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            In the last ten years considerable progress has been made in the theory of
         intermediate spaces. The work of J. L. Lions [3] seems to have given impetus
         to such circumstances and thenceforth several authors have introduced and
         developed various methods in this theory (cf. Bibliography in [8], [5] or [1]).
         Especially, for the present, the so-called real interpolation methods due mainly
         to J. L. Lions and J. Peetre are of most wide application [1], [5], [8], [9].
         Immediately after Lions and Peetre presented their original real method,[4],
         much improvements and generalizations thereof have been given by Peetre
         [6], [7], [8], one of which will be outlined as follows [7]. Let Xo and Xi be
         Banach spaces continuously contained in a linear topological Hausdorff space
         E and define K(t, x) ==inf(Usc•olix,+tllxillx,) for xc Xo+Xi, xi E Xi, i=O, 1, and
                           X=XO+Xl
         J(t, x)==max(llxllx,, tllxllx,) for xEJXoAXi. By means of a given function
         norm Åë[10, p. 442], let us denote by (Xo, Xi)Åë,K the set of elements x ( Xo+Xi
         for which Åë[K(t, x)]Åq oo and by (Xo, Xi)e,i the set of elements x c Xb+Xi for
         which there exists a strongly measurable function u(t) with values in XoAXi,
         such that x=S:u(t)t--tt-- in Xo+Xi, Åë[J(t, u(t))]Åq oo. Obviously these spaces are

         normed linear spaces provided with their respective norms• llxHm,K==O[K(t, x)]
         and llxHÅë,J=inf Åë[J(t, u(t))], x== scu(t)-d-tt--. The correspondences that to any

' pair (Xo, Xi) of Banach spaces assign (Xo, Xi)Åë,K and (Xo, Xi)Åë,i are called K
         and 1-method respectively. The main theorems such as the theorem on the
         equivalence of two methods, the theorem of reiteration and the interpolation
         theorem are formulated and proved under some additional assumptions on Åë.
             In his lecture [8] given at the University of Pavia, Peetre presented a
         brief summary of a generalization of the K-method. The purpose of the present
         paper is to give some supplemental details to this Peetre's lecture and at the
         same time to make an attempt to generalize the 1-method as well under the
         same circumstances. Let us call the methods so obtained N and M-method in
         accordance with the K and 1-method respectively. The theorem on the equiva-
         lence of two methods and the theorem of reiteration will be obtained also in
         this case. As for the interpolation theorem, we will not deal with it here,



because it will now become rather simple in substance in spite of its elueida-
tive complexity.
     Section 1 is concerned with preliminary remarks. A pseudonorm is a
function satsfying all axioms of the ordinary norm and admitting the value
oo likewise. By giving two families of pseudonorms Po(t, x), Pi(t, x), xE E,
OÅqtÅqoo, we define N(t, x) =inf (Po (t, xo)+Pi (t, xi)), M(t, .x)=max(Po(t, x),
                         X==XO+X1
Pi (t, x)) and preparatory examinations will be given about Po, Pi, N and M.
In Section2the function norm is introduced and intermediate spaces are de- "
fined by means of N(t, x•) (N-method) and M(t, x) (M-method). The emphasis
is upon the theorem on the equivalence of these methods [Theorem 1]. Section
3 is devoted to the theorem of reiteration. To begin with, the notion of the
class concerning a normed linear space is defined [Definition 6]. Considerations
requisite to formulate the theorem is given and Proposition 9 and 10 are prov-
ed, from which the theorem of reiteration [Theorem 2] will now become almost
evident.

g1. PreliminariesandPseudonorms.

    Let E and F be linear topological Hausdorff spaces. We write F(E to
mean that F is continuously contained in E, that is, F is a linear subspace of
E and the injection of F into E is continuous.

    DEFiNmoN 1. A real valued function P: E)x-ÅrP(x) is a pseuaonorm on
E if it satisfies

    10 OpsÅqP(x)-Åqoo forallxcE,
    20 P(Zx) == lZiP(x) for all complex number Z and xc E,
    30 P(x+ pt) -Åq P(x) +P( pt) for all x•, yE E,
    40 for any sequence {x.} in E, P(x.)--ÅrO (n--Åroo) implies :vn---ÅrO (n-Åroo) in

E.

    REMARK 1. Adopting the convention O•oo == oo•O==O we may find from 20
and 40 that P(x) ==O if and only if x==O. Thus the set F== {x;xEE, P(x)Åq oo}
is a normed linear space equipped with the norm P(x) and eontinuously con-
tained in E.
    Let Po (t, x) and Pi (t, x) be functions defined for (t, u), OÅqtÅq cÅro, x EE and

assume that for any fixed t, Pi (t, x) (i=O, 1) is a pseudonorm on E and for any
fixed x, Pi (t, x) is a locally integrable function of t with respect to the measure

    dt .
nz= ,1. e.    t

S:Pi (t, x)-l-`-- Åq oo



                   OnaGeneralization of the lnterpolation Method 3

for any Z, ", OÅqZÅqptÅqoo. Let further po(t) and pi(t) be non-negative finite
valued functions defined for OÅqtÅqoo, and locally integrable with respect to
m (m-integrable).

We suppose

(1.1) po(t) i}}i.rpi (t) for all t, OÅqtÅq1,

(1.2) po(t) -Åqpi (t) for all t, 1ÅqtÅq oo,

and there exist rÅr1, CoÅrO such that

(1.3) pi(t)-Åqco forallt, 1--Åqt-Åqr,i=o,1.
                                    r

Between Pi and pi, i=O, 1, we now assume

(1.4) Pi (t, x) -Åqpi(-f--) Pi (s, x) for all OÅqs, tÅq oo,xcE.

