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In the last ten years considerable progress has been made in the theory of
intermediate spaces. The work of J. L. Lions [ 3] seems to have given impetus
to such circumstances and thenceforth several authors have introduced and
developed various methods in this theory (ef. Bibliography in [87, [5] or [17]).
Especially, for the present, the so-called real interpolation methods due mainly
to J. L. Lions and J. Peetre are of most wide application [17, [5], [87, [9].
Immediately after Lions and Peetre presented their original real method [4],
much improvements and generalizations thereof have been given by Peetre
[6],[7], [8], one of which will be outlined as follows [7]. Let X, and X; be
Banach spaces continuously contained in a linear topological Hausdorff space
E and define K(, x):xif}{ngOHXﬁ5|lx1||X,) for x € Xy-+ X3, x; € X;, i=0, 1, and

J(t, x)=max (||x||lx,, tllx|lx,) for x € X,nX;. By means of a given function
norm @[ 10, p. 4427, let us denote by (Xy, X1)s x the set of elements x ¢ X,+ X,
for which 0[ K (t, x) ]< o and by (X,, X1)s,; the set of elements x € X;+ X; for
which there exists a strongly measurable function u (¢) with values in X, X,

such that x= S:u (t>_d;1;w in Xo+ X1, @[ J(t, u(t)) ]<oo. Obviously these spaces are
normed linear spaces provided with their respective norms ||x||s x =0 K (¢, x)]
and ||x||s,y=1Inf O J (¢, u(2))], x:go u(t)-%’z. The correspondences that to any

pair (X,, X1) of Banach spaces assign (X, X1)e.x and (Xy, X1)e, s are called K
and J-method respectively. The main theorems such as the theorem on the
equivalence of two methods, the theorem of reiteration and the interpolation
theorem are formulated and proved under some additional assumptions on @.
In his lecture [87] given at the University of Pavia, Peetre presented a
brief summary of a generalization of the K-method. The purpose of the present
paper is to give some supplemental details to this Peetre’s lecture and at the
same time to make an attempt to generalize the J-method as well under the
same circumstances. Let us call the methods so obtained N and M-method in
accordance with the K and J-method respectively. The theorem on the equiva-
lence of two methods and the theorem of reiteration will be obtained also in
this case. As for the interpolation theorem, we will not deal with it here,
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because it will now become rather simple in substance in spite of its elucida-
tive complexity. :

Section 1 is concerned with preliminary remarks. A pseudonorm is a
function satsfying all axioms of the ordinary norm and admitting the value
oo likewise. By giving two families of pseudonorms P, (¢, x), P (t, x), x € E,
0<t< oo, we define N(t, x)fixnfr(Pg (t, xo)+Pi (2, x1)), M(z, x)=max (P, (¢, x),

P, (t, x)) and preparatory examinations will be given about P,, P;, N and M.
In Section 2 the function norm is introduced and intermediate spaces are de-
fined by means of N(z, ) (N-method) and M (¢, x) (M-method). The emphasis
is upon the theorem on the equivalence of these methods [ Theorem 17]. Section
3 is devoted to the theorem of reiteration. To begin with, the notion of the
class concerning a normed linear space is defined [ Definition 6]. Considerations
requisite to formulate the theorem is given and Proposition 9 and 10 are prov-
ed, from which the theorem of reiteration [ Theorem 2] will now become almost
evident.

§ 1. Preliminaries and Pseudonorms.

Let E and F be linear topological Hausdorff spaces. We write FCE to
mean that F is continuously contained in E, that is, F is a linear subspace of
E and the injection of F into E is continuous.

DeriNniTiON 1. A real valued function P: E> x—P(x) is a pseudonorm on
E if it satisfies

1° 0<P(x)<oo forall x ¢ E,

2° PQx)=|A|P(x) for all complex number 1 and x ¢ E,

3° P(x+y)<<P(x)+P(y) forallx, yeeE,

4° for any sequence {x,} in E, P(x,)—0 (n—>o0) implies x,—0 (n—o0) in
E.

Remark 1. Adopting the convention 0:-co=00.-0=0 we may find from 2°
and 4° that P(x)=0 if and only if x=0. Thus the set F={x; x € E, P(x) < oo}
is a normed linear space equipped with the norm P(x) and continuously con-
tained in E.

Let Py (¢, x) and P; (¢, x) be functions defined for (¢, x), 0<t <o, x € E and
assume that for any fixed ¢, P;(¢, ) (i=0, 1) is a pseudonorm on E and for any
fixed x, P;(t, x) is a locally integrable function of ¢ with respect to the measure

mzw%i ,1.e.

S”P,- (t, )% <
A 2
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for any 2, #, 0<A<pu<oo. Let further p,(z) and p;(¢) be non-negative finite
valued functions defined for 0<t<eo, and locally integrable with respect to
m (m-integrable).

