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                        Abstract 

  In parallel computational theory, the class NC and P-completeness are 
known as primary measures of parallel complexity. It is believed that prob-
lems in the class NC admit parallelization readily, and a number of cost op-
timal parallel algorithms have been proposed for the problems. Conversely, 
P-complete problems are known as a problems which are hard to be paral-
lelized from the definition, and a few cost optimal parallel algorithms have 
been proposed for the P-complete problems. In addition, we also focus on 
problems which are not known to be in the class NC or P-complete. These 
problems seem to be inherently sequential, and parallelizability of the prob-
lems have not considered well. In this dissertation, we shall consider paral-
lelizability of the problems and propose cost optimal parallel algorithms for 
the problems. 

  In Chapter 3, we consider parallelizability of a representative P-complete 
problem, which is a stack breadth-first search (stack BFS) problem. We 
first prove that the stack BFS is P-complete even if the maximum degree of 
an input graph is 3. Next, we propose the longest path length (LPL) as a 
measure for P-completeness of the stack BFS. Using the measure, we propose 
an efficient parallel algorithm for the stack BFS. Assuming the size and LPL 
of an input graph is n and  l respectively, the complexity of the algorithm 
shows that the stack BFS is in the class NC if l = O(logk n) where k is a 
positive integer. In addition to this, the algorithm is cost optimal if 1 = O(n€) 
where 0 < c < 1. 

  In Chapter 4, we consider parallelizability of problems which are not 

known to be in the class NC or P-complete. The problems are the patience 

sorting and the longest increasing subsequences. Although these problems 

have no proof of P-completeness, they are inherently sequential and it seem 

to hard to be parallelized. We first propose two algorithms for the patience 

sorting of n distinct integers. The first algorithm runs in O(m(P + log n)) 
time using p processors on the EREW PRAM, where m is the number of 

decreasing subsequences in a solution of the patience sorting. The second 

algorithm runs in O (i ~P n + m2 log 711 + m log p) time using p processors on 
the CREW PRAM. If 1 < p <2 is satisfied, the second algorithm becomes 

cost optimal. Finally, we propose a procedure which computes the longest 

increasing subsequence from a solution of the patience sorting, and obtain 

a parallel algorithm, which runs with the same complexity as the algorithm 

for patience sorting, for the longest increasing subsequence. 
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Chapter 1 

Introduction 

In parallel computation theory, one of primary complexity classes is the class 

NC. Let n be the input size of a problem. A problem is in the class NC if 

there exists a parallel algorithm which solves the problem in T(n) time using 

P(n) processors where  T(n) and P(n) are polylogarithmic and polynomial 

functions for n, respectively. Many problems in the class P, which is the 

class of problems solvable in polynomial time sequentially, are also in the 

class NC. On the other hand, some problems in the class P seem to have 

no parallel algorithm which runs in polylogarithmic time using a polynomial 

number of processors. Such problems are called P-complete. A problem in 

the class P is P-complete if we can reduce any problem in the class P to the 

problem using NC-reduction. It is believed that the P-complete problem is 

inherently sequential and hard to be parallelized. 

  However polylogarithmic time complexity is not so important for real 

parallel computation because the number of processors p is usually small in 

comparison with the size of a problem n, that is, p << n. Thus, cost opti-

mality is the most important measure for parallel algorithms in practice. The 
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cost of parallel algorithm is defined as the product of the running time and 

the number of processors of the algorithm. A parallel algorithm is called cost 

optimal if its cost is equal to the lower bound of sequential time complexity 

for the same problem. In other words, the cost optimal parallel algorithm 

archives optimal speedup, which is equal to the number of processors. 

  Therefore, one way to parallelize P-complete problems is to find cost op-

timal parallel algorithms which runs in polynomial time. Let  S2(nk) be lower 

bound of sequential time complexity for a P-complete problem A. It seems 

that the problem A has no parallel algorithm which runs in polylogarithmic 

time since A is P-complete. However, the problem A may has a parallel 

algorithm witch runs in O(nk-E) time using nE processors, where 0 < E < k. 

Since the parallel algorithm is cost optimal, the algorithm probably archives 

optimal speed up in practice if the number of processors is not so large. Thus, 

in this dissertation, we first aim to propose cost optimal parallel algorithms, 

witch run in polynomial time, for P-complete problems. 

  Recently, it have been shown that some P-complete problems can be 

parallelized using efficient parallel algorithms [5, 10, 20, 25] . For example, 

Uehara[25] considered parallelizability of the lexicographically first maxi-

mal independent set (LFMIS) problem, which is a well-known P-complete 

problem. He proposed a measure, which is called the longest directed path 

length (LDPL), for P-completeness of LFMIS, and proved that LFMIS is 

P-complete if LDPL is O(n€) where 0 < € < 1. He also proposed a cost 

optimal parallel algorithm which runs in 0(l) time using Orin') processors, 

where n, m and Tare the numbers of vertices, edges and LDPL, respectively. 
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The results imply that there are two goals to parallelize P-complete prob-

lems. The first one is to find a measure which characterizes P-completeness 

of the problems. (The measure must be computed in NC.) The second one 

is proposition of cost optimal parallel algorithms, which run in polynomial 

time, for the problems. 

  In Chapter 3, we consider parallelizability for a representative P-complete 

problem, which is a stack breadth-first search (stack BFS) problem[21, 22]. 

The stack BFS is a well-known graph searching technique, and proved to be 

P-complete[13]. We first prove that the stack BFS is P-complete even if the 

maximum degree of an input graph is 3. Next, we propose a measure for 

P-completeness of the stack BFS. We call the measure LPL, which means 

the longest path length of a graph. Finally, we propose an efficient parallel 

algorithm for the stack BFS using the measure. Assuming the size and LPL 

of an input graph is n and  l respectively, the complexity of the algorithm 

shows that the stack BFS is in NC if 1 = O(log' n) where k is a positive 

integer. In addition to this, the algorithm is cost optimal if 1= O(nc) where 

0<e<1. 

  Next, we consider parallelizability of problems which are not known to be 

in the class NC or P-complete. The problems seem to be inherently sequen-

tial from their definitions. The parallelizability of the problems have not been 

considered well, and only a few parallel algorithm have been proposed for the 

problems. However, we can propose cost optimal parallel algorithms for P-

complete problems, then the problems may also have cost optimal parallel 

algorithms which runs in polynomial computation time. In this disserta-
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tion, we consider parallelizability and parallel algorithms for the inherently 

sequential problems. 

  The first inherently sequential problems considered in this dissertation is 

the patience sorting, which was invented as a practical method of sorting a 

real deck of  cards[18]. The second problem is the longest increasing subse-

quence of n distinct integers[16]. Although these two problems are primitive 

combinatorial optimization problems, both of them are not known to be in 

the class NC or P-complete, that is, no NC algorithm have been proposed 

for the problems, and there is no proof which shows the problems are P-

complete. 

  There are a lot of papers which deal with the patience sorting and the 

longest increasing subsequence. Sequential algorithms[2, 4, 16], which have 

been proposed for the two problems, show that we can solve the two prob-

lems in e(n log n) time sequentially in case that its input is a set of distinct 

integers. As for parallel algorithms, two algorithms have been proposed for 

the problems[6, 11]. The former algorithm is for the linear array, which is a 

classical parallel computation model, and the latter is for the CGM model[9], 

which is one of practical parallel computation models. However, the parallel 

algorithms are not cost optimal since costs of both algorithms are 0(n2). 

