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§0. Introduction

In [15] and [16], W. Lawvere and F. E.J. Linton characterized categorically the
classes of equationally defined algebras introduced by G. D. Birkhoff [4]. As shown in
[17, 18], Linton’s theorem is a variant of Beck’s theorem 3.1 in the case of T-algebras
over the category of sets. J. Duskin [7] obtains further variants of Beck’s theorem by
using equivalence pairs in categories and their effectivities. These concepts are due to
A. Grothendiek and initially used in this context by Lawvere [15].

The tripleability theorems are recently applied to the categorical proofs of Stone
duality [19], Gelfand and Pontrjagin dualities [23], and other types of dualities of topo-
logical algebras [6], [26].

In this note, we give another proof of a tripleability theorem, essentially due to Duskin
[7] and Linton [16]. For the proof of the main theorem 3.2, we will not use hom-
functors and Yoneda Lemma, but we will use only the elementary theory of categories
and the calculation of relations in categories. In §1, we define exact categories accord-
ing to M. Barr [2, 3] and review some properties of relations in exact categories. In
particular, we show that split forks induce equivalence relations (Theorem 1.4). In
§2, we state a lemma, which is a crux to the proof of the main theorem 3.2, and a relation
theoretic version of it. In §3, we derive from Beck’s tripleability theorem 3.1 a variant
(Theorem 3.2), essentially due to Duskin and Linton, which seems to be convenient for
applications to analysis.

For notations and terms in the elementary theory of categories, we refer to S. Mac
Lane’s book [21]. The theory of relations in categories is referred to P. A. Grillet [9],
Y. Kawahara [11, 12] and A. Klein [14].

§1. Preliminaries

Throughout this note, we denote by fg the composite - —L - —%, . of two arrows in
a category. A span is a pair of arrows with common domain. We write h< f, g> for
a span <hf, hg>. We also say that a span <f, g> is monic if h<f, g>=k<f, g>
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always implies h=k. Let C be a category. A parallel pair < f,, fi>:a—b in C is
called an equivalence pair in C if it is a monic span and

(Q.1) s<fo, fi>=<1, 1,> for an arrow s;

(Q.2) t<fy, fi>=<f1,fo> foranarrow t;

Q.3) If

R

I b
e

is a pullback in C, then r<f,, f;> = <uf,, vf;> for an arrow r.

For example, every kernel pair of an arrow is an equivalence pair. An equivalence
pair < fy, fi> in C is called effective if there is an arrow e in C such that e is a coequalizer
of < fo, fi> and < f,, f; > is a kernel pair of e.  We say that an arrow is a regular epi if
it is a coequalizer of some pair of arrows. Following to M. Barr [2, 3], we say that a
category C is exact if:

(EX.1) C has all finite limits;

(EX.2) Whenever

is a pullback in C and f is a regular epi, so is y;
(EX.3) Every equivalence pair in C is effective.

In the rest of the present section, we assume that C is an exact category. Let Reg (C)
be the family of all regular epis in C. Then, applying the results of Barr [2; I §2], it
follows that Reg (C) is a retractive subcategory of C in the sense of [11]. Hence one can
construct the I-category Rel(C)=Rel(C; Reg(C)) (in the sense of D. Puppe [24]) of
relations in C by the method of Grillet [9], Calenko [5], Klein [14], or Kawahara [11,
12]. We denote the involution and the ordering in the I-category Rel(C) by * and <,
respectively.

Since each arrow in an exact category C has a canonical factorization [2; I 2.3] as a
regular epi followed by a monic and C has products, every span in C has a canonical
factorization as a regular epi followed by a monic span. Thus every relation in Rel(C)
is represented by a monic span.

1.1. LeMMA. Let < f,, fi> be a monic span in C. Then there exists an arrow t
in C such that <g,, g,>=t<fo, fi> if and only if gkg, < f& f, in Rel(C).

Proor. Assume that gfg, = f§f, in Rel(C). Then, by the definition of relations
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[11], there is an arrow s and a regular epi e in C such that e<go, g,> =s< fo, f1>. If
< fo, f1> is monic, there is a unique dotted arrow ¢ in the commutative diagram

Sl l<yo.y1>
-

——— .
<fo,f1>

by the property [2; I 2.6] of regular epis. Hence we have <go, ;> =1< Jos f1>. The
converse follows at once from g¥g, =f§t*tfi < f§fi.

