currently two supertapgoproaches: LTAG (Joshi and
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Incremental representation

Operator
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MaxEnt Framework

Operator
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Figure 5.3: Incremental Parser: a: Transformation & Tragnphase, b:
Parsing runtime phase.

Schabes, 1991) and CCG (Steedman, 2000). The two apprdaabesnore similarities
than differences (cf. Section 3.5); however, our proposeteimental parsing approach

deploys CCG for several reasons:

e CCG (Steedman, 2000) is a lexicalized grammatical theosrevthe CCG lexical
entries define syntactic categories which encode syntaatency and direction-
ality; these categories can be augmented by a semanticsegpiagion to provide
compositional semantics with a completely transparemriate between surface
syntax and logical semantics. Although in this thesis weigogn syntactic struc-
tures, CCG provides the possibility of expanding the prepoapproach to a se-

mantic representation as wéll

e The CCG Combinatory Operators assemble lexical entriextiheg into derivation-
trees; each partial or complete syntactic derivation poads directly to a struc-

ture. For example, strings such &ohn likes” have a natural interpretation as

Icf. Chapter 3 for detailed discussion on the compositioaadantics capability of CCG.
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constituents. (Doran and Bangalore, 1994) highlightedtthe flexibility of CCG
derivations allows the handling of non-constituent camgions that LTAG cannot
handle, which is due to the fact that LTAG trees represend rsgructures while
CCG categories allow more flexibility in the derivation pess. Unlike many other
linguistic theories, this flexibility gives CCG an advargagyer other grammatical
formalisms in handling non-constituent constructionstfoth incremental parsing
and Phrase based SMT with arbitrary phrase boundaries (Gflméann and Xia,
2003; Koehn, 2004a)).

As highlighted in (Steedman, 2000), CCG can represent degérjost string as a
constituent even if it is not a syntactic constituent. Ttais enable any left branch-

ing (left-to-right) parser to work fully incrementally.

A fully incremental dependency parser is only possibleéfiégftmost graph is fully
connected at each parse state, which has been highlight@divme, 2004). This

is only possible with grammars like CCG where the type rgisind compositional
capabilities can be utilized to keep the graph connected e¥en not resolving a

dependency relation.

CCG has a wide-coverage treebank available, the CCGbankké&nmaier and
Steedman, 2007 The CCGbank is a CCG transformation of the Penn Wall Street
Journal Treebank (Marcus et al., 1993); obtained by transfgy the parse trees
into normal form derivations in CCG. The CCGbank provides ideacoverage
CCG lexicon together with head-dependency annotatioresetbre, it could be

used to obtain the data needed for our proposed incremearteip

We present a linear-time, incremental CCG parser. Our gmbrdSection 5.4) is based

on a representation of parses as a sequence of parse-stathgepresenting the accu-

mulation of parsing decisions as the parser consumes th waqrd-by-word from left-

to-right. A parse-state is constructed by applying a CCG Kioatory Operator to the

2CCGbank is available through LDC, Catalog No.: LDC2005T13.
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I gave them advice
NP ((S\NP;)/NP,)/NP; NP, NP;

Figure 5.4: CCG dependency structure.

previous state and the supertag of the current word. Thepeosistructs, incrementally,
only a linear number of parse-states in sentence lengtihelnéxt section, we will define

the CCG dependency structure as it is used in this work.

5.4.2 CCG Dependency Structure

CCG dependency structures consist of a set of CCG predacgtenent relations defined
through the argument slots in the CCG lexical categoriesisi@ier the sentence in Fig-
ure 5.4 where we see that the ditransitive verb has the caté(®\NP;)/NP,)/NPs)
which encodes the dependency information of this verb. Hewehe dependency re-
lations are established when a parsing derivation is coct&d and the argument slots
are filled with the appropriate categories. In this examble,first slot/V P, of the verb
“gave” is filled with the subject!l” , the second slolv P, is filled with the first object
“them” and finally the third slot is filled with the second objéativice”. Thus we can
interpret the dependency relations once the argumentdlace fi

In this thesis, the CCG dependencies are used for two puspésest, they are used
to control the transformation process of the CCGbank frommad form derivations into
incremental derivations. Second, they are used to evalbateverall performance of our

incremental parser by measuring how the parser can protieagefppendencies.

5.5 Transforming the CCGbank into left-to-right Deriva-
tions

The main objective of the transformation process is to olitaiining data annotated with
supertags as well as a sequence of left-to-right operatmts that we are able to satisfy

the corresponding syntactic dependencies in the CCGbank.
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For each sentence in the CCGbank, we apply the followingquioe:

¢ Initialize empty operator sequence and empty unsatisfipdm#encies.

e For each word:

1. Add current dependencies to unsatisfied dependencies.

2.

Check unsatisfied dependencies:

(a) If adjacent dependency with simple categories, theigasgplication

operators;

(b) If adjacent dependency with complex categories, theigasomposition

operators;

(c) Iflong-range dependency, then applype Raisindollowed by Forward

Composition
Handle special cases, if any:

(a) Coordination cases (subsection 5.5.2),
(b) Apposition and interruption (subsection 5.5.3),

(c) WH-movement (subsection 5.5.4),
Update Current state,
Assign selected operator to the operator sequence.

Update the dependencies by removing satisfied depemdenci

This procedure deploys the dependencies available in tHeb@g@k in order to as-

sign the simplest possible operator sequence that is aldatisfy, and reproduce, the

dependency structure of the sentence under investigation.

Figure 5.5 illustrates the transformation process, stegtbp, on a sentence of the

CCGbank. At the beginning of the process, we start with thedg,othe associated su-

pertags and the dependency relations, indicated by curgddddarrows in the figure.
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The purpose of the transformation process is to induce #dte sequence and the opera-
tor sequence. This operator sequence along with the sgpstpuence should be able to
reproduce the given dependency relations.

The transformation process proceeds word-by-word, anchelh ord position we
check all previous and current unsatisfied dependenciestrihsformation proceeds as

follows:

1. StateSlis an initial state; therefore, it will be associated witlecgtorNOP, which
performs no operation, and the state category will be edgmdo the current word

categoryNP/NP.

2. Moving to StateS2 we first check the current and previous dependencies. $n thi
case, there is a dependency between the word in first posiktii , and the word
at the current positiofWarren”, shown by dotted arrows in the figure. As this
dependency relation is adjacent and in the forward diradti@n the OperatdfA
is associated with this transition and so the state is tearest toS2with category

NP.

3. Moving to StateS3is triggered by the wordwill” , which has both backward and
forward dependencies. Therefore, the operdtBFC (Type-Raise and Forward
Composition) is applied to fulfill the backward dependenny ¢he potential for-

ward dependency as well.

4. Moving to StateS4is triggered by the wordremain” which is linked with the
word “will” by a forward dependency relation; therefore, a Forward Cusitipn
FC operator is assigned. The state beco@PP) which indicates a requirement

for a prepositional phrase to the right.

5. Moving to StateS5is triggered by the wordon” which is linked to the previous
verb“remain” and hence a Forward CompositiB@ operator is assigned changing
the state tdS/NP) This state indicates a dependency that requires a nousgtoa

the right in order to be satisfied.
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6. Moving to StateS6is triggered by the wordithe” which has neither backward nor
forward dependencies; however, it is linked through a clodidependencies with
a future position which satisfies the current open depengde¢he word“board” .
Therefore, we apply th& RFC operator to type-raise the current word to the re-

quired dependency category and then perform a forward ceitipo.

7. Moving to StateS7is triggered by the wordcompany” which has a forward de-

pendency with the previous position; therefore, BAeoperator is applied.

8. Moving to StateS8is triggered by the word's” which has adjacent forward and
backward dependencies; therefore the FC operator is applidéis changes the
state ta(S/NP)which indicates that a noun phrase is required to satisfptbeious

dependency.

9. Moving to StateS9is triggered by the wordboard” which is linked back to the
word “on” at stateS5 A simple FA operator is finally applied to construct the

complete sentence categ@®y

The above illustration shows how the CCGBank is transformég started with a
supertag sequence and a dependency graph, and ended waithritagponding operator
and state sequences. However, the same procedure applies plarsing, i.e. if we have
the supertag sequence and the operator sequence then wensauct the incremental
states and the dependency graph step-by-step as we showed.

Certain more complex cases need special handling; therefe added some special
operators to handle them, namely for coordination, caseppbsition and interruption,
and WH-movement. These new operators together with the ofherators used in the

parser are described in the next section.