  In Chapter 4, we propose efficient parallel algorithms for the problems 

and consider its parallelizability[23]. We first propose a simple algorithm 

for the patience sorting. The algorithm consists of repetition of the prefix 

operations, and runs in O(m(p+log n)) time using p processors on the EREW 

PRAM, where m is the number of decreasing subsequences in a solution of the 

                       4



patience sorting. The complexity shows that the algorithm is cost optimal 

in case of m =  O(logn). Next, we propose another parallel algorithm, which 

is more complicated, for the patience sorting. The second algorithm runs in 

O (n l~" + m2 logP+ m log p) time using p processors on the CREW PRAM. 

From the complexity, the algorithm is cost optimal in case of 1 < p <  2. 

Finally, we propose a procedure which computes the the longest increasing 

subsequence from a solution of the patience sorting. Since the procedure 

only needs 0(n) cost on the EREW PRAM, we obtain a parallel algorithm, 

which runs with the same complexity as the patience sorting, for the longest 

increasing subsequence. 

  In Chapter 5, we summarize our result described in this dissertation and 

consider some future researches. 
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Chapter 2 

Preliminaries 

2.1 P-completeness 

In this section, we first define two complexity classes of problems. The first 

class, P, is the class of problems widely used in sequential computations. The 

second class  NC, is also the class of problems used in parallel computations. 

Let n be the input size of a problem. The above two classes are defined as 

follows. 

Definition 1 A problem is in the class P if there is a sequential algorithm 

which solves the problem in O(nk) computational time, where k is a constant 

that does not depend on n.^ 

Definition 2 A problem is in the class NC if there exists a parallel algo-

rithm which solves the problem in O(logk' n) computational time using nk2 

processors, where both of k1 and k2 are constants which do not depend on n. 
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  The class P is a well-known class which denotes sequential efficiency, that 

is a problem in the class P has a feasible solution in sequential computation. 

An analogous class of efficiency for parallel computation is the class NC.A 

problem in the class NC is believed to have an efficient parallel algorithm. 

  Next, we define reducibility of problems. 

Definition 3 Let P1 and P2 be two problems in the class P. The problem 

 P1 is NC-reducible to the problem P2 if there exists an NC-algorithm that 

transforms an arbitrary instance u1 for P1 into an instance u2 for P2 such 

that a solution of P1 with u1 is equal to a solution of P2 with u2. ^ 

  Note that the reducibility is not symmetric. The existence of the NC 

transformation implies an algorithm for solving P1 given any algorithm for 

solving P2. 

  Using the above classes and notation, P-completeness of a problem is 

defined as follows. 

Definition 4 A problem Q is P-complete if the following two conditions are 

satisfied. 

(1) The problem Q is in the class P. 

(2) For every problem S in the class P, S is NC-reducible to Q. ^ 

  (For details of the P-completeness, see [14].) 

  From the definition, we can prove P-completeness of a problem in the 

class P if we can reduce a known P-complete problem to the problem using 

NC-reduction. 
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2.2 PRAM 

PRAM (Parallel Random Access Machine) [15] is a theoretical parallel com-

putational model used in this dissertation. 

  The PRAM employs an arbitrary number of processors that can access a 

shared memory. Each processor has its own local memory and can execute 

its own local program. The processor also knows its processor number and 

can use the number in algorithms. All processors operate synchronously and 

execute the same algorithm. The PRAM is illustrated in Figure2.1. 

  Several models of the PRAM have been proposed with regard to simul-

taneous reading and writing to single memory cell. The EREW (exclusive 

read exclusive write) PRAM dose not allow any concurrent access to a single 

memory cell. The CREW (concurrent read exclusive write) PRAM allows 

concurrent read access only. Concurrent accesses to the same memory cell 

for read or write instructions are allowed on the CRCW (concurrent read 

concurrent write) PRAM. 

  In the case of the CRCW PRAM, different assumptions are made to 

resolve the concurrent write conflicts. For each set of concurrent writings 

into the same memory cell, the common CRCW PRAM assumes that all 

writings of the set involve the same value, the arbitrary CRCW PRAM allows 

an arbitrary write succeed, and the priority CRCW PRAM assumes that a 

writing with the minimum index succeeds. Although other variations of 

the CRCW PRAM also exist, they do not differ from the above models 

substantially in their computational powers. 

  Note that the CRCW PRAM is strictly more powerful than the CREW 
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                  Figure 2.1: The PRAM 

PRAM, and the CREW PRAM is strictly more powerful than the EREW 

PRAM. The reason is as follows. From the above definitions, all EREW 

PRAM (resp. CREW) algorithms run on the CREW (resp.CRCW) PRAM 

with the same complexities. In addition, there exist some n input problems 

which can be solved in 0(1) time on the CREW (resp. CRCW) PRAM, and 

needs Q(log n) time on the EREW (resp. CREW) PRAM. (For example, see 

[15].) 
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Chapter 3 

Parallelizability for the stack 

breadth-first search 

3.1 Definition of the stack breadth-first 

     search 

The breadth-first search (BFS) is one of basic techniques for graph searching. 

Let G = (V, E) be an input graph. The BFS of  G starts by visiting a given 

vertex s E V. After visiting s, all adjacent vertices to s are visited, and the 

vertices are stored in a set of vertices  V1. Next, all non-visited vertices which 

are adjacent to v E V1 are visited, and stored in a set of vertices V2. The 

process is repeated until the entire graph is processed. For each vertex v E V, 

we define that i is the level of v. The level of a vertex denotes a distance 

on a shortest path from the start vertex s. Using the BFS, we obtain a tree 

T = (V, E'), which is rooted s, by keeping track of the edges which lead to 

vertices in the next level during the search. We call the tree T the BFS tree. 

  There are two natural data structures for implementing the BFS, which 

are a queue and a stack. We assume that an input graph is stored by adja-
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Figure 3.1: Examples of BFS. (a) An input graph and its adjacency lists. (b) 
Queue BFS numbering. (c) Stack BFS numbering. 

cency lists. Figure 3.1 illustrates the difference between the two implemen-

tations, the queue BFS and the stack BFS. The main difference between the 

two BFSs is order of storing vertices in the searching process. For each level 

i, all non-visited vertices are stored using a queue in the case of the queue 

BFS. On the other hand, the vertices are stored using a stack for the stack 

BFS. It is worth while noticing that the level of each vertex is the same for 

the two BFSs because the level denotes a distance from the start vertex. 

  It has been showed that parallelizing the queue BFS is not so hard by 

some efficient NC algorithms[12, 13]. However, the stack BFS has no NC 

parallel algorithm, and it is proved to be P-complete[13]. The fact shows 

that the stack BFS is inherently sequential and hard to be parallelized. 
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3.2 P-completeness for the maximum degree 

In this section, we show that the stack BFS is P-complete even if the maxi-

mum degree of an input graph is 3. The fact means that degree of an input 

graph has no relation to parallelizability of the stack BFS. 

