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ABSTRACT 

 

On-farm Yield and Water Use Response of Pearl Millet to Different Management 

Practices in Niger. (December 2006) 

Comfort Manyame, B.Sc., University of Zimbabwe 

M.Phil., University of Zimbabwe 

Co-Chairs of Advisory Committee:  Dr. William Albert Payne 
          Dr. James L. Heilman 

 

Pearl millet [Pennisetum glaucum (L.) R.Br.] production under subsistence 

farmer management on the sandy soils of southwestern Niger is faced with many 

challenges, including declining soil fertility, highly variable and scarce rainfall and poor 

resource base of the peasant farmers in the region. This study was conducted to evaluate 

the potential of management to increase yield and water use efficiency of pearl millet 

grown on two farmers’ fields in Niger during two growing seasons, 2003 and 2004.  

The management practices tested were: 1) Five manure treatments (no manure, 

transported manure, current corralling, a year after corralling, and two years after 

corralling); 2) The microdose technology (20 kg di-ammonium phosphate ha-1, and 20 

kg di-ammonium phosphate ha-1 + 10 kg urea ha-1); and lastly, 3) Three different pearl 

millet cultivars (Heini Kirei, Zatib, and ICMV IS 89305).  

In both growing seasons, manure had the greatest effect on the yield and water 

use of pearl millet at both sites. In 2003 grain yields were 389 kg ha-1 in the NM 

treatment and 1495 kg ha-1 in the C0 treatment at Banizoumbou whereas at Bagoua, the 

NM treatment had 423 kg ha-1 vs. 995 kg ha-1 in the C0 treatment. In 2004, the NM 

treatment at Banizoumbou had 123 kg ha-1 grain yield and the C0 treatment had 957 kg 

ha-1 whereas at Bagoua the NM treatment had 506 kg ha-1 vs. 1152 kg ha-1 in the C0 

treatment. Residual effects of manure led to grain yields in the C1 and C2 treatments 

which were more than twice as high as in the NM treatment. The improved cultivars 

were generally superior for grain yields, whereas the local landrace was superior for 
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straw yields at both sites. Root zone drainage was decreased by between 50 to 100 mm, 

and water use increased by the same amount in the current corrals at the two sites during 

the two growing seasons. Increased water use under corralling and presence of residual 

profile moisture at the end of each of the two seasons suggested that water did not limit 

pearl millet production at the two sites.  
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CHAPTER I 

INTRODUCTION 

 

The Sahel is a region stretching from Senegal to Chad between latitudes 11o and 

15o south of the Sahara desert. Rainfall in the Sahel is variable, undependable, falls in 

high intensity storms, and increases threefold from 400 mm in the northern limit to 1200 

mm in the extreme south near 12o N (Sivakumar, 1989; Sivakumar, 1993; D’amato and 

Lebel, 1998).  

Niger is one of the countries situated in the Sahel. The population growth rate of 

Niger (3.3 %) is one of the highest in the world and 60 % of the population lives below 

the poverty line (UN World Food Program, 2006). Farmers in Niger rely on rain-fed 

agriculture to grow pearl millet [Pennisetum glaucum ( L.) R.Br.] and sorghum 

(Sorghum bicolor L.) as monocrops or intercropped with cowpea [Vigna unguiculata 

(L.) Walp]. Rainfall in Niger is distributed in a single rainy season from May to October, 

and an annual rainfall average (1921-1990) in the capital city Niamey of 575 mm. 

One of the most intensely cropped and productive areas of Western Niger is the 

Dallol Bosso, which is the fossil valley of the section of the ancient Azaouk River, 

which runs north-south in Western Niger from 15o to 12o N latitude along 3o E longitude 

(Wilding and Daniels, 1989). Located between the Niger River Valley to the west, and 

the Dallol Bosso to the east, is a natural region called the Fakara. 

Soils in the Fakara, like in most of the uplands of Western Niger, are generally 

sandy and prone to forming surface crusts (Casenave and Valentin, 1992).  
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They have low cation exchange capacity (CEC), low organic matter content and have 

kaolinitic mineralogy (West et al., 1984; Casenave and Valentin, 1992; Manu et al., 

1996; Rockström et al., 1998).  

Soil properties in farmers’ fields are notoriously variable (Scott-Wendt et al., 

1988a; Scott-Wendt et al., 1988b; Geiger and Manu, 1993; Wendt et al., 1993; Manu et 

al., 1996; Voortman et al., 2004) and this translates to variable crop  

growth and yields. Phosphorus has been singled out as the most important limiting 

macronutrient for plant growth in these soils (Pieri, 1985) and yield responses to 

phosphate fertilizer have been shown to be strong with and without nitrogen (Bationo, 

1982).  

Pearl millet constitutes up to 90 % of Niger’s cropped area (Bationo and 

Mokwunye, 1991a) but average grain yields under subsistence farmer management 

remain low, varying from 150 to 550 kg ha-1 (McIntire and Fussel, 1989; Sivakumar and 

Salaam, 1999). Efforts to raise millet yields under subsistence farmer management need 

to address both water and nutrient management because their interaction has been shown 

to be of paramount importance. Because of prohibitive cost, fertilizer use is very limited 

making manure the primary source of soil nutrients (Wezel and Haigis, 2002; Schlecht 

and Buerkert, 2004). However, manure applied on farmers’ fields has been shown to be 

of poor quality (de Rouw and Rajot, 2004a) and to be in small quantities because of poor 

pasture quality and low number or cattle per cropped area (Ayantunde, 1988).  Under the 

context of subsistence farmer management, others have proposed applying very little 

amounts of fertilizer under a technology called microdose. Studies evaluating the 

microdose technology (AgJournal, 2001; NUTMEN/GEMS, 2002) have so far 

concentrated only on its effect on millet yields and not on the water balance. Given the 

poor resource base of most subsistence farmers in Niger and the fact that manures are 

not always applied especially to fields far from the homestead (Prudencio, 1983), it 

seems appropriate to study the residual effects of manure on millet yields and water 

balance of farmers’ fields.  
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In light of this, this study evaluated millet yield and water use response to 

different soil and crop management practices on farmers’ fields in two villages in the 

Fakara during 2003 and 2004. The main objectives of the study were: 

1. To evaluate millet yield response to microdose, millet cultivar, manure, 

and residual effects of manure, one and two years after application. 

2. To evaluate the effects of manure, millet cultivar and microdose on the 

water balance of sandy soils grown to pearl millet, on farmers’ fields in 

the Fakara region. 
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CHAPTER II  

PEARL MILLET RESPONSE TO FERTILIZER AND MANURE UNDER 

SEMIARID CONDITIONS OF NIGER  

 

Pearl millet is the staple cereal of Niger, constituting up to 90 % of the cropped 

area (Bationo and Mokwunye, 1991a), yet average grain yields under subsistence farmer 

management remain low, varying from 150 to 550 kg ha-1 (McIntire and Fussel, 1989; 

Krogh, 1997; Sivakumar and Salaam, 1999). The low grain yields are a result of a 

myriad of factors including nutrient losses via wind erosion (Bielders et al., 2002), 

declining and inherent poor soil fertility (West et al., 1984; Manu et al., 1991; Casenave 

and Valentin, 1992; Manu et al., 1996; Rockström et al., 1998; Bielders et al., 2002),  

unimproved pearl millet cultivars, and unreliable and erratic rainfall which usually falls 

in high intensity storms (Sivakumar, 1989; Sivakumar, 1993; D’amato and Lebel, 1998).  

Subsistence farmers in Niger have traditionally fallowed their fields and/or 

applied manures to replenish soil fertility (Bationo et al., 1993; Powell and Williams, 

1993). However, fallows have been shortening or disappearing altogether (Berger, 1996; 

Wezel and Boecker, 1998; Wezel and Haigis, 2002; Schlecht and Buerkert, 2004) 

because of growing food demand imposed by a rapidly increasing population which is 

not being met with a proportional increase in cereal production (Garba and Renard, 

1991; Sanders et al., 1996; Subbarao et al., 2000).  Manures have since become the most 

important soil fertility management option for subsistence farmers in this Sahelian 

country (Powell and Williams, 1993).  A common practice of manure application 

amongst the subsistence farmers is corralling (de Rouw and Rajot, 2004a; Schlecht and 

Buerkert, 2004), during which animals are left overnight to graze recently harvested 

pearl millet fields. The practice has been shown to lead to deposition of between 3 and 

14 Mg manure ha-1 or roughly 43-199 kg N ha-1 and 4.8-22.4 kg P ha-1 (Brouwer and 

Powell, 1995; Brouwer and Powell, 1998; Gandah et al., 2003; Schlecht et al., 2004). 

Corralling has been shown to have residual effects on soil nutrient levels and pearl millet 
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yields under controlled conditions (Powell et al., 1998), yet only a few studies e.g. 

Schlecht et al., (2004) have tested this on-farm. 

Whilst the benefits of using organic and/or inorganic fertilizers in the subsistence 

farming systems of Niger have long been recognized (Bationo and Mokwunye, 1991b; 

Bationo et al., 1992; Bationo et al., 1993; Powell et al., 1998; Bationo and Buerkert, 

2001), prohibitive fertilizer costs (Bationo et al., 1997; Haigis et al., 1999; Abele and 

von Oppen, 2000) and limited access to manure (Wezel and Haigis, 2002; Schlecht and 

Buerkert, 2004) have hindered their widespread use. It is against this backdrop that 

others have proposed using very small quantities of inorganic fertilizer, or the so called 

“microdoses”, to raise the yields of pearl millet under subsistence farmer management.  

The microdose technology was jointly developed and field-tested by the University of 

Hohenheim in Germany, ICRISAT, the International Fertilizer Development Center 

(IFDC), the UN Food and Agriculture Organization (FAO), and Niger's Institute for 

National Agricultural Research (AgJournal, 2001; NUTMEN/GEMS, 2002). Whether 

application of fertilizer at rates that are far less than the recommended rates of 15-20 kg 

P ha-1 and 30 kg N ha-1 (Bationo and Mokwunye, 1991a; Bationo et al., 1992; Abele and 

von Oppen, 2000) can substantially raise yields in the absence of manure has yet to be 

extensively tested on farmers’ fields.  

The main objective of this study was to compare on-farm pearl millet yield under 

different manure and fertilizer treatments which included the “microdose” and the “no 

input system” practiced by some subsistence farmers. The specific objectives were; 1) 

To evaluate the residual effects of corrals, one and two years after application; 2) To test 

the effectiveness of “microdoses” of inorganic fertilizer in raising pearl millet yields 

under conditions of high and low soil fertility at two village sites; and 3) To test pearl 

millet cultivar effects on grain and straw yields under subsistence farmer management in 

the Fakara region by comparing the local landrace to two improved cultivars.  
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Materials and Methods 

Banizoumbou and Bagoua village territories 

The two study sites in the Fakara were Banizoumbou and Bagoua. Banizoumbou 

is a village located at coordinates 13o31’N and 2o39’E, 65 km east of Niger’s capital 

city, Niamey. The second village, Bagoua, is located at 2o46’ E and 13o29’ N, 12 km 

south east of Banizoumbou. The climate of the Fakara is hot and semi-arid with a 

unimodal rainfall distribution. Most of the rain falls between June and September, with 

an average annual amount of 500 mm (Le Barbe and Lebel, 1997). Soils in the study 

sites are classified as Psammentic Kandiustalfs (Soil Survey Staff, 1975; Heil et al., 

1997). Pearl millet, [Pennisetum glaucum ( L.) R.Br.] is the major crop grown in the two 

villages. Rainfall at Banizoumbou was 473 mm in 2003 and 472 in 2004. Bagoua 

received 452 mm in 2003 and 432 mm in 2004. 

 

Characterization of soil chemical properties 

Soil sampling of a farmer’s fields in each of the two villages was done using a 

stratified random sampling method. For chemical analyses (C, N, P, pH, CEC) only the 

surface 20 cm of soil were considered since this is where most of the change in soil 

chemical properties is expected (Geiger et al., 1992). Soil organic carbon content was 

determined by the Walkley Black method (Walkley and Black, 1934); available P was 

determined using the Bray No 1 method  (Bray and Kurtz, 1945); total nitrogen was 

determined using the Kjeldahl method (Bremner and Mulvaney, 1982); and soil pH was 

determined in a 1:2.5 suspension with water. 

 

Field experiment 

A factorial experiment in a randomized complete block design was set up in 

farmers’ fields (and managed by the farmer under the supervision of an ICRISAT 

technician) at both Bagoua and Banizoumbou during the 2003 growing season and 
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maintained throughout the 2003 and 2004 seasons. Experimental factors were manure, 

fertilizer, and cultivar. The five different manure treatments were: Two years since last 

corralling, C2; 1 year since last corralling, C1; current corralling, C0; transported 

manure, TM; and finally, no manure, NM. The three fertilizer treatments were: a control 

with no fertilizer application; 20 kg ha-1 di-ammonium phosphate (DAP) supplying 3.6 

kg N ha-1 and 3.85 kg P ha-1; and 20 kg ha-1 DAP + 10 kg ha-1 Urea supplying 8.2 kg N 

ha-1 and 3.85 kg P ha-1. Finally, the three pearl millet cultivars were the local landrace, 

Heini Kirei, and two improved cultivars Zatib and ICMV IS 89305. In the field layout of 

the experiment, each of the manure treatments constituted a block, individual plot size 

was 10 x 10 m, and each treatment was replicated thrice.  

In 2003, sowing was done after the first major rains greater than 20 mm on day 

of year (DOY) 165 at both sites. For the 2004 season, sowing was done on DOY 139 at 

Bagoua and on DOY 181 at Banizoumbou. The delayed sowing at Banizoumbou was 

due to labor constraints. Poor emergence led to replanting in the NM, C2 and C0 

treatments, 33 days later on DOY 172, at Bagoua. Plants were thinned to 3 plants per hill 

(30 000 plants ha-1) 14 days after sowing at both sites. Weeding was done twice during 

the season at both sites using the traditional hand hoe (hilaire). Plots were harvested on 

DOY 281 at Banizoumbou and DOY 287 at Bagoua in 2003 and in 2004 harvesting was 

done on DOY 287 at Banizoumbou and DOY 270 at Bagoua. The border rows in each 

plot were not harvested and hence the harvested area per plot was 81 m2. The pearl 

millet heads and straw from each plot’s two diagonal rows (the sample) were harvested, 

set aside, and the fresh weight recorded. The heads and straw from the rest of the plot 

were also harvested and the fresh weight recorded. Samples (grain plus straw) were then 

left to dry in the sun and the dry weight recorded. The same was done to the rest of the 

plot. The heads from the sample were then thrashed and grain weight obtained. The head 

and straw weight per plot were then calculated as the ratio of the sample dry to fresh 

weight multiplied by the total fresh weight per plot. The ratio of the sample’s grain to 

head weight was multiplied by the total head weight per plot to obtain the grain weight 

per plot.  
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Statistical analyses 

Differences in pearl millet yields due to treatments were determined using the 

analysis of variance (ANOVA) of the general linear model (GLM) procedures (SPSS for 

Windows, Release 12.0, 2004, Chicago: SPSS Inc.) and effects were considered as 

significant at a probability level of ≤ 0.05. For ANOVA, the model used was: 

 

ErrorCultivar*FertilizerCultivarFertilizerManureConstantYields +++++=       [2.1] 

 

and for the within-manure treatment analyses the following model was used: 

 

ErrorCultivar*FertilizerCultivarFertilizerConstantYields ++++=                       [2.2] 

 

where Manure represents the block effect, and Fertilizer*Cultivar represents the 

interactive effect of fertilizer and cultivar. 

 

Results 

Soil chemical properties 

The analytical data in Table 2.1 agree well with those previously reported in 

either the same villages or within their vicinity (de Rouw, 2004; de Rouw and Rajot, 

2004a; de Rouw and Rajot, 2004b). The acid pH of these soils has been attributed as one 

of the main causes for poor pearl millet growth (Wendt, 1986). Available P was less than 

the critical level of 8 mg kg-1 (Bationo et al., 1989b); only at Bagoua did the maximum P 

content exceed 8 mg kg-1. Organic C was also very low, as anticipated under high 

temperature conditions and in sandy soils where organic matter decomposes rapidly 

(Feller and Beare, 1997) and also due to the generally low organic inputs into the soil 

under subsistence farmer management. Bagoua had higher maximum total N whereas 

Banizoumbou had higher CEC. 

