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ABSTRACT 

The Effects of Temperature and Humidity on the Eggs of Aedes aegypti (L.) and Aedes 

albopictus (Skuse) in Texas. (December 2007) 

Catherine Zindler Dickerson, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Jimmy K. Olson 

 

Causative influences that impact the separation of Ae. aegypti and  Ae. albopictus 

populations in different geographic areas were determined, as well as how they are 

affected by the abiotic conditions as seen in the habitats they frequent in Texas.  The 

eggs of Ae. albopictus and Ae. aegypti collected from McAllen and Brownsville, Texas, 

and laboratory populations of these two species were subjected to 25 different 

temperature and relative humidity conditions for up to three months.  In most treatments, 

Ae. aegypti eggs had a greater percent hatch than Ae. albopictus, regardless of 

temperature or relative humidity.  With an increase in relative humidity, the percent 

hatch for both species increased, but at the higher temperatures of 32˚ and 35˚C the 

amount of time the eggs were exposed to those temperatures had a greater negative 

effect on the percent hatch than did the positive effect of increase in relative humidity.     

The surface area, volume and surface-area-to-volume ratio of Ae. aegypti and Ae. 

albopictus eggs with and without the chorionic egg pad, and the size of the chorionic egg 

pad were calculated for fifty eggs of each species of mosquito from populations 

collected in McAllen and Brownsville and from the laboratory populations.  Ae. aegypti 

had a larger egg volume, and a larger surface area; but, it is likely their larger egg pad 
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compensates for this high surface-area-to-volume ratio by holding moisture along the 

egg’s surface and that the egg pad is associated with the high desiccation resistance seen 

in Ae. aegypti eggs.  

Development rates for both species of mosquitoes from populations collected in 

Galveston and Brownsville, Texas, and laboratory populations were produced by 

measuring the development time from a hatched egg to the adult at seven temperatures. 

The temperature optima (28˚-33˚C) were similar for all populations; however, the rate of 

development for Ae. aegypti was significantly faster at the temperature optima.  It is 

likely that this faster development rate in the Ae. aegypti population helps to maintain a 

population in climates that have this range of temperatures given that Ae. albopictus is a 

superior competitor in the larval and adult stages. 
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CHAPTER I 

INTRODUCTION 

The yellow fever mosquito, Aedes aegypti (L.), is a floodwater species that, in 

the U.S., lays eggs and completes its life cycle primarily in artificial containers.  They 

are warm weather mosquitoes and often occur in high numbers after floods.  Accounts of 

Ae. aegypti in the Americas date back before the 1650’s (Spielman and D’Antonio 

2001).  Ae. aegypti is a primary vector for such anthroponoses as Yellow fever and 

Dengue fever. 

In August of 1985, Aedes albopictus (Skuse), the Asian tiger mosquito, was 

discovered in a tire dump in Houston, Texas (Sprenger and Wuithiranygool 1986).  Ae. 

albopictus is also a floodwater species and a secondary vector of a multitude of diseases 

including West Nile and Dengue fever.  Ae. albopictus may thus amplify a disease 

outbreak.  Since 1985, Ae. albopictus has become established throughout the United 

States as far north as Nebraska and into southern Florida (Moore 1999).  Ae. albopictus 

has been found but is not considered to be established in California, New Mexico and 

Washington (Moore 1999).  As Ae. albopictus extended its distribution in the southern 

United States, it appeared to displace Ae. aegypti (Francy et al. 1990, Hobbs et al. 1991).  

This is in contrast to observations in Asia where Ae. albopictus was endogenous and Ae. 

aegypti was the “invader”.  Stanton (1920) first reported the presence of Ae. aegypti in 

Asia.  Subsequently, Ae. albopictus populations seemed to be displaced by Ae. aegypti 

(MacDonald 1956, Chan et al. 1971). 
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Even though the specific circumstances in Asia and the United States were 

different, there are many situational similarities.  In both instances, Ae. albopictus was 

found predominantly in areas with dense vegetation and low housing density, while Ae. 

aegypti was predominantly found in urban areas with little vegetation and numerous 

artificial containers that could hold water.   

It has become increasingly important to know with more precision, which 

geographic locations in Texas can support which species.  This is especially true along 

the Texas-Mexico border due to the threat of Dengue Fever, which is prevalent in 

mosquito populations in Mexico and has recently spread into the Texas Rio Grande 

Valley (CDC 2007).  There are four serotypes of Dengue, and following the exposure of 

one serotype with another serotype increases the likelihood of the most severe 

presentation of this virus, which is Dengue Hemorrhagic Fever (DHF).  The CDC 

recently announced that after a serosurvey on the Dengue virus in the Brownsville, 

Texas human population, 38% of the Brownsville residents tested were positive for 

antibodies in response to previous exposure to the Dengue virus.  Similar results were 

found in other border towns, and have led the CDC to announce the possibility that the 

residents along the Texas-Mexico border may now be more susceptible to DHF (CDC 

2007). 

Prevention of a disease outbreak such as Dengue requires one or more of the 

components of the disease cycle must be removed, i.e. the pathogen, vector, reservoir 

and/or susceptible host.  Along the Texas-Mexico border, people from Texas travel into 

Mexico regularly (personal contact:  Public Health Inspector, Carlos Perez, McAllen 
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Health department) and thus pose a threat as carriers (reservoirs) of Dengue when they 

re-enter Texas.  In this situation, it is unrealistic to rely on breaking the disease cycle by 

targeting the reservoir, because people infected with dengue may not exhibit symptoms 

for over a week, at which point they could have already re-entered Texas and begun to 

infect mosquitoes.  According to the CDC,  approximately 100 to 200 suspected cases of 

Dengue are introduced into the United States each year by travelers.  There is currently 

no vaccine for this virus (pathogen), and it is unrealistic to remove Texans (susceptible 

hosts) from the locations in the state where the virus is introduced.  Thus, the most 

practical way to prevent this disease from spreading further into Texas is to target the 

vectors, i.e. Ae. aegypti and Ae. albopictus.   

It is relevant which mosquito species is in which area because their vector 

potentials for Dengue virus transmission are different.  Ae. aegypti (primary vector), 

when present, can cause an epidemic of Dengue Fever, which could be made worse by 

the addition of Ae. albopictus (secondary vector) (Mullen and Durden 2002).  Ae. 

albopictus alone cannot readily perpetuate the disease cycle.  Knowledge of the species 

present in an area threatened by Dengue, will better equip health officials to combat the 

disease.   

Several experiments suggest that the abiotic conditions in the different habitats 

frequented by Ae. aegypti and Ae. albopictus determine which species dominates which 

habitat (Fontenille and Rodhain 1989, Sota and Mogi 1992, and Juliano et al. 2002).  

According to Mogi et al. (1996), comparative studies describing environments that favor 

each species are essential to predicting population trends in changing environments.  The 
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larval and adult stages of Ae. albopictus and Ae. aegypti have been extensively studied 

with regards to their climatic requirements; so, the research described herein focused 

primarily on the egg stage of these two species.  The egg stage is important because it is 

the stage in which these floodwater mosquitoes wait out unfavorable climatic conditions 

(Sota and Mogi 1992).  Once climatic requirements for the eggs of each species have 

been determined, it may be possible to determine where each species will live depending 

upon the seasonal climate of a given location.   

Thomson (1938) noted that “Under natural conditions in the field, the 

interpretation of behavior is extremely difficult and necessarily inconclusive because so 

many factors vary at the same time”.  For this reason, the variables for this study have 

been restricted to temperature, relative humidity (RH) and time.  Due to small size and 

large surface-area-to-volume ratio, eggs are at high risk of desiccation.  Thus, specific 

aspects of climate that should most influence the eggs are temperature and humidity.  

The eggs must wait for rainfall to stimulate hatching, so the length of time that eggs can 

tolerate various temperature and humidity conditions is also a factor. 

Mosquitoes of the same species from different regions of Texas could respond 

very differently to environmental tests.  Insects evolve or acclimate to their specific 

habitats resulting in insects of the same species from different regions performing 

differently under the same conditions (Campbell et al. 1974 and Mogi et al. 1996).   To 

compensate and account for this variation, this research was conducted with three 

different strains of each mosquito species for a total of six different mosquito 

populations. 
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The objectives of this research were to determine what causative influences on 

the eggs of Ae. aegypti and Ae. albopictus impact their separation into different 

geographic areas, and how these influences are affected by different origins of 

populations specifically from South Texas due to the increasing threat of Dengue fever 

for which these two species are vectors. 
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CHAPTER II 

LITERATURE REVIEW 

Interactions between Ae. albopictus and Ae. aegypti were first observed in Asia.  

Ae. albopictus mosquitoes are thought to have originated from northern Asia (Hawley et 

al. 1987).  Ae. aegypti, which is endogenous to Africa, was first reported in Asia in 1920 

(Stanton 1920).  As time passed, Ae. aegypti appeared to move into the urban parts of 

Asia, displacing Ae. albopictus (MacDonald 1956, Chan et al. 1971).  The two species 

separated into distinctly different habitats: Ae. albopictus was found primarily in rural 

and suburban-forested habitats with trees and dense vegetation, while Ae. aegypti was 

found in urban areas with few trees or other vegetation.  MacDonald (1956) attributed 

this separation mainly to available water sources.  The Asian people often had water-

filled ant traps around their houses where Ae. aegypti larvae could be found.  

MacDonald (1956) noted that the native Malayans were not in the practice of storing 

water around their houses, and they had fewer problems with Ae. aegypti than others 

who did.  Similarly, in Venezuela Ae. aegypti is most prevalent in the areas of poor 

housing without indoor plumbing or piped water, which necessitates water being stored 

in containers (Barrera et al. 1993).  Similarly, when Ae. aegypti invaded Asia, most of 

the people lived in slum houses or shop houses (MacDonald 1956) that did not have 

good piped water supplies.  In contrast, when Ae. albopictus entered the United States, 

areas initially infested had houses with indoor plumbing, and few people used water-

filled ant traps.  Many people in urban areas had planted trees and other vegetation 
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around their houses, thus diminishing the habitat favorable for Ae. aegypti and creating 

an ideal habitat for Ae. albopictus.   

Many experiments have been conducted with these two species to examine the 

mechanisms of displacement.  In experiments testing adult survivorship, Ae. aegypti 

lived longer then Ae. albopictus using Indian strains of both species (Bhattacharya and 

Dey 1969) and Vietnamese strains (Hein 1976).  Conflicting results were shown by 

Galliard (1962) with a Vietnamese strain of both species.  MacDonald (1956) compared 

emergence rates of Ae. albopictus and Ae. aegypti adults from open jars and tree holes 

and found that Ae. aegypti emerged at a significantly higher rate than Ae. albopictus in 

both experiments. 

Studies comparing fecundity of the two species have produced conflicting 

results.  Hein (1976), Sucharit and Tumrasvin (1981) and Black et al. (1989) compared 

total lifetime fecundity of the two species, and they reported Ae. aegypti to be more 

fecund.  Galliard (1962) found Ae. albopictus to be more fecund.  Soekiman et al. (1984) 

observed that Ae. aegypti laid more eggs per batch than Ae. albopictus with a Java strain 

of both.  In Hein’s (1976) experiments, Ae. albopictus laid more eggs per milligram of 

blood ingested than did Ae. aegypti.  Sames (1999) found egg production of Ae. 

albopictus dropped significantly at high temperatures, whereas Ae. aegypti had only a 

slight decrease.  Black et al. (1989) concluded that Ae. aegypti males are more sexually 

aggressive than Ae. albopictus males, but when harassed by Ae. aegypti males, there was 

no effect on oviposition rates of Ae. albopictus females.  In direct contrast, laboratory 
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studies with Louisiana strains of each species found male Ae. albopictus more sexually 

aggressive in attempting to mate with female Ae. aegypti as compared to Ae. aegypti 

males in their attempt to mate with female Ae. albopictus (Nasci et al 1989).  The time 

required for both species to take a blood meal was observed to be the same by Soekiman 

et al. (1984), but Hein (1976) reported that Ae. albopictus takes longer to feed than Ae. 

aegypti.   

Chan et al. (1971) tested larval competition in tires and jars containing a sub-

optimal amount of food.  They observed a slightly higher emergence rate for Ae. aegypti 

in the jars, but no difference in tires.  Sucharit et al. (1978) found that Ae. albopictus 

larvae developed faster when reared with Ae. aegypti with optimal food available, but 

Ae. aegypti out-competed Ae. albopictus under conditions of sub-optimal food in mixed 

populations.  Sames (1999) found that Ae. albopictus larvae developed faster than Ae. 

aegypti at low temperatures, such as 16 °C, but Lounibos et al. (2002) found no 

significant effect of larval competition at temperatures between 24 and 30°C.  Sames 

(1999) also observed that development time is not effected by blood meal source, i.e., 

chicken or human.  An increase in the survival rate of Ae. aegypti larvae was observed 

when they were reared in mixed populations with Ae. albopictus under both optimal and 

sub-optimal diets (Black et al. 1989) and resulted in only a slight reduction in survival 

rates of Ae. albopictus.  In South Florida, Juliano (1998) found that Ae. albopictus larvae 

experienced positive population growth as compared to Ae. aegypti in tires with low 

resources and dense populations.  Juliano et al. (2004) demonstrated that inter-specific 
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competition with Ae. albopictus larvae observed in field experiments using cemetery 

vases significantly reduced survival in Ae. aegypti under naturally occurring density 

levels.   

It has been shown that the protozoan parasite, Ascogregarina taiwanesis, 

typically found in Ae. albopictus larvae can infect the larvae of Ae. aegypti and in some 

cases result in a high rate of mortality (Blackmore et al 1995).  However, the protozoan 

parasite of Ae. aegypti larvae, Ascogregarina culicis, does not infect Ae. albopictus.   

Garcia et al. (1994) has determined that Ascogregarina taiwanesis is very rare in nature 

and actually infects both species equally. 

The geographic locations where Ae. albopictus and Ae. aegypti live may depend 

much more on differing climatic requirements than on interactive competition.  In a 

study on the island of Madagascar that compared temperature, number of dry months 

and millimeters of rainfall to abundance of Ae. aegypti and Ae. albopictus, Fontenille 

and Rodhain (1989) found that Ae. albopictus dominated places with more than 

1,000mm of rainfall annually and no more than six dry months.  Ae. aegypti was the 

predominate species in areas that received less than 2,000mm of annual rainfall and 

experienced up to nine dry months a year.  Other studies have reported a correlation 

between rainfall and adult Ae. albopictus abundance (Khan 1980), oviposition rates (Ho 

et al. 1971), and biting rates (Gould et al. 1970).  At the end of the dry season in Chiang 

Mai, Thailand, only the eggs of Ae. aegypti were found in rural ovitraps, and the 

proportions of Ae. albopictus eggs increased during the rainy seasons (Mogi et al. 1988).  

Similar results were found in urban ovitraps (Mogi et al. 1988), in cemetery vases and in 
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tires (Juliano et al. 2002).  In contrast, studies in Malaysia (Sulaiman and Jeffrey 1986) 

and in Japan (Mori and Wada 1978) showed no correlation between Ae. albopictus 

population size and rainfall.  In Houston, Texas, an explosion in the population of Ae. 

aegypti occurred after a severe flood in the summer of 2000 following a couple of years 

of record dry spells (personal observation and communication with Harris County 

Mosquito Control district personnel).  The district reported very low to non-existent 

numbers of Ae. aegypti before the flood.  

The effects of temperature and humidity on the adults of these two species, as 

well as many others have been extensively studied.  Mogi et al. (1996) compared 

desiccation survival times of adult Ae. albopictus and Ae. aegypti under 90% and 70% 

relative humidity (RH) and 25˚C.  Ae. aegypti was found to be more resistant to 

desiccation than Ae. albopictus.  In experiments involving mixed populations of Ae. 

albopictus and Ae. aegypti, Costanzo et al. (2005) found Ae. albopictus was negatively 

impacted by interspecific competition under drying conditions and inversely impacted 

under fluctuations between wet and dry conditions.  The reverse was true for Ae. aegypti.  

Costanzo et a. (2005) attributed this effect which most greatly impacted the adult stage, 

on the effects of drying during the egg stage.  Research by Thomson (1938) on the 

reactions of the mosquito, Culex fatigans to temperature and humidity indicates that 

adult females are very sensitive to changes in humidity and temperature.  At 29˚C, C. 

fatigans could detect a difference of 1˚C.  All females avoided very high and very low 

levels of temperature and humidity, with blood fed females showing the strongest 

reactions and hungry females showing the weakest.   
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Research has been conducted on temperature-dependent development rates for 

Ae. aegypti by Bar-Zeeve (1958), Kasule (1986), Rueda et al. (1990), Sames (1999) and 

Southwood et al. (1972) and for Ae. albopictus by Sames (1999).  In each case the 

results varied with the origin of the mosquito.  A study on physiological time by Taylor 

(1981) that pooled development rates for 54 species of insects and seasonal trends, 

suggests that very similar species with differing temperature optimums might experience 

species replacement seasonally in areas that have high summer temperatures.   

There has been minimal research on the effects of temperature and humidity on 

the eggs of Ae. albopictus and Ae. aegypti.  In Japan, Sota and Mogi (1992) measured 

survival times of eggs from several Aedes species including Ae. aegypti and Ae. 

albopictus under three different humidity conditions (42%, 68% and 88% RH) at 25˚C.  

Ae. aegypti survived longer then Ae. albopictus at all humidity conditions.  Sota and 

Mogi (1992) attributed this to egg volume, with Ae. aegypti having the greatest egg 

volume and thus the greatest ability to resist desiccation.  In Florida, Juliano et al. (2002) 

compared egg mortality rates of Ae. aegypti and Ae. albopictus under different 

temperature (22˚, 24˚ and 26˚C) and humidity (25%, 55%, 75%, and 95% RH) 

combinations.  Juliano et al. (2002) found the effects of temperature and humidity on 

egg mortality significantly different between the two species, with Ae. albopictus 

experiencing much higher mortality at all combinations except at the highest humidity.  