Theorem 1 The stack BFS is P-complete for undirected graphs whose max-

imum degree is 3. 

(Proof) 

  Since it is obvious that the problem is in the class P, we prove P-

completeness of the problem by NC-reduction from the stack BFS for graphs 

with unlimited degree, which is proved to be P-complete[13]. 

  First, we transform an input graph  G =  (V, E) to a layered network. The 

layered network is a graph N = (V, E') such that there exists a division of 

the vertex set V into 1 subsets V1 U V2 U ... U V = V, and every edge has one 

end in V and the other in V±1. To obtain the layered network, we compute 

the queue BFS for an input graph, and divide the vertex set V into subsets 

according to levels obtained from the BFS tree. Since the level of a vertex 

is the same between the queue and stack BFSs, we can remove every edge 

except for edges which connect two vertices in adjacent sets of vertices for 

computation of the stack BFS. 

  Next, we transform the layered network so that degree of each vertex 

becomes exactly 3. Let d be the maximum degree of the layered network. 

We first create a complete binary tree T such that the number of its leaves is 

between d and 4d —1 and its height is odd. (There exists only one tree which 

                        12



satisfies the condition.) Let us consider vertex v  E V (1 < i < 1— 1). A 

star is obtained from vertex v and its adjacent vertices vi, v2, ... , v; E V+i 

We replace the star with a copy of T so that the vertex and its adjacent 

vertices correspond to a root and leaves respectively. More precisely, we 

remove all edges from a star and set v to a root of the tree T. The vertices 

v1, v2, ... , vi are set to the leaves in left-to-right ordering. Although some 

leaves are redundant, we leave them untouched. It is worth while noticing 

that the replacement keeps order of vertices vi, v2, ... , v; in the stack BFS 

numbering before and after the replacement because the height of the tree T 

is odd. Using the replacement, we can transform a star for each vertex in V 

(1 < i < 1— 1) to the tree T in parallel. The transform also keeps orders in 

whole BFS numbering. 

  After the above transform, we compute the stack BFS numbering for the 

layered network, and obtain a result for the original stack BFS by removing 

results for added vertices in the transform. We can process the removal 

efficiently in parallel using prefix operations[17]. 

  The size of the layered network is 0(n2), and we can process all of the 

above reduction in NC.^ 

3.3 A measure for P-completeness of the 

    stack BFS 

In this section we propose a measure for P-completeness of the stack BFS, 

and show the measure is valid with changing its value. 

  Let G = (11,E) and s E V be an input graph and a start vertex for the 
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stack BFS, respectively. We define the longest path length (LPL) for G with 

s as follows. 

Definition 5 The longest path length (LPL) for a graph  G with a vertex s 

is the maximum length of the shortest paths from s on the graph  G. ^ 

  We can compute LPL of a graph in NC using parallel algorithms for the 

queue BFS[13] or the single source shortest path problem[24]. 

  We obtain the following theorem which shows validity of LPL. 

Theorem 2 The stack BFS is P-complete even on a graph such that LPL 

is O(n€), where e is a constant which satisfies 0 < € < 1. 

(Proof) 

  The stack BFS problem whose LPL is O(nE) is in the class P obviously 

since the problem can be computed in 0(n2) time using optimal sequential 

algorithm[19]. In addition, the stack BFS problem whose LPL is 0(n) is also 

P-complete from the fact that the general stack BFS problem is P-complete. 

We show below that the stack BFS whose LPL is 0(n€) is P-complete by 

reducing the general stack BFS problem to the objective problem. 

  We assume that a graph G = (V, E) and a vertex s E V are the input 

for the stack BFS problem such that LPL is cn, where c is a constant which 

satisfies 0 < c < 1. First, we generate a new vertex set V' = {vi, v2, ... , v9}, 

where q = [n 1 — n, and a new edge set E' = { (s, v') I vk E It } . 

  We consider a new graph C' = (V U V, E U E'). The number of vertices 

of G' is n' = [n 1. On the other hand, LPL of the graph C' is cn, which is 
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the same as the input graph. Since cn  < c(n'E) holds, G' is a graph whose 

number of vertices and LPL are n' and O(n'E). 

  We compute the stack BFS of the graph G', and assume that N' (v) de-

notes the BFS numbering for a vertex v on the graph G'. The BFS numbering 

N(v) on the graph G is given by a simple subtraction N(v) = N'(v) — IV' I. 

(We assume that added vertices are searched earlier than original vertices 

adjacent to the start vertex s.) We can implement the above reduction in 

NC since n' is a polynomial function for n.D 

  In the next section, we show that the stack BFS is in NC if its LPL is 

O(logk n) where k is a positive constant. 

3.4 A parallel algorithm for the stack BFS 

In this section, we describe a parallel algorithm for the stack BFS on the 

CREW PRAM. We make brief definitions before showing our algorithm. Let 

T be a stack BFS tree obtained from an input graph. If a vertex w is adjacent 

to a vertex v on the path from the root of a tree T to v, then w is a parent 

of v, and v is a child of w. 

  The outline of the algorithm is as follows. Let G = (V, E) with a start 

vertex s be an input graph. We transform the graph G to a layered network 

N, which is described in Section 3. We assume that the layered network is 

N = (V, E') such that V = Vo U V1 U • • • U V and Vo = {s}. (The l denotes 

LPL of the graph.) Then, we set the BFS number of s to 1, and repeat the 

following substeps from i = 1 to 1. First, for each vertex v E 14,  we select 

an adjacent vertex w E 14_1 whose BFS number is the maximum among 
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adjacent vertices. (The vertex w is a parent of v in the stack BFS tree of 

 G.) Second, we compute the number of children of w in the stack BFS tree. 

Finally, for each vertex v E V , we compute the stack BFS numbering from 

the obtained numbers of children using the prefix operations. 

  Details of the algorithms are described below. (We assume that all arrays 

used in the algorithm are initialized with 0 for convenience.) 

Algorithm 1 (Parallel algorithm for the stack BFS) 

Input: a graph G = (V, E) and a start vertex s E V. 

Output: the stack BFS numbering for each vertex. (We assume that N(v) 

denotes the stack BFS number of a vertex v.) 

Step 1: Execute the following substeps. 

(1-1) Transform the input graph G to a layered network N = (V, E') using 

    the queue BFS algorithm or the single source shortest path algorithm. 

    (We assume that L(v) denotes the level of the vertex v, and V is divided 

    into V0UV1U•••UV/ such that Vo = {s}.) 

(1-2) For each vertex v3 (1 < j < n), set NLi(v3) = 1 if L(vi) = i, otherwise, 

    set NLi (v3) = 0 for i (1 < i < 1). (The NLi (v3) denotes whether v3 is 

    in the level i.) 

(1-3) For each level i (1 < i < 1), compute the prefix sums for NLi (v3) (1 < 

    j < n), and store the results in the same array NLi(v3) (1 < j < n). 

    (After this substep, the NLi(v3) means order of the vertex v3 in the 

    level i.) 
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(1-4) For each vertex  v3 (1 < j < n), set LLi(NL,(v3)) = v3 if L(v3) = i. 

    (The array LL, is a list of vertices in the level i.) 

