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ABSTRACT 

 

Dynamic Traffic Assignment Incorporating Commuters’ Trip Chaining Behavior. 

(August 2011) 

Wen Wang, B.S., Tongji University 

Chair of Advisory Committee: Dr. Bruce X. Wang 

 

  Traffic assignment is the last step in the conventional four-step transportation 

planning model, following trip generation, trip distribution, and mode choice. It 

concerns selection of routes between origins and destinations on the traffic network. 

Traditional traffic assignment methods do not consider trip chaining behavior. Since 

commuters always make daily trips in the form of trip chains, meaning a traveler’s trips 

are sequentially made with spatial correlation, it makes sense to develop models to 

feature this trip chaining behavior. Network performance in congested areas depends not 

only on the total daily traffic volume but also on the trip distribution over the course of a 

day. Therefore, this research makes an effort to propose a network traffic assignment 

framework featuring commuters’ trip chaining behavior. Travelers make decisions on 

their departure time and route choices under a capacity-constrained network. 

  The modeling framework sequentially consists of an activity origin-destination 

(OD) choice model and a dynamic user equilibrium (DUE) traffic assignment model. A 

heuristic algorithm in an iterative process is proposed. A solution tells commuters’ daily 

travel patterns and departure distributions. Finally, a numerical test on a simple 
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transportation network with simulation data is provided. In the numerical test, sensitivity 

analysis is additionally conducted on modeling parameters. 
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1. INTRODUCTION

 

Transportation systems play a critical role by supporting the development and the 

interactions of socio-economic systems. They allow for efficient and safe movement of 

people and goods, thus contributing to improved quality of life and benefits to the 

economy. At the same time, transportation systems affect the environment via their 

integration with land-use policies and the travel behavior they encourage. An 

understanding of these complex relationships is crucial to the solution of some 

transportation-related problems, such as traffic congestion, fuel consumption, 

greenhouse gas (GHG) emissions, and global climate change. In such a framework, 

activity-based approaches to travel behavior analysis explicitly recognize interactions 

among activities, trips, and individuals in time and space. Such an analysis can facilitate 

the identification, evaluation, and implementation of more effective and reliable land-use 

and transportation policies. 

Travel demand is a derived product from travelers’ social activities. It is necessary 

to explore what drives people to travel in order to fully understand and predict their 

travel demand for the sake of planning. The activity-based approach compared with 

trip-based approach focuses on a better understanding of travel behavior. A better 

understanding will help develop a better capability to predict how travelers respond to 

their travel environment changes and how their responses are temporally and spatially 

correlated. 

____________ 

This thesis follows the style of Transportation Research Part B. 
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Trip chaining is a typical travel phenomenon but lacks sufficient investigation. This 

probably results from the difficulty in defining trip chains, in extracting related 

information from travel diary surveys, or establishing and analyzing all the possible trip 

chain patterns (Shiftan, Y., 1998; Primerano et al., 2008; Bernardin et al., 2009). In this 

research, trip chaining is defined as activity scheduling with a set of connected trips from 

when an individual leaves the origin to when he or she returns to the final destination 

within a day, linking secondary activities to primary activities through travel made. A 

simple trip chain is illustrated in Fig. 1, which depicts the daily travel pattern for 

commuters who depart from home early in the morning and come back home at the end 

of the day. There are some special characteristics for a typical trip chain. For instance, 

the destination in one trip is the origin of the next, and the duration at one destination 

will affect the departure time of the successive trip. However, these chained trips are 

simply treated as separate, independent ones in traditional trip-based traffic assignment 

models (Sheffi, 1985). 

 

 

Figure 1 A simple trip chain illustration 
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Traffic assignment addresses the selection of routes between origins and 

destinations on the transportation networks. Conventional trip assignment techniques 

based on static traffic assignment have been widely used for decades. The limitations of 

the static traffic assignment methods and the improvement of computational capacity 

have allowed this study area to move toward more behaviorally realistic dynamic traffic 

assignment (DTA) models. DTA techniques have a number of advantages over the static 

traffic assignment, such as representing time-dependent interactions of the travel demand 

and supply of the network and the capability to capture traffic congestion buildup and 

dissipation. 

