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Abstract
The Belgian part of the North Sea (BPNS) 
is part of a very important seabird migra-
tion route through the Southern North Sea. 
Also, large numbers of non-seabirds (main-
ly songbirds) are known to migrate at sea. 
The development of offshore wind farms in 
the North Sea might impact these migrating 
birds as they can collide with the turbines, 
which results in an increased mortality rate.

Radar observations greatly contribute 
to the understanding of the spatial and tem-
poral patterns of bird migration because of 
the ability to register birds continuously at 
a large spatial scale and at high altitudes. 
Using a bird radar, installed in an offshore 
wind farm, the objectives of this study are 
to determine (1)  the seasonal phenology of 
migrating birds across the North Sea; (2) the 
diurnal patterns of migrating birds at sea; 
(3) the vertical distribution (altitude) of mi-
grating birds and (4)  the link between bird 
migration and meteorological conditions.

Elaborate tests have shown that the ra-
dar antenna used in this study is performing 
suboptimally at detecting birds at low alti-
tude (0-150 m above sea level). This has led 
to the decision to replace this antenna with a  

conventional magnetron X-band antenna. 
However, some conclusions could still be 
drawn from our data.

The migration traffic rates (MTR, birds.
km-1.hr-1) values show that migration at sea, 
as registered by the radar, was most in-
tense during the nights of October and early  
November.

The observed diurnal pattern of these 
months is similar to the pattern measured in 
the Dutch part of the North Sea. Especially 
in October a clear peak in MTR values oc-
curs at dusk. A second smaller peak is no-
ticeable at dawn.

For this study period, no clear pattern 
with weather conditions could be revealed, 
although it seems that MTR values are high-
er if the wind was coming from the N, NE, 
E and SE and when wind speed was lower 
than 13 m/s.

The altitude profile suggests that migra-
tion at night is happening at higher altitudes 
compared to daytime movements. While 
passerines (i.e., non-seabird species) tend 
to dominate nighttime migration, daytime  
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migration tends to be a mixture of seabird 
and non-seabird species.

1.	Introduction
Twice a year, during autumn and spring, 
hundreds of millions of birds fly over Europe 
during their migration towards and from 
their wintering grounds. The Belgian part of 
the North Sea (BPNS) is part of a very im-
portant seabird migration route through the 
Southern North Sea. Because of its shape, 
this part of the North Sea acts as a migra-
tion bottleneck, concentrating birds during 
migration (Stienen et al. 2007). Also, large 
numbers of non-seabirds (mainly song-
birds) are known to migrate at sea (Bourne 
1980; Buurma 1987; Alerstam 1990;  
Lensink 2002). Estimates of the number 
of birds seasonally travelling through the 
Southern North Sea vary from 85  million  
(Lensink et al. 2002) up to several hundreds of 
millions (estimates of Helgoland mentioned in  
Hüppop et al. 2006). This songbird migrations 
mainly occurs along two routes: (1) between 
breeding grounds on the mainland of nor-
thern Europe  /  Scandinavia and the UK; 
(2)  between northern Europe  /  Scandinavia 
and wintering grounds in southern 
Europe and Africa (Lack 1959-1963;  
Lensink et al. 2002; Krijgsveld et al. 2015).

Migrating birds fly at all altitudes from 
sea-level up to 10 km and a general pheno-
menon is that birds fly high with tailwind 
and that they fly at a lower altitude with 
headwind (Bruderer 1971; Buurma 1987; 
Lensink et al. 2002).

Migrating birds suffer from ever in-
creasing human pressures (e.g., increased 
mortality due to desertification, loss of 
suited stop-over places or collision with 
man-made structures; Erickson et  al. 2005; 
Strandberg et al. 2009). The development of 
offshore wind farms in the North Sea might 
impact these migrating birds as they can col-
lide with the turbines, which results in an in-
creased mortality rate. 

Both from a purely scientific and a con-
servation point of view, it is crucial to un-
derstand and monitor bird migration. Radar 
observations greatly contribute to the under-
standing of the spatial and temporal patterns 
of bird migration because of the ability to 
register birds continuously at a large spatial 
scale and at high altitudes (Eastwood 1967; 
Bruderer 1997; Gauthreaux et  al. 2003). 
Radars offer several advantages compared to 
visual observations as they are not limited to 
lower altitudes, daylight and good visibility. 
They also do not suffer from observer bias. 
However, there are also several restrictions 
to this technique: the recorded radar data 
have low taxonomic resolution and radars 
record objects other than birds (e.g., sea sur-
face, ships, rain). The latter unwanted detec-
tions are referred to as clutter.