Step 2: Set N(s)=1, and repeat following substeps from i=1 to 1. 

(2-1) For each vertex vk e V_1, set CH„k(v3) = 0 for all 1 < j < n. Then, 

    for each vertex v3 E V, determine w E V_1 which satisfies the following 

    condition, and set P(v3) = w and CH,,,(vi) = 1. 

             N(w) = max{N(x) Ix E V1, (x, v3) E E~}. 

    (The CH,,,(v3) denotes whether v3 is a child of w, and the P(v3) denotes 

    a parent of v3 in the BFS tree.) 

(2-2) For each vertex vk E V_1, compute the prefix sums of CH„k(v3) (1 < 

    j < n), and store the result in the same array CH„k(v3) (1 < j < n). 

    In addition to this, set NCH(vk) = CH„k (vf,). (After this substep, the 

CH,,,(v3) denotes order of v3 among children of w in the BFS tree, in 

    case that v3 is a child of w, and the NCH(vk) denotes the number of 

    children of a vertex vk in the BFS tree.) 

(2-3) Using the array LLi_1, compute a list of vertices in V_1, which is 

(vk1, vk2, ... ,vk,,) such that N(vk,) > N(vk2) > ... > N(vkr). Then, 

    compute the prefix sums of NCH(vk1), NCH(vk2), ... , NCH(vkr.), and 

    store the results in OS(vk1), OS(vk2), ... , OS(vk,). (The OS(vk) means 

    offset for BFS numbering in each level for a vertex whose parent is vk.) 

(2-4) For each vertex v3 E V, compute the stack BFS numbering using the 

                       17



    following expression. 

 i-1 
N(v3) =E yid +OS(P(V3)) 

k=0 

-NC H(P(v;)) + CHp(1J3)(v3) 

0 

  Now we consider complexity of the above parallel algorithm in two cases. 

Let p be the number of processors. 

The case of n < p: 

First we consider complexity of Step 1. In the substep (1-1), we compute a 

level of each vertex in the layered network by the queue BFS algorithm[13], 

which runs in O( + loge n) time on the CREW PRAM. (Redundant edges 

are removed easily in parallel.) Since the substep (1-2) consists of simple 

assignments for the size of n2, this substep can be executed in O(p) time. 
The substep (1-3) can be executed in O ( )1'p +log n) time because this substep 

consists of l independent prefix sums of the size n. We can compute the 

substep (1-4) in 0(5) time easily. 
  Next, the complexity of Step 2 is as follows. We consider complexity of 

each iteration of Step 2. In the substep (2-1), we can execute all operations in 

0(1141 x P +logn) time using a simple parallel algorithm[17], which computes 

the prefix operation, and basic operations. In the same way, the substep (2-

2) can be executed in 0014-11 x P +logn). Similarly, the substep (2-3) runs 

in O (~~P1+ log IV_ 1 I) time per iteration, and the substep (2-4) runs in 00)                                 ) 

time easily. Consequently, we can prove that complexity of each iteration is 
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 O((IV-1I + IViI) x p + logn). 

  Since the number of repetition l of Step 2 is equal to LPL of the graph 

G, total complexity of Step 2 is given by, 

O(E{(Iv-lI + IViI) x n + logn}) 
i=1 p 

                                l 

              O(                  2n~{IVI}+llogn) 
P i=o 

                               2 
                 = O(n +llogn) . 

  Therefore the stack BFS algorithm runs in 01 + log2n + l log n) time 
totally, and we obtain the following theorem and corollary. 

Theorem 3 We solve the stack BFS in OP! + loge n +I log n) time if p > n 

where l is LPL of an input graph on the CREW PRAM.^ 

Corollary 1 The stack BFS is in NC on a graph such that LPL is O(logk n) 

where k is a positive constant.^ 

The case of p < n: 

In Step 1, we compute a level of each vertex by a cost optimal parallel 

algorithm for computing the single source shortest path problem [24] . The 

algorithm[24] runs in O(P) time using p processors, where 1 < p < nE 
and E is a constant which satisfies 0 < E < 1. We can compute Step 2 in 

0(72-2 + l log n) time by the same way mentioned above. Since P > n log n > 
1 log n asymptotically holds in case of 1 < p < nE where 0 < E < 1, we obtain 

the following theorem. 
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Theorem 4 We solve the stack BFS in  O(5) time if 1 < p < nE where 
0<e<1 on the CREW PRAM.^ 

  The above algorithm is cost optimal because the product of its time com-

plexity and the number of processors is equal to the sequential time com-

plexity. 
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Chapter 4 

Parallel algorithms for patience 

sorting and longest increasing 

subsequences 

4.1 Definitions 

4.1.1 Patience sorting and longest increasing subse-

      quence 

In this subsection, we make some definitions for the patience sorting and the 

longest increasing subsequence. 

  The patience sorting is known as a traditional card game in British. An 

overview of the game is as follows. (To simplify the description, we assume 

cards in a deck are indexed 1, 2,  ... , n.) 

(1) Shuffle the deck. 

(2) Turn up one card and deal into piles on the table, according to the 

    following rule: A card with a smaller index may be placed on a card 

    with a larger index, or may be put into a new pile to the right of existing 
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     piles. 

  At each stage in the second step, we check the top card on each pile. If 

the turned up card has a larger index than all of the top cards, it must be 

put into a new pile to the right of the others. The objective of the game is 

to finish with as few piles as possible. 

  As a matter of fact, we can achieve the objective using the following 

greedy method in the second step. (Optimality of the greedy method has 

been proved in  [4)  ) 

(2') Turn up one card and deal into piles on the table, according to the 

    following rule: A card is placed on the leftmost possible pile, whose 

    top card has a larger index than the turned up card. Otherwise, the 

    card is put into a new pile to the right of existing piles. 

  Our main goal for the patience sorting is to obtain the optimal solution 

for the problem. 

  Now we describe a precise definition of the patience sorting and the 

longest increasing subsequence. We make some related definitions before 

describing the problems. 

Definition 6 (Subsequence) Given a sequence S of n distinct integers, a 

subsequence of S is a sequence which can be obtained from S by deleting zero 

or some integers. The subsequence is called increasing if each element of the 

subsequence is larger than the previous element. Conversely, the subsequence 

is called decreasing if each element of the subsequence is no more than the 

previous element.^ 
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Definition 7 (Cover) Given a sequence S of n distinct integers, a  cover of 

S is a set of subsequences of S such that every element in S is contained in 

one of the subsequences. The size of the cover is the number of subsequences 

in it. The cover is called increasing and decreasing if each subsequence is 

increasing and decreasing, respectively.^ 

  Using the above two definitions, the patience sorting and the longest 

increasing subsequence is defined as follows. 

Definition 8 (Patience sorting) Let S be a sequence of n distinct inte-

gers. The patience sorting is a problem to compute a decreasing cover of S 

such that the size of the cover is the smallest among all covers of S. ^ 

Definition 9 (Longest increasing subsequence) Let S be a sequence of 

Ti distinct integers. The longest increasing subsequence is a problem to com-

pute an increasing subsequence of S such that length of the subsequence is 

the longest among all increasing subsequences of S.^ 

  It is worth while noticing that each element is not contained in two subse-

quences of the same cover, and each decreasing subsequence of the patience 

sorting means a pile in case of the card game. In addition, there may be 

some solutions for an input of the patience sorting and the longest increasing 

subsequence. In this paper, our objective for the problems is to find one of 

the solutions. 