5.5.1 Incremental Combinatory Operators

Table 5.1 presents each operator used in our increment®péwgether with the percent-

age of its usage in the transformed CCGbank. It is clear tigagimple, standard operators
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Operator | Description Usage %
FA Forward Application 34.7
FC Forward Composition 24.4
NOP No Operation 16.1
BA Backward Application 13.1
TRFC Type Raising + Forward Compositign 4.0
BC Backward Composition 2.8
COORD | Coordination 2.4
INTR Interrupters 1.6
WHMV WH-movement 0.9

Table 5.1: Operators’ Utilization.

of CCG are much more widely used than the more complex opsratoboduced in our
method.

Our proposed set of Combinatory Operators are binary opeyarhose two argu-
ments are the previous state and the current supertag. Wbeperator is applied to its
two arguments, the result is the current state categoryekample in (5.4), an operator

FAis applied toState andSupertag to produceState.

Supertag Supertag Supertag (5.4)
State State Statg
— > FA

We extended the set of standard CCG operators reviewed tinB86t4.1 with new
operators to handle various needs raised by the incremeatiate of the parser. In this

section, we will discuss in detail the newly introduced @pers.

No Operation (NOP)

The operato(NOP)performs no operation on any two constituents, such thaethdting
state remains the same as the previous bi@Pis used at the initial position when com-
mencing the incremental parsing process, and is also usadswine of the punctuation

marks that do not alter the parse-states or the dependencies
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Type Raising Forward Composition (TRFC)

Type raising and forward composition act together to captang-range right-side de-
pendencies. We designed the presented incremental parpesh forward the needed
dependencies by increasing the “eagerness” of the statesjaries. In other words, we
push the dependencies forward such that they are alwaysseamted by the current state
category. Our incremental parser achieves this eageriyassitg Type Raising followed
by Forward Composition.

(Steedman, 2000) defines Type Raising as a unary rule andafb@omposition
as a binary combinatory rule. However, our incremental grars restricted to binary
operators; therefore, we combined type raising and forweardposition in one operator
calledTRFC.

If a constituent with categor¥ /Y is immediately preceded by a constituent with cat-
egoryZ such thatX /Y has along-range dependency on the right side to a catégory
Type Raising is used to raise the categérjo categoryY” and then forward composition
is applied to push the required dependency forward.

Examples (5.5 and 5.6) show TRFC in action, where the subjétts type-raised to
S and then forward composed wif"\ N P) /N P) to compos&S/N P).

X (Y\X)/z (5.5)
X>/'ERFC
He  bought (5.6)

NP (S\NP) /NP

> TRFC

S/NP
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5.5.2 Coordination

Coordination constructions occur in a significant numbese@eftences in written text.
Cognitive studies (Sturt and Lombardo, 2004) have highdéidhihe fact that coordination
is an incremental operation; thus, we should be able to eacaibrdination efficiently
within the proposed incremental parsing approach. Unfately, the CCGbank uses
a simple category for coordinatiaronj instead of the more elaborate categ@gX)/X
which was originally defined for coordination in CCG (Steedm2000). The simple
conj operator is not efficient for incremental parsing, becaus#toes not provide any
information on the coordinated elements. Therefore, wel tise dependency informa-
tion to assign more elaborate coordination categories éoctiordinator. For example,
if the coordination is performed on two noun phrases, thedioation category would
be (NP\NP)/NP. Furthermore, we have added a new coordination oper@@QRD to

handle these constructions in the Parsing State Realizer.

He plays football and tennis
S1: NP (S\NP)/NP NP, (NP;\NPy)/NP; NP3
T S S/NP
—53: S > FA
> COORD
Sy S/NP
551 S > FA

Figure 5.6: Coordination Handling.

The example shown in Figure 5.6 illustrates the handlingoofdination during pars-
ing. The conjunction “and” is associated with a supeftdg? \ N P,) /N P; which indi-
cates a coordination between th@®s® The left argumentV P, will be satisfied with the
word “football” , while the right argument will be filled by the woftennis”. This will
construct a coordinated constitueltP; with the phraséfootball and tennis”. During
parsing, at the transition frorsi3 to S4 a coordination operatoGOORD is encountered,
which causes the current state to be a replica of stat&2 with structureS/NP, i.e.

expecting arNP to the right. In this way, the coordinated constitu@nP; “tennis” is

3The categories subscripts in all the examples are for iitisin purposes only.
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expected on the right side to be coordinated with the presiid® “football” .

He plays football and listens to music
S :NP (S\NP)/NP NP, ((S\NP)\(S\NP))/(S\NP) (S\NP)/PP) PP/NP NP
T S S/NP

SgZS > FA
> COORD
S4: NP
> TRFC
Ss: S/PP
Se: S/NP
T:S>FA

Figure 5.7: VP Coordination Handling.

Another example shown in Figure 5.7 illustrates the hamgdéihcoordination for two
verb phrases (VP). In this example, the conjunction “andissociated with a more com-
plicated superta¢(S\N P)\(S\NP))/(S\N P) which indicates a coordination between
two VPs At the coordination stat&'4, a coordination operatoCOORD performs the
coordination by producing a new state with structhif i.e. expecting &P to the right.

In this way, the coordinate¥P constituent will be expected, just as the fix4® was
expected aftef 1.

Although the representation presented above could theallgtsupport non-constituent

coordination (Milward, 1994b), the current implementatad our incremental parser does

not support that.

5.5.3 Apposition and Interruption

Neither the CCGbank nor the WSJ treebank distinguish betwlee appositive comma
and the coordination comma (Hockenmaier and Steedman,)200i#& comma mostly
has a single supertag in the CCGbank that does not indisaetiial role in the syntactic
structure. We adopted the syntactic patterns introduce@ayraktar et al., 1998) to
identify the different possible syntactic categories @& tomma. Based on these syntactic
patterns, we enriched the supertags associated with thenacim indicate the correct

syntactic role for the coordination, apposition and iniptron cases.
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The man , who plays tennis likes  football
Sy : NP/NP NP,  APSV (NP\NP)/(S\NP) (S\NP;)/NP NP APSV (SNP)/NP NP
—— > FA

Sl: NP

INTR

S, NULL
Sy NPIS\NP) "
S.: NP/NP

S NP

Sﬁ:
——F > TRFC
S7: S/NP

Sg: S

> INTR

> FA

Figure 5.8: Apposition Handling.

Furthermore, we have added a new supertag and a new opesatoaridling such
cases. The new supertag, APSV, is used for indicating apposiases for commas and
some other punctuation marks, such as bracketing. The top&& Rhas been added to
handle both interruptions and apposition.

The example in Figure 5.8 illustrates the handling of appmsiduring parsing. The
parser consumes a noun phrd$be man” up to stateS, then a comma witiAPSVsu-
pertags and operatdNTRis encountered. The parser handles the apposition by moving
to aNULL stateS, and storing the interrupted state; then the apposition phraseho
plays tennis”is consumed up to statg;. At the transition fromS; to Sg, a second ap-
position comma is encountered, so the parser terminatepih@sition states and moves
to Sg which is equivalent to the interrupted stete In this way, parsing of the sentence
can continue from where it was interrupted; thus & “The man” will fill the subject

argument of the verllikes” .

55.4 WH-movement

WH-movement is a syntactic phenomenon where a syntacigoat is required on the
right but, having moved, is available only on the left. Caesithe sentence in Figure 5.9,
the verb“sold” has the categoryS\NP,)/NP,, i.e. it is a transitive verb, where if a

subjectNP; is available to its left, and an objeldP; to its right, a sentence will have been
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He bought what she sold
So : NP (S\NP)/NP NP/(S/NP) NP,  (S\NP;)/NP;
TS/N?)TRFC
Sy: S/(S/NP)
S5 S/((S/NP) \NP)
Sit S

< WHMV

Figure 5.9: WH-movement Handling.

formed. The required obje®P, “what” has already moved to an appropriate position

somewhere to the left. Accordingly, we added a new opek&ftdMV to handle such cases

of WH-movement in the incremental parsing framework. WMEIMV operator reverses

the direction of the arguments such that the parser seeksbiket of the verl¥sold” to

the left instead of the right, such that a sentence is contbasshown in the example.
Having described the combinatory operators of our incraalgrarser, we will de-

scribe the parser’'s components in the following section.

5.6 Implementation Details of the Incremental Parser

5.6.1 Supertagger and Operator tagger

The transformed data from the CCGbank was used to train twariiam Entropy (Max-
Ent) classifiers: a supertagger, and an operator taggerhé@srsin Eqn. (5.7), MaxEnt
classification associates a weightwith each feature function; (Y, X). The weights are
estimated during training in order to maximize the likeldoloof the training data. Max-
Ent can be used for sequence classification by convertingl#ssification scores into
probabilities and then using standard dynamic programri{\igrbi search). We train
our MaxEnt model using sequential conditional generalitedtive scaling (Goodman,
2002). This method is a simple variation of Generalizedhliee Scaling (Berger et al.,
1996), but converges faster by training the model paramesguentially rather than si-

multaneously.
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V' =argmax P(Y|X) = 1/Z  exp Z Xidi(Y, X) (5.7)

For the supertagger MaxEnt classifier, we use words and P&@&rés with a window
of two words to the left and two words to the right of the cutrerord (hence it is consid-
ered ‘weakly’ incremental). For the operator tagger, we douse any lexical features,

but rather the POS and supertag features within the sameowind the supertagger.