We suppose
1.1 0o (&) >>p1(t) forall ¢, 0<s<1,
(1.2) 00 () <1 (¢) forall 1, 1<t < o0,

and there exist y>1, C;>0 such that

(1.3) 0:(t) <C, forall &, iﬂ <t<ry,i=0,1.
Between P; and p;, i=0, 1, we now assume

(1.4) P, ) <oi(L) PiGs, %) for all 0<s, 1< oo, x € E.

Let us write
a () =max (0, (), 01(2)), 3(t)=min(pe (), 0:(¢))
and define for 0<¢t<oo, x € E,
N(t, x)=1inf (P, (¢, x9)+ P1 (z, x1)),
where the inf is taken for all x,, x; € E, x=x¢+ x1, and
Mz, x)=max (P, (t, x), P, (t, x)).

It is noted that M(z, ») is strongly m-measurable and locally m-integrable for
any x € E fixed.

We here cite the following example which plays a fundamental réle in the
interpolation theory of Lions and Peetre [4], (7], [97].

Exampre 1. Let X,, X; be normed spaces continuously contained in E and
define

2]l x, if x € X,
PO(ta x>:{

o0 if X EX(),
, txllx, if x€X,
Pl(t: x):{

Then we may take p,(¢)=1 and p;(¢t)=t and so that a(¢)=max(1, ¢), B (t)=
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min(1, ¢). In the present case we write K (¢, ») and J(¢, ) instead of N(z, x)
and M(t, x) respectively:

inf ({|xollx,+ ¢]| %1l x,) if x€Xo+X;
K(t, x)___ F=Xg+%g
o0 lf X f 4Y0+X1,

where the inf is taken for all x, € X,, »; € X1, x=wo+ x4,
max ({|x||x,, ¢|lx|lx,) if x e XonX;

J(, )= _
oo if x ¢ XoNnX..

In the sequel we need the following inequalities which we now write down
for references:

(15) NG, 0 <Pt ) <M, x)  i=0, 1,
(16) NG, 0 <a( 2 ) N, ),
L Mis, ») <a 2-) MG, o),
(1.8) NGs, x) < 5(?) M1, ).

Except (1.8) these inequalities are almost evident and (1.8) is seen as follows. If

The case s<:¢ may similarly be done. When s=t¢ it is enough to note that
N(s, x) <Pi(s, x) <<p: (1) P (¢, x) < 0;(1) M(¢, x) for i=0, 1.

Prorosition 1. N(t, x), M(z, x) are pseudonorms on E for each ¢>0.

Proor. We only prove the condition 4° for N(z, x), because the rest is
nearly plain. Letting N(z, x,)—>0 (n—c0), one may write x,=x,0+ x,1 s0 that

Po(t, xpo)+ Py, x,,]‘)<<»—71;—. Then it holds that x,,—0, x,;—>0 (n—o0) in E and

consequently x,=x,0+x,1—0 (n—>c0) in E. This completes the proof.
Let us now write

EN: {x) x € E9 N(la x)<°°}1 Hx”EN:-ZV(la x)y
EM:{x; x € Ea M(l) -79)<°°}> 1|x“EM:M(1: x>’

.40:{.’)6; x € Es P0(17 x)<°°}) HxHA():PO(]-: .’X)),
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Al:{x;xEEa Pl(l, x)<°°}> HxHAlzpl(la x)

These are all normed linear spaces equipped with their respective norms and
furthermore in the sense of isometric isomorphism it holds that

Ey=Ay+ A1, Ey=AyNA4;.

In order to exclude the trivial cases we shall assume henceforth that A4, = (0),
A12(0). It then follows that there exist x,, x, € E with 0< Py (1, x,) < oo and
0<Pi(1, x;)<oo. Thus by virtue of 0<<P; (1, ;) <<o0;(t) P; <~% , x;), it now holds

that 0<p;(¢) <oo and consequently 0<a(t)<oo, 0<CB(t) << oo for 0<t< o0, As
the result, owing to the inequalities

< >P(l x) <P;(t, x) <p;(t) Pi(1, x) i=0,1,

L N@ 0 < NG, 0 =a@ N, ),

()
6

one may conclude that P;(z, x), N(¢, x) and M, x) are norms equivalent to
l#lla, llxle, and ||x|/g, respectively.

M@, x) < M(t, x) <a() M, x),

Prorosition 2. Ey and Ey are Banach spaces 1.f and only if A, and A, are
Banach spaces.