1.2. PROPOSITION. Let e be a regular epi in an exact category C. Then e is a
coequalizer of <dg, d;> if and only if d§d, cee* and dof=d,f implies ee* < ff*.

Proor. First assume that e is a coequalizer of <dg, d;>. Itis trivial that doe=
d,e and so d¥d, cee*. For any arrow f with dof=d,f, there is a unique arrow g with
f=eg. Hence we have ff*=egg*e*>ee*. Conversely, assume that d@d; cee* and
dof=d, f always implies ee* =ff*. Tt is obvious that doe=d,e. Let e be a coequal-
izer of <hg, hy> and assume dof=d,f. Then hof=h,f by h&h; cee*c ff* and hence
there is a unique arrow g with f=eg. This proves that e is a coequalizer of <dy, dy>.

A relation 0 is an equivalence relation if it is reflexive (1<=6), symmetric 6*<0)
and transitive (92<0).

1.3. PROPOSITION. For any equivalence relation 0 in an exact category C, there
is a regular epi e such that 0=ee*.

ProoF. Consider a monic span < f,, f; > such that 0=f¥f,. Then it follows from
Lemma 1.1 that < f,, f; > is an equivalence pair in C. In view of the exactness condition
(EX.3), there is a regular epi e such that < fo, fi> is a kernel pair of e. Hence we have

O=f%f =ee*.

The proof of the last proposition shows that a parallel pair < fo, f1> is an equivalence
pair in an exact category C if and only if it is a monic span and f¥f, is an equivalence
relation in Rel (C).

d
1.4. THEOREM. If x __,—L’ y —2 z is a split fork in C, then d§d dfd,=ee* in Rel(C)
d

1
and hence d¥d,d*d, is an equivalence relation.

ProOF. By the definition [21; VI §6] of split forks, there exist two arrows s and ¢
such that es=td,, tdy=1, and se=1,. From doe=d e, we have d¥d, cee* and dfd d}d,
cee*ee*—ee*. On the other hand, we have es=td;=(tdy)*td;=d¥§t*td, =d%d,, be-
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cause tdo=1, and t*tc1,, and so ee* cess*e* =did,d*d,. Therefore we have d¥d,d¥d,
=ee* and ee* is clearly an equivalence relation.

REMARK. In an exact category, using the result of M. Barr, one can calculate as
in the category of sets, ““as if”” there were elements. If we do this, it is at once clear that
did,d%d, is the kernel pair of e.

The following proposition is essentially due to Linton [18].

1.5. PrRoPoOSITION.  If C is an exact category in which every regular epi splits,
then any equivalence pair in C has a split coequalizer.

Proor. Suppose < f,, f;> is an equivalence pair in C. Then we can take a regular
epi e with f¥f, =ee* by Proposition 1.3 and its section s with se=1 by the hypothesis.
Since escesee*=ee*=f*f and < f,, f;> is monic, there is an arrow ¢ with <1, es>
=1< fo, fi> by Lemma 1.1, which completes the proof.

§2. The main lemma

In this section, we will prove the main Lemma 2.1, which is a crux of our proof of
the main Theorem 3.2, and state a relation theoretic version of it for the later use.

2.1. LeMmA. Let <F,G,n,e>:X—A be an adjunction [21; Theorem IV 1.2]
and let the functor G: A—X reflect regular epis. If <ay, ay> is a monic span in A,
then the following conditions are equivalent:

(1) <Po, B1>=y<ag, a;> for an arrow y in A.

(i) <GPy, GBy> =h<Gay, Ga;> for an arrow h in X.

Proor. - (Compare with H. Herrlich [10; Proposition 2.7] and J. Duskin [7;
Lemma 3.4].) Since G reflects regular epis, every component &,: GFa—a of the counit
¢ is a regular epi in 4 by #G - Ge= 1, one of the triangular identities. Let by &2 g 21, b,
be a monic span in A. It is trivial that (i) implies (ii). We now assume (ii) for a span
bo £>-a’ L1 b,. Then we have e, B;=FGp;-¢, (Naturality of e)=Fh-FGu,-g,
(Assumption)=Fh-¢,-«; (Naturality of &), where i=0, 1. Since g, 18 a regular epi and
<ao, &y > is monic, there is a unique arrow y, which makes the diagram

FGa -2, g

Fh) —

FGa R <fo,B1>
‘E“lz"'

@ 2 <bgb,>

<og,x1>

commute. This completes the proof.
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We now note that, under the same assumptions of the above lemma, G: A— X pre-
serves [21; Theorem V 5.1] and reflects [21; Theorem IV 3.1] monic spans.