  Figure 4.1 shows an example of the patience sorting and the longest in-

creasing subsequence. In the description, each vertical sequence denotes a 

decreasing subsequence of the cover. 
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      Input sequence = (10, 8, 23, 1, 3, 37, 7, 21, 35, 13, 2, 33, 39, 4, 20, 9) 

             1 2 4 9 20 
              8 3 7 13 33 
     Patience  sorting  = 10 23 37 21 35 39 

      Longest increasing subsequence = (1, 3, 7, 13, 33, 39) 

Figure 4.1: An example of the patience sorting and the longest increasing 
subsequence. Each vertical sequence in the patience sorting forms a decreas-
ing subsequence. 

  We can solve the patience sorting using the following greedy algorithm[2]. 

(Correctness of the algorithm is also proved in [2].) 

Algorithm 1 (Greedy algorithm for the patience sorting) 

Input : a sequence of n distinct integers S = (so, s1, . . . , sn_1). 

Output : a decreasing cover of S. (We assume that Do U Dl U ... U Dm-1 

denotes the decreasing cover of S, and each Di (0 < i < m — 1) denotes the 

i-th decreasing subsequence of the cover.) 

Step 1: Set j=1,i=0 and add so to Do. 

Step 2: Repeat the following substeps until j > n. 

(2.1): Find the smallest indexed decreasing subsequence whose last element 

    is larger than s3, and add s3 to the subsequence. If there is no such 

    subsequence, set i = i + 1, create a new subsequence Di, and add s3 to 

    the subsequence Di. 

(2.2): Set j = j + 1.^ 
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  We now consider the time complexity of the above greedy algorithm. It 

is obvious that the number of repetition in Step 2 is n — 1. There are two 

methods of finding the lowest indexed decreasing subsequence in substep 

(2.1). One of the methods is to examine all decreasing subsequences in 

order. However, the method takes 0(n) time in the worst case and time 

complexity of the algorithm becomes 0(n2). The alternative method uses 

the characteristic of the last elements of subsequences, that is, a feature that 

the last elements are ordered in increasing order. We can use the binary 

search  method[8] with any data structure which can be accessed to the last 

element of each subsequences in 0(1) time. In this case, we can execute the 

greedy algorithm in 0(n log n) time. 

Lemma 1 We can solve the patience sorting in 0(n log n) time sequentially. 

4.1.2 2-3 tree 

In the following sections, we use a balanced search tree, called a 2-3 tree, 

to support our parallel algorithm for the patience sorting. We introduce a 

definition and a lemma for a 2-3 tree. 

Definition 10 (2-3 tree) A 2-3 tree is a rooted tree in which each internal 

node has two or three children and every path from a root to a leaf is of same 

length.^ 

We can easily prove that the height of a 2-3 tree is e(log n) in case that 

the number of leaves is n. When using a 2-3 tree as a data structure, all 
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 L[v„1=3 
ME v„1=6 

vi v,v, 

L [v,]=1 L [ v,]=4L [ v,1=10 
M[ v,]=3 M[ v,1=6M[ v,]=17 

0 0 0 000 
vdv5 v6 v7v8 v9 VIU 

Figure 4.2: An example of a 2-3 tree for a sequence (1, 3, 4, 6, 10, 17, 20) 

elements of a sorted sequence are stored into leaf nodes from left to right, 

and each internal node v holds two variables L [v] and M [v] , which store 

values of the maximum elements in the leftmost and the second subtrees of 

v, respectively. Using L[v] and M[v], we can search any element in a 2-3 

tree in O(logn) time using a similar technique to the binary search. We 

can construct a 2-3 tree which stores a sorted sequence, whose size is n, in 

O(n log n) time sequentially. (See [1] for details.) 

  Figure 4.2 shows an example of a 2-3 tree. 

  Let T, T1 and T2 be 2-3 trees which store sorted sequences S, S1 and S2i 

respectively. We use the following four operations on 2-3 trees in this paper. 

(1) MIN: MIN(T) is an operation that outputs the minimum element in 

     a 2-3 tree T. 

(2) DELETE: Let x be an element in S. DELETE(T, x) is an operation 

                       26



    that deletes x from a 2-3 tree T. 

(3) IMPLANT: Assume each element in  Si is less than every element in 

    S2. IMPLANT(T1,T2) is an operation that implants T2 in T1 so that 

    T1 stores the concatenated sequence S1S2. 

(4) SPLIT: Let x be an element in S. SPLIT(T, x) is an operation that 

    outputs two trees T1 and T2 which satisfy S1 = {y < x, y E S} and 

    S2 = {z I z> x, z E S}, respectively. 

  It is known that the above four operations can be processed efficiently on 

2-3 trees[1]. 

Lemma 2 ([1]) Let T, T1 and T2 be 2-3 trees whose sizes are 0(n), respec-

tively. We can execute each of four operations MIN, DELETE, IMPLANT 

and SPLIT in 0(logn) time sequentially.^ 

4.2 First algorithm using prefix operations 

In this section, we describe our first algorithm, which consists of repeti-

tion of prefix minima and prefix sum operations, for the patience sorting. 

The prefix minima of a sequence (xo, xi, ... , xn_i) is defined as the sequence 

(Trio, m1i ... , mn_i) such that mk = min{xh I 0 < h < k}, and the prefix sum 

of a sequence (xo, x1, ... , xn_i) is defined as the sequence (pso, psi, • • • , psn_i) 

such that PS = Eh_o xh. 

  The algorithm uses the prefix minima operation as follows. Let S = 

(so, Si, ... , sn_1) be an input sequence for the patience sorting. We first 
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compute the prefix minima of S, select elements whose indices are equal to 

results of the prefix minima, and store the selected elements in an array D. In 

case of the sequential greedy algorithm (Algorithm 1), an element  sk is added 

to the first decreasing subsequence Do if sk is smaller than the last elements 

of Do. Therefore each element sk in Do satisfies sk = min{sh I 0 < h < k}, 

and D is equal to Do. We repeat the prefix minima operation for remaining 

elements, and the other decreasing subsequences are obtained from the same 

reason. 

  The followings are details of the algorithm. 

Algorithm 2 (Algorithm using prefix operations) 

Input: a sequence of n distinct integers S = (so, s1, . . . , sn_1). 

Output: a decreasing cover of S. (We assume that Do U D1 U ... U Dr,,_1 

denotes the decreasing cover of S, and each Di = (do, di,1, ... , di,1) (0 < i < 

m — 1) denotes the i-th decreasing subsequence of the cover. 

Step 1: Set i = 0. 

Step 2: Repeat the following substeps until so = s1 = ... = 3n_1 = oo. 

(2.1) : Compute the prefix minima of S, and store the result in an array 

      Q= (go,gi,••.,gn-1)• 

(2.2): For each j (0 < j < n — 1), if s = qj oo set ri = 1, otherwise set 

r~ = 0. Then, compute the prefix sum of R = (ro, r1, ... , rn_1), and 

    store the result in the same array R. 
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(2.3): For each j (0  < j < n — 1), if Si = qj # co, set dz,.) = s3, and then 

     set si = oo. 