Proor. The part “if” is wellknown. The “only if” part is shown as fol-
lows. Let Ey and Ej be Banach spaces. Letting {x,} be a Cauchy sequence
in 4,, we see x,—x € Ey(n—>o0), because {x,} is a fortiori a Cauchy sequence
in Ey. Thus we may write x,—x= yuo+ yu1 With 3,0 € 4o, yu1 € A1 and || 0l 4,

+ 1] il a, <l xw— xllENJri. By means of a decomposition x=x,+ x; wWith x, €
n

A, and x; € A, We now set x,0=x¢+ yuo, xs1=x1+ y»1. Then owing to
1
1m0 — xollay +lxm = xalla, Zllwn—xlley + ==,
it results that x,,—x, (n—>0) in 4, and x,;—>x;(n—>o0) in 4,. Since x,,=x,

— x40 and since {x,}, {x,,} are both Cauchy sequences in 4,, it follows that
{x.1} is also a Cauchy sequence in 4, and consequently in E). By assumption
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that Ej is a Banach space we may infer x,,—>x,(n—>c0) in E) and a fortiori in
Ao. Therefore x,= %+ x—>x0+x1=2(n—>o0) in 4,. Thus A4, and similarly
A, are Banach spaces. This completes the proof.

§ 2. Function norms and intermediate spaces.

In this and subsequent sections A4, and 4; are assumed to be nontrivial
Banach spaces (Proposition 2). Let S, be the set of all m-measurable functions
¢ (1), 0@ () oo, defined for 0 <t < oo.

DeriNtTION 2. A real valued function @: S, 3 ¢—>0[ ¢ |=0[ ¢(¢)] is called
a function norm if it satisfies
1° 0<CO[p]<leo,
2° O[¢]=0 implies ¢ (1)=0 a.e. >0,
3° O[g]<eo implies ¢ () <eco a.e. t>0,
4° @[Ap]=20[¢] for all 1>0,
5°  Riesz-Flischer property [ 10, p. 444, Theorem 17:

@ ()<< ilgpn(t) a.e. >0 implies @[ ¢ ] gﬂzl@ Lonl

A function norm @ satisfying the following condition 5% is called a function
norm in the strong sense.

5% Strong Riesz-Fischer Property: for any ¢ € S, and for any real valued
m@m-measurable function ¢ (z, 1), 0<¢ (¢, 1) <{oo defined for 0 << oo, 0<<AK
oo, it holds that

- da o = da
X63) ggo o(t, 1) ae >0 implies @[ ¢ ] ggo O p(t, )] 5

Whererdenotes the upper integral.

It is noted that the condition 5* is stronger than the condition 5° because
if ¢ (¢, 2) is defined by
0 for 0< <1,
e, )=

©n (t) for e" ! <li<e”, n=1,2, ...,

it follows that
80(0 (, l)%: 2 ¢a(2).
n:l

In order to state the following definition it will be convenient to prove the
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next

Lemma 1. If t—u(t) is an Ey-valued strongly m-measurable function defined
Jor 0< < oo, then t—M (¢, u(t)) 18 m-measurable.

Proor. When u (¢) is a constant function, M(z, u(z)) is already known
to be m-measurable. Therefore the same is true in case that u(¢) is an m-
measurable step function. Any Ey-valued strongly m-measurable function u(z)
is the limit a.e. in Ey of a sequence {u,()} of Ey-valued strongly m-measurable
step functions. In consequence M(z, u(¢)), as the limit a.e. of the sequence
{M(t, u,(t))} of m-measurable functions, is itself m-measurable. This completes
the proof.

DeriniTiON 3. Let @ be a function norm. We denote by 4, x the set of
elements x ¢ E such that 0[Nz, x)]< co.

It is clear that 4, v is a normed linear space provided with the norm
Hxllo v=0O[N(, x)]. Let us now consider an Ey-valued locally m-integrable
function t—u () defined for 0<t<eo, ie. for any 2, x, 0<A<u<oo, u(t) is
m-integrable (Bochner) on [, £ in Ey[ 10, p. 217]. We WriteS:u(t)"dti=x to

mean that there exists x ¢ Ey such thatgﬂu(t) i‘iﬁ——)x (A—0, g—>o0) in Ey. Itis
A

to be noted that the integral of this type is not the ordinary one (Bochner,
Bourbaki etc.). Nevertheless, until otherwise stated, we shall make use of the
usual notation, because things will not be confused.

DeriniTion 4. Let @ be a function norm. We denote by A4, » the set‘of
elements x € E such that ng:u(t)fii, O M(t, u(z))]< oo where t—u(t) is an

Ey-valued strongly m-measurable, locally m-integrable function just mentioned.
It is clear that A4, is a seminormed linear space provided with the
seminorm ||x||s y=1inf O M (¢, u(2))], where inf is taken over all u(¢) such that

x=g°°u<t)i£.
0 t
ExampLE 2. In case that N=K and M=J defined in Example 1, we write
As nvand Ay p as (Xo, X1)o x and (X, X1)s, s respectively.
ProrosiTion 3. @[ 8]< o implies Ey C Ag,x for any function norm ®.
Proor. Since N(¢, x) << ()M(1, x) by (1.8), it follows that
lxllo, v =0O[N(, x)]<<O[B]M(A, x).
This completes the proof.
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Prorosition 4. If ¢ € S, is given such that ¢ (t)>0 on a set of positive
m-measure contained in [_,1[’ 7’] , then @[ ¢ 1< oo implies Ey C Ag,u for any func-
tion norm @. In particular @ [ ]< oo tmplies Ey C Ap, .