 



 9

Pearl millet yields at Banizoumbou in 2003 and 2004 

Table 2.2 shows the ANOVA for treatment effects on grain and straw yields 

during both seasons at Banizoumbou. Pearl millet yields responded only to manure in 

2003 and to manure, fertilizer, and cultivar in 2004. In both growing seasons, manure 

had the largest effect on yields as shown by its large sum of squares, followed by 

fertilizer and lastly pearl millet cultivar. Individual ANOVA of the manure treatments 

(Appendix A-1) revealed that in 2003 grain yields did not respond to either fertilizer or 

pearl millet cultivar in all but the NM treatment where yield responded only to fertilizer. 

Grain yields responded to microdose only in the NM treatment in the ICMV IS 

89305 cultivar where yields were increased by about 300 kg ha-1 (Fig. 2.1). Generally 

there was very little to no yield response to fertilizer at this site probably because of the 

small quantities of fertilizer applied.  Studies in the region have shown that pearl millet 

yields respond to N fertilization only if the critical P requirements are met (Bationo and 

Mokwunye, 1991a; Muehlig-Versen et al., 2003). Whilst small quantities of fertilizer 

were used in the fertilizer treatments (4 kg P and N ha-1 vs. the recommended 15 – 20 kg 

P ha-1 and 30 kg N ha-1) high quantities of manure were applied in the corralling and TM 

treatments (up to 8 Mg ha-1) further confounding the effects of fertilizer as has been 

previously shown (Ikpe and Powell, 2002).  

In 2004, pearl millet yields responded significantly (p<0.05) to fertilizer in the 

low fertility treatments C2 and NM as well as the TM treatment (Appendix A-1). This 

response, was greatest (~ 200 kg ha-1 more) in the C2 and TM treatments and small in 

the NM treatment where yields were lowest as reflected in Fig. 2.2. Yield response to 

pearl millet cultivar was observed only in the TM and C0 treatments.  

Pearl millet straw yields responded only to manure in the 2003 growing season. 

Manure had very large sum of squares and explained most of the yield variation. In the 

subsequent season straw yields responded to manure and fertilizer treatments but not to 

pearl millet cultivar and once again manure accounted for most of the yield response. 
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Table 2.1. Analytical data of soil at 0-20 cm for Banizoumbou and Bagoua at the 

beginning of the 2003 season. 
 

Banizoumbou Bagoua 

Soil property min. mean† max. sd min. mean max. sd 

pH 4.7 4.8 5.3 0.2 4.5 5.1 5.6 0.4 

CEC (Cmolc kg-1) 0.7 1.0 1.4 0.2 0.2 0.7 1.2 0.3 

Organic C (g kg-1) 1.0 1.3 1.7 0.2 1.1 1.5 2.2 0.3 

N (mg kg-1) 116 143 179 19 115 155 210 33 

P (mg kg-1) 1.8 3.4 7.2 1.5 2.3 4.3 8.9 2.1 

†Means and standard deviations are for five data points each representing a manure treatment. 
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Table 2.2. ANOVA for treatment effects on grain and straw yields at Banizoumbou 

in 2003 and 2004. 
 Year Source of variation SS df MS F Sig.

Grain 2003 Manure  18092572 4 4523143 42.7 0.000

  Fertilizer 176389 2 88194 0.8 0.437

  Cultivar 477052 2 238526 2.3 0.109

  Fertilizer * Cultivar 1064791 4 266198 2.5   0.045

  Error 12911630 122  105833    

 2004 Manure  11836188 4 2959047 47 0.000

  Fertilizer 1832182 2 916091 14.6 0.000

  Cultivar 1108503 2 554251 8.8 0.000

  Fertilizer * Cultivar 205680 4 51420 0.8 0.516

  Error 7675261 122 62912  

Straw 2003 Manure 312622454 4 78155613 50 0.000

  Fertilizer 2729869 2 1364934 0.9 0.491

  Cultivar 9536248 2 4768124 3 0.051

  Fertilizer * Cultivar 14104677 4 3526169 2.3  0.066 

  Error 1070586155 122  1559705    

 2004 Manure 16162251 4 4040563 39.8 0.000

  Fertilizer 1903498 2 951749 9.4 0.000

  Cultivar 317396 2 158698 1.6 0.214

  Fertilizer * Cultivar 359452 4 89863 0.9 0.476

  Error 12396644 122 101612  

 

  
 



 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Manure and fertilizer effects on grain yields at Banizoumbou in 2003. 

NM is no manure; TM is transported manure; C2 is two years after last corralling; 

C1 is one year after last corralling; C0 is the current corral; DAP is di-ammonium 

phosphate; and DAP + U is di-ammonium phosphate + urea. 
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Figure 2.2. Manure and fertilizer effects on grain yields at Banizoumbou in 2004. 

NM is no manure; TM is transported manure; C2 is two years after last corralling; 

C1 is one year after last corralling; C0 is the current corral; DAP is di-ammonium 

phosphate; and DAP + U is di-ammonium phosphate + urea. 
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Individual ANOVA of the manure treatments showed no straw yield response to 

either fertilizer or pearl millet cultivar in all but NM in 2003 (Appendix A-2). In 2004, 

straw yields responded to fertilizer in all but the C0 treatment but did not respond to 

pearl millet cultivar in any of the manure treatments.  

Combined ANOVA (Table 2.3) at Banizoumbou revealed significant differences 

in grain yields due to year, manure, pearl millet cultivar and fertilizer. Again, the manure 

treatment explained most of the yield differences as shown by its large sum of squares. 

This was followed by the effect of year or growing season which may have emanated 

from the fact that 2004 was not as favorable as 2003. Interaction effects (fertilizer * 

cultivar; cultivar * year) were significant at this site. This may also be attributed to the 

difference in the length of the growing seasons and the fact that 2003 received slightly 

more total rainfall (~40 mm more) after day of planting compared with the 2004 season. 

For straw, only the manure and year factors led to significant yield differences. 

Whilst 2003 was a ‘normal’ growing season at this site, planting was delayed by 

30 days and less total rainfall fell between the day of planting and harvesting in 2004. 

Pearl millet grain and straw yields in 2004 were consequently lower than in 2003. The 

response of pearl millet yields to manure treatment in 2003 and 2004 at Banizoumbou is 

presented in Table 2.4. During 2003, grain yields in the most fertile treatment, C0, were 

four times higher than in the control, NM, which is representative of some farmers’ 

fields, e.g. those far from the homestead (Schlecht and Buerkert, 2004; Schlecht et al., 

2004). In 2004, the C0 treatment resulted in grain yields almost ten times higher than the 

NM treatment.  

The C1 and C2 treatments which measured the residual effects of corrals on pearl 

millet yields one and two years after last corralling had grain yields twice as high as the 

control treatment in 2003. In the subsequent season, the C1 treatment had grain yields 

almost seven times higher than the control whereas grain yields in the C2 were three 

times higher than the control. 
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Table 2.3. Combined ANOVA for treatment effects on grain and straw yields at 

Banizoumbou in 2003 and 2004. 
Yield parameter Source of variation SS df MS F Sig.

Grain Manure 26766453 4 6691613 69.9 0.000

 Year 3961779 1 3961779 41.4 0.000

 Fertilizer 1496263 2 748132 7.8 0.001

 Cultivar 588730 2 294365 3.1 0.048

 Fertilizer * Cultivar 1076170 4 269042 2.8 0.026

 Fertilizer * Year 512307 2 256154 2.7 0.071

 Cultivar * Year 996826 2 498413 5.2 0.006

 Error 23749199 248 95763     

Straw Manure 213750848 4 53437712 41.7 0.000

 Year 252240782 1 252240782 196.9 0.000

 Fertilizer 4185732 2 2092866 1.6 0.197

 Cultivar 3446888 2 1723444 1.3 0.262

 Fertilizer * Cultivar 447635 2 223817 0.2 0.840

 Fertilizer * Year 6406757 2 3203378 2.5 0.084

 Cultivar * Year 6748940 4 1687235 1.3 0.264

 Error 317714569 248      

 

 



 

 

16

 The residual effects of corrals were more pronounced under less favorable 

growing conditions (low rainfall and a shorter growing season) compared with the 

normal season, 2003. In a study on similar soils in Niger, Schlecht et al., (2004) reported 

residual effects of corrals on pearl millet yields which lasted for four years and were 

linear with the amount of manure applied. Powell et al., (1998) evaluated the effects of 

corralling vs. dung application on sandy soils in Niger and reported higher pearl millet 

yields in fields which had been corralled once every three years compared with dung 

only fields. The authors observed that corralled fields benefited from both urine and 

dung, unlike the dung only treatments. Generally, yield reduction in the corralled fields 

may be attributed to fast nutrient release and organic matter decomposition reported for 

Sahelian conditions (Brouwer et al., 1993; Brouwer and Powell, 1998; Esse et al., 2001). 

However, even with these reductions, yields were still higher in the corralled fields 

compared with the control, NM, emphasizing the impoverished nature of the soils in the 

study sites. 

For straw yields, the NM and C0 treatments consistently resulted in the lowest 

and highest yields respectively in both 2003 and 2004. Straw yields in the C0 treatment 

were five times higher than the control. Fertilizer and cultivar effects on pearl millet 

yields in 2004 are shown in Table 2.5. Addition of fertilizer was associated with a slight 

increase in yields but there were no differences between the DAP and DAP + U 

treatments. The lack of difference between the two fertilizer additions suggests that P 

may have been more limiting since the additional N supplied by the DAP + U treatment 

did not seem to lead to higher yields. The improved pearl millet cultivars were also 

associated with higher grain but not straw yields in 2004. 
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Table 2.4. Manure treatment effects on pearl millet yields at Banizoumbou. NM is 

no manure; C2 is two years after corralling; C1 is one year after corralling; C0 is 

the current corral; and TM is transported manure. 
 

Grain yields Straw yields 

Manure treatment 2003 2004 2003 2004 

 kg ha-1 

NM 389 a 123 a 1076 a 243 a 

C2 747 b 357 b 2462 b 441 a 

C1 749 b 651 c 2586 b 883 b 

C0 1495 c 957 d 5802 c 1167 c 

TM 684 b 763 cd 1791 ab 983 bc 

†Mean yields followed by the same letter and in the same column are not significantly different with LSD 
test at 5 % confidence level. 
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Table 2.5. Fertilizer and pearl millet cultivar effects on pearl millet yields at 

Banizoumbou in 2004. DAP is di-ammonium phosphate and DAP + U is di-

ammonium phosphate + urea. 

Treatment 
 

Grain yields Straw yields 

 
            kg ha-1 

Fertilizer Control 406 a 577 a 

 DAP 642 b 846 b 

 DAP + U 664 b 806 b 

Cultivar Local 452 a 686 a 

 Zatib 589 b 737 a 

 ICMV IS 89305 672 b 805 a 

†Mean yields followed by the same letter and in the same column are not significantly different with LSD 
test at 5 % confidence level. 
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Pearl millet yields at Bagoua in 2003 and 2004 

ANOVA for treatment effects on pearl millet yield at Bagoua in 2003 (Table 2.6) 

showed yield response to manure and pearl millet cultivar but not to fertilizer. During 

the subsequent season, pearl millet yields responded to manure, fertilizer and cultivar 

treatments. Manure however had the largest effect on grain yields as shown by its large 

sum of squares. 

Individual ANOVA of the manure treatments during the 2003 growing season 

(Appendix A-3) showed no grain yield response to either fertilizer or pearl millet 

cultivar in NM, C0, and TM treatments. Pearl millet yields responded only to cultivar in 

C2 and to both fertilizer and pearl millet cultivar in C1. However, the grain yield 

response to fertilizer during 2003 was very small as shown in Fig. 2.3. In the following 

season, pearl millet yields responded to fertilizer in the low fertility treatments NM and 

C2 (yielding ~ 100 kg ha-1 more with fertilizer application) as well as in the TM 

treatment as shown in Fig. 2.3, whereas response to pearl millet cultivar was observed 

only in the C2 and C0 treatments. The microdose system tended to increase yields only 

under conditions of very low soil fertility as persisted in the NM and C2 treatments, but 

not under high soil fertility conditions e.g. C0.    

Straw yields responded to manure and pearl millet cultivar in 2003 with most of 

the yield variation being attributable to manure. The following season, manure, fertilizer 

and pearl millet cultivar treatments all had significant effects on pearl millet straw 

yields. Manure still had the largest influence on yield response. 

Individual ANOVA of the manure treatments (Appendix A-4) for the 2003 

season showed no straw yield response to fertilizer or pearl millet cultivar in the NM and 

TM treatments. Yield responded to fertilizer in the C1 treatment and only to cultivar in 

the C0 and C2 treatments. The interactive effects of fertilizer and cultivar were 

significant in the C2 treatment. In 2004, straw yields responded to both fertilizer and 

pearl millet cultivar in the low fertility treatment C2, whereas NM responded only to 

fertilizer. As observed for grain yields during the 2004 growing season, the low fertility 

treatments (C2 and NM) benefited more from fertilizer applications.  
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Table 2.6. ANOVA for treatment effects on pearl millet grain and straw yields at 

Bagoua in 2003 and 2004. 
 Year Source of variation SS df MS F Sig.

Grain 2003 Manure 4131123 4 1032781 30.9 0.000

  Fertilizer 11953 2 5976 0.2 0.836

  Cultivar 480212 2 240106 7.2 0.001

  Fertilizer * Cultivar 28942 4 7236 0.2 0.929 

  Error 3837557 115 33370    

 2004 Manure 6462679 4 1615670 33.4 0.000

  Fertilizer 787631 2 393815 8.1 0.003

  Cultivar 483111 2 241555 5 0.008

  Fertilizer * Cultivar 99686 4 24922 0.5 0.725

  Error 5902536 122 48381 

Straw 2003 Manure 49177133 4 12294283 26 0.000

  Fertilizer 554477 2 277238 0.6 0.557

  Cultivar 10264800 2 5132400 10.9 0.000

  Fertilizer * Cultivar 2069430 4 517358 1.1 0.361 

  Error 57492829 122 471253    

 2004 Manure 20464371 4 5116093 24 0.000

  Fertilizer 4478666 2 2239333 10.5 0.000

  Cultivar 3810892 2 1905446 8.9 0.000

  Fertilizer * Cultivar 819305 4 204826 0.96 0.432

  Error 26035494 122  
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Figure 2.3. Manure and fertilizer effects on grain yields at Bagoua in 2003 and 

2004. NM is no manure; TM is transported manure; C2 is two years since last 

corralling; C1 is one year since last corralling; C0 is the current corral; DAP is di-

ammonium phosphate; and DAP + U is di-ammonium phosphate + urea. 
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Combined ANOVA for the two growing seasons (Table 2.7) showed grain yield 

response to manure, growing season, fertilizer, pearl millet cultivar and the interactive 

effects of year * fertilizer and year * pearl millet cultivar. Straw yields also responded to 

manure, growing season, fertilizer and cultivar but did not respond to their interactive 

effects. 

Treatment effects on pearl millet yields at Bagoua are shown in Table 2.8. The 

C0 and NM treatments were associated with the highest and lowest grain yields 

respectively across fertilizer and cultivar treatments for both the 2003 and 2004 growing 

seasons. Grain yields in C0 were twice as high as in the control, NM. The C1 and C2 

treatments on the other hand, resulted in grain yields about one and a half times higher 

than the control in both seasons. 

Grain yield response to the residual effects of corralling at this site was high and 

yields in the C1 and C2 treatments were similar in both years. This temporal stability of 

yields contrasted with the Banizoumbou site where yields in 2004 were reduced to half 

their 2003 levels. On the other hand, straw yields were reduced to half their previous 

year’s level in the C2 and C1 treatments but were still higher than the control treatment.  