Let us write

             a (t) =max (po (t), pi (t)), B (t) = min (po (t), pi (t))

and define for OÅqtÅq oo, x c E,

                   N(t, x) =inf (Po (t, xo)+Pi (t, xi)),

where the inf is taken for all xo, xi(E, x=.xe+xi, and

                    M(t, x)=:max (Po (t, x), Pi (t, x)).

It is noted that M(t, x) is strongly nL-measurable and locally m-integrable for
any .x EE fixed.

    We here cite the following example which plays a fundamental r61e in the
interpolation theory of Lions and Peetre [4], [7], [9].

    ExAMpLE 1. Let Xo, Xi be normed spaces continuously contained in E and
define

                    p,(,,.)-Ii,li,gx"xo l.i}X[i'i;

                    pi(t,pc)-I`.l.IXHXi llii.li[X.li

Then we may take po(t)==1 and pi(t)==t and so that cr(t)==max(1, t), B(t)=



min(1, t). In the present case we write K(t, N•) and J(t, x) instead of Ai(t, x)
and M(t, u) respectively:

            K(t, .) .. i.=i.n,i.SilXollxo+tilxilix,) if x E xo+x,

                    tco ifxff Xo+Xi,
where the inf is taken for all xoc 2Yo, xi c Ni, x=:xo+xi,

            J(t, .) ,., iMaX (lixllxo, tll-xHx,) if x E -,\,Ax,

                    (.. if xC X,AX,.
    In the sequel we need the following inequalities which we now write down
for references:

(1,5) N(t, x) S: Pi (t, x) -ÅqM(t, x) i= O, 1,

(1.6) N(s, x) -Åq. ev (-2-) N(t, x),

(1.7) M(s, x) m/--.. cr (--;-) M(t, .x),

(1.8) N. (s, x)L/•s-.B(---2-)ll(t, x).

Except (1.8) these inequalities are almost evident and (1.8) is seen as follows, If
sÅrL then B(-i-) =po (-l;' ) and Ai(s, x) .Åq.- Po (s, x) -Åqpo(-Si) Po (t, x) -Åq B(-i-) A/I(t, x).

The case sÅqt may similarly be done. When s=t it is enough to note that
-ZV (s, x) .l. Pi (s, x) -Åq.('..pi (1) Pi (t, x) imÅq pi (1) 1;4(t, x) for i=O, 1.

    PRoposiTioN 1. N(t, x), M(t, x) aTe puse2taonorms on Efor eaeh tÅrO,

    PRooF. We only prove the condition 40 for Ai(t, x), because the rest is
nearly plain. Letting N(t, x.)-ÅrO (n-Åroo), one may write xn==xno+xni so that
1'o(t, .xno)+Pi (t, xni)Åq--1-. Then it holds that x.o--ÅrO, x.i--ÅrO (n-Åroo) in E and

                    n
consequently .x.=.x'no+x.i--ÅrO (n--Åroo) in E. This completes the proof,

    Let us now write

            E,.={xJ x E E, -ZV(1, x)Åq oo}, [lxliE,.=.7V(1, x),

            thf = {x ; x E E, M(1, x) Åq oo}, ilxllE,,, =M(1, x),

            Ao:= {x; xc E, Po (1, x)Åqoo}, llxi1A,==Po (1, x),
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            Ai={cu; pc EE, Pi (1, :u)Åqoo}, l[xilA,=Pi (1, `x'))•

These are all normed linear spaces equipped with their respective norms and
furthermore in the sense of isometric isomorphism it holds that

                      EN=Ao+Ai, E.Tvf=AoAAi•

In order to exclude the trivial cases we shall assume henceforth that Ae ÅrF (O),

Ai \(O). It then follows that there exist xo, xi EE with OÅqPo (1, xo)Åqoo and
OÅqPi(1, xi)Åq oo. Thus by virtue of OÅqPi (1, xi) -Åq pi (t) P, (--l- , xi), it now holds

that 0Åq pi (t) Åq co and consequently OÅqa(t) Åq oo, 0ÅqB(t) Åq oo for 0ÅqtÅq oo. As

the result, owing to the inequalities

              1            imp,(-}rm) Pi (1, x) inÅq Pi (t, x) -Åq pi (t) Pi (1, x) i=o, 1,

              1            "crM(tlt )- N(1, x) s: N(t, x) rmÅq cr (t) N(1, x),

              1            rb-('ti,--'År' M(i, x) -Åq M(t) x) -Åq-- cr (t) M(i, .),

one may conclude that Pi(t, -x), N(t, .x) and M(t, x) are norms equivalent to
l1 vllA,, IixII,E,. and l1pc[lE. respectively.

    PRoposmoN 2. EN ana EM aTe Banach spaces if ana only if Ao ana Ai aTe
Banach spaees.

    PRooF. The part "if" is wellknown. The "only if" part is shown as fol-
lows. Let EN and EM be Banach spaces. Letting {x.} be a Cauchy sequence
in Ao, vv'e see x•n-x E EAi(n.oo), because {x.} is a fortiori a Cauchy sequence
in EN. Thus we may write xn-x=yno+yni with yno(Ao, jÅrcniEAi and llptnoliA,
+llpt.ilk-Åq.-Ilx.-.xllE,,+ 1 . By means of a decomposition x=xo+xi with .xoE

                     n
Ao and xi EAi we now set xno =xo+:Årcno, xn!==xi+ptni. Then owing to

              llpcno'xol[A,+IIuninexiI1AipmÅqI1xn-XllEiv+rri-Ii ,

it results that x.o--Årxo (n--Åroo) in Ao and xni.xi(n.oo) in Ai. Since x'ni== xn
-x.o and since {x.}, {x.o} are both Cauchy sequences in Ao, it follows that
{.y.i} is also a Cauchy sequence in Ao and consequently in EM. By assumption
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that EM is a Banach space we may infer x.i.xi(n-År oo) in EM and a fortiori in
Ao. Therefore xn = xno + xni -År xo + xi = x (n ---) cx)) in Ao. Thus Ao and similarly

Ai are Banach spaces. This completes the proof.

              g 2. Function norms and intermediate spacese

    In this and subsequent sections Ao and Ai are assumed to be nontrivial
Banaeh spaces (Proposition 2). Let S. be the set of all m-measurable functions
q (t), O-Åq q (t) rvÅq oo, defined for OÅqtÅq oo.