Proor. Letting 7= [% , 71 NAt; ¢ (t)>0}, one obtains m (T) >0 for some

0>0. Given x € Ey let us write u (t):u %7r(t)x, where xr(t) it the charac-

1

n(T)
teristic function of such 7. Then it holds thatg u(t)—~~ x and therefore by
a.mn

ltllo e < LM (e, u(®)]= (1 OCr () M1, x)]
gml—ﬁ 0Lz (D ()IMA, x).

Consequently, since « () < C, on [71’—, r] by (1.3) and since ¢ () >0x7(t) a.e., it
follows that

lllon < mCO O (M, x)

0L MQ1, x).

This completes the proof.
Let £(), 0<f(2) <oo, 0<2< o0, be a locally m-integrable function.

DeriNiTION 5. We say that a function norm @ is of type f if the following
inequality holds

OLe ) 1<fOLe®)]

for all 0< A< o and for all ¢ € S,.
According to Peetre [ 8] we now state the following proposition.

Prorosition 5. Let @ be a function norm of type f. Then it holds that

N(s,x)0 — <f®llxllon
(D)

and
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lellon<f( ) 0081 MG, »)
Sorall x € Eand s, 0<s<oco.

Proor. Owing to (1.6): N(s, x) _{a(%)N (¢, x), it holds that

1 ,
N(s, x)0 L?(i—ﬂ <O[N(, )],

t

On the other hand, since @ is of type f, we may infer that

ECINEa]

Thus the first part of the statement is true. To prove the second, let us
take (1.8): N(t, x) g@(%) M(s, ). It then follows that

OLN(t, x)] gm[@ (%)] M, )

<f(L)ors1me, »

as desired. This completes the proof.
For the sake of completeness we also prove the next corollary after Peetre

[8].

CoroLLARY. If @ is a function norm of type f, then A, x 1s a Banach
space.

Proor. It is enough to show that a series }; x, in 4, v is convergent in
k=1

Ay n, Whenever i]lkam,N< oo, Let us suppose i“xk“m,N<°0. Since f(s)<eo
k=1 k=1

a.e. and a){——llﬁ}>0, it follows from Proposition 5 that fN (s, xp)<oo a.e.
k=1

(1)

t

s>0 and hence everywhere s>0 by (1.6). By the assumption that Ey is a

Banach space, there exists x ¢ E such that x=3 x, in Ey. Setting y,= f‘_,xk it
k=1 k=1

holds that

]\fr(t’ X — :yn) '%_Z:,JJY([?, xk))
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and therefore

Hx—ynllﬂi,N:@[N(t, x_yn)]

o0 oo

S ?I:N(t) xk):l

k=n+

=2 ||xl]o, x>0 (n—>00).
E=n+1

This completes the proof.

We intend to examine the relationship between 4, y and 4, ». To begin
with let us prove the following

ProrosiTion 6. Let @ be a function norm in the strong sense and of type f.

Put C;— S: 3 <%) J20) ‘f—t Then it holds that

o, n << Csllxlio,m

for all x € Ay y. If in particular C;<oo, it follows that As y C Ae,n and con-
sequently Ay y becomes a normed linear space.

Proor. Let x € 45y and let us write ngmu (s) s where s—u(s) is an
0 S

Ey-valued strongly m-measurable function and for each 2, #, 0<i<u<oo, it
holds that

“
x*":qu (s)v—%ii € Ey, x,,—x(A—0, #—o0) in Ey.

Since N (z, y) is a norm on Ey equivalent to || y||z,, it follows that

N, x)=N(, lxim Xry) :lhim N(t, xx,)
—~0 —0

proo pro0

< lgr?S:N(t, HOL S:N(t, u ()4

H—roo

On account of (1.8) and of Lemma 1, we now obtain

NG =] 8(L) MG, ue) L
= 1 da
:go,@(7>M(m, u(td))
The strong Riesz-Fischer property of & tells us

%
LN, x)] SSO B<~}——> OLM(t2, u(td))] %’l
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which turns out to

- 1 di
oIN G, 1< 8( 5 ) LorMe, u)]
because @ is of type f. Making « vary it now follows that
||wa.N_<A CfoHw,M.

