
  

 

 

 

ADEQUACY ASSESSMENT IN POWER SYSTEMS USING GENETIC 

ALGORITHM AND DYNAMIC PROGRAMMING  

 

 

A Thesis 

by 

DONGBO ZHAO  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

December 2010 

 

 

Major Subject: Electrical Engineering 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147136974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adequacy Assessment in Power Systems Using Genetic Algorithm and Dynamic 

Programming 

Copyright 2010 Dongbo Zhao  

 



  

 

 

 

ADEQUACY ASSESSMENT IN POWER SYSTEMS USING GENETIC 

ALGORITHM AND DYNAMIC PROGRAMMING  

A Thesis 

by 

DONGBO ZHAO  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Chanan Singh 

Committee Members, Aniruddha Datta 
 Georgia-Ann Klutke 
 Mehrdad Ehsani 
Head of Department, Costas Georghiades 

 

December 2010 

 

Major Subject: Electrical Engineering 

http://www.ece.tamu.edu/People/bios/bgeorghi.php


 iii 

ABSTRACT 

 

Adequacy Assessment in Power Systems Using Genetic Algorithm and Dynamic 

Programming.  

(December 2010) 

Dongbo Zhao, B.S., Tsinghua University 

Chair of Advisory Committee: Dr. Chanan Singh 

 

In power system reliability analysis, state space pruning has been investigated to 

improve the efficiency of the conventional Monte Carlo Simulation (MCS). New 

algorithms have been proposed to prune the state space so as to make the Monte Carlo 

Simulation sample a residual state space with a higher density of failure states. 

This thesis presents a modified Genetic Algorithm (GA) as the state space 

pruning tool, with higher efficiency and a controllable stopping criterion as well as better 

parameter selection. This method is tested using the IEEE Reliability Test System (RTS 

79 and MRTS), and is compared with the original GA-MCS method. The modified GA 

shows better efficiency than the previous methods, and it is easier to have its parameters 

selected. 

This thesis also presents a Dynamic Programming (DP) algorithm as an 

alternative state space pruning tool. This method is also tested with the IEEE Reliability 

Test System and it shows much better efficiency than using Monte Carlo Simulation 

alone. 
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CHAPTER I 

INTRODUCTION  

 

 This thesis is about the improved methods for state space pruning in the 

reliability calculation of power systems. These methods are expected to help prune the 

state space of a power system more efficiently and effectively. In order to discuss these 

methods, introduction to power system reliability analysis is made in this chapter. 

 A power system can consist of several functional parts: the generating part, the 

transmission and distribution part, and the load. Generally speaking, the generating part 

is collection of the generators, no matter what energy sources they are using (thermal, 

nuclear, hydro, etc.); the transmission and distribution part refers to the transmission and 

distribution lines and their accessories, like the circuit breakers; the load often refers to 

the utilization of the electric energy, with specific energy consumption expressed in 

MWh.  

 Power systems are connected to ensure energy flow, and hence the planning and 

the analysis of the connected power systems become essential for the power system 

operation and energy consumption. The reliability indices help to ensure reliable power 

system operation, although target setting of indices might be different among different 

power systems. The entire electric power system is aimed to be running in the most 

economical fashion while meeting the required reliability limits, i.e., maintaining a 

____________ 

This thesis follows the style of IEEE Transactions on Power Systems.  
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reasonable level of reliability.  

 The field of power system reliability analysis was firstly brought into practice 

based on the computational methods developed 1970s, that have been widely used in the 

electric power systems in USA. Improvements of the computational algorithms have 

been continuously proposed to deal with higher complexity and computing the reliability 

indices more efficiently. 

 The power systems have some characteristics that have made their reliability 

analysis different from other fields. The most typical one is the transmission and 

distribution constraints, which have made the analysis complicated. These constraints 

need to be met in order to maintain the normal operation of the power system, while the 

change in generation and in load would certainly bring change to the flow over the 

transmission lines. Therefore the transmission and distribution line constraints are to be 

met at all times. In order to have these constraints met, it is not the simply having the 

generation equal to or greater than the load.  

 The generation parts of the power system consist of different groups of 

generators, which have certain capacities and probabilities of failing. The data of the 

probability of a generator’s failing is normally based on the statistics collected from the 

field experience. A generator can fail completely, or to a degraded level which is 

normally called the “derated” status. Generators with the same capacity and failure rate 

are often categorized into one group, which makes the generation part consist of several 

groups of generators. We can consider the generators within one group identical to one 

another, which can simplify adequacy assessment problems in the reliability analysis. 
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 When taking the transmission line constraints into consideration, the power 

system reliability analysis is called the composite power system reliability analysis. The 

composite system analysis involves the power flow calculation, and comparison with the 

transmission line constraints, which becomes quite complicated. When considering the 

improvement over existing reliability analysis methods, we are more tending to start 

from the single-area evaluation, which is concerned with the adequacy of generation to 

supply load, while not considering the transmission constraints. 

 The load of a power system is changing all the time, which can be understood 

intuitively by the switching of any household appliance from up to down. There are 

curves showing the fluctuation of the load during a day or a week, which reveals that 

within a certain area of the power system, there is always maximum load which comes 

during certain period of time. In reliability analysis, the load can be modeled as different 

time variant constants. When considering the generation adequacy, it is important to 

consider that the peak load is satisfied. 

 The calculation of reliability indices will be discussed in detail in the following 

chapters of this thesis. This thesis focuses mostly on the state space pruning technique in 

adequacy assessment problems, introducing new algorithms or improvements over 

existing ones, to help truncate the state space of the power system more efficiently and 

effectively. Case studies are performed to show the improvement of the state space 

pruning techniques.  

 This thesis describes two methods of adequacy assessment using state space 

pruning techniques: modified genetic algorithm and the dynamic programming. The two 



 4 

techniques help the state space pruning process converge faster than conventional 

methods. These pruning methods are then combined with Monte Carlo simulation to get 

the final reliability indices. Detailed definitions are included in the following chapters. 

 In this thesis, Chapter I is the introduction to power system adequacy assessment 

and the brief introduction of this thesis; 

 Chapter II is the explanation of the calculation of reliability indices and state 

space pruning of the power system; 

 Chapter III is about the modified genetic algorithm used in the state space 

pruning process in adequacy assessment problems, with case study illustrating the 

improvement; 

 Chapter IV is about the dynamic programming algorithm used in the state space 

pruning process in adequacy assessment problems, with case study; 

 Chapter V is the conclusion of this thesis. 
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CHAPTER II 

STATE SPACE PRUNING IN ADEQUACY ASSESSMENT  

 

 The basic function of a modern electric power system is to provide an adequate 

supply of electrical energy to its customers as economically as possible and with a 

reasonable level of continuity and quality. Quality in this sense implies constancy of 

system voltages and frequencies. The ability of the power system to meet its load 

requirements at any time is referred to as the 'reliability' of the system. 

In power system reliability analysis, the objective is commonly the calculation of 

the reliability indices of a given power system, and their comparison with the pre-set 

reliability requirement limit. The reliability requirement limit is set beforehand for the 

specific system, with detailed range of indices required for a certain level of operation.   