     DEFiNmoN 2. A real valued function Åë: S. ) q--ÅrÅë[if] =Åë[q(t)] is called
a f2enction noTm if it satisfies

    10 O-Åq.Åë[if]-Åqoo,

    20 Åë[op]=0 impliesq(t)==O a.e.tÅrO,
    30 O[q]Åqoo impliesq(t)Åqcx) a.e.tÅrO,
    40 Åë[Zq]=ZO [q] for all Z 2}}l: O,

    50 Riesz-FischeT pTopeTty [10, p. 444, Theorem 1]:

                    oo oe              q (t)"K/. Z q.(t) a.e. tÅrO implies di [q] -Åq Åí di [q.].

                   2Z ==1 n==1
A function norm Åë satisfying the following condition 5* is called a fzenetion
noTm in the stTong sense.
    5*• StTong Riesz-I7iseheT PropeTty: for any q c S. andfor any real valued
mXm-measurable function q (t, Z), O -Åqq (t, Z) "Åq oo defined for O Åq t Åq oo , 0 Åq Z Åq

oe, it holds that

                                              \,        op (t) "Åq-.'-j:q(t, z) -az& a.e. tÅro implies Åë[q] -ÅqS:Åë [q(t, z)] -azZ- ,

whereS"' denotes the upper integral.

    It is noted that the condition 5Å~i is stronger than the condition 50 because
if q(t, Z) is defined by

             q(t, 7,) ., IO fOr OÅqlÅq1,

                     lqn (t) for e7i-i-ÅqZÅqe", n=:1, 2, ...,

it follows that

                        S:q (t, z) azi =- .Sq. (t).

    In order to state the following definition it will be convenient to prove the
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next

    LEMMA 1. Jf t.u(t) is an EM-val2eed stTongly m-measzeTable fienction elejZnea
for OÅqtÅq cx), then t-ÅrM(t, u(t)) is m-mea$zeTable.

    PRooF. When u(t) is a eonstant function, M(t,u(t)) is already known
to be m-measurable. Therefore the same is true in case that u(t) is an m-
measurable step function. Any EM-valued strongly m-measurable function u(t)
is the limit a.e. in EM of a sequence {u.(t)} of EM-valued strongly m-measurable
step functions. In consequence M(t,u(t)), as the limit a.e. of the sequence
{M(t, u.(t))} of m-measurable functions, is itself m-measurable. This completes
the proof.

    DEFiNmoN 3. Let O be a function norm. We denote by AÅë,N the set of
elements x E E such that di [Ar(t, x)]Åq oo.

    It is clear that Ae,N is a normed linear space provided with the norm
IixllÅë,N=di[IV(t, x)]. Let us now consider an EM-valued locally m-integrable
function t--•u(t) defined for OÅqtÅqoo, i.e. for any Z, ", OÅqZÅqptÅqoo, u(t) is
m-integrable (Bochner) on [z, pt] in EM[lo, p. 217]. We writej:u(t) -!ILt =x to

mean that there exists x c EN such thatj(u(t) att --Årx(Z--ÅrO, pt-oo) in EN. It is

to be noted that the integral of this type is not the ordinary one (Bochner,
Bourbaki etc.). Nevertheless, until otherwise stated, we shall make use of the
usual notation, because things will not be eonfused.

     DEFiNmoN 4. Let Åë be a function norm. We denote by AÅë,M the set of
elements xEE such that x=:S:u(t)--!ILt , Åë[M(t, u(t))]Åqoo where t-Åru(t) is an

EM-valued strongly m-measurable, locally m-integrable function just mentioned.
    It is clear that Ae,M is a seminormed linear space provided with the
seminorm llxllÅë,tM=inf O[M(t, u(t))], where inf is taken over all u(t) such that
                 u
x =j:u(t) -EIL'.

   ExAMpLE 2. In case that Ai==K and M==Jdefined in Example 1, we write
Ao,N and AÅë,M as (Xo, Xi)Åë,A- and (Xo, Xi)di,i respectively.

   PRoposmoN 3. Åë[B]Åqoo impties EM(AÅë,Nfor anyfzenction noTm Åë.

   PRooF. Since Ar(t, x)-ÅqB(t)M(1, x) by (1.8), it follows that

                  1 I x l i ,,N == o [-zv' (t, x)] -Åq o [B] M(1, x).

This completes the proof.



   PRoposiTioN 4. If gp ES. is given szech that q7(t)ÅrO on a set of positive
                         ]in-measze7'e contained in[-li-, r , then O[q]Åqoo impties EM(Ae,Mfor any f2tne-

tion noTm Åë. Jn puaTticzeear O[B]Åqoo implies EM(AÅë,M.

    PRooF. Letting T==[-IIi-,r A{t;q(t)År6}, one obtains m(T)Årofor some                           ]

                                    16ÅrO. Given xEEM let us write u(t)=-}.(T) xT(t)x, where xT(t) it thecharac-

teristic function of such T. Then it holds thatS:u(t)-att-=x and therefore by

(1.7)

                                    1             Hxl1Åë,M.ff.l:-Åë[M(t, u(t))] = .(T) Åë[zT(t)M(t, x)]

                   pmÅq . (1"T-) Åë[xT (t) cr (t)]M(1, x).

Consequently, since a(t) Ls{ Co on[ lr-, r] by (1.3) and since q(t)År6xT(t) a.e., it

follovsTs that

                             Co                    li xi1Åë,M -E{I -nt-( Ts- O [xT (t)]M(1, x)

                          Åq. --..Co                         M" m(-i'F5'o" Åë[q']i}4(1, u).