Over a three-month period, they did not find a significant interaction between 

temperature and/or humidity and egg mortality of Ae. aegypti until the third month (90 
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days).  This indicates the effects of temperature and humidity increase with time.  Ae. 

aegypti eggs had a lower rate of mortality with a higher level of humidity.   

Hien (1975) compared the resistance of Ae. albopictus and Ae. aegypti eggs to 

low humidity (60-70%RH) at 25˚C over a four-month period.  At all time intervals Ae. 

albopictus was found to be more resistant to desiccation, resulting in a higher percentage 

of hatched larvae.  In addition, the percentage of hatching larvae increased to the first 

month for Ae. aegypti and to the second month for Ae. albopictus and then gradually 

dropped.   

All of this research has broadened our knowledge, but the climate combinations 

evaluated span a very narrow range and cannot be reliably applied to Texas strains. 

Research by Chesson and Huntly (1997) suggest fluctuating harsh or stressful conditions 

in addition to temporal niche opportunities may play a role in species replacement.  

Thus, the purpose of the research herein was to assess how immature embryos (eggs) of 

Ae. albopictus and Ae. aegypti from Texas will be affected by humidity and temperature 

over a broad range of combinations over time.  It is hypothesized that the eggs of Ae. 

aegypti and Ae. albopictus will have different percentages of eggs hatch at different 

levels of relative humidity and temperature, and that these differences will not be the 

same between the two species.  

Sota and Mogi (1992) have found that eggs with large volume were more 

resistant to desiccation, and that Ae. aegypti eggs were significantly larger then the eggs 

of Ae. albopictus.  Christophers (1960) mentioned the chorionic egg pad on the Ae. 

aegypti egg that is produced by the epichorion and is part of the exochorion.  The 
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exochorion functions in desiccation resistance and the chorionic egg pad functions to 

anchor the eggs ventral side up. Christophers (1960) described the chorionic egg pad as a 

gelatinous pad formed by the swelling of the epichorion in water.  An effort was made to 

compare egg volume and the size of the chorionic egg pad of each species and to verify 

if there are any differences between species in this regard.   
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CHAPTER III 

EGG DESICCATION RESISTANCE STUDY 

Introduction 
 

  Much research has been devoted to examining the mechanisms of displacement 

between Ae. aegypti and Ae. albopictus.  However, there has been minimal research on 

the effects of temperature and humidity on the eggs of Ae. albopictus and Ae. aegypti. 

The egg stage is important because it is the stage in which these mosquitoes wait out 

unfavorable climatic conditions (Sota and Mogi 1992).  Due to small size and large 

surface-area-to-volume ratio, eggs are at high risk of desiccation.  Thus, specific aspects 

of climate that should most influence egg mortality are temperature and humidity.  The 

eggs must wait for rainfall to stimulate hatching, so the length of time that eggs can 

tolerate various temperature and humidity conditions is also a factor. 

  Studies by Sota and Mogi (1992) and Juliano et al. (2002) have found Ae. 

aegypti eggs to be more desiccation resistant as compared to Ae. albopictus eggs 

subjected to various temperature and relative humidity combinations.  Egg mortality as 

an effect of temperature and humidity on the eggs was found to be amplified with an 

increase in time of exposure to the climatic conditions.  In contrast, Hien (1975) found 

Ae. albopictus eggs to be more resistant to desiccation as compared to the eggs of Ae. 

aegypti.   These studies, although informative, were conducted using a very narrow 

range of temperature and humidity combinations and cannot be reliably related to Texas 

populations.  Thus, the purpose of this study was to assess how immature embryos 
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(eggs) of Ae. albopictus and Ae. aegypti from Texas are affected by humidity and 

temperature over a broad range of combinations ranging from 15-95% RH and 15-35˚C 

for up to three months.  

 The previously mentioned experiments (Sota and Mogi 1992, Juliano et al. 2002 

and Hien 1975) were conducted using various saturated salt solutions to maintain 

humidity.  This limited the humidities the researchers could maintain and the 

temperatures, because a different salt is required to maintain different humidities at a 

certain temperature and only a small range of humidities can be achieved over a small 

range of temperatures.  Additionally, an assumption that the different salts did not affect 

the percent hatch had to also be made.  In this study, a methodology was created for 

using glycerol instead of saturated salts to maintain humidity based on the research done 

on the properties of glycerol by Newman (1968). 

In general, insects evolve or acclimate to their specific habitats through selection 

pressure, resulting in insects of the same species from different regions performing 

differently under the same conditions as seen in studies by Campbell et al. (1974) and 

Mogi et al. (1996).   For this reason, this study was performed with mosquitoes of each 

species collected from McAllen and Brownsville, TX, where they are sympatric.  In 

addition, laboratory populations of each species were also included. 

 

Materials and Methods 

 Eggs produced by the six different mosquito populations were subjected to 25 

different temperature and humidity combinations for a time period of one, two, three, 
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four, eight and twelve weeks, after which time they were hatched and their hatching 

percentages were compared using a Repeated Measures ANOVA. 

Aedes larvae were collected from Brownsville and McAllen, TX, from vases in 

cemeteries and from tires.  Ae. albopictus and Ae. aegypti are sympatric in these areas so 

both mosquitoes species were collected and used to established new colonies in the 

laboratory.  The current study was conducted using these four populations as well as a 

laboratory population of each species.  The Ae. aegypti population maintained in the lab 

was collected in 1955 from Galveston, TX.  A new laboratory population of Ae. 

albopictus was established by collecting mosquito eggs on Little Black Jars (LBJs) in the 

twin cities of Bryan and College Station, TX.  The eggs were hatched and reared in the 

laboratory at 27˚C and 75% RH with a 14:10 L:D photoperiod.  The adults were blood 

fed on chickens and produced eggs which were subsequently hatched and reared to 

produce another generation.  This process was repeated until the seventh generation, at 

which point they were considered a true laboratory population based on the number of 

generations it takes a pesticide resistant mosquito strain to revert back to being 

susceptible (personal communication with Dr. Jimmy K. Olson, Texas A&M 

University).  Voucher specimens for each population have been deposited in the Texas 

A&M University museum collection (voucher #670).  All mosquito populations were 

maintained at 27˚C and 75% RH with a 14:10 L:D photoperiod.  The adults were fed on 

chickens as their blood-meal source and given sugar water (10% sucrose).  Larvae were 

given larval food consisting of ground Tetramin® Fish food. 
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Eggs were collected in Little Black Jars (LBJs) lined with paper towels in 24-

hour increments for three days starting on the third day after the females had taken a 

blood meal.  Each paper towel with eggs was kept at 27˚C and 100% RH for 24 hours to 

allow the eggs to embryonate.  The paper towels were then divided into two portions.  A 

small portion of eggs was kept an additional six days at 27˚C and 100% RH and then 

hatched by active vacuum in order to provide a control.  The remaining portion of the 

paper towel with eggs was cut into squares containing 20-50 eggs.  Eggs were not taken 

off the paper towel to ensure the exochorion and chorionic egg pad stayed intact.  As 

previously noted, the exochorion functions in desiccation resistance (Christophers 1960) 

and it is possible the chorionic egg pad does as well. The eggs were tested under 25 

different temperature and relative humidity conditions: 15˚, 21˚, 27˚, 32˚ and 35˚C in 

combination with 15%, 35%, 55%, 75% and 95% RH.  For every temperature and 

humidity combination, 30 squares of paper with eggs were placed on a Petri dish and set 

in a 19.1 x 25.4 cm sealed plastic box.  Humidity within the box was maintained using 

various proportions of glycerol and deionized water.  The appropriate proportions of 

glycerol and water were chosen according to Figure 1, and placed in a Petri dish.  The 

correct proportions were determined by a modified version of directions found in 

Newman’s (1968) paper on the properties of glycerol and by a methodology determined 

particularly for this study (Table 1). 

 Hot Pac® upright incubator cabinets housed the plastic boxes, maintained 

temperature and a 14:10 L:D photoperiod.  The temperature fluctuated between ±3˚C in 

the chambers maintaining 32˚C and 35˚C, and ±1˚C in the cabinets maintaining 15˚C, 
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21˚C and 27˚C.  After one, two, three, four, eight and twelve weeks, five sets of eggs 

were removed, counted, and each set was placed in a vial with 0.1 - 0.5 ml of de-ionized 

water and stimulated to hatch by being submerged and placed under active vacuum (13.3 

psi) for 15 minutes.   
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Figure 1.  Percent aqueous glycerol needed to achieve the corresponding relative 
humidity for temperatures 0-70˚C (modified and adapted from Newman 1968). 
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Table 1.  Glycerol solutions used for controlling relative humidity in experiments 
involving eggs of Ae. albopictus and Ae. aegypti. 

%RH % Glycerol Water (gm)* Glycerol (gm)* Variation** 

15% 98.5 19.52 0.48 +-0.5% RH 

35% 89.5 17.90 2.10 +-0.5% RH 

55% 77.5 15.50 4.50 +-0.5% RH 

75% 58 11.70 8.30 +-0.5% RH 

95% 19.3 3.87 16.13 +-1.0% RH 

*Due to the viscous nature of glycerol, it was measured by weight resulting in a final solution of 
20gms in each Petri dish. 
**This is the amount of fluctuation of relative humidity within the box.  As determined by 
preliminary data, the glycerol solutions were replaced every two weeks in order to maintain a 
steady relative humidity. 
 
Note: Calculation used:  
 Amt. sol. by wt. x % glycerol (from Fig. 1) = Amt of glycerol (g)    = ml of glycerol 

    1.2595g/ml   
Amt. sol. by wt  – ml of glycerol = amount of water 
1.2595g= Density of glycerol, Density of water = 1g 
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  Larval food (ground Tetramin®) was added to each vial of eggs and they were 

returned to their temperature cabinets.  Eggs were checked for hatching after several 

weeks and the unhatched eggs were bleached using sodium hypochlorite (Mortenson 

1950).  Bleaching the eggs made it possible to see inside the chorion to the egg tooth on 

the larvae and determine if embryonization took place.  Eggs containing pharate larvae 

were considered dead.  The percent hatch for each replication was the proportion of eggs 

that hatched per total number of embryonated eggs.  For statistical analysis, the 

proportion for each replicate was arc sin transformed (Ott 1984), making it possible to 

run a parametric test on data that is not normally distributed.  The following equation 

was utilized for the arc sine transformation, 

Percent hatch = sin-1 √ π   

The observed proportion of hatched eggs to embryonated eggs (π) is the number of 

hatched eggs divided by the number of viable eggs.  Using SPSS (SPSS 1999), a 

repeated measures multivariate ANOVA was performed with between-subject factors of 

species, population, temperature and relative humidity with the arc sin transformed value 

as the within-subject factor with 6 levels corresponding to weeks 1, 2, 3, 4, 8 and 12.  All 

main effects were accessed as well as all interactions.  Significant interactions were 

further accessed using the sequential Bonferroni adjustment with experimentwise α = 

0.05. 

The control eggs were given four weeks to hatch.  The proportion of 

embryonated eggs that hatched was assessed by bleaching and the number was arc sin 

transformed (Ott 1993).  Using SPSS, an ANOVA was performed to see if the controls 
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were significantly different from other controls of the same species and population.  

Eggs used in this study from the wild populations were of the F2, F3 or F4 progeny.  The 

large number of eggs needed for this study, and the subsequent demands on the colonies 

made it necessary to use multiple generations.  However, this effect is assumed to be null 

and was verified by the previously mentioned control method.  

 

Results and Discussion 

 There was no significant difference between the different batches of eggs set 

aside for control purposes (ANOVA, p > 0.05).  For this reason, all the significant 

differences among the six populations can be attributed to the testing variables and not 

egg batch differences. 

Mauchly’s test for Sphericity verified the homogeneity of variance assumption, 

which indicated that the standard deviations of the populations for all the dependent 

variables, i.e., the six measures of percent hatch, are equal.  The multivariate test for 

within-subject effects was significant for all main effects: Temperature, Species, 

Relative Humidity, Weeks and Origin of Population, as well as all 2-way, 3-way and 4-

way interactions and the 5-way interaction (F = 4.10, p < .0001), indicating that they all 

have a significant effect on the percent hatch.  Multiple comparisons were performed on 

all main effects, however, to determine how the multiple interactions effected the mean 

percent hatch, multiple ANOVA tests were performed on all the effects, with the data 

split by population, species, temperature, relative humidity and weeks and combinations 

thereof.   
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The 5-way interaction of all the variables was significant, which generally 

indicates that, by themselves, their effects cannot be assessed.  However, researchers, 

such as those with mosquito control districts, control for mosquitoes in the field where it 

is unlikely they will know all of these variables when making mosquito management 

decisions.  For this reason, the 3-way interactions of “species-population-temperature”, 

“species-population-relative humidity” and “species-population-time” are discussed as to 

how they influence percent hatch, as well as how their interactions change or affect that 

influence.  The 4-way interaction of all the main effects not including the effect of 

population, i.e. species-time-temperature-relative humidity is also presented here.  The 

means from all treatments appear in the Appendix.  

 

Temperature.  For every population, at most temperatures, the two species were 

significantly different from each other, except for the McAllen population at 21˚C (Table 

2, Fig. 2), which is likely due to Ae. albopictus experiencing its maximum percentage of 

hatch at this temperature.  Eggs of Ae. albopictus from Brownsville did not have a 

significantly different percent hatch from those of Ae. aegypti at 15˚C, 21˚C or 35˚C.  At 

all other temperatures, the eggs of Ae. albopictus had a significantly lower hatching 

percentage than did those of Ae. aegypti, which experienced their highest percent of 

hatch at 27˚C.  In most cases, eggs of Ae. albopictus from Brownsville had a 

significantly higher percent hatch than those of the other two populations (Fig. 2B); and 

unlike the eggs from other Ae. albopicutus populations, the eggs of Ae. albopictus from 
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Brownsville had their highest percent hatch at 27˚C similar to the Ae. aegypti 

populations.   

Table 2.  Mean percent hatch (and standard error) for each temperature for experimental 
egg populations of Ae. albopictus and Ae. aegypti held at different temperatures. 

Temp Species BWN2 McAllen3 Lab4 Total 

15˚C Albo1 60.02 (1.07)x5 52.56 (1.00)y* 53.68 (0.92)y* 55.42 (0.58)a6* 

  Aeg 60.59 (0.76)X 62.06 (0.79)X 56.81 (0.75)X 59.66 (0.44)A 

21˚C Albo 76.74 (1.07)x 76.91 (1.00)x 71.89 (0.92)y* 75.18 (0.58)b* 
  Aeg 75.02 (0.76)X 77.62 (0.71)Y 84.20 (0.75)Z 78.95 (0.43)B 

27˚C Albo 81.88 (1.07)x* 69.50 (1.00)y* 70.11 (0.92)y* 73.83 (0.58)b* 
  Aeg 87.34 (0.76)X 90.45 (0.77)Y 83.70 (0.75)Z 85.10 (0.44)C 

32˚C Albo 58.47 (1.07)x* 50.63 (1.00)y* 48.69 (0.92)y* 52.60 (0.58)c* 
  Aeg 68.66 (0.76)X 64.61 (0.71)X 66.93 (0.75)X 66.74 (0.43)E 

35˚C Albo 59.89 (1.07)x 55.02 (1.00)x* 41.27 (0.92)y* 52.06 (0.58)c* 
  Aeg 60.23 (0.76)XY 58.36 (0.71)X 65.03 (0.75)Y 61.21 (0.43)A 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2Mosquitoes from the population collected in Brownsville, TX. 
3Mosquitoes from the population collected in McAllen, TX. 
4Mosquitoes from the laboratory population. 
5 Means with the same letter are not significantly different according to the Tukey’s test (α = 0.05).   For 
each temperature, each population is compared intra-specifically and designated’ x’, ‘y’ or ‘z ‘( Ae. 
albopictus is in lower case and Ae. aegypti is in upper case. 

6The mean value for each species is compared to that species among the different temperatures with a, b, c, 
d or e. 
*Indicates the two species within the population are significantly different (Tukey α = .05). 
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Figure 2.  Graphical representation of the effect of temperature on the eggs of Ae. albopictus and 
Ae. aegypti (A), the different populations of Ae. albopictus (B) and the different populations of 
Ae. aegypti (C). 
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 Percent egg hatch of the Ae. aegypti population (Fig. 2C) was not significantly 

different at the lowest temperature of 15˚C, but they were all significantly different at 

21˚C and 27˚C.  The egg hatching percentages of the laboratory population of Ae. 

aegypti increased the most from 15˚C to 21˚C at which they had the highest percent for 

all populations.  However, the eggs of the wild populations reached their highest percent 

hatch at 27˚C, with the population from McAllen experiencing the highest percent out of 

the three populations and the laboratory population the lowest.  At 32˚C the percent 

hatch for all Ae. aegypti eggs decreased, and none were significantly different from each 

other.  However, as the temperature increased to 35˚C, percent hatch for eggs from the 

wild populations decreased significantly more than did those from the laboratory 

population, but hatching percentages for eggs from the McAllen population of Ae. 

aegypti decreased the most.   

  Ae. albopictus eggs were the most affected by temperature, such that they 

experienced the lowest percent egg hatch at the highest temperatures (Fig. 2A).  As the 

temperature decreased to 27˚C and 21˚C, they reached their highest percentage of hatch 

followed by a significant decrease at 15˚C that resulted in a hatching percentage that was 

still significantly higher than that at the highest temperatures. 