Pearl millet yield response to manure at Bagoua was not as high as at 

Banizoumbou, possibly because the fields used at Bagoua were located close to the 

farmer’s homestead and may have been manured more frequently from household and 

animal waste (Prudencio, 1983). Analytical data at the beginning of the 2003 season 

(Table 2.1) showed higher maximum P, N, and soil pH at Bagoua compared with 

Banizoumbou.  

In the 2003 growing season, which was normal, pearl millet yields (grain and 

straw) did not respond to fertilizer. As at Banizoumbou this may be explained by the fact 

that under conditions of high soil fertility and a normal growing season, the fertilizer 

amounts in the microdose system were not sufficient enough to cause any yield 

increases. 
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Table 2.7. Combined ANOVA for treatment effects on grain and straw yields at 

Bagoua in 2003 and 2004. 
Yield parameter Source of variation SS df MS F Sig.

Grain Manure 9572711 4 2393178 53.6 0.000

 Year 460941 1 460941 10.3 0.001

 Fertilizer 473084 2 236542 5.3 0.006

 Cultivar 517018 2 258509 5.8 0.004

 Year * Fertilizer 303033 2 151517 3.4 0.035

 Year * Cultivar 447195 2 223597 5 0.007

 Fertilizer * Cultivar 23506 4 5877 0.13 0.971

 Error 10761184 241 44652     

Straw Manure 52790006 4 13197502 32.6 0.000

 Year 19722926 1 19722926 48.7 0.000

 Fertilizer 3827821 2 1913911 4.7 0.010

 Cultivar 12681395 2 6340698 15.7 0.000

 Year * Fertilizer 1205322 2 602661 1.5 0.228

 Year * Cultivar 1394297 2 607148 1.7 0.181

 Fertilizer * Cultivar 585205 4 146301 0.4 0.836

 Error 100379820 248      
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Table 2.8. Treatment effects on average pearl millet yields at Bagoua. NM is no 

manure; C2 is two years after corralling; C1 is one year after corralling; C0 is the 

current corral;TM is transported manure; DAP is di-ammonium phosphate; and 

DAP + U is di-ammonium phosphate + Urea. 
  Grain yields Straw yields 

Treatment  2003 2004 2003 2004 

  
kg ha-1 

Manure NM 423 a 506 ab 1081 a 1001 a 

 C2 793 b 656 b 2139 b 1050 a 

 C1 648 c 880 c 1940 b 1849 b 

 C0 995 d 1152 d 2979 c 1773 b 

 TM 658 bc 755 bc 2070 b 1832 b 

Fertilizer Control 695 a 693 ac 1959 a 1247 a 

 DAP 717 a 881 bc 2115 a 1590 b 

 DAP + Urea 699 a 795 c 2052 a 1666 b 

Cultivar Local 741 a 716 a 2423 a 1690 a 

 Zatib 618 b 790 ab 1781 b 1282 b 

 ICMV IS 89305 753 a 863 b 1920 b 1532 a 

†Mean yields followed by the same letter and in the same column are not significantly different with LSD 
test at 5 % confidence level. 
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The following season, pearl millet grain yield response was not consistent with 

what may have been expected. Response to DAP and DAP + U treatments was similar 

and the control treatment had similar grain yields as the DAP + U treatment. Straw 

yields responded positively to DAP and DAP + U treatments. The benefit of urea in the 

DAP + U treatment was not evident at this site. Minimal response to fertilizer may be 

explained by the low fertilizer quantities used in the study and better previous 

management. The local landrace outperformed the two improved cultivars Zatib and 

ICMV IS 89305 for straw yields but had similar grain yields with ICMV IS 89305. In 

2004, Zatib gave the lowest straw yields, and the local landrace and ICMV IS 89305 had 

similar straw yields.  

When the two sites (Banizoumbou and Bagoua) were combined, the ANOVA 

results (Appendix A-5 and A-6) showed grain and straw yield response to site, manure 

and cultivar in 2003 and response to site, manure, fertilizer and pearl millet cultivar in 

2004. The different response to yields between the two sites may well be attributed to 

the fact that Bagoua was better managed. This resulted in lower yield response to both 

manure and fertilizer at this site compared with Banizoumbou.  

Table 2.9 summarizes treatment effects on pearl millet harvest indices at the two 

sites during the two growing seasons. The harvest indices were low, ranging from 0.20 

to 0.38, yet common for pearl millet grown under dry land agriculture in the Sahel 

(Oluwasemire et al., 2002; de Rouw, 2004). The 2004 season had higher harvest indices 

especially at Banizoumbou. The corralled fields generally gave higher pearl millet grain 

and straw yields at both sites during the two seasons compared with fields with 

transported manure. Higher pearl millet yields in the corralled fields can be attributed to 

two important factors. The first one has to do with the possibility of having more N in 

corralled fields emanating from both dung and urine (Powell et al., 1998) and the second 

has to do with more likelihood of leaching and/or volatilization losses of N from manure 

in the cattle kraals before its transportation to the fields. Manure quality and quantity in 

the TM treatment varied between farmers. For example, at Banizoumbou in 2004, 90% 

of the TM was composed of straw and hence may have had little nutritional value.  
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Table 2.9. Manure, fertilizer and pearl millet cultivar treatment effects on harvest 

index. NM is no manure; TM is transported manure; C2 is two years since last 

corralling; C1 is one year since last corralling; C0 is the current corral; DAP is di-

ammonium phosphate; and DAP + U is di-ammonium phosphate + urea. 

  Banizoumbou Bagoua 

Treatment 2003 2004 2003 2004 

Manure NM 0.24 a 0.21 a 0.26 a 0.29 a 

 C2 0.21 b 0.36 b 0.25 ab 0.33 b 

 C1 0.21 b 0.35 b 0.24 ab 0.28 a 

 C0 0.20 b 0.38 b 0.23 ab 0.34 b 

 TM 0.25 a 0.36 b 0.22 b 0.26 a 

Cultivar Local 0.21 a 0.30 a 0.22 a 0.26 a 

 Zatib 0.21 a 0.34 a 0.24 b 0.33 b 

 ICMV IS 89305 0.24 b 0.35 a 0.26 c 0.31 b 

Fertilizer Control 0.22 a 0.28 a 0.25 a 0.30 abc 

 DAP 0.22 a 0.36 b 0.24 a 0.32 b 

 DAP + U 0.22 a 0.36 b 0.24 a 0.28 c 

†Mean yields followed by the same letter and in the same column are not significantly different with LSD 
test at 5 % confidence level.  
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In general, manure application at both sites, whether through corralling or 

transported manure, led to higher yields than the control where no manure was applied. 

Applying dung and urine to the poorly buffered sandy soils of Niger can improve the soil 

nutrient status as well as soil physical properties (Powell et al., 1998; Ikpe and Powell, 

2002). Whilst dung deposits have been shown to mechanically protect the soil by 

trapping mobile sand during storms thus reducing surface crusting, (de Rouw and Rajot, 

2004b) urine has been shown to raise the soil pH, increasing P availability and its 

subsequent uptake by pearl millet (Powell et al., 1998; Ikpe et al., 1999; Ikpe and 

Powell, 2002; Muehlig-Versen et al., 2003). 

Despite the fact that the experimental design did not allow for formal testing of 

interaction effects between manure and fertilizer, graphical inspection of Fig 2.1 to Fig. 

2.3 suggest no interaction especially at Bagoua in both years and at Banizoumbou in 

2003. In the 2004 growing season at Banizoumbou response to the microdose 

technology seemed to depend on the native fertility of the soil where the NM, TM and 

C2 treatments had significant yield increases with microdose. Other studies in the region 

e.g. Bationo et al.,  (1989a) and Bationo et al., (1993) have shown interaction between 

organic and inorganic fertilizers.  

 

Discussion 

Yield data from this study have confirmed the importance of manure in the 

subsistence farming systems of south-western Niger which other studies have already 

shown (Bationo et al., 1989a; Bationo and Mokwunye, 1991b; Bationo et al., 1993; 

Powell et al., 1998; Ikpe and Powell, 2002; de Rouw and Rajot, 2004a). However, 

manure quantities as high as those used in this study (up to 8 Mg ha-1) can not be 

consistently applied year to year by most subsistence farmers in the region. Corralling 

has been shown to concentrate manure on small areas of the field leading to nutrient 

losses via leaching (Gandah et al., 2003; Schlecht and Buerkert, 2004; Schlecht et al., 

2004). To avoid such losses, farmers can moderate manure quantities by shortening and 
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increasing corralling duration and frequency, but both depend on access to cattle and 

demand more labor.  

Residual effects of corrals were still effective in raising pearl millet yields two 

years after last corralling. However, in order to sustain high pearl millet yields, frequent 

corralling may still be required (e.g. after every two or three years) especially under low 

fertility conditions like at Banizoumbou.   

The microdose technology caused significant yield increases but only under 

harsh conditions (e.g. a shorter growing season, less total rainfall, and no manure 

applied).  At Banizoumbou for example, microdose caused grain yield increase up to 250 

kg ha-1 in the low fertility treatments (NM, C2 and TM) in 2004 and about the same 

increase for the ICMV IS 89305 cultivar in the NM treatment in 2003.  It is interesting to 

note that although the transported manure used at Banizoumbou was of poor quality 

yield increase under TM reached 500 kg ha-1 in 2004. If the cost of DAP is assumed to 

be 240 CFA kg-1 and the cost of pearl millet grain to be 100 CFA kg-1, then the 

microdose technology demands that the farmer invest about 4800 CFA per ha-1 of pearl 

millet grown, a cost which may not be incurred by using transported manure. From this 

standpoint it appears that farmers at both sites may be better of applying the low quality 

transported manure than investing in microdose. Initial results of an earlier extensive 

study on improving crop-livestock productivity through efficient nutrient management in 

mixed farming systems of semi-arid West Africa (NUTMEN/GEMS, 2002) showed that 

the increase in yield resulting from microdose (NPK 15-15-15 at 6 g hill-1 or 9 kg N, P, 

and K ha-1) did not pay for the cost of the fertilizer. The same study also showed that on 

the contrary, increase in yield measured over three years following application of 6 Mg 

of manure ha-1 in corralling largely paid for the cost of corralling and for the impact of 

corralling on the cropping labor cost leading to a marginal rate of return of the labor 

investment of 165 %.   

The local landrace was generally superior for straw yields and the improved 

cultivars superior for grain yields at both sites and especially in 2004 which had a shorter 

growing season. 
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CHAPTER III  

MODELING HYDRAULIC PROPERTIES OF SANDY SOILS OF NIGER 

USING PEDOTRANSFER FUNCTIONS 

 

Soil hydraulic properties such as the moisture retention curve and hydraulic 

conductivity (K) control the flux and storage of water in soil making them crucial input 

parameters in water and solute transport modeling. Knowledge of these properties is 

needed in many field studies dealing with irrigation and drainage management. Field 

determination of K and moisture retention curves is often laborious and costly (van 

Genuchten and Leij, 1992) whilst the K values so determined do not capture the spatial 

variability under field conditions (Warrick and Nielsen, 1980; Wilding, 1984). This has 

led to the development and widespread use of indirect methods (Campbell, 1974; van 

Genuchten, 1980; Rawls et al., 1982; Haverkamp and Parlange, 1986; Vereecken et al., 

1989; van Genuchten and Leij, 1992; Rawls et al., 1998; Elsenbeer, 2001; Sobieraj et al., 

2001; Suleiman and Ritchie, 2001; Wösten et al., 2001) which are classified as 

pedotransfer functions (PTFs), which were intended to translate easily measured soil 

properties like bulk density, particle size distribution and organic matter content into soil 

hydraulic properties.  

PTFs can be categorized into three main groups namely class PTFs, continuous 

PTFs and neural networks (Schaap, 1999). Class PTFs calculate hydraulic properties for 

a textural class e.g. sand, by assuming that similar soils have similar hydraulic 

properties; continuous PTFs on the other hand, use measured percentages of clay, silt, 

sand and organic matter content to provide continuously varying hydraulic properties 

across the textural triangle (Wösten et al., 1995). Neural networks are an “attempt to 

build a mathematical model that supposedly works in an analogous way to the human 

brain” (Minasny and McBratney, 2002) and were developed to improve the predictions 

of empirical PTFs (Schaap and Bouten, 1996; Sobieraj et al., 2001; Minasny and 

McBratney, 2002). In brief, a neural network consists of an input, a hidden, and an 
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output layer all containing “nodes”. The number of nodes in input (soil bulk density, soil 

particle size data) and output (soil hydraulic properties) layers corresponds to the number 

of input and output variables of the model (Schaap and Bouten, 1996). The major 

advantage of neural networks over the two classes described earlier is that they do not 

require an a-priori concept of the relations between input and output data (Schaap and 

Leij, 1998). The optimal relations that link input data to output data  are obtained and 

implemented in an iterative calibration procedure (Schaap et al., 2001).  

An apparent limitation with the Class PTFs is the fact that they provide an 

average value of  a hydraulic characteristic for each textural class when, in fact, there 

may be a considerable range of characteristics within a single textural class (Hodnett and 

Tomasella, 2002). Some PTFs have been incorporated into computer programs like 

ROSETTA (Schaap et al., 2001) and SOILPAR (Acutis and Donatelli, 2003) where 

users can choose a PTF based on their level of available inputs.   

In general, the performance of PTFs has been shown to be largely dependant on 

the data used for their calibration (Schaap and Leij, 1998), and caution should always be 

exercised when using them. This is especially true if predictions are being made for soils 

that are outside the range of soils used in deriving the PTFs. This has been shown to lead 

to poor or even inaccurate predictions (Cornelis et al., 2001; Wagner et al., 2001; 

Wösten et al., 2001; Hodnett and Tomasella, 2002). Spatial variability in soil properties 

may also decrease the accuracy of predictions made by PTFs as has been shown for 

saturated hydraulic conductivity, Ks (Tietje and Hennings, 1996; Sobieraj et al., 2001). 

Although progress has been made in the development and use of PTFs to 

estimate soil hydraulic properties in general, to our knowledge there has been very little 

evaluation of PTFs on the sandy soils of the West African Sahel.  Substantive studies of 

soil hydraulic properties of these soils are  available, however, (Vachaud et al., 1978; 

Hartmann and Gandah, 1982; Vauclin et al., 1983; Payne et al., 1991a) such that 

evaluation of PTFs for this region should be possible.  

This study was carried out to evaluate the performance and suitability of three 

published PTFs (van Genuchten, Vauclin, and Campbell) for estimating the moisture 
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retention curves and unsaturated K of sandy soils in the Fakara region of southwestern 

Niger by comparing them to published values on similar soils. The hydraulic properties 

so determined, would then be an important resource for modeling and understanding the 

water balance of farmers’ fields in the Fakara.    

The van Genuchten and Campbell PTFs were selected for this study because they 

have been widely used and evaluated for a wide range of soil types (Khaleel et al., 1995; 

Rockström et al., 1998; Schaap and Leij, 2000; Cornelis et al., 2001; Wagner et al., 

2001; Amayreh et al., 2003). The Vauclin PTF model was originally developed for 

sandy soils of Senegal (Vauclin et al., 1983) and later successfully used for similar soils 

in Niger (Klaij and Vachaud, 1992). The direct method of estimating K from neutron 

probe measurements (Green et al., 1986), as modified by Klaij and Vachaud (1992), was 

used as a reference to evaluate the prediction accuracy of the Vauclin, van Genuchten 

and Campbell PTF models in estimating K.  

 

Pedotransfer function theory 

van Genuchten function 

Using the van Genuchten (1980) equation, the moisture retention curve function 

can be represented by 

 

 ( ) ( )[ ] nn
rsr

/11
1)(

−
+−+= αψθθθψθ ,     [3.1] 

 

where )(ψθ  is the measured volumetric water content (cm3 cm-3) at suction ψ  (cm); rθ  

and sθ  are residual and saturation moisture content respectively; α  (cm-1) is related to 

the inverse of the air entry suction, eψ , where large values of α indicate a sudden 

change in water content with some pores emptying under very small negative heads 

typical of sands; n (>1) is a dimensionless measure of the pore-size distribution (van 

Genuchten, 1980) and determines the rate at which the S-shaped retention curve turns 
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towards the ordinate for large values of ψ , thus reflecting the steepness of the curve 

(Wösten et al., 1995). The parameters rθ , and sθ , α , and n for moisture retention were 

estimated from neural networks using the ROSETTA model (Schaap et al., 2001). 