This completes the proof.
    Let f(Z), O -Åqf(Z) mÅq oo , O Åq 7, Åq oo , be a loeally rn -integrable function.

    DEFiNmoN 5. We say that a function norm Åë is of type f if the following
inequality holds

                       Åë [q (Z t)] .f.f(Z) Åë [q(t)]

for all 0ÅqZÅq oo and for all qc S.• .

    According to Peetre [8] we now state the following proposition.

    PRoposmoN 5. Let di be a function noTm of type f. Then it lzolds that

                    N(s, x) di [a ('rmll )] uaÅqf(s)11xlIo,N

ana
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                     llxI1Åë,Npm`./f(-l-) Åë [B] M(s, x)

for all x EEand s, OÅqsÅq oo.

    PRooF. Owing to (1.6): N(s, x)thÅqa( ; )N(t, x), it holds that

                   N(s, x) Åë [cr-( l,il)] -Åq Åë [..N(t, x)].

On the other hand, since Åë is of type f, we may infer that

                    Åë [. (l;, )] -Åqf(s) Åë [. (l;)]

   Thus the first part of the statement is true. To prove the second, let us
take (1.8): N(t, x)nÅq3(-i-)M(s, x). It then follows that

                   Åë [.zv (t, x)] -Åq Åë [B (-i3--)] M(s, x)

                            -Åqf(-l-) Åë [B] M(s, x)

as desired. This completes the proof.
   For the sake of completeness we also prove the next corollary after Peetre
[8].

   CoRoLLARy. If di is a fzenetion noTm of type f, then Am,N is a Banach
spuace.

                                         oo   PRooF. It is enough to show that a series Z xk in AÅë,N is convergent in
                                        k=1              eo QoAdi,N, whenever ZHxkIie,NÅqoo. Let us suppose ÅílIxklie,NÅqoo. Since f(s)Åqoo

             k=1 k=:1
ae and Åë

[a(ltT)]ÅrO, it follows from Proposition 5 that k#,N(s, xk)Åqoo a.e.

sÅrO and hence everywhere sÅrO by (1.6). By the assumption that EN is a
                                       oo nBanach space, there exists xcE such that x= Åíxk in EN. Setting y. = Zxle it

                                      k=1 k=liholds that

                     AT(t, x- :Åren) .Sk. tbu..-Z,V'(t, `Vk),
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  and therefore

L Hx- cy7nll di,AT=O[-ZV (t, x- cyrn)]

                             eo oe                          hÅq ZÅë[.ZV(t, xk)]= Z] l1xkllÅë,N.O (n-År oo).
                           k= 12 +1 le =n+1
  This completes the proof.
      We intend to examine the relationship between Ae,N and Ae,pm To begin
  with let us prove the following

      PRoposiTioN 6. Let Åë be afzLnction norm in the strong sense ana of type f.
  P2Lt cf = j:B (l-)f (t) - 9t . Then it holds that

                           I1xl1Åë,N-Åq CA1xiIÅë,M

  for ale xEAe,M. Jf in particzelaT CfÅqoo, it follows that AÅë,M(AÅë,N anel eon-
  sequently AÅë,M becomes a noTmea Zinear space.

       PRooF. Let xEAÅë,M and let us write x==S:u(s)-{fL'- where s--Åru(s) is an

  EM-valued strongly m-measurable function and for each Z, pt, OÅqZÅqptÅqoo, it
  holds that

               XxA = Slu (s) @-sS E EM, xN,, -År x (Z -År O, ,a --År oo) in E,v.

   Since IV(t, :y) is a norm on EN equivalent to llcrllE., it follows that

               -IV(t, .) ==IV"(t, lim xop) =Iim -IV-(t, x,.)
                           x-o x-o                           I"-r eo p-- oo
                     -Åq. Ii-m, j:N(t, u (s))-!fL' -j:-zv-(t, u (s)) --{ll:'L .

                       p-, oe
   On account of (1.8) and of Lemma 1, we now obtain

                      .ZV(t, x) is{:j:B(f-) M(s, .(,))vfi

                            =-S:B(-ili-)M(tz, .(,z)) d,Zrm.

   The strong Riesz-Fischer property of O tells us

                            *                  Åë [.zv(t, x)] .:f{:S:B(- -iz--) Åë[M(tz, u (tz))] d-zZ-
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which turns out to

              Åë [Ai (t, .)] -Åqj:B GI- )f(z) dzZ .Åë [M (,, . (,))],

because Åë is of type f. Making u vary it now follows that

                          Ilx[1Åë,iv fi{ll Cf" -rv' i[ di,M•

The rest of the statement is obvious. This completes the proof.
    In order to study further relations it is convenient to provide the next
lemma due to [7].

    LEMMA 2. Let x EEbe given anel szeppose B(-l-) Ai(t, x)-ÅrO (t-ÅrO or t-Åroo).

Then zve may wTite x= j:u(t) lt , that is:

    (i) t-Åru(t) is an EM-val2Lecl stTongly m-measuTable fzenction aeLfinea foT OÅq
tÅq cÅro,

    (ii) fo7A eaeh 7L, lt, OÅqZÅq,ctÅqoo, u(t) is m-integrable (BochneT) on [Z, !z] in

EM and

               x,,, == S(u(t) gt -x (z ---Åro anel pt -År oo) in E..

FzLTtheTmoTe u(t) may be taken so that

                       /lf(t,"(`))kÅq-'1-2,'gC'02r'N(t,x)

foT ctle t, OÅqtÅq oo.

    PRooF. We assume N(t, x)ÅrO, because the case IV(t, x) =O, i.e. x==O, is
trivial. For any eÅrO and n==O, Å}1, Å}2, •••, we may write x=xno+xni, xno,
xni EE, in such a way that

                 Po (r", xno) + Pi (r", xni) -Åq (1 + s) N(r", x) .