System reliability can be classified into two distinct aspects of system security 

and system adequacy. System security involves the ability of the system to respond to 

disturbances arising internally, whereas system adequacy relates to the existence of 

sufficient facilities within the system to satisfy the customer load demand. 

 Although the calculation of the reliability indices of the power system is not in 

real time, it will need to be done as fast as possible. This is because reliability 

calculations may need to be performed many times for a given planning study. 

In this chapter, the calculation of reliability indices of single area power systems 

will be shown, followed by the description of state space pruning in adequacy 

assessment process. 



 6 

A. Single Area Power System Reliability Analysis 

In single area power system reliability analysis, the adequacy of generation to 

supply load is considered, without concerning the transmission constraints, i.e., 

assuming that transmission system can transport generation to load points. So the 

reliability analysis of single area power system is mostly dealing with the generating 

capacity evaluation, which is the adequacy assessment. Generation adequacy is usually 

predicted using one or more indices which quantify expected system reliability 

performance, and implemented using criteria based on acceptable values of these 

indices. A complete reliability evaluation of a power system involves a comprehensive 

analysis of its three principal functional zones, namely generation, transmission and 

distribution. These functional zones can be combined to give the hierarchical levels (HL) 

under which the various techniques used in adequacy assessment are grouped. Adequacy 

assessment at HLI is concerned only with the generation facilities. The transmission and 

distribution facilities are assumed to be fully reliable and capable of moving the 

generated electrical energy from the generation points to the customer load points. At 

HLI therefore, only the total system generation is examined to determine its adequacy to 

meet the total system load requirements. HLII assessment includes a composite appraisal 

of both generation and transmission facilities and HLIII involves all three functional 

zones in an assessment of a customer load point adequacy. This thesis is restricted to 

generation adequacy assessment at HLI which deals with generation adequacy 

assessment. 
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Therefore, the consideration of single area reliability becomes the adequacy 

assessment which is: 

 Usually measured through the use of some reliability index, which is also 

the adequacy index that quantifies system reliability performance and it is 

enforced through a criterion based on an acceptable value of this index; 

 The load used for the determination of whether the generation is adequate 

or not can be either the peak load of or the load cycle over the period of 

investigation. 

Reliability indices can be generally divided into two categories: 

 Deterministic indices: the indices that reflect postulated conditions. They 

are not directly indicative of the factors that affect power system 

reliability and are therefore of little use. Their calculation is simple and 

requires little data. These indices include the percent reserve margin, 

which reflects the excess of installed generation capacity over annual 

peak load, and the reserve margin in terms of largest unit, which 

recognizes the importance of unit capacities in relationship to reserve 

margin. 

 Probabilistic indices: the indices that directly reflect the uncertainty in the 

power system reliability and have the capability of reflecting the various 

parameters which can impact the system reliability. These indices permit 

the quantitative evaluation of system alternatives through direct 

consideration of parameters that affect reliability. This is the most 
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commonly used criterion of the power system reliability analysis. 

The most commonly used probabilistic index is Loss of Load Expectation 

(LOLE). This index is usually obtained from the calculation of Loss of 

Load Probability (LOLP).  The other indices are Loss of Load Frequency 

(LOLF), Loss of Load Duration (LOLD) and Expected Energy Not 

Supplied (EENS). The relationship between LOLE and other indices is: 

               

 

B. State Space Pruning 

In this study, the state space of a power system is defined to consist of all 

possible states of generators, with each generator having its success (up) and failure 

(down) states only. In order to make the adequacy assessment, we only consider the 

generating capacity in comparison with the total load of the system, so as to show the 

improvement over existing state space pruning methods. Power flow and transmission 

congestion issues are not included. A success state means that the generating capacity is 

no less than the total load, while the failure state means that the generating capacity is 

less than the total load, where the total load is set at a constant value in both cases. When 

the system is having “n” generating units, with each unit having 2 states: up and down, 

the total number of states of the system is: 

n
K 2  

Each of the K states represents a system state, and each system state is defined by 

the status of n binary components.  
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State space pruning as approached in this thesis is based on the findings 

presented in reference [1]. This paper proposed a computationally efficient linear 

program for calculating the DC load flow model while describing the pruning based on 

the decomposition-simulation methodology. This reference also developed the theory 

and mathematics behind this methodology in a solid and concise fashion. State space 

pruning itself is a methodology applied in simulations, particularly Monte Carlo 

Simulation (MCS), in order to reduce the number of states sampled while awaiting 

convergence of the algorithm. This is discussed in detail in reference [1] where success 

states are pruned away from the main state space in order to create a higher density of 

failure states. The figures from that paper best describe the application and usage of state 

space pruning: 



 10 

 

Fig. 1 State Space Pruning Description [1] 
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After truncating some of the coherent acceptable sets (success states), the state 

space is truncated into a partial state space, i.e., the pruned state space with high density 

of unacceptable sets (failure states). This higher density of failure states allows the MCS 

to sample more failure states which, in turn, forces the MCS to converge faster. Once the 

MCS has converged, the reliability indices calculated must be re-calculated through the 

reintroduction of the pruned states. This process of pruning, simulation, and re-

calculation allows the estimation of the original state space more efficiently.  

As an example, consider a very small state space that is comprised of 50 success 

states and 50 failure states for a total of 100 states. Without pruning, the density of 

failure states is 50%. When this state space is subjected to pruning, a portion of the 

success states will be removed. Consider the removal of 40 success states through 

pruning. Not only has the entire state space shrinks by 40%, but the density of failure 

states has also increased from 50% to 50/60= 83.3%. When MCS is run against this 

pruned state space it should converge much more quickly as a larger portion of sampled 

states will be failure states. Of course, the indices over the pruned state space will need 

to convert into the corresponding indices over the original entire state space, with the 

conditional probability of the pruned state space, which is the α shown in Fig. 1. The 

value of α or (1- α) is obtained with the calculation of the probability of each success 

state, and have the ratio of their sum over the probability of the whole state space, which 

is 1 in the figure. The conversion of the pruned state space to the original state space will 

be described in detail with equations in the next two chapters, along with specific state 

space pruning techniques. 
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C. Monte Carlo Simulation and Pruning Techniques 

Adequacy assessment analysis of power systems can be treated as a large and 

complex combinatorial problem. Because of this, the difficultly in computation increases 

dramatically as the dimensionality of the problem increases. Probabilistic methods are 

increasingly becoming popular in power system reliability evaluation due to their 

capability of accounting for increasing system uncertainties. Recent work has been done 

in both Monte Carlo Simulation (MCS) and Population-based Intelligent Search (PIS) in 

order to develop new, improved, and computationally more efficient methods for power 

system adequacy evaluation.  

Reliability indices of an actual physical system could be estimated by collecting 

data on the occurrence of failures and durations of repair. The Monte Carlo method 

mimics the failure and repair history of components and the system by using the 

probability distributions of component states. Statistics are collected and indices 

estimated by statistical inference. 