Combination of Eq. [3.1] and Mualem’s (1976) pore-size model results in the 

following expression for K (van Genuchten, 1980) 

 

 2/11)1/( }]1[1{)( nnn
e

L
eoe SSKSK −−−−=  ,     [3.2] 

 

where the effective saturation, eS , is given by 

 

 )/()( rsreS θθθψθ −−=  .     [3.3] 

 

In Eq. [3.2], oK  is a fitted matching point at saturation (cm day-1) which is similar but 

not necessarily equal to Ks, while L is an empirical parameter. For this study, oK  and  L 

were estimated using ROSETTA (Schaap and Leij, 1998; Schaap et al., 2001) from the 

measured bulk density and soil particle size data. 

 

Vauclin model 

The Vauclin model (Vauclin et al., 1983) was derived from  a study on 

Senegalese sandy soils with clay plus fine silt contents ranging from 3.5 to  12.0 %. K 

(θ) values obtained from the instantaneous profile method (Watson, 1966) were used to 

model K using the following function, 

 

 βθθθ )/()( ooKK = ,    [3.4] 

 

where )(θK  is the hydraulic conductivity at moisture content θ, Ko is the hydraulic 

conductivity at final infiltration, β is a shape parameter and θo is the apparent saturated 
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soil moisture content at final infiltration. Ko and β are calculated using the following 

equations, 

 

 

                             [3.5] 

 

 

and  

 

 )(437.067.3 FineSiltClay ++=β     [3.6] 

 

where Ko  is in cm hr-1, Clay is the clay content (< 2.0.µm fraction, %) and FineSilt is 

the fine silt content (2.0 to 20.0 µm fraction, %).The Vauclin model has been used in 

water balance studies on sandy soils in Nigeria (Grema and Hess, 1994), and in Niger 

(Klaij and Vachaud, 1992) yielding hydraulic conductivities very close to measured 

values. 

 

Campbell model 

The Campbell model uses particle size distribution and bulk density data to 

estimate points on the moisture retention curve from which Ks can also be estimated. The 

SOILPAR program (Acutis and Donatelli, 2003) was used to estimate the Campbell 

parameters. The Campbell equation for the moisture retention curve is 

 

 b
sem

−= )/( θθψψ ,     [3.7] 

 

where θ  is volumetric water content, and sθ  is the saturation water content. The 

parameters mψ  and eψ  are soil matric potential and air entry water potential respectively 

)(534.142.28
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FineSiltClayK
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and b is the slope of loge mψ vs. logeθ . Campbell (1998) also proposed a function for 

determining K as  

 

 32)/()( += b
ssKK θθθ ,     [3.8] 

 

where )(θK and sK are unsaturated and saturated hydraulic conductivities respectively, 

and b is the same as in Eq. [3.7]. 

 

Materials and methods 

Site description 

The two study sites were Banizoumbou and Bagoua in the Fakara region of 

southwestern Niger. Banizoumbou is a village located at coordinates 13o31’N and 

2o39’E, 65 km east of Niger’s capital city, Niamey. The second village, Bagoua, is 

located at 2o46’ E and 13o29’ N, 12 km south east of Banizoumbou. The climate of the 

Fakara is hot and semi-arid with a unimodal rainfall distribution. Most of the rain falls 

between June and September, with an average of 500 mm (Le Barbe and Lebel, 1997). 

Soils in the study sites are classified as Psammentic Kandiustalfs (Soil Survey Staff, 

1975; Heil et al., 1997) and pearl millet is the major crop grown in the two villages. 

 

Soil sampling strategy 

Soil sampling in farmers’ fields was done using a stratified random sampling 

method where each of five manure treatments (see Chapter II) was divided into three 

equal squares measuring 30 x 30 m. For particle size distribution, soils were sampled 

randomly from each of these squares using a push augur with 5 cm diameter, at the 

following depths; 0-30 cm at 10 cm intervals; and 30-210 cm at 30 cm intervals. The 

samples were then bulked according to depth resulting in nine samples per stratum.  



 

 

35

Soil bulk density samples were collected using a 100 cm3 core from profile pits 

dug at the two sites and from the same depths as for particle size analysis. 

Composite soil samples for moisture retention were collected from the no-

manure (NM) stratum at each site. Because clay content increased with depth, especially 

at Banizoumbou, soil profiles at the two sites were divided into three horizons based on 

clay content resulting in the following depth intervals; 0 – 30; 30 – 120; and > 120 cm at 

Bagoua; 0 – 30; 30 – 60; and > 60 cm at Banizoumbou.  

 

Soil physical and hydraulic properties 

Particle size distribution was measured on the following fractions, 2000 – 200, 

200 – 50, 50 – 20, 20 – 2 , and finally < 2 µm using the pipette method (Gee and Bauder, 

1986). Soil bulk density and particle size data were used to estimate the moisture 

retention curves and K(θ) for the two sites using the van Genuchten function (Mualem, 

1976; van Genuchten, 1980), Campbell functions (Campbell, 1974; Campbell and 

Norman, 1998), and the Vauclin model (Vauclin et al., 1983). The prediction accuracy of 

the PTFs was tested by comparing the derived moisture retention curves with those 

determined in the lab using the hanging water column method (Klute, 1986) on 100 cm3 

soil cores repacked to a bulk density of 1.5 g cm-3 for the low suction range (0, 1, 2, 3, 4, 

5 and 6 kPa) and published pressure plate data for high suction ranges (33, 300 and 1500 

k Pa) for similar soils in Niger (Payne, 1987). To evaluate the performance of the 

different PTFs, the root mean square error (RMSE) between the calculated and measured 

values was also calculated by: 

 

                       2

1

' )(1 ∑
=
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RMSE ξξ ,     [3.9] 

 

where iξ is measured value, '
iξ is the predicted value and N is the number of data points. 
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Soil moisture measurements and estimation of K(θ) 

An aluminum access tube was installed to a depth of 1.8 m in the center of each 

10 x 10 m experimental plot before pearl millet was planted in 2003. Soil profile 

volumetric moisture content was then measured to a depth, Zm, of 1.8 m in each of the 

plots using a field calibrated neutron probe (IH II Probe, Didcot Instrument Co., UK). A 

calibration curve was developed for each of the following depths; 0-15 cm; 15-30 cm 

and > 30 cm. Although neutron probes are known to lose resolution near the surface 

because of escaping neutrons (Holmes, 1956), satisfactory curves were obtained near the 

surface (r2 = 0.99 for 15 cm; 0.98 for both the 15-30 cm and > 30 cm depth). Soil 

volumetric moisture content (%) was calculated by 

 

 )/( sv CCba +=θ ,    [3.10] 

 

where vθ is volumetric moisture content (%); a is the intercept of the calibration curve; b 

is the slope of the curve; C is the neutron count read by the neutron probe; and Cs is the 

standard count. The standard count was obtained at the beginning of each measurement 

date by taking a neutron probe reading in a drum full of pure water. The amount of water 

stored in the profile was calculated by the trapezoidal integration of the soil moisture 

content values over the depth of the profile. 

Unsaturated hydraulic conductivity was then directly estimated at the maximum 

rooting depth (1.4 m) using the two stage method proposed by Klaij and Vachaud 

(1992). Knowledge of unsaturated K for this depth is needed to calculate root zone 

drainage other soil water balance terms e.g. Payne (1997). In Klaij and Vachaud (1992), 

stage one represents the beginning of the season when the wetting front had not yet 

passed the bottom of the soil profile (1.8 m) and stage two is the period when the wetting 

front had reached the bottom of the profile. If, during a time interval for conditions of 

stage one the moisture content held between the maximum rooting depth (1.4 m) and the 

bottom of the profile, rmS , increased by S∆ , then the same amount of water must have 



 

 

37

drained through that plane. A single K-θ value of the soil hydraulic function can be 

estimated using the following equation: 

 

                                   tHDK ra ∆∇−=)(θ                                                       [3.11] 

 

where θa is the arithmetic mean of the soil water content at the beginning (t = t1) and end 

of the time interval (t = t1 + ∆t) measured at Z = Zr; Dr is the same as Srm; H∇ is the 

hydraulic head gradient, which was assumed to be (-1) at both sites based on results from 

earlier work in the region (Hartmann and Gandah, 1982; Klaij and Vachaud, 1992). 

Vachaud et al., (1991) found excellent correlation between K(θ) functions obtained with 

and without the unit gradient assumption (i.e., with and without tensiometric data) for 

coarse soils of Côte d’Ivoire, Mali, and Senegal. By using Eq. [3.11] and repeating the 

calculation for several time intervals per neutron probe during stage one allowed for the 

regression of the K vs. θ to give 

 

                                                   b
a aK θθ =)( ,                                                           [3.12] 

 

where a and b are constants. 

 

Results 

Soil physical properties 

Tables 3.1 and 3.2 summarize the soil particle size distribution and bulk density 

data at the two sites. Generally, soil profile clay content at the two sites was low, and did 

not reach 90 g kg-1 with Banizoumbou having higher clay content than Bagoua.   
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Table 3.1. Particle size and bulk density data at Banizoumbou. 
Depth 2000 – 200 µm SE 200-50 µm SE 50-20 µm SE 20-2 µm SE <2 µm SE Bulk density 

cm g kg-1 g cm-3 

0-10 449.3 9.7 490.5 9.4 19.3 2.3 9.7 1.1 31.6 3.5 1.40 

10-20 429.6 9.7 497.2 7.8 14.7 2.8 15.7 2.7 42.6 2.4 1.43 

20-30 425.9 11.8 482.4 12.7 15.7 1.8 12.6 1.9 63.4 2.7 1.49 

30-60 429.4 6.4 467.5 8.9 13.7 2.9 12.0 1.0 77.4 3.2 1.41 

60-90 424.5 9.6 469.6 10.8 13.2 2.4 10.7 2.5 82.0 4.6 1.50 

90-120 425.2 10.0 470.4 12.5 10.0 1.3 7.6 0.9 86.9 5.8 1.48 

120-150 420.9 15.2 475.4 15.8 11.7 1.5 10.6 1.4 81.6 6.2 1.48 

150-180 402.8 8.6 489.8 11.2 14.1 1.2 7.8 1.2 85.6 5.3 1.50 

180-210 400.2 7.0 494.9 5.7 11.5 1.3 9.9 1.3 83.6 4.8 1.53 

†Particle size data are averages of the five manure treatments (NM, TM, C0, C1 and C2) 
‡Standard error is for the five manure treatments 
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Table 3.2. Particle size and bulk density data at Bagoua. 
Depth 2000 – 200 µm SE 200-50 µm SE 50-20 µm SE 20-2 µm SE <2 µm SE Bulk density 

cm g kg-1 g cm-3 

0-10 488.3 16.1 463.3 14.1 14.3 1.4 9.5 1.0 25.4 1.6 1.54 

10-20 471.8 6.9 469.2 6.4 14.0 0.8 9.3 0.8 35.9 1.8 1.64 

20-30 450.5 10.3 481.3 9.3 12.5 0.9 8.9 0.5 47.2 2.2 1.55 

30-60 456.2 4.4 469.0 5.9 12.8 0.6 7.7 0.6 55.0 1.9 1.55 

60-90 446.2 6.4 479.7 5.2 12.3 1.7 7.3 0.6 55.0 2.0 1.49 

90-120 455.1 10.8 474.5 11.6 12.1 1.6 6.0 0.5 52.6 1.7 1.54 

120-150 435.2 11.3 497.2 10.0 12.4 0.8 6.0 0.3 50.1 2.0 1.44 

150-180 416.6 9.5 517.4 8.8 13.7 1.3 6.2 0.2 47.3 2.0 1.52 

180-210 401.1 12.9 535.4 13.0 13.5 1.7 5.8 0.5 44.9 2.5 1.43 

†Particle size data are averages of the five manure treatments (NM, TM, C0, C1 and C2) 
‡Standard error is for the five manure treatments 
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Table 3.3. Input parameters for moisture retention curves for Banizoumbou and Bagoua. 
  Banizoumbou Bagoua 

Soil property Depth (cm) 0 – 30 30 – 60 > 60 0 – 30 30 - 120 > 120 

 Sand (g kg-1) 925.0 896.9 894.7 941.5 926.9 934.3 

 Silt (g kg-1) 29.2 25.7 21.4 22.8 19.4 19.2 

 Clay (g kg-1) 45.9 77.4 83.9 36.1 54.2 47.4 

 Bulk density (g cm-3) 1.41 1.41 1.50 1.58 1.53 1.46 

van Genuchten θr (cm3 cm-3) 0.05 0.06 0.06 0.05 0.06 0.06 

 θs  (cm3 cm-3) 0.42 0.42 0.40 0.36 0.38 0.40 

 α  (cm-1) 0.03 0.03 0.03 0.03 0.03 0.03 

 L 0.84 0.80 0.84 0.91 0.90 0.88 

 n 2.85 2.39 2.37 3.19 2.91 3.05 

 Ko (cm d-1) 23.74 21.14 17.22 19.91 17.95 20.35 

Campbell ψe  (-j kg-1) 0.69 0.78 0.90 0.75 0.79 0.71 

 b 2.17 2.71 2.83 1.97 2.25 2.13 

 Ks (mm h-1) 73.43 56.65 42.94 61.39 56.27 68.98 
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Table 3.4. Input parameters for unsaturated hydraulic conductivity at 1.4 m soil depth for Banizoumbou and Bagoua. 
Model Parameter  Banizoumbou Bagoua 

van Genuchten L 0.84 0.87 

 n 2.40 2.98 

 Ko (cm d-1) 17.76 20.70 

Campbell ψe  (-j kg-1) 0.87 0.70 

 b 2.78 2.18 

 Ks (mm h-1) 46.28 70.03 

Vauclin b 7.50 5.90 

 Ko (cm h-1) 15.10 20.40 
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At Banizoumbou bulk density was lower, possibly because of the higher clay 

content and also due to observed  termite activity, which has been shown to lower the 

bulk density  (Mando, 1997). 

 

Moisture retention curves 

The parameter values required by the van Genuchten and Campbell models to 

estimate the moisture retention curves are presented in Table 3.3 and parameter values 

for hydraulic conductivity are presented in Table 3.4. Parameters for the van Genuchten 

model were derived from ROSETTA (Schaap et al., 2001) and those for the Campbell 

model were derived from SOILPAR (Acutis and Donatelli, 2003).  

The moisture retention curves for the three depth intervals at the two sites (Fig. 

3.1 and Fig. 3.2) are typical of the sandy soils which dominate most of south-western 

Niger (Hoogmoed and Klaij, 1990; Payne et al., 1991a). Field capacity of these soils, 

which ranges from anywhere between 0.12 to 0.16 m3 m-3 depending on clay content 

(Payne, 1987; Payne et al., 1990a), was reached at a suction (h) below 10 kPa with 

further increases in h up to 50 kPa draining the soils rapidly to θ < 0.05 m3 m-3.   

The Campbell model performed well for the 0 – 30 cm soil depth at 

Banizoumbou and had an RMSE 0.05 m3 m-3 (Fig. 3.1). For depths below 30 cm, the 

Campbell model tended to overestimate h for θ between 0.05 and 0.20 m3 m-3 and had 

RMSE of 0.05 and 0.04 m3 m-3 for 30 – 60 cm and > 60 cm soil depth respectively. At 

the dry region of the moisture retention curve, the Campbell model predicted a more 

gradual change in θ with change in h, which in fact is not typical of these sandy soils 

which have been shown to rapidly drain with small changes in h (Hoogmoed and Klaij, 

1990; Payne et al., 1991a). The van Genuchten model overestimated moisture retention 

in the dry region for the three depth intervals but performed well for the wet range 

especially for the 0 -30 and 30 – 60 cm depth intervals. The RMSE for the van 

Genuchten model for the 0 -30 and 30 – 60 cm depth intervals at Banizoumbou was 0.07 

m3 m-3 and for the > 60 cm depth interval it was 0.06 m3 m-3.  
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Figure 3.1. Estimation of moisture retention curves by van Genuchten and 

Campbell models compared with measured values of the soil profile at 

Banizoumbou. Suction units are kPa. 
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Figure 3.2. Estimation of moisture retention curves by van Genuchten and 

Campbell models compared with measured values of the soil profile at Bagoua. 