It now follows first that for n== -1, -2, •••,

              Po (1, x.o) .Åq (1+s) po (r-n)N(r", x)

                      -Åq (1 + s) 3 (r-") N(r", x) -•O (n. - oo),

and then next that for n==1, 2, ••+,

              Pi (1, xni) -Åq (1+s) pi (rH")N(rn, x)
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                     .Åq (1 + e) B ("r-") N(r'Z, x) -ÅrO (n -År oo).

PUtting un==xnao-xno=xni-xn+ii for n==O, Å}1, Å}2, •••, we see un(EM, and
since xno-ÅrO (n--År- oo) in EN, xni--ÅrO (n.oo) in EN, it holds that u.-ÅrO (n-År- oo

or n-Åroo) in EAr. Define

            U(t)== lolgnvr un for r'iinÅqtÅqr'i"i, n=o, Å}1, Å}2, ...,

and note that u(t) is an EM-valued strongly Tn-measurable function for OÅqtÅq oo.
    We now show S:u(t) gt=x. To this end we first observe that for r".Åq.

"Åqr'i+i) n=1) 2, •••,

            S:zL(t) -{llL' =uo+ ••• + u.-i+ !Qlg.' /.'Z`(,-rlll u.

                     =xoi-xnt+ 101ecrolg'(/? Z'-' u.-Årxoi(n.oe) in EN.

Next vv'e see for "r-M-i-Åq1ÅqrLM, m==1, 2, •••, that

            Slu(t) EIIt'== u-i+•••+u-..,+-1'O'-gl,rg-Mr-/Zrm zLH.-i

                    == x;oo- .rL'mnio+-10Eiiilg-Ii'/T'Z7 urm-i-Jx';oo(m--År oo) in E,v.

Thus x == j:u(t) -dt!- is proved. ,
    In order to estimate M(t, u(t)), let ?"i hÅq t Åq r'Z 'i, n == O, Å} 1, Å} 2, • • •, and write

      M(t, u(t)) =max(Po (t, u(t)), Pi(t, u(t)))

                  1               = logr MaX(Po(t, Un), Pi(t, un))

                  1              -Åq log r MaX (Po (t, Xn- lo) + Po (t, Xne), Pl (t, X' nl) + Pl (t, Xn .: ii))•

By means of (1.4) this becomes

    M(t) U(t))-Åq lo}r MaX(Po(r7f+Ia)Po("r't'i, xn+io)+po(l. Po(r't, .x.o),                                                  )

                        Pi( rt.)Pi(r'Z, -rni)+Pi ('yS' ;iu)Pi(r"+i, xn.{ n))
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            -Åq-ll-ogthrS-max(po(r.t-i)IV'(r"ri,x)+po(-tt)A[(r",x),

                       Pi (-;,r, )N(r", x)+pi(r.t.i)-ZV(rM i, x))

            -Åq 1ioi; max (po ( rS-i ) cr ( r'? i )+ po (lrrmtfi ) cr (x-t'i ) ,

                       pi (f. ) cr (-?I"L) + p, (-r,t,rr) cr ( r"," ' )) N(t, .).

By assumption that r"hÅqtÅqr"+i and hence-!Åq!" -Åq1Åq r"'i iE{ r, it follows

                                    rtt
from (i•3) that p,(ri, ,)-Åq co, pi(-rt-DthÅq co, a(r"t-i i)-Åq co, ev (2I"I-) -Åq co, and thus

                   M(t) u(t)) .Åq rll.i; 2Co2 `N(t, x)

for each e"ÅrO. Therefore

                     M(',"(`))-Åq+12,gC/"'rri`'V(',x)

as desired. This completes the proof.

   PRoposmoN 7. Let O be afzLnction nor7rz of type f ana ass2Lme B(Jl-)f(t)

-- rO (t--ÅrO or t--Åroe). Then it hol(ls thctt

                               2Co2                       ilxilÅë,M-Åq                                   Ii-vllÅë,N                              -log r

for all x c AÅë,N and hence AÅë,N(Ae,M•

   PRooF. Proposition 5 tells us

                 B(l-)N(t, x) -Åq -ci- i3 (-l-)f(t)HxllÅë,N

lour,il2f,fÅq.,Åé',:h,srgC.J',k'2,hO,i..i.y,a%':m,ktgoili,::,.foi,'iw.z`)a:

 :u(t) -a-tt-, M(t, u(t))-Åq -12ogCo2r N(t, x), oÅqtÅq oo, and sos
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                                        2Cg                  lIxlI di,M -Åq di [M(t, u(t))] -Åq                                            llxllÅë,N
                                        log r

as desired. This completes the proof.

    THEoREM 1. Let Åë be afunction norm in the stTong sense ana of type f. If

                    B (+)f(t) -.O (t --ÅrO oT t--År oo ),

                    cf-S:B(-l-)f(,) gt ...,

then Am,N=:AÅë,M and fzertheTmoTe it holels that

                    log r                         llxH Åë,M .Åq..1lxll Åë,N maÅq Cfl1x1l Åë,M
                    2Cg

for ale xEE

    PRooF. Clear from Proposition 6 and Proposition 7.

    CoRoLLARy. Let Åë be af2Lnction noTm in the strong sense anel of tzJpe f. If

                                 f(")                   f(t)-Åro (t--Åro),                                     --)FO (t--ÅrOO)
                                  t

and if

                    c, == j: flt2 d, + s:=z[ii(;.2. d, . ,,.,

Then (Xo, Xi)Åë,7=(Xo, Xi)Åë,K and fuTtheTmoTe it holds that

                      1                        Il `v Ilm,i-Åq Il `M l1o,K -Åq CfH ul1Åë,f
                     4e

foT all xEE

                                                       i    PRooF. To get the last inequality it is enough to take r==eE and hence Co
   i = e5. The rest is obvious from Theorem 1. This completes the proof.

