ACTA UNIVERSITATIS SZEGEDIENSIS

. ACTA
~ SCIENTIARUM
MATHEMATICARUM

: ADIUVANTIBUS
B. CSAKANY L. MEGYESI G. POLLAK

_S. CSORKO F. MORICZ Z.1. SZABO
E. DURSZT P. T. NAGY 1. SZALAY
F. GECSEG J. NEMETH A.SZENDREI
L. HATVANI L. PINTER B. SZ-NAGY

A. HUHN ’ K. TANDORI

REDIGIT

L. LEINDLER

TOMUS 46
FASC, 14

SZEGED, 1983

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS



AJOZSEF ATTILA TUDOMANYEGYETEM KOZLEMENYEI

~ ACTA
SCIENTIARUM
MATHEMATICARUM

CSAKANY BELA MEGYESI LASZLO POLLAK GYORGY

CSORGO SANDOR MORICZ FERENC SZABO ZOLTAN

DURSZT ENDRE NAGY PETER ' SZALAY ISTVAN

GECSEG FERENC NEMETH JOZSEF SZENDREI AGNES
HATVANI LASZLO PINTER LAJOS SZOKEFALVI-NAGY BELA

HUHN ANDRAS TANDORI KAROLY |

KOZREMUOKODESEVEL SZERKESZTI

LEINDLER LASZLO

46. KOTET
FASC. 1—4.

SZEGED, 1983

JOZSEF'ATTIL'A TUDOMANYEGYETEM BOLYAI INTEZETE




ACTA UNIVERSITATIS SZEGEDIENSIS

ACTA
SCIENTIARUM
MATHEMATICARUM

ADIUVANTIBUS

B. CSAKANY L. MEGYESI G.POLLAK .
S. CSORGO F. MORICZ Z.1. SZABO
E. DURSZT P. T. NAGY 1. SZALAY

F. GECSEG J. NEMETH A. SZENDREI
L. HATVANI L. PINTER B. SZ-NAGY
A. HUHN K. TANDORI

REDIGIT

L. LEINDLER

TOMUS 46

SZEGED, 1983

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS



A JOZSEF ATTILA TUDOMANYEGYETEM KOZLEMENYEI

ACTA

SCIENTIARUM
MATHEMATICARUM

CSAKANY BELA -
CSORGO SANDOR
DURSZT ENDRE
GECSEG FERENC
HATVANI LASZLO
HUHN ANDRAS

MEGYESI LASZLO
MORICZ FERENC
NAGY PETER
NEMETH JOZSEF
PINTER LAJOS

46. KOTET

POLLAK GYORGY

SZABO ZOLTAN

SZALAY ISTVAN
SZENDREI AGNES
SZOKEFALVI-NAGY BELA
TANDORI KAROLY

KOZREMOKODESEVEL SZERKESZTI

LEINDLER LASZLO

SZEGED, 1983

JOZSEF ATTILA TUDOMANYEGYETEM BOLYA! INTEZETE



Acta Sci. Math. 46 (1983), 3—15

On Jonsson modules over a commutative ring

ROBERT GILMERY and WILLIAM HEINZER®

1. Introduction. Let R be a commutative ring with identity, let M be a unitary
module over R, and let « be an infinite cardinal. Following the terminology of univer-
sal algebra [5], [3], we call M a Jdnsson a-module over R if |M|=a, while |N|<a
for each proper submodule N of M. Our attention to this topic was attracted by a
recent paper of SHELAH [13], who answered affirmatively the following old question
of Kurosh: does there exist a Jénsson w, -group — that is, a group G of cardinality w,
such that each proper subgroup is countable? Like Shelah, we concentrate primarily
on the cases where € {w,, w;} in this paper, because these are the cases of principal
interest within our context.

If I is an ideal of R and if Z, considered as an R-module, is a Jonsson a-module,
then we refer to I as a Jonsson a-ideal of R. By passage to the idealization of R and
an R-module M, the theory of Jénsson a-modules is equivalent to the correspon-
ding theory for ideals, but we shall only occasionally make this transition to ideals
via idealization.

Section 2 of the paper deals with Jénsson a-modules, Section 3 with J6nsson
wy-modules, and Section 4 presents some pertinent examples. Corollary 3.2 shows
that a finitely generated Jonsson a-module is simple, and hence the set of such modules
over a given ring R is easily determined. Theorem 2.4 shows that if the cardinal « is
countably inaccessible from below and if R belongs to the class & of rings over which
each (**)-module is finitely generated (see Section 2 for terminology; in particular,
Z includes the class of Noetherian rings and the class of finite-dimensional chained
rings), then each Jénsson a-module over R is finitely generated, hence simple; in
particular, this result applies to Jénsson @, -modules over a ring in &. Proposition
2.5 is in this context a useful result; it states that if M is a non-finitely generated
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Jonsson a-module over R, then Ann (M) is a prime ideal and rM=M for each
ré R—Ann (M).