Network performance under congestion relies not only on the total traffic volume 

but also on the temporal distribution of trips (Boyce, D., 2007). Therefore, modeling trip 

departure time is an important topic to understand and predict how congestion arises 

from individual travel decisions. In particular, how individuals adjust their departure 

time in response to congestion occurring on the network and how departure time is 

affected by policies such as improved accessibility, pricing, flexible work hours, and 

improved traffic information are also worth exploring. 
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2. LITERATURE REVIEW 

 

2.1 Dynamic Traffic Assignment 

Some attempts have been made to address the DTA problems. The related model 

formulations in prior studies are classified as the mathematical programming method 

(Merchant and Nemhauser, 1978; Janson, 1991), the optimal control theory method 

(Friesz et al., 1989; Ran and Boyce, 1994; Lam and Huang, 1995), the variational 

inequality method (Friesz et al., 1993; Ran and Boyce, 1996; Lam and Yin, 2001), the 

graphical solution method (Munoz and Laval, 2005; Laval, 2009) and the simulation 

method (Mahmassani et al., 1992; Mahmassani, 2001; Brown et al., 2009). Those 

short-period (10-15min) dynamic models representing real-time traffic conditions can be 

integrated into some advanced traffic management systems and intelligent route 

guidance systems, but they have not been widely implemented in practice except in 

some simulation approach software packages due to burdensome computation for 

large-scale transportation networks. On the other hand, some hourly period 

time-dependent models (Bell et al., 1996; Lam and Zhang, 1999; Lam and Yin, 2001) 

have been presented to mainly investigate the daily travel distribution patterns by 

providing the traffic forecast in each time interval (1-2hr). They make some 

simplifications on the dynamics of traffic in transportation networks but still have the 

advantage of efficient computation and effective travel estimation for the purpose of 

long-term planning. 
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2.2 Utility of Activity 

The utility of activity at a certain time is defined as a function of satisfaction for 

performing the activity itself and intensity with which the activity is performed. Both the 

satisfaction and the intensity are time dependent. Supernak (1992) proposed the concept 

of time-dependent utility considering the utility of an activity determined by its type and 

duration. Lam and Yin (2001), Huang et al. (2002) and Adnan et al. (2009) applied the 

time-dependent utility profile to the activity choice problem combined with the dynamic 

route choice. The utility of a given activity depends on when the traveler starts the 

activity and how long he or she performs the activity. Here, the time-varying utility 

profiles by activity type are used for assessing utilities from activity participation. 

Assume the marginal utility function derived from a temporal utility profile for activity i 

is      , which represents the obtained utility from a time unit of performing activity i at 

time t. The total activity utility with starting time    and ending time    is computed as: 

                  
  

  

 

It should be noted that the temporal utility profiles would be different between activity 

types and traveler groups. Some efforts have been made to measure the utility of 

activities with real data (Kawakami and Isobe 1986; Kitamura and Supernak 1997). In 

this research, the temporal utility profile of each potential activity is predetermined for 

the studied commuters. 
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2.3 Activity-based Demand Modeling 

Since activity-based approaches to modeling travel demand are conceptually more 

appealing than the traditional trip-based methods, a number of activity-based travel 

demand forecast models have already been presented in prior studies. Ben-Akiva et al. 

(1996) proposed the activity schedule model system, and the system was implemented 

by using data from Boston (Bowman and Ben-Akiva, 2000). Oppenheim (1995) used a 

discrete choice model for activity locations together with static assignment on routes 

between the locations to combine activity location and travel choice. Lam and Yin (2001) 

incorporated the temporal utility profiles of activities into a DTA modeling framework 

to model travelers’ activity and route choice jointly. They developed a variational 

inequality-based formulation to assign traffic dynamically and brought consistency 

between choices and travel times. However, their framework does not consider network 

congestion and ignores the sequential selection process of trip chaining (i.e. linkages 

between consecutive activity-travel decisions). Abdelghany and Mahmassani (2003) 

explored a stochastic dynamic user equilibrium (SDUE) framework in which drivers 

simultaneously determine departure time, sequence of their activities, and path to the 

final destination at the origin in order to minimize their perceived travel disutility. 

However, their model only considered the fixed intermediate stops for individual 

traveler at the origin without dealing with the linkages between consecutive travel 

decisions, and they also treated the duration at intermediate stops exogenously. To 

overcome these deficiencies, Kim et al. (2006) presented a mathematical model for 

individual traveler’s activity chaining. The activity with the biggest utility among 
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activity alternatives was sequentially selected in the model, and then the starting time 

and duration were simultaneously determined based on the perceived time-dependent 

travel time. But they treated travel times as opportunity costs with a time constraint 

approach instead of converting to disutility in the model. Lin et al. (2008) developed a 

conceptual framework for integrating activity-based approaches and DTA techniques. 