Monte Carlo simulation is based on stochastic simulation which can be used for 

evaluating reliability indices of power systems at various levels. MCS itself comes in 

two forms: sequential and non sequential. In sequential MCS, system states are typically 

sampled in time order over different periods. This usually requires greater computational 

effort. In non-sequential MCS, the system states are sampled randomly. This enhances 

computational efficiency and it is the preferred method for this work unless sequential 

correlations need to be considered.  
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Generally speaking, the use of MCS comes with both advantages and 

disadvantages. The major advantage of MCS is that it is able to deal with large and 

complex power systems. The disadvantage of MCS is that the time for convergence for 

highly reliable systems can become very long. Although the convergence time of the 

MCS does not depend on size but the computational time for evaluating the states for 

large systems can be quite long. The disadvantage in the use of MCS is that as the 

dimensionality of the modeled system increases so does the computational time. Large 

or complex systems with high reliability may require such a large number of states to be 

sampled that MCS will run for an unacceptable amount of time before converging. 

Because of this, efforts have been made to reduce the computational time of MCS by 

improving convergence. This is the main objective of the state space pruning process.  

PIS is another methodology that has been applied to the reliability evaluation of 

power systems. As applied to system adequacy, PIS has turned out to be an effective 

alternative to existing methods since it is able to achieve higher convergence 

performance in some scenarios. This is mainly for two reasons: PIS does not sample 

states in a totally random fashion and PIS evaluates multiple states simultaneously. It is a 

directed search for improving the objective placed before it. Thus objective functions 

must be chosen to fit the given situation. Typically when measuring adequacy this means 

designing objective functions that encourage the generation of dominant failure states 

which leads to the sampling of less states for convergence. With regards to the 

simultaneous evaluation of multiple states, PIS algorithms do not work with one possible 

state at a time but with a population of states at a time. Each iteration or generation of a 
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PIS generates and evaluates multiple states. PIS has been applied to multiple reliability 

problems in the field of power systems as detailed in reference papers. This thesis will 

examine the use of PIS algorithms in order to prune the given state space so that MCS 

may accomplish better convergence.  

In this thesis, MCS is used as the basis for comparison, i.e., newly proposed 

approaches for state space pruning are to be compared for efficiency with the method of 

using straight MCS without state space pruning.  The state space pruning process is the 

essential part to be considered in the two newly proposed methods in this thesis: the 

modified genetic algorithm and the dynamic programming algorithm. However, as 

complete adequacy assessment methods to calculate the final reliability indices of a 

power system, the combination of the state space pruning algorithms with MCS will be 

needed to complete the calculation. 
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CHAPTER III 

ADEQUACY ASSESSMENT USING MODIFIED GENETIC ALGORITHM 

 

Several methods have been previously developed to assess the power system 

reliability and calculate the reliability indices. Adequacy assessment of power systems is 

an important issue in the reliability analysis. The methods in the adequacy assessment 

can be primarily divided into two categories: analytical algorithms and numerical 

simulation algorithms. Recent studies on this topic focused mostly on the numerical 

simulation algorithms, and have concentrated on Monte Carlo Simulation [1] and 

intelligent methods [2] such as Genetic Algorithm. Most intelligent methods are 

population based, and aim at generating certain kinds of states so as to analyze the state 

space. Intelligent methods have been shown to introduce more computationally 

efficiency, and clearer steps in the analysis of state space. 

Genetic Algorithm has been previously used in the calculation of reliability 

indices of power systems. In power system reliability calculations, it has been used 

primarily as a search tool to identify states with specific characteristics. 

Previous studies on the application of Genetic Algorithm in reliability evaluation 

of power system was originally developed by Singh’s group at Texas A&M and later by 

many other researchers. Reference [3] discussed the usage of GA as a state sampling tool 

for the composite generation and transmission system, and [4] provided the GA 

sampling techniques regarding multi-state components. More detailed work has been 

done to by Wang and Singh, with focus of the application of GA together with Monte 



 16 

Carlo Simulation to analyze the state space of composite power system [5], [6]. Various 

ways of developing the Genetic Algorithm in order to have faster convergence of the 

calculation or to have better computational efficiency have been described. These 

include parallel GA in combination with Monte Carlo simulation. 

The mechanism of Genetic Algorithm is described in detail in [7] and [8]. In [7], 

a unique simple Genetic Algorithm is proposed in the adequacy assessment of power 

system generation, without any additional technique like Monte Carlo Simulation. It uses 

only the GA as the sampling tool and does the calculation of reliability indices only from 

the result of GA, which provides an easier coding and faster convergence than many 

conventional methods. In [8], the combination of GA and Monte Carlo simulation (GA-

MCS) as a new approach is proposed, with better control of the state space pruning 

status and the overall efficiency. This thesis presents a modified GA-MCS method that 

has better efficiency and parameter control, based on the GA method in [7] and the 

combination of GA and Monte Carlo simulation in [8]. 

 

A. Basis of the Proposed Method 

 The State Space to Be Pruned 

As described in the last chapter, the state space of a power system is defined to 

consist of all possible states of generators, with each generator having its success (up) 

and failure (down) states only. In order to make the adequacy assessment, we only 

consider the generating capacity in comparison with the total load of the system, so as to 

show the improvement over existing state space pruning methods. 
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When the system has “n” generating units, with each unit having 2 states: up and 

down, the total number of states of the system is: 

n
K 2                         

Each of the K states represents a system state, and each system state is defined by 

the status of n binary components. 

 

 Permutations 

Normally, there are many generators in a power system that have identical 

generating capacity and identical failure rate. As discussed above, when considering 

each generator as a two-state component, generators with the same capacity can be 

represented in an identical manner. 

For example, if 5 generators all have capacity of 400MW each, then the total 

output of the 5 generators will be 0, 400, 800…, and 2000MW. When only the output 

generating capacity of the 5 generator group is taken into account, the cases of having a 

certain output, like 800 MW, are following the permutation of having 2 of the 5 up and 3 

of the 5 down. Then the total number of states of having 800 MW is: 
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N

              

The probability of having 800MW output is: 
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Where FOR is the forced outage rate of these 5 generators, i.e., the probability of 

its being “down”. 

 

 Genetic Algorithm 

The primary use of the GA is to find the optimal value of a certain function under 

some constraints. A GA is a simulation of evolution where the rule of survival of the 

fittest is applied to a population of individuals. In the basic GA, an initial population is 

randomly created. Population individuals, called chromosomes, are then evaluated by 

applying some function or formula. A new population is selected from the old one based 

on the fitness value of the individuals. Some genetic operators are then applied to some 

of the newly selected population to create the final new generation. The most commonly 

used genetic operators are crossover and mutation. The process is repeated from one 

generation to another until reaching a stopping criterion. 

Using binary number to represent up and down as 1 and 0, each state in the state 

space becomes a chromosome in GA. The length of the chromosome, i.e., the number of 

generators, is equals to n. 

As discussed above, generators can be divided into groups, based on the 

generation capacity. Generators with identical capacity and failure rate are defined to be 

within the same group. Therefore, the chromosome can be divided into q groups, with 

the i th group having Li generators, 

n
q

i
i

L 




1   
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Normally, the Genetic Algorithm has three major steps in generating new states: 

 Selection: selecting from former generation, based on certain criteria; 

 Crossover: having certain pairs of chromosomes exchange in certain bits; 

 Mutation: having certain bits of certain chromosomes change from 0 to 1 

or from 1 to 0. 