 Ae. aegypti had the lowest percentages of hatch at the lowest and highest 

temperatures.  The percent hatch increased significantly from 35˚C to 32˚C and even 

more so from 15˚C to 21˚C before it peaked at 27˚C (Fig. A).   
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Relative Humidity.  For every population at every relative humidity (RH) the two 

species were significantly different from each other in regards to the effects of humidity 

on their eggs, with only one exception in the Brownsville population at the highest 

relative humidity (Table 3 and Fig. 3).  At the lower levels of humidity (15-55%), the 

percent egg hatch for the different populations of Ae. albopictus were all significantly 

different from each other (Fig. 3B).  At 75% RH, the hatching percentages for eggs from 

wild populations were significantly different from each other, but neither was 

significantly different from those for eggs from the laboratory population.  At the highest 

relative humidity, eggs from all populations of Ae. albopictus had their highest percent 

hatch, with those from the population from Brownsville being significantly greater than 

those from the other two. 

  Ae. albopictus eggs from the Brownsville population had a significantly higher 

percent hatch at the lowest level of humidity than those from the other populations, and 

the percent hatch increased as the relative humidity increased (Fig. 3C).  However, eggs 

from the McAllen population of Ae. aegypti experienced the greatest increase in percent 

hatch with the increase in humidity, having the highest percent of them all at 95% RH.  

The eggs from laboratory populations experienced the most rapid increase from 15% RH 

to 35% and 55% RH. 

 Percent hatch of the two species significantly increased in the exact same manner 

from 15% RH to a maximum percent hatch at 95% RH (Fig. 3A).  Neither species 

experienced a significantly different percent hatch at 55% or 75% RH,  
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Table 3. Mean percent hatch (and standard error) for eggs of Ae. albopictus and Ae. aegypti held 
at different relative humidity levels. 

RH% Species BWN2 McAllen3 Lab4 Total 

15% Albo1 61.28 (1.07)x5* 57.81 (1.00)y* 45.15 (0.92)z* 54.75 (0.58)a6* 

  Aeg 65.01 (0.76)X 61.16 (0.85)Y 62.00 (0.75)Y 62.84 (0.45)A 

35% Albo 65.66 (1.07)x* 56.53 (1.00)y* 51.91 (0.92)z* 58.03 (0.58)b* 
  Aeg 68.45 (0.76)XY 66.19 (0.71)X 70.03 (0.75)Y 68.22 (0.43)B 

55% Albo 68.74 (1.07)x* 61.84 (1.00)y* 57.88 (0.92)z* 62.82 (0.58)c* 
  Aeg 73.24 (0.76)XY 70.75 (0.72)X 74.49 (0.75)Y 72.83 (0.43)C 

75% Albo 66.51 (1.07)x* 61.07 (1.00)y* 64.37 (0.92)xy* 63.98 (0.58)c* 
  Aeg 69.14 (0.76)X 75.44 (0.71)Y 73.30 (0.75)Y 72.63 (0.43)C 

95% Albo 74.83 (1.07)x 67.37 (1.00)y* 66.34 (0.92)y* 69.51 (0.58)d* 
  Aeg 76.01 (0.76)X 79.38 (0.71)Y 76.83 (0.75)x 77.41 (0.43)D 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2Mosquitoes from the population collected in Brownsville, TX. 
3Mosquitoes from the population collected in McAllen, TX. 
4Mosquitoes from the laboratory population. 
5 Means with the same letter are not significantly different according to the Tukey’s test (α = 0.05).   For 
each humidity, each population is compared intra-specifically and designated’ x’, ‘y’ or ‘z ‘(Ae. 
albopictus is in lower case and Ae. aegypti is in upper case. 

6The mean value for each species is compared to that species among the different humidities with a, b, c, d 
or e. 
*Indicates the two species within the population are significantly different (Tukey α = .05). 
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Figure 3.  Graphical representation of the effect of humidity on the eggs of  Ae. albopictus and 
Ae. aegypti (A), the different populations of Ae. albopictus (B) and the different populations of 
Ae. aegypti (C). 
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indicating little variation at these moderate levels of humidity.  At every level of 

humidity, eggs of Ae. aegypti had a significantly higher percentage of hatch than did 

those of Ae. albopictus. 

 

Time. The mean percent hatch for the eggs of each species’ population over the six 

different time intervals (1, 2, 3, 4, 8 and 12 weeks) decreased after an initial peak at the 

first or second week period to an overall low in eggs hatched after twelve weeks (Fig. 

4A) [eggs of Ae. aegypti from the wild populations were the exception].  Their hatching 

percentages decreased at the third week, but unlike the other populations, they had 

another peak in percent hatch at the fourth week before decreasing again.  In all 

populations separately and combined, the percent hatch for Ae. aegypti eggs was 

significantly higher than that for Ae. albopictus eggs, except for the Brownsville 

population in which the difference was only significant for weeks four and eight (Table 

4).  

 The eggs from the Brownsville population of Ae. albopictus had a significantly 

higher percent hatch than did eggs from the other two populations for all time periods 

(Fig. 4B).  For eggs hatched in the first three weeks, neither of the other two populations 

were significantly different from each other; however, from the fourth week on, eggs 

from the laboratory population of Ae. albopictus had a significantly lower percentage of 

hatch than did those from the McAllen population. 

The eggs from the two wild populations of Ae. aegypti  did not have significantly 

different percentages of hatch at any time period (Table 4).  This may stem from the fact  
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Table 4. Mean percent hatch (and standard error) for Ae. aegypti and Ae. albopictus eggs 
for each population per week. 

Week Species BWN2 McAllen3 Lab4 Total 

1 Albo1 73.05 (1.09)x5 66.41 (1.09)y* 69.01 (1.09)y* 69.49 (0.63)a6* 
 Aeg 74.08 (0.79)XY 77.30 (0.82)X 72.22 (0.79)Y 74.50 (1.09)A 

2 Albo 74.89 (1.16)x 65.04 (1.16)y* 61.99 (1.16)y* 67.31 (0.67)a* 
 Aeg 76.95 (0.75)X 77.62 (0.78)X 76.95 (0.75)X 77.16 (1.09)B 

3 Albo 67.92 (0.91)x 61.51 (0.91)y* 58.15 (0.91)y* 62.53 (0.52)b* 
 Aeg 69.49 (0.88)X 71.78 (0.92)X 73.45 (0.88)Y 71.57 (1.09)C 

4 Albo 68.63 (1.13)x* 63.68 (1.13)y* 58.36 (1.13)z* 63.55(0.65) b* 
 Aeg 74.90 (0.74)X 74.50 (0.77)X 70.87 (0.74)Y 73.41 (1.09)AC 

8 Albo 59.93 (1.06)x* 56.83 (1.06)y* 49.74 (1.06)z* 55.50 (0.61)c* 
 Aeg 64.45 (0.85)X 63.28 (0.88)X 69.39 (0.85)Y 65.74 (1.09)D 

12 Albo 59.99 (0.99)x 52.08 (0.99)y* 45.52 (0.99)z* 52.53 (0.57)d* 
 Aeg 62.36 (0.76)X 61.37 (0.80)X 65.11 (0.76)Y 62.97 (1.09)E 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2Mosquitoes from the population collected in Brownsville, TX. 
3Mosquitoes from the population collected in McAllen, TX. 
4Mosquitoes from the laboratory population. 
5 Means with the same letter are not significantly different according to Tukey’s test (α = 0.05).   For each 
temperature, each population is compared intra-specifically and designated’ x’, ‘y’ or ‘z ‘( Ae. albopictus 
is in lower case and Ae. aegypti is in upper case. 

6The mean value for each species is compared to that species among the different weeks with a, b, c, d or 
e. 
*Indicates the two species within the population are significantly different (Tukey α = .05). 
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Figure 4.  Graphical representation of the effect of time on the eggs of  Ae. albopictus and Ae. 
aegypti (A), the different populations of Ae. albopictus (B) and the different populations of Ae. 
aegypti (C). 
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that the two populations originated only fifty miles from each other.  The eggs from the  

laboratory population of Ae. aegypti had a significantly lower percent hatch than eggs 

from the other two populations for eggs hatched after the first week, but had an increase 

at the second week so that there was no significant difference among the populations in 

the second week.  The eggs of Ae. aegypti from all populations had the highest 

percentage of hatch in the second week (Fig. 4C), unlike those of Ae. albopictus, which 

had their highest percent hatch in the first week (Fig. 4B).  After the second week, the 

percent hatch for Ae. aegypti eggs from the laboratory population decreased, but not at 

the same rate as eggs of the wild populations of Ae. aegypti, nor did they reach a percent 

hatch as low as eggs of the wild populations in the twelfth week.   

 Eggs from all populations of Ae. albopictus had a significantly higher percent 

hatch for eggs hatched after the first and second week (Fig. 4A).  This was followed by a 

significant decrease in the third and fourth week, and subsequent significant differences 

in the eighth and twelfth weeks.   

 As previously mentioned, Ae. aegypti eggs had a significant increase in hatching 

percentage in eggs hatched after the first week to the second week.  This percentage 

significantly decreased in the third and fourth weeks, but in the fourth week the percent 

hatch was similar to that of the first week.  After eight weeks, the eggs had a significant 

decrease in percent hatch, and again after twelve weeks.   

It is clear that the amount of time elapsed before Aedes eggs hatch influences 

their hatching percentage, and that the degree that time affects the species is influence by 

the origin of the population, especially in the case of Ae. albopictus.  
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Table 5.  Mean percent hatch (and standard error) of Ae. aegypti and Ae. albopictus eggs 
for each species and each population thereof. 
 

Species BWN1 McAllen2 Lab3 Total 

Ae. albopictus 67.40 (0.45) x4* 60.93 (0.45)y* 57.13 (0.45)z* 61.82(0.26)* 
Ae. aegypti 70.37 (0.33)X 70.98 (0.34)X 71.33 (0.33)X 70.89(0.19) 

1Mosquitoes from the population collected in Brownsville, TX. 
2Mosquitoes from the population collected in McAllen, TX. 
3Mosquitoes from the laboratory population. 
4Means with the same letter within the same species are not significantly different according to 
Tukey’s test (α = 0.05).   (Ae. albopictus is in lower case and Ae. aegypti is in upper case.)  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.  Graphical representation of the overall mean percent hatch of the eggs of Ae. 
albopictus and Ae. aegypti divided by population origin.   
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Population.  The mean percent hatch for eggs of all populations of both species were 

compared (Table 5).  Eggs from every population of Ae. albopictus were significantly 

different from one another, with the eggs from the population from Brownsville 

experiencing the highest percent of hatching, the laboratory population the lowest, and 

the McAllen population falling in the middle (Fig. 5).  In contrast, none of the eggs from 

the different populations of Ae. aegypti were significantly different from one another.  

Nonetheless, for every population the two species’, Ae. aegypti and Ae. albopictus, 

percent egg hatch was significantly different from each other.  Analyzing the previous 

main effects, it was revealed that the location from which the species were collected 

significantly influenced the way their eggs respond to climatic variables.  Thus, before 

assumptions are made on how a species or population in a specific region will respond to 

climatic variables, it is import to perform tests on the specific population in question.   

 

Species-Relative Humidity-Temperature-Time.  The mean percent hatch for eggs at 

all levels of humidity and for each species at each time interval that occurred at the five 

temperatures were charted and their totals compared.  With this many variables to 

consider, only the most prominent trends are mentioned herein.   

15˚C.  The eggs of Ae. aegypti had a higher percent hatch than Ae. albopictus 

eggs at most combinations of relative humidity and time at this temperature (Table 6).  

However, there were some combinations for which Ae. albopictus had a higher percent 

hatch.   After one week of exposure to 15˚C, the eggs of Ae. albopictus had a 

significantly higher percent hatch than those of Ae. aegypti at 15%, 55% and 95% RH.   



35 
 

 
 

Table 6. Mean percent hatch (and standard error) for eggs of Ae. albopictus and Ae. aegypti at each experimental relative humidity and 
week of total exposure at 15˚C. 

    Weeks      
RH% Species  1 2 3 

 
4 
 

8 
 

12 
 

Total 

15% Albo1 47.89 (3.13)* 42.01(3.36)* 50.82(2.62)* 60.07(3.25) 47.21(3.07) 46.39(2.85)* 49.06(1.14)a3 

  Aeg 32.34 (2.79) 62.76(2.64) 39.99(3.12) 54.39(2.63) 51.56(3.00) 57.90(2.70) 49.82(1.39)A 
                            

35% Albo 51.92 (3.13) 37.93(3.36) * 46.53(2.62)* 83.03(3.25)* 72.74(3.07)* 50.50(2.85)* 46.81(1.14)a* 
  Aeg 46.12 (2.28) 50.15(2.16) 54.54(2.54) 63.49(2.15) 53.26(2.45) 63.60(2.21) 55.19(1.14)B 
                            

55% Albo 56.10 (3.13)* 57.20(3.36) 50.73(2.62) 49.96(3.25)* 54.78(3.07)* 59.87(2.85) 54.77(1.14)b* 
  Aeg 42.26 (2.28) 60.06(2.16) 49.76(2.54) 71.44(2.15) 72.79(2.45) 61.73(2.21) 59.67(1.14)C 
                            

75% Albo 62.38 (3.13) 69.25(3.36)* 50.06(2.62) 59.46(3.25)* 63.43(3.07) 66.95(2.85)* 61.92(1.14)c 
  Aeg 61.73 (2.21) 52.28(2.16) 52.72(2.54) 69.27(2.15) 64.96(2.45) 78.52(2.21) 61.72(1.14)C 
                            

95% Albo 66.03 (3.13)* 60.43(3.36)* 59.45(2.62) 67.74(3.25) 59.63(3.07)* 73.95(2.85) 64.54(1.14)c* 
  Aeg 55.64 (2.28) 71.52(2.16) 62.29(2.54) 73.22(2.15) 69.35(2.45) 79.58(2.21) 68.60(1.14)D 
                            
Total Albo 56.86 (1.23) * 

vx2 
53.37(1.27) * 

vw 
51.52(1.15) 

w 
58.82(1.23) * 

x 
55.01(1.24) * 

vwx 
56.95(1.14) * 

vwx 
55.42(0.51)* 

  Aeg 46.75 (1.27) 
V 

59.11(1.31) 
W 

52.71(1.20) 
V 

67.22(1.28) 
X 

63.16(1.29) 
WX 

69.01(1.18) 
X 

59.66(0.53) 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2 Means with the same letter are not significantly different according to Tukey’s test (α = 0.05).   For each temperature, each population is compared 
intra-specifically and designated’ x’, ‘y’ or ‘z ‘( Ae. albopictus is in lower case and Ae. aegypti is in upper case. 

3The mean value for each species is compared to that species among the different weeks with a, b, c, d or e. 
*Indicates the two species are significantly different (Tukey α = .05). 
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This also occurred after the second week at 75% RH, after the third week at 15% RH 

and after the third and fourth week at 35% RH. 

 With the means for each time interval combined, the overall percent hatch for 

35%, 55% and 95% RH was higher for Ae. aegypti than Ae. albopictus.  There was no 

significant difference in percent hatch at 15% or 75% RH between the two species. 

 An interesting phenomenon can be seen when comparing percent egg hatch at 

15˚C over various time intervals.  For both species, the percent egg hatch actually 

increased with the increase of the length of time to hatching.  This may be attributed to 

development being slowed at low temperatures, resulting in more time needed to 

properly develop.  

21˚C.  When comparing the percent hatch of Ae. aegypti and Ae. albopictus eggs 

across the different levels of humidity and time periods at 21˚C, there are very few 

instances in which there was a significant difference in mean percent hatch (Table 7).  

There was only one instance in which Ae. albopictus eggs had a higher percent hatch for 

a treatment than Ae. aegypti eggs and it occurred at 55% RH at the third week.  Ae. 

aegypti eggs appeared to have a significantly higher percentage of eggs hatching at the 

mid-levels of humidity in combination with a later time period.  This is probably because 

21˚C is the temperature at which the eggs of Ae. albopictus experience the greatest 

percent of hatch.  The highest percent hatch at each humidity over the different time 

periods for each species varied greatly.  Ae. albopictus eggs had their highest percentage 

of hatch with eggs held for two to four weeks.  Ae. aegypti eggs were was similar, except 

that, at 75% RH, the highest percent was after the first week.   
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Table 7.  Mean percent hatch (and standard error) for eggs of Ae. albopictus and Ae. aegypti at each experimental relative humidity and 
week of total exposure at 21˚C. 

    Weeks       
RH%  Species 1 2 3 4 8 12 Total 

15% Albo1 58.62 (3.13) 67.07(3.36) 66.95(2.62)* 63.85(3.25) 49.24(3.07) 46.04(2.85)* 58.63 (1.14)a3* 

  Aeg 59.62 (2.28) 71.38(2.16) 75.69(2.54) 70.32(2.15) 57.77(2.45) 56.29(2.21) 65.18(1.14)A 
                   
35% Albo 79.48(3.13) 78.53(3.36)* 78.37(2.62) 83.03(3.25) 72.74(3.07) 50.50(2.85)* 73.78(1.14)b* 

  Aeg 82.07(2.28) 85.70(2.16) 75.69(2.54) 79.21(2.15) 77.99(2.45) 71.21(2.21) 78.65(1.14)B 
                   
55% Albo 86.60(3.13) 78.15(3.36) 87.86(2.62)* 77.66(3.25)* 67.42(3.07)* 70.54(2.85) 78.04(1.14)b 

  Aeg 81.77(2.28) 73.10(2.16) 76.78(2.54) 85.19(2.15) 83.99(2.45) 75.92(2.21) 79.46(1.14)B 
                   
75% Albo 75.58(3.13)* 83.64(3.36) 81.07(2.62)* 77.62(3.25) 74.39(3.07) 75.88(2.85) 78.03(1.14)b* 

  Aeg 90.68(2.28) 85.52(2.16) 87.86(2.54) 78.49(2.15) 76.64(2.45) 75.89(2.21) 82.51(1.14)B 
                   
95% Albo 93.30(3.13) 88.56(3.36) 93.18(2.62) 85.07(3.25) 83.45(3.07) 81.01(2.85) 87.43(1.14)c 

  Aeg 91.38(2.28) 91.77(2.16) 93.75(2.54) 89.34(2.15) 84.95(2.45) 82.46(2.21) 88.94(1.14)C 
                   
Total Albo 78.72(1.23) 

v2 
79.19(1.27) 

v 
81.49(1.15) 

v 
77.45(1.23) 

v 
69.45(1.24)* 

w 
64.79(1.14) * 

w 
75.18(0.51)* 

  Aeg 81.11(1.23) 
V 

81.49(1.27) 
V 

81.95(1.15) 
V 

80.51(1.23) 
VW 

76.27(1.24) 
WX 

72.35(1.14) 
X 

78.95(0.51) 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2 Means with the same letter are not significantly different according to Tukey’s test (α = 0.05).   For each temperature, each population is compared 
intra-specifically and designated’ x’, ‘y’ or ‘z ‘( Ae. albopictus is in lower case and Ae. aegypti is in upper case. 