Suction units are kPa. 
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At Bagoua (Fig. 3.2), the Campbell model gave a good approximation of the 

moisture retention curve for the 0 – 30 cm soil depth interval, with an overall RMSE of 

0.04 m3 m-3. The van Genuchten model also had an overall RMSE of 0.04 m3 m-3 for the 

0 – 30 cm depth interval. For the 30 – 120 and > 120 cm depth intervals, the Campbell 

model had an RMSE of 0.06 m3 m-3 and overestimated h for θ between 0.05 and 0.20 m3 

m-3. The van Genuchten model had an RMSE of 0.08 and 0.09 m3 m-3 for the 30 – 120 

and > 120 cm depth intervals respectively. As at Banizoumbou, the van Genuchten 

model tended to overestimate dry end θ while performing well for the wet end. 

 

Unsaturated hydraulic conductivity  

At Banizoumbou (Fig. 3.3), the van Genuchten model was in excellent 

agreement with Klaij and Vachaud’s field method giving K values ranging from 0 to 5.3 

mm d-1 for θ values of  0.04 to 0.10 m3 m-3. For the same θ range, the Campbell and 

Vauclin models estimated negligible K.  

At Bagoua (Fig. 3.4), the van Genuchten model slightly overestimated K for the 

range of θ but was still close to Klaij and Vachaud’s field method. At this site, the Klaij 

and Vachaud field method gave K ranging from 0.2 to 2.5 mm d-1 for θ values from 0.04 

to 0.10 m3 m-3 and the Vauclin model estimated K values from 0 to 1.3 mm d-1. 

Hydraulic conductivity values given by the Klaij and Vachaud field method and the van 

Genuchten model at this site fall within the range of what has been previously reported 

for similar soils in the Sahel (Klaij and Vachaud, 1992; Grema and Hess, 1994). The 

Campbell model resulted in consistently lower K over the range of θ, compared with the 

Klaij and Vachaud and van Genuchten models, at Bagoua. 

 

Discussion 

Parameter estimation by SOILPAR and ROSETTA using soil particle size and 

bulk density data led to an acceptable estimation of the moisture retention curve by the 

Campbell model and hydraulic conductivity by the van Genuchten model.  
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Figure 3.3. Unsaturated hydraulic conductivity curves estimated by the van 

Genuchten, Campbell, and Vauclin models and compared with the Klaij and 

Vachaud field method for the 1.4 m soil depth at Banizoumbou. Unsaturated 

hydraulic conductivity units are mm d-1. 
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Figure 3.4. Unsaturated hydraulic conductivity curves estimated by the van 

Genuchten, Campbell, and Vauclin models and compared with the Klaij and 

Vachaud field method for the 1.4 m soil depth at Bagoua. Unsaturated hydraulic 

conductivity units are mm d-1. 
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The Campbell model appeared to be better suited for estimating moisture retention for 

soils with high sand content as at Bagoua and the Banizoumbou topsoil. On the other 

hand, the van Genuchten model consistently overestimated moisture retention at the dry 

regime while generally performing well for the wet regime at both sites and for all depth 

intervals. The general disagreement between the van Genuchten and Campbell models  

was also reported for a Walla Walla silt loam soil under semiarid conditions (Chen and 

Payne, 2001). They found that the Campbell model tended to estimate higher suction as 

moisture content decreased below 0.30 m3 m-3. The large difference in Ks values used by 

the two models (e.g. 23.74 cm d-1 for the van Genuchten model vs. 176.23 cm d-1 for the 

Campbell model at Banizoumbou) may have caused the discrepancy in the water 

retention curves. Given the labor, time and cost requirements for field measurements, the 

Campbell model can be a faster and cheaper alternative for estimating the moisture 

retention and the van Genuchten model would be an alternative for determining K for 

the Fakara soils.  

The unsaturated hydraulic conductivity curves derived from Klaij and Vachaud’s 

direct method at both sites were similar to those derived from neutron probe readings 

and internal drainage experiments on similar soils in Niger (Hartmann and Gandah, 

1982; Hoogmoed and Klaij, 1990; Payne et al., 1991a) and in Senegal (Vachaud et al., 

1978; Vauclin et al., 1983). The van Genuchten model consistently estimated K values 

similar to Klaij and Vachaud’s direct method for the 1.4 m soil depth at both sites. The 

Campbell model on the other hand, underestimated K, making it a less likely candidate 

for modeling K at the study sites or for similar soils.  Performance of the Campbell 

model can be greatly improved when the particle size distribution data used in 

determining the Campbell parameters are as detailed as possible and not just the clay, silt 

and sand contents as used in this study (Wagner et al., 2001). The Vauclin model 

underestimated K for both soils but especially so for the Banizoumbou soil, which had 

higher clay content (Table 3.1). The Vauclin model gave better results for the Bagoua 

soil which had higher sand content (Table 3.2). 
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It has been generally accepted that the accuracy of PTFs tends to increase with an 

increase in the number of measured input parameters, but others have recently shown 

that this is not necessarily true (Schaap et al., 2004). In this study all the model input 

parameters were estimated using ROSETTA and SOILPAR but the resulting soil 

hydraulic properties were still of modest accuracy.  

 



 

 

50

CHAPTER IV 

ON-FARM MANAGEMENT EFFECTS ON PROFILE MOISTURE 

DISTRIBUTION AND WATER BALANCE OF SANDY SOILS GROWN TO 

PEARL MILLET IN NIGER 

 

Major constraints to pearl millet [Pennisetum glaucum (L.) R.Br.] production 

under the rainfed subsistence farming systems of Niger include declining and inherently 

poor soil fertility (West et al., 1984; Manu et al., 1991; Casenave and Valentin, 1992; 

Manu et al., 1996; Rockström et al., 1998; Bielders et al., 2002),  the use of unimproved 

pearl millet cultivars, and   erratic rainfall that  usually falls in high intensity storms 

(Sivakumar, 1989; Sivakumar, 1993; D’amato and Lebel, 1998). Average grain yields of 

the staple cereal, pearl millet, under subsistence farmer management are generally low, 

varying from 150 to 550 kg ha-1 (McIntire and Fussel, 1989; Krogh, 1997; Sivakumar 

and Salaam, 1999). The effects of organic manure and inorganic fertilizer on pearl millet 

yields have been extensively studied in Niger (Bationo and Mokwunye, 1991a; Bationo 

et al., 1992; Bationo et al., 1993; Rockström and de Rouw, 1997; Powell et al., 1998; de 

Rouw, 2004; de Rouw and Rajot, 2004a), but relatively few studies have been conducted 

on manure/fertilizer effects on the water balance of sandy soils grown to pearl millet, 

and fewer still under subsistence farmer conditions.  

Some water balance studies have concluded that water is not always the limiting 

constraint to pearl millet production. Payne (1997) looked at fertilizer, cultivar, and plant 

population effects on the yield and water use of pearl millet at the ICRISAT Sahelian 

Center Experiment Station in four years (1983, 1984, 1986, and 1990) with varying 

rainfall amounts. Genotypic differences in evapotranspiration, ET, were shown to be 

only due to differences in length of growing season where the long season cultivars 

consistently had higher ET. Fertilizer only slightly increased ET, whereas combination 

of high fertilizer application and high plant populations led to ~50 mm increase in water 

use. His study showed that it is possible to optimize pearl millet yield and WUE for most 
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climatic zones of the Sahel without risk of exhausting plant available water by using 

moderate plant populations of at least 10 000 hills ha-1 and moderate fertilizer 

applications of ~20 kg N ha-1 and ~9 kg P ha-1. In an earlier study, Payne et al. (1990a) 

studied root zone water balances of three low input pearl millet fields at three sites in 

Niger. At their driest site (233 mm total annual rainfall), ET was equal to rainfall whilst 

cumulative root zone drainage and change in root zone moisture content were both zero. 

The authors concluded that water was the primary limiting constraint to production only 

under dry conditions as prevailed at this site. Their conclusion was based on De Wit’s 

statement (De Wit, 1958) that if water is in short supply, transpiration equals the amount 

of available water, corrected for evaporation and losses such as drainage and runoff; and 

if water is not limiting, transpiration is less than the available water.  

Affholder (1995)  studied the effect of organic matter input on the water balance 

and pearl millet yield in 1990 and 1991 at  Bambey and Sob, Senegal. Rainfall at Sob in 

1990 and 1991 was 324 and 356 mm respectively and at Bambey it was 374 and 328 mm 

in 1990 and 1991 respectively. Fields used at the Bambey site were located at an 

experiment station and had been receiving fertilizer applications for many years before 

the experiment started and may not have been representative of farmers’ conditions. At 

Bambey, the author compared a composting (3 Mg compost ha-1) treatment to a 

reference treatment with no compost added. However both treatments had received 40 

kg NPK ha-1 at the beginning of the experiment. On the other hand, fields used at Sob 

were located in the village and hence were more representative of farmers’ conditions. 

At Sob, the author compared three fertility levels; 1) House field with 9 Mg manure ha-1 

applied for at least three years; 2) Bush field with 3 Mg manure ha-1 applied in the 

current year; and 3) Bush field with no manure application for the previous three years. 

He observed that at both sites and during both seasons pearl millet grown on fields 

where no manure had been applied did not experience any moisture constraint at all 

during sensitive periods (e.g. grain filling) whereas pearl millet grown on fields which 

had received manure, especially at the Bambey site, experienced moisture stress during 

grain filling and maturation. Although at Bambey manure had a positive effect on the 
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number of grains per square meter, it induced a decrease in individual grain mass. He 

also observed that the higher rate of moisture consumption in manured fields at Bambey 

kept the soil moisture content low and promoted storage of rainwater in the surface 

layers, hampering the depth penetration of the wetting front, which in turn limited the 

downward growth of roots. Although the author did not report root zone drainage in his 

study, the restriction of the depth penetration of the wetting front in high fertility 

treatments may also have led to a reduction in the root zone drainage as was reported for 

degraded sandy soils in a similar study by Cissé and Vachaud (1988).  

In their study, Cissé and Vachaud (1988) investigated the effect of manure on the 

yield and water use of pearl millet and groundnut on sandy soils during 1983 with 210 

mm total rainfall, 1984 with 279 mm total rainfall, and 1985 with 347 mm total rainfall. 

They observed that pearl millet grown on high fertility fields (10 Mg manure ha-1 and 

150 kg NPK ha-1 + 50 kg Urea ha-1) had higher ET until around tillering (30 – 40 days 

after sowing) and at grain filling (48 – 70 days after sowing) compared with pearl millet 

grown with only fertilizer application. From grain filling until the end of the season ET 

in the manured fields fell below ET in the fertilizer only fields, just as Affholder (1995) 

observed for his high vs. low fertility treatments. Cumulative root zone drainage was 

also reduced significantly in the high fertility fields compared with the fertilizer only 

fields. Although the authors did not mention grain yields, the total dry matter produced 

by pearl millet in the fertile fields were twice as high compared with the control 

treatment during both seasons.  

Klaij and Vachaud (1992) also studied the seasonal water balance of a sandy soil 

at the ICRISAT Experiment Station in Niger during the 1986 growing season. Total 

rainfall received between day of sowing and harvesting was 440 mm. In their study, 

pearl millet grown under high fertility conditions (30 kg P2O5 ha-1 and 40 kg N ha-1) 

used 58 mm more water compared with pearl millet grown in the low fertility treatment 

(no inputs, similar to farmer’s conditions). In their study, pearl millet total dry matter 

production in the fertile plots was almost three times higher than in the control plots, but 

as in Cissé and Vachaud (1988), the authors did not report  grain yield. However, their 
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findings were similar to those of Payne et al., (1997) in suggesting that pearl millet 

water-use efficiency can be increased by better management without reducing pearl 

millet total dry matter yields, and that not all plant available moisture is used under low 

fertility conditions which prevail under subsistence farmer management except in very 

dry zones.  

Although the aforementioned studies looked at fertility effects on pearl millet 

yields and the water balance of sandy soils, in most studies other than that by Payne et 

al. (1990), fertilizer or manure quantities applied were higher than what most subsistence 

farmers in the region typically apply. Additionally, some studies did not report grain 

yield. The moisture stresses at tillering and grain filling observed for pearl millet grown 

under high fertility conditions in the two Senegalese studies (Cissé and Vachaud, 1988; 

Affholder, 1995) were not reported for the Niger studies, at least not to the extent of 

reducing grain yields (Payne et al., 1990a; Klaij and Vachaud, 1992; Payne, 1997). 

Whilst studies on experiment stations, e.g. Payne (1999) have shown that water 

can be used more efficiently for pearl millet production by decreasing D and increasing 

partitioning of rainfall to transpiration through improved management, on-farm studies 

that use technologies appropriate to subsistence cropping systems and investigate the 

potential impact of such water-balance modifications are still needed. This is especially 

so because results from experimental stations under controlled conditions are not always 

representative of farmer field conditions. Because of the poor resource base of most 

subsistence farmers in the region, the application of very small quantities of fertilizer  

(“microdose”) near planted seeds (NUTMEN/GEMS, 2002) has  been proposed  to 

increase  pearl millet yield and is the subject of ongoing studies.  However, to our 

knowledge none of studies on microdose have examined its effects on soil moisture or 

the soil water balance.  

It is against this backdrop that this study was carried out with the primary 

objective of evaluating, on farmers’ fields, the effect of corralling and microdose on the 

yields and water balance of pearl millet grown on sandy soils in the Fakara region. As a 
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secondary objective, pearl millet cultivar effects on yields and the water balance were 

also evaluated.  

 

Materials and methods 

Site description and field experiment 

Banizoumbou is a village located at coordinates 13o31’N and 2o39’E, 65 km east 

of Niger’s capital city, Niamey and Bagoua, is located at 2o46’ E and 13o29’ N, 12 km 

south east of Banizoumbou. Farmers’ fields were located on < 2 % slope with no 

evidence of surface crusting and runoff or runon. The climate at the study sites is hot and 

semi-arid with a unimodal rainfall distribution. Most of the rain falls between June and 

September, with an average annual rainfall of 500 mm (Le Barbe and Lebel, 1997). Soils 

in the study sites are classified as Psammentic Kandiustalfs (Soil Survey Staff, 1975; 

Heil et al., 1997) and pearl millet is the major crop grown in these villages. 

A factorial experiment in a randomized complete block design was set up in 

farmers’ fields (and managed by the farmers under the supervision of an ICRISAT 

technician) at both villages in 2003. The effects of five different manure treatments, 

three fertilizer treatments, and two cultivars on the water balance were analyzed. The 

five manure treatments served as blocks and were: 1) Two years since last corralling, 

C2; 2) One year since last corralling, C1; 3) Current corralling, C0; 4) Transported 

manure, TM; and finally 5) No manure, NM. The three fertilizer treatments were: 1) A 

control with no fertilizer application; 2) Twenty kg ha-1 di-ammonium phosphate (DAP) 

supplying 3.6 kg N ha-1 and 3.85 kg P ha-1; and 3) Twenty  kg ha-1 DAP + 10 kg ha-1 

urea supplying 8.2 kg N ha-1 and 3.85 kg P ha-1). The unusually low amounts of fertilizer 

were based upon the “microdose” technology (see Chapter II), which places very small 

amounts of fertilizer in close proximity to seeds.  Finally, the two pearl millet cultivars 

were the local landrace, Heini Kirei, and an improved cultivar, Zatib. Individual plot size 

was 10 m x 10 m, and each fertilizer/cultivar treatment was replicated thrice in each 

block.  
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In 2003 sowing was done after the first major rains greater than 20 mm on day of 

year (DOY) 165 at both sites. For the 2004 season, sowing was done on DOY 139 and 

181 at Bagoua and Banizoumbou respectively. Plants were thinned to 3 plants per hill 

(30 000 plants ha-1) 14 days after sowing and weeding done twice during the season at 

both sites using the traditional hand hoe (hilaire). Plots were harvested on DOY 281 at 

Banizoumbou and DOY 287 at Bagoua in 2003. During the 2004 growing season, the 

leaf area index (LAI) of pearl millet in the different treatments was measured. At Bagoua 

LAI measurements were taken at 37, 69, and 87 days after sowing in the NM, C0 and C2 

treatments whilst in the TM and C1 they were taken at 70, 92, and 110 days after 

sowing. At Banizoumbou, LAI measurements were taken at 45, 58, 89, and 109 days 

after sowing in all the treatments. The LAI was measured using a leaf area meter (Li-Cor 

model, LI-3100; Li-Cor, Inc., Lincoln, Nebraska).  