GA commonly follows the procedure from selection, crossover, and then to 

mutation. The mechanisms of deciding which bit or which pair of chromosomes should 

be operated, the crossover or mutation is based on the parameters: crossover rate and 

mutation rate, which means to have a designated proportion of the bits or pairs to be 

operated. The first generation is usually generated randomly, following similar random 

number generation process as Monte Carlo. The selection process normally follows 

probability gain, i.e., the one with larger probability in the “father” generation is more 

likely to be selected.  

 

 Genetic Algorithm in State Space Pruning 

In this paper, GA is used primarily in the state space pruning process. After 

pruning the state space, the residual state space can be analyzed using various kinds of 

tools, in which Monte Carlo is the most typical one. GA has shown its efficiency in 

generating success states that are needed to be pruned. When the success states 

generated are truncated, the pruned space will have a higher density of failure states, so 

it will converge faster in the reliability calculation process. For example, if a state space 

is composed of 80 success states and 20 failure states, after pruning 60 success states, the 
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percentage of failure states will be raised significantly from 20% to 50%. Usually, the 

probability of the pruned states is the key point of the pruning. If a state space is having 

success states occupying probability 0.9 and failure states 0.1, then after pruning 0.8 

success probability, the state space is having 0.1/0.2=50% rather than 0.1/1=10% at the 

beginning.  Taking both the pruning and calculation steps into account, the total time and 

accuracy will be the criteria to judge whether a method increases efficiency. 

In [7], GA is used as the final calculation tool of reliability indices. In [8], GA is 

used only in the pruning process to generate success states, which are later truncated to 

form the pruned state space so as to increase the density of failure states in the residual 

space. Monte Carlo simulation is used to obtain the final calculation results, so that this 

method is named GA-MCS. Both the methods in [7] and [8] are generally faster in the 

total reliability analysis time than conventional methods.   

 

 Modified GA-MCS and Its Parameter Selection 

The method proposed in this paper is based on the GA-MCS but has significant 

differences. With the introduction of permutation within generation groups, the GA part 

will be faster in generating new states.  

In the GA process, the three operations are in the sequence as: selection, 

mutation, and crossover. This is because from the past experience, the mutation rate is 

hard to decide, but has important influence on the pruning speed. Intuitively speaking, 

when the selection process selects states from the first generation, the states and their 

permutations that have large probabilities are most likely to be selected. If followed by 



 21 

the crossover operation, it will not introduce many new states because they are mostly 

“success” states, i.e., having very few 0s but mostly 1s. Then the essential step in 

generating new states is the mutation operation. But by putting mutation before 

crossover, not only this mutation but also the crossover process will notably produce 

new states. 

GA and the modified GA are showing to have fast pruning speed at the 

beginning but becomes flat soon. Hence the criterion of the GA in the pruning process 

can be determined using the slope of increasing success states pruned within certain unit 

of time. 

In the previous study, it has been shown that a suitable set of GA parameters is 

essential to have the best pruning process. It is discovered in [7] that GA is not strongly 

dependent on the population size, or the crossover rate, but is significantly affected by 

the mutation rate. The change of mutation rate of GA shows difference in the number of 

states and the probability of these states generated, but is not indicating a clear trend. 

Therefore, mutation rate is often set as GA recommended number, like 0.06 in [7].  

In the modified GA-MCS method proposed in this thesis, since the mutation 

operation is moved before crossover, experiments have shown that the change of 

mutation rate will have obvious effect and will be easy to find the tendency of the 

change on the states and their probability generated. The other parameters, the crossover 

rate and the population size, are shown to be still not having significant influence. 

Therefore, the selection of parameters will have clearer rules. 
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B. Algorithm Structure 

 First Generation 

The first generation is generated randomly. Meanwhile, the following tasks need 

to be done: 

 Select parameters: population size, mutation rate, crossover rate, stopping 

parameter 

 Input system information: generator capacities, generator groups, 

reliability parameters of generators (FOR,  , µ), peak load of the system 

 Calculate the generating capacity of each state generated, and compare 

with the peak load 
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where bj is the binary number of the ith generator representing its up or down 

status, and capj is the capacity of the ith generator. 

 Calculate the probability of each chromosome 
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 For the state generated, examine whether it has been generated or its 

permutation states have been generated. If not, calculate its permutations: 
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where L represents the success states in its group and O is the number of 

generators in that group. 

 Evolution of New Generation 

 Selection: the selection process is described in detail in [7]. In the 

selection operation, a state is selected based on its permutation probability, 

which is: 




Pperm

i
P

i
perm

i
ps

*

*

   

and random number is generated to fall within one of the  intervals of ps. 

 Mutation: for the states selected from the “father” generation, mutation 

operation is applied by having each bit of the chromosome examined with a 

random number generated and compared with the designated mutation rate. If 

it is less than the mutation rate, then the bit is changed. 

 Crossover: for each pair of the states after mutation, generate random 

number to compare with the crossover rate. If it is less than the crossover 

rate, then apply the crossover by generating an integer from [0, 1… n-1] to 

decide from which bit the two chromosomes exchange. 

 Keep generating new generations and store all success states and their 

probability, until the program meets its stopping criterion. 
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 Stopping Criterion 

During the generation of success states, keep calculating the slope, i.e., the 

incremental speed of the success probability generated. Set a constant parameter Sc to 

compare with the slope. When the slope is less than Sc, the pruning program will be 

stopped. 

Another way of setting the stopping criterion is to set a constant parameter Ps, 

which means the desired pruned success probability. When the total probability of 

success states becomes or exceeds Ps, the program is stopped. This stopping criterion is 

easier to set but may cause some problems. When Ps is too large, the pruning process 

will have lack of efficiency because it will converge much slower. When Ps is too small, 

it will not fully use the effect of the pruning operation. 

 Monte Carlo Simulation 

In the pruned state space, Monte Carlo simulation is then applied, until its 

stopping criterion is met. Monte Carlo simulation will sample  states within the residual 

state space, and store all the failure states it has generated, in order to calculate the 

reliability indices.  

 Calculation of Reliability Indices 

The calculation of reliability indices involves the calculation of LOLP and other 

indices. The calculation needs to consider both the states generated by Monte Carlo 

simulation, and the state generated by the pruning process. It will then obtain the final 

LOLP based on the conditional probability of the pruned space. The pruned state space 

has a probability of: 
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The LOLP based on the LOLP of the pruned space is: 

MCS
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Other reliability indices can also be obtained from the results of the Monte Carlo 

simulation, and can be converted to the original state space as shown in the equation 

above. 

 

C. Case Studies and Results  

We tested the modified GA method and the previous method in the pruning of 

the state space on the same computer and with same coding person and coding 

technique. The software in this study was written in Matlab. 

The methods were tested using two different test systems: IEEE-RTS79 (RTS79) 

[9] and the Modified Reliability Test System (MRTS) [10], [11]. IEEE RTS79 system is 

a test system consisting of 24 buses, 38 transmission lines, and 32 generators. The 

annual peak load for the system is 2850 MW and the total generating capacity is 3405 

MW. MRTS is the same as RTS79 except that all generation levels are doubled and all 

load levels are raised to 1.8 times. Hence the peak load of the system becomes 5130 MW 

and the generating capacity is 6810 MW. These systems were chosen based on the fact 

that most GA methods proposed so far have used these systems to test. 
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In this study, only the peak loads in these test systems are considered to give the 

adequacy assessment. When testing in the MRTS system, it gives similar results as in 

RTS 79 system. The following figures are mostly results from RTS79 system. 