The objectives of this study are to  
determine:

• the seasonal phenology of migrating 
birds across the North Sea; 
• the diurnal patterns of migrating birds 
at sea;
• the vertical distribution (altitude) of 
migrating birds;
• the link between bird migration and 
meteorological conditions.

2.	Material and methods

2.1.	 Radar hardware

In this study, we make use of a Merlin bird 
radar (DeTect-inc., Florida, USA) which is 
installed on the offshore platform inside the 
C-Power wind farm on the Thornton  Bank 
in the BPNS (fig.  1). The radar antenna  
(Kelvin-Hughes Sharpeye solid state S-band) 
is rotating in the vertical pane, creating a ver-
tical “radar screen” that registers all the tar-
gets moving through that screen. As this “ra-
dar screen” is fairly narrow (opening angle 
22°), every registration can be seen as one 
or a group of birds passing through that area. 
The flux of birds is expressed as migration 
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traffic rate (MTR), i.e., number of birds that 
pass across a one kilometre line during an 
hour (birds.km-1.hr-1; Schmaljohann 2008). 
The orientation of the radar is east to west 
(fig. 1, zoom), which was the only possible 
practical set-up due to restrictions on the 
top deck of the platform. Ideally, the radar 
antenna should be positioned perpendicular 
to the main migration direction (i.e., mainly 
northeast-southwest, which is perpendicular 
to the coastline).

2.2.	 Radar software  
and data post-processing

The detection range of the radar antenna 
can be specified in the system’s settings and 
is set at one nautical mile. The radar ope-
rates continuously year-round and the sys-
tem is remotely controlled. The system is  

operated by the Merlin software which is spe-
cifically designed to track individual birds  
(DeTect Inc. 2010; Brabant et al. 2012). The 
Merlin software links consecutive registra-
tions of a target, and thus registers the flight 
path of a moving target.

However, these processed data still 
contain a large amount of clutter coming 
from different sources (e.g., rain, waves, 
ships, wind turbines, side lobes). As we use 
the radar data to determine the flux of birds 
in the area, it is very important to remove 
clutter as accurate as possible. To do so, we 
have developed a data-filter. The reader is 
referred to Brabant et al. (2016) for more de-
tails on the data filtering.

After the data filtering, two columns of 
500  m wide were selected from the entire 
measurement volume. We only retained data 

Figure 1. Map of the Belgian part of the North Sea (black polygon) with indication of the C-Power wind 
farm on the Thornton Bank (black marks). The location of the individual turbines (dots) and the radar 
location on the transformer platform (triangle) are shown in detail. The black line indicates the orientation 
of the vertical radar from east to west.
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from 250 until 750 m distance from the ra-
dar, both to the east and west (fig. 2). Doing 
so, we avoid using the data close to the radar 
location, which is saturated with reflections 
of the radar platform, and further than 750 m 
from the radar to avoid detection loss at fur-
ther distance from the radar (Fijn et al. 2015). 
The number of bird tracks within those two 
columns in one hour equals the MTR. As 
the radar is not able to differentiate single 
birds from a small group of birds, the MTR 
for this type of radar is actually the number 
of groups of birds.km-1.hour-1 or a minimum 
estimate of the number of birds.km-1.hour-1.

2.3.	 Data analyses

Four different analyses were done with the ra-
dar registrations between the 23 August 2016 
and the 16 November 2016, here represent-
ing the autumn migration season.

1. Mean MTR values were calculated 
for every day and night. We used the 
daily time of sunrise and sunset to de-
termine the length of day and night.
2. The diurnal pattern for every month 
was calculated by averaging the MTR 
and associated standard error for ev-
ery hour of day (HoD) for the different 
months (e.g., the mean of all MTR val-
ues from 0:00 to 1:00 am, for all days in 
October). 

3. The total number of counts per night 
and per day, within altitude layers of 
50  m were calculated. We considered 
data up to an altitude of 1800 m ASL, 
although it is known that there is detec-
tion loss at higher altitudes. Fijn et al. 
(2015) describe that for a magnetron ra-
dar (25 kW Furuno FR1525 MK3 X-ba
nd), this detection loss starts at 900 m 
for smaller birds. In this case, a solid 
state antenna is being used which has 
three different pulses (short, medium 
and long). For this type of radar, detec-
tion loss will occur within every pulse. 
However, at this point, it is not possible 
to quantify this and is hence here con-
sidered more or less random throughout 
the altitudinal range.
4. We investigated how migration in-
tensity was influenced by the wind di-
rection and speed. Wind direction and 
speed were taken from the C-Power me-
teorological observations from a wind 
turbine near the offshore platform (tem-
poral resolution: 10 minutes).
It is important to note that we know 

the radar antenna is performing suboptimal 
at detecting birds at low altitude (0-150  m 
above sea level [ASL]). This was shown 
during elaborated tests in collaboration with 
the radar supplier and could not be resolved 
at this point. Krijgsveld et al. (2011; 2015) 