5.6.2 Parse-State Realizer

Theparse-state realizeis a deterministic module that deploys the sequences oftagse
and CCG incremental operators to realize the parse-stategeh as the intermediate
dependency graphs between words. The state realizer cauiethe CCG operations
incrementally and enables the special handling of cootiingapposition, interruption
and WH-movement as described above.

The parse-state realizer constructs the dependency gieptbg-step by constructing
intermediate dependency graphs word-by-word. The regledorms the following steps

for each word starting from a null state at the first word:

Apply the current operator to the previous state and theectisupertag,

Change the current state to the new resulting state,

Add edges to the dependency graphs between words that wikeel las CCG argu-

ments,

Repeat until the last word has been processed.

Figure 5.10 illustrates the realizer operation along wité incrementally constructed
partial dependency graphs at each state. At the initia Stathe Null OperatorOP) is

applied to the previous state, a Null state, and the currgrersagNP; the resulting state
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John  likes  Mary
NP (S\NP)/NP NP
NOP TRFC FA

()~ (E)~E)—()

NP S/NP §
s
Qo) — iy
5o (o) ke iy

Figure 5.10: lllustration of the operation of the increnararse-state
realizer and the associated intermediate dependencygraph
at each state.

is NP and the resulting dependency graph is simply the node reptieg the first word
John The transition to the next stafg is triggered by the verbkes where the operator
(TRFQ is applied to the previous state and the current supergagjting in a new state
S/NRB which indicates that a further NP is needed on the right tomase a complete
sentence structure. The dependency graph associatedtati¢hSs shows the realized
dependency betwedikes and Johnwhich has resulted from the previous composition
operation. Finally the last word triggers the final statej tre realizer is able to construct
the full dependency graph associated with the last state

It is worth mentioning that the state realizer is the comm@atof the transformation
process described in Figure 5.5. If we have both the supamdgoperator sequences,
then we are able to construct the state sequence and themamnding dependency graph

accordingly.

5.7 EXxperiments and Results

This section details a number of experiments carried ouesb the effectiveness of the

supertagger, the operator tagger, and our ability to captive necessary dependencies
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Architecture Lookahead  Search || Dependency Supertagging Operator] Incremental
Accuracy Accuracy Accuracy

Joint NO LOCAL 56.02 67.47 Incr.
NO GLOBAL 56.13 68.31 Semi

YES LOCAL 82.17 84.34 Incr.+LH

YES GLOBAL 83.20 85.02 Semi+LH
Cascaded NO LOCAL 59.01 68.11 76.19 Incr.
NO GLOBAL 59.30 68.62 76.53 Semi

YES LOCAL 86.31 91.62 90.76 Incr.+LH

YES GLOBAL 86.70 91.70 90.90 Semi+LH

Table 5.2: Supertagger, Operator tagger and Dependencytsg$ -
Score) of all systems.

using a range of incremental parsers. We used the same diatessp (Clark and Curran,
2007). Sections 02—21 were used for training, section O@dortesting of intermediate

taggers, and section 23 for testing dependencies.

5.7.1 Supertagging Results

Given our introduction of new supertags for coordinatiopp@sition, interruption, and
WH-movement, we used section 00 to evaluate our supertaggsuracy compared to
the standard CCGbank set. Although our supertags are manpler, we obtain an F-
score of 91.7 (cf. Table 5.2, last row, ‘Supertagging’ colymvhich compares favourably
with the supertagger of (Clark and Curran, 2007), whiches®2.39 on the same dataset.
Our supertags set is much richer than the supertags set airk(@hd Curran, 2007);
therefore the results may not be directly comparable. Wiviiehave not carried out
significance testing at this stage, it is clear that therétle difference between the two
sets of scores, indicating that our supertagger is robustedisas accurate. As will be
seen for all experiments in this section, this is only trueemkookahead is utilised; note
that our best score of 91.7 dips to 68.62—an absolute dro@®82points, or a 33.6%

relative decrease in performance—when lookahead is tusfied
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5.7.2 Operator Tagging Results

In Table 5.2 we also present the results for our Operatorgiadgdhis displays a very high
accuracy (90.9%, cf. last row, ‘Operator Tagging’ columv@rwhen no lexical features
are used. We also contemplated a hypothetical situatiomichwve feed the correct (gold
standard) previous syntactic state as a feature to themsystethis scenario an operator
tagging score of 99.22% (8.32% absolute improvement, &2%.felative) was obtained,
indicating that a high gain is to be expected if this stateaterbe made available to the

operator classifier.

5.7.3 Dependency Results

In Table 5.2 we also present the results for unlabeled degeydaccuracy using our
method. We use the same evaluation criteria as (Clark anch@u2007) by comparing

the dependency output of the incremental parser with theigage-argument dependen-
cies in the CCGbank. Testing on section 23 of the WSJ, wembtaF-score of 86.7 (last
row, ‘Dependency’ column). The score with the gold stand&@b5 and supertags in the
inputis 87.5, 0.8% absolute (or 0.92% relative) higher ttharesult when using the POS,
supertags and operators hypothesized by the system, by matich. This overall result

is considerably below the result reported in (Clark and @or2007) (91.65% unlabelled
dependency F-score). However, using a non-incrementsbinetip parser is much less
efficient than our (weakly) incremental parser. (Clark anoir@n, 2007) observe that on
section 23 of the WSJ, while the parser of (Collins, 1999g$a45 mins to parse all the
sentences, and that of (Charniak, 2000) takes 28 mins,gheser takes just 1.9 mins. By
contrast, our parser takes just 11 seconds, a speed-upwicaten times, on the same

specification machine.
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5.7.4 Cascaded vs. Joint Approach

The results reported above demonstrate the accuracy odwaded approach using two
cascaded taggers: the first for supertags, and the secongénator tagger followed by
the deterministic state realizer. In this section we comaphe cascaded model with a
joint model, where we train a single classifier that produbessupertags and operators
simultaneously in the same step. In Table 5.2 we give thebetdd dependency results
for section 23 for the cascaded and joint models side-bg-fid comparative purposes.
The cascaded model significantly outperforms the joint rh@ime3.5% absolute, or 4.2%
relative; this rises to 4.3% absolute, or 5.17% relativayé compare the joint model
with the dependency score using the gold standard POS amuitagp, as described in
the previous section). Besides data sparseness, the joui¢lrmakes the choice of an
operator at a certain position in the sentence based ontagpeformation only to the
left of the current position because the joint model mussglgipertag—operator pairs at
once.

Note that our Cascaded version with lookahead and GLOBAIlckeis the semi-
incremental model of (Shen and Joshi, 2005). They reportscolfe of 89.3 on section
23 using a semi-incremental approach, together with exti@mation from Propbank
(Palmer et al., 2005). While not directly comparable, westder our performance to be
on a par with theirs, with a considerable improvement in ipgréme (they report a speed

of 0.37 sent./sec.).

5.7.5 Effect of Lookahead

The present parser is just two words of lookahead away fromgbRilly incremental.
Here, we examine the effect of lookahead features on thertagger, operator tagger
and dependency results. We examine two versions of a sgpaa operator-classifier,
namely a weakly incremental and a fully incremental versidhe weakly incremental
version deploys features in a window of two words to the laft awvo words to the right of

the focus word. The fully incremental parser deploys fezgun a window of two words
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to the left only.

Looking at all the results in Table 5.2, the scores for thekleésemi-)incremental
versions of the parser barely differ from their fully incrental counterparts, whether we
are concerned with dependency, supertagging or operataray; the scores are higher,
on the whole, but not by much.

By contrast, what igxtremelysignificant is the extent to which lookahead is utilised.
For all accuracy measures, huge improvements are to be deem the parser avails of
lookahead. Clearly, full incrementality at this stage cenaé a high cost in accuracy,

relative to the weakly incremental version, without any éfénn efficiency.

5.7.6 Examples

In this section we will guide the reader through three exa®spind examine the parser
output. The examples are selected from newswire data typisaed in MT evalua-
tion tasks. The newswire data is harder to parse than the WatrStreet Journal Tree-
bank (Marcus et al., 1993) data, which we have used for trgiand testing our parser.
For the three examples shown, starting with the sentenegsporemental parser pro-
ceeded by tagging them with POS tags, supertags, operatdrhan the state realizer

was applied.