 State Space Pruning Process 

The following parameters are used: input population size =40, crossover rate 

=0.5, mutation rate =0.5. The mutation rate is selected based on the discussion below in 

B part. The stopping criterion of the pruning process is Sc=40,000. The time in the 

figure is the CPU time. Figure 2 is the number of the success states pruned by the 

proposed method.  

With the same parameters, the previous GA will prune as shown in Figure 3. In 

these figures, the number of the success states pruned has “jumps” because of the 

permutation number of each success state is taken into account. This is an advantage of 

the application of the permutation numbers because the success states will be truncated 

in groups when one of the permutation states is generated. 

It can be seen that the modified method is much faster than the previous GA in 

the pruning process when counting the number of success states. For the following 

procedure, the pruned space will be used with Monte Carlo simulation. 

Figure 4 and Figure 5 are the probabilities pruned by the proposed method and 

by previous method. As a searching tool, GA cannot always get the same result in every 

run. But the tendency will be clearly shown after running 20 times. Figures in this paper 

are typical results from the 20 runs. 
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Fig. 2 Success States Pruned by Modified Method vs. Time  
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Fig. 3 Success States Pruned by Previous Method vs. Time 
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Fig. 4 Success Probability Pruned by Modified Method vs. Time  
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Fig. 5 Success Probability Pruned by Previous Method vs. Time 
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search. It can be seen from the figure that selecting a mutation rate for the method 

proposed to be between [0.51, 0.68] would be the best.  

Figure 7 shows a curve similar to that of Figure 6 under the previous method but 

it is hard to tell the tendency of the change of mutation rate and its impact on the states 

pruned. Also as discussed in [7], it is hard to decide the selection of the mutation rate. 

Figure 7 has longer running time because under some mutation rate, the converging time 

is longer. Figure 7 indicates that the mutation rate does not have controllable impact on 

the pruning process, and in addition, when the system changes, there will be no clear 

criterion to select the mutation rate. But in the modified method, as indicated in Figure 6, 

the mutation rate always has a clear tendency of its impact on the pruning.  

 

Fig. 6 Success States Pruned by Modified Method vs. Time with Various Mutation Rates  
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Fig. 7 Success States Pruned by Previous Method vs. Time with Various Mutation Rates 
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difference when the programmer and the platform differ [13]. In software like GAlib, 

numbers of packages may be easier to use to help evaluate the method proposed.  

About the parameter selection, it is almost impossible to form mathematical 

model for every parameter [14]. Experimentation is essential, but will be different for 

different cases. A common conclusion is that the mutation rate can be within a certain 

range so as to ensure the pruning process, but this advantage over the conventional ones 

may also vary when the system changes. 

The criterion in this thesis is the time of running the program, but sometimes the 

selection of application of a method in calculating reliability indices depends on many 

other aspects. This requires further development. 

 

E. Conclusion 

This chapter has presented a modified Genetic Algorithm used in the state space 

pruning process to help faster pruning of success states. The major differences of this 

method with the previous ones are: 

 This method uses permutation numbers when pruning success states 

 This method changes the order of mutation and crossover within 

traditional GA in order to get controllable mutation rate 

 This method uses stopping criterion by selecting the increasing slope of 

the success probability pruned 

 By looking into the trends of the effect of mutation rate over the pruning, 

the selection of GA parameters becomes reasonable 
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The proposed method not only has better computational efficiency but also 

provides a feasible selection of parameters. 
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CHAPTER IV 

ADEQUACY ASSESSMENT USING DYNAMIC PROGRAMMING ALGORITHM 

 

Dynamic Programming has been previously used in the optimization problems of 

power systems, but has been barely applied in the analysis of adequacy assessment of 

power systems. This chapter investigates the use of dynamic programming as a tool for 

state space pruning to improve the efficiency of the Monte Carlo Simulation. 

 

A. Dynamic Programming 

The concept of basic Dynamic Programming will be described with the help of 

examples. The following two examples have characteristics similar to the problem of 

adequacy assessment, and are included here to describe the model of adequacy 

assessment more clearly. 

 

Example 1: This is a simple capital budgeting problem taken from a tutorial of 

Dynamic Programming from Carnegie Mellon University [15]:  

Problem: A corporation has set aside $5 million to allocate to its three plants for 

possible expansion. For each plant, there are a few proposals on how it intends to have 

the money spent, each proposal including the cost of the expansion (c) and the total 

revenue expected (r).  

The proposals generated are tabulated below and numbered from 1 to 4, as 

shown in Table 1. 
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Table 1 Investment Possibilities [15] (Example 1)

  

 

Each plant will be allowed to execute only one of its proposals and the goal of 

analysis to maximize the firm’s revenue. It is assumed that the unspent money will be 

lost. 

Solution: Intuitively speaking, the easiest way to analysis this problem is to 

calculate all allocation possibilities and judge for the best, i.e., the one with the largest 

revenue. In this case, there are 3 proposals of plant 1, 4 of plant 2, and 2 of plant 3. 

There are altogether 3 * 4 * 2 = 24 ways of allocating the money. 

It should be noted that that not all of these protocols are feasible. For example, if 

proposal 3 is chosen for plant 1, proposal 3 is chosen for plant 2, and proposal 2 is for 

plant 3, then the total cost of the three plants will be $6 million which is over the budget. 

Also some proposals are not suitable although feasible, like the ones with less than $5 

million allocation.  

Therefore, we can see that solving this problem just by enumerating could have 

many disadvantages: 
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 When the size of the problem is grows, the number of combinations will 

increase significantly, which will make the enumeration much less 

efficient if not impractical; 

 The enumeration cannot distinguish the protocols that are infeasible, 

which will then add unnecessary classification process; 

 There is no storage of any precedent combination which may provide 

guidance over subsequent  selections of combinations 

Since the return function is not showing to have any obvious relationship with 

the allocation, it cannot be modeled as a linear optimization problem. 

Dynamic Programming can in this case be used as follows: 

 Decompose the problem into stages  

Each stage is a step in the allocation process. For this example, the steps are 

easily identified. The 3 stages represent the money allocated to the 3 plants separately. 

Stage 1 represents the money allocated to plant 1, stage 2 the money to plant 2, and stage 

3 the money to plant 3. Although no order of allocating the funds has been specified, we 

can arbitrarily place a sequence on the stages, saying that we will first allocate to plant 1, 

then plant 2, then plant 3. 

 Analyze the states in each stage  

Each stage is divided into states. A state represents an option in this stage. In this 

case the states for stages 1, 2, and 3 are 

States in stage 1: the amount of money spent on plant 1, labeled as x1: 

{0, 1, 2, 3, 4, 5} 
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States in stage 2: the amount of money spent on plants 1 and 2, labeled as x2: {0, 

1, 2, 3, 4, 5} 

States in stage 3: the amount of money spent on plants 1, 2, and 3, represented by 

x3: {5}  

A revenue is associated with each state. As long as we know the money spent in 

the first two stages, we are able to decide how much to spend on stage 3, without the 

requirement to know in detail how the money was spent in the previous two stages.  