3The mean value for each species is compared to that species among the different weeks with a, b, c, d or e. 
*Indicates the two species within are significantly different (Tukey α = .05). 
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 Overall, the eggs of Ae. albopictus and Ae. aegypti were significantly affected by 

humidity at 21˚C in the same manner.  They both had the significantly lowest percent 

hatch at the lowest level of humidity and significantly highest hatching percentage at the 

highest humidity, with no significant difference at the other humidity levels.  

Additionally, Ae. aegypti eggs did not have a significantly higher percent hatch at 55% 

or 95% RH.  This is likely attributed to there being no significant increase in percent 

hatch for Ae. aegypti from 35% to 55%RH. 

 Over the different time periods, there was little difference in hatching 

percentages within each species and among the separate species. There was a significant 

decrease in percent hatch for eggs held for eight and twelve weeks only.  Only at these 

two time periods was the percent hatch for Ae. aegypti eggs significantly higher than the 

percent hatch of Ae. albopictus eggs.  

 These results indicate that, although there is a decreasing effect on the percent 

hatch by the increase of time before being hatched and lower levels of humidity, at 21˚C 

these effects are minimal and do not lead to any great increase or decrease in either 

species. 

27˚C.  Percent egg hatch at all humidity levels and across the different time 

periods at this temperature were mostly different (Table 8), with Ae. aegypti eggs having 

a significantly higher percent hatch than Ae. albopictus.  However, there was no 

significant difference in percent hatch for eggs hatched after the first week that were 

held at 35%, 55% or 75% RH, or eggs held at 95% RH and hatched after weeks 2, 3, 4 

and 8.   
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Table 8.  Mean percent hatch (and standard error) for eggs of Ae. albopictus and Ae. aegypti at each experimental relative humidity and 
week of total exposure at 27˚C. 

    Weeks      

RH%  Species 1 2 3 4 8  12  Total 
15% Albo1 74.69(3.13)* 74.13(3.36)* 68.01(2.62)* 68.59(3.25)* 47.69(3.07)* 39.91(2.85)* 62.17(1.14)a3* 

  Aeg 86.85(2.52) 84.02(2.39) 82.26(2.81) 85.86(2.37) 74.30(2.71) 59.76(2.44) 78.84(1.26)A 
                  
35% Albo 86.66(3.13) 80.47(3.36)* 77.90(2.62)* 73.55(3.25)* 47.57(3.07)* 49.26(2.85)* 69.24(1.14)b* 

  Aeg 91.54(2.28) 92.55(2.16) 92.88(2.54) 92.39(2.15) 88.03(2.45) 73.31(2.21) 88.45(1.14)B 
                  
55% Albo 88.42(3.13) 86.36(3.36) 87.48(2.62)* 80.85(3.25)* 78.75(3.07)* 55.87(2.85)* 79.62(1.14)c* 

  Aeg 90.52(2.37) 90.89(2.25) 92.64(2.65) 96.14(2.23) 90.55(2.55) 85.29(2.30) 91.01(1.18)BC 
                  
75% Albo 86.57(3.13) 86.13(3.36)* 88.33(2.62)* 81.77(3.25)* 77.97(3.07)* 60.50(2.85)* 80.21(1.14)c* 

  Aeg 92.47(2.28) 95.42(2.16) 94.43(2.54) 93.36(2.15) 90.99(2.45) 87.74(2.21) 92.40(1.14)C 
                  
95% Albo 77.66(3.13)* 83.15(3.36) 83.46(2.62) 75.89(3.25)* 77.37(3.07) 70.03(2.85)* 77.93(1.14)c* 

  Aeg 90.86(2.28) 86.30(2.16) 84.37(2.54) 85.74(2.15) 82.52(2.45) 80.86(2.21) 85.11(1.14)D 

Total Albo 82.80(1.23) * 
v2 

82.05(1.27) * 
v 

81.04(1.15) * 
v 

76.13(1.23) * 
w 

65.87(1.24) * 
x 

55.11(1.14) * 
y 

73.83(0.51)* 

  Aeg 90.45(1.26) 
V 

89.84(1.30) 
V 

89.32(1.19) 
VW 

90.70(1.27) 
V 

85.28(1.28) 
W 

77.39(1.18) 
X 

87.16(0.52) 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2 Means with the same letter are not significantly different according to Tukey’s test (α = 0.05).   For each temperature, each population is compared 
intra-specifically and designated’ x’, ‘y’ or ‘z ‘( Ae. albopictus is in lower case and Ae. aegypti is in upper case. 

3The mean value for each species is compared to that species among the different weeks with a, b, c, d or e. 
*Indicates the two species within are significantly different (Tukey α = .05). 
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Overall, Ae. albopictus eggs had a significant increase in percent hatch from 15% 

to 55% RH, but there was no additional increase in percent hatch with the additional 

increase in humidity.  Similarly, Ae. aegypti eggs had an increase in percent hatch from 

15%  to 55% RH, but actually had a decrease in percent hatch at the highest humidity.  

This may be because of the presence of mites found at the highest humidity at this 

temperature.  27˚C may be an optimal temperature for the mosquitoes, but it is also 

favorable to other organisms, such as mites, bacteria and fungus, especially in 

combination with high levels of humidity such as was seen here. 

 There was a trend in both species of decreasing percent egg hatch with an 

increase in time spent under the treatment conditions beginning at the fourth week.  This 

resulted in the lowest percent hatch occurring at the longest time periods and was 

confounded by the effect of the low humidity of 15% RH for which both species 

experienced their lowest percent hatch. 

 32˚C.  At this temperature, Ae. albopictus eggs had irregular patterns of 

increases and decreases in percent hatch at all combinations of humidity and periods of 

time (Table 9).  There was a significant difference between the two species at most 

combinations of humidity and time, such that Ae. aegypti eggs had a significantly higher 

percent hatch.  However, at 15% RH the percent hatch at the fourth week was 

significantly higher for Ae. albopictus eggs than for Ae. aegypti eggs.  Ae. albopictus 

eggs consistently had a higher percent hatch at the first or second week for all levels of 

humidity.  At all other humidity levels and time periods, the resulting percent hatch was 

always inconsistent for Ae. albopictus eggs.  Except for the highest humidity, the 
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Table 9.  Mean percent hatch (and standard error) for eggs of Ae. albopictus and Ae. aegypti at each experimental relative humidity and 
week of total exposure at 32˚C. 

    Weeks      
RH% Species  1 2  3 4 8  12 Total 
15% Albo1 43.80(3.13)* 59.67(3.36) 36.51(2.62)* 63.48(3.25)* 45.82(3.07) 49.87(2.85) 49.86(1.14)a3* 

  Aeg 68.04(2.28) 65.41(2.16) 61.55(2.54) 49.24(2.15) 46.03(2.45) 48.04(2.21) 56.38(1.14)A 
                  
35% Albo 50.66(3.13)* 61.84(3.36) 38.93(2.62)* 49.47(3.25)* 39.91(3.07) 58.42(2.85) 49.87(1.14)a* 

  Aeg 75.67(2.28) 68.73(2.16) 64.01(2.54) 60.19(2.15) 43.64(2.45) 55.31(2.21) 61.26(1.14)B 
                  
55% Albo 68.17(3.13)* 59.68(3.36)* 37.05(2.62)* 46.98(3.25)* 45.65(3.07)* 41.83(2.85)* 49.89(1.14)a* 

  Aeg 93.16(2.28) 88.69(2.16) 77.70(2.54) 67.97(2.15) 52.98(2.45) 56.72(2.21) 72.87(1.14)C 
                  
75% Albo 71.22(3.13)* 58.21(3.36)* 42.86(2.62)* 51.73(3.25)* 35.05(3.07)* 43.33(2.85) 50.40(1.14)a* 

  Aeg 81.04(2.28) 79.41(2.16) 67.43(2.54) 69.23(2.15) 44.65(2.45) 46.05(2.21) 64.64(1.14)B 
                  
95% Albo 83.86(3.13)* 78.86(3.36)* 73.42(2.62)* 70.43(3.25)* 37.17(3.07)* 34.10(2.85)* 62.97(1.14)b* 

  Aeg 94.45(2.28) 91.66(2.16) 84.43(2.54) 86.30(2.15) 69.61(2.45) 44.70(2.21) 78.53(1.14)D 
                  
Total Albo 63.54(1.23)* 

v2 
63.65(1.27)* 

v 
45.76(1.15)* 

w 
56.42(1.23)* 

x* 
40.72(1.24)* 

w 
45.51(1.14)* 

w 
52.60(0.51)* 

  Aeg 82.47(1.23) 
V 

78.78(1.27) 
V 

71.02(1.15) 
W 

66.59(1.23) 
W 

51.38(1.24) 
X 

50.17(1.14) 
X 

66.74(0.51) 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2 Means with the same letter are not significantly different according to Tukey’s  test (α = 0.05).   For each temperature, each population is compared 
intra-specifically and designated’ x’, ‘y’ or ‘z ‘( Ae. albopictus is in lower case and Ae. aegypti is in upper case. 

3The mean value for each species is compared to that species among the different weeks with a, b, c, d or e. 
*Indicates the two species within are significantly different (Tukey α = .05). 
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increase in humidity did not significantly increase the hatching percentage.  The 

inconsistencies that Ae. albopictus eggs demonstrated at this temperature may be 

indicative of the species’ poor performance at this high temperature.  This may be a 

temperature in which some individuals may have the ability to cope, but not as a 

collective group or population. 

 Ae. aegypti eggs hatched at a higher percentage at all humidity levels after the 

first or second week, with the highest percentages occurring under the highest levels of 

humidity.  In general, hatching percentages significantly increased as humidity 

increased, with the exception of the 75% RH level.  At this level, Ae. aegypti eggs 

experienced a significant decrease in percent hatch before increasing again at the 95% 

RH level. 

 The effect of time seemed especially potent at 32˚C, with Ae. albopictus eggs 

experiencing a significant decrease in percent hatch after only two weeks of exposure.  

Ae. aegypti had a drop to approximately 50 percent after eight weeks of exposure.  After 

the initial drop in percent hatch for the eggs of each species, there was not another drop 

with the addition of four more weeks of exposure.    

35˚C.  Percent egg hatch was not significantly different for either Ae. albopictus 

or Ae. aegypti at any humidity after one week,  nor at the lowest levels of  humidity at 

the eighth and twelfth weeks.  A significant difference was found between the eggs of 

the two species at most other combinations of humidity and time at this temperature 

(Table 10) such that Ae. aegypti eggs hatched at a significantly higher percent than Ae. 

albopictus eggs.  At this temperature, Ae. albopictus did not exhibit any of their previous 
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Table 10.  Mean percent hatch (and standard error) for eggs of Ae. albopictus and Ae. aegypti at each experimental relative humidity and 
week of total exposure at 35˚C. 

   Weeks       
RH% Species  1  2  3  4  8 12  Total 

15 Albo1 55.61(3.13) 62.11(3.36)* 58.33(2.62) 49.18(3.25)* 48.06(3.07) 50.75(2.85) 54.01(1.14)a3* 
 Aeg 58.28(2.28) 73.27(2.16) 54.72(2.54) 67.58(2.15) 47.71(2.45) 56.13(2.21) 59.61(1.14)AB 
                 

35 Albo 56.59(3.13) 57.23(3.36)* 46.04(2.62)* 46.70(3.25)* 51.91(3.07) 44.35(2.85) 50.47(1.14)a* 
 Aeg 59.42(2.28) 73.56(2.16) 53.40(2.54) 64.57(2.15) 51.75(2.45) 42.69(2.21) 57.56(1.14)a 
                 

55 Albo 62.22(3.13) 58.98(3.36)* 43.20(2.62)* 53.02(3.25) 47.40(3.07)* 45.81(2.85) 51.77(1.14)a* 
 Aeg 69.58(2.28) 72.59(2.16) 61.14(2.54) 55.70(2.15) 62.25(2.45) 45.50(2.21) 61.13(1.14)AB 
                 

75 Albo 73.49(3.13) 48.34(3.36)* 49.41(2.62)* 45.81(3.25)* 42.00(3.07)* 36.98(2.85)* 49.34(1.14)a* 
 Aeg 79.73(2.28) 70.81(2.16) 65.65(2.54) 53.83(2.15) 49.95(2.45) 51.18(2.21) 61.86(1.14)BC 
                 

95 Albo 79.81(3.13) 64.79(3.36)* 67.23(2.62) 50.06(3.25)* 42.85(3.07)* 23.50(2.85)* 54.71(1.14)a* 
 Aeg 82.24(2.28) 86.75(2.16) 73.04(2.54) 66.46(2.15) 50.55(2.45) 36.14(2.21) 65.86(1.14)C 
                 

Total Albo 65.54(1.23)* 
v2 

58.29(1.27)* 
vw 

52.84(1.15)* 
wx 

48.96(1.23)* 
x 

46.44(1.24)* 
x 

40.28(1.14)* 
y 

52.06(0.51)* 

 Aeg 69.85(1.23) 
V 

75.40(1.27) 
W 

61.59(1.07) 
X 

61.59(1.15) 
X 

52.44(1.24) 
Y 

46.33(1.14) 
Z 

61.21(0.51) 

1Albo = Ae. albopictus and Aeg = Ae. aegypti 
2 Means with the same letter are not significantly different according to Tukey’s test (α = 0.05).   For each temperature, each population is compared 
intra-specifically and designated’ x’, ‘y’ or ‘z ‘( Ae. albopictus is in lower case and Ae. aegypti is in upper case. 

3The mean value for each species is compared to that species among the different weeks with a, b, c, d or e. 
*Indicates the two species within are significantly different (Tukey α = .05). 
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inconsistencies.  After the first or second week, they had their highest percent hatch for  

all levels of humidity.   Ae. albopictus eggs had a significant decrease in percent hatch 

with an increase in the time of exposure to the temperature.  When all of the mean 

hatching percentages at the different time periods were combined, there was no 

significant difference in percent hatch at the different humidity combinations.  This 

indicates that the amount of time the eggs are exposure to this high temperature has a 

greater impact on the percent hatch than the humidity level.  Thus, Ae. albopictus may 

be able to populate areas that experience this high of a temperature, in combination with 

frequent rains, or frequent watering such as the conditions in a well-maintained cemetery 

in the Texas Rio Grande Valley.  As noted earlier, that is where most of the wild 

populations were collected. 

 Ae. aegypti eggs experienced the highest percent hatch after two weeks at all 

humidity levels except 75% RH, for which the first week had the highest percentage of 

hatch.  Overall, Ae. aegypti eggs had very subtle differences in percent hatch when all 

the means for each week were combined.  Although, the significantly highest percent 

hatch did occur at the highest humidity.  Similar to the eggs of Ae. albopictus, those of 

Ae. aegypti seemed more affected by the length of exposure to this temperature than the 

levels of humidity.  Overall, after the significant increase in percent hatch at the second 

week, there was a significant decrease at week three, eight and twelve.  Even though Ae. 

aegypti eggs experienced a higher percent hatch at this temperature than did those of Ae. 

albopictus, it appears that they would also benefit by reducing the amount of time 

exposed to it, such as frequent rains or frequent watering as described above.   
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Findings reported here support the idea that Ae. albopictus populations out-

compete Ae. aegypti populations at temperatures near 21˚C.  Ae. albopictus has a 

disadvantage at higher temperatures.  These results support the idea that reducing 

watering of yards and cemeteries in regions that experience high temperatures (32˚C and 

35˚C) would help control populations of Aedes mosquitoes.     
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CHAPTER IV 

CHORIONIC EGG PAD STUDY 

Introduction 

The eggs of floodwater mosquitoes are especially relevant in determining the 

species’ climatic boundaries, because it is in this stage that they endure unfavorable 

climatic conditions (Sota and Mogi 1992).  In several studies (Juliano et al. 2002, Sota 

and Mogi 1992, and Hien 1975) it has been determined that there is a significant 

difference in the mortality rates of Ae. aegypti and Ae. albopictus eggs that have been 

subjected to different relative humidity and temperature regimes.  Juliano et al. (2002) 

found the effects of temperature and humidity on egg mortality significantly different 

between the two species, with Ae. albopictus experiencing higher mortality at all 

combinations except at the highest humidity.  Sota and Mogi (1992) found that Ae. 

aegypti survived longer than Ae. albopictus at all humidity levels they tested at their 

experimental temperature of 25˚C and attributed this to egg volume.  Ae. aegypti had the 

greatest egg volume and thus the greatest ability to resist desiccation.  Sota and Mogi 

(1992) conducted their study in Japan, and due to the huge geographic difference 

between Japan and Texas, it is important to verify if this is the case with Texas mosquito 

populations.    