(2.4): Set i = i + 1.^ 

  Now we discuss the complexity of the above algorithm. Let m be the 

number of decreasing subsequences of the cover. Obviously, all of substeps 

in Step 2 consist of a constant number of primitive operations and the prefix 

operations. Using a known parallel algorithm for parallel prefix[17], we can 

compute the the prefix operation of n elements in O (p + log n) time using p 

processors on the EREW PRAM. Since the number of repetition of Step 2 

is m, we obtain the following theorem. 

Theorem 5 Algorithm 2 solves the patience sorting of n elements in 

O(m(p + log n)) time using p processors on the EREW PRAM. ^ 

  In respect of time complexity, Algorithm 2 is usually not efficient because 

optimal sequential time complexity of the problem is 0(n log n). However, 

the algorithm becomes cost optimal in case of the number of the subsequences 

is O(logn). 

4.3 Second algorithm for the patience sorting 

4.3.1 Outline of the algorithm 

In this section, we describe the second parallel algorithm for the patience 

sorting on the CREW PRAM. We assume that Do U D1 U ... U Din_1 denotes 

the decreasing cover of S, and each Di (0 < i < m — 1) denotes the i-th 
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decreasing subsequence of the cover. We also assume  P3 (0 < j < p — 1) 

denotes the j-th processor on the PRAM. The algorithm basically consists 

of m repetitions of a procedure. In the i-th procedure, we compute the i-th 

decreasing subsequence D1. 

  An outline of the algorithm is as follows. Let S be an input sequence. 

First, we divide S into p blocks whose sizes are p,and assign the j-th block 

to the j-th processor. Then, on each processor, we compute the patience 

sorting sequentially for each block. We assume that D3,0UD3,1U, ... , UD~,mj_1 

denotes a result of the patience sorting for a block assigned to a processor 

P3. 

  Next, we compute the first decreasing subsequence Do using the above 

results. We can prove that Do is a subset of D0,0 U D1,0 U ... U Dp_1,0, 

that is, a set of the first decreasing subsequences of divided blocks. We 

can compute Do from D0,0 U D1,0 U ... U Dp_1,0 using the prefix minima 

operation. (Correctness and details of this substep are shown in the following 

subsection.) After computing Do, we remove elements in Do from each block, 

and reconstruct a decreasing cover for each block. Then, we can compute 

remaining decreasing subsequences D1, D2i ... , Dm_1 by repeating the above 

procedure m — 1 times. However, a simple implementation of this step make 

time complexity of the algorithm O(m(p log p)) since reconstruction of a 

decreasing cover of each block needs O(p log p) computation time. To reduce 

the complexity, we use 2-3 trees as data structures which store a decreasing 

cover of each block. We assume that each decreasing subsequence D3,k, which 

is the k-th decreasing subsequence for processor P3, is stored into a 2-3 tree 
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 Tj,k. Since we reconstruct a decreasing cover on each processor efficiently 

using 2-3 trees, we can reduce complexity of the algorithm sufficiently. (The 

details of the reconstruction are also described in the following subsection.) 

  We now summarize an outline of the algorithm. 

Algorithm 3 (Second algorithm for the patience sorting) 

Input: a sequence of n distinct integers S = (so, s1i ... , 

Output: a decreasing cover of S. (We assume that Do U D1 U ... U Dm_i 

denotes the decreasing cover of S, and each D, (0 < i < m — 1) denotes the 

i-th decreasing subsequence of the cover.) 

Step 1: Divide S into p blocks S, (0 < j < p — 1) of size L. 

Step 2: On each processor P3 (0 < j < p — 1), compute a decreasing cover 

    of Si sequentially. (We assume that Di,o U D3,1 U ... U D3,mj_1 denotes 
    the decreasing cover for 53.) Then, store each decreasing subsequence 

Di,k ina2-3 tree T3,k (0<k<m3 —1). 

Step 3: Set i = 0, and repeat the following substeps until So = Sl = ... = 

Sp_1 = cb. 

(3.1): Compute the i-th decreasing subsequence Di from a set of decreasing 
    subsequences D0,0 U D1,0 U ... U Dp_1,0. On each processor P3 (0 < j < 

p —1), elements D; = Di n Dj,o are stored in a new 2-3 tree T. , and the 
    other elements D3,o — Di are stored in Ti3O again. (A set of elements 

Do U Di U ... U Dpi _1 is equal to Di.) 
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(3.2): On each processor  Pj (0 < j < p — 1), set Si = S, — Di, and 

     reconstruct 2-3 trees Ti ,o, T~,1, ... , T~,,,-1 so that the set of 2-3 trees 

    denotes a decreasing cover of S. 

(3.3): Set i = i + 1. 

Step 4: Execute the following substeps to obtain Di (0 < i < m — 1) from 

D, Di Di 

(4.1): On each processor P3 (0 < j < p — 1), extract all leaf elements of T 

    (0 < i < m3 — 1) and store the elements into an array C3 with a key 

     index i. 

(4.2): Sort elements Co U C1 U ... U CC_1 with the key indices and their 

    values, and store the elements with the key index i into Di. ^ 

  We now consider the complexity of the above algorithm on the CREW 

PRAM. Step 1 can be easily executed in O(P) time using p processors. In 

Step 2, we can compute the decreasing cover on each processor in O (P log P ) 

using sequential algorithm[16] since the number of elements of each block is 

0(9)and store the results into 2-3 trees with the same complexity using a 

sequential algorithm for construction of a 2-3 tree[1]. In Step 4, the substep 

(4.1) can be executed in 0(2 log P) time using MIN and DELETE oper- 
ations for a 2-3 tree Li on each processor, and the substep (4.2) can 

be executed in O (log n + n1Pn) using a well-known sorting algorithm [7] . Let 

T3(n) be the time complexity of substeps (3.1) and (3.2). Since the number of 

repetition of Step 3 is m, where m is the number of decreasing subsequences 
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of the cover, complexity of the algorithm becomes  O(logn+ n +mT3(n)) . 

In the following two subsections, we consider complexities of substeps (3.1) 

and (3.2), respectively. 

4.3.2 Computation of the i-th decreasing subsequence 

In this subsection, we explain details of the substep (3.1), which computes 

the decreasing subsequence D, from a set of the first decreasing subsequences 

of each block D0,0 U D1,0 U ... U Dp_1,0. 

  First of all, we prove that each element in Di is in one of the first decreas-

ing subsequences of each block, that is, Di is a subset of D0,0 U D1,0 U ... U 
Dp_1,0. Let S = (so, 81, ... , sn_1) be an input sequence. We first consider 

the case of i = 0. We assume that Do = (si0, sil, ... , sik, ... , sim) and 8 k is 

an element which is not in D0,0 U D1,o U ... U Dp_1,0. From the first algorithm 

we described in Section 3, sik satisfies, 

sik = min{sh 0 < h < ik}. 

Now we also assume that sik is in a block S3 and s30 is the first element of 

S3. From the above expression, we obtain the following expression directly. 

sik = min{sh I :Jo < h < ik}. 