In view of Lemma 1.1, the last lemma indicates that, under the suitable conditions,
BEB, cafo, in Rel(A) if and only if (GBo)*(Gf,) =(Gug)*(Goy) in Rel(X). To precisely
state this fact, we have to recall the notion of I-functors, introduced by D. Puppe [24],
and its basic property, initially due to A. Klein [14].

A functor between I-categories is called an I-functor if it preserves the ordermgs and
the involutions of I-categories.

The proof of the following theorem is referred to [14] or [11, 12].

2.2. THEOREM. Let X and A be two exact categories. If a functor G: A—»X pre-
serves pullbacks and regular epis, then G: A—»X can be uniquely extended to an I-
functor G: Rel(A)—Rel(X) so that the square

A= Rel(A)

Gl 16

X ——= Rel(X)

commutes.
Combining the above theorem with Lemma 2.1, we have the following:

2.3. CorROLLARY. Let X and A be two exact categories and <F, G, n,e>: X—=A
an adjunction. If G: A—X preserves and reflects regular epis, then the following
statements are valid:

(a) For two relations 0 and 0’ in Rel(A), 0" <0 in Rel(A) if and only if G6'<GO

in Rel(X).

(b) A relation 0 is an equivalence relation in Rel(A) if and only if GO is an equiva-

lence relation in Rel(X).

Proor. We can choose a monic span <ag, ¢y > with §=afo, and a span <pf,, f,>
with 0'=p%B,. Then, since GO=(Gap)*(Ga,) and GO’ =(GBy)*(GB,), the statement (a)
follows from Lemma 1.1 and Lemma 2.1. The statement (b) is a corollary of (a).

§3. Tripleability theorems

For an adjunction <F, G, 5, e>: X—A in the sense of S. Mac Lane [21], one can
define the monad T= <GF, 5, GeF> in the category X and the adjunction <F7T, G7,
nT, eT>: X—=XT, where X7 is the category of T-algebras due to S. Eilenberg and J. C.
Moore [8]. Moreover, there is a unique (dotted) functor K, called the comparison
functor, in the following diagram so that both the F-square and the G-square commute
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J. Beck has proved the following theorem characterizing the category of T-algebras
up to equivalence. (For the proof, see [21; Exercise VI 7.6].)

3.1. THEOREM (J. Beck). Let <F,G,n,e>: X—A be an adjunction and S;
the set of all those parallel pairs <0, 0,>: a—b in A such that <Gd,, G0, > : Ga—Gb
has a split coequalizer in X. Then the comparison functor K: A—XT is an equivalence
of categories if and only if:

(B.1) Every parallel pair <084, 0> in Sg has a coequalizer,

(B.2) G: A- X preserves and reflects coequalizers for pairs in Sg.

We are now ready to prove a tripleability theorem which is a variant of the theorems
of F. Linton [16, 18] and J. Duskin [7] and will be convenient for applications.

3.2. THEOREM. Let X be an exact category and <F, G, n, ¢>: X—A an adjunction.
Then the comparison functor K: A— X7 is an equivalence of categories if the following
conditions are satisfied:

(EX.1) A has all finite limits,

(EX.2*) G: A- X preserves and reflects regular epis;

(EX.3)  Every equivalence pair in A is effective.

Proor. To prove the theorem, it suffices to verify the Beck’s tripleability criteria
(B.1) and (B.2) in Theorem 3.1. Since G has a left adjoint F, G preserves pullbacks [21;
Theorem V 5.17], which shows that the condition (EX.2*) leads to (EX.2). Thus 4 is an
exact category and we can apply Corollary 2.3 to the proof of the present theorem.