Technical, computational, and practical issues involved in this integration were explored 

by using CEMDAP for activity-based modeling and VISTA for DTA modeling. 

However, their studies focused merely on realization of the module integration without 

proposing any theoretically sound model formulation. Zhang et al. (2005) analyzed the 

influence of bottleneck congestion on commuters by investigating departure time choice 

for the home–work tour as a trade-off between travel cost and the time-dependent 

activity utility. They established an equilibrium condition between the schedule choice 

pattern and network congestion through a fixed-point problem. However, they treated 

the travel time on links ideally as constants without considering the dynamic traffic 

conditions. Heydecker and Polak (2006) developed a model of tour scheduling with 

equilibrium analysis on congested network with peak-period tolling. Their model 

indicated how travelers could achieve identical utility by making travel choices within 

the network equilibrium. But their analysis on equilibrium behavior is difficult to 

address multi-stop tour situations due to the lack of consideration on the balance 

between sequential positions. 

This research attempts to gain insights into the effect of commuters’ scheduling and 

dynamic traffic conditions on their daily trip chaining behavior and the network 
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performance, especially aim at addressing the sequential activity choice problem for trip 

chaining. The proposed modeling framework is expected to be used as an effective 

activity-based travel demand analysis tool for long-term transportation planning. The 

remainder of this paper is divided into the following sections. After reviewing the 

literature in Section 2, we specify the studied problem in Section 3 and propose the 

methodology in Section 4. Section 5 illustrates the algorithm. In Section 6, we describe 

the experimental results. Section 7 provides the conclusions. 
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3. PROBLEM STATEMENT 

 

This research proposes a modeling framework for dynamic traffic assignment 

concerning commuters’ trip chaining behavior in order to grasp their activity-based 

travel feature and estimate daily travel distribution. A capacity-constrained network is 

designed such that network congestion would be accounted for. 

The studied network is denoted by (N, A), where N is the set of nodes representing 

various activity zones such as residential zones, work zones, shopping zones, and A is 

the set of arcs connecting these zones. A set of commuters always make daily travel 

decisions on what activity to take next and which route to choose for that activity 

destination. For example, a commuter may depart from residential zone (home) to work 

zone in the morning, go to shopping zone after work and then come back to home, or 

directly return home without visiting any other leisure zones, which forms different daily 

trip-chain patterns.  

In this research, given the number of potential travelers in each origin zone at initial 

time of study period and their temporal activity utility profiles, we discretely model 

commuters’ sequential activity choices and simultaneous route choices. The objective 

has two levels: to reach the user equilibrium condition for dynamic traffic assignment at 

each time interval and to achieve the stable daily time-dependent travel distributions. 

The travel costs under dynamic traffic condition are taken into account based on 

some flow conservation and flow propagation constraints. Considering the 

interdependence for activity choice and dynamic traffic assignment as well as the 
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complexity of network congestion, existence of equilibrium solutions for the proposed 

modeling framework is explored. In addition, a numerical example is designed to 

validate the proposed model. 
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4. METHODOLOGY 

 

We consider the following three basic assumptions in formulating the problem: 1) 

all the commuters on the studied network are considered to be behaviorally homogenous; 

2) the possible interaction with other networks is neglected; and 3) the link travel time 

would be linearly increased with queues. The following presents the notations for the 

problem formulation:  

Sets of Nodes 

• N = all nodes representing various activity zones 

• S = activity destination choice set, S   N 

Sets of Arcs 

• A = all arcs 

• B(r) = the set of links with tail node r 

• H(r) = the set of links with head node r 

Index 

• i, j, k = time slice index 

• r, s, l, m = activity zone index 

• a, b = link index 

• p = path index 

Parameters 

• T = a fixed study period 

•   = the duration of each time interval 
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•   = the utility value of unit travel time 

•   = the influence factor of successive activity choices on current activity choice 

•    = the number of potential travelers within zone r at initial time of study period 

•   
  = the free-flow travel time to traverse the link a 

•    = the maximum exit flow rate of link a 

Variables 

•        = the total utility of choosing activity destination s after r at interval k 

