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                            gO. Introduction

   In [15] and [16], W. Lawvere and F. E. J, Linton characterized categorically the
classes of equationaily defined algebras introduced by G. D. Birkhoff [4]. As shown in

[17, l8], Linton's theorem is a variant of Beck's theorem 3.1 in the case of T-algebras

over the category of sets. J. Duskin [7] obtains further variants of Beck's theorem by

using equivalence pairs in categories and their effectivities. These concepts are due to

A. Grothendiek and initially used in this context by Lawvere [15].

   The tripleability theorems are recently applied to the categorical proofs of Stone
duality [19], Gelfand and Pontrjagin dualities [23], and other types of dualities of topo-

logical algebras [6], [26].

   In this note, we gjve another proof of a tripleability theorem, essentially due to' Duskin

[7] and Linton [16]. For the proof of the main theorem 3.2, we will not use hom-
functors and Yoneda Lemma, but we will use only the elementary theory of categories
and the calculation of relations in categories. In g1, we define exact categories accord-

ing to M. Barr [2, 3] and review some properties of relations in exact categories. In
particular, we show that split forks induce equivalence relations (Theorem1.4). In
g 2, we state a lemma, which is a crux to the proof of the main theorem 3.2, and a relation

theoretic version of it. In g3, we derive from Beck's tripleability theorem 3.1 a variant

(Theorem 3.2), essentially due to Duskin and Linton, which seems to be convenient for

applications to analysis.

    For notations and terms in the elementary theory of categories, we refer to S. Mac

Lane's book [21]. The theory of relations in categories is referred to P. A. Grillet [9],

Y. Kawahara [11, 12] and A. Klein [14].

                            gl. Preliminaries

   Throughout this note, we denote byfg the composite • .f • -g • oftwo arrows in

a category. A span is a pair of arrows with common domain. We write hÅqf, gÅr for

aspan Åqhf, hgÅr. We also say thataspan Åqf,gÅr is monic ifhÅqf,gÅr;kÅqf,gÅr
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always implies h :k. Let C be a category. A parallel pair Åqfo,fiÅr:a-b in C is
called an equivalence pair jn C if it is a monic span and

    (Q.1) sÅq fo, fi År =Åqlb, lbÅr for an arrow s;

    (Q•2) tÅqfo,fiÅr=Åqfi,foÅr foranarrow t;
    (Q.3) If

                                    u                                 .-,
                                Vi lfi

                                 ' :fi 5-' '

   is a pullback in C, then rÅqfo,fiÅr== Åqufo, vfiÅr for an arrow r.
    For example, every kernel pair of an arrow is an equivalence pair. An equivalence
pair Åqfo, fi År in C is called effective if there is an arrow e in C such that e is a coequalizer

of Åqfo, fi År and Åqfo, fi År is a kernel pair of e. We say that an arrow is a regular epi if

it is a coequalizer of some pair of arrows. Following to M. Barr [2, 3], we say that a
category C is exact if:

    (EX.1) C has all finite limits;

    (EX.2) Whenever

   x•-År•
yi tf

.-.   g

is a pullback in C andfis a regular epi, so is y;

(EX.3) Every equivalence pair in C is effective.

    In the rest of the present section, we assume that C is an exact category. Let Reg(C)

be the family of all regular epis in C. Then, applying the results of Barr [2;Ig2], it
follows that Reg(C) is a retractive subcategory of C in the sense of [11]. Hence one can

construct the I-category Rel(C)=Rel(C;Reg(C)) (in the sense of D. Puppe [24]) of
relations in C by the method of Grillet [9], Calenko [5], Klein [14], or Kawahara [11,

12]. We denote the involution and the ordering in the I-category Rel(C) by * and c,
respectively.

    Since each arrow in an exact category C has a canonical factorization [2; I 2.3] as a

regular epi followed by a monic and C has products, every span in C has a canonical
factorization as a regular epi followed by a monic span. Thus every relation in Rel(C)

is represented by a monic span.

   1.1. LEMMA. Let Åqfo,fiÅr be a monic span in C. Then there exists an arrow t
in C such that Åqgo, giÅr ==tÅqfo,fiÅr if and only ifgo"gicfo" fi in Rel(C).