Let's make some illustrative description of how to figure out the revenues 

associated with each state.  

In stage 1, there are 6 possible allocation protocols from allocating 0 to 5. 

Table 2 gives the revenue associated with the allocation x1. 

 

Table 2 Stage 1 Computations [15] (Example 1)

  

 

 

http://mat.gsia.cmu.edu/classes/dynamic/node2.html#tab2


 39 

In stage 2, we want to find the best solution for both plants 1 and 2. When x2 is 

designated, we can search from all the plant 2 proposals and allocate the given amount 

of funds to plant 2, and calculate the remainder which will be the allocation of x1. 

For instance, suppose we want to determine the best allocation for state x2 = 4. In 

stage 2 we can do one of the following proposals: 

Proposal 1: stage 2 with revenue 0, and proposal 3 for stage 1. Total revenue: 6. 

Proposal 2: stage 2 with revenue 8, and proposal 3 for stage 1. Total revenue: 14. 

Proposal 3: stage 2 with revenue 9, and proposal 2 for stage 1. Total revenue: 14. 

Proposal 4: stage 2 with revenue 0, and proposal 1 for stage 1. Total revenue: 12. 

With the consideration of optimization of revenue, proposals 2 and 3 of plant 2 

give the maximum. In either case, the revenue for being in state x2 = 4 is 14. The rest of 

Table 3 can be filled out similarly. 

 

Table 3 Stage 2 Computations [15] (Example 1)

  

 

 

http://mat.gsia.cmu.edu/classes/dynamic/node2.html#tab3
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In stage 3, the only value we are interested in is x3 = 5. We will again go through 

all the proposals for this stage, determine the amount of money remaining and use 

Table 3 to decide the value for the previous stages.  

Proposal 1: state 3 has revenue 0, x2=5. Total revenue: 17. 

Proposal 2: state 3 has revenue 4, x2=4. Total revenue: 18. 

Therefore, the optimal solution is: 

Select proposal 2 at plant 3, proposal 2 or 3 at plant 2, and proposal 3 or 2 at plant 1. 

This gives a total revenue of 18. 

We can see that stage 2 calculations are based on stage 1, and stage 3 only on 

stage 2. Indeed, given you are at a state, all future decisions are made independent of 

how you got to the state. This is the basic idea of Dynamic Programming. We are able to 

make the recursion either from forward or from backward. 

Figure 8 describes the forward and backward recursion of this problem. 

http://mat.gsia.cmu.edu/classes/dynamic/node2.html#tab3
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Fig. 8 Forward vs. Backward Recursion [15] 

 

When making the calculations, two kinds of recursion will come up with the 

same answer. 

In this particular case, the ordering of the stages made no difference. In other 

cases, like in the power generating case, there may be computational advantages of 

choosing backward over forward recursion, due to the ordering of generators. In general, 

the backward recursion has been found to be more effective in most applications.  

 

Example 2: This is the typical example used for illustrating Dynamic 

Programming. The model in this example is very similar to the model we will be 

describing later in this chapter for the adequacy assessment. 
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Problem: This is the shortest path problem where we wish to get from A to J in 

the road network shown in Figure 9 using the shortest path. The numbers on the arcs 

represent distances. 

  
Fig. 9 Road Network [15] (Example 2) 

 

Solution: After examining the steps, we can tell that the paths can be divided into 

5 stages. This is the essential part of solving this problem, which means that in the 

calculation of possible paths, there are certain stages that we can follow. 

Then we will clarify the states in each stage. 

Stage 1: node A; 

Stage 2: nodes B, C and D; 

Stage 3: node E, F and G; 

Stage 4: node H and I; 

Stage 5: node J.  

http://mat.gsia.cmu.edu/classes/dynamic/node3.html#dinfig2
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Here, the states in each stage correspond just to the node names. For example, 

stage 2 has the states B, C and D. 

Formulas can be obtained by modeling the increased length of coming to each 

stage while aiming at the minimum of total path length. Here since we are making 

illustrative descriptions, we will just have the analysis.  

Here are the backward recursions: 

 Stage 4: In stage 4, there is only one choice. 

The only path is to simply go to destination J.  

So we get: 

Going from H to J, the distance h=3 

Going from I to J, the distance i=4. 

 Stage 3: In stage 3, there are more choices.  

From F we can either go to H or I. The cost of going to H is 6. The following 

cost from H to J is 3, which is the formulation in stage 4. This comes with the total of 9.  

The cost of going to I is 3. The following cost from I to J is 4, which is the 

formulation in stage 4. This comes with the total of 7. Therefore, if we are at F, the best 

thing to do is to go to I. The total minimum cost is 7. 

Similarly, we can analysis the states E and G in stage 3. The overall results are: 

From state E, the best way is to go to H, which has the total cost of stage 3 and 4 

to be 4; 

From state G, the best way is to go to H, which has the total cost to be 6; 

From state F, the best way is to go to I, which has the total cost to be 7. 
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With these data, the shortest paths from each of states of stage 3 to stage 5 are 

definite. We are able to store all these shortest paths as the function of the states, which 

means, when you come to a certain state in stage 3, it will bring along the unique 

shortest path to stage 5 afterwards. 

Similarly, the analysis of the first two steps is done by backward recursion.  The 

results are: 

 Stage 2:  

At state B, decision is to go to E or F with minimum cost from B to stage 5 to be 

11; 

At state C, decision is to go to E with minimum cost from C to stage 5 to be 7; 

At state D, decision is to go to E or F with minimum cost from D to stage 5 to be 

8; 

 Stage 1: 

At state A, decision is to go to C or D with minimum cost from A to stage 5 to be 

11; 

Therefore, the overall shortest path is found. 

Here we are only making illustrative descriptions of how the Dynamic 

Prgramming will work with the idea of backward recursion, without detailed 

optimization formulas.  

We can conclude from the examples that the most typical characteristic of 

Dynamic Programming is the division of problem into stages. As shown in the second 

example, the storage of the shortest path from each state to the last stage is the essential 
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part for making the decision in the stage before it. Simply speaking, the algorithm has 

the storage that makes the decision of going from one state to the final stage only related 

to the choices of one step, which is from this state to the states in the next stage, without 

considering the following procedure. This will introduce the idea of sequence and 

calculating from the largest capacity of total generation output as below. 

 

B. The Simplification of Adequacy Assessment Model 

As described in previous chapters, the generation side consists of different 

generators with individual capacities. But generally speaking, generators can be 

categorized into groups by identical capacities and failure rates, i.e., the generators with 

the same capacity and failure rate will be in the same group. In single area power 

systems, there can be a few generation groups.  

Based upon the permutation method described in last chapter, one group of 

generators can have many generation outputs, where “outputs” refer to the total 

generation capacity levels of one group, with each output representing several generating 

states with permutation calculation. 

Here is an example similar to the one in the last chapter. A generation group with 

5 generators each with capacity of 200MW will have 6 outputs, which are just the 6 

generation capacity levels that this group can have: 0MW, 200MW, 400MW, 600MW, 

800MW, 1000MW. 

Corresponding to each generation level, there are several states of the five 

generators. For instance, the generation level of 400MW means two of the generators 
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being “up” while three of the generators being “down”, which has 
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MW

N states. These 10 states have the same effect over the 

power system, which means that we can treat them equally without distinguishing which 

specific generator is up or not in one specific state. Therefore, when one of the 

permutation states is proved to be success state, all the permutation states are success 

states.  