In Christophers’ book on Ae. aegypti (1960), it mentioned the chorionic egg pad 

on the Ae. aegypti egg that is produced by the epichorion and part of the exochorion.  He 

stated that the exochorion functions in desiccation resistance and the chorionic egg pad 

functions to anchor the eggs dorsal side up.  Christophers (1960) described the chorionic 
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egg pad as a gelatinous pad formed by the swelling of the epichorion in water.  It was 

proposed in the current study that there may be a correlation between desiccation 

resistance and the size of the egg pad, due to its moisture-rich nature.  It is possible that 

the size of the egg pad differs between the two species in relation to the differences in 

the desiccation tolerance of Ae. albopictus and Ae. aegypti eggs.  This leads to the 

purpose of this study, which was to determine if there are any differences in egg pad size 

between Ae. aegypti and Ae. albopictus and to verify if Texas populations differ in this 

regard and/or in their egg volume as well.  It is hypothesized that the egg volume and 

size of the egg pad on the eggs of Ae. aegypti and Ae. albopictus are different between 

the two species and for populations of different origins. 

Chrisophers (1960) viewed the gelatinous pad under the microscope by allowing 

tiny particles to attach themselves to it.  In an effort to use more modern and reliable 

methods to view the egg pad, freshly laid eggs were viewed using an Environmental 

Scanning Electron Microscope (ESEM), which can scan wet specimens.  Although this 

was successful, it was labor intensive and expensive.  Through trial and error, a stain 

was found that would adhere to the egg pad and render it easily seen under a dissecting 

scope which facilitated the current study.   

 

Materials and Methods 

 This study was conducted on the same six populations as the previous study, and 

the materials and methods for rearing the mosquitoes was the same as described in 
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chapter 3.  The F3 progeny of the Ae. albopictus and Ae. aegypti populations from 

Brownsville and McAllen, TX were specifically used in this study. 

Fifty eggs of each species from each population were measured, so that 150 eggs 

of each species were assessed.  Eggs were collected on paper towels inside water-filled 

LBJs three days after the females received a blood meal. They were collected in four 

hour time periods to reduce the possibility of the eggs crowding and touching each other.    

The wet paper towels were removed from the LBJs and sealed inside a 9.1 x 25.4 cm 

box for 48 hours (Fig. 6).  The sealed boxes were housed in an environmental chamber 

set at 27˚C, and maintained a 14:10 L:D photoperiod.  After 48 hours, a small strip of the 

paper towel with eggs was cut off and placed in a Petri dish for staining.  A giemsa stain 

was applied with a dropper to the eggs on the paper towel so as to cover them 

completely.  The stain was allowed to sit for five minutes before distilled water was 

squirted into the dish directly at the eggs in an effort to gently dislodge the eggs from the 

paper towel.  The paper towel was removed after the remaining eggs were squirted off.  

The egg pad on the egg was then able to be viewed under the optics of a microscope.  In 

this case a Leica MZ APO dissecting scope fitted with an AxioCam MRc 5 camera 

(Zeiss, Germany) was used to capture digital images of every egg using the imaging 

program, AxioVision Rel 4.5 (Ziess, Germany).  The images were then imported into 

Optimus 6.5 (Media Cybernetics 1999) for measurement.   
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Figure 6.  Little Black Jar (LBJ) with paper towel for collecting eggs (A), plastic box 
mosquito eggs were housed for forty-eight hours (B). 

A 

B 
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 The shape of a mosquito egg is that of a prolate spheroid (Hawley 1985), whose 

volume is described by:  

V= 4/3 π ab2 

where a is the semi-minor axis and b is the semi-major axis (Fig. 7).  For each egg, the 

major axis was measured and two measurements were taken for the semi-minor axis.  

The chorionic egg pad is a swelling of the epichorion that is produced from the ventral 

half of the egg.  Thus, the volume of the egg with the egg pad is derived from the dorsal 

side of the egg which is a function of a the semi-major axis and b the semi- minor axis 

[ƒ(a, b)]  and the ventral side of the egg which is a function of a the semi-major axis and 

c the semi-minor axis with the egg pad [ƒ(a, c)]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Graphical representation of the prolate spheroid egg and chorionic egg pad.  
(a) semi-major axis, (b) semi-minor axis, (c) semi-minor axis including the egg pad. 
 

a

b c Chorionic egg pad 
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The volume of the egg with the egg pad included was derived by calculating the 

volume of the egg and the volume of the egg with the egg pad included and adding half 

of those values together to form the entire volume of the egg.  The equation for the 

volume of the egg with the egg pad (Vp) is: 

Vp= 1/2 (4/3 π ab2) + 1/2(4/3 π ac2) 

where a is the semi-major axis, b is the semi-minor axis and c is the semi-minor axis 

including the egg pad.   

The surface area of the egg was also calculated due to the impact of the surface 

area to volume ratio on desiccation.  The surface area (SA) of a prolate spheroid is 

derived from the following equation: 

SA = 2πb2 + 2π (ab/e) sin-1 e 

where b is the semi-minor axis, a is the semi-major axis and e is the eccentricity of the 

prolate spheroid derived from the following equation: 

 e = √1- b2/a2 

The surface area of the egg with the addition of the egg pad is a function of the surface 

area of the egg [ƒ(a, b)] and the surface area of the egg with the egg pad [ƒ(a, c)]. 

However, the egg pad only influences the ventral half of the egg, so the surface area of 

the egg with the egg pad (SAp) takes on the following form: 

 SAp = 1/2 ƒ(a, b) + 1/2 ƒ(a, c) 

The above form is translated into the equation such that: 

SAp = 1/2(2πb2 + 2π (ab/e) sin-1 e) + 1/2(2πc2 + 2π (ac/ep) sin-1 ep) 
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where b is the semi-minor axis, e is the eccentricity derived from the previously 

mentioned equation, a is the semi-major axis, c  is the semi-minor axis including the egg 

pad and (ep) is the eccentricity of the egg with the egg pad, derived from the following 

equation: 

 ep = √1- c2/a2 

 A high surface-area-to-volume ratio translates into a large area for moisture loss 

with a small amount of moisture contained within.  This is a common problem in small 

animals, such as insects, and was addressed in this study by calculating the surface-area 

to-volume ratio of the eggs with and with considering the egg pad.  The surface-area-to-

volume ratio (SA/V) was calculated by dividing the surface area (SA) by the volume 

(V), and the surface-area-to-volume-ratio including the egg pad (SAP/VP) was calculated 

by dividing the surface area of the egg including the pad (SAP) by the volume of the egg 

including the pad (VP). 

 In addition to the volume, surface area and surface-area-to-volume ratios of the 

eggs, the surface area of the chorionic egg pad was also calculated.  The amount of area 

on the egg that the egg pad covers is relevant, because the egg pad is like a wet sponge 

on the egg.  The larger the area covered by the egg pad, the more moisture can be 

applied to the egg.  This may thus reduce or counteract the amount of moisture that is 

lost due to the high surface-area-to-volume ratios these eggs experience.  The surface 

area of the egg pad was derived by subtracting the surface area of the egg (SA) by the 

surface area of the egg including the egg pad (SAP) (Fig. 8). 
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Once all the calculations were made and the values recorded for all 300 eggs, a 

multivariate analysis of variance (MANOVA) was performed using the multivariate 

option of the general linear model (GLM) procedure in (SPSS 1999) species, 

“population” and their interaction were used as fixed effects and the six variables 

analyzed were: volume (V), volume including egg pad (VP), surface area (SA), surface 

area including egg pad (SAP) and the surface area of the egg pad (EggPad).  Following 

the significant multivariate effect of the factors on the variables, a univariate analysis of 

variance (ANOVA) test was conducted using the GLM function in SPSS.  For 

significant effects, Dunnets’s T3 multiple comparison tests were performed for means 

comparisons due to its ability to assess data for which equal variances are not assumed 

(Sheskin 2007).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Surface area of egg pad derived by subtracting the surface area of the egg 
from the surface area of the egg plus the egg pad. 

Surface area of egg           - 
    with egg pad 

Surface area of egg        = Surface area of egg pad 
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Results and Discussion 

The multivariate test, Wilk’s Lambda was significant (p<.0001) for all effects 

included in this study; i.e., Population, Species and Species-Population, indicating that 

the dependant variables, volume (V), volume including egg pad (VP), surface area (SA), 

surface area including egg pad (SAP) and the surface area of the egg pad (EggPad) were 

significantly affected by Population, Species and Species*Population.  The tests of the 

between-subject effects, revealed a significant effect for each of the dependant variables 

(p<0.05) which indicated a need to perform a univariate ANOVA on all dependant 

variables with regards to all effects.  All of the variables failed the Levene’s test of 

Equality of Error Variances with the exception of the surface area (SA) and the surface 

area including egg pad (SAP) variables.   Multiple comparisons of the dependent 

variables (Table 11) were performed with Dunnett’s T3 adjustment which corrects for 

unequal standard deviations of the variables among the populations.   

 

Volume.  The volume (V) of Ae. albopictus eggs was significantly different from those 

of the Ae. aegypti populations.  The mean egg volume of the Ae. albopictus eggs was 

significantly smaller than Ae. aegypti in the wild populations, but the opposite was true 

for the lab populations. There is likely a selection pressure in nature for a larger egg 

volume that does not exist in the optimal conditions of high humidity and 27˚C that the 

Ae. aegypti eggs from the lab population have been subjected to for over fifty years.  The 

laboratory population of Ae. albopictus, however has not been exposed to these 

conditions nearly as long.  Regardless of this difference, the total mean volume of all Ae. 
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Table 11. Mean value and standard deviation of each response variable for Ae. aegypti and Ae. albopictus eggs by species and 
population, (significant correlations and standard deviations (in parentheses) are depicted). 
  (N)1 BWN (100)1 McAllen (100) Lab (100) Total (300) 

Albo4 (150)1 12.31(2.8)a3x4 13.79(2.6)ay 15.22(3.0)az 13.77(3.0)a 
Aeg (150) 15.93(4.4)bx 16.55(4.7)bx 11.61(2.7)by 14.70(4.5)b 

Volume 
 (mm3) 
  Total (300) 14.12(4.1)xy 15.17(4.0)x 13.41(3.4)y 14.24(3.9) 

Albo (150) 18.59(4.7)ax 18.61(4.0)ax 20.98(4.4)ay 19.39(4.5)a 
Aeg (150) 25.25(6.2)bx 26.84(7.3)bx 18.00(3.9)by 23.36(7.1)b 

VolP 

(mm3) 
  Total (300) 21.92(6.4)x 22.73(7.2)x 19.49(4.4)y 21.38(6.2) 

Albo (150) 1268.31(166.4)ax 1496.87(152.7)ay 1612.22(159.1)az 1459.13(213.7)a 
Aeg (150) 1784.72(253.4)bx 1813.42(249.6)bx 1420.09(184.3)by 1672.74(291.6)b 

SA 
(mm2) 
  Total (300) 1526.52(335.9)x 1655.15(260.1)y 1516.15(196.7)x 1565.94(276.7) 

Albo (150) 1450.49(183.53)ax 1669.68(156.18)ay 1819.26(174.11)az 1646.47(228.38)a 
Aeg (150) 2129.95(278.81)bx 2176.09(277.45)bx 1678.01(203.29)by 1994.68(339.57)b 

SAP 

(mm2) 
  Total (300) 1790.22(414.40)x 1922.88(339.02)y 1748.63(201.24)x 1820.58(337.44) 

Albo (150) 182.17(64.66)axy 172.80(64.27)ax 207.03(70.38)ay 187.33(67.62)a 
Aeg (150) 345.22(95.40)bx 362.66(86.78)bx 257.91(80.15)by 321.93(98.47)b 

Egg pad 
(mm2)  
 Total (300) 263.69(115.27)x 267.73(121.96)x 232.47(79.28)y 254.63(107.95) 

Albo (150) 106.89(19.18)ax 110.99(15.62)ax 108.25(12.46)ax 108.71(15.97)a 
Aeg (150) 115.85(15.84)bx 114.16(17.70)ax 125.73(15.97)by 118.58(17.19)b 

S/V 
(mm2/ 
mm3)  Total (300) 111.37(18.07)x 112.57(16.69)x 116.99(16.74)x 113.65(17.29) 

Albo (150) 81.55(15.38)ax 92.55(14.96)ay 88.815(10.67)ay 87.64(14.49)a 
Aeg (150) 86.76(11.11)ax 84.46(13.28)bx 95.45(11.38)by 88.89(12.79)a 

SP/VP 

(mm2/ 
mm3) Total (300) 84.16(13.60)x 88.50(14.65)xy 92.13(11.47)y 88.89(13.66) 

1sample size,  (VolP) volume of egg including the egg pad, (SA) surface area of egg, (SAP) surface area of egg including the egg pad, (S/V) surface area 
to volume ratio and (SP/VP) surface area to volume ratio of egg including the egg pad. 
3Means in rows that are not significantly different (ANOVA with Dunnet’s T3, p > 0.05) are followed by the same letter; x, y or z. 
4Means in columns that are not significantly different (ANOVA with Dunnet’s T3, P > 0.05) are followed by the same letter; a, b or c.
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albopictus eggs measured, was significantly smaller than the total of all Ae. aegypti eggs 

measured which is consistent with what Sota and Mogi (1992) found.  Among the 

populations, the mean volumes of the Ae. albopictus eggs were significantly different 

from each other, with the population from Brownsville being the smallest and the 

laboratory colony the largest.  The Ae. aegypti eggs from Brownsville and McAllen were 

not significantly different from each other, but they were both significantly larger than 

those from the laboratory population   Overall, the mean value of both species of eggs 

from McAllen were significantly larger than that of the combined mean value of the lab 

population, but neither set was significantly different from that of the Brownsville 

population. 

 

VolumeP.  With the addition of the egg pad in the calculation of egg volume, the 

different species within each population were still significantly different from each 

other.  The mean volumes (VP) of Ae. albopictus for the wild populations were still 

significantly less than those of Ae. aegypti, whereas the opposite was true for the lab 

populations.  The volume of the eggs from the wild populations of Ae. albopictus were 

no longer significantly different from each other when including the egg pad, but they 

were both significantly less than that of the lab population.  All of the Ae. albopictus 

eggs measured had a significantly smaller mean egg volume compared to Ae. aegypti 

eggs.  The Ae. aegypti eggs from the wild populations were not significantly different 

from each other, but were significantly larger than the lab population.  In contrast to the 

mean egg volume calculated without including the egg pad, the values of the mean egg 
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volume of the wild population of both species combined were significantly different 

from that of the laboratory population, but not from each other.  In this case, the mean 

egg volume was significantly larger in the wild populations than in the lab population. 

 

Surface Area.  For every population, the mean surface area (SA) of the Ae. albopictus 

eggs was significantly different from that of the Ae. aegypti within the same population.  

The mean surface area of the Ae. albopictus eggs was significantly smaller than those of 

the wild populations of Ae. aegypti, but the opposite was the case for the lab populations.  

Despite this difference, the total mean surface area of all Ae. albopictus eggs measured 

was significantly less than the mean total of all Ae. aegypti eggs measured, which would 

generally indicate less moisture loss and a greater ability to resist desiccation.  Among 

the populations, the mean surface area of the Ae. albopictus eggs were all significantly 

different from each other, with the population from Brownsville being the smallest and 

the laboratory population the largest.  The mean surface area of the Ae. aegypti eggs 

from the lab population was significantly less than either wild population, but the wild 

populations of Ae. aegypti were not significantly different from each other.  The mean 

surface area of all the eggs from McAllen, regardless of species, was significantly larger 

than those of the Brownsville population or the lab population.  There was no significant 

difference between the combined eggs of the Brownsville population and that of the lab. 

 

Surface AreaP.  Although the mean surface area (SAP) for all species and population 

combinations increased by including the egg pad in calculating the surface area, there 
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were no significance changes from what was seen in the mean values of the surface area 

calculated without including the egg pad. 

 

Egg Pad Size. For every population, the mean size of the egg pad for the eggs of Ae. 

albopictus was significantly different from those of the Ae. aegypti populations.  In this 

instance the mean egg pad size was larger for all populations of Ae. aegypti when 

comparing the two species within their respective populations and when comparing the 

sum of all Ae. aegypti to all Ae. albopictus.  Among the populations, the mean egg pad 

size of the Ae. albopictus eggs from McAllen were significantly less than those of the 

lab population, but neither was significantly different from the Brownsville population. 

The mean egg pad size of the Ae. aegypti eggs from Brownsville and McAllen were not 

significantly different from each other, but they were both significantly larger than those 

from the laboratory population.  Overall, the combined mean egg pad size of both 

species of eggs from Brownsville and those from McAllen were significantly larger than 

that of the combined mean value of the lab population.  

 

Surface-Area-to-Volume Ratio.  The mean value of surface-area-to-volume ratio for 

the Brownsville and lab populations of Ae. albopictus eggs was significantly smaller 

than the Ae. aegypti from the same population.  The two species from McAllen were not 

significantly different in this regard; however, the sum of all Ae. albopictus eggs 

measured had a significantly smaller surface-area-to-volume-ratio as compared to the 

sum total of the Ae. aegypti eggs measured.  There was no significant difference among 
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the populations of Ae. albopictus.  The Ae. aegypti eggs from the wild populations were 

not significantly different from each other either , but the lab population was 

significantly greater than both of them.  Overall, there was no significant difference 

between the means of the different populations when combining both species together.  