(B.1) (Existence of coequalizers) Consider a parallel pair <dy, 0,>: a—b in Sg
for which there are commutative squares

Gb - Ga £°° Gb

‘| lcol e

z > Gb— 2

in X such that se=1, and t-Gd,=14,. Then G(8%0,0%0,)=ee* is an equivalence relation
in Rel(X) by Theorem 1.4 and so is 0§0,0%0, by Corollary 2.3(b). - Hence, Proposition
1.3 guarantees the existence of a regular epi y in 4 with 0§0,0Fd,=yy*. We now wish to
show that y is a coequalizer of <y, 6,>. Since G(98,)<ee* = G(yy*), it follows from
Corollary 2.3(a) that 0§0, cyy*. Next assume that 0, =0,£. Then we have 0§d, < £&*
and so yy*=0§0,0F0, c EEXEEF =EE*. Hence, by using Proposition 1.2, y is a coequalizer
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of <y, 0;>, as desired.

(B.2a) (Preservation of coequalizers) Let <0y, 0, > be the same as in (B.1) and 1
a coequalizer of <d,, 8;>. The above argument shows that 0§0,0f0,=44* and
(GA)(GA)*=ee*. But G4 is a regular epi in X from the hypothesis (EX.2*) and e is a co-
equalizer of <Gd,, Gd,> (by [21; Lemma, page 145]); so, again by Proposition 1.2,
G/ is a coequalizer of <Gy, GO >.

(B.2b) (Reflection of coequalizers) Let <d,, ;> be the same as in (B.1) and G4
a coequalizer of <Gdy, GO;>. Then, by (EX.2¥), A is a regular epi in A. We will prove
that 4 is a coequalizer of <d,, 8,>. Since (Gdy)(GA)=(Gd,)(G4), we have 0§0, =AL*
by Corollary 2.3(a). Next we assume that 0,¢=0,{. Then we have G(21*) = G(EEX)
by Proposition 1.2, because (Gd,)(G¢)=(Gd;)(GE), and hence Ai*<EC* by Corollary
2.3(a). Therefore it follows from Proposition 1.2 that 4 is a coequalizer of <0y, 0;>.
This completes the proof of the theorem.

The converse of the last theorem holds under a stronger assumption.

3.3. THEOREM. If every regular epi in X splits, the converse of Theorem 3.2 holds.

PROOF. An equivalence of categories preserves and reflects all limits and colimits
and consequently it preserves the conditions (EX.1), (EX.2*) and (EX.3). Hence, to prove
this theorem, it suffices to show that any adjunction <F, G, 5, e>: X—A which is iso-
morphic to <FT, GT, 7T, e”>: X—X T (where T= <GF, n, GeF > and X7 is the category
of T-algebras [21; Chapter VI]) satisfies the conditions (EX.1), (EX.2*) and (EX.3).
We recall the following properties [21; Exercise VI 2.2 and Theorem VI 7.1] of such ad-
junction <F, G, n, >

(a) G creates all (small) limits;

(b) G creates coequalizers for parallel pairs in Sg.

Now we will prove the conditions (EX.1), (EX.2*) and (EX.3), separately.

(EX.1) (Finitely completeness) It is obvious from (a).

(EX.2*a) (G reflects regular epis.) Suppose f is an arrow in 4 with Gf a regular epi
and <8y, 0;> is a kernel pair of f (which does exist by (EX.1)). Since <GJo, GJ4>
is a kernel pair of a regular epi Gf, Gf is a coequalizer of <Gd,, G0;> and <0y, 0;>
€ S¢ by Proposition 1.5.  Hence, by the property (b), f is a coequalizer of <J,, d; >.

(EX.3) (Exactness) Let <d,, 3,> be an equivalence pair in 4. Since G preserves
pullbacks, <Gd,, G8, > is an equivalence pair in X and, by the exactness condition (EX.3)
of X, <Gd,, G3,> has a coequalizer e such that <Gd,, Gd,> is a kernel pair of e.
But every epi in X splits, it follows from Proposition 1.5 that <0,, 0,> €Sg. By the
property (b), <&, 8;> has a unique coequalizer y with Gy=e. Since <Gdo, GO, > is
a kernel pair of Gy, the property (a) shows that <d,, 8, > is a kernel pair of y. This com-
pletes the proof of exactness.