PRooF. Assume that go"gicf"ofi in Rel(C). Then, by the definition of relations
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[11], there is an arrow s and a regular epi e in C such that eÅqgo, giÅr =sÅqfo,fiÅr. If

Åq fo, fi År is monic, there is a unique qotteq arrow t in the commutative diagram

                             .-e,
                            sig t "'!lÅqgo,giÅr

                             •-•                              ÅqfO,flÅr

by the property [2;I2.6] ofregular epis. Hence we have Åqgo,giÅr=tÅqfo,fiÅr• The

converse follows at once from go"gi =fo*t"tfi Cfo"fi•

   1.2. PRoposiTioN. Let e be a regular epi in an exact category C. Then e is a
coequalizer of Åqdo, diÅr if and only if do"dicee" and dof==dif implies ee"cff*.

    PRooF. First assume that e is a coequalizer of Åqdo, di År. It is trivial that doe=

die and so do"dicee*. For any arrow f with dof==dif, there is a unique arrow g with

f==eg. Hence we have ff*=egg"e*=ee". Conversely, assume that do"dicee* and
dof =dif always implies ee"cfi'*. It is obvious that doe==die. Let e be a coequal-

izer of Åqho, hiÅr and assume dof= dif. Then hof=hif by ho*hicee"cff" and hence
there is a unique arrow g withf=eg. This proves that e is a coequalizer of Åqdo, diÅr.

   A relation e is an equivalence relation if it is reflexive (lce), symmetric (e*ce)

and transitive (e2c e).

   1.3. PRoposiTioN. For any equivalence relation e in an exact category C, there

is a regular epi e such that e=ee".

   PRooF. Consider a monic span Åqfo,fiÅr such that e=fo*f,. Then it follows from
Lemma 1.1 that Åqfo, fi År is an equivalence pair in C. In view of the exactness condition

(EX.3), there is a regular epi esuch that Åqfo, fi År is a kernel pair of e. Hence we have

e=fo"fi == ee".

   The proof of the last proposition shows that a parallel pair Åq fo, fi År is an equivalence

pair in an exact category C if and only if it is a monic span andfo"fi is an equivalence

relation in Rel(C).

   1.4. THEoREM. ifx k' y -;e-År z is a splitfork in C, then do"didfdo ==ee* in Rel(C)

                     dland hence do"didfdo is an equivalence relation.

   PRooF. By the definition [21; VI g6] of split forks, there exist two arrows s and t
such that es == tdi, tdo= 1, and se== 1.. From doe =die, we have do"dicee" and do"didfdo

c ee"ee" == ee". On the other hand, we have es == tdi = (tdo)"tdi == d"o t" tdi cd"odi, be-
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cause tdo=1., and t"tc1., and so ee"cess"e"cdo"didfdo. Therefore we have do*didfdo
= ee* and ee*.is clearly an equivalence relation.

   REMARK. In an exact category, using the result of M.Barr, one can calculate as
in the category of sets, "as if" there were elements. If we do this, it is at once clear that

do"didocedo is the kernel pair of e.

   The following proposition is essentially due to Linton [18].

   1.5, PRoposiTioN. If C is an exact category in which every regular epi splits,
then any equivalence pair in C has a split coequalizer.

   PRooF. Suppose Åqfo, fi År is an equivalence pair in C. Then we can take a regular
epi e with fgfi =ee* by Proposition 1,3 and its section s with se=1 by the hypothesis.

Since escesee"==ee" =f:fi and Åqfo,fiÅr is monic, there is an arrow t with Åq1, esÅr
=tÅqfo, fi År by Lemma 1.1, which completes the proof,

                           g2. Themainlemma
   In this section, we will prove the main Lemma 2.1, which is a crux of our proof of
the main Theorem 3.2, and state a relation theoretic version of it for the later use.

   2.1. LEMMA. Let ÅqF, G, q,eÅr:XAA be an adJ'unction [21; TheoremIV 1.2]
and let thefunctor G:A.X reLf7ect regular epis. If Åqcto, ctiÅr is a monic span in A,
then the following conditions are equivatent:

   (i) Åq6o, 6iÅr =7Åqcto, ctiÅr for an arrow7 in A.

   (ii) ÅqG6o, G6iÅr :hÅqGcto, GociÅrforan arrowh in X.

    PRooF. (Compare with H.Herrlich[10; Proposition2.7] and J.Duskin [7;
Lemma 3.4].) Since G reflects regular epis, every component 6.: GFa.a of the counit
e is a regular epi in A by ijG• G6 == IG, one ofthe triangular identities. Let bo -eE2'- a --E!L' År b,

be a monic span in A. It is trivial that (i) implies (ii). We now assume (ii) for a span
bo Åq-efi-9-- a' --ePLÅr b,. Then we have e.• • 6i =FG6i • eb, (N aturality of e) == Fh • FGcti • 6b,

(Assumption) =Fh•g.•cti (Naturality of e), where i----O, 1. Since 6.t is a regular epi and

Åqcto, ctiÅr is monic, there is a unique arrow 7, which makes the diagram

                         FGd ---ge.:mÅr d
                         t,.hG." 7 l`po'"`'

                           atb5,11TI3}.,.Åqbo,b1År

commute. This completes the proof.

f
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   We now note that, under the same assumptions of the above lemma, G: A.X pre-
serves [21 ; Theorem V 5.1] and reflects [21; Theorem IV 3.1] monic spans.