 

Surface-AreaP-to-VolumeP Ratio.  For every combination of species and population, 

the mean value of the-surface-area-to-volume ratio (SAP/VP) decreased from the above 

mentioned ratio with the addition of the egg pad factored into the calculation.  The mean 

surface-area-to-volume ratio with the addition of the egg pad was significantly different 

between the Ae. albopictus and Ae. aegypti species within the McAllen population and 

the lab population.  The mean ratio was no longer significantly different among the two 

species in the Brownsville population, nor was there a significant difference among all 

of the Ae. albopictus eggs combined when compared to all of the Ae. aegypti eggs 

combined.  This is the only dependent variable for which there was no significant 

difference between the means of all the Ae. albopictus eggs as compared to the mean 

value of all the Ae. aegypti eggs. The mean surface-area-to-volume ratio including the 

egg pad was significantly less for the Ae. albopictus Brownsville population as 

compared to the other populations, although there is no significant difference among the 

McAllen and lab populations of Ae. albopictus.  The wild population’s surface-area-to 

volume-ratio was significantly less than that of the lab population with the addition of 

the egg pad.  However, when including the egg pad in the calculation, the mean ratio of 

all of the eggs from the Brownsville population combined is significantly less than that 
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of the lab population, but neither is significantly different from the combined mean value 

of the McAllen population. 

 Egg volume was greater in the Ae. aegypti eggs than Ae. albopictus; however, the 

surface area was larger, as well as the surface-area-to-volume ratio.  This indicates a 

greater surface of cuticle for which water could be lost, and a higher susceptibility to 

desiccation.  However, Ae. aegypti eggs were more desiccation resistant, which indicates 

another factor may be involved.  Several studies have described the capacity for active 

water vapor absorption in insects and other various arthropods, a list of which can be 

found in Wright and Machin (1993).  The physiological process for active water vapor 

absorption is not fully known, however there are a few elements all systems include.  

There must be a surface that collects water in contact with the cuticular surface of the 

arthropod, and there must be a mechanism that moves the water vapor into the arthropod 

(Wright and Machin 1993).  The chorionic egg pad is a moisture rich structure in contact 

with the egg’s cuticle, perhaps providing one of the necessary elements for active water 

vapor absorption.  There would be more moisture in a larger egg pad, so that eggs with a 

larger egg pad would have access to a larger source of water vapor.  Further research is 

required in order to determine if the necessary mechanism for moving the water vapor 

internally is present.  However, in the event that this mechanism does not exist, the 

gelatinous egg pad on the side of the egg could contribute to desiccation resistance by 

reducing the direct contact of the air to that portion of the egg cuticle and the subsequent 

water loss. 
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The Giemsa stain worked exceptionally well in staining the egg pad.  Exactly 

what the Giemsa stain was binding to on the egg pad was not addressed in this study, but 

this researcher thought it was important to note that the egg pad did indeed stain a 

pinkish-purple color.  The Giemsa stain is a “Romanowsky-type” stain made from a 

mixture of methylene blue, azure and eosin compounds (Lyon et al. 1994).  It is 

commonly used for blood smears due to its metachromasia properties, meaning some 

tissues will stain a different color than the dye itself.  The Giemsa stain is blue, but the 

chorionic egg pad stained purple, which is common in staining of mast cell granules, 

mucin, cartilage and amyloid (Lyon et al. 1994).   
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CHAPTER V 

PHYSIOLOGICAL TIME STUDY 

Introduction 

Temperature-dependent development rates have been determined for Ae. aegypti 

(Bar-Zeeve 1958, Kasule 1986, Rueda et al. 1990, Sames 1999, Southwood et al. 1972) 

and Ae. albopictus (Sames 1999), although the results varied with the strain’s origin.  

This indicates that perhaps the temperature-dependant development rate curve for a 

given species might be different for populations of that species from different locations.  

However, there has not been a comparative study on the development rates of Ae. 

aegypti and Ae. albopictus on a region-by-region basis to explain the shifting of 

dominance and/or prevalence of the two species.     

In order to know which mosquito species dominates where, geographically 

speaking, it might be important to know how the different species are affected by 

temperature, especially in the summer.  According to a study on physiological time by 

Taylor (1981) that pooled development rates for 54 species of insects, several of which 

were mosquitoes, very similar species with differing temperature optimums (the 

temperature at which development is fastest) might experience species replacement 

seasonally in areas that have high summer temperatures.  For these reasons, a study on 

physiological time as it pertains to Ae. aegypti and Ae. albopictus with the consideration 

of their region of origin, was added to this dissertation, resulting in temperature-

dependent growth curves for several mosquito populations collected in Southern Texas.   
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In the Texas cities of Galveston and Brownsville, Ae. albopictus and Ae. aegypti 

are sympatric; so, mosquito eggs and larvae of each species were collected from these 

cities to established new colonies in the laboratory.  According to The Weather Channel 

archives (theweatherchanel.com), Brownsville’s average temperature is about 5˚C 

warmer than that of Galveston.  Development rate curves were made from these four 

mosquito populations as well as from laboratory populations that have been established 

at the Texas A&M mosquito research facility.  The Ae. aegypti UTMB (University of 

Texas Medical Branch) strain has been established since 1955 from a colony collected in 

Galveston, Texas, and the Ae. albopictus TAMU (Texas A&M University) strain has 

been established since 1987 collected in College Station, Texas. Both laboratory strains 

have since been maintained at 27˚C and 75% RH with a 14:10 L:D photoperiod.   

 

Materials and Methods 

Mosquitoes were reared as described in chapter 3.  Eggs were collected for three 

days in Little Black Jars (LBJs) lined with paper towels. The paper towels with eggs 

were removed from the LBJs and placed inside a 19.1 x 25.4 cm sealed plastic box (Fig. 

9A and 9B) and placed in an environmental chamber for one week at optimal conditions 

of 27˚C, 100% RH and a 14:10 L:D photoperiod.  After one week, the paper towels 

containing eggs were cut into strips containing 50 eggs each.  The strips were placed 

individually into 5 dram vials containing distilled water and the eggs were hatched by 

active vacuum.  The contents of the vials were then poured into the bottom half of a 

mosquito breeder fashioned out of two two-litter plastic bottles with the top third cut off  
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Figure 9.  Plastic box eggs were housed in for one week (A), Little Black Jar (LBJ) with 
paper towel for collecting eggs (B), mosquito breeder made from 2 two-liter plastic 
bottles (C). 

A 

B C 
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and the bottoms joined together (Fig. 9C).  250ml of distilled water was added to the 

mosquito breeder as well as an optimal amount of larval food (ground Tetramin®), 

(about 3g in suspension).  The mosquito breeders were then placed into environmental 

chambers that maintained a 14:10 L:D photoperiod and one of seven temperatures: 14˚, 

17˚, 21˚, 27˚, 30˚, 33˚ and 36˚C.  The total time for development was considered the 

length of time it took from when the eggs were hatched by vacuum to the first adult 

seen.  The mosquito breeders were checked for emerging adults every 12 hours after 

pupae were observed. 

For each of the six mosquito populations at each of the seven temperatures, five 

sets of 50 eggs were evaluated.  The F2 progeny of the wild populations were evaluated 

for most treatments, but due to the inability to produce more individuals of that 

generation, some treatments were done with the F4 generation.  For treatments 

conducted with the F4 generation, a duplicate of a temperature treatment previously 

conducted with an F2 was done for that population to control for potential differences.  

The mean development times for each of the six mosquito populations were calculated 

by the descriptive statistics option in SPSS (SPSS 1999).  The percent development per 

day at a given temperature was calculated by determining the development rate (R) at 

each temperature t using the mean time in hours it takes to develop from an egg hatched 

by active vacuum to an adult d divided by the number of hours in a day (24), which 

returns the number of days it takes to complete development.  100 divided by the 

number of days needed for development equals the percent development that takes place  
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each day, and follows the following formula:  

 R(t) = 100/ (d/24). 

 The percent development per day at a given temperature was plotted at each 

temperature for each of the six species and population combinations separately via a 

scatter plot of the values using Excel (Microsoft®, Office Excel® 2007) and forming a 

development rate curve.  The temperature at which the mosquitoes develop the fastest, 

the optimal temperature (Tm), was determined, in addition to the maximum rate of 

development (Rm).  These variables correspond to those analyzed by Taylor (1981) in 

his study on physiological time in insects.   

The development times were analyzed by analysis of variance (ANOVA) using 

the general linear model (GLM) option in SPSS (SPSS 1999).  All main effects of 

temperature, species and population and all 2-way and 3-way interactions were included 

in the model.  In order to compare the populations and species to one another, post hoc 

tests on the means were performed with the data split by temperature and using 

Dunnett’s T3 test for data of unequal variance and small sample size in SPSS (SPSS 

1999).  Using the Proc GLM procedure in SAS (SAS Institute Inc. 2002), all treatments 

were compared to one another by least squared means.  

 

Results and Discussion 

The 3-way interaction of temperature, population and time on the main effect of 

developmental time, resulted in an F value of 10.876 (p <  0.0001).  
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Mean Development Times.  The mean development times (Table 12) and standard error 

(Table 13) at each temperature were calculated for each species and population 

combination.  Ae. albopictus and Ae. aegypti from the laboratory populations were the 

only ones to reach the adult stage at 14˚C.  A few Ae. aegypti from the Galveston  

populations lasted about three weeks, but died as first and 2nd instar larvae.  Several Ae. 

albopictus from the Valley population as well as the Galveston population died as 3rd 

and 4th instar larvae after about two and a half months inside the incubation chamber 

with the appropriate amount of food added.  Ae. aegypti from the Valley experienced 

little to no growth at 14˚C.  It appears that 14˚C is a stressful or limiting temperature for 

Ae. albopictus and Ae. aegypti from these south Texas locations.   

Ae. albopictus from the Valley and from the laboratory population experienced 

death as 2nd, 3rd and 4th instar larvae at 36˚C, which suggests that this is another stressful 

or limiting temperature especially for Ae. albopictus.  However, in the Ae. aegypti 

laboratory population, only two of the five sets of mosquito breeders had mosquitoes 

that reached the adult stage and only one adult in each set.  

The results of the least squared means tests (Table 14) show that, at every 

temperature the development rates for all of the Ae. aegypti studied and all of the Ae. 

albopictus studied are significantly different from each other and among themselves 

except for three instances.  Ae. albopictus and Ae. aegypti at 27˚, 30˚ and 33˚C are not 

significantly different intraspecifically, indicating that the development rates do not vary 

greatly at these temperatures for either species.  At 36˚C, the mean development time for 

Ae. albopictus was not significantly different from that of Ae. albopictus or Ae. aegypti
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Table 12.  Mean development rate in hours and number1 (in parentheses) of mosquito breeders in which Ae. albopictus and Ae. 
aegypti adults were produced. 

1For each treatment, five sets of mosquito breeders containing 50 eggs were processed, except in the case of Ae. aegypti and Ae. albopictus Lab at 21˚C,  
Ae. aegypti Galveston at 27˚C and Ae. albopictus at 27˚C in which there were ten sets. 
2Populations collected in Galveston County, TX. 
3Populations collected in the Texas Rio Grande Valley. 
4Laboratory population (Ae. albopictus TAMU and Ae. aegypti UTMB). 
5All population’s means together. 
6Albo, Ae. albopictus 
7Aeg, Ae. aegypti. 
8F4 progeny 
9F2 and F4 progeny (five sets of each) 

          
 Pop Species 14˚C 17˚C 21˚C 27˚C 30˚C 33˚C 36˚C Total 

Gal2 Albo6 death 467.2(5) 394.4(5) 195.2(5) 188.6(5) 179(5) 256.6(5) 280.1 (30) 
  Aeg7 death 487(5) 301(5) 149.5(10)9 164.8(5)8 148.6(5)8 153.4(5) 221.9 (35) 

  Total death 477.1(10) 347.7(10) 164.7(15) 176.7(10) 163.8(10) 205(10) 280.1(65) 

Val3 Albo death 527.6(5) 268.4(5) 196.3(10)9 159.4(5) 166.6(5) death 252.4 (30) 
  Aeg death 452.6(5) 281.8(5) 170.8(5) 120.4(5) 131.8(5) 220(5) 227.6 (30) 

  Total death 490(10) 275.1(10) 186.75(15) 139.9(10) 149.2(10) 220(5) 252.4(60) 

Lab4 Albo 1057.2(5) 521.4(5) 275.1(10) 146.4(5) 221.4(5) 197.2(4) death 390.3 (34) 
  Aeg 983.6(5) 503.6(5) 238(10) 144.2(5) 148.2(5) 152.4(5) 217.5(2) 337.1 (37) 

  Total 1057.2(10) 512.5(10) 256.5(20) 145.3(10) 184.8(10) 172.3(9) 217.5(2) 390.3(71) 

All5 Albo 1057.2(5) 505.4(15) 303.2(20) 183.5(20) 189.8(15) 179.8(14) 256.6(5) 311.1 (94) 

  Aeg 983.6(5) 481.1(15) 264.7(20) 154.3(20) 144.4(15) 144.2(15) 191.8(12) 265.1 (103) 

  Total 1020.4(10) 493.2(30) 283.9(40) 168.6(40) 167.1(30) 179.8(29) 210.9(17) 287.1 (197) 

68 
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Table 13.  Standard error for mean development rates of laboratory and experimental 
populations of Ae. albopictus and Ae. aegypti as determined by ANOVA. 

1Populations collected in Galveston County, TX. 
2Populations collected in the Texas Rio Grande Valley. 
3Laboratory population (Ae. albopictus TAMU and Ae. aegypti UTMB). 
4All population’s means together. 
5Albo, Ae. albopictus 
6Aeg, Ae. aegypti 
 

Pop Species 14˚C 17˚C 21˚C 27˚C 30˚C 33˚C 36˚C 

Gal1 Albo5 death 7.0 10.3 5.4 9.4 5.6 5.4 
 Aeg6 death 4.3 3.0 2.4 5.3 7.7 13.7 

         

Val2 Albo death 7.0 10.3 3.8 9.4 5.6 death 
 Aeg death 4.3 3.0 3.1 5.3 7.7 13.7 

         

Lab3 Albo 28.1 7.0 7.3 5.4 9.4 6.3 death 
 Aeg 14.6 4.3 2.1 3.4 5.3 7.7 21.7 

         

All4 Albo 28.1 4.1 5.4 2.8 5.4 3.4 5.4 
 Aeg 14.6 2.5 1.6 1.7 3.0 4.5 9.7 
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Table 14.  Resulting p-values for least squared means test on the development times for Ae. albopictus and Ae. aegypti treated 
as separate species. 

 17˚C 21˚C 27˚C 30˚C 33˚C 36˚C 

  Albo1 Aeg2 Albo Aeg Albo Aeg Albo Aeg Albo Aeg Albo Aeg 
17˚C Albo  .0045* * * * * * * * * * * 

 Aeg 0.0045*  * * * * * * * * * * 

21˚C Albo *3 *  * * * * * * * 0.387 * 

 Aeg * * *  * * * * * * 0.1197 * 

27˚C Albo * * * *  0.0005* 0.1973 * 0.88 * * 0.0546 

 Aeg * * * * 0.0005*  * 0.2906 0.0008* 0.2793 * * 

30˚C Albo * * * * 0.1973 *  * 0.2894 * * 0.4491 

 Aeg * * * * * 0.2906 *  * 0.9811 * * 

33˚C Albo * * * * 0.88 0.0008* 0.2894 *  * * 0.0908 

 Aeg * * * * * 0.2793 * 0.9811 *  * * 

36˚C Albo * * 0.387 0.1197 * * * * * *  * 

 Aeg * * * * 0.0546 * 0.4491 * 0.0908 * *  
1Albo, Ae. albopictus 
2Aeg, Ae. aegypti. 
3Mean development times with an * are significantly different with a p-value of < 0.0001, those p-values with an * are significantly different  
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at 21˚C.  These are suboptimal temperatures, which reinforces the assumption used in 

Taylor’s (1981) study of physiological time that states the development rate declines 

symmetrically on both sides of the temperature optimum.  However, it is important to 

note that only the Ae. albopictus population from Galveston reached the adult stage at 

36˚C.   

Another unusual pattern with development times at 36˚C occurred in the case of 

Ae. aegypti, which was not significantly different from that of Ae. albopictus at 27˚, 30˚ 

or 33˚C.  These correspond with the fastest development rates for Ae. albopictus, but at 

the point in which the development rate declined for Ae. aegypti from its highest 

development rates. 

The mean development times for each species fluctuated at each temperature 

similarly to the contrasting species within the same population (Table 15).  For each 

population of a given species, the mean development times were significantly different 

at each temperature except at the 27˚ – 33˚C range with few exceptions.  Among the 

populations from the Valley, there is no significant difference between the development 

times only at 30˚ and 33˚C for each species.  The development time for the laboratory 

population of Ae. aegypti was the same in this regard, however, those for 21˚ and 30˚C 

are not significantly different from each other; however, they were different for 

populations reared at 27˚C.  This is likely an effect of the lab population being reared 

under this temperature for a long period of time (years).  In the case of Ae. aegypti in the 

Galveston and lab populations, there was no significant difference between the means 

over a broader range of temperature, 27˚ – 36˚C.  Oddly enough, none of the



72 
 

 

Table 15.  Significantly-different mean development times for each population of the same species of Ae. albopictus and Ae. 
aegypti by temperature (Columns) and for each temperature by population and species (Rows) according to Dunnett’s T3 test. 

 
 

 14˚C 17˚C 21˚C 27˚C 30˚C 33˚C 36˚C 

Galv1 - A5 x6 B x C x C x C xy D Ae. albopictus 

Valley2 - A y B y C x D y D x - 

 Lab3 A B y C y D y CE x E y - 
         

Ae. aegypti Galv - A x B x C x C x C x C x 

 Valley - A y B x C y D y D x E y 

 Lab A B x C y D x D x D x ABCD xy 

Total4  A B C D D D E 

1Populations from Galveston County, TX. 
2Populations from the Texas, Rio Grande Valley. 
3Laboratory population. 
4 Species and populations of each temperature combined. 
5Different temperature treatments within the population of the given species for which the developmental mean time is not significantly different 
(Dunnett’s T3, p < .05) have the same letter (A, B, C, D or E). 
6Different populations of the same species in columns with the same letter (x, y or z) are not significantly different (Dunnett’s T3, p < .05) 
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developmental means for Ae. aegypti from the lab population were significantly different 

from the developmental mean at 36˚C.  This can be attributed to the large variation in 

developmental times at 36˚C. 