Example 1

The example shown in Figure 5.11 demonstrates an incremgatsing output of the
proposed parser. In the example shown here each stateeafg@spartial construction of
the dependency graph.

The example demonstrates how the parser is able to handjedmye dependencies

and coordination. We will highlight some important aspdutee:

e At stateS,, the parser assignedTe&RFC operator, although the previous st&e
has a required argumeiP to the right. The more straightforward action is to

fill this open argument with the noun phra¥eresident Putin” using a forward
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composition operator. However, this is not the correct depacy indicated by the
sentence structure becau3dey listened to the point of viewhot to “President
Putin”. The parser can capture that effect by taking into accouatufes from
the word(’s) a few positions ahead. This exemplifies how Markov-basedasyn

representations are able to capture long-range depermdenci

e At stateS,;, the parser opts for BHOPoperation for this comma which reflects that

it has no apposition or coordination role.

e The coordination at stat®; is coordinating two long clauses, the first running from
Si t0 S and the second running froB), to S,s. The COORDoperator at;; can
restore the state back to a category similastg i.e. expecting the second noun

phrase.

Example 2

The example shown in Figure 5.12 exemplifies the handlingppbaition together with

some other interesting issues.

e An apposition phrase runs between st&6andS11 which the parser indicated by
assigning théAPSVsupertag and thiNTR operator at both positions. This enables
the parser to interrupt the normal sequence between thasstates to construct
the apposition noun phrase. After applying tNE Roperator a new state sequence
runs fromS6up to S1Q At stateS11the interruption ends and the state becomes
equivalent to the state &4 such that the state sequence is able to resume from
where it was interrupted. In this way, the subject argumétit®verb“refused” is

filled with the word“official” which is eight positions away.

e Some intermediate states suchSi S19and S22have a full sentence category
S which indicates that those are partially completed ser@eifor which all depen-

dencies are satisfied.
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State Word Supertag Operator State Category
S1 They NP NOP NP

S2 listened  SNP BA S

S3  to ((SNP)\(S\NP))/NP BC (SINP)

S4 President NP/NP TRFC ((S/(NRP))/NP)
S5 Putin NP FA (S/(NENP))
S6 'S (NR\NP)/NP FC (SINP)

S7 point NP FA S

S8 of (NP\NP)/NP BC (SINP)

S9 view NP FA S

S10 on (NRNP)/NP BC (SINP)

S11 various NP/NP FC (SINP)
S12 subjects NP FA S

S13 : NOP S

S14 such (NRNP)/(NP\NP) BC (S/(NRNP))
S15 as (NRNP)/NP FC (S/NP)
S16 human NP/NP FC (SINP)
S17  rights NP FA S

S18 in (NRNP)/NP BC (SINP)

S19 his NP/NP FC (SINP)
S20 country NP FA S

S21 and ((NRNP)/NP) COORD (S/NP)
S22 the NRNP FC (S/INP)

S23 latest NP/NP FC (S/NP)
S24  crisis NP FA S

S25 between (NENP)/NP BC (SINP)

S26 Russia NP FA S

S27 and ((NRNP)/NP) COORD (S/NP)
S28 Georgia NP FA S

S29 NOP S

Figure 5.11: Examplel: Incremental Parsing.
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State Word Supertag Operator State Category

S1 However SIS NOP (S/S)

S2 : : NOP (SIS)

S3 the NP/NP TRFC ((S/tBIP))INP)
S4 official NP FA (S/(SNP))
S5 , APSV INTR NULL

S6 who (NRNP)/(S\NP) NOP (NP/(SNP))
S7 requested (]NP)/(SINP)  FC (NP/(SNP))
S8 to (SNP)/(S\NP)  FC (NP/(SNP))
S9 remain (SNP)/(S\NP)  FC (NP/(SNP))
S10 anonymous \®P FA NP

s11 APSV INTR (SI(SNP))
S12 refused (NP)/(S\NP)  FC (S/I(SNP))
S13 to (SNP)/(SINP)  FC (S/I(SNP))
S14 give (§NP)/NP FC (SINP)

S15 more NP/NP FC (S/INP)
S16 detalls NP FA S

S17 about (NRNP)/NP BC (SINP)

S18 the NP/NP FC (SINP)
S19 negotiations NP FA S

S20 in (NRNP)/NP BC (S/INP)

S21  which NP/NP FC (S/NP)
S22 Cairo NP FA S

S23 is (SNP)/(SINP)  FC (S/I(SNP))
S24  playing (SNP)/NP FC (SINP)

S25 the NP/NP FC (S/INP)
S26 role NP FA S

S27  of (NRNP)/NP BC (SINP)
S28 mediator NP FA S

S29 . : NOP S

Figure 5.12: Example 2: Incremental Parsing.
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Example 3

State Word Supertag Operator State Category
S1 Its NP/NP NOP (NP/NP)
S2 total NP/NP FC (NP/NP)
S3 debt NP FA NP

S4 was (§NP)/NP TRFC (S/NP)
S5 5 NP/NP FC (S/NP)
S6 trillion  NP/NP FC (S/INP)
S7 yuan NP FA S

S8 , , NOP S

S9 an NP/NP FC (S/NP)
S10 increase NP FA S

S11  of (NRNP)/NP BC (S/NP)
S12 5 NP/NP FC (S/NP)
S13  billion  NP/NP FC (S/INP)
S14 yuan NP FA S

S15 ((NRNP)/NP) COORD (S/NP)
S16 or conj NOP (S/NP)
S17 5 NP/NP FC (S/INP)
S18 percent NP FA S

S19 from (NRNP)/NP BC (S/NP)
S20 nine NP/NP FC (S/NP)
S21 months NP NOP (SINP)
S22  ago ((SNP)\(S\NP)\NP  BA NULL
S23 . : NOP NULL

Figure 5.13: Example 3: Incremental Parsing.
In the example shown in Figure 5.13, the parser made a mibta&ssigning a wrong
operator at521. It is worthwhile highlighting some issues here:

e The parser was able to construct partially completed septeat states'7, S14

andS18.

e At stateS21, the parser assigned a wrong operakap P and this led to a wrong

sequence of states up to the end of the sentence.

e The parser cannot construct a fully connected derivatioowéVer, the partially

connected derivation may still identify some correct dejmties.

112



5.8 Discussion

In this chapter we introduced our Incremental Dependerasetl Language Model (IDLM)
based on wide-coverage CCG incremental parsing. The intext! dependency-based
LM has very interesting characteristics that facilitatessintegration into Phrase-based

SMT systems:

e The language model parser is deterministic in that it m&ista limited number
of parsing decisions at each state which makes it very effi¢ée integration into

large-scale Phrase-based SMT systems.
e Itisincremental in Markovian fashion similar to Phrasesé& SMT decoders.
¢ It can naturally handle non-constituent constructiong)gpbased on CCG.

e The parser always seeks fully connected structures, nbtigisg syntactic infor-
mation to augment LM probabilities. At the same time, thespacan handle non-

connected structures as well.

e The parser supports long-range dependencies and a numbé&zrekting syntactic

phenomena in a fully incremental left-to-right fashion.

It is worth mentioning that the current implementation af thcremental parser can-
not be considered as a language model as it is, since thismgpitation employs a looka-
head of words and a cascade of MaxEnt classifiers. Howeveinttremental parser can
be used to parse training data with the incremental parsifoggration which could be
used to train a language model to be used within SMT decodestimate the probability
of a string-parse pair as described in IDLM formalizatiortign (5.3).

As further work for the incremental parser itself, we thimlete are two main issues
that could have a good effect on the parser’s accuracy satht thmight narrow the accu-

racy gap between linear incremental parsing and cubic topealbwn parsing:

e We want to investigate the possibility of having joint sitameous taggers for su-

pertags and operators, such that each tagger is informédhvatother tagger possi-
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ble decision. This would enable the usage of the states agdsdor both taggers

which can have a good effect on the taggers accuracy.

e The current implementation of the parser maintains onlytibet parsing decision
at each state, but maintaining a limited number of posstakes would enhance the
parser's accuracy. However, this should be handled withdeigaate graph search

strategy such as A* search to keep the search space reasonabl

The techniques proposed in this chapter can be utilized iffexeht way tolinearize
any dependency graph. We can train a supertagger and art@p@gger to assign su-
pertags and opertaor tags while having access to featues tlie dependency graph
itself. Thus, we can use any dependency parser such as ([200&; Shen and Joshi,
2005; Clark and Curran, 2007) to produce dependency stegfor any available data.
Then, the dependency-informed taggers are used to asgignags and opertors which
should represent a linearization of dependency structdii@s indicates that we may use
any dependency parser to construct our incremental depepd®msed language model
(IDLM).