Therefore, each generation group can be abstracted as a stage, with (n+1) states 

when there are n generators in this group. The i th state represents the generation 

capacity level of (i-1) generator being up, i.e., the generation output being (i-1) * Cap. 

(Cap means the capacity of each generator) 

The load in the adequacy assessment here is the peak load of the system, which is 

a constant in the evaluation. 

Based upon this modeling, the adequacy assessment model becomes the 

comparison of outputs of all “stages” with the load. 

 

C. Dynamic Programming for Adequacy Assessment  

From the simplified model, we can formulate the Dynamic Programming 

problem as the consideration of multiple stages and the sum of their outputs, followed by 

the comparison with the load. 

In state space pruning, as described in the previous chapters, the target of using 

Dynamic Programming is to truncate the state space by pruning success states to help 
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Monte Carlo Simulation sample a pruned state space with higher density of failure 

states. Therefore, like using the Modified Genetic Algorithm in last chapter to sample 

success states from the state space, the Dynamic Programming method is also aiming at 

generating success states.  

Compared with the example of the shortest path problem, the objective here with 

Dynamic Programming is to find the longest (largest in capacity) path from each node, 

or in other word, from each state at each stage. The Dynamic Programming can be 

intuitively understood like finding the longest path, which will definitely meet the 

requirement, i.e., larger than the load; and then, DP goes to search for the second longest 

path, and compare it with the load, and so on. Steps in this method can be summarized 

as: 

1. Sequence the stages by individual generator capacity in each stage, from the 

largest to the smallest. For example, if generators are grouped with the 

capacity of 200MW, 300MW, 400MW separately, than the sequence will be 

from the group with every 400MW, with every 300MW, to the group with 

every 200MW; 

2. Identify the states in each stage based on the number of generators in that 

group. For example, if stage 1 is the group with 5 generators that all have the 

capacity of 400MW,  then the states in stage 1 will be 0,1,2,3,4,5, which have 

6 states representing the output capacity level of 0 MW, 400 MW, 800 

MW,1200 MW, 1600 MW, 2000 MW; 
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3. Identify the peak load, which is a constant number in this case. For example, 

the peak load = 3000MW; 

4. Delete some states by observing the difference between the total load of all 

groups of generators, and the peak load. This is a simplification process, and 

will be discussed in detail in the next part. This step is not always necessary, 

but will reduce calculations. 

5. Follow the Dynamic Programming; look for the longest path, which is the 

largest in the sum of the states in each stage. Intuitively, the longest path will 

certainly be the path with all full output states in each stage. And this path 

will certainly be longer than the peak load, or otherwise, there are no success 

states in this system. Store the success state. 

6. Search from the last stage, which is the group with the least individual 

generation capacity. Try the second largest state in this stage and see if it 

comes up with a system success state, i.e., the path is longer than the peak 

load. Store the success state. 

7. Try all the states in the last stage, with all states in other stages unchanged. 

Judge all the paths with comparison with the peak load to see if they are 

success states. Store the success states. 

8. After judging all the states above, start over from step 5 again to step 7 with 

these changes: find the path with the state in the second stage counted from 

the last to be the second largest state in that stage; re-do all the calculations 

by changing the state in the last stage. Store the success states. 
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9. Start over step 8 again with the change that it starts with the second largest 

state of the third stage counted from the last. Search for success states by 

getting the path with first changing the state in the last stage while the state of 

the second last stage stays at the largest, and then changing the state in the 

last stage while the stage of the second last stays at the second largest, etc. 

Store the success states. 

10. Do similar change in the states of the next stage counted from the last, and re-

do steps above. Store the success states. 

 

There needs to be some illustration of step 4. This step is a simplification 

process. The method is simple:  

 First calculate the difference between the total generation capacity and 

the peak load. For example, if there are 3 groups, each with 4 generators. 

The individual capacities of the generators in these 3 groups are 500MW, 

400MW, 300MW. The peak load is 4200 MW. The total generation 

capacity is 4 * 500 + 4 * 400 + 4 * 300 = 4800 MW. Therefore the 

difference is 4800 – 4200 = 600. 

 Then find the states in each stage that clearly have a difference more than 

600MW than the largest state in that stage. For example, in stage 1, the 

states are 2000, 1500, 1000, 500, 0. Among these states, the states 1000, 

500, and 0 will be the states that can be deleted. The reason is simple. 

The calculation of the difference of total generation capacity and the 
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peak load represents the largest capacity that the generating units can be 

short from full capacity. In the example, the 600MW difference means 

that there can be at the most 600 MW of generation that can not be put 

into use. Therefore, if a state shows that it has already had more than 600 

MW in its stage, then this state can be deleted. This is because when 

searching for the success states of the system, this state in the stage will 

never give success states.  

In the example above, originally the first stage contains states: 2000, 

1500, 1000, 500, 0; after this step, the first stage only contains states: 

2000, 1500. The second stage originally contains states: 1600, 1200, 800, 

400, 0; after this step, the second stage will only contain: 1600, 1200. 

The third stage originally has: 1200, 900, 600, 300, 0; after this step, the 

third stage contains: 1200, 900, 600.  

Process of simplification will be described more in detail in the example 

and case study in next part of this thesis. 

 

D. An Example Illustrating the Process of the Algorithm 

Let’s take an example to show how the steps described above work.  

The system has 20 generators, with different generating capacities. They are 

grouped with capacities shown in Table 4 below.  
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Table 4 Grouped Generator Capacities 

Number of Generators in the Group Individual Generator Capacity (MW) 

                          5                 400 

                          5                 250 

                          4                 300 

                          3                 100 

                          3                 200 

    

 

The peak load is 4500MW. 

So the problem can be defined as follows. There are 5 groups of generators, each 

with an individual generation capacity. The target of the Dynamic Programming process 

is to find the success states. 

We will illustrate the algorithm step by step. 

Step 1: Sequence the groups. The result is shown in Table 5. 
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Table 5 Sequenced Grouped Generator Capacities 

Number of Generators in the Group Individual Generator Capacity (MW) 

                          5                 400 

                          4                 300 

                          5                 250 

                          3                 200 

                          3                 100 

  

 

The capacity level and the state below are all in MW.  

Step 2: Find the states. The results are shown in Table 6. 

 

Table 6 States in Each Stage 

Stage 1 2 3 4 5 

States 2000 1200 1250 600 300 

1600 900 1000 400 200 

1200 600 750 200 100 

800 300 500 0 0 

400 0 250   

0  0   
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Step 3: The peak load = 4500 

 Step 4: The difference between full generation output and the peak load is: 2000 

+ 1200 + 1250 + 600 + 300 – 4500 = 850. This means that the entire system can have at 

the most 850 MW that is not generated, counting from the full capacity of all generators. 

Therefore we delete the 4th, 5th, 6th states in stage 1, the 4th, 5th states in stage 2, and the 

5th, 6th states in stage 3. The results are shown in Table 7. 