•       = the activity utility at position s during interval k 

•        = the estimated travel time from r to s departing at interval k 

•    
     = integer part of (              

•        = the probability of visiting location s after r at interval k 

•       = the number of potential travelers from zone r at interval k 

•        = the aggregate departure flow at interval k from r to s 

•   
      = the flow rate on path p with OD pair rs entering network at interval k 

•   
      = the travel time along path p with OD pair rs entering network at interval k 

•       = the travel time on link a for commuters entering this link at interval k 

•     
         = the minimum path travel time with OD pair rs 

•    
      = the inflow rate on link a at interval k departing from r to s via path p 

•    
      = the departure rate from link a at interval k departing from r to s via path p 

•       = the total inflow rate on link a at interval k 

•       = the total departure rate from link a at interval k 

•       = the cumulative arrivals at link a by interval k 
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•       = the cumulative departures from link a by interval k 

•       = the queue experienced by traveler entering link a at interval k 

•     
      = 0-1 integer variable and it is equal to 1 when the flow departing from r to s 

during interval i via path p will arrive at link a at interval k 

 

4.1 OD Demand Formulation for Trip Chaining 

To formulate the trip chaining process along with departure time choices, the study 

period T is discretized into a number of equal time slices. A commuter located in zone r 

at time interval k-1 will choose to perform a certain activity in the next time interval k 

from activity destination set S (zone r is also included in set S, which means the 

commuter can also choose to keep his stay at zone r for next time interval). Denote 

       as the utility value of choosing destination s after r at time interval k. 

Considering the systematic and random components of utility formulation, we have: 

                                   
        

   

                                       

where       is the activity utility at location s during interval k,        is the 

estimated travel time from r to s departing at interval k,   is the utility value of unit 

travel time,    
     is the equivalent number of time intervals for the travel time       , 

calculated as INT               with the duration of each time interval  , 

         
        is the utility of commuter’s choice with activity destination   at 

time interval      
       after he arrives at location s,     is the probability of 

visiting location   after s,   measures the influence of potential successive activity 
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choices on the current activity choice, and    is the random utility component which 

reflects the unobservable or immeasurable factors of utility or the errors in factor 

measurements. 

 It is noted that              
           can represent the interdependencies of 

consecutive activity choices in trip chaining, but it would lead to the recursiveness and 

burdensome computation for large transportation networks. This item was always 

ignored for simplicity as some previous activity-based models did (Fellendorf et al., 

1997; Lam and Yin, 2001). In this research, since we mainly focus on a small or medium 

sized network with commuters delimited to a local region, the different levels on the 

possible connection between activity locations can be enumerated depending on 

commuters’ potential choices. As illustrated in Fig. 2, suppose commuter is now located 

at Point 1 as the first level, then Points 2, 3, 4 are the potential location choices after 1 as 

the second level, and there are also different location choices following Points 2, 3, 4 

respectively as the third level. Considering the influence of successive activity choices 

on the current choice will become weaker at higher level, this significant item will be 

limited to the third level for trip-chain modeling here. Thus the complicated 

recursiveness can be avoided. 
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Figure 2 Hierarchical structure for activity location choices 

 

The random component    is assumed to be independent and identically Gumbel 

distributed, then the probability of selecting position s at time interval k can be estimated 

by the multinomial Logit model: 
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Within each zone r at each time interval k, there will be a number of potential 

travelers      , and only the number of potential travelers in each origin zone at initial 

time of study period is predetermined: 

                                                                                                                                   

Then, the aggregate departure flow at interval k from r to s can be formulated as: 

                     

 
                             

          

                              
          

   

                       

By calculating the aggregate departure flow at each time interval from each zone 

with Eq. (4), the computed travel demand distribution is elastic to the estimated utility 

value which depends on the dynamic travel time and temporal activity utility. Therefore, 

this proposed model can be used as OD demand analysis tool for trip chaining process. 

 

4.2 DTA on Capacity-constrained Network 

The activity choice (i.e. consecutive OD choice) behavior has been formulated in the 

last section, and now we consider modeling the combined activity and route choices in 

this section. The ideal dynamic user equilibrium (ideal DUE) condition is adopted here, 

as defined by Ran and Boyce (1996), which means “if for each OD pair at each time 

period, the actual travel times experienced by travelers departing at the same time are 

equal and minimal”. That is, the commuters who depart at the same time with the same 

destination choice will reach their destination simultaneously under the ideal DUE 

condition. The ideal DUE is one level of objective function aimed at each time interval 
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within a study day. The other level is to achieve the stable daily time-dependent travel 

distributions, which will be elaborated in Section 5. 