In the next chapter, we will show how we make use of our incretadedependency-

based language model (IDLM) to improve the translation itpaf SMT.
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Chapter 6

Dependency-based SMT

6.1 Introduction

Syntactically-enriched language models (cf. Section 8oistitute a promising compo-
nent for SMT. These syntax-based language models, if iatedrwithin an MT frame-
work, can produce more grammatical translations by two medéirst, they can enable
constituency (cf. Section 3.1) by allowing constituenttsiif the translation to undergo
long-range re-ordering while maintaining the grammatigand the logical meaning of
the units. Secondly, the subcategorization and dependefarynation can provide non-
local, long-range relations such that it can enable lomgeaeordering while maintaining
the grammatical structure of the translation output. Ha@veto maintain a useful level of
accuracy, existing parsers are non-incremental and mast@gombinatorially growing
space of possible structures as every input word is prodesdas prohibits their incor-
poration into standard linear-time MT decoders. Moreowarst existing parsers deploy
PCFG techniques which cannot handle non-constituent cmigins commonly used in
Phrase-based SMT systems.

In Chapter 5, we presented Incremental Dependency-basegliage Model (IDLM)
using incremental, linear-time dependency parser baséborbinatory Categorial Gram-
mar (CCG). IDLM maintains a limited number of parse-statesagch prefix of the sen-

tence and so is very efficient for large-scale SMT systemaceSit is based on CCG,
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IDLM can handle non-constituent constructions (cf. Chapfewhich are commonly
found in Phrase-based SMT systems. In this chapter, we mirasdependency-based
SMT model which deploys IDLM and constructs the target laggidependency struc-
ture incrementally as the translation proceeds step-&y-st

The remainder of this chapter is organized as follows. IniSed.2 we present the
general representation for incorporating IDLM into SMT ®mss. In Section 6.3 we
review the related work. In Section 6.4 we discuss our chcehe baseline system
in this chapter. In Section 6.5, we detail our approach. latiBe 6.6, we introduce
the experiments and the results. In Section 6.7, we int@desults analysis along with

systems output examples. Finally, Section 6.8 concluaesdescusses future work.

6.2 Dependency-based Language Model for SMT

6.2.1 IDLM Representation for SMT

As it processes an input sentence left-to-right word-byelwdDLM builds —for each

prefix of the input sentence— a partial parse that is a sulhgofphe partial parse that
it builds for a longer prefix. The dependency graph is comséa incrementally, so at
each step the constructed subgraph is never altered oecewisany later step. IDLM,
as an incremental parser, is more appealing for large-sggdécations as its time and
space (worst-case) complexities are linear in input lend®LM, an incremental and
linear-time parser, constitutes a natural match for thedamyr-word decoding and pruning

schemes used within phrase-based SMT systems.

Sp—2m S — 2 Gy S —2e Gy S, (6.1)

w1,st1 wa,sto

For incremental parsing in the monolingual case, as we dggniin Chapter 5, the

IDLM syntactic process is represented by a sequence ofiti@msbetween adjacent syn-
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tactic states. The syntactic representation is built stegtep from left-to-right while
traversing the input string as shown in (6.1). The syntastate is supposed to summarize
all the syntactic information about fragments that haveaaly been processed so far. The
parser produces fully connected intermediate structut@gwnoving from one word to
the next.

For MT, the same process applies except that the target yptmdses are the can-
didate translations of the source words/phrases. Eaclkettargrd/phrase represents a
structure or sub-graph composed of the lexical words, wsoaiated supertag and oper-
ator sequences. As shown in (6.2), each source phrase cenbkated to a target phrase
structure. In this structure, each woud is associated with a lexical syntactic/semantic
descriptorst; and a possible parsing action (operaterthat may take place with this
word/phrase-supertag pair. These sub-graphs along wethghobabilities represent our

phrase table augmented with incremental dependency gaspport.

Sjee.Sp—>[W;, Sti, 0;]...[wWy, Sty 0] (6.2)

6.2.2 Linear-time, Incremental Parsing Decoder

As it processes the source sentence left-to-right, woravbgd, the decoder expands each
translation hypothesis with the possible translationstios source word/phrase. The
translations are associated with possible supertag anctopesequences as discussed
above. The decoder specifies and maintains a parse-statadbrdecoding hypothesis
state. Each parse-state is represented by a composite GEgagawhich is the result of
applying the combinatory operator sequence to the pregguhnse-state and the current
phrase supertag sequence. The parse-state CCG compdsgergaspecifies a functor
and its arguments are the expected categories while expatitk current hypothesis.
Based on (6.1), each stateis determined exactly by the previous state,, and a

choice of a supertagf; and an operatas;. Therefore, the probability?’ (1, S) of a word
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sequencdl and associated final parse-state sequencehich represents a possible
derivation, can be described as in Eqn (6.3). The probgh#titiV, S) represents the

product of the state production probabilities at each patate:

n

i=1

In Egn (6.3):

e P(w;|W;_1S;_1) is the probability ofw; given the previous sequence of woids

and the previous sequence of states .

e P(st;|W;): is the lexical descriptor (supertag;) probability given the word se-
quencelV; up to the current position. This is represented by a sequigger

(supertagger) in our CCG incremental parser.

e P(0;|W;, S;_1,ST;) represents the parsing action (operatgr probability given
the previous words, supertags and state sequences up tortbatgosition. This

is represented by a sequence operator tagger in our CCGneatel parser.

Crucially, given a sentence and its state sequence, thexdepey structure can be re-
trieved unambiguously. At each state the partial dependsinacture can be represented
as a directed graph with nodes representing words and grossenting dependency re-
lations.

Although the above outlined framework matches the naturPlohse-based SMT
systems, further attention should be paid to two issuest,Fan efficient representation
for the phrase tables is needed to avoid an explosion of ttesplspace. Since each phrase
is associated with a number of supertag sequences and a nohdgerator sequences,
this could simply lead to very large phrase tables with sparsbabilities which in turn
complicates the decoding process. Second, although IDLMtaias a single state for

each hypothesis, the search space will be much larger tleacate without IDLM and
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this needs efficient handling to avoid a further explosiothef search space. In the next

section we will review the related work.

6.3 Related Work

In Section 2.5, we discussed previous approaches for incatipg syntax into Phrase-
based SMT and we highlighted their limitations. In Sectio8, 3ve reviewed various
syntax-based language models and highlighted their ltraita as well. In this section
we review a very recent approach using a dependency-basgddge model for SMT
and we contrast this approach and our own.

(Shen et al., 2008) introduced an interesting approacmtmrporating a dependency-
based language model into SMT. They proposed to extracigsta-Dependency trees
from the parallel corpus. As the dependency trees are ndititoents by nature, they
are able to handle non-constitute phrases as well. Whiewhbrk shares the same target
as ours, namely incorporating dependency parsing into SNEre remain three major
differences. Firstly, (Shen et al., 2008) resorted to som@iktics to extract the String-
to-Dependency trees while our approach deploys a more faedegrammatical theory.
Secondly, their decoder works bottom-up and uses a chasepaith limited language
model capability (3-gram), while we use the more efficienear decoder commonly
used in Phrase-based SMT. Thirdly, (Shen et al., 2008) gisplee dependency language
model to augment the lexical language model probabilityeen two head words simi-
lar to (Xu et al., 2002) and never seek a full dependency graptontrast, our approach
integrates a fully incremental parsing capability thatdaroes the dependency structures
while decoding and thus provides better guidance for thedkeicto construct more gram-
matical output. To the best of our knowledge, our approadhadirst to incorporate fully

incremental dependency parsing capabilities into SMT Vumiar time and space decod-

ing.
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6.4 Difficulties of incorporating IDLM into Phrase-based

SMT

In Chapter 4, we extended the Phrase-based SMT system vp#rtagged translation
and language models by adding a number of log-linear featior¢he model such that
we had a total of eleven log-linear features in our model. VW§e ahow in Section 4.6
that we have resorted to sonag@ hocmethods to be able to tune this relatively large
number of system parameters. As we discussed in Sectiah #hé.limited capability of
MERT estimation represents a bottleneck to further serdmy&lopment of features-rich
SMT systems, as has just been highlighted in (Chiang et@)82 who proposed a new
method to estimate up to 56 parameters.

For integrating IDLM, we definitely need more features thia@ supertagged Phrase-
based model in which we added five features to support jussupertags. We need to
represent supertags, operators, states and various icoradlipprobabilities between them
and other features in the system. In the light of the abovédions, we think that
integrating IDLM into SMT needs a more sophisticated systkat can support many
features without such a limitation in the estimation preceSortunately, discriminative
direct translation models (DTM2) (Ittycheriah and Rouka807) allows the use of mil-
lions of features in a more formalized probabilistic franoelvwith optimal estimation
techniques. Based on these factors, we opted for DTM2 asdheefvork for integrating
our IDLM into SMT. We think that DTM2 is a more formalized frawork and will allow

the exploration of a wide variety of possible features in diet modeling framework.