On each LAI measurement date, three “representative” pearl millet hills were 

harvested from the two border rows in each of the three replications. The green leaves 

were then transported to the lab in a 60 L cooler box for LAI and dry weight 

measurement. The dry weight was determined after oven drying the leaves at 70oC for 

24 hours and measuring the weight using a scale accurate to 1 mg. Using regression, 

models relating LAI to leaf dry weight were formulated. These models were used later in 

the season to calculate LAI when it became difficult to transport turgid leaves from the 

field to the lab. Harvesting was done on DOY 287 at Banizoumbou and DOY 270 at 

Bagoua in 2004. 

 

Meteorological data collection 

Daily weather data (relative humidity, wind speed, global irradiance, air 

temperature and potential evapotranspiration) were collected from an automatic weather 

station (Campbell CR10, Campbell Scientific Inc., Logan, Utah) located at a village 6 

and 12 km from Bagoua and Banizoumbou respectively. In 2003, the weather data for 

May to July were lost during downloading to a personal computer. 
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Soil moisture measurements 

Soil profile volumetric moisture content was determined to a depth, Zm, of 1.8 m 

in each of the experimental plots using a field calibrated neutron probe (IH II Probe, 

Didcot Instrument Co., UK). A calibration curve was developed for each of the 

following depths; 0-15 cm; 15-30 cm and > 30 cm. Although neutron probes are known 

to lose resolution near the surface because of escaping neutrons (Holmes, 1956), 

satisfactory curves were obtained near the surface (r2 = 0.99 for 15 cm; 0.98 for both the 

15-30 cm and > 30 cm depth). Soil volumetric moisture content (%) was calculated by 

 

 )/( sv CCba +=θ ,    [4.1] 

 

where vθ is volumetric moisture content (%); a is the intercept of the calibration curve; b 

is the slope of the curve; C is the neutron count read by the neutron probe; and Cs is the 

standard count. The standard count was obtained at the beginning of each measurement 

date by taking a neutron probe reading in a drum full of pure water. The amount of water 

stored in the profile was calculated by the trapezoidal integration of the soil moisture 

content values over the depth of the profile. 

In 2003 soil moisture measurements began 19 and 20 days after sowing at 

Bagoua and Banizoumbou respectively. Profile moisture measurements were terminated 

on DOY 251 (about 30 days and 36 days before harvesting at Banizoumbou and Bagoua 

respectively) due to neutron probe failure. 

In 2004 profile soil moisture measurements at Banizoumbou started 1 day after 

sowing and at Bagoua they started 55 days after sowing in the TM and C1 treatments 

and 12 days after sowing in the NM, C2 and C0 treatments.  Neutron probe failure at the 

beginning of the season led to lack of readings in the TM and C1 treatments at Bagoua 

and hence their exclusion from the water balance calculations for 2004. 
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Water balance 

To calculate the water balance at each time interval, change in root zone soil 

moisture ( S∆ ) was considered equal to the difference between the input (rainfall, R) and 

output (evapotranspiration, ET, and drainage from the root zone, D) as shown in Eq. 

[4.2]. Rainfall was measured daily by the farmers at each site using a non-recording rain 

gauge; S∆  was calculated from neutron probe measurements as explained in the 

preceding section; and maximum rooting depth, Zr, was assumed to be 1.4 m based on 

earlier work in the region (Payne et al., 1990a; Klaij and Vachaud, 1992). Runon and 

runoff at the study sites were both assumed to be negligible because of the absence of 

surface crusting and the fact that the selected farmers’ fields were located on less than 2 

% slope, leading to the following water balance equation: 

 

 )( DETRS +−=∆ .      [4.2] 

 

Following the method of Klaij and Vachaud (1992), the growing season was split 

into two stages. The first stage was applicable after the prolonged dry season (October to 

May) when the soil profile moisture had been depleted by evapotranspiration and 

drainage. During this time, the wetting front had not passed Zm and soil moisture content 

at Zm remained sufficiently low that water flux at Zm given Darcy’s equation was 

negligible. Therefore the calculation of root zone drainage and ET was as follows, 

 

 mrSD ∆= ,       [4.3] 

 

and 

 

 omSRET ∆+= ,        [4.4] 
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where D and ET are root zone drainage and evapotranspiration between two neutron 

probe readings; rmS∆  and moS∆  are the change in soil moisture content below the root 

zone (1.4 – 1.8 m) and in the whole soil profile (0 - 1.8 m), between two neutron probe 

measurements respectively.  

As the season progressed and more rainfall events occurred, stage two set in and 

the change in moisture content at Zm was no longer negligible. During stage two, D and 

ET were calculated by  

 

 tHKD ∆∇−= )(θ ,         [4.5] 

and   

 

 DSRET −∆+= ,         [4.6] 

 

where K(θ) is unsaturated hydraulic conductivity at Zr; H∇  is the hydraulic head 

gradient at Zr; t∆ is the time period between two consecutive neutron probe readings; 

and D is drainage through the Zr plane.  

 

Estimation of K(θ) from neutron probe readings 

According to Klaij and Vachaud (1992), if during a time interval for conditions 

of stage one, rmS  increased by S∆ , then the same amount of water must have drained 

through that plane (Eq. [4.3]). A single K-θ value of the soil hydraulic function can be 

estimated using Eq. [4.7]: 

 

                                         tHDK a ∆∇−=)(θ                                         [4.7] 

 

where θa is the arithmetic mean of the soil water content at the beginning (t = t) 

and end of the time interval (t = t + ∆t) measured at Z = Zr. A H∇ of (-1) was assumed 

at both sites based on results from earlier work in the region (Hartmann and Gandah, 
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1982; Klaij and Vachaud, 1992). By using Eq. [4.7] and repeating the calculation for 

several time intervals per neutron probe during stage one allowed for the regression of 

the K vs. theta to give a drainage or K function of the form: 

 

                                                   b
a aK θθ =)( ,                                                             [4.8] 

 

where a and b are constants. 

 

Statistical analyses 

Differences in root zone drainage, ET, and WUE due to manure, fertilizer and 

cultivar treatments were determined using analysis of variance (ANOVA) of the general 

linear model (GLM) procedures (SPSS for Windows, Release 12.0, 2004, Chicago: 

SPSS Inc.). Effects were considered significant at a probability level of ≤ 0.05. For 

ANOVA, the model used was: 

 

ErrorCultivar*FertilizerCultivarFertilizerManureConstantParameter +++++= [4.9] 

 

where parameter is root zone drainage, ET, or WUE. 

 

Results 

Banizoumbou 

The total rainfall received at the sites during the two seasons is shown in 

Appendix B-1 and was close to the 500 mm annual average for the area (Le Barbe and 

Lebel, 1997).  



 

 

60

Leaf area index 

The following regression models were developed from leaf area vs. leaf dry 

weight data and used to derive LAI during the 2004 season: 

 

For the local pearl millet cultivar, 

 

 94.0;007.0)017.0( 2 =−×= rDryWeightLAI ,     [4.10] 

 

and for Zatib, 

 

 98.0;01.0)02.0( 2 =−×= rDryWeightLAI .   [4.11] 

 

From the beginning of the 2004 growing season until ~20 days after sowing, the 

difference in LAI between the manure treatments was small. Around 60 days after 

sowing, pearl millet grown in the higher fertility treatments (C1, C0 and TM) had higher 

LAI than the NM and C2 treatments, which still had LAI<0.2. The maximum LAI was 

reached at around 90 days after sowing with the high fertility treatments being associated 

with LAI around 1.1. The low fertility treatments, NM and C2 had LAI of 0.2 and 0.4 

respectively (Fig. 4.1).  

Even with up to 8 Mg manure ha-1 being applied in the corralling treatments, 

maximum pearl millet LAI in the high fertility treatments was still only around 1.1, as 

other studies in the region have shown (Payne, 2000). Such low maximum LAI 

especially in the NM and C2 treatments are expected to lead to large proportions of 

rainfall being lost as soil evaporation (Wallace et al., 1993), seriously impacting the 

amount of water available for crop growth. 
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Figure 4. 1. Manure effects on leaf area index at Banizoumbou in 2004. NM is no 

manure; TM is transported manure; C0 is current corralling; C1 is one year since 

last corralling; and C2 is two years since last corralling. 
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Soil profile moisture distribution 

Manure effects on soil profile moisture distribution at the beginning of the 2003 

growing season are shown in Fig. 4.2. At 20 days after sowing, there was slightly more 

profile moisture content in the low fertility treatment NM and the C1 treatment, 

especially below the maximum rooting depth, suggesting that it would be unavailable to 

plants. At 34 days after sowing, the NM had the highest profile moisture content 

compared with the rest of the treatments. Towards the end of the season (Fig. 4.3) at 75 

days after sowing, the difference in profile moisture content was small, but at 88 days 

after sowing there was again more profile moisture content in the NM treatment 

compared with the rest of the treatments. The high fertility treatment had the lowest 

profile moisture content at the end of the 2003 season. The maximum difference in end 

of season root zone moisture content was measured between the low fertility treatment, 

NM (103 mm) and the current corral, C0, (70 mm). High residual profile moisture 

content in NM may be because pearl millet grown under low fertility conditions has a 

less developed rooting system and hence cannot extract water from deeper soil layers 

(Payne et al., 1995). On the contrary, pearl millet grown under the high fertility plots 

used more profile moisture from the deeper soil layers. Studies in Senegal by Cissé and 

Vachaud (1988) and Affholder (1995) showed the restriction of the depth penetration of 

the wetting front in fertile fields resulting in lower residual moisture content at depth. 

However, the high residual profile moisture content at the end of the growing season is 

of no benefit to the farmer because it is almost all lost to drainage and evaporation 

during the long hot and dry period (October – May) following harvesting (Payne et al., 

1990b) 

At the beginning of the 2004 growing season (Fig. 4.4) there was slightly more 

residual moisture content in the NM and TM treatments, especially below the maximum 

rooting depth. This may well be related to the higher end of season (2003) profile 

moisture content in the low fertility treatments shown in Fig. 4.3.  
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Figure 4. 2. Soil profile moisture distribution at beginning of 2003 growing season 

at Banizoumbou in 2003. NM is no manure; TM is transported manure; C0 is 

current corralling; C1 is one year since last corralling; and C2 is two years since 

last corralling. 
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Figure 4.3. Soil profile moisture distribution at the end of the 2003 growing season 

at Banizoumbou. NM is no manure; TM is transported manure; C0 is current 

corralling; C1 is one year since last corralling; and C2 is two years since last 

corralling. 
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Figure 4.4. Soil profile moisture distribution at Banizoumbou in 2004. NM is no 

manure; TM is transported manure; C0 is current corralling; C1 is one year since 

last corralling; and C2 is two years since last corralling. 
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At the end of the 2004 growing season, the low fertility treatment (NM) had 

higher residual moisture content compared with the rest of the treatments, especially 

beyond the rooting zone.    

There was higher soil moisture content at 1.8 m throughout the 2004 season in 

the low fertility treatment, NM (Fig. 4.5) compared with the rest of the treatments, 

indicating that pearl millet in the more fertile plots consumed more water during the 

course of the season, generally depleting the profile soil moisture content and preventing 

moisture movement to deeper soil layers. 

 

Root zone drainage, ET, and ∆S 

Change in root zone storage (∆S) was negligible at Banizoumbou and ANOVA 

for root zone drainage and ET at Banizoumbou in 2004 (Appendix C-1 and C-2) showed 

significant differences due only to manure.  Although fertilizer may have been expected 

to influence the water balance, the small quantities applied through microdose may have 

been insufficient to impact drainage and ET. 

The hydraulic conductivity function used to compute D at Banizoumbou is 

shown in Fig. 4.6. Moisture content ranging from 0.04 to 0.10 m3 m-3 led to K ranging 

from 0 to 5.3 mm d-1, which is very close to what Klaij and Vachaud (1992) found for 

similar soils in Niger and what Grema and Hess (1998) found for sandy soils in Nigeria. 

Manure effects on cumulative root zone drainage and ET are shown in Fig. 4.7. During 

the 2004 season, cumulative root zone drainage at Banizoumbou was highest in the low 

fertility treatments, NM and C2, and amounted to 30 % of total rainfall. The C0 and C1 

treatments had the lowest root zone drainage in 2004 amounting to less than 10 % of 

total rainfall. The high fertility treatments, C0 and C1 had the highest water use of ~ 380 

mm and the low fertility treatments, NM, C2 and TM had ~ 280 mm water use. Thus, 

recent corralling decreased root zone drainage and increased ET by about 100 mm. This 

increase in efficient water use from corralling is therefore temporary, and at least for this 

particular site, was not duplicated by transported manure, which is of dubious quality.  
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Figure 4.5. Manure effects on soil moisture content at maximum depth of 

measurement (1.8 m) at Banizoumbou in 2004. NM is no manure; TM is 

transported manure; C0 is current corralling; C1 is one year since last corralling; 

and C2 is two years since last corralling. 
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Figure 4.6. Hydraulic conductivity at maximum rooting depth (1.4 m) at 

Banizoumbou measured in 2004. Hydraulic conductivity units are mm d-1. 
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Figure 4.7. Manure effects on cumulative drainage and ET at Banizoumbou in 

2004. NM is no manure; TM is transported manure; C0 is current corralling; C1 is 

one year since last corralling; and C2 is two years since last corralling. 
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Water use efficiency 

ANOVA tables for treatment effects on pearl millet WUE at Banizoumbou are 

shown in Appendix C-3. Manure had the most significant effect (p<0.001) on the WUE 

at this site and hence results presented in Table 4.1 are only for manure effects.  

Water use efficiency in 2004 was low but comparable to what has been reported 

in the region under Sahelian conditions (Payne, 1997; Rockström et al., 1998).  In the 

water balance study by Payne (1997) for example, the author reported pearl millet grain 

WUE ranging from 1.4 to 3.5 kg ha-1 mm in the 1990 growing season, which apparently 

had similar rainfall total to Banizoumbou in 2004. However unlike the low total dry 

matter WUE in this study which ranged from 0.9 kg ha-1 mm-1 in the NM treatment to 

6.2 kg ha-1 mm-1 in the C0 treatment, the author reported total biomass WUE ranging 

from 7.9 kg ha-1 mm-1 under low fertility to 19.9 kg ha-1 mm-1 under high fertility 

treatments. In Rockström et al., (1998) grain WUE for pearl millet ranged from 1.2 kg 

ha-1 mm-1 to 2.5 kg ha-1 mm-1 and total dry matter WUE ranged from 7 kg ha-1 mm-1 to 

11 kg ha-1 mm-1. 

The low WUE at this site during this season resulted from the low pearl millet 

yields in 2004, which were caused by a shorter growing season and less total rainfall. 

However, currently corralled (C0) fields had WUE values more than five times higher 

than that in the control NM. Residual effects of corrals (C1 and C2) were effective in 

raising both grain and total dry matter WUE at this site to levels more than twice as high 

as the control. 