The rest of the statement is obvious. This completes the proof.
In order to study further relations it is convenient to provide the next
lemma due to [7].

Lemma 2. Let x € E be given and suppose B(—%—) N(t, x)—0 (t—0 or t— o).
Then we may write ng;ou(t)%t—, that 1s:

(i) t—>u@) is an Ey-valued strongly m-measurable function defined for 0<
t< oo,

(i) for each 2, 11, 0< A< < o0, u(t) is m-integrable (Bochner) on [ 2, /1] in
Ey and

dt
¢

xwzgiu(t)

—x (A—0 and pg—o0) in Ey.

Furthermore u(t) may be taken so that

M, u(t)) <7§ - N (¢, x)
’ ~—“logy ’
Sor all t, 0<t< o0,

Proor. We assume N (¢, x)>0, because the case N(¢, x)=0, i.e. x=0, is
trivial. For any ¢>0 and n=0, 1, +2, ..., we may write x= 1,0+ Xn1, Xno,
%1 € E, in such a way that

Py (7", #n0) +Pr(7", 201) <A+ NG”, x).
It now follows first that for n=—1, —2, ...,
Py(1, 40) <A+ 00 NG, )
<A+ BGTING", )0 (n—>—o0),
and then next that for n=1, 2, ...,

P, 20) <A+ 0. TING", &)
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A+ BGTINGT, x)=>0  (n—oo0).

Putting u,==%ni10— %no==%n1 — xn.11 Tor n=0, +1, +2, ..., we see u, € Ey, and
since x,,—0 (n—>—o0) in Ey, x,1—0 (n—>0) in Ejy, it holds that u,—»0 (n—>—c0
or n—oo) in Ey. Define

and note that »(¢) is an Ey-valued strongly m-measurable function for 0 <z < 0.
We now show Sou(t)%:x. To this end we first observe that for 7" <C

/,(<')’”+1, T’L=1, 23 |

# dt log 1/ 7"
Slu(t) t _u0+"'+uu—1+ ].OgT n
_ log /¢/7" .
=Xl — Xp1 un%xm(nﬁw) m EN.
log

Next we see for y " ' <1<y ™ m=1, 2, ..., that

Lo dt logy="/2
gku<t)7 —u—1+"'+u—~m+7w lOgT —m—1
—m
Zxoo—x-m()'f'f%ﬁ* U_m_1=> %90 (m—>00) in Ey.

Thus x= S:u(t) —"?— is proved.
In order to estimate M(z, u(2)), let 7" <t<y"*', n=0, +1, +2, ..., and write

M, u(@))=max (Po(¢, u(t)), Pr(t, u(t)))

1
:m maX(P()(t, u,;), Pl(t, u”>)

1
S IOgT max (PO([’ xﬂ;lO)hFPO(t’ x”O)’ Pl(t’ xn1)+P1(t> X 11))'
By means of (1.4) this becomes

1 _t'_ PO/ R <L n
Mz, u(t))é——logr m3X<00<Tn+1>Po(f s Xns+10)+ 00 T">P0(T s X20)s

01 <_7’t7> Pl(Tn; xnl) + 01 (?’;fjrAlk)Pl(Tw—l, xn{-ll))
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—“1165 max(m(ﬁ)l\f(r”“, x) +00<—;7>N(T"> %),

01(—;7>N(r”, x)+01<r7t+f>N ", x))
< mas(n (o7 ().
(L))o el 7)) e

n n+1
By assumption that y*<{t<y""! and hence —71,— <TT <1< I - <7, it follows

from (1.3) that p;-(;,f—ﬂ-)g Co, 0 (;ﬁ,—)g Co, e 7':1 )< Coa(T) <o, and thus

1+¢
/»7-__ 2
M(t, u(e)) << Tog 7 2C3N(t, x)

for each ¢ >0. Therefore

2C
M(z, u(ﬂ)ﬁ'j@], N(, x)

as desired. This completes the proof.
Prorosition 7. Let @ be a function norm of type f and assume B(%) S @)
—0 (t—>0 or t—>0). Then it holds that

23

||x||0.ﬁlgm

llxllo,v

for all x ¢ Ag xy and hence Ay yC As,u.

Proor. Proposition 5 tells us

B( )N, < 4 3()FOlsllo,

for all 0 <z <eo, where C =@[—<l—1*}>0. By assumption, it then follows that
N7 /)
t
g (’}')N(t’ x)—>0 (t—0 or t—oo0) and Lemma 2 may be applicable. Thus x=

N(t, x), 0<t< o0, and so

> dt 2C?
Sou(t)-;—, M(z, u(t))g—1 Og"r
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2C}?
logy

llxllo,n

ewllo,r <OLM(, u(@) 1<

as desired. This completes the proof.