Figure 2. Vertical radar data used to determine the MTR.
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and Fijn et al. (2015) however showed that 
in similar circumstances a large part of the 
migration at sea is occurring in those lower 
altitude layers. This has led to the decision 
to replace this antenna with a conventional 
magnetron X-band antenna. Replacement is 
foreseen in summer 2017.

Calculations and graphs were made in 
R  version  3.2.2. (R  Core Team 2015), ma- 
king use of the packages ggplot2 (Wickham 
2009), cowplot (Wilke 2016), reshape2 
(Wickham 2007) and plyr (Wickham 2011).

3.	Results

3.1.	 Autumn migration phenology

In general, the nighttime mean MTR val-
ues (fig.  4, lower panel) are higher than 
during daytime (fig. 4, upper panel). Highest 
numbers are recorded in  October, especial-
ly during the first few days of that month. 
In August, MTR values are very low, both 
during day and night.

A scatterplot of the log-transformed 
mean daytime versus the log-transformed 

mean nighttime MTR shows there is a signi 
ficant relation between both (p-value:  
3.531e-09, R-squared = 0.37; fig. 3).

3.2.	 Diurnal pattern

All months showed a diurnal pattern with a 
peak at sunset (fig. 5). This is especially the 
case for the month of October where MTR 
values peak at sunset and decrease during 
the night. A smaller second peak at sunrise 
is also noticeable in October and November. 

3.3.	 Flying altitudes

As was already shown in figure 4, absolute 
numbers are much higher during the night 
compared to daytime (fig.  6). During day, 
the highest number of counts was recorded 
from 100 to 150 m ASL. At night, this was 
the case in the layers from 200 to 300 m. 

Given the radar’s poor performance in 
the lower altitudes (up to 100-150  m, i.e., 
the two to three lowest bars in figure 6), the 
number of birds counted in these altitude 
layers is therefore considered not reliable 
(see materials and methods).

Figure 4. Scatterplot of the mean MTR at nighttime versus at daytime (log transformed).
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Figure 3. Average MTR ([groups of] birds.km-1.hour-1) per day (upper panel) and night (lower panel) for 
the autumn of 2016. Note that the Y-axis scale is different for the two plots.

http://birds.km-1.hour
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Figure 5. Average MTR value per hour of day (HoD) in UTC (blue line) ± standard error (light blue 
polygon).

Figure 6. Absolute number of counts during day and night per 50 m altitude layer. 
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Figure 7. Scatterplot of the hourly MTR (birds.km-1.hr-1) and wind speed (m/s).

Figure 8. Boxplot of the hourly MTR (birds.km-1.hr-1) and the wind direction. Line in the box is the me-
dian value. Lower and upper limits of the box represent 25th and 75th percentile of the data, respectively. 
The upper whisker is defined as 75th percentile + (1.5 x spread). The lower whisker is 25th percentile - 
(1.5 * spread), the spread being 75th - 25th percentile.
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3.4.	 MTR in relation to wind speed  
and wind direction

There is no clear observed pattern between 
MTR and wind speed (fig.  7). The high-
est MTR were recorded in  October and 
November. High MTR values (> 200 birds.
km-1.hr-1) were however never recorded when 
the wind speed was higher than 13 m/s. The 
maximum wind speed during the study peri-
od was 20.9 m/s.

Figure 8 suggests that the October and 
November MTR values are higher when the 
wind is coming from the N, NE, E and SE. 
In August and September, this is not the case. 
During the measurement period, the wind 
speed was highest coming from the SW, W 
and NW (fig. 9). Wind from the NE and SE 
had the lowest speed.