The ideal DUE formulation is equivalent to finding the optimal path flow vector    

such that the following conditions hold: 

  
          

     
                

       

     
                

       
                                                                    

    
     

 

                                                                                                                

  
                                                                                                                                 

where     
         is the minimum path travel time with OD pair rs,   is the duration 

of each time interval, and   
      is the path flow rate with OD pair rs entering the 

network at interval k. Eq. (5) represents that at equilibrium, for each OD pair, only those 

paths and departure times that have minimum travel time would be used, while the paths 

and departure times that are not used would have the travel time higher than or equal to 

the minimum travel time. Eq. (6) represents the flow conservation and Eq. (7) guarantees 

the non-negativity conditions. 

Besides, other constraints for flow conservation are: 
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where H(r) is the set of links with head node r, B(r) is the set of links with tail node r, 

        is the inflow rate on link a during interval k-1, and         is the 

departure rate from link a during interval k-1. 

Then, we formulate the link travel time and path travel time in a general 

capacity-constrained network. First assume the flow rates during each time interval are 

constant, and we have: 

                                                                                                             

                           

                                                    

where       is the cumulative arrivals at link a by time interval k,       is the 

cumulative departures from link a by time interval k.       is the travel time on link a 

for commuters entering this link at interval k. Here the departure rate during [    

               ] is supposed to be constant as            . 

Following the FIFO discipline, travelers would leave a link in the same order as that 

of their arrival at this link. Thus                   would always hold for any 

interval k, which leads to: 

                                                                                        

For a capacity-constrained network, we consider that there is a bottleneck at the end 

of each link with maximum flow rate   . For simplicity, the point queue concept is 

adopted here without considering the physical length of vehicles. Then, as Huang and 

Lam (2002) did, we formulate the travel time on link a for commuters entering this link 

at interval k as: 
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where   
  is the free-flow travel time to traverse the link a,       is the queue 

experienced by traveler entering link a at interval k. By combining Eq. (12) and Eq. 

(13): 

         
             

   
                                                                

Considering deterministic queuing theory, the departure rate from link a is 

formulated regardless of any possible effect from the downstream traffic flow: 

             
                      

              

                                                 
                                                  

By combining Eq. (14) and Eq. (15), the formulation of queue can be got: 

                                                                                                  

The link travel time can be calculated by Eq. (13) and Eq. (16) with the preservation 

of FIFO principle, as proved by Huang and Lam (2002). And it is obvious that in order 

to compute the link travel times, link inflow rates must be specified for each interval. 

The link-based flow propagation constraints are as follows: 
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where    
     and    

      are the path-specified link inflow rate and departure rate, 

respectively. So the link inflow rates can always be computed for each interval based on 

these path-specified flow propagation constraints. 

Then, the path travel time can be formulated as the sum of all the link travel times 

along this path: 

  
             

          

     
                                                                                      

     
     

 

                                                                                                                 

    
                                                                                                                       

where     
      is equal to 1 when the flow departing from r to s during interval i via 

path p will arrive at link a at interval k. It can be got that this path travel time 

formulation is non-linear and non-convex. 

Now the modeling framework for commuter’s daily trip chaining behavior has 

already been proposed. Since the activity choices are interdependent with real-time 

traffic conditions and the DTA technique is adopted in a capacity-constrained network, it 

is crucial that whether there exist equilibrium solutions for this discrete-time trip 

chaining problem when applying some feasible rule to recursively updating commuters’ 

departure flows. The discussions on the existence of equilibrium solutions will be 

conducted later. 
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4.3 Analysis on Equilibrium Solutions 

To analyze the existence of equilibrium solutions for the proposed modeling 

framework, we first consider the update mechanism for DTA process. Once the link 

travel times       for all links are estimated, the indicator variables     
      can be 

determined accordingly and the associated path travel times can be computed. Then 

some route swapping rule can be employed to update the time-dependent path inflow 

rates, thus the link inflow rates, link queues and link travel times would be updated 

accordingly. Therefore, the path travel time formulation is significant for this iterative 

process. 