    REMARK 2. In the particular case in question, a closer inspection of the
proof of Lemma 2 shows us that the constant 12 ogCg there may be replaced by

1+r     and consequently it follows that
log r
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                          1                            llxllÅë,i -Åq Il sc ll di,K
                         ro

for all x E E, where ro is the minimum of -11 oE rr-, 3•5ÅqroÅq3•6•

   ExAMpLE 3. We here give some examples of function norms usually em-
ployed. Let g(t) be an m-measurable function such that O-Åq g(t)-Åq oo, and put
for gp E S.

                       ((j:( q.((li )P l` l} if i-ÅqpÅq oo,

               dig,p [q] = t
                       Åqeu.g q.(,li if..- .., -

where sup is the essential supremum and the convention-g-.. [ig == oo•o=o•oo

==O is used. By means of the integral form of Minkowski's inequality:

              (S(Sf(x, y) ax)"aorl-pi thÅqS(S(f(x, or))paorl}d.,

[2, p. 148], it is not difficult to see that Åë.,p is afunction norm in the strong
sense. If g(t) satisfies

                  g(st)-Åq.-..L.f(s) g(t) for all OÅqs, tÅqoo,

where f(s), 0pmÅqf(s)Åqoo a.e., is a measurable function, then Åë.,p is of type f.
By specialization of g(t), the following function norms are offered.
    1) Åë.,p with g(t)=te, OÅqeÅq1. The wellknown interpolation theory of
Lions and Peetre is based on this function norm [4], [6], [7), [8].
    2) Åë.,.. with g(t) =max(1, -g-), cÅrO. This is of type max (1, Z) and gives

(Xo, Xi)Åë,,..,K == Xo+Xi, where XS is the Banach space Xi renormed as llx•llx:==
cllxllx. To prove this it is enough to see by (1.6)

                                K(t, x)                 llXllÅëg,ee•" = 9".9 ...(1, -{}-.)- "S{[K(C' X)'

and the sup is attained by t== c.
    3) Åë.,i with g(t)==min(1, -2-), cÅrO. This is of type max (1, Z) and gives

(Xo, Xi)Åë,,,,i=XoAX{', the latter half of which is seen as follows. Letting x E
(Xo, Xi)Åë,,,,f and writing x=S:u(t)-Cfe- where t-Åru(t) is an XoAXi-valued func-
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tion locally rn-integrable in XoA.Xi, we get

               S:J(c, u(t)) l` -ÅqS:max(1, -7b)J(t, u(t)) t`

                            =Åëg,i [J(t, u(t))] Åq oo.

Hence it follows that j(,xtlIu(t)iIx,-Vt-Åqoo and j:llu(t)llx,-!ILt Åqoo. Consequently

we may infer that u(t) is in-integrable both in Xo, Xi and so x= S:u(t) lt E

-\oAXi. Since

              1lpclIx,L--/-.j:Hu(t)IIx, `lli-e-, l1cu1lx,-Åqj:1lu(t)Ux, -tt' ,

it holds that

                1(c, x)==max(lIxllx,, cl1xilx,)

                     .E{g.j:J(c, u(t)) t! -`./ di.,i [J(t, u(t))].

This proves J(c, sc)-f-{ts.Å}HxllÅë,,,,J and NoAX{')(Xo, Xi)e,,,,i. Conversely now let

.x cXoAXiC and take for any sÅrO

                      q(t)=,i-l' fOrC-ÅqtL/År...ceE

                           {O otherwise.

Then u(t)=q(t)x satisfiesS:u(t)-g/!- ==x. Thus it follows that

            l1x1Idi,,,J-r{{:S:max(1, !i--)J(t, u(t)) t!-

                   = l-j:e7(t, .) ..tttrm -Åq. rml;-.Sgee...(1, .ug )J(., ,,-)-l!

                   = -ule-Sleeat•J(c, x)= e8emi J(c, x).

Therefore llx[ldi,,,,invÅq.J(c, x) and XoAXS((Xo, Xi)Åë,,,,i is obtained. We have
thuS Proved XoAXf=(Xo, Xi)e,,,,J with llxllÅë,,,,J==J(c, x). This completes the
proof.
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3. Reiteration

   Let g(t), OpmÅqg(t)pmÅqoo, OÅqtÅqoo be an m-measurable function and assume
that it is finite valued on a set of positive measure, i.e. the trivial case g(t) == oo

a.e. is excluded.

   DEFiNmoN 6. A normed linear space X(Eis said to be of
    10 class `{g'.,.N(i.e. X(`if.,N) if xEX implies -ZV(t, x)-Åq.Cg(t)llxllx a.e. tÅrO,

where C is a constant independent of x;
   20 class {9.M(i.e. .2YE`i4.,M) if xEEM implies Ilxllx-ÅqDg(-l-)M(t, x) a.e.

tÅrO, where D is a constant independent of x;
   30 cla$s {9.(i.e. XC %'g) if XE `X'g,NA`8g,M•

   REMARK 3. It follows from the definition that X(EN if XE {9.,N and that
EM(Xif XE(if.,rvi. It is also noted that EN and EM are of class 9., ENc%'B,N,
E"f E %'s,M, Ao E (8p, and Ai ( %'p,•

   PRoposmoN 8. Let X, X(E, be a Banaeh spaee and let g(t), OrÅq. g(t)-Åq- oo,
be a loeally m-integrable fttnetion on OÅqtÅqoo. Then it holcls that

    (i) XE`if.,.N' ifa7Zcl onZY ifX(AÅë,,..,N,

    (ii) if g(t) scttisjZes g(st)-Åqf(s)g(t) fo7' ctll OÅqs, tÅqoo cvncl foT a given
locally rn-integTable f2Lnetion f(s) on OÅqsÅq cx), then X E %'.,M if and only if AÅëij,,,M

                 i( x, where g"'(t) == Igt/1/-t)" ,

    (iii) 2Lnder the same condition on g(t) in (ii), XE {5'. if ana only if AÅëa,,,M

(X(AÅëg,ee•N'

    PRooF. (i) Suppose X( {e.,N and take any x E X, then

ilxl1 dig,..,Ar == EiU.R im-ZVm- iim:'('i5X)m th`'-' Cllxllx,

and X(AÅë,,.,N is obtained. Conversely, since clearly AÅë,,..,NE 27.,N, it follows
that Xc 9.,N if 2Xi(AÅë,,oo,N. This proves (i).