The expression implies sik is in D3,o, and the fact is in contradiction to the 

hypothesis. We can prove Di is a subset of D0 ,0 U D1,0 U ... U Dp_1,0 in case 

of 1 < i < m — 1 with the same fashion. 

   Next, we explain how to compute Di from D0,0, D1,0, • • , Dp_1 ,0. As we 

described in Section 3, we can compute D, using the prefix minima operation 
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for D0,0,  D1,0,  •  •  • , Dp-1,0• Since each D3,0 (0 < j < p — 1) is a decreasing 

sequence and is stored in a 2-3 tree, we can compute the prefix minima 

efficiently from the following reason. 

  For simplicity, we assume that E3 denotes D3,0 and E denotes D. As 

we described above, an element s3k in E3 is in E if and only if the following 

condition holds. 

s3k = min{sh 0 < h< jk}. 

Let simin and s30 be the smallest and the first elements in E3, respectively. 

We can modify the above condition using s3m.in and 53g. 

s3k = min{min{sgn,in I 0 5-9<j—  1}, min{sh I jo < h < jk}}. 

Since each E, is a decreasing sequence, the latter expression s3k 

min{sh I jo < h < jk} always holds. Therefore,we finally obtain the fol-

lowing condition. 

sik < min{sg,nin 0 < g < j — 1}. 

Once we can find such an element 53k in Ea, the following elements in E3 

are also in E since E, is a decreasing sequence. We can use the SPLIT 

operation to compute the set of elements because each decreasing sequence 

is stored in a 2-3 tree. 

  Based on the above idea, we obtain the following simple procedure. 

Procedure 1 (Computation of the i-th decreasing subsequence) 

Input: A set of decreasing subsequences E0, E1, ... , Ep_1. Each decreasing 

subsequence Ei (0 < j < p-1) is stored in a 2-3 tree T3, and its size is O(p). 
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Output: The first decreasing subsequence E such that E =  Eo U Ei U ... U 

4_1 and .03 C E, for each j (0 < j < p — 1). (Elements in Eare stored in 
a new 2-3 tree 77;, and the other elements E3 - Eare stored in773 again.) 

Step 1: On each processor P3 (0 < j < p — 1), find the smallest element in 
    the tree T3, and store the element into q3. 

Step 2: Compute the prefix minima of the array Q = (qo, ql, ... , qp_i), and 
    store the result into the same array Q. 

Step 3: On each processorP3 (0 < j < p — 1), split T3 into two 2-3 trees T; 

 and T3 using q3_1.^ 

  The complexity of Procedure 1 is as follows. Step 1 can be done in 

O(log p) time using MIN operation for a 2-3 tree in parallel. Step 2 can 

be done in O (log p) time using O() processors using a parallel prefix 

algorithm[17]. Step 3 can be done in O(log P) time using SPLIT operation 

for a 2-3 tree. Thus the procedure can be executed in O(log p + log P ) time 

using p processors. 

4.3.3 Reconstruction of 2-3 trees 

In this subsection, we explain details of the subsection (3.2), which executes 

reconstruction of 2-3 trees. For each processor Pi, an input of this substep 

is a set of decreasing subsequences D3,0, D3,1, . .. , D~,~,,j_1 such that each D3,2 

is stored in a 2-3 tree T3,i. Since the reconstruction is executed on each 

processor in parallel, we describe a sequential procedure for one processor, 

and assume that FZ (0 < i < m — 1) denotes D3,2 and a 2-3 tree Ti stores FZ. 
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  The simplest implementation of this substep is to compute the decreasing 

cover for  Fo U F1 U ... U Fm_1 again. However, computation of a decreasing 

cover needs 0(2logP) computation time, and the algorithm does not become 

cost optimal. To avoid this, we reconstruct the decreasing subsequences 

using the following idea. (Fo, Fi, ... , F,_1 denote reconstructed decreasing 

subsequences.) 

(1) Let smin be the smallest element in Fo. Split F1 into F1 and Fo so that 

    every element in F1 is larger than smin and every element in Fo is no 

    more than sin. (Note that Fo and F1 are decreasing sequences.) 

(2) Concatenate Fo and F. (The concatenated sequence is stored in F(;.) 

(3) Repeat (1) and (2) for Fi and Fi+1 (1 < i < m — 2). 

   Figure 4.3 shows an example of the above idea. We assume that the 

following sequence S is an input for the example, 

     S = (10, 8, 23, 1, 3, 37, 7, 21, 35, 13, 2, 33, 39, 4, 20, 9) 

and the elements 1, 8 were removed in (3.1) of Algorithm 3. After the recon-

struction, the obtained decreasing subsequences are same as the decreasing 

cover of S. 

   We prove consists of Fi and Fi+i for the correctness of the above idea. 

We consider the case of i = 0, and assume that there exists an element sg E Fo 

which is not in FoUFI. Since Fo, F1, . , Fni_i was the decreasing cover before 

(3.1) of Algorithm 3, there exists an element sh E F1 which satisfies sh, < sg 

and h < g. (Recall S = (so, si, ... , sn_1) is the input sequence of the patience 
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   3 7 21 33  --- 37 21 33 
   1023 37 35 H39  10 23 37 35 39  

    FoF1 F2 F3 F4 F5 Fo Fi Fi F3 Fa 

             (e) i = 4(f) The result of reconstruction 

         Figure 4.3: An example of reconstruction of 2-3 trees 

sorting.) The sh must be included in Fo from definition of the decreasing 

cover. Then s9 is not included in Fo, and the fact is in contradiction to the 

hypothesis. we can prove in case of 1 < i < m — 2 inductively. 

  Since each decreasing subsequence is stored in a 2-3 tree, implementation 

of the above idea is not difficult. We show details of the procedure as follows. 

Procedure 2 (Reconstruction of 2-3 trees on a processor) 

Input: A set of decreasing subsequences Fo, F1, . , F,,,,_1 obtained for a pro-

cessor after the substep (3.1) of Algorithm 3. Each decreasing subsequence 

Fi (0 < j < m — 1) is stored in a 2-3 tree T3. 
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Output: A set of decreasing subsequences  Fo, Fi, ... , Fm_1 such that the 

set of decreasing subsequences is the decreasing cover of F0 U F1 U .. .0 

Each decreasing subsequence F.; (0 < j < in — 1) is stored in a 2-3 tree T3. 

Step 1: Set k = 0, and repeat the following substeps until k> m. 

(1.1): Find the smallest element in the tree Tk, and store the result in sm,in. 

(1.2): Split Tk+1 into Tb and Tk+1 using Smin so that every element in every 

    element in Fk+i is larger than sn,,in and every element in Fb is no more 

      than &m,in. 

(1.3): Implant Tk in Tk, and then, set k = k+ 1.^ 

  The complexity of each substep in the above procedure is 0(log p) because 

all of the substeps consist of a constant number of MIN, IMPLANT, and 

SPLIT operations which we described in Section 2. Since the number of 

repetition is m, the time complexity of the above procedure is O(m log n) 

P 4.3.4 Complexity of the algorithm 

As we described in Subsection 4.3.1, complexity of the algorithm is O(logn+ 
nl°gn + mT3(n)), where T3(n) is the time complexity of substeps (3.1) and 

P (3.2). In addition, complexities of (3.1) and (3.2) are 0(logp + log p) 
and 0(m log p) from Subsections 4.2 and 4.3, respectively. Then, T3(n) = 

0(logp + m log p). 