It is already proved that the proposed path travel time formulation is continuous 

with the path inflow rates (Huang and Lam, 2002). And it is known that the 

monotonicity of path travel time formulation can guarantee that some iteratively update 

process of DTA would converge to equilibrium solutions. Smith and Ghali (1990) 

proved that the path travel time is a monotonic function in terms of path inflow rate in a 

dynamic network with only single link. Smith and Wisten (1995) also proposed that the 

path travel time function is monotonic if no path contains more than one active 

bottleneck in network. However, for the network where more than one active bottleneck 

exists on each path, it is hard to deduce the monotonicity of path travel time based on the 

monotonicity of link travel times. Thus, we could not guarantee that an algorithm would 

surely converge to some equilibrium solutions for the proposed modeling framework 

with a capacity-constrained network, since it may lead to only a locally stable solution 

instead. 
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On the other hand, it should be noted that the utility formulation of choosing activity 

position s after r at time interval k (Eq. (1)) partly depends on the travel time estimation 

from r to s, which would determine the time-dependent OD demand distribution for 

activity choices and then affect the OD travel time update process in return. In fact, the 

travel time estimation relies on the information provision for commuters. Considering 

that the feedback (i.e. dynamic OD travel times) from DTA model can update the input 

information for OD demand distribution, it is assumed that the OD travel times for 

commuters to make the next activity and route choices would always be estimated based 

on the prior available travel time information by use of time smoothing. The method of 

time smoothing is to create an approximating function that attempts to capture important 

trends in the data while leaving out noise. This real-time travel time estimation technique 

is employed in the proposed demand model. 

By combining this sequential activity OD choice model and DUE traffic assignment 

model, some converged solutions can be obtained for commuters’ daily trip chaining 

behavior with reasonable design of algorithm. 
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5. ALGORITHM 

 

In this section, an iterative algorithm is presented to solve the equilibrium solutions 

of the proposed modeling framework such that DUE conditions can be reached for DTA 

process along with converged daily travel distributions for commuters’ activity choices. 

This iterative algorithm is developed on the basis of the day-to-day route and 

departure time swapping process (Smith and Wisten, 1995; Huang and Lam, 2002). 

Considering the interaction of sequential activity OD distributions with DTA process, 

the basic idea of this algorithm is specified as follows. 

On a single day, to satisfy the DUE conditions for different time intervals, the 

time-dependent inflows for each OD pair on the non-cheapest paths are moved to the 

cheapest paths. The path inflow moved is proportional to the product of original path 

flows and travel time difference with cheapest paths, such that the commuters on path 

with large flow rate and with travel time far from the minimum travel time are more 

inclined to change route choices. 

The travel time estimation to compute the activity OD distribution for one time 

interval is based on smoothing travel time data from previous intervals. Then after the 

activity OD demands are obtained, the DTA process will be conducted again for this 

interval until user equilibrium condition are met. 
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Meanwhile, the commuters will adjust their travel choices based on increasing daily 

travel experience, thus this iterative process will have different runs to addresses the 

updated daily travel distributions until the total time-dependent activity choices and 

associated travel times converge. Fig. 3 represents this heuristic iterative procedure for 

the proposed modeling framework. 

The subscripts m, n indicates the travel day index, the iteration number for the DUE 

condition respectively. k represents the time interval index and K represents the total 

number of time intervals for daily study period. The algorithm is elaborated as following 

steps: 

Step 0: System initialization. 

Let m=1, k=0, n=0, for each activity choice OD pair, determine the initial travel time for 

all the enumerated paths under free-flow condition and find out the minimum OD travel 

time. Then go to Step 2. 

Step 1: Check the travel day index m for daily travel initialization. 

If m=2, estimate the initial minimum travel time for each activity choice OD pair based 

on the experience from the first travel day: 

     
            

         

If m>=3, estimate the initial minimum travel time for each activity choice OD pair by 

time smoothing: 

     
              

                    
         

Step 2: 
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For            , compute the OD choice probability       
  and demand 

distribution       
  based on the minimum OD travel time      

        . Assign the 

initial inflow onto the shortest path for time interval k by employing All-or-Nothing 

traffic assignment. 

Step 3: 

Compute the link inflow rates by Eq. (17-20), the link queues by Eq. (16) and the link 

travel time by Eq. (13).  

Step 4: 

Compute the path travel time by Eq. (21-23), and find out the minimum travel cost and 

the corresponding shortest paths: 

     
      

         
      

         

          
      

       
      

         

Step 5: 

Update the path inflow rates: 

  
        

    
      

       
      

      
      

       
      

         

         
      

      
      

       
      

  

     

 

  
        

     
      

  
  

     
       

Step 6: Check convergence of the inner loop for DUE. 