    (ii) Let XE{e.,M and let xEAÅëg,,,M. By means of aIocally m-integrable
EM-valued function u(t), Og.,i[M(t, u(t))]Åqoo, we write x==S:u(t) lt . Take a

continuous function q(t) with the support in I-IIi- , r[ such that q(t) :}i o,j:q(t) lt

=1, and put

v(t) =S:a(t-)q(s) -1'! •
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Then clearly v(t) is a continuous EM-valued and hence, owing to Remark 3, a
continuous X-valued function. It also holds that x==S:v(t) lt and for each sÅrO

one obtains

                lIv(s) Ilx thÅq Dg( -l-) M(t, v(s)) a.e. tÅr o.

Therefore letting {r.} be an arrangement of all positive rational numbers, one
finds, for each n, a set T.(]O, cÅro[, rn(T.)= O, such that

(3.1) llv(r.)ilx-ÅqDg(-li)21ÅqI(t, v(r.)) for all t,OÅqtc T..

Setting T=lim T. ==AXIII T., we see rn(T) =O and for every t, OÅqt ff T, it holds

          n- oe k=;'17Z=fe
thattff T. except for finite numbers of n. Hence, for this t, we may select a
subsequence {ni} in such a way that t c T., and r.,---Årt(i-Åroo). Putting, as we
may, n== ni in (3.1) and letting i--År oo, we may find

                     llv (t)Hx -Åq- Dg(+) M(t, v(t))

for all t, OÅqtq T, In consequence it results that

         S:liv(t)1Ix-d,L-ÅqDj:g(-'i)M(t,v(t)) g`

                     =- Dj:g(ÅÄ)M(t,j:a(-g--)q(s) rmgS År"d,L

                    -ÅqDS:g( l )-!lg-j:M(t, u({l--))q(s)--fiL'

                    :f{DS:op(s)--ggS:fO.(wu;).(,)M(.+il-, .(thg-)) tt

                     ==Djl,iq(s)f(--i,-)cr(s) 2S j:g( l )M(t, u(t))-fllL'

                    -ÅqDCoC/ dig,i[M(t, u(t))]Åq oo,

where we put C/=Hqll..SI,f(s) -EgSÅq oo. Thus v(t) is m-integrable in X and there-

fore yN,,=:j:v(t) gt.or (Z-ÅrO and ".cÅro) in X and hence in E. It follows that

x== yEXtogether with ilxllxmaÅqDCoC/lIxllefi,,,y. ']1'his proves X)AÅëi,,,M• Con-
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versely now we must show that any X)AÅëa,,,M is of class 29.,M. To do this it
is enough to prove AÅëij,,,M c {lf.,M. Let x E EM and take any nz-measurable func-
tion Åë(t)2o withS:ip(t)-at-t-=i. setting u(t) =Åë(t)x, it holds that x=S:u(t)-flLt

and further that

                  liXl[Åëa,i,MIEI{:ÅëgAr',i [01(t, u(t))]

                         == S:g(l-)Åë(t)vat, .) gt.

Since this is true for any Åë(t) described above, it follows that

                  IIx[1dia,i,M-Åq g( l )M(t, x) a,e. tÅro.

This proves AÅëa,,,M E 9.,M as desired.
    (iii) is clear from (i) and (ii).

This completes the proof.
   In order to formulate the reiteration theorem, Iet us suppose first that we
are given an in-measurable function h(t), OthÅqh(t)-ÅqÅq/oe, h(t) ;.i4"i- O, h(t)f cÅro, and

next that there exist numbers to, toXÅrO such that

                  h (st) tsÅq o)h (s) h (t), h (s) h (t) lhÅq tu'h (st)

for all OÅqs, tÅqoo. From these conditions it follows that OÅqh(t)Åqoo for all
OÅqtÅq oo.

    ExAMpLE 4. The following are examples of such functions.
    1) h(t) ==te, OÅqeÅq1 with to =of ==1, is the most important in practice [4],
[7].

    2) Any measurable function h (t), - :E{:l h (t) -Åq c, oÅq tÅq oo with to : tu' == c3.

                                  c
    3) The product of any two such functions.
    By means of this h, a given function norm O and a given real number c \
O, let us define

                     2[q] == di [h (t) q(ta)], q c S.,

and therefore

                      Åë[g)] :s2[ gb (tl) ], gb E s..

                              L h(tU) J

Then, since Åë is a function norm, 2 is clearly a funetion norm and the converse
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is also true, If Åë is of type f, it follows that

                   9 [q (Zt)] = O [h (t) q (ltff)]

                                     11                          -Åq 17 (l) Åë [h (Z5 t) g7 (Zi t)a)],

where F (Z) == min ((D h (Z-}) , tu 'r) , because h (t) :f{; to h (Z-}) h (l}t) and h (t) h (Z'icrrr)

      1 " h(7,lr-) -'
FÅq.cDih(Zit). [I]hus we get

                              i                  9 [q (Zt)] -Åqf(Zlr')F(Z) di [h (t) q (ta)],

i.e. s2 is of type f(7,l)F(z). On the other hand if S? is of type fi, we may infer

in the same way that Åë is of type F(kff)fi(Za) and therefore in case fi(Z)=:
   if(Za)F(Z), di is of type F(Z-a)F(7Lcr)f(Z)s/..coto'f(Z). We finally note that S2
satisfies the strong Riesz-Fischer property if and only if so does Åë. Letting
ho(t)=h(t) and hi(t) == tah (t), we begin with the following proposition.