6.5 Dependency-based Direct Translation Model (DDTM)

6.5.1 Model Overview

We reviewed Direct Translation Models (DTM) in detail in 8en 2.6. DTM models the

a posterioriconditional distribution”(7'|S) instead ofP(S|T') as in the source channel
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approach. DTM has three components: a prior condition#dfidigion 7 (7'|.S), a number
of feature functions that capture the translation and laggumodel effects in a unified
framework and finally weights of the features that can benested by MaxEnt (Berger
et al., 1996). (lttycheriah and Roukos, 2007) introducedV2Tto handle Phrase—based
SMT using a minimum number of phrases with no overlap andlfirtiedining the whole
set of millions of system parameters using MaxEnt.

We extended DTM2 to support our incremental dependencgebisiguage model
(IDLM) introduced in Chapter 5. The target-side sentencesaagmented with supertag,
operator and state sequences. DTM2 was extended by inetingpthe model introduced
in Eqgn. (6.3) as a set of MaxEnt features, as we will discustetail later.

This representation turns the complicated problem of MThwitcremental parsing
into a sequential classification problem in which the ckessdeploys various features
from the source sentence and the candidate target traorsa specify a sequence of
decisions that finally results in an output target stringhglovith its associated depen-
dency graph. The classification decisions are performeedguence step-by-step while
traversing the input string to provide decisions on possibrds, supertags, operators
and states. A beam search decoder simultaneously decidels sdguence is the most

probable.

T = argmj@xP(T\S) =1/Z epo)\iqbi(S, T) (6.4)

As shown in Equation (6.4), Phrase—based SMT is represastadlassification prob-
lem with arbitrary features defined over the source and tigeeta More specifically, the

reordering and prior phrase probabilities are represeaseshown in equation (6.5).

P(T|S) = R(T,J|S)/Z expz)\z¢i(T7 J,9) (6.5)
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Here P, is the prior distribution for the phrase probability whichusually the phrase
normalized counts used in any conventional Phrase—baséd system. J is the skip
reordering factor for this phrase pair which representguihg from the previous source

word.

6.5.2 DDTM Features

In our DDTM, we have implemented many features along withithseline DTM2 fea-
tures that we have discussed in Section 2.6. We have exténtel? with a number of

features to represent the incremental dependency-basgddge model as listed here:

e Supertag-Word features: these features examine the faingese words with their

associated supertags.

e Supertag sequence features: these features emegidan supertags (equivalent to

then-gram supertags Language Model).

e Supertag-Operator features: these features encode agped their associated

operators.
e Supertag-State features: these features encode statsg@arthgs co-occurrence.

e State sequence features: these features emegoiam states features and are equiv-

alent to am-gram states Language Model.

¢ \Word-State sequence features: these features encodeavatdtates co-occurrence.

The features described above encode all the probabilistigponents in Eqn. (6.3)

along with some more empirically intuitive features.

6.5.3 DDTM Decoder

The decoder adopted in the baseline DTM2 (Ittycheriah andkB®, 2007) is a beam

search decoder similar to decoders used in standard phesset log-linear systems such
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as (Tillmann and Ney, 2003) and (Koehn, 2004a). The mairemdiffce between the
DTM2 decoder and the standard Phrase—based SMT decoddratiDTM2 deploys
Maximum Entropy probabilistic models to obtain the tratisia costs and various fea-
ture costs by deploying the features described above incaimiimative MaxEnt fashion.

In order to support incremental dependency parsing, thedtrdas been extended in
three main ways: firstly, by constructing the syntacticesaturing decoding; secondly,
by extending the hypothesis structures to incorporate yimag states and the partial
dependency derivations; and thirdly, by modifying the pngrstrategy to handle the large
search space.

At decoding time, each hypothesis state is associated vp#rse-state which is con-
structed while decoding using the Parse State Realizart{ai to the parse-states and the
Realizer introduced in Section 5.6.2). The Parse-StatéZee& a deterministic module
that deploys the previous state, the sequences of supemag€CG incremental oper-
ators to realize the parse-states as well as the interneedéegendency graphs between
words.

Figure 6.1 shows the DDTM decoder while decoding a sententetie English
translation “Attacks rocked Riyadh”. Each hypothesis soagated with a parse-state
and a partial dependency graph (shown for some states dvityjeover, each transition
is associated with an operat6r that combines the previous state and the current su-
pertagST to construct the next state. The decoder starts from a null staté and then
proceeds with a possible expansion with the word “attackspertagV P and operator
NOP to produce the next hypothesis with stateand categoryV P. Further expansion
for that path with the verb “rocked”, supertags\ N P)/N P and operatofl’ RF'C' will
produce the stat85 with categoryS/N P. The partial dependency graph for stateis
shown above the state where a dependency relation betweéndlwords is established.
Furthermore, another expansion with the word “Riyadh”,estgg /N P and operato#' A
produces stat87 with categoryS and a completed dependency graph as shown above the

state. Another path which spans the stetésS3 , S6 and S8 ends with a state category
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S/NP and a partial dependency graph as shown under statehere the dependency
graph is still missing its object.

Figure 6.2 shows partial decoding graph for a longer semtenth complete paths.
Each hypothesis is associated with a parse-state.

The addition of parse-states may result in very large sespeloe due to the fact that
the same phrase/word may have many possible supertags anydpossible operators.
Moreover, the same word sequences may have many parseagaences and, therefore,
many hypotheses that represent the same word sequenceedriol space is definitely
larger than the baseline search space. We adopt the foljaiwiee pruning heuristics to

limit the search space.

Grammatical Pruning

Any hypothesis which does not constitute a valid parseessatliscarded, i.e. if the pre-
vious parse-state and the current supertag sequence camsituct a valid state using
the associated operator sequence, then the expansiorcasd#id. Therefore, this prun-
ing strategy maintains only fully connected graphs andatts any partially connected
graphs that might result during the decoding process.
As shown in Figure 6.1, the expansion from stéteto stateS4, with the dotted line,

is pruned and not expanded further because the proposedsapas the verb “attacks”,
supertag S\ N P)/N P and operatof' RF'C'. Since the previous state is NULL, it cannot
be combined with the verb using thi&R F'C' operator. This would produce an undefined

state and thus the hypothesis is discarded.

Supertags and Operators Threshold

We limit the supertag and operator variants per target ghtas predefined number of
alternatives. We tuned these thresholds using the MT03 &ev®e supertags limit was
set to four alternatives while the operators limit was sethtee alternatives. We tuned

these thresholds for the best accuracy while maintainingaageable search space.
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As shown in Figure 6.1, each word can have many alternativés different su-
pertags. In this example the word “attacks” has two formsnelsg a noun and a verb,
with different supertags and operators. The proposedtibtds limit the possible alter-

natives to a reasonable number.

Merging Hypotheses

Standard Phrase—based SMT decoders (cf. Section 2.4) rmargdation hypotheses if
they cover the same source words and share the sagnam language model history.
Similarly, DDTM decoder merges translation hypothesesdytcover the same source
words, share the samegram language model history and share the same parse-state
history. This helps in reducing the search space by mergatigspthat will not constitute

a part of the best path.

6.6 EXxperiments

We conducted an extensive set of experiments to examinertdpoged approach and
its features. In this set of experiments we used the UN mredirpus and LDC news
corpus together containing 3.7M parallel sentences. Tkiede5-gram LM was trained
on the English Gigaword Corpus. Our baseline system is thBI®model described
in (Ittycheriah and Roukos, 2007) and outlined in Sectidh 2.

In order to train our DDTM model, we used the incremental earatroduced in
Chapter 5 to parse the target side of the parallel trainirtg.dsach sentence is associated
with supertag, operator and parse-state sequences. Werdieed various models with
different features.

Although we used our incremental parser described in Chdptany dependency
parser, whether incremental or not, such as (Nivre, 200dn%imd Joshi, 2005; Clark and
Curran, 2007) can be used to process the training data. Asghédhted in Section 5.8,

using our approach any dependency structure can be lieeldrnio incremental form with
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CCG grammar. Indeed, we tried to use the ‘C&C’ dependencggraiClark and Curran,

2007) as its accuracy is higher than our incremental veysiofortunately more than 30%

of the training data sentences cannot obtain a parse ugrigG&C’ parser at all.

6.6.1 Results

We compared two baseline systems with our DDTM using theufeatlisted above. The

first baseline is IBM Phrase—based SMT system (Al-OnaizahRapineni, 2006) while

the second is the DTM2 system. Table 6.1 shows which featweagsed in which system.