If 
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set k=k+1: if k<K, go to Step 2, otherwise, go to Step 7; 

Otherwise, set n=n+1, go to step 3. 

Step 7: Check convergence of the outer loop for daily OD demand distribution. 

If 

        
        

            
            

              
         

   

Stop. The current solution is the converged solution; 

Otherwise, set m=m+1, go to Step 1. 
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6. NUMERICAL EXAMPLE 

 

6.1 Experimental Results 

To validate the proposed modeling framework, we apply the solution algorithm to a 

simple transportation network as depicted in Fig. 4. It is delimited to a relatively small 

local region that consists of four activity zones: home zone, work zone, shopping zone 

and restaurant zone denoted as H, W, S and R respectively. The daily study time horizon 

is from 6am to 6pm. Initially there are totally 2000 behaviorally homogeneous 

commuters staying at home zone and they perceive the same temporal utility functions 

for these four activities as shown in Fig. 5. It is assumed that the vehicle occupancy is 

one person per vehicle here. For simplicity, single path with single link is set for 

different OD pairs in this simple test network such as from work zone to restaurant zone, 

except that two paths are set for the OD pair from home zone to work zone. We will test 

the DUE condition for these two alternative paths later.  

 

 

Figure 4 A simple transportation network 
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Figure 5 Temporal utility profiles for four activities 

 

As for the basic input of this test network, the parameters   and   in Eq. (1) are 

set to be 1.0 and 0.1 respectively,  ,   and   for the convergence of proposed 

algorithm are set to be 0.6, 2e-3 and 1e-5 respectively. The free-flow travel time and 

maximum exit flow rate for each link are listed in Table 1. The heuristic algorithm 

presented in last section is coded in Microsoft C++ and run on a desktop computer with 

Core 2 CPU @3.00 GHz and 8GB RAM. The results are presented in Figs. 6 and 7 for 

commuters’ distribution at different locations and their departure rate by time of day 

respectively. 
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Table 1 The input values for travel time functions 

Link Free-flow travel time (hr) Maximum flow rate (vph) 

H to W 
01 0.3 1000 

02 0.4 900 

H to S 0.5 800 

W to H 0.3 800 

W to S 0.3 800 

W to R 0.2 1000 

S to H 0.5 800 

S to W 0.3 800 

S to R 0.3 800 

R to W 0.2 1000 

R to S 0.3 800 

 

 

Figure 6 Commuters’ distribution by time of day 
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Figure 7 Commuters’ departure flow by time of day 

 

From these two figures, we can get a clear picture of commuters’ daily travel 

patterns on the network both temporally and spatially. It is shown that due to the high 

work utility, a number of commuters depart from home to work during 6-7am period and 

the departure rate increases to the peak during 7-8am period. Most commuters tend to 

have lunch at noon and their departure rate from work to eating zone reaches the peak 

during 11am-12pm period. After lunch, they will go back to work such that the departure 

rate from eating zone to work increases to its peak during 1-2pm period. Similarly, the 
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departure rates from work to home and from work to shop reach the peak around 5pm 

and 6pm respectively, which indicates that a large number of commuters will go back to 

home or go to shopping when their daily working hours are over. 

Table 2 displays the number of delayed commuters (i.e. hourly queue) at certain 

time periods. It is shown that there exist traffic congestions on Link 01 of Home-Work 

trip and also on Work-Restaurant and Restaurant-Work trips at their peak hours. Some 

transport policies on these congested areas such as expanding the road capacity can be 

implemented and evaluated on this network accordingly for the purpose of long-term 

strategic planning. 

 

Table 2 The recorded hourly delayed commuters 

Link Num. of delayed commuters Time period 

H to W 01 100 7am-8am 

W to R 20 11am-12pm 

R to W 90 1pm-2pm 

 

In addition, to test if the dynamic user equilibrium has been achieved on this 

network, the dynamic travel times on two alternative paths for the Home-Work trip are 

recorded and displayed in Table 3. It is indicated that under the dynamic user 

equilibrium condition, the commuters always choose the path that has the minimum 

travel time for each time interval. In particular, it is noted that during 7-8am period, two 

alternative paths have the same travel time due to the congestion on the Link 01 such 
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that a small number of commuters choose to travel on Link 02 under the equilibrium 

condition. 