 

Table 7 States after Simplification 

Stage 1 2 3 4 5 

States 2000 1200 1250 600 300 

1600 900 1000 400 200 

1200 600 750 200 100 

  500 0 0 

  

  

Step 5: Longest path: the result is shown in Table 8. 

 

Table 8 Longest Path 

Stage 1 2 3 4 5 Total 

States 2000 1200 1250 600 300 5350 
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 Step 6: Search system states by changing the state in last stage. The results are 

shown in Table 9. 

 

Table 9 Path after Changing the States in Last Stage (1st) 

Stage 1 2 3 4 5 Total 

States 2000 1200 1250 600 200 5250 

 

It is a success system state. 

 Step 7: Search system states by changing the states in last stage. The results are 

shown in Table 10. 

 

Table 10 Path after Changing the States in Last Stage (2nd) 

Stage 1 2 3 4 5 Total 

State 2000 1200 1250 600 100 5150 

State 2000 1200 1250 600 0 5050 

 

These are two success states. 

 Step 8: Change the state in stage 4. The results are shown in Table 11. 
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Table 11 Path after Changing the States in 2nd Last Stage (1st) 

Stage 1 2 3 4 5 Total 

State 2000 1200 1250 400 300 5150 

State 2000 1200 1250 400 200 5050 

State 2000 1200 1250 400 100 4950 

State 2000 1200 1250 400 0 4850 

  

These are 4 success states.  

 Changing the state in stage 4 to 200 in the similar way, the states are shown in 

Table 12. 

 

Table 12 Path after Changing the States in 2nd Last Stage (2nd) 

Stage 1 2 3 4 5 Total 

State 2000 1200 1250 200 300 4950 

State 2000 1200 1250 200 200 4850 

State 2000 1200 1250 200 100 4750 

State 2000 1200 1250 200 0 4650 

  

 Changing the state in stage 4 to 0 in the similar way, the states are shown in 

Table 13. 
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Table 13 Path after Changing the States in 2nd Last Stage (3rd) 

Stage 1 2 3 4 5 Total 

State 2000 1200 1250 0 300 4750 

State 2000 1200 1250 0 200 4650 

State 2000 1200 1250 0 100 4550 

State 2000 1200 1250 0 0 4450 

  

The last state is a failure state, which has the total capacity of 4450 with stage 1 

to 5 to be: 2000, 1200, 1250, 0, 0.All the other states generated are success states.  

Step 9: Change the state in stage 3: 

  Change the state in stage 3 to 1000, and iterate the search by changing the states 

in last 2 stages, the results are shown in Table 14. 
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Table 14 Path after Changing the States in 3rd Last Stage 

Stage 1 2 3 4 5 Total 

State 2000 1200 1000 600 300 5100 

State 2000 1200 1000 600 200 5000 

State 2000 1200 1000 600 100 4900 

State 2000 1200 1000 600 0 4800 

State 2000 1200 1000 400 300 4900 

State 2000 1200 1000 400 200 4800 

State 2000 1200 1000 400 100 4700 

State 2000 1200 1000 400 0 4600 

State 2000 1200 1000 200 300 4700 

State 2000 1200 1000 200 200 4600 

State 2000 1200 1000 200 100 4500 

State 2000 1200 1000 200 0 4400 

State 2000 1200 1000 0 300 4500 

State 2000 1200 1000 0 200 4400 

State 2000 1200 1000 0 100 4300 

State 2000 1200 1000 0 0 4200 

 

The states that have total path length (total generation capacity) less than 4500 

are failure states. In the result above, there are 4 failure states and 12 success states. 
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Similar searches can be conducted with the criterion described above to find 

success states. After finding the success states, we will need to identify the permutation 

states and their probabilities, with exactly the same method as in the last chapter. 

The calculation of reliability indices is exactly the same as in last chapter. 

 

E. Case Studies and Results 

We tested the method of the pruning of the state space with comparison of using 

Monte Carlo Simulation on the same computer and with the same coding person and 

coding technique. The software in this study was written in Matlab. 

The methods were tested using two different test systems: IEEE-RTS79 (RTS79) 

[9] and the Modified Reliability Test System (MRTS) [10], [11]. Figure 10 and Figure 

11 show the probability of success states pruned from the state space by the proposed 

Dynamic Programming algorithm, and the Monte Carlo Simulation. We can tell that the 

proposed Dynamic Programming method is more efficient than the Monte Carlo 

Simulation. 
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Fig. 10 Success Probability Pruned by Dynamic Programming vs. Time 
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  Fig. 11 Success Probability Pruned by Monte Carlo Simulation vs. Time 

 

F. Some Remarks and Conclusion 

The method of using Dynamic Programming above has been shown to be 

effective. This method is based on Dynamic Programming, but has certain difference 

with traditional Dynamic Programming: 

 Since we are aiming at finding not only the longest path but also as other 

qualified paths, which are success states, the sequential searching method 

is put into use. We are not finding from one state in certain stage its 
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combination of the following path. 
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 Permutation is calculated which improves the efficiency to a large extent. 

 The simplification process can be quite useful when the peak load is close 

to the total generating capacity. Although we figure out every deletion of 

the states by enumerating, the program can also easily select the states 

that will need to be deleted.  

 This method is based on the sequential searching of Dynamic 

Programming, in which the sequencing process becomes essential. 

 This method is an explorative approach to organize and truncate the state 

space. Further research will be needed to systemize this method. 

 The stopping criterion can be the same as in the Modified Genetic 

Algorithm method. Simply speaking, it can just be a time t when there has 

been no success pruned within the time period (t-∆t, t). 

 

Conclusions: The state space pruning technique using Dynamic Programming is 

efficient and effective in the searching and pruning of success states.  This 

method is useful mostly due to: 

 The sequential groups and permutations are used to simplify the 

identification of system states. 

 Simplification techniques are used to reduce the states in stages. 

 When the generation capacity varies greatly, for example, when the 

largest generation capacity is 1000 MW while the smallest is 100MW, 

this method can be especially useful for the reason that it is searching 
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from the changing of the smallest to the changing of the largest. Most 

success states lie in the beginning of the process when changing the 

smallest. 

 Stopping criterion can be easily set, such as the duration time when no 

success state is pruned. 
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CHAPTER IV  

CONCLUSIONS 

 

The state space pruning has been shown to have faster convergence in calculation 

of reliability indices. Numerical and intelligent methods have been proposed in order to 

truncate the state space so as to have Monte Carlo Simulation sample a pruned state 

space with higher density of failure states.  

 In this thesis, two methods are proposed to prune the state space. After the state 

space pruning, Monte Carlo Simulation can be applied to calculate the reliability indices. 

Therefore, in combination with Monte Carlo Simulation, the two methods become 

complete adequacy assessment approaches. 

 In the first method, Modified Genetic Algorithm has been proposed for state 

space pruning. This method uses permutation numbers when pruning success states, and 

it changes the order of mutation and crossover within traditional GA in order to get 

controllable mutation rate. Using a case study, the proposed method is shown not only to 

have better computational efficiency but better in the selection of parameters. 

A state space pruning technique using Dynamic Programming has also been 

proposed as the second method. In this method, the sequential groups and permutations 

are used to simplify the identification of system states. Other simplification techniques 

are also used to reduce the states in stages. With case study, it is shown that this method 

is efficient and effective in the searching and pruning of success states. 
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