Features/System| DTM2 | D-SW | D-SLM | D-SO | D-OLM | D-SS| D-WS | D-SLM | DDT
Baseline features| X X X X X X X X X
Supertag-Word X X X X X X X X
Supertag ngram X X X X X X
Supertag-Operator X X X X X X
Operatom-gram X
Supertag-State X X X
State-Word X

Staten-gram X X

Table 6.1: DDTM systems with associated features

Generally we examined all features to realize their effectie system

examined are:

e D-SW: examines Supertag-Word features.

IBM-PB: IBM Phrase—based SMT baseline system.

DTM2: the baseline Direct Translation model system.

e D-SLM: examines Supertag-Word features and superiaggam features.

e D-SO: examines Supertag-Operator features.

e D-OLM: examines operatar-gram features.

e D-SS : examines supertags and states features with patsezsnstruction.

http://svn.ask.it.usyd.edu.au/trac/candc
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e D-WS : examines words and states features with parse-siagtraction.
e D-SLM: examines-gram states features with parse-state construction.

e DDTM: fully fledged system with all features that proved usefbove.

System BLEU Score on MT05
IBM-PB 50.16
DTM2-Baseline 52.24
D-SW 52.28
D-SLM 52.29
D-SO 52.01
D-OLM 51.87
D-SS 52.39
D-WS 52.03
D-SLM 52.53
DDTM 52.61

Table 6.2: DDTM Results with various features.

As shown in Table 6.2, the DTM baseline system demonstratesyahigh BLEU
score. It is worth mentioning that the baseline system esaaly top-ranked in two recent
major MT evaluations. Among the features we tried, supsrgagin-gram supertags sys-
tems (D-SW and D-SLM systems) give slight yet statisticedbignificant improvements.
On the other hand, the stategram sequence features ( D-SS and DDTM systems) give a
small yet statistically significant improvements. The @persn-gram features (D-OLM
system) show a remarkable degradation of the system. Tiowsskhat the operators
sequence, on its own, is not an important factor to guide tituetsire without the corre-
sponding supertags and states. Similarly, the states-iatdres (D-SW system) show a
degradation. This may be due to the fact that the statessantdraction is very sparse
and could not be estimated with good evidence.

We might expect that using an MT evaluation metric such asofavzak et al., 2007),
that takes into account the matching of the dependencyastdbetween the system trans-
lation and the references, would give a better result. Hewawve tried this evaluation

metric for some of the systems reported above and we fouriditbaelative differences
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between system scores with this metric are similar to themihces provided by BLEU.
In any case, we think that evaluating MT systems that inaateodependency informa-
tion using MT evaluation metrics that measure dependeriatisa matching is as unfair
as evaluatingi-gram-based systems using the BLEU score (Callison-Bureh,e006).
As a matter of fact, we think that our proposed model wouldehawbetter chance using
human evaluation; in the last year IWSLT-07 evaluation, supertags-based Arabic—
English system described in (Hassan et al., 2007a) was juidgee ranked first by some
margin in the human evaluation, despite being ranked Sthdratitomatic evaluation with

2 BLEU points less than the first system in the automatic etadn (Fordyce, 2007).

6.7 Results Analysis

Although the BLEU score did not show a remarkable improvenbgrthe dependency-
based system over the baseline sysem, human inspectior dhth gives us important
insight into the pros and cons of the dependency-based mddelexamples here show
a consistent behaviour of the baseline and the DDTM systehishwean be observed
in many examples throughout the test set. We only highlightes of the examples for
illustration purposes.

The example in Figure 6.3 shows how DDTM manages to inselt freported” in-
stead of the phrase “according to”. Usually DDTM prefers &pldy verbs since they
have complex and more detailed syntactic structures whiah lgetter and more likely
state sequences. Furthermore the example shows how DDTislsdenger noun phrases
and instead uses some prepositions in between; the basptiee for “cali cartel leader”,
while DDTM preferred “the leader of cali cartel”. Again, thmay be due to the fact that
prepositions have a complex syntactic description that ginag/rise to a more likely state
sequence.

Figure 6.4 shows two examples where DDTM provides bettemaok concise syn-

tactic structure. As we can see, there is not much agreenet¢webn the reference and
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Source J§ Ji§ £ O g pilp Ay Jule S5 - Co G D VY- Ly
e W G o lasll g e T sl o) i 395 i (02 s
cdamdl SUY L P daed ! el

Reference Bogota 12-4 (AFP) - An Agence France-Presse corresponégatrted th
at Cali cartel boss (south-west) Gilberto Rodriguez Or&guene of the biggest drug
traffickers in the world, was handed over to the United StateBriday e vening.

Baseline: Bogota 4-12 ( afp ) - according to an Agence France Presseespwndent
that cali cartel leader ( southwest ) , gilberto rodriguezprela , one of the biggest
drug traffickers in the world , surrendered friday night tetanited states .

DDTM: Bogota 4-12 ( afp ) - An Agence France Presse correspondpotted that the

leader of the cali cartel ( southwest ) Gilberto RodriguezjDela , one of the biggest
drug traffickers in the world , handed over friday night to theited States .

Figure 6.3: DDTM opts for inserting verbs and breaking longumn
phrases with prepositions.

Source &b 2l <Ll sal Bl 2l Dlogmdl s way misy
Reference He then underwent medical examinations by a police doctor .

Baseline: He was subjected after that tests conducted by doctors qfdhee .
DDTM: Then he underwent tests conducted by doctors of the police .

Source (ixas U8 ket Ologa fﬁ‘-’” slae 2L J1 o8 03y
Reference Riyadh was rocked tonight by two car bomb attacks..
Baseline: Riyadh rocked today night attacks by two booby - trapped.cars
DDTM : Attacks rocked Riyadh today evening in two car bombs.

Figure 6.4. DDTM provides better syntatctic structure witbre concise
translation.

the proposed translation. However, longer translatiotseoe the possibility of picking
more commom-gram matches via the BLEU score and so increases the chébeéer
scores. This is not in favour with the more concise DDTM otitpu

The example shown in Figure 6.5 shows a better translatiothéybaseline. The
baseline lexical language model made a better job here asdtia likelyn-gramthat
“prime minister meets the capital”, whereas DDTM opted falifeerent syntactic struc-
ture. We think such problems can be solved with a light ldkesion of the verbs’
predicate-argument structures in our framework. We coslel features that encode the

lexicalization of the subject-object frames of the verbshstinat the features would prefer
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Source LAl &e2ll sl o) 8 Ol go)) ol o el jell et SRl
¢ e

Reference He will meet Prime Minister Recep Tayyip Erdogan beforeilggthe Turk-
ish capital in the evening.

Baseline: He will meet prime minister Recep Tayyip Erdogan beforeifegathe turkish
capital in the evening .

DDTM : Prime minister Recep Tayyip Erdogan will meet before hedsakie turkish
capital in the evening .

Figure 6.5: Example: Long range reordering and the neecefacéliza-
tion.

the bilexical relation “meet-minister” over the bilexigalation “meet-capital”’. Similarly,
the bilexical relation “organization-announced” shoukdgreferred over “organization-

said”.

Source g} nt 3B 2 il il U G graad] gl B3 2 sl s
. CM"

Reference According to Abu Salah, today, Tuesday, is when the cotistial period
of the Interim President Rouhi Fattouh expires.

Baseline: Ends today , Tuesday , the constitutional deadline for therim president
Rouhi Fattouh and according to Abu Salah .

DDTM: Today , Tuesday , the constitutional deadline to end theimteresident Rouhi
Fattouh , according to Abu Salah .

Figure 6.6: Better long-range reordering

The example shown in Figure 6.6 shows how DDTM manages tol@aydtactic-
based long-range reordering (9 positions here), whichtedin better syntactic structure

and better translation in general.

6.8 Conclusion

In this chapter, we have presented a novel model of depeggdmase-based SMT which
integrates fully incremental dependency parsing intorediation model while retaining

the linear decoding assumed in conventional Phrase—bad@&dsgstems. To the best of
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our knowledge, this model is the first model to integrate deleacy parsing into Phrase—
based SMT systems with linear decoding. Our model is baséldeonovel IDLM which
deploys dependency parsing to provide incremental pané@mnation in the translation
system. Moreover, our proposed approach integrates thebdayp of full dependency
parsing in SMT systems with a very attractive computatiaost since it still deploys the
linear decoders widely used in Phrase—based SMT systems.

We carried out extensive experiments on a very large trgis@t and a standard widely
used test set for Arabic—English translation. While we dit observe a huge improve-
ment over the already top-ranked baseline system, we lediat the proposed approach
can provide better translation quality especially in hureaaluations.

As we show in the last section, incremental dependency rgaisithe form of our
proposed dependency language model can make better syrsaattures available to
the MT output. Syntactic-informed long-range reorderimgl @onstituency enablement
are also introduced such that constituent units can undergprange reordering while
maintaining grammaticality. All of these aspects can helproduce better, more gram-
matical MT output.