TrHeOREM 1.  Let @ be a function norm in the strong sense and of type f. If
1
3(7)]0(;)»0 (t—0 or t—c0),
(" 1 dt
6=,8(3 )0 <o,

then Ag n=As u and furthermore it holds that

SET lallo oy < Coll ol

for all x € E,
Proor. Clear from Proposition 6 and Proposition 7.
CoroLLARY. Let @ be a function norm in the strong sense and of type f. If

iG,

h -0 (t—>o0)

f(®&)—0 (-0,

and 1f
cfzng_gt)* dt+ gmf—@» dt< oo,

1 t?

Then (Xo, X1)o,7=(Xo, X1)o,x and furthermore it holds that
1
1o 1xlle. <l #llo, s < Cillxllo, s

forall x € E

1
Proor. To get the last inequality it is enough to take y=e¢2 and hence ¢,
The rest is obvious from Theorem 1. This completes the proof.

i
Q
boj

Remark 2. In the particular case in question, a closer inspection of the

2
proof of Lemma 2 shows us that the constant 1(2);‘; there may be replaced by

1+7 and consequently it follows that
logy
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L xllo s <llallox
7o

for all x € E, where 7, is the minimum of L+r 3.5<y,<3.6.

logy’

ExamprLe 3. We here give some examples of function norms usually em-
ployed. Let g(¢) be an m-measurable function such that 0 < g(¢) <o, and put

for g € S,
= @) Yd L .
{So< g(t)) 1Pt 1<p<es,
mg,p[‘ﬂ]: 0
o (t e
S9P 2 () if p=-co,
where sup is the essential supremum and the convention %:%:oo-():O-oo

=0 is used. By means of the integral form of Minkowski’s inequality:

{((rce pax) abs<{{{cre, pr as}an,

[2, p. 148], it is not difficult to see that @, , is a function norm in the strong
sense. If g(¢) satisfies

g(st) < f(s) g(¢) forall 0<s, t <o,

where f(s), 0<_f(s)<oo a.e., is a measurable function, then @, , is of type f.
By specialization of g(¢), the following function norms are offered.

1) o,, with g(¢)=t°, 0<6<1. The wellknown interpolation theory of
Lions and Peetre is based on this function norm 47, [67], [77], [8].

2) 0, . with g(z)=max (1, %), ¢>0. This is of type max (1, 2) and gives

(X, X1)s,,...x=Xo+ X, where X is the Banach space X; renormed as ||x||x;=
cl|x|lx,- To prove this it is enough to see by (1.6)

K,
lxllo,,.. x =sup < x)t - <K(c, »),
max(l,-&
c

>0
and the sup is attained by t=c.

3 @, with g(t)zmin<1, {—), ¢>0. This is of type max (1, 1) and gives
(Xoy X1)a,,,,7=XoMXj, the latter half of which is seen as follows. Letting x ¢
(Xo, X1)o,,,,7 and writing x:Smu(t)iitm where t—u(z) is an Xy X;-valued func-

0
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tion locally m-integrable in X, X;, we get
= dt = c dt
(7o, w2 < "max(1, €)1, uie)-2-
=0, [J(, u(@))]<oo.

Hence it follows that S:Hu @llx, ¥ <eo and g:Hu @llx, %< oo, Consequently

we may infer that ux(z) is m-integrable both in X,, X; and so x= Smu(t)-‘f—t €
0

XoNX:. Since

It

el < lull, 4 Yl < e, <

b

it holds that

J(e, x)=max ({|x|lx, cllx|lx)

< T, u(e) 2 <0, w)].

x € XN X, and take for any >0

1 for ¢ <t <ce®
p()=1 ¢

0 otherwise.

Then u(t)=¢ (t) x satisﬁesgmu(t) ‘f—t—:x Thus it follows that

0

llemg,l/gSZmax(l, -5—--)](1, u(;))‘fﬁ

= 1—gceej(t, x)f«@—_g%&wenlax(l, :: >J(c, x)if-

Therefore ||x|ls, ./, <"J(c, x) and XoN\X]C(Xo, X1)o,, s is obtained. We have
thus proved X, X7|=(Xo, X1)o, s With ||x[ls, ,;=J(c, x). This completes the
proof.
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3. Reiteration

Let g(¢), 0<C g(z) <oo, 0<t< oo be an m-measurable function and assume
that it is finite valued on a set of positive measure, i.e. the trivial case g(¢)=o0
a.e. is excluded.

DeriniTION 6. A normed linear space X E is said to be of

1° class €, n(i.e. X €%, n) if x € X implies N(z, x) <<Cg(t)| x| x a.e. £>0,
where C is a constant independent of «;

2° dlass @y (ie. X €%, ) if x € Ey implies [|x]lx <D g(_H M@, %) ae.

t>0, where D is a constant independent of x;
3° class €, (i.e. X € ¥,) if X€G, n\Cpom1.