 

Table 3 DUE conditions for OD pair: Home-Work 

Time period 
Inflow rate (vph) Real travel time (hr) 

Link 01 Link 02 Link 01 Link 02 

6am-7am 486 0 0.3 0.4 

7am-8am 1100 59 0.4 0.4 

8am-9am 365 0 0.3 0.4 

9am-10am 85 0 0.3 0.4 

10am-11am 43 0 0.3 0.4 

11am-12pm 36 0 0.3 0.4 

12pm-1pm 30 0 0.3 0.4 

1pm-2pm 23 0 0.3 0.4 

2pm-3pm 26 0 0.3 0.4 

3pm-4pm 42 0 0.3 0.4 

4pm-5pm 30 0 0.3 0.4 

5pm-6pm 18 0 0.3 0.4 

 

6.2 Sensitivity Test on Parameter   

   represents the utility value of unit travel time, and commuters may have different 

travel patterns if   value varies. Here the sensitivity test on   is conducted and the test 

results are displayed in Figs. 8-11 and Table 4. 
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Figure 8 Num. of commuters at work by time of day (sensitivity test on alpha) 

 

 

Figure 9 Home-Work departure flows by time of day 
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Figure 10 Work-Restaurant departure flows by time of day 

 

 

Figure 11 Restaurant-Work departure flows by time of day 
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Table 4 Hourly delayed commuters for various alpha values 

 

Alpha Value 

 

Num. of delayed commuters 

H to W 01 

(7am-8am) 

W to R 

(11am-12pm) 

R to W 

(1pm-2pm) 

0.1 100 82 114 

1 100 20 90 

2 100 0 70 

5 0 0 0 

10 0 0 0 

 

From Figs. 8 and 9, it is shown that with the increase of alpha value, the commuters 

tend to depart from home to work later in the morning, and due to higher disutility of 

travel time, most commuters prefer to stay where they were to continue performing 

present activities instead of switching to other activities. Similarly, more commuters 

prefer to stay at work and eat less outside at noon as shown in Figs. 10 and 11. This 

tendency also results in the alleviation of network congestion during certain activity 

peak hours. It is displayed in Table 4 that the number of delayed commuters decrease 

with larger alpha value since the commuters are not that inclined to make travel. 

 

6.3 Sensitivity Test on Parameter   

   represents the influence factor of successive activity choices on current activity 

choice, which features the linkages between consecutive activity-travel decisions. Here 

the sensitivity test on   is conducted and the test results are displayed in Figs. 12 and 

13. From these two figures, we can see that the commuters are not that forced to work 
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with larger beta value and a number of them tend to perform other activities instead such 

as shopping, which indicates the activity schedule is more flexible for commuters. With 

the increase of beta value, the commuters’ activity distribution becomes more spread out 

due to the interaction of different activity choice levels. 

 

 

Figure 12 Num. of commuters at work by time of day (sensitivity test on beta) 
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Figure 13 Commuters’ departure flows by time of day (sensitivity test on beta) 
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7. CONCLUSIONS 

 

In this research, a dynamic traffic assignment modeling framework concerning 

commuters’ trip chaining behavior is proposed on a capacity-constrained transportation 

network. Commuters’ sequential activity choices and simultaneous route choices are 

discretely modeled with a comprehensive objective: to reach the user equilibrium 

condition for DTA at each time interval and to achieve the stable daily time-dependent 

demand distributions. 

A heuristic solution method is proposed and applied to a simple transportation 

network. The numerical results illustrate the commuters’ daily travel patterns and 

network performance temporally and spatially. Through the numerical tests, the 

proposed formulations and algorithm are validated. Sensitivity analysis is also conducted 

on parameters  ,  . Commuters prefer to stay where they were to continue performing 

their present activities instead of switching to other activities when a higher disutility is 

associated with a unit travel time. The commuters’ spatial activity distribution becomes 

more spread out and their activity schedules are more flexible when their consecutive 

activity choices have more intense interaction. 

We have provided a behaviorally realistic DTA model to feature trip chains. When 

this new model is employed as a new travel demand analysis tool for long-term 

transportation planning and transport policy evaluation, impact on the outcome from the 

traditional DTA models can be real. In addition, our proposed modeling framework can 
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assess policies such as employing time-varying tolls and staggered work hours in order 

to reduce network congestion. 

Future work will include the development of more precise link travel time 

formulation and the application to the large-scale transportation network. It will be 

significant if travelers’ trip chaining travel data is available for model calibration. 
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