(EX.2*b) (G preserves regular epis.) Let f be a regular epi in 4 and <do, 0,> a
kernel pair of f. As in the proof of (EX.3), there is a coequalizer y of <d,, 0;> with
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Gy (=e) a regular epi in X. But fis also a coequalizer of <d,, d,>, so f is isomorphic
to . This proves that Gf is a regular epi, as desired.

3.4. CoroLLARY (Duskin). A finitely complete category A is tripleable over Set
if and only if the following conditions are satisfied :
(D.1) There is an object u in A such that the copower J -u of u exists for all (small)
sets J;
(D.2) An arrow f:a->b in A is a regular epi if and only if fy: A(u, a)—A(u, b)
is a surjection;
(D.3) Every equivalence pair in A is effective.

Proor. By the definition of copowers [21; III §3], there is a bijection
A(J -u, x)xSet(J, A(u, x))

for each pair of objects J € Set and xe 4. This bijection is natural in J and x. Hence,
if the copower J - u of u exists for each set J, the hom-functor A(u, —): A— Set has a left
adjoint (—~)-u: Set—~A. Conversely, suppose <F, G, 1, e>: Set—A is an adjunction.
Then, putting u=F (one point set), it is well-known that there are natural isomorphisms
G(x)=A(u, x) and F(J)=J-u. Therefore the result follows from Theorem 3.2 and 3.3.

Finally, we will derive Linton’s Theorem [16, 18] as an application of the above
arguments.

3.5. TueoreM (Linton). Let X be a (small) complete and well-powered exact cate-
gory in which every regular epi splits, and let <F, G, n, ¢>: X—A be an adjunction.
Then the comparison functor K: A—X7T is an equivalence of categories if and only if
the following conditions are satisfied :

(L.1) A has all (small) limits and coequalizers;

(L.2) G: A-X preserves and reflects regular epis;

(L.3) G: A—X reflects kernel pairs.

ProoF. First assume that the conditions (L.1), (L.2) and (L.3) are satisfied. Then
it is trivial that (L.1) and (L.2) imply (EX.1) and (EX.2*) in Theorem 3.2. To prove
(EX.3) for 4, we assume < f,, f;> is an equivalence pair in 4. Since G preserves all
limits, <Gf,, Gf;> is also an equivalence pair in X. By the exactness (EX.3) for X,
<Gfo, Gfy> is a kernel pair in X and, by the assumption (L.3), so is <f,, f;>. On
the other hand, the pair < f,, f, > has a coequalizer by (L.1). Hence it is effective, which
shows (EX.3) for 4. By Theorem 3.2, the comparison functor K is an equivalence of
categories.

Conversely, suppose that the comparison functor K: A— X7 is an equivalence of
categories. Then, by Theorem 3.3, the conditions (EX.1), (EX.2*) and (EX.3) for 4 are
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satisfied. We will show the conditions (L.1), (L.2) and (L.3), separately. . :

(L.1a) (Completeness) It follows from the property (a) in the proof of Theorem 3.3.

(L.1b) (Existence of coequalizers) Let <do, 0;> be a parallel pair in A. "Then,
since X is well-powered, it turns out from Corollary 2.3(a) that the set {{&*; 08 =0,¢}
of all equivalence relations ¢€* with ,¢=0,¢ forms a non-empty small set and there is
the greatest lower bound 6 of the set {£€¥; 0,6 =0,&} (because of the completeness of A).
But the greatest lower bound of a set of equivalence relations is also an equivalence rela-
tion; so there is a regular epi y in A with yy*=0 (by (EX.3) and Proposition 1.3) and one
can verify, using Proposition 1.2, that y is a coequalizer of <d,, ¢,>. Hence every paral-
lel pair of arrows in A has a coequalizer.

(L.2) This is identical with (EX.2*).

(L.3) Assume < f,, f;> is a parallel pair in A such that <Gf,, Gf,> is a kernel
pair in X. Since kernel pairs are monic spans and G is faithful [21; Theorem IV 3.1],
< fo, f1> is a monic span. The relation G(f§f,) is an equivalence relation in Rel(X)
and hence, applying Corollary 3.3(b), f%f, is an equivalence relation in Rel(A4). There-
fore < fo, f;> is an equivalence pair in 4 (by Lemma 1.1) and, in view of the exactness
(EX.3) for 4, it is a kernel pair. Hence we have completed the proof of the theorem.
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