   In view of Lemma 1.1, the last lemma indicates that, under the suitable conditions,

fio"6iccto"cti in Rel(A) if and only if (G6o)"(G6,)c(Gcto)*(Gct,) in Rel(X). To precisely

state this fact, we have to recall the notion of I-functors, introduced by D, Puppe [24],

and its basic property, initially due to A. Klein [14].

   A functor between I-categories is called an I-functor if it preserves the orderings and

the involutions of I-categories.

   The proof of the following theorem is referred to [14] or [11, 12].

    2.2. THEoREM. Let X and A be two exact categories. if a functor G: A.X pre-
serves pultbacks and regular epis, then G:A.X can be uniquely extended to an I-
fu nctor G : Ret (A) --. Rel (X) so that the squa re

A S Rel(A)
Gl IG
Iv Rel(X)

commutes.

Combining the above theorem with Lemma 2.1, we have, the following:

   2.3. CoRoLLARy. Let X and A be two exact categories and ÅqF, G, n, 6År: XAA
an ad.iunction. I.f G:A---ÅrX preserves and reL17ects regular epis, then the following

statements are valid:

   (a) For two retati,onseand O' in Rel(A), e'cO in Rel(A) if and onty if Ge'cGO
        in Ret(X).
   (b) A relation e is an equivalence relation in Ret(A) ifand only ij'Ge is an equiva-

        lence relation in Ret(X).

   PRooF. We can choose amonic span Åqcto, ctiÅr with e =cto*cti anda span Åq6o, 6iÅr
with O' =6o"6,. Then, since GO=(Gcto)"(Gct,) and GO'=(Gfio)"(G6,), the statement (a)
follows from Lemma 1.1 and Lemma 2.1. The statement (b) is a corollary of (a).

                        g3. Tripleabilitytheorems

   For an adjunction ÅqF, G, n, gÅr:X"A in the sense of S. Mac Lane [21], one can
define the monad T=ÅqGF, n, GEFÅr in the category X and the adjunction ÅqFT, GT,
nT, ETÅr : X-sXT, where XT is the category of T-algebras due to S. Eilenberg and J. C.

Moore [8]. Moreover, there is a unique (dotted) functor K, called the comparison
functor, in the following, diagram so that both the F-square and the G-square commute
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 A ----K----, XT

FilG .Tll.T

   J. Beck has proved the following theorem characterizing the category of T-algebras
up to equivalence. (For the proof, see [21; Exercise VI 7.6].)

   3.1. THEoREM (J. Beck). Let ÅqF, G, n, 6År : X--sA be an adjunction and SG
the set ofall those parallel pairs Åqeo, OiÅr: a.b in A such that ÅqGeo, GOiÅr : Ga.Gb

has a split coequalizer in X. Then the comparisonfunctorK: A.XT is an equivalence
of categories if and only if:

   (B.1) Every parallel pair ÅqOo, eiÅr in SG has a coequalizer;

   (B.2) G: A.X preserves and reLflects coequalizers for pairs in SG.

   We are now ready to prove a tripleability theorem which is a variant of the theorems
of F. Linton [16, 18] and J. Duskin [7] and will be convenient for applications.

   3.2. THEoREM. LetX be an exact category and ÅqF, G, n, 6År : X--NA an adjunction,
Then the comparison functor K: A.XT is an equivalence of categories if the following
conditions are satisfied:

   (EX I) A has all finite limits ;

   (EX.2*) G: A.X preserves and reLfZects regular epis;
   (EX.3) Every equivalence pair in A is effective.

   PRooF. To prove the theorem, it suffices to verify the Beck's tripleability criteria

(B.1) and (B.2) in Theorem 3.1. Since G has a left adjoint F, G preserves pullbacks [21;

Theorem V 5.1], which shows that the condition (EX.2") leads to (EX.2). Thus A is an
exact category and we can apply Corollary 2.3 to the proof of the present theorem.