There was a lot of variation in development rates among the different populations 

within a species at the different temperatures.  At 17˚ and 21˚C, the Valley and lab 

populations of Ae. albopictus were significantly different from the Galveston population.  

At 27˚C, the lab population of Ae. albopictus had a significantly faster development rate 

than the Galveston or Valley populations.  Ae. albopictus from the Valley population had 

a significantly faster development rate at 30˚C than the other two, but only significantly 

faster than the lab population at 33˚C. 

Interestingly, the Ae. aegypti Galveston population was only significantly 

different from that of the lab population at 21˚C in which the lab population was 

significantly faster than the other two.  The Valley population of Ae. aegypti was 

significantly different from the other two at most temperatures, but not at 33˚C for which 

none of them were significantly different.  At 36˚C, the Valley population of Ae. aegypti 

was significantly different from that of the Galveston population, but neither was 

significantly different from the lab population due to latter’s large variance.    

 

Development Rate Curves.  The temperature-dependent development rate curve for 

each of the six populations was constructed.  When plotted all together (Fig. 10), it is 

apparent that they are all different from each other, yet they still group together by 

species.  All of the Ae. aegypti development rate curves exhibit an overall higher rate of 
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Figure 10.  Temperature-dependent development rates (% development per day) for all study populations of Ae. aegypti and 
Ae. albopictus.  
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development than Ae. albopictus.  However, to be able to clearly distinguish the 

individual characteristics of each population’s development rate curve, they were plotted 

separately and the temperature optimum (Tm) and the maximum rate of development 

(Rm) were determined.   

An interesting pattern was observed for the development rate curve at 30˚C for 

four of the six populations excluding those species from the Valley (Fig. 11 & 12).  At 

30˚C, the development rate decreased by a small amount in the lab populations (Fig. 13 

& 14) and the Galveston Ae. albopictus population (Fig. 15) and even more in the case 

of Ae. aegypti from Galveston (Fig. 16), followed by another increase in the 

development rate.  This deviation from the typical exponential curve has been observed 

before in Ae. aegypti in studies by Bar-Zeeve (1958) and Sames (1999), but in both 

instances, the decrease was at 32˚C followed by a small increase at 34˚C.  They made no 

mention of this decrease, but it was prominent in this study.   

The decrease in development rate at 30˚C in the Galveston and laboratory 

populations might be due to the lack of selection, i.e. there is little need for the mosquito 

larvae to mature faster at this temperature.  Perhaps there is more competition at a 

slightly lower and slightly higher temperature such as 27˚ and 33˚C, at which point the 

costs of developing faster such as a resulting smaller size, outweigh the benefits of 

developing slower, and that the opposite is true at 30˚C.  It is also possible, that the 

lower development rate at 30˚C is due to experimental error.  However, the Valley 

population was in the same environmental chamber as the other populations at the same 

time and all chambers were checked twice daily with no marked deviation from 30˚C.    
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Figure 11.  Percent development per day by temperature for the Valley population of Ae. albopictus [Temperature (Tm) at the 
maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 30, 
33 and 36˚C] (standard error shown). 

Rm 

Tm 
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Figure 12.  Percent development per day by temperature for the Valley population of Ae. aegypti [Temperature (Tm) at the 
maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 30, 
33 and 36˚C] (standard error shown). 
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Figure 13.  Percent development per day by temperature for the TAMU (lab) population of  Ae. albopictu [Temperature (Tm) 
at the maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 
30, 33 and 36˚C] (standard error shown). 
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Figure 14.  Percent development per day by temperature for the UTMB (lab) population of Ae. aegypti [Temperature (Tm) at 
the maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 
30, 33 and 36˚C] (standard error shown).
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Figure 15.  Percent development per day by temperature for the Galveston population of Ae. albopictus [Temperature (Tm) at 
the maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 
30, 33 and 36˚C] (standard error shown).
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Figure 16.  Percent development per day by temperature for the Galveston population of Ae. aegypti [Temperature (Tm) at the 
maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 30, 
33 and 36˚C] (standard error shown). 
  

Rm 

Tm Tm Average 
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In the case of the population of Ae. aegypti from Galveston, the temperature at 

which the rate of development is fastest, the temperature optimum, appears to occur in 

two places along the development rate curve with a 0.1% development per hour 

difference (Fig. 16).  Due to the possibility that this is a result of experimental error, the 

two temperatures were averaged together.  The combined development means for all the 

populations of Ae. albopictus (Fig. 17) and Ae. aegypti (Fig. 18) were also plotted so that 

the optimal temperature (Tm) and maximum rate of development (Rm) could be 

determined.  All of the values of these two parameters for each of the six populations 

was then tabulated (Table 16). 

The maximum development rate (Rm) was faster in the Ae. aegypti populations 

than in the Ae. albopictus.  The laboratory population of Ae. albopictus had the fastest 

rate for its species, but it was merely equal to the lowest rate of Ae. aegypti.  The optimal 

temperatures for all populations were actually all very similar to one another.  Overall, 

there were not many differences between Ae. aegypti and Ae. albopictus as a whole, but 

when compared by origin of population there are many differences.  

 

Galveston, TX.  Ae. aegypti is not abundant in Galveston (personal contact with Keith 

Haas, Galveston County Mosquito Control district), so Galveston is an area in which Ae. 

albopictus is the dominate species.  In this study, Ae. albopictus from Galveston had a 

broader development rate curve than did sympatric Ae. aegypti.  This was the only 

instance in this study for which that was true.  Additionally, the temperature optimum 

for Ae. albopictus Galveston was higher than all the other species and populations.   The 
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Figure 17. Percent development per day by temperature for all Ae. albopictus populations combined [Temperature (Tm) at the 
maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 30, 
33 and 36˚C] (standard error shown). 
 

Rm 

Tm 

83 



84 
 

 

 
Figure 18.  Percent development per day by temperature for all Ae. aegypti populations combined [Temperature (Tm) at the 
maximum rate of development (Rm) derived from  mean development time at each testing temperature of 14, 17, 21, 27, 30, 
33 and 36˚C] (standard error shown). 
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Table 16.  Developmental parameters for Ae. aegypti and Ae. albopictus by population 
and species, derived development curves of mean percent development per hour, at each 
temperature.   

Species Population Tm1 ( C˚) Rm2 

Ae. albopictus Galveston 32.4 13.6 

 Valley 30.5 15.2 

 Lab 27.1 16.4 

 All 32.4 13.5 

Ae. aeygypti Galveston 30.453 16.3 

 Valley 30.65 20.2 

 Lab 28 17 

 All 31.9 17 

1Temperature at the maximum rate of development, optimal temperature. 
2Maximum rate of development. 
3Average temperature optimum for Ae. aegypti Galveston. 
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maximum rate of development was faster in Galveston’s Ae. aegypti (Rm = 16.3%) as 

compared to Ae. albopictus (Rm = 13.6%), but this faster development rate might lead to 

the production of smaller, less fit mosquitoes, which might help explain why Ae. 

albopictus is a better competitor and the dominate species in Galveston County.   

 

Texas Rio Grande Valley.  Ae. albopictus and Ae. aegypti occur at equal levels in 

Brownsville, Texas throughout the mosquito season which spans April to September 

(Personal communication with Jose Hinjosa, Brownsville Health department).  The 

average temperature in the Rio Grande valley cities of McAllen and Brownsville, TX 

(50 mile separation) at the beginning of the mosquito season are between 23 and 33˚C 

according to The Weather Channel archives.  At these temperatures, Ae. albopictus and 

Ae. aegypti would be developing at their optimal temperature (30.5˚ and 30.65˚C). The 

corresponding rate of development for Ae. aegypti is 20.5% per day, which is much 

faster than Ae. albopictus (Rm = 15.2%).  It is likely that this faster development rate in 

the Ae. aegypti population is what allows them to maintain a population at all, given that 

Ae. albopictus is a superior competitor.  The average temperature increases to 25˚ - 35˚C 

in July and August (The Weather Channel), and because of the very narrow range that 

Ae. albopictus can develop optimally, it is likely their population decreases.  

Additionally it was demonstrated in this study that they cannot reach the adult stage at 

36˚C (Table 10).  So under these circumstances, it is highly probable that Ae. aegypti 

would become the prevalent species in these regions.  However this does not consider 
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microhabitats in which shading is likely to provide microclimates that favor Ae. 

albopictus, which is probably why the two species exist in equal numbers in this region.   

 

Laboratory Populations.  As for the laboratory populations, they both had the same 

optimal temperature that corresponds to the temperature at which they have been 

maintained for so many years.  This is the lowest of the optimal temperatures for Ae. 

aegypti, but it corresponds with the largest range of temperatures (14˚C) at which 

development is at its fastest and it has the fastest, maximum rate of development (Rm = 

17%).  It is possible that in the wild at warmer temperatures Ae. aegypti populations 

evolve to withstand the warmer temperature, and the ability to develop at a high rate 

over a broad range of temperatures is lost or reduced.  

 The optimal temperatures plotted against the corresponding maximum rate of 

development (Fig. 19) depict the main difference between the two species, which is Ae. 

aegypti develops at a faster rate as compared to Ae. albopictus.  Optimal temperatures 

are similar for each species of the same origin; however, the difference in development 

rates is greatest between the two species with the same origin in the case of the wild 

populations.  This may be indicative of the separate microclimates each species inhabits 

in its city of origin.   
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Figure 19.  Maximum rate of development per day and the corresponding optimal temperature for various populations of Ae. 
albopictus and Ae. aegypti. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The purpose of this study was to determine what environmental factors impact 

the success of Ae. aegypti and  Ae. albopictus populations in different geographic areas, 

particularly in South Texas where there is an increasing threat of Dengue Fever carried 

by these mosquitoes.  

The percent hatch for eggs of Ae. albopictus and Ae. aegypti collected from 

McAllen and Brownsville, Texas, as well as from laboratory populations were 

determined after they had been subjected to 25 different temperature and relative 

humidity combinations: 15˚, 21˚, 27˚, 32˚, 35˚C in combination with 15%, 35%, 55%, 

75%, 95% RH, for up to three months.  The 5-way interactions of all the variables (i.e.,  

species, population, temperature, relative humidity and time) was significant.  This 

indicated that the percent egg hatch for Ae. albopictus and Ae. aegypti eggs is dependent 

on the effects of several climatic variables in combination.  The effect of temperature on 

the percent egg hatch was such that, in most treatments, Ae. aegypti eggs had a 

significantly greater percent hatch than did those of Ae. albopictus, but to a much lesser 

extent at the lower temperatures of 15˚ and 21˚C.  With an increase in relative humidity, 

the hatching percentages for both species increased, but at the higher temperatures of 32˚ 

and 35˚C, the amount of time the eggs were exposed to those temperatures had a greater 

negative effect on the percent hatch than did the positive effect of increase in relative 

humidity.  Overall, percent hatch decreased during the eighth and twelfth weeks, except 

in the case of Ae. aegypti at 15˚C for which the opposite was true.  The greater impact of 
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temperature with the increase in time the eggs are exposed to that temperature indicates 

it may be wise to reduce watering of yards and cemeteries in regions that experience 

high temperatures such at 32˚ and 35˚C as a means of mosquito population control.  

Overall, this study on percent hatch, leads to the conclusion that Ae. aegypti eggs, 

particularly from Texas, hatch at a much higher percentage than Ae. albopictus, 

especially in warmer climates.  In warmer climates this increase in percent hatch coupled 

with the paralleled decrease in percent hatch of Ae. albopictus eggs, could translate into 

more individuals of Ae. aegypti, which may be the advantage necessary to overcome the 

competitive superiority Ae. albopictus has demonstrates in the larval (Sucharit et al. 

1978, Sames 1999, Juliano 1998, Blackmore et al. 1995) and adult stages (Costanzo et 

al. 2005, Galliard 1962, Hein 1976, Nasci et al. 1989,  Soekiman et al. 1984).  

Desiccation of the mosquito eggs via the flow of water from the eggs to the air 

could have also been analyzed by measuring the drying power of the air.  The interaction 

of relative humidity and temperature could also be explained by calculating the 

saturation deficit as a measure of the drying power of in the test environments.  Water 

loss from arthropods is increased by high saturation deficiencies in the environment due 

to low relative humidity and high temperatures (Edney 1957).   

In search of a structural mechanism on the mosquito egg that aids in desiccation 

resistance, 50 eggs of each population of Ae. albopictus and Ae. aegypti collected in 

McAllen and Brownsville, as well as from the laboratory populations, were dyed to view 

and measure the chorionic egg pad (a gelatinous pad formed by the swelling of the 

epichorion).  Sota and Mogi (1992) have found a high correlation between large egg 
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volume and an increase in desiccation resistance, and that Ae. aegypti eggs are 

significantly larger than Ae. albopictus eggs.  Thus, the volume of each egg was also 

calculated.  Moisture is lost primarily through the cuticle (Cooper 1983), so larger 

amounts of cuticle or surface area on the eggs may increase desiccation.  The 

significance of surface area is increased with a decrease in volume.  For these reasons, 

the surface area and volume of the eggs with and without the chorionic egg pad, the size 

of the chorionic egg pad and the surface-area-to-volume ratio with and without the egg 

pad was calculated.  Following a significant multivariate affect of the variables by 

species, population and species-population, the means for each variable were compared.   

The egg volume with and without the chorionic egg pad was significantly larger 

in Ae. aegypti from the wild populations, but the opposite was true with the laboratory 

populations.  Both species from the McAllen population had a significantly larger 

volume as compared to the other populations.  The surface area with and without the 

chorionic egg pad was significantly larger in the Ae. aegypti eggs than the Ae. albopictus 

eggs as was the surface area to volume ratio, which could indicate greater susceptibility 

to desiccation.  However, the chorionic egg pad which can be likened to a wet sponge 

was significantly larger on Ae. aegypti eggs than Ae. albopictus eggs and may contribute 

to the increased desiccation resistance in Ae. aegypti by providing a source of water to 

the eggs in contact with the egg cuticle.  This water source could be utilized for active 

water vapor absorption or as a means of reducing the contact of drying air with the egg 

cuticle.  A larger egg pad could then lead to a longer association with this water source. 
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The egg volume of Ae. albopictus Brownsville population was the smallest 

among the populations.  However, in the study on percent egg hatch this population of 

Ae. albopictus had a higher percent hatch then the other populations, and at the lowest 

level of humidity, did not have a percent hatch significantly different from that of Ae. 

aegypti.  Additionally, the Ae. albopictus population from Brownsville was the only 

population of either species that did not have a significant decrease in percent hatch 

between the exposure time of eight and twelve weeks.   This is important, because Ae. 

albopictus from Brownsville had the smallest surface-area-to-volume ratio only when 

including the egg pad.  The size of the egg pad was not significantly different from the 

other populations, however, in calculating the surface-area-to-volume ratio with the egg 

pad, the size of the egg pad is related to the overall size of the egg in which case the egg 

pad on the eggs of Ae. albopictus from Brownsville could be said to have a larger 

surface of contact with the eggs than in the case of the other populations.  This suggests 

that the size of the egg pad in relation to the overall size of the egg can indicate a greater 

ability to resist desiccation, and that this chorionic egg pad may play a role in the high 

desiccation resistance seen in the eggs of Ae. albopictus Brownsville and those of Ae. 

aegypti.   

Development rate curves for Ae. albopictus and Ae. aegypti of mosquitoes from 

populations collected in Galveston and Brownsville, Texas, as well as from the 

laboratory populations, were created by measuring the development time from a hatched 

egg to the adult at seven temperatures; 14˚, 17˚, 21˚, 27˚, 30˚, 33˚ and 36˚C.  The 

temperature at which development is the fastest, i.e. the optimum temperature, was very 
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similar in all populations tested.  However, the rate of development for the Ae. aegypti 

populations was significantly faster at this optimum.  In the Galveston population, Ae. 

albopictus had a wider range of temperatures for which the development rate was high, 

as compared to the sympatric Ae. aegypti species, which may attribute to why Ae. 

albopictus is the dominate species in Galveston, Texas.  In the Brownsville population, 

Ae. aegypti developed at a high rate over a broad range of temperatures as compared to 

the narrow range of Ae. albopictus, which may attribute to why Ae. albopictus is not the 

dominate species in Brownsville, Texas.  Due to the favorable climate, it is possible that 

Ae. aegypti can sustain numbers equal to those of Ae. albopictus even though Ae. 

albopictus is a superior competitor.  The laboratory populations responded differently 

from wild populations, indicating the need to perform these types of analyses on wild 

populations specific to the region of interest. 

These studies determined several factors that indicate why Ae. aegypti are more 

common in geographic areas that have higher temperatures and less frequent rains 

(Fontenille and Rodhain 1989 and Mogi et al. 1988),  such as the fact that their eggs 

have the ability to resist desiccation at these warm, dry conditions and that they can do 

so for extended periods of time while waiting for rain.  Results indicate that Ae. 

albopictus are more common in areas that have lower temperatures (15˚ -21˚C), because 

their eggs hatched at a high percent, similar to Ae. aegypti eggs at these temperatures, 

allowing Ae. albopictus to fully employ their competitive abilities at the larval and adult 

stages.  However, Ae. albopictus eggs hatched at a lower percentage with an increase in 
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time, which may explain their reduced abundance in areas of little or infrequent rainfall 

(Khan 1980, Fontenille and Rodhain 1989, Mogi et al. 1988, and Juliano et al. 2002). 

Factors facilitating coexistence of these species have also been determined, i.e. 

Ae. aegypti eggs hatch at a higher percentage in warm/dry climates, which gives them an 

advantage over Ae. albopictus, possibly equal to the advantage Ae. albopictus has shown 

at the larval and adult stages.  Populations of Ae. aegypti would likely increase with an 

increase in temperature and/or a decrease in moisture in the form of rain or humidity.  