4.	Discussion
Overall, the measured MTR values are lower 
than expected. This has three reasons. (1) As 

mentioned in the methodology section, the 
radar is performing suboptimally in the low-
est 150  m  ASL. Looking at the results of  
Krijgsveld et al. (2015) and Fijn et al. (2015), 
in similar circumstances, it was shown that 
50% of the total flux occurred below 115 m. 
The pattern we see in this study is caused 
by the limits of the solid state S-band  ra-
dar  antenna which is currently being used. 
(2) The current antenna has a wavelength in 
the S-band spectrum (7.5-15  cm), which is 
less suited to register smaller birds. So, pre-
sumably, the number of songbirds is being 
underestimated. (3)  Lastly, the orientation 
(E-W) of the radar antenna is not ideal. An 
orientation perpendicular to the main migra-
tion direction is preferred to correctly mea-
sure the flux of birds (van Gasteren et  al. 
2002). This was logistically not possible in 
this case. If the flight direction is other than 
perpendicular to the radar orientation, the 
bird numbers is inevitably underestimat-
ed. Van Gasteren et  al. (2002) describe a  

Figure 9. Boxplot of the wind direction and wind speed during the entire measurement period. Line in 
the box is the median value. Lower and upper limits of the box represent 25th and 75th percentile of the 
data, respectively. The upper whisker is defined as 75th percentile + (1.5 x spread). The lower whisker is 
25th percentile - (1.5 * spread), the spread being 75th - 25th percentile.
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formula to compensate for this by correct-
ing the surface area of the sampled air of the 
radar. If the flight direction is 45°, relative 
to the radar orientation, the correction factor 
is 1.41. If it is 22.5°, then the correction is 
1.08 (Fijn et al. 2015). Fijn et al. (2015) also 
made the argument that the vertical radar 
has a specific beam width and thus records 
flux in a volume rather than along a line, the 
underestimation is therefore at least small-
er and in many cases close to the measured 
flux. Because no confirmed flight direction 
data is available in this study, no corrections 
could be made. 

Compared to the total flux measured 
in an entire autumn season (September-
November) by Fijn et al. (2015), the total flux 
in this study is about a factor 10 smaller. Not 
taking the lowest 150 m into account, this is 
still a factor 5. This has led to the decision to 
replace the currently deployed antenna with 
a conventional magnetron  X-band  antenna, 
similar to the one successfully being used in 
the Dutch part of the North Sea (Krijgsveld 
et  al. 2011; Fijn et  al. 2015). By then, the 
horizontal radar will be operational again, 
providing flight direction data. This will 
then be used to correct the measured flux, if  
necessary.

Although this antenna was not  
ideal to register bird migration, some use-
ful information is gained from the data. The 
MTR values show that migration at sea, as  
registered by the radar, was most intense 
during the nights of October and early 
November. Field observations (auditory recor- 
dings of vocal calls) carried out at night by  
Krijgsveld et al. (2011) at the OWEZ wind 
farm in the Dutch part of the North Sea, in-
dicate that these high nocturnal fluxes refle- 
cted mostly migrating passerines. 
Especially Blackbird Turdus  mer-
ula, Song Thrush Turdus  philome-
los, Redwing Turdus  iliacus and  
Robin Erithacus  rubecula were recor- 
ded. This is supported by earlier studies by 

Bourne (1980), Buurma (1987), Alerstam 
(1990) and Lensink (2002).

High daytime fluxes measured in 
October and November, correspond with 
coastal observations of high numbers of 
migrating meadow pipits Anthus  praten-
sis, European starling Sturnus  vulgaris 
and Chaffinches Fringilla  coelebs (www.
trektellen.nl). Also large numbers of Brant 
Branta bernicla were counted, a species reg-
ularly seen in the BPNS (Vanermen et  al. 
2006). As this latter species tends to fly at a 
lower altitude, it is unlikely that it was de-
tected by the radar.

The observed diurnal pattern of these 
months is similar to the pattern measured 
by Fijn et al. (2015). Especially in October 
a clear peak in MTR values occurs at dusk. 
A second smaller peak is noticeable at dawn.

Wind direction is the main driver of au-
tumn migration (Alerstam 1990). For this 
period, no clear pattern with weather condi-
tions could be revealed. It seems that MTR 
values are higher if the wind was coming 
from the N, NE, E and SE and when wind 
speed was lower than 13  m/s. In autumn, 
easterly winds are known to give rise to 
concentrated migration near the coast and at 
sea (Lensink et al. 2002). This was also the 
case in the beginning of October, when the 
highest fluxes of this study were measured. 
At that time, a storm front covered Germany 
and Poland, forcing birds to a more westerly 
migration route, which led to high numbers 
of birds in Belgium and the Netherlands.

Birds are registered up to 1800 m (high-
est altitude bin taken into account in this 
study). The altitude profile, although not 
complete, suggests that migration at night 
is happening at higher altitudes compared to 
daytime movements. This is also what Fijn 
et al. (2015) observed during autumn. While 
passerines (i.e., non-seabird species) tend 
to dominate nighttime migration, daytime 
migration tends to be a mixture of seabird 
and non-seabird species. Seabird migration  
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