   (B.1) (Existence of coequalizers) Consider a parallel pair ÅqOo, OiÅr:a.b in SG
for which there are commutative squares

Gb -"L. Ga -ge'2,O Gb

el IG oi ie
 z-, Gb?z

in X such that se=1. and t•Geo =IGb. Then G(eo*eiafOo)=ee" is an equivalence relation
in Rel(X) by Theorem 1.4 and so is Oo"eiefOo by Corollary 2.3(b). Hence, Proposition
1.3 guarantees the existence of a regular epi 7 in A with Oo"OiOfOo=w". We now wish to

show that 7 is a coequalizer of ÅqOo, 0,År. Since G(Oo"O,)cee"= G(77"), it follows from

Corollary 2.3(a) that Oo"aic7y". Next assume that eo4==Oi4. Then we have Oo"Oic44*
and so 7y*= Oo"aiOrOoc44"C4"==4C". Hence, by using Proposition 1.2, 7 is a coequalizer
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of ÅqOo, aiÅr, as desired.

   (B.2a) (Preservation of coequalizers) Let ÅqOo, aiÅr be the same as in (B.1) and A

a coequalizer of ÅqOo,DiÅr. The above argument shows that Oo"OiOTOo=AA" and
(GA)(GA)"=:ee". But GZ is a regular epi in X from the hypothesis (EX.2") and e is a co-

equalizer of ÅqGOo, GOiÅr (by [21; Lemma, page 145]); so, again by Proposition 1.2,

GZ is a coequalizer of ÅqGeo, GOiÅr.
    (B,2b) (Reflection of coequalizers) Let ÅqOo, OiÅr be the same as in (B.1) and Gl

a coequalizer of ÅqGOo, GOiÅr. Then, by (EX.2"), Z is a regular epi in A. We will prove

that Z is a coequalizer of ÅqOo, OiÅr. Since (GOo)(GA)==(GOi)(GZ), we have Oo"OicA7."

by Corollary 2.3(a). Next we assume that Ooe =Oi4. Then we have G(ZZ")cG(44")
by Proposition 1.2, because (GOo)(G4) =(GOi)(G4), and hence AA"c44" by Corollary
2.3(a). Therefore it follows from Proposition 1.2 that Z is a coequalizer of ÅqOo, 0iÅr.

This completes the proof of the theorem.
    The converse of the last theorem holds under a stronger assumption.

3.3. THEoREM. If every regular epi in X splits, the converse of Theorem 3.2 holds.

    PRooF. An equivalence of categories preserves and reflects all limits and colimits

and consequently it preserves the conditions (EX.1), (EX.2") and (EX.3). Hence, to prove

this theorem, it suMces to show that any adjunction ÅqF, G, n, eÅr: X--)LA which is iso-

morphic to ÅqFT, GT, nT, 6TÅr : XAXT (where T== ÅqGF, n, GeFÅr and XT is the category

of T-algebras [21; ChapterVI]) satisfies the conditions (EX.1), (EX,2") and (EX.3).
We recall the following properties [21; Exercise VI 2.2 and Theorem VI 7.1] of such ad-

junction ÅqF, G, q,6År:
    (a) G creates all (small) limits;

    (b) G cteates coequalizers for parallel pairs in S6.

    Now we will prove the conditions (EX.1), (EX.2") and (EX.3), separately.

    (EX.1) (Finitely completeness) It is obvious from (a).
    (EX.2*a) (G reflects regular epis.) Supposefis an arrow in A with Gfa regular epi

and ÅqOo, e,År is a kernel pair off (which does exist by (EX.1)). Since ÅqGOo, GO,År
is a kernel pair of a regular epi Gf, Gf is a coequalizer of ÅqGOo, GOiÅr and Åqeo, 0iÅr

ESG by Proposition 1.5. Hence, by the property (b),fis a coequalizer of Åqao, 0,År.

    (EX.3) (Exactness) Let ÅqOo, OiÅr be an equivalence pair in A. Since G preserves
pullbacks, Åq GOo, GOi År is an equivalence pair in X and, by the exactness condition (EX.3)

of X, ÅqGOo, GOiÅr has a coequalizer e such that ÅqGOo, GOiÅr is a kernel pair of e.
But every epi in X splits, it follows from Proposition 1.5 that ÅqOo, OiÅrGSG. By the
property (b), ÅqOo, OiÅr has a unique coequalizer 7 with G7 =e. Since ÅqGeo, GOiÅr is
a kernel pair of G7, the property (a) shows that ÅqOo, Oi År is a kernel pair of y. This com-

pletes the proof of exactness.