The consistently high WUE in the corralling treatments, especially C0, shows the 

importance of this traditional practice in the rainfed subsistence farming system of the 

Fakara. Because highest WUE is achieved at the highest yields (Stewart, 1989) any 

management practices which improve pearl millet yields should also cause an increase in 

WUE.
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Table 4.1. Manure effects on the water use efficiencies at Banizoumbou in 2004. 

NM is no manure; TM is transported manure; C0 is current corral; C1 is one year 

since last corralling; and C2 is two years since last corralling; TDM is total dry 

matter; and WUE is water use efficiency. 
Manure treatment Grain yield TDM  WUE (Grain)   WUE (TDM)  

 kg ha-1 kg ha-1 kg ha-1 mm-1 kg ha-1 mm-1 

NM 95 a 354 a 0.3 a 0.9 a 

TM 703 b 1976 bc 1.9 bc 5.4 bc 

C0 851 c 2307 c 2.3 c 6.2 c 

C1 635 b 1816 b 1.7 b 4.7 b 

C2 321 d 910 d 0.9 d 2.4 d 

†Means followed by the same letter and in the same column are not significantly different with LSD test at 
5 % confidence level. 
‡WUE=Yield/ET
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Bagoua 

Leaf area index 

The LAI at Bagoua was measured using a leaf area meter at the beginning of the 

season and later calculated by relating leaf area to leaf dry weight as at Banizoumbou. 

The regression equation used to calculate LAI for the local cultivar was, 

 

98.0;05.0)0004.0()022.0( 22 =−×−×= rDryWeightDryWeightLAI ,         [4.11] 

 

and for Zatib it was, 

 

98.0;035.0)00005.0()024.0( 22 =−×−×= rDryWeightDryWeightLAI .    [4.12] 

 

Fig. 4.8 shows the manure treatment effects on pearl millet LAI at Bagoua in 

2004. The TM and C1 treatments which were planted 33 days earlier than the C0, C2 

and NM treatments had their LAI measurements taken beginning at 70 days after 

sowing. The TM treatment was associated with the highest maximum LAI which was 

measured at around 70 days after sowing. The lowest maximum LAI was recorded in the 

low fertility treatments, C2 and NM. As at Banizoumbou, manure had a positive effect 

on pearl millet LAI on farmers’ fields at the two sites.  

The Bagoua site was associated with higher LAI in the TM treatment compared 

with the Banizoumbou site, possibly because of differences in the manure quality at the 

two sites. Manure transported to farmers’ fields at Banizoumbou was composed mainly 

of straw (~ 90 %) and little fecal matter, whereas at Bagoua the manure was mainly 

composed of dung. However, as at Banizoumbou, manure quantities used at Bagoua 

reached ~ 8 Mg ha-1, which most farmers may not be able to consistently apply every 

year on their fields especially to fields located far from the homestead. 
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Figure 4.8. Manure effects on leaf area index at Bagoua. NM is no manure; TM is 

transported manure; C0 is current corralling; C2 is two years since last corralling; 

and C1 is one year since last corralling. 
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Soil profile moisture distribution 

At the beginning of the 2003 growing season (Fig. 4.9), at 19 days after sowing 

the NM and TM treatments had the highest soil profile moisture. The difference in root 

zone moisture content was small and ranged from 107 mm in the C0 treatment to 117 

mm in the TM treatment. At 34 days after sowing the NM and TM treatments continued 

to have higher profile moisture content especially below the 1.2 m. Towards the end of 

the season at 76 days after sowing (Fig. 4.10) the difference in profile moisture content 

among the treatments was small. At 86 days after sowing, the low fertility treatment, 

NM, had 14 mm more root zone moisture content than the current corralling treatment, 

C0. The higher residual root zone moisture content in the low fertility treatment is 

presumably the result of sparse root and canopy systems caused by low soil fertility.  

In 2004 (Fig. 4.11) at 15 days after sowing the low fertility treatment, NM, had 

slightly higher residual profile moisture content compared with the other treatments. For 

example, NM had 75 mm within the root zone whereas the high fertility treatment, C0 

had 62 mm soil moisture content. Towards the end of the season the low fertility 

treatments (NM and C2) had slightly higher residual root zone soil moisture content and 

moisture content ranged from 69 mm in the NM treatment to 88 mm in the C0 treatment. 

At the end of the 2004 growing season, the soil profile moisture content at 1.8 m was the 

same in all treatments (Fig. 4.12). However, during the course of the season, the low 

fertility treatments (NM and C2) had slightly higher soil profile moisture content 

compared with the C0 and TM treatments implying less water extraction in the lower 

fertility treatments compared with the high fertility ones.  

 

Root zone drainage, ET and ∆S 

ANOVA for root zone drainage and ET at Bagoua showed significant differences 

due to manure treatment but not to microdose (Appendix C-4 and C-5). As at 

Banizoumbou, the lack of response to microdose fertilizer was probably due to the low 

fertilizer quantities applied.  



 

 

75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Soil profile moisture distribution at Bagoua in 2003. NM is no manure; 

TM is transported manure; C0 is current corralling; C1 is one year since last 

corralling; and C2 is two years since last corralling. 
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Figure 4.10. Soil profile moisture distribution at the end of the 2003 growing season 

at Bagoua. NM is no manure; TM is transported manure; C0 is current corralling; 

C1 is one year since last corralling; and C2 is two years since last corralling. 
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Figure 4.11. Soil profile moisture distribution at Bagoua in 2004. NM is no manure; 

TM is transported manure; C0 is current corralling; C1 is one year since last 

corralling; and C2 is two years since last corralling.  
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Figure 4.12. Manure effects on soil moisture content at the maximum depth of 

measurement (1.8 m) at Bagoua in 2004. NM is no manure; TM is transported 

manure; C0 is current corralling; C1 is one year since last corralling; and C2 is two 

years since last corralling.  
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Figure 4.13. Hydraulic conductivity at maximum rooting depth (1.4 m) measured at 

Bagoua in 2004. 
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Change in root zone moisture storage at Bagoua was highest (20 mm) in the one 

year after corralling (C1) treatment and negligible in the current corralling (C0) 

treatment. Soil hydraulic conductivity at Bagoua is shown in Fig. 4.13 and manure 

effects on cumulative root zone drainage and ET are shown in Fig. 4.14. The response of 

drainage to manure treatment was pronounced at this site. The low fertility treatments, 

C2 and NM were associated with the highest drainage losses (~ 48 mm) associated with 

high water content at 1.8 m (Fig. 4.12). Such high root zone drainage under low fertility 

conditions have been reported in other studies on similar soils in Niger (Payne et al., 

1990a; Klaij and Vachaud, 1992; Rockström et al., 1998).  The lowest amount of root 

zone drainage, 15 mm, was in C1, which had been corralled the previous year. Pearl 

millet grown in the C1 and TM treatments had total ET values ~ 50 mm greater than the 

control NM treatment. There was no difference ET among the different manure 

treatments for most of the growing season.  

 

Water use efficiency 

The ANOVA table for manure effects on the WUE at Bagoua is presented in 

Appendix C-6. As at Banizoumbou, manure explained most of the differences in WUE 

and hence results presented in this section are for manure effects only. Generally the 

response of pearl millet WUE to manure treatments at Bagoua was not as high as at 

Banizoumbou.  

The application of manure through corralling led to the doubling of the grain 

WUE from 1.7 kg ha-1 mm-1 in the NM treatment to 3.8 kg ha-1 mm-1 in the C0 treatment 

(Table 4.2). Residual effects of corralling on grain WUE apparently lasted only one year, 

similar to the Banizoumbou site, had disappeared two years after corralling (C2 

treatment). In contrast to the Banizoumbou site, however, where transported manure TM 

did not increase grain WUE, the higher quality transported manure at Bagoua did 

increase WUE.  For total dry matter production during this season, WUE increased from 

6.1 kg ha-1 mm-1 in the NM treatment to 11.7 kg ha-1 mm-1 in the C0 treatment.   
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Figure 4.14. Manure effects on cumulative drainage and ET at Bagoua in 2004. NM 

is no manure; TM is transported manure; C0 is current corralling; C1 is one year 

since last corralling; and C2 is two years since last corralling. 
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Table 4.2. Manure effects on the water use efficiencies at Bagoua in 2004. NM is no 

manure; TM is transported manure; and C1 is one year since last corralling; TDM 

is total dry matter; and WUE is water use efficiency. 
Manure treatment Grain yield TDM  WUE (Grain)   WUE (TDM)  

 kg ha-1    kg ha-1 kg ha-1 mm-1 kg ha-1 mm-1 

NM 482 ab 1715 ab 1.7 a 6.1 ac 

TM 721 bc 2910 cd 2.5 b 9.9 bc 

C0 1108 d 3400 e 3.8 c 11.7 d 

C1 847 c 2996 de 2.7 b 9.4 bc 

C2 610 b 1875 b 2.2 a 6.7 c 

†Means followed by the same letter and in the same column are not significantly different with LSD test at 
5 % confidence level. 
‡WUE=Yield/ET 
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Response of WUE to manure at Bagoua was not as high as it was at Banizoumbou, 

presumably because fields used at Bagoua were closer to the farmers’ homestead and are  

generally better managed  during the growing season (Prudencio, 1983). The Bagoua site 

also had slightly higher available P before the experiment started. 

 

Discussion 

Water balance data from this study have shown that it is possible to manipulate 

the water balance components (ET, ∆S, and D) by corralling.  

The high fertility treatments (C1 and C0) consistently resulted in the lowest D at 

both sites. The NM treatment at Bagoua resulted in D up to 12.5 % of total rainfall and 

at Banizoumbou D in the NM treatment was ~30 % of total rainfall. Such high D in the 

low input system especially at Banizoumbou emphasizes the low efficiency of water use 

under subsistence farmer management.  By reducing D with manure application in the 

high fertility treatments (C1 and C0), ET was increased by up to 100 mm at 

Banizoumbou and 50 mm at Bagoua without causing moisture stress during the growing 

season as evidenced by consistently high pearl millet yields. Although this study did not 

measure transpiration and evaporation separately, the fact that corralled fields were 

associated with the highest maximum LAI, higher WUE and total dry matter implies that 

corralling led to an increase in transpiration at the expense of soil evaporation.  

The cumulative change in root zone moisture storage at the end of the season, ∆S, 

at Banizoumbou was negligible. At Bagoua cumulative ∆S was negligible only in the 

current corral (C0) and highest (20 mm) one year after corralling (C0). Pearl millet 

grown under corralling extracted more moisture from the root zone at both sites as 

evidenced by the consistently lower end of season root zone storage under corralling vs. 

the low fertility treatments (NM and C2). The presence of moisture in the root zone at 

the end of the season especially in the low fertility treatments, has been previously 

reported in other studies in the region (Payne et al., 1990a; Payne et al., 1991b; Payne et 

al., 1991a; Klaij and Vachaud, 1992; Rockström et al., 1998) and was the reason for 

higher residual moisture content measured in the low fertility treatments at the beginning 
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of the 2004 season. Presence of moisture within the root zone at the end of the season 

accentuates the fact that water may not always be the limiting factor under low input 

pearl millet in the Sahel. 

Residual effects of corralling on yields at both sites were still significant in the 

second year but for D, ET, and WUE residual effects only lasted one year and 

disappeared in the second year suggesting that corralling may have to be done once 

every two years to increase pearl millet water use on farmers’ fields. Generally, pearl 

millet WUE at the two sites was low but comparable to previous reports for the region 

and similar soils (Payne, 1997; Rockström et al., 1998; Oluwasemire et al., 2002). The 

low WUE especially at Banizoumbou can be attributed to low pearl millet LAI in 

farmers’ fields which may have resulted in a larger proportion of rainfall being lost as 

soil evaporation. On the other hand, the quantities of manure required to raise pearl 

millet LAI high enough to reduce soil evaporation (e.g. 8 Mg manure ha-1 in current 

corralling) are out of the reach of most subsistence farmers in the region (Wezel and 

Haigis, 2002; Schlecht and Buerkert, 2004; Schlecht et al., 2004).  In addition to the low 

quantity of manure, manure quality also plays an important role as evidenced by the 

failure of transported manure to raise WUE significantly at Banizoumbou compared with 

transported manure at Bagoua. 

No pearl millet cultivar effects were observed for the water balance at the two 

sites and the microdose technology did not decrease D, increase ET or pearl millet WUE 

at the two sites. It may be appropriate to combine the microdose with modest manure 

applications (< 8 Mg ha-1) to cause an increase in pearl millet water use and raise pearl 

millet yields under subsistence farmer management in the Fakara. Such an approach may 

be even more appropriate for the subsistence farmers in the Fakara who cannot afford 

high fertilizer costs and cannot consistently apply manure to all their fields. 
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CHAPTER V 

OVERALL CONCLUSIONS AND RECOMMENDATIONS 

 

Based on the yield and water balance data from this study, the following 

conclusions can be made: 

1. Manure application through corralling cattle on fields remains a very important 

practice for maintaining soil fertility and sustaining millet yields under 

subsistence farmer management in the Fakara region especially in the face of 

shortening fallows and unaffordable fertilizer prices.  

2. Corralling reduces root zone drainage and increases evapotranspiration on pearl 

millet fields without posing a risk of water constraint during the growing season. 

3. The microdose technology is effective in raising pearl millet yields only under 

very low soil fertility conditions but has no significant effect on the water 

balance (D, S and ET) of the sandy soils grown to pearl millet in the Fakara. The 

fact that there was usually no difference in the yield response to either DAP or 

DAP + U, seems to suggest that P may have been more limiting since the 

additional N supplied by urea in the latter treatment did not increase yields. 

4. The improved pearl millet cultivars generally outperformed the local landrace for 

grain yields but not for straw yields. 

The following recommendations can thus be made: 

1. Because the residual effects of manure were effective in raising pearl millet 

yields even two years after last corralling, farmers can be encouraged to corral 

cattle on their fields at least once every three years. In addition, farmers can also 

be encouraged to ensure that manure is not concentrated only on smaller areas of 

the fields, but spread out more evenly to reduce spatial variability of millet 

growth and yields whilst curbing wasteful losses like leaching.  
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2. For microdose to be more effective in raising millet yields and positively impact 

the water balance on farmers’ fields, the technology’s current fertilizer rates must 

be raised to supply at least the critical P level so that millet response to N can be 

realized. Alternatively, the microdose technology may be combined with modest 

manure applications (e.g. < 8 Mg ha-1) to raise millet water use and yields.
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APPENDIX A 

ANOVA TABLES FOR PEARL MILLET YIELDS AT BANIZOUMBOU AND 

BAGOUA 

A-1. ANOVA for within block treatment effects on pearl millet grain yields at 

Banizoumbou in 2003 and 2004. 

   Manure treatment 

Year Source of variation  NM TM C2 C1 C0 

2003 Fertilizer SS 334446 3973 60129 427935 726817 

  df 2 2 2 2 2 

  P value 0.001 0.943 0.624 0.111 0.361 

 Cultivar SS 103107 127226 84100 101655 466235 

  df 2 2 2 2 2 

  P value 0.073 0.180 0.521 0.563 0.513 

 Fertilizer * Cultivar SS 59395 184348 253601 52564 2015737 

  df 4 4 4 4 4 

  P value 0.497 0.284 0.424 0.959 0.245 

2004 Fertilizer SS 194859 913234 679418 87765 470902 

  df 2 2 2 2 2 

  P value 0.007 0.004 0.000 0.745 0.072 

 Cultivar SS 49123 507177 126520 14044 1029258 

  df 2 2 2 2 2 

  P value 0.216 0.030 0.133 0.953 0.007 

 Fertilizer * Cultivar SS 27635 200626 15126 198677 443960 

  df 4 4 4 4 4 

  P value 0.758 0.513 0.967 0.848 0.262 
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A-2. ANOVA for within block treatment effects on pearl millet straw yields at 

Banizoumbou in 2003 and 2004. 