RemArk 3. It follows from the definition that XC Ey if X € ¢, y and that
EyCXif X€%,n Itis also noted that Ey and Ey are of class €., Ex € €4 n,
Ey € %5‘]\4, Ay € (gPO and Al 9 %/,1.

Prorosition 8. Let X, XCE, be a Banach space and let g(t), 0 < g(¢) oo,
be a locally m-integrable function on 0<t<oo., Then it holds that

(1) Xe%,n if andonly if X 4o, n,

(i) <f g(v) satisfies g(st)<<f(s)g(t) for all 0<s, t<oo and for a given
locally m-integrable function f(s)on 0<s<oo,then X € €, n if and only if Ao, u
C X, where g(t)=—lw~

’ g1/e) °

(iii) under the same condition on g(t) in (i), X € 6, if and only if Ao; . u
CXC Ao, n

Proor. (i) Suppose X € %, » and take any x € X, then

lalle, .. x=sup (& 5 <l

g(®)

and XC 4, ~ is obtained. Conversely, since clearly 4, _ ~€ %, n, it follows
that X € ¢,y if X 4,, .~ This proves (i).
(ii) Let Xe¢%,n and let x € 45, , ». By means of a locally m-integrable

Ey-valued function u(z), @5, M(z, u(t))]< oo, we write x=g:u(t)i‘?~. Take a

continuous function ¢(¢) with the support in 1—;— , r[ such that ¢(t) > 0,§:<o(t)%t~
=1, and put

o=fu( L)oo &
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Then clearly »(z) is a continuous Ej-valued and hence, owing to Remark 3, a
continuous X-valued function. It also holds that x= SO v(t) %t—and for each s>0

one obtains

leilr <Dg( L) M@ o) ae. i>0.
Therefore letting {r,} be an arrangement of all positive rational numbers, one

finds, for each n, a set T, 10, oo, m(T,)=0, such that

3.1) lorllx <Dg( L

7‘> M@, v(ry)) foralle: 0<te T,

Setting T=Iim T,=/\\/ T\, we see m(T)=0 and for every ¢, 0<¢ ¢ T, it holds

] E=1n=F
that ¢ € T, except for finite numbers of n. Hence, for this ¢, we may select a
subsequence {n;} in such a way that ¢ ¢ T,, and r,,—t(i—>o0). Putting, as we
may, n=n; in (3.1) and letting {—> oo, we may find

1
pd —
llv (Il x _\:Dg< ; >M(t, (1))
for all £, 0<z ¢ T. In consequence it results that

e @l 2 < (L) me, o2

o
0

B o )

Il

<of (1) (e ()0
<ofo ()2 Jaom( L £)

(L) o
LDCC @z ) [ M2, u(t))]< oo,

where we put C'= |I¢)ngz f(s) —‘is~< co. Thus v(z) is m-integrable in X and there-
v S

fore yw-—«S:v ) %LA>y (A0 and g#—>o0) in X and hence in E. It follows that
x=y€ X together with ||x||x <<DCoC'||xlls;, . This proves X> Aq;  u. Con-



On a Generalization of the Interpolation Method 19

versely now we must show that any XD 4,. u is of class %,x. To do this it
1s enough to prove 4,. v € €, n. Let x € Ey and take any m-measurable func-
tion ¢(£)>0 WithS:g/;(t) 9t 1. Setting u(t)=¢()x, it holds that x=go u(z)%‘i

¢
and further that
Nxllo;, 0 <@z 2 (M, u(t))]

=" (LYo M, -2
Since this is true for any ¢(¢) described above, it follows that
fxllo; << g(%)ﬂf(t, x) a.e. t>0.

This proves 44,  u € €, n as desired.

(iii) is clear from (i) and (ii).
This completes the proof.

In order to formulate the reiteration theorem, let us suppose first that we
are given an m-measurable function % (z), 0 <A (t) oo, h(t)£0, h(t)=% oo, and
next that there exist numbers w, »’>0 such that

h(st) <wh(s)h(t), h(s)h(t) <w'h(st)

for all 0<s, t<eo. From these conditions it follows that 0<<k (¢:)<eo for all
0<t< oo,

ExampLe 4. The following are examples of such funetions.

1) A()=1% 0<0<1 with w=0'=1, is the most important in practice (47,
L7 ,

2) Any measurable function % (2), —1—_<_h (t) <ec, 0<t< oo with w=0"=¢?.

3) The product of any two such functions.