    PRoposmoN 9. Let Åë be a junction norm of type f. Let Xo, Xi be Banach
spaces(Eanel asszeme that Xo c (ifh,,,Tv, Xi E9h,,,v. Then it holds that

                         CYo) Xi)g,K(Ae,tw

    PRooF. By the definition of Xi E {g'h,,,v (i ==O, 1) it holds that

                  N(t, xi) -Åq. Ci hi (t) ll .viilx, a.e. tÅrO

for all xi E Xi. Putting x==xo+xi, we may write

               .ZV'(t, x) -Åq A'(t, xo) + Ait(t, xi)

                     rÅq. ., Coh (t) (lixo11x,+ -['il:r" tcrllxil1xi) '

Hence

            2NT(t, x) H(..rm.. Coh(t)K(-Cci- tZ -x)

                  rmÅq Co tuh(( cCi, )-l)h(( Si )1 t)K(((-S-i,-)-ffit)cr, x),

and therefore we get

            llxl1 di,iv rmÅq Co coh((-cC-X-)-I)f((-Sii,--)l) di [h (t) K(tff, x)]
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                  = co cD h((--[iili:)-2J)f((-Sll';-)l) li `u i1 .o.,K•

This eompletes the proof.

   PRoposiTioN 10. Let Åë be a function no7sm in the stTong sense ana of type f
wherefis locally m-integTable. Let Xo, .\i be Banach spaees (Eana assume that
2Y. o E 29h,,M, Xi E {S'h,,M. Then it holas that

                          (X,, !Xl',).,1)A,,M.

   PRooF. Take any xcAe,M and by means of a locally nz-integrable Eiu-
valued function u(t), Åë[M(t, u(t))]Åqoe, let us write L-=j:u(t)-dtg. As in the

proof (ii) of Proposition 8, we take a continuous function q(t) with the support
in] -l--- , r[such that q (t) ;l2i o, j:q(t) -IL == 1, and put

                       v(t)-=j:.("ugun-")q(,)r.K-s-.

The continuous EM-valued and hence the continuous XJ-valued (i == O, 1) function
v(t) satisfies .x =j:v(t)-t-t-. It is also already known that

            iIv (t) 1l x, f{I D, h, (-li)M(t, v (t)) a.e. tÅr o, i = o, 1.

This proves

           -bl'At( 1,-sMaX(1lv(t)Iix,) Sl taIiv(t)tI.,)-E{.1irt4(t, ,(t))

and therefore, since h(t) h(l) s{: tu/h (1), it follows that

(3.2) h(t) J(-B-Oi ta, v(t)) :s{: to'Doh (1) M(t, v(t)) a.e. tÅr o.

Define w(t)= --i-v((-:Sll;t)}) and let us see x==j:w(t) lt . Then we get

            I1 pc [l rz,i.s',,,- -9 [.J(t, w(t))] == Åë [h (t) .1'(tg, w (ta))]

                 -Åqf(( {ig )})Åë[h (( {l: )it)J(-D.: tcr, w( :]? ta))]
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                 eÅq .f(( Si )k)h ((-Bf?-),) o [h(,) J(-ii}t•- ,cr, -:, .(,))] .

By virtue of (3.2) one obtains

          llxlig,iSll to.tu' Doh(1)f(({ili',-)l)h(( B: )l) di [M(t, v (t))].

By means of the strong Riesz-Fischer property, let us make an estimat.e of
Åë[M(t, v(t))] by Åë[M(t, u(t))] as follows.

                                    , u (g-) q (s) gS )]               O[M(t, . (t))] =,Åë [M(t,SOO t

                          :gÅë[j:M(t, u(k)),(,) gs]

                            *,                          g:S:q(s)o[M(t, .(-,l-))] fs

                            ac                          -ÅqS:q (s) cr (s) Åë [M(.g- , . (-ly))] h!I!s"

                           Ei{ll C'Åë [M(t, u (t))],

where we write c!==jllq(s)a(s)f(-i,-) IS Åqcxo. Thus we get

                       ll.cullg,JthÅq C!'di Pu'(t, u(t))]

and consequently

                          1lx1lg,f.Åq Ciillxli e,M

with c!f=-tu
if!g2L!  Doh(1)fÅq(--DD-t)i)h((-DD--:-)t)C. This completes the proof.

   We now state the theorem of reiteration as follows.

   THEoREM 2. Let Åë be a fztnct'ion noTm in the strong sense and of type f, anel
                                                     1let h(t) be an m-measuTabte fzenetion such that OÅqh(t)Åq oo ana tu h(s)h(t)-Åqh(st)

if: tuh(s)h(t) foT alZ OÅqs, tÅq oo, zvhere tuÅr0 is a given eonstant. Given 6 }fO reaZ,

put ho(t) =h(t), hi(t) =tcrh(t) anel

                      9[q]= O[h(t) q(tff)], q E S..

Suppose that f is locally m-integrable anel $atis;fZes
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                      B(-l!-)f(t) -Åro (t -Åro oT t. oo),

                      S:mina, t-a)h(t-i)f(t) lt Åqoo.

If Xo, Xi are Banaeh spaees contin2a)zesly containecl in E and if Xo E {9h,, Xi E %'h,,

then it holels that

                    AÅë,N =AÅë,M=(Xo, Xi)2,K==(Xo, Xi)g,1`

    PRooF. Proposition 7, 9 and 10 tell us

                    (Xo, Xi)2,K(Ae,N(AÅë,M( (Xo, Xi)g,1,

and Proposition 6 applied to 9, f, Kgives (Xo, Xi)g,i((Xo, Xi)g,K. This com-
pletes the proof.
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