Our DDTM system could be further expanded in many dimensioks we noted
while analyzing the system output, some light lexicalizatieatures could be of benefit
to the system. Furthermore, we could examine the posgilafiusing the dependency
information encoded in the CCG categories as features inytsiem.

Finally, the approach introduced here can be extended tadadogical semantic
relations as well using the CCG syntactic/semantic intexrfavhich would be a further

step on the right direction of producing better MT output.
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Chapter 7

Conclusions

7.1 Contribution of the Thesis

In this thesis, we extended Phrase-based SMT with lexicalastic descriptions —
supertags— that localize global syntactic information lo@ word level. Supertags can,
therefore, be assigned to every word in a phrase withoutdloiting syntactic redundant

ambiguity. We introduced two different levels of syntadigpport namely:

e Incorporating supertagged translation model and supgetggram language model

into Phrase-based SMT.

e Incorporating incremental dependency-based languageimid DTM2.

Both approaches proved to be useful for enhancing the aaoslquality and provid-
ing more grammatical translations.

We presented a novel model of Phrase-based SMT which inésgsapertags into the
target side of the translation model and the target languageel. We carried out ex-
tensive experiments on small and very large training antcsegs for Arabic—English and
German-English translation. While using LTAG supertagegithe best improvement
over a state-of-the-art Phrase-based SMT system for thiéesrdata set, using CCG su-

pertags works best on the large training set. The expersmamvery large training data
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provided evidence that an ever increasing amount of dataatibridge the performance
gap with a system that incorporates syntactic information.

We provided an in-depth manual analysis of the system pedoce. We showed
that a very wide range of improvements were brought abouhbyuse of a supertags-
based system, including improved reordering, overcontiegéndency of SMT systems
to omit verbs, improved verbal constructions, proper hiangdbf negation, and better
syntactic modeling in general. We noted that in a recent @vafuation, the output from
our Arabic—English supertagged system (Hassan et al.,&300&s ranked first by human
evaluators reflecting the fact that lexical syntax can peedunore grammatical and fluent
translations despite the fact that today’s automatic etadn metrics cannot capture such
effects.

The encouraging results of our proposed supertagged RPhesssl SMT approach
provided a momentum to investigate further opportunit@sifnprovements using lexi-
cal syntax. We introduced our Incremental Dependencyébbaaguage Model (IDLM)
based on wide-coverage CCG incremental parsing. The pedpdespendency-based LM
has very interesting characteristics that facilitatesntegration into Phrase-based SMT
systems. First, the language model parser is deterministitat it maintains a limited
number of parsing decisions at each state which makes it effigient for integration
into large-scale Phrase-based SMT systems. Second, aresmental in Markovian fash-
ion similar to Phrase-based SMT decoders. Third, it canrafijthandle non-constituent
constructions, being based on CCG. Fourth, the parser algesks fully connected struc-
tures, not just using syntactic information to augment LMabilities. At the same time,
the parser can handle non-connected structures as weth, Bie parser supports long-
range dependencies and a number of interesting syntaarmphena in a fully incremen-
tal left-to-right fashion.

Furthermore, we developed an incremental version of the I that can be used
to train such an incremental parser. The techniques deglmyéhe conversion can be

used to linearize any dependency structure so that it casdxein language modeling.
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Finally, we have incorporated our IDLM into the direct tréat®on model (DTM2)
while retaining the linear decoding assumed in conventiBhease—based SMT systems.
To the best of our knowledge, this model is the first to intesydependency parsing di-
rectly into Phrase—based SMT systems with linear decoding.model is based on the
novel IDLM which deploys dependency parsing to provide@meental parsing informa-
tion to the translation system. Moreover, our proposed @ggr integrates the capability
of full dependency parsing in SMT systems with a very ativactomputational cost since
it still deploys the linear decoders widely used in Phrasseld SMT systems.

We carried out extensive experiments on a very large trgisiet and a standard
widely used test set for Arabic—English translation. While did not observe a huge
improvement over the already top-ranked baseline systarhelieve that the proposed
approach can provide better translation quality espsgciallhuman-based evaluations
such as HTER (cf. Section 2.7).

We carried out an extensive analysis of the system outputdemdonstrated that
the incremental dependency parsing in the form of our pregatependency language
model can make better syntactic structures available tdilieoutput. Syntactically-
informed long-range reordering and constituency enabhselso introduced such that
constituent units can undergo long-range reordering wimiéentaining grammaticality.
All of these aspects can help produce better and more graicah®tT output.

Recalling our research questions that we have introduc€thapter 1:

RQ1: What is the grammatical representation that can fit idtirase-based SMT
while not introducing redundantly ambiguous syntacticistures?

We found that Phrase-based SMT can be extended with lexideen approaches
to linguistic syntax, namely Lexicalized Tree-Adjoininga@nmar (Joshi and Schabes,
1991) and Combinatory Categorial Grammar (Steedman, 200@®se lexical syntactic
descriptions localize global syntactic information on tierd level; therefore, they can

be assigned to every word in a phrase without introducingmeent ambiguity.
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RQ2: How to incorporate lexical syntax descriptions intor&e-based SMT while
maintaining its advantages and does it help in providingdreand more grammatical
translation?

We presented a novel model of Phrase-based SMT which inésgsaipertags into
the target side of the translation model and the target laggunmodel. Our proposed ap-
proach provided significant improvements over state-efdlt systems for two different
language pairs.

RQ3: Does Phrase-based SMT need more syntactic knowledge supertagged ap-
proach is sufficient for providing syntactic structures t@mble more grammatical trans-
lations and better reordering?

We Showed that MT needs a more sophisticated mechanismahatupport long-
range dependencies, construct full parse structures, imagk incremental manner and
be computationally efficient.

RQ4: Can lexical syntax provide more syntactic knowledgePforase-based SMT
through incremental dependency parsing capabilities thatch the nature of Phrase-
based SMT?

We introduced our Incremental Dependency-based LanguaggeMIDLM) based
on wide-coverage CCG incremental parsing. Our IDLM is datarstic, incremental in
Markovian fashion and naturally handle non-constituemtstictions, being based on
CCG.

RQ5: Is it possible to incorporate full incremental depemcieparsing into SMT while
maintaining SMT scalability and computationally efficiénear decoding?

we have incorporated our IDLM into the direct translationdab(DTM2) with linear
decoder. Our approach provided good improvements over-gatoked baseline system.

We summarize here the major contributions of this thesis :

e We introduced a novel model of supertagged Phrase-basedv@hth integrates

supertags into the target language model and the targettttle translation

e We introduced a novel dependency-based LM which is deteéstrann that it main-
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tains a limited number of parsing decisions at each statetwtturthermore, it is
incremental in Markovian fashion similar to Phrase-badeld $iecoders and it can

naturally handle non-constituent constructions, beirgedaon CCG.

e We introduced an extension to direct translation modelsititegrates incremental
dependency parsing while retaining the linear decodingrassl in conventional

Phrase—based SMT systems.

7.2 Future Research Avenues

This thesis provides many directions for future researgboounities. The incremental

dependency-based parser offers many opportunities foarer@ments. The parser de-
pendency accuracy could be enhanced using joint simultertaggers for supertags and
operators, such that each tagger is informed with the otygydr possible decisions. This
would enable the usage of the states as features for botlersagdhich should have a

good effect on the taggers accuracy. Another possibiligrfancing the parser is adding
an adequate graph search strategy such as A* search, sbeharser is able to keep a
reasonable number of states instead of single state, as taiffe now.

The dependency linearization techniques that we intradit@eonvert the CCGbank
into incremental form need a more thorough study from thelgnepresentation point
of view. We may want to know which kind of dependency graphgl¢de linearized,
what is the limitation of this linearization and whetherrhare more formalized ways to
perform such linearization.

Our DDTM system could be further expanded in many dimensidfis example,
some light lexicalization features could be of benefit todfgtem. Using the dependency
information encoded in the CCG categories as explicit fegtmay help as well.

A possible future direction is to include supertags and ddpacy information from
the source side as well. This would help to obtain targetsines in correspondence with

source structures. However, currently there are only a éawgliages for which supertag-
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sets and supertaggers exist, which limits such possib&neiins. We hope that the work
presented in this thesis may encourage other researchengesiigate the possibility of

bootstrapping supertags for more languages.

7.3 Closing Remark

We believe that this thesis puts the first corner stone intdlpihtegrated lexicalized, syn-
tactic and semantic framework. In this thesis, we have jasttshed the surface where
lexicalized syntactic translation is concerned; howewer,believe that the same frame-
work can be extended to include logical semantic relatiengell using the CCG syn-
tactic/semantic interface, which would be a further stetharight direction to produce

better MT output.
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