The opposite is likely the case with Ae. albopictus.  However, in a region or city that 

favors one species, there are likely microhabitats that favor the other one, such as an 

exposed tire yard (favoring Ae. aegypti) or a well-watered and shaded cemetery 

(favoring Ae. albopictus).  In an effort to reduce the incidence of Dengue fever, 

microhabitats that favor Ae. aegypti could be targeted while maintaining Ae. albopictus 

populations.   

There was a significant difference in response of the two species to the various 

factors tested in relation to a given population’s location of origin, indicating that it is 

beneficial to study the local populations.  This is also particularly helpful in explaining 

the discrepancy in the results of the many studies on Ae. aegypti and Ae. albopictus and 

should encourage researchers to interpret experimental findings on a subject of interest 

with the consideration of the subject’s origin and be more apt to include this information 

in their own results. 

 This study revealed environmental factors affecting hatching percentages of 

populations of Ae. aegypti and Ae. albopictus.   Due to the superior vector potential of 
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Ae. aegypti in the transmission of Dengue, it would be less harmful to have Ae. 

albopictus than Ae. aegypti in an area.  It is likely that the prevalence of Ae. albopictus 

in the Texas Rio Grande Valley largely contributes to the minimal amount of Dengue 

transmission in the region despite the large number of cases across the border in Mexico.  

It is thus suggested that perhaps a control measure for Dengue fever may be to select for 

the properties in the lab that have been determined to attribute to the ability for Ae. 

albopictus to withstand warmer and dryer climates.  Coupled with their ability to 

compete with Ae. aegypti, and the fact that the males of this species have been found to 

interfere with the mating of Ae. aegypti, perhaps a release of Ae. albopictus into regions 

with a high prevalence of Ae. aegypti could greatly reduce their numbers.  Also, the 

adult males emerge a day or two before the blood feeding females, so it may be possible 

that an effective ratio of males to females could be obtained and used to fulfill the 

necessary high numbers of individuals that would likely need to be released in order to 

suppress the Ae. aegypti population without increasing the biting rates and/or the disease 

prevalence.  Obviously, a great deal more research would be needed to truly assess this 

possible control method, but this study found that the ability to survive and perhaps 

thrive in the warmer, drier climates is certainly within the genetic variability of Ae. 

albopictus.     
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APPENDIX 
 
Table A1.  Mean percent hatch at 15˚C for all populations of Ae. aegypti and Ae. albopictus at 
each week in combination with the different experimental relative humidities. 

     Weeks   
RH Pop1 Species2 1       2 3 4 8 12 Total 

15% BWN Albo 46.24 40.12 51.92 69.62 51.65 48.27 51.30 
  Aeg 26.96 58.17 47.65 61.38 68.06 59.92 53.82 

 McA Albo 55.88 59.07 54.45 69.76 60.75 51.96 47.94 
  Aeg n/a n/a n/a n/a n/a n/a n/a 

 Lab Albo 41.55 26.85 46.08 40.83 29.22 38.93 37.24 
  Aeg 37.72 67.34 32.33 47.41 35.06 55.88 55.48 

35% BWN Albo 62.69 41.23 31.93 73.11 59.45 45.96 58.00 
  Aeg 46.63 62.73 41.11 50.04 47.45 58.61 51.09 

 McA Albo 43.61 44.44 76.39 51.58 48.35 42.51 51.15 
  Aeg 45.60 40.35 56.93 66.73 44.63 77.27 55.25 

 Lab Albo 49.45 20.92 27.92 45.85 41.98 23.39 36.79 
  Aeg 46.14 47.37 65.59 73.70 67.69 54.94 61.04 

55% BWN Albo 60.38 73.67 63.23 47.84 67.44 70.73 63.88 
  Aeg 46.51 68.12 49.13 82.56 68.73 74.43 64.91 

 McA Albo 51.90 48.31 36.50 47.06 46.58 52.60 47.16 
  Aeg 45.25 55.90 51.35 70.85 76.86 44.47 57.45 

 Lab Albo 56.01 49.63 52.45 54.98 50.30 56.28 53.27 
  Aeg 35.03 56.15 48.81 60.90 72.78 66.29 56.66 

75% BWN Albo 63.10 78.30 36.10 70.03 69.36 72.78 64.94 
  Aeg 46.33 56.59 55.35 76.07 59.76 68.86 60.49 

 McA Albo 45.99 38.57 53.22 47.99 61.36 69.35 52.75 
  Aeg 43.92 61.65 61.50 76.35 76.26 83.99 67.28 

 Lab Albo 78.04 90.90 60.88 60.37 59.56 58.71 68.08 
  Aeg 67.49 38.58 41.33 55.37 58.85 82.72 57.39 

95% BWN Albo 66.46 64.20 62.16 76.17 57.06 79.53 67.60 
  Aeg 67.65 77.68 69.67 83.44 66.22 71.89 72.76 

 McA Albo 45.12 42.98 44.17 57.24 58.24 70.91 53.11 
  Aeg 47.25 72.96 56.16 69.58 78.12 85.46 68.26 

 Lab Albo 86.49 74.12 72.01 69.81 63.59 71.42 72.91 
  Aeg 52.01 63.91 61.04 66.64 63.72 81.40 64.78 

1BWN is population collected in Brownsville, McA is the population collected in McAllen, and Lab refers 
to the laboratory colony. 
2 Albo refers to the Ae. albopictus species and Aeg refers to the Ae. aegypti species. 
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Table A2.  Mean percent hatch at 21˚C for all populations of Ae. aegypti and Ae. albopictus at 
each week in combination with the different experimental relative humidities. 

    Weeks   
RH% Pop1 Species2 1 2 3 4 8 12 Total 

15% BWN Albo 63.43 74.88 68.76 61.89 54.69 58.43 63.68 
   Aeg 29.71 72.48 86.27 87.33 68.58 57.23 66.93 

  McA Albo 54.38 70.24 70.44 80.70 56.76 43.86 56.28 
   Aeg 59.93 71.73 66.40 70.31 27.52 41.80 62.73 

  Lab Albo 58.04 56.10 61.66 48.97 36.28 35.83 49.48 
   Aeg 89.21 69.93 74.39 53.31 77.20 69.84 72.31 

35% BWN Albo 86.24 82.76 70.46 78.09 74.89 53.00 75.25 
   Aeg 84.30 81.48 76.98 69.79 74.68 74.36 76.93 

  McA Albo 77.54 81.55 78.84 83.30 69.39 54.16 74.13 
   Aeg 66.45 85.13 73.54 83.25 74.11 58.31 73.46 

  Lab Albo 74.67 71.29 85.82 87.71 73.95 44.34 72.96 
   Aeg 95.47 90.48 76.54 84.59 85.19 80.97 85.54 

55% BWN Albo 97.70 85.49 97.13 79.01 62.42 67.69 81.57 
   Aeg 76.15 64.75 59.28 80.29 78.24 72.75 71.91 

  McA Albo 77.14 79.42 87.38 60.69 72.51 69.58 74.45 
   Aeg 71.48 74.78 78.70 92.32 85.74 75.84 79.81 

  Lab Albo 84.95 69.54 79.08 93.28 67.33 74.36 78.09 
   Aeg 97.70 79.76 92.37 82.96 87.98 79.18 86.66 

75% BWN Albo 62.76 93.39 71.68 55.71 73.81 75.84 72.20 
   Aeg 82.18 71.94 78.05 74.43 71.68 68.50 74.46 

  McA Albo 79.07 85.92 85.56 83.76 80.12 81.85 82.71 
   Aeg 97.70 94.28 93.40 93.36 78.04 80.20 89.50 

  Lab Albo 84.89 71.60 85.96 93.39 69.25 69.94 79.17 
   Aeg 92.17 90.35 92.12 67.67 80.19 78.96 83.58 

95% BWN Albo 97.84 100.00 96.83 86.97 86.97 83.56 92.03 
   Aeg 91.62 91.71 81.24 89.04 72.77 82.81 84.87 

  McA Albo 96.10 94.10 96.27 86.39 88.16 81.99 90.50 
   Aeg 89.37 87.71 100.00 87.31 90.11 79.76 89.05 

  Lab Albo 85.97 71.58 86.42 81.84 75.20 77.49 79.75 
   Aeg 93.16 95.87 100.00 91.68 91.95 84.80 92.91 

1BWN is population collected in Brownsville, McA is the population collected in McAllen, and Lab refers 
to the laboratory colony. 
2 Albo refers to the Ae. albopictus species and Aeg refers to the Ae. aegypti species. 
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Table A3.  Mean percent hatch at 27˚C for all populations of Ae. aegypti and Ae. albopictus at 
each week in combination with the different experimental relative humidities. 

     Weeks   
RH% Pop1 Species2 1 2 3 4 8 12 Total 
15% BWN Albo 87.85 89.69 79.07 83.44 55.66 50.49 74.37 
    Aeg 93.96 90.81 74.93 95.68 93.32 79.82 88.08 

  McA Albo 70.00 75.63 63.49 65.19 39.68 31.55 57.59 
    Aeg 82.73 79.50 93.29 82.72 53.78 54.49 74.82 

  Lab Albo 66.23 57.09 61.48 57.14 47.73 37.68 54.56 
    Aeg 83.86 81.76 78.57 79.17 75.81 44.98 74.03 

35% BWN Albo 100.00 89.93 80.59 85.21 73.71 71.30 83.46 
    Aeg 85.46 94.98 95.47 82.83 84.79 74.69 86.37 

  McA Albo 68.48 58.90 76.10 68.65 28.45 28.99 54.93 
    Aeg 100.00 97.84 96.60 100.00 88.61 69.89 92.16 

  Lab Albo 91.50 92.60 77.01 66.80 40.54 47.49 69.32 
    Aeg 89.17 84.83 86.58 94.35 90.71 75.33 86.83 

55% BWN Albo 95.76 97.81 100.00 87.37 71.47 70.60 87.17 
    Aeg 86.72 92.36 88.68 91.45 93.95 80.58 88.96 

  McA Albo 91.72 79.19 78.25 76.74 86.58 52.68 77.53 
    Aeg 97.44 100.00 100.00 100.00 89.86 84.52 95.46 

  Lab Albo 77.77 82.09 84.18 78.44 78.19 44.32 74.16 
    Aeg 87.40 80.32 89.25 96.97 87.85 90.77 88.76 

75% BWN Albo 86.90 92.81 93.11 85.66 87.73 68.09 85.72 
    Aeg 86.06 92.47 87.35 85.58 81.20 82.39 85.84 

  McA Albo 88.00 77.50 71.89 78.25 77.96 51.66 74.21 
    Aeg 95.94 97.84 98.03 94.48 100.00 97.62 97.32 

  Lab Albo 84.82 88.08 100.00 81.39 68.22 61.76 80.71 
    Aeg 95.40 95.95 97.93 100.00 91.77 83.22 94.04 

95% BWN Albo 82.95 80.78 95.06 68.60 74.44 70.41 78.71 
    Aeg 100.00 88.42 88.30 93.98 80.16 73.84 87.45 

  McA Albo 65.47 89.56 95.37 84.09 88.53 76.58 83.27 
    Aeg 97.74 100.00 94.60 91.70 89.62 84.63 93.05 

  Lab Albo 84.56 79.11 59.95 74.97 69.15 63.12 71.81 
    Aeg 74.86 70.48 70.20 71.56 77.78 84.09 74.83 

1BWN is population collected in Brownsville, McA is the population collected in McAllen, and Lab refers 
to the laboratory colony. 
2 Albo refers to the Ae. albopictus species and Aeg refers to the Ae. aegypti species. 
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Table A4.  Mean percent hatch at 32˚C for all populations of Ae. aegypti and Ae. albopictus at 
each week in combination with the different experimental relative humidities. 

     Weeks   
RH% Pop1 Species2 1 2 3 4 8 12 Total 
15% BWN Albo 60.14 77.45 52.50 60.14 36.09 60.92 57.87 
    Aeg 77.69 69.05 66.28 44.40 48.73 49.33 59.25 

  McA Albo 25.75 55.68 30.52 60.99 59.78 48.26 46.83 
    Aeg 69.08 67.66 53.87 55.26 38.72 47.96 55.43 

  Lab Albo 45.52 45.87 26.51 69.31 41.59 40.43 44.87 
    Aeg 57.35 59.52 64.49 48.06 50.64 46.83 54.48 

35% BWN Albo 74.30 71.88 52.82 63.33 39.62 62.20 60.69 
    Aeg 100.00 86.10 71.50 71.68 57.15 53.19 73.27 

  McA Albo 30.17 48.23 30.73 61.69 49.89 61.03 46.96 
    Aeg 67.63 63.52 55.87 60.83 27.06 58.24 55.53 

  Lab Albo 47.50 65.41 33.25 23.38 30.21 52.05 41.97 
    Aeg 59.39 56.58 64.66 48.06 46.71 54.50 54.98 

55% BWN Albo 65.15 64.82 60.26 37.99 40.82 46.83 52.64 
    Aeg 91.61 81.21 84.60 74.36 54.35 62.82 74.82 

  McA Albo 49.04 50.18 38.34 71.79 53.73 42.90 51.00 
    Aeg 91.59 91.21 70.19 65.67 47.78 52.78 69.87 

  Lab Albo 90.31 64.03 12.55 31.17 42.41 35.75 46.04 
    Aeg 96.27 93.66 78.31 63.86 56.82 54.57 73.92 

75% BWN Albo 63.76 53.70 45.04 42.16 41.51 35.07 46.87 
    Aeg 75.11 70.41 49.00 66.54 45.22 51.88 59.70 

  McA Albo 53.23 53.87 35.34 55.23 38.09 54.22 48.33 
    Aeg 86.04 72.85 65.82 65.22 45.84 43.98 63.29 

  Lab Albo 96.67 67.07 48.21 57.81 25.57 40.72 56.01 
    Aeg 81.97 94.97 87.48 75.94 42.89 42.29 70.92 

95% BWN Albo 100.00 85.10 82.26 80.36 52.82 45.18 74.29 
    Aeg 97.13 82.77 79.96 79.54 77.20 41.11 76.28 

  McA Albo 89.89 73.06 69.30 68.69 30.84 28.57 60.06 
    Aeg 95.59 96.67 88.45 96.97 55.90 40.16 78.96 

  Lab Albo 61.69 78.44 68.70 62.23 27.86 28.56 54.58 
    Aeg 90.63 95.55 84.87 82.38 75.74 52.83 80.33 

1BWN is population collected in Brownsville, McA is the population collected in McAllen, and Lab refers 
to the laboratory colony. 
2 Albo refers to the Ae. albopictus species and Aeg refers to the Ae. aegypti species. 
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Table A4.  Mean percent hatch at 35˚C for all populations of Ae. aegypti and Ae. albopictus at 
each week in combination with the different experimental relative humidities. 

     Weeks   
RH% Pop1 Species2 1 2 3 4 8 12 Total 
15% BWN Albo 47.50 65.63 63.36 58.65 50.08 69.73 59.16 
    Aeg 66.75 72.38 49.07 70.68 29.09 54.68 57.11 

  McA Albo 81.11 77.05 69.97 59.86 45.07 46.56 63.27 
    Aeg 56.52 72.09 50.51 71.74 52.39 47.79 58.51 

  Lab Albo 38.22 43.65 41.65 29.03 49.03 35.97 39.59 
    Aeg 51.57 75.33 64.58 60.33 61.64 65.91 63.23 

35% BWN Albo 48.60 65.92 53.96 63.31 57.27 56.05 57.52 
    Aeg 63.07 62.20 49.50 74.24 39.20 39.27 54.58 

  McA Albo 73.36 59.80 50.11 37.79 55.36 56.59 55.50 
    Aeg 75.00 71.31 53.82 52.68 42.70 31.76 54.54 

  Lab Albo 47.81 45.96 34.07 39.00 43.10 20.41 38.39 
    Aeg 40.18 87.16 56.87 66.80 73.34 57.03 63.56 

55% BWN Albo 51.06 65.01 51.63 77.68 49.73 55.38 58.42 
    Aeg 66.60 69.68 73.80 68.29 74.81 40.28 65.58 

  McA Albo 85.13 84.49 45.15 52.70 46.05 40.83 59.06 
    Aeg 91.59 52.42 37.00 35.70 53.34 37.93 51.33 

  Lab Albo 50.47 27.43 32.82 28.69 46.42 41.22 37.84 
    Aeg 50.56 95.67 72.63 63.11 58.61 58.29 66.48 

75% BWN Albo 63.37 64.17 73.38 79.46 52.83 43.66 62.81 
    Aeg 81.41 78.78 70.50 63.73 37.71 59.06 65.20 

  McA Albo 94.65 46.58 30.72 31.01 39.10 42.02 47.34 
    Aeg 94.26 66.23 56.37 43.09 56.06 42.86 59.81 

  Lab Albo 62.47 34.27 44.13 26.97 34.08 25.28 37.87 
    Aeg 63.53 67.44 70.09 54.66 56.07 51.63 60.57 

95% BWN Albo 92.10 73.60 64.78 43.96 56.75 38.07 61.54 
    Aeg 82.31 86.41 63.51 55.16 38.17 26.67 58.71 

  McA Albo 67.62 51.81 69.24 50.78 39.33 20.79 49.93 
    Aeg 87.11 89.16 70.33 61.91 45.74 51.25 67.58 

  Lab Albo 79.72 68.95 67.67 55.43 32.47 11.64 52.65 
    Aeg 77.31 84.67 85.28 82.30 67.73 30.48 71.30 

1BWN is population collected in Brownsville, McA is the population collected in McAllen, and Lab refers 
to the laboratory colony. 
2 Albo refers to the Ae. albopictus species and Aeg refers to the Ae. aegypti species. 
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