    (EX.2*b) (G preserves regular epis.) Letfbe a regular epi in A and ÅqOo, OiÅr a
kernel pair off. As in the proof of (EX.3), there js a coequalizery of Åqao,OiÅr with
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G7 (==e) a regular epi in X. Butfis also a coequalizer of Åqeo, OiÅr, sofis isomorphic

to 7. This proves that Gf is a regular epi, as desired.

   3.4. CoRoLLARy (Duskin). A .finitely complete category A is tripleable over Set
if and only if the following conditions are satisLfied:

   (D.1) There is an object u in A such that the copower J•u ofu exists for all (small)

         sets J;
   (D.2) An arrowf:a.b in A is a regutar epi tY' and onty iff.:A(u, a)--ÅrA(u, b)

         ls a surJectlon;
   (D.3) Every equivalence pair in A is e.ffective.

PRooF. By the definition of copowers [21; III g3], there is a bijection

A(J •u, x) or- Set(J, A(u, x))

for each pair of objects JESet and xEA. This bijection is natural in J and x. Hence,
if the copower J•u of u exists for each set J, the hom-functor A(u, --): A.Set has a left

adjoint (-)•u:Set.A. Conversely, suppose ÅqF, G, n,eÅr:SetAA is an adjunction.
Then, putting u=:F(one point set), it is well-known that there are natural isomorphisms

G(x)zA(u, x) and F(J)zJ•u, Therefore the result follows from Theorem 3.2 and 3.3.

    Finally, we will derive Linton's Theorem [16, 18] as an application of the above

arguments.

   3.5. THEoREM (Linton). Let X be a (small) comptete and wetl-powered exact cate-
gory in which every regular epi splits, and let ÅqF, G, ny, ÅíÅr: XAA be an adJ'unction.

Then the comparison functor K: A--.XT is an eguivalence of categories if and only if
the foltowing conditions are satisfied:

   (L.1) A has all (small) limits and coequalizers;
   (L.2) G:'A.X preserves and reLfZects regular epis;
   (L,3) G: A--ÅÄX reflects kernet pairs.

    PRooF. First assume that the conditions (L,1), (L.2) and (L.3) are satisfied. Then
it is trivial that (L,1) and (L.2) imply (EX.1) and (EX.2") in Theorem 3.2. To prove
(EX.3) for A, we assume Åqfo,fiÅr is an equivalence pair in A. Since G preserves all
limits, ÅqGfo, GfiÅr is also an equivalence pair in X. By the exactness (EX.3) for X,

ÅqGfo, Gf,År is a kernel pair in .X and, by the assumption (L.3), so is Åqfo,fi År. On
the other hand, the pair Åqfo, fi År has a coequalizer by (L.1), Hence it is effective, which

shows (EX.3) for A. By Theorem 3.2, the comparison functor K is an equivalence of
      .categones.

   Conversely, suppose that the comparison functor K: A--ÅrXT is an equivalence of
categories. Then, by Theorem 3.3, the conditions (EX.1), (EX,2*) and (EX.3) for A are
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satisfied. We will show the conditions.(L.1), (L.2) and (L.3), separately. '. .•..

    (L.la) (Completeness) It follows from the property (a) in the proof of Theorem 3.3.

    (L.lb) (Existence of coequalizers) Let ÅqOo, 0iÅr be a parallel pair in A. Then,
since X is well-powered, it turns out from Corollary 2.3(a) that the set {44"; Oo4==ai4}

of all equivalence relations ee* with Oo4=ai4 forms a non-empty small set and there is
the greatest lower bound e of the set {44*; 0o4= 0i4} (because of the completeness of A).

But the greatest lower bound of a set of equivalence relations js also an equivalence rela-

tjon; so there is a regular epi 7 in A wjth 77" :e (by (EX.3) and Proposition 1.3) and one

can verify, using Proposition 1.2, that 7 is a coequalizer of ÅqOo, Oi År. Hence every paral-

lel pair of arrows in A has a coequalizer.

    (L.2) This is jdentical with (EX.2").
    (L.3) Assume Åqfo,fiÅr is a parallel pair in A such that ÅqGfo, Gf,År is a kernel
pair in X. Since kernel pairs are monic spans and G is faithfu1 [21; Theorem IV 3.1],
Åqfo,fiÅr is a monic span. The relation GM (fo"fi) is an equivalence relation in Rel(X)

and hence, applying Corollary 3.3(b),fo"f, is an e.quivalence relation in Rel(A). There-

fore Åqfo,fiÅr is an equivalence pair in A (by Lemma 1.1) and, in view of the exactness

(EX.3) for A, it is a kernel pair. Hence we have completed the proof of the theorem.
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