By means of this 4, a given function norm @ and a given real number 7=
0, let us define

2Le]=0[h®) ¢ ()], ¢ € S.,
and therefore
Msbj:f{ W? } €S,

h(t°)

Then, since @ is a function norm, £ is clearly a function norm and the converse
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is also true. If @ is of type f, it follows that
2Lee)]=0[h(2) ¢ (A7) ]

<FQ)OThG7 £ ¢ (271))],

i

where F(A):min@h(ﬁ), o' ) because k(1) < wh () h(272) and k(6 h ()
B

1
< w'h{2°t). Thus we get

2 ¢ (Y] < fGHFD)OLR(@) ¢ (),

1
ie. 2 is of type f(2°) F(2). On the other hand if 2 is of type f1, we may infer
in the same way that @ is of type F(1 ) f1(2°) and therefore in case fi(1)=

f(l}')F(/I), O is of type F(A™)FQ°) f(A) <wo'f(2). We finally note that £
satisfies the strong Riesz-Fischer property if and only if so does @. Letting
ho(t) =k (¢) and h,(t) =1 (), we begin with the following proposition.

ProrosiTioN 9. Let @ be a function norm of type f. Let X,, X: be Banach
spaces C E and assume that X, € €y, n, X1 € €p,.n. Then it holds that

(Xo, X1)o,x CAg n
Proor. By the definition of X; € €, v (:=0, 1) it holds that
N(t, x;) <Cih; (@)||xillx, a.e t>0
for all x; ¢ X;. Putting x=ux,+ x1, we may write

]V(ta x)g]V(t, x0>+N(£: .’)61)
<o @ (fixllx, +-g ellllx,)

Hence

NGt %) < Cdz(t)K(%L 2, x>
0

(Y PIRE ). )

and therefore we get

Iello.n = Goon (S Y A((E )y Joth oK, )]
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() DG

This completes the proof.

ProrosiTioN 10. Let @ be a function norm in the strong sense and of type f
where f is locally m-integrable. Let X,, X1 be Banach spaces CE and assume that
X, € %)/’o.M’ X1 3 (ghl,M- Then it holds that

(Xoy, X1)e, 70 Ao,

Proor. Take any x € 44 and by means of a locally m-integrable Ej-
valued function u (), O M(t, u(z))]< oo, let us write ngzu(t) iit—. As in the
proof (ii) of Proposition 8, we take a continuous function ¢(¢) with the support
in}-};—, rl:such that ¢ (1) >0, g:(p(t) ffizl, and put

The continuous Ey-valued and hence the continuous X;-valued (i =0, 1) function

v (t) satisfies x= S:v (t)-if-. It is also already known that
1\, .
\\v(t)\lxi_gDih,-<~t—>M(z, v (1) ae >0, i=0, 1.
This proves

D;hl( 1 )max(uv@)lixﬂ, o2 e @lix, ) MG 0 @)

t

and therefore, since k(1) h<—1—> <w'h(1), it follows that
DO o ’
(3.2) h (z)J(»ﬁ_t v (0) < Doh (V)M v (D) ae. t>0.
1
Define w(t)=——3)} v((-— t) ) and let us see x = S w(t)—dt—t*. Then we get

|l o, <2 TJ(e, w(@) J=0[h () J (&7, w(&)) ]

=A(Z o[ (5ry0) (e w(5:0)]
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oGP 0B )]

By virtue of (3.2) one obtains
wllo.s =< 22 DR @ (L) )R((HE) )0, @)1

By means of the strong Riesz-Fischer property, let us make an estimate of
O M(t, v())] by O[ M(z, u(t))] as follows.

oLt v @I=0 [ M u()e )]
of§ (e u())e0 5]
oo a(s (1))
<Jre@awo[u( L, u(£)] %

<CO[M(&, u®)],

A

A

. , (7 1Y ds
where we write C'= gl(p (sHa (S)f(i;>? < oo, Thus we get
7

[[xll2, s <<C"OLM (2, u(t))]
and consequently

llxlle,r < C"lix]l o,

‘We now state the theorem of relteratmn as follows.

Tarorem 2. Let @ be a function norm in the strong sense and of type f, and
let h(z) be an m-measurable function such that 0<k(t)< o and %h(s)h(t) <h(st)

< wh(s)h(t) for all 0<s, t< oo, where w>0 is a given constant. Given d=c0 real,
put ho(t)=h(t), hi(t)=1:"h(t) and

LLe]=0[h®) ¢(t)], ¢ € S..

Suppose that f is locally m-integrable and satisfies
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3(%) F@©)—0 (10 or t—>00),

S:min A, =) h(t~Y) f@%@o.

If X, X1 are Banach spaces continuously contained in E and if Xo € €, X1 € €,
then it holds that

Ao v=Ao,u=(Xo, X1)2,x = (X0, X1)o,/.

Proor. Proposition 7, 9 and 10 tell us

(Xo, X1)o,x CAonC Ao,u C(Xo, X1)e,7s

and Proposition 6 applied to 2, J, K gives (Xy, X1)0,;C(Xo, X1)g,x. This com-
pletes the proof.
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