  In consequence, we obtain the following theorem. 
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Theorem 6 Algorithm 3 solves the patience sorting of n elements in  O(nl 

+m21og Lip + m log p) time using p processors on the CREW PRAM. ^ 

  From the above theorem, the complexity of the algorithm becomes 

O (n ) in case of L'> m2,namely 1 < p <m2 .In other words, we 

can solve the patience sorting cost optimally if m = nE and 1 < p < nl-zE 

where E is a constant which satisfies E < 2. 

4.4 Procedure for longest increasing subse-

     quence 

In this section, we describe how to compute the longest increasing subse-

quence from a solution of the patience sorting of the same input. We first 

show that the patience sorting and the longest increasing subsequence are 

closely related each other by giving the following lemma[2]. 

Lemma 3 ([2]) Let m be the length of the longest increasing subsequence of 

a sequence S. Then, the number of decreasing subsequences in a solution of 

the patience sorting for the same sequence S is also m.^ 

  Using the above lemma, we obtain a solution of the longest increasing 

subsequence from a solution of the patience sorting for the same input S = 

(so, s1, ... , sn_1) as follows. We assume that Do U D1 U ...0 Dm_i denotes 

the decreasing cover of S, and each Di (0 < j < m — 1) denotes the i-th 

decreasing subsequence of the cover. Let sj, be an element in Di (1 < j < 

m — 1). Then there exists an element E Di_1 which satisfies sh_, < s1, 

and h_1 < lj, and we call 813_1 a parent element of sh. Given an element 
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 slm_1 E Dm_i, the sequence of elements connected with the parent relation 

SL = (sit), s11, ... , s~) is increasing. Therefore SL is the longest increasing 

subsequence whose length is equal to the number of decreasing subsequence 

of the patience sorting. Figure 4.4 illustrates an example of the above idea. 

In Figure 4.4, each pointer denotes parent relation, and each number in 

parenthesis denotes index of the element in the input sequence. Once parent 

relations are obtained for all elements, we can find the longest increasing 

subsequence by tracing the parent relation from an element in Dm,_1 to an 

element in Do. 

  We now consider how to find a parent element for each element in D3 

(1 < j < m — 1) . Although there may be some candidates for a parent 

element for each element, we define a parent element s1 _1 of s13 using the 

following expression. 

813_1 = sk s.t. k = max{k' k' < h, Sic/ E D3_1} 

  Then, s13_1 < s1, holds because of definition of the patience sorting. Since 

indices of elements in each decreasing subsequences are increasing, we can 

find parent relations between two decreasing subsequences using a ranking 

operation for merging[7]. Moreover we can execute the search operation for 

each pair of decreasing subsequences in parallel. 

  We summarize the idea in the followings. 

Procedure 3 (Procedure for the longest increasing subsequence) 

Input: A solution of the patience sorting for a sequence of distinct integers 

S. 
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        Input sequence = (10, 8, 23, 1, 3, 37, 7, 21, 35, 13, 2, 33,  39,  4, 20, 9) 

                              1 (4) \ 2)11)- 404)- 9(16) 20(15) 
                           8 (2) \3(5) 4- 7(7) 713nm4-33(iz)\ 

                       n 

                             10,23(3) —37,6,21 (8) —35 9)39(13)  
D„ D, DZ D3 D, D5 

 Longest increasing subsequence = I 1 3 

Figure 4.4: An example of the idea. Each pointer denotes a parent relation 

and each number in parenthesis denotes index of the element in an input 

sequence. 

(We assume that a solution of the patience sorting consists of m decreasing 

subsequences Do, D1, ... , Dm_1.) 

Output: A longest increasing subsequence Sr, = (4, 81, ... , s;_1) for S. 

Step 1: For each element s~ in D; (1 < j < m-1), find the parent element 

s13_1 which satisfies s~ = sk s.t. k = max{k' k' <13,8k,  E D3_1}. 

Step 2: Trace the parent relation from an element in Dm_1 to an element 

    in Do, and store traced elements in Si, in reverse order. ^ 

  The complexity of Procedure 3 is as follows. Step 1 consists of m in-

dependent ranking operations for merging[7]. Since we can execute ranking 

operation in O (log n + P) time using p processors for two sequences whose 

sizes are 0(n), we can execute Step 1 in O(logn+ P) time p processors on 

the CREW PRAM. Step 2 can be done in O (log n + P) time using a paral-
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lel list ranking algorithm[3] because parent relations make a tree structure. 

Therefore, we obtain the following lemma and theorem for Procedure 3 and 

the longest increasing subsequence, respectively. 

Lemma 4 Procedure  3 computes the longest increasing subsequence from a 

solution of the patience sorting in  O(log  n + P) time using p processors on 

the CREW PRAM.^ 

Theorem 7 We can solve the longest increasing subsequence of n elements 

in O(r +m2 log p+m log p) time using p processors on the CREW PRAM. 
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Chapter 5 

Conclusions 

In this dissertation, we presented some efficient parallel algorithms for inher-

ently sequential problems. 

  In Chapter 3, we first proved that the stack BFS is P-complete even if its 

maximum degree is 3, and suggested the longest path length as the measure 

of the stack BFS. Using the measure, we next proposed an efficient parallel 

algorithm for the stack BFS. The algorithm solves the stack BFS in O(P) 
time if 1  < p < nE where 0 < E < 1 on the CREW PRAM. The algorithm is 

cost optimal because the product of its time complexity and the number of 

processors is equal to the sequential time complexity. 

  In Chapter 4, we proposed two algorithms for the patience sorting. The 

first algorithm is a parallel algorithm which consists of repetition of the prefix 

operations. The second algorithm is a parallel algorithm which improves the 

complexity of the first algorithm, and runs in O (r' i; n + m2 log + m log p) 

time using p processors on the CREW PRAM. The algorithm is cost optimal 

in case of 1 < p < 2. Finally, we proposed a procedure which computes 

the longest increasing subsequence from a solution of the patience sorting, 
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and obtain a parallel algorithm, which runs with the same complexity, an 

algorithm for the patience sorting, for the longest increasing subsequence. 

Although P-completeness of both problems have not been proven yet, a 

proposition of efficient parallel algorithms for the problems does not seem 

to be easy. 

  We summarize our results in Table 5.1. 

  In the future research, we shall investigate a measure for other P-complete 

problems. We think that other P-complete problems also have such param-

eters, and it may be useful criteria for the classification and the choice of 

parallel techniques. We are also interested in considering parallelizability of 

some problems which have similar properties to the patience sorting : inher-

ently sequential problems. We think it is important to know whether these 

problems are in the class NC or not. 
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                  Table 5.1: List of results. 

ProblemTimeProcessors Model  

stack BFS  O(p)p(1 < p < nE) CREW PRAM 

 spatience  ortingO(f'10fl +m2 log P+m log p) p(1 < p <2) CREW PRAM 
  longest 

increasing O(n1P "+ m2 log 7, m log p) p(1 < p < m ) CREW PRAM 
subsequence  
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