   Manure treatment 

Year Source of variation  NM TM C2 C1 C0 

2003 Fertilizer SS 2078782 7306 699342 5161439 2196187 

  df 2 2 2 2 2 

  P value 0.001 0.991 0.678 0.125 0.824 

 Cultivar SS 1266089 820305 335813 1002727 10613563 

  df 2 2 2 2 2 

  P value 0.008 0.156 0.828 0.642 0.406 

 Fertilizer * Cultivar SS 162661 335777 4817773 611245 39349793 

  df 4 4 4 4 4 

  P value 0.798 0.514 0.284 0.966 0.182 

2004 Fertilizer SS 507853 859680 954668 87997 852939 

  df 2 2 2 2 2 

  P value 0.002 0.045 0.000 0.833 0.010 

 Cultivar SS 56989 105900 69545 142555 187497 

  df 2 2 2 2 2 

  P value 0.372 0.641 0.427 0.745 0.290 

 Fertilizer * Cultivar SS 60176 563445 19020 1044702 618158 

  df 4 4 4 4 4 

  P value 0.700 0.340 0.973 0.389 0.111 
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A-3. ANOVA for within block treatment effects on grain yields at Bagoua in 2003 

and 2004. 

   Manure treatment 

Year Source of variation  NM TM C2 C1 C0 

2003 Fertilizer SS 4850 33419 109412 166431 18515 

  Df 2 2 2 2 2 

  P value 0.869 0.678 0.182 0.029 0.850 

 Cultivar SS 6607 169832 294890 242563 80531 

  Df 2 2 2 2 2 

  P value 0.827 0.161 0.018 0.008 0.510 

 Fertilizer * Cultivar SS 95060 210901 221705 28050 125085 

  Df 4 4 4 4 4 

  P value 0.279 0.324 0.155 0.831 0.699 

2004 Fertilizer SS 285382 155434 922843 5529 78408 

  Df 2 2 2 2 2 

  P value 0.027 0.034 0.000 0.971 0.499 

 Cultivar SS 37716 69003 131021 60492 546450 

  Df 2 2 2 2 2 

  P value 0.565 0.191 0.047 0.730 0.018 

 Fertilizer * Cultivar SS 380825 124325 9518 106345 439972 

  df 4 4 4 4 4 

  P value 0.047 0.208 0.969 0.886 0.133 
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A-4. ANOVA for within block treatment effects on straw yields at Bagoua in 2003 

and 2004. 

   Manure treatment 

Year Source of variation  NM TM C2 C1 C0 

2003 Fertilizer SS 48140 454878 114491 3070914 868924 

  Df 2 2 2 2 2 

  P value 0.888 0.759 0.860 0.049 0.504 

 Cultivar SS 408214 4631581 5248245 1020899 3220949 

  Df 2 2 2 2 2 

  P value 0.382 0.084 0.006 0.327 0.111 

 Fertilizer * Cultivar SS 596047 3208307 5157104 341440 124176 

  Df 4 4 4 4 4 

  P value 0.576 0.440 0.030 0.936 0.722 

2004 Fertilizer SS 1745925 532512 2296588 1569958 457659 

  Df 2 2 2 2 2 

  P value 0.002 0.498 0.000 0.166 0.385 

 Cultivar SS 53006 1424470 610129 1689658 1526686 

  Df 2 2 2 2 2 

  P value 0.770 0.173 0.021 0.146 0.057 

 Fertilizer * Cultivar SS 772070 631683 164149 649011 292795 

  df 4 4 4 4 4 

  P value 0.149 0.785 0.633 0.798 0.859 
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A-5. Combined ANOVA for grain yields at Bagoua and Banizoumbou in 2003 and 

2004. 
Year Source of variation SS df MS F Sig.

2003 Site 601890 1 601890 7.5 0.007

 Manure 19929256 4 4982314 62.1 0.000

 Fertilizer 88037 2 44019 0.55 0.578

 Cultivar 963607 2 481803 6 0.003

 Cultivar * Fertilizer 629451 4 157363 2 0.101

 Site * Cultivar 10513 2 5256 0.07 0.937

 Site * Fertilizer 92518 2 46259 0.6 0.562

 Error 19648595 245 80198    

2004 Site 3244156 1 3244156 54.9 0.000

 Manure 17145704 4 4286426 72.5 0.000

 Fertilizer 2334299 2 1167150 19.8 0.000

 Cultivar 1521180 2 760590 12.9 0.000

 Cultivar * Fertilizer 144919 4 36230 0.6 0.654

 Site * Cultivar 285514 2 142757 2.4 0.091

 Site * Fertilizer 70434 2 35217 0.6 0.552

 Error 14891409 252 59093    
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A-6. Combined ANOVA for straw yields at Bagoua and Banizoumbou in 2003 and 

2004. 

Year Source of variation SS df MS F Sig.

2003 Site 27166216 1 27166216 21.2 0.000

 Manure 294052172 4 73513043 57.3 0.000

 Fertilizer 2418360 2 1209180 0.9 0.391

 Cultivar 19448084 2 9724042 7.6 0.001

 Cultivar * Fertilizer 8532676 4 2133169 1.7 0.159

 Site * Fertilizer 865985 2 432993 0.3 0.714

 Site * Cultivar 352964 2 176482 0.1 0.871

 Error 323165742 252  1282404    

2004 Site 38799418 1 38799418 240.9 0.000

 Manure 35322086 4 8830521 54.8 0.000

 Fertilizer 5972262 2 2986131 18.5 0.000

 Cultivar 1732597 2 866299 5.4 0.005

 Cultivar * Fertilizer 333078 4 83270 0.5 0.723

 Site * Fertilizer 409902 2 204951 1.3 0.282

 Site * Cultivar 2395691 2 1197845 7.4 0.001

 Error 40582352 252 161041    
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APPENDIX B 

METEOROLOGICAL DATA FOR STUDY SITES 

B-1. Total rainfall measured at the study sites. 

Month 2003 2004 

 Banizoumbou Bagoua Banizoumbou Bagoua 

                                              mm 

May 0 0 45 40 

June 119 138 50 55 

July 103 49 121 94 

August 187 166 173 116 

September 65 100 84 83 

Total 474 452 472 432 
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B-2. Daily air temperature at Katanga village in 2004 
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B-3. Daily vapor pressure at Katanga village in 2004 
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B-4. Daily total radiation at Katanga village in 2004. 
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B-5. Daily wind speed at Katanga village in 2004 
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B-6. Daily rainfall and potential evapotranspiration at Katanga village in 2004. 

Day of year

0 50 100 150 200 250 300 350

m
m

0

10

20

30

40

50

60
Potential evapotranspiration
Rainfall 

 



 

 

110

APPENDIX C 

ANOVA TABLES FOR WATER BALANCE TERMS IN 2003 AND 2004 

C-1. ANOVA for treatment effects on drainage and evapotranspiration at 

Banizoumbou in 2003. 

Water balance term Source of variation SS df MS F Sig.

Drainage Manure  1528 4 382 14.8 0.000

 Fertilizer 22 2 11 0.4 0.652

 Cultivar 7 1 7 0.3 0.607

 Fertilizer * Cultivar 2.5 2 1.2 0.01 0.953

 Error 2076 80 26  

Evapotranspiration Manure  7884 4 1971 16.5 0.000

 Fertilizer 190 2 95 0.8 0.454

 Cultivar 379 1 379 3.2 0.078

 Fertilizer * Cultivar 613 2 307 2.6 0.083

 Error 9550 80 119  
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C-2. ANOVA for treatment effects on drainage and evapotranspiration at 

Banizoumbou in 2004. 

Water balance term Source of variation SS df MS F Sig.

Drainage Manure  235 4 59 3.3 0.016

 Fertilizer 28 2 14 0.8 0.460

 Cultivar 0.01 1 0.01 0 0.976

 Fertilizer * Cultivar 32 2 16.1 0.9 0.414

 Error 1444 80 18.1  

Evapotranspiration Manure  2072 4 518 5.5 0.001

 Fertilizer 206 2 103 1.1 0.339

 Cultivar 22 1 21.8 0.2 0.632

 Fertilizer * Cultivar 22 2 11 0.1 0.890

 Error 7531 80 94  
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C-3. ANOVA for treatment effects on water use efficiency at Banizoumbou in 2003 

and 2004. 
Year Source of variation SS df MS F Sig.

2003 Manure  195.8 4 48.9 36.9 0.000

 Fertilizer 11.2 2 5.6 4.2 0.018

 Cultivar 6.0 1 6.0 4.5 0.037

 Fertilizer * Cultivar 1.5 2 0.7 0.6 0.578

 Error 106.1 80 1.3  

2004 Manure  49.4 4 12.3 35.1 0.000

 Fertilizer 10.8 2 5.4 15.3 0.000

 Cultivar 3.2 1 3.2 9.1 0.003

 Fertilizer * Cultivar 0.03 2 0.02 0.05 0.954

 Error 28.2 80 0.4  
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C-4. ANOVA for treatment effects on drainage and evapotranspiration at Bagoua in 

2003. 

Water balance term Source of variation SS df MS F Sig.

Drainage Manure  24485 4 12243 37.2 0.000

 Fertilizer 882 2 441 1.3 0.272

 Cultivar 22 1 22 0.1 0.798

 Fertilizer * Cultivar 299 2 150 0.5 0.638

 Error 13810 80 329   

Evapotranspiration Manure  24043 4 12021 30.8 0.000

 Fertilizer 447 2 223 0.6 0.568

 Cultivar 101 1 101 0.3 0.614

 Fertilizer * Cultivar 545 2 272 0.7 0.503

 Error 16352 80 389   
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C-5. ANOVA for treatment effects on drainage and evapotranspiration at Bagoua in 

2004. 

Water balance term Source of variation SS df MS F Sig.

Drainage Manure  13183 4 3296 20.4 0.000

 Fertilizer 188 2 94 0.6 0.561

 Cultivar 338 1 338 2.1 0.152

 Fertilizer * Cultivar 121 2 61 0.4 0.689

 Error 12929 80 162  

Evapotranspiration Manure  16081 4 4020 20.0 0.000

 Fertilizer 274 2 137 0.7 0.508

 Cultivar 315 1 315 1.6 0.214

 Fertilizer * Cultivar 170 2 85 0.4 0.656

 Error 16043 80 201  
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C-6. ANOVA for treatment effects on water use efficiency at Bagoua in 2003 and 

2004. 

Year Source of variation SS df MS F Sig.

2003 Manure  5.7 2 2.8 7.1 0.002

 Fertilizer 0.2 2 0.1 0.2 0.786

 Cultivar 1.0 1 1.0 2.6 0.114

 Fertilizer * Cultivar 0.2 2 0.1 0.2 0.825

 Error 18.5 46 0.4  

2004 Manure  386.8 4 96.7 18.9 0.000

 Fertilizer 75.2 2 37.6 7.3 0.001

 Cultivar 25.3 1 25.3 4.9 0.029

 Fertilizer * Cultivar 9.6 2 4.8 0.9 0.395

 Error 410.1 80 5.1  
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APPENDIX D 

REGIONAL FOOD ESTIMATES 

 

Predicting pearl millet grain yields from ET in the west African Sahel is difficult 

(Klaij and Vachaud, 1992) mainly because grain yield of low LAI pearl millet is largely 

independent of ET (Payne, 1997).   This poor correlation is a result of the relative 

insensitivity of ET to management (see Chapter IV) for crops with low LAI. However for 

predictive purposes, others have used empirical linear equations relating pearl millet yield 

to ET as a function of management intensity and after making appropriate corrections  for 

mean daily vapor pressure deficit during the growing season (Payne, 1997). This chapter 

will focus on predicting millet grain yields for various soil fertility and rainfall regimes in 

the Fakara region based on WUE estimates previously calculated in Chapter IV. For 

simplification, all the rainfall is assumed to be used for ET. The main objective is to 

forecast grain yields based on seasonal rainfall and present an opportunity to mitigate the 

effects of drought-induced food shortages in the ten villages in the Fakara region 

(Appendix D-1). 

 

Materials and methods 

Millet grain yields were predicted for the following scenarios: NM and C0 with 

300, 400, 500, and 600 mm rainfall at Banizoumbou and Bagoua and then later for the 

area covered by the ten villages in the Fakara. A soil map for the Fakara region was 

converted to raster format (Appendix D-2) and from it a soil agronomic aptitude map was 

produced (Appendix D-3) in ArcView 8.3 using the Spatial Analyst. The soil agronomic 

aptitude map was then reclassified to yield a Boolean map where a 1 was arable soil and 

a 0 was non-arable soil (Appendix D-4). The agronomic aptitude was determined by soil 

type and topographic position (ILRI, unpublished). A digital elevation model of the area 

was processed in spatial analyst to produce a slope map (Appendix D-5) which in turn 

was reclassified according to slope % (Appendix D-6). All slopes less than 3 % were 

classified as a 1 and all others as a 0. The two Boolean images (Soil X Slope) were then 

multiplied using Raster Calculator to produce a final map showing arable areas (1s) and 
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non-arable areas (0s) based on soil and slope (Appendix D-7). The grid cell size for this 

raster was set at 10 m.  

If we assume that all the seasonal rainfall is used for evapotranspiration, we can 

calculate the total grain yield for each of the rainfall regimes (300, 400, 500 and 600 mm) 

by multiplying the rainfall and the WUE of each of the manure management practice and 

at each site (e.g. WUE for the NM and C0 treatments at Banizoumbou and Bagoua). The 

product of this operation is then multiplied by the total area (ha) of each of the village 

sites, Banizoumbou (3 878 ha) or Bagoua (363 ha) to get the production in each of them. 

This process is also done for the total area covered by the ten villages in the Fakara (44 

962 ha) to get the regional production.   

 

Results and discussion 

Appendix D-8 summarizes the various possible millet grain yields which can be 

obtained under the different soil fertility management and rainfall regimes for the ten 

villages in the Fakara. There is a possibility of raising the village and regional level 

average millet grain yields threefold when manure is applied through corralling. The 

practice where no manure is applied (NM) has the lowest total yields for the region under 

all rainfall regimes. At Bagoua, this increase is only twofold for each of the rainfall 

regimes probably because of higher WUE even in the NM treatment leading to a smaller 

difference between the low and high fertility scenarios. In a growing season with the 

lowest rainfall amount (scenario A with 300 mm rainfall), the average grain yields in the 

Fakara are about 1.3 times less than they would be if the rainfall had been 400 mm 

(scenario B) and 1.6 times less than they would have been in scenario C with 500 mm 

and lastly 2 times less than they would have been with 600 mm rainfall in scenario D. Of 

course these are rough estimates which may not be accurate mainly because of the 

underlying assumptions (no drainage and runoff losses, same WUE across sites under the 

same soil fertility management) but they however give an idea of the effect that rainfall 

and proper soil management may have on the grain yields of pearl millet in the Fakara 

region. If more data are available then these predictions may be improved when site 

differences in soil hydraulic properties and water balance are accounted for. 
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D-1. Map of the ten villages in the Fakara region 
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D-2. Soil map of the Fakara region. 
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D-3. Soil agronomic aptitude of the Fakara region. 
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D-4. Reclassified agronomic aptitude grid based on soils. 
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D-5. Slope map of the Fakara region generated from a digital elevation model. 
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D-6. Reclassified slope map for the Fakara region. 



 

 

124

Tigo

Kodey

Banizoumbou Katanga

Boundou

Tondi

Gourou

Tagay

Diande

Bagoua

0 10 205

km ·
Non arable
Arable

Soil and slope agronomic aptitude map for the Fakara region

 

D-7. Final agronomic aptitude map based on soil and slope maps. 
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D-8. Average grain production in Banizoumbou, Bagoua, and the whole Fakara 

region. NM is no manure and C0 is current corral. 
Rainfall regime 

Site Manure  WUE A† B‡ C§ D¶ 

  kg mm-1 Mg 

Banizoumbou NM 0.5 582 776 970 1163 

 C0 2.9 3374 4499 5623 6748 

Bagoua NM 1.8 196 261 327 392 

 C0 3.6 392 523 654 784 

Fakara average NM 1.2 16186 21582 26977 32373 

 C0 3.3 44512 59350 74187 89025 

†300 mm rainfall 

‡400 mm rainfall  

§500 mm rainfall  

¶600 mm rainfall 
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