Assume that M is a non-finitely generated Jonsson wy-module over the ring R.
Theorem 3.1 shows that there exists a maximal ideal Q of R such that Ann (x) is a
Q-primary ideal of finite index for each nonzero element x of R; moreover, the powers

of Q properly descend and ﬁ Q‘is a prime ideal of R. It follows from Theorem 3.1
i=1

that in considering Jonsson w,-modules over R, there is no loss of generality in assum-
ing that the module is faithful and R is a quasi-local integral domain. Proposition
3.2 shows that M can be expressed as the union of a strictly ascending sequence of
cyclic submodules, and this leads both to a construction of classes of non-finitely
generated Jonsson w,-modules by means of generators and relations (Theorem 3.5)
and to a determination of the isomorphism class of non-finitely generated Jonsson
wy-modules over a Priifer domain J (Proposition 3.7 and the paragraph preceding
that result).

The examples of Section 4 indicate certain restrictions on what can be said about
the structure of a quasi-local domain D such that D admits a non-finitely generated
Jonsson wy-module. Such a domain D need not be Noetherian, for example, and even
for a Noetherian domain D, no restrictions can be placed on the (Krull) dimension
of D.

All rings considered in this paper are assumed to be commutative and to con-
tain an identity element; all modules considered are assumed to be unitary.

2. Jonsson modules. If R is a commutative ring with identity and M is a maximal
ideal of R such that |R/M|=« is infinite, then R/M is a Jonsson a-module over R.
One of our purposes in this section is to attempt to determine the class of rings S
such that each Jonsson module over S arises essentially in this way — that is, as
S/M for some maximal ideal M of S with infinite residue field.

The main results of this section are Corollary 2.3 and Theorem 2.4. In parti-
cular, Theorem 2.4 resolves the question of Jénsson modules over the rings normally
encountered in commutative algebra. While the proof of Proposition 2.5 is not diffi-
cult, this result is an important tool in the development of Section 3 material.

According to the terminology of [2, Ex. 17, p. 245], the infinite cardinal « is
said to be regular if a#—%‘ a; for each nonempty family {«;};c,; of cardinals with

[f[|<a and o;<a for each i. As noted by Simis [14], this condition is equivalent to
the statement that there is no cofinal set of cardinality less than « in the set of ordinals
preceding the first ordinal of cardinality «.

Proposition 2.1. Assume that M is a Jénsson o-module over R, where o is a
regular cardinal. If {M};c, is a nonempty family of proper submodules of M, where
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[[{<w, then M= 3 M,. In particular, M is indecomposable and M has at most one
iel

maximal submodule.

Proof. Since |Mj|<a for each i and since « is regular, it follows that | >’ Mj|<
<a, and hence > M7 M. The statements in the second sentence of the pr:)ialosition
follow immedia{él; from the first sentence.

Proposition 2.2. Assume that each proper ideal of the ring R has cardinality
less than |R|. Then either R is finite or R is a field. :

Proof. We prove that if |R|=« is infinite, then R is a field. Proposition 2.1
shows that R has a unique maximal ideal P. Since |P|<a, it follows that |R/P|=«;
let {r;};c be a complete set of representatives of the residue classes of P in R. If
x€P, then {ryx}SP, so there exist distinct f,y€B so that rgpx=r,x. Since
rg—r,is a unit of R, then x=0, so P=(0) and Ris a field, as asserted.

Corollary 2.3. Let M be an infinite, finitely generated R-module and let
a=|M|. Then M is a Jonsson module if and only if M is cycllc and Ann (M) is a maxi-
mal ideal of R such that {Rf/Ann (M)|=a. ‘

Proof. It’s clear that the stated conditions are sufficient for M to be a Jénsson
module. Conversely, if M is a Jonsson module and M=Rm;+Rmy+ ...+ Rm,,
then Proposition 2.1 implies that M=Rm,; for some i. Thus, M and R/Ann (M)
are isomorphic modules over R and over R/Ann (M), so that R/Ann (M ) is a field
of cardinality a« by Proposition 2.2.

Following the terminology of [1], we call a module M a (**)-module if M cannot
be expressed as the union of a strictly ascending sequence M;<M,<...<M,
of submodules; we denote by & the class of rings R such that each (**)-module over
R s finitely generated (clearly a finitely generated module is a (**)-module for any R).
Theorems 4.2, 4.7, and 4.10 of [1] show that & contains the subclasses of Noetherian
rings, finite-dimensional chained rings, and W*-rings; Theorem 6.1 of [10] shows that
Z also contains each ring R such that (1) R has Noetherian spectrum, (2) the de-
scending chain condition for prime ideals is satisfied in R, and either (3) each ideal of R
is countably generated, or (4) each ideal of R contains a power of its radical.

If « is an infinite cardinal, we say that « is countably inaccessible from below if

as# 3 o, for each nonempty countable family {;};c; of cardinals @;<a. According
ict
to this terminology, @, is countably accessible from below, while each infinite cardinal

with an immediate predecessor (in particular, ,) is countably inaccessible from below.
The next result deals both w1th the concept of countable 1nacceSS1b111ty from below
and with, the class #.
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Theorem 2.4. Assume that R is in the class & and that the cardinal a is count-
ably inaccessible from below. To within isomoprhism, the set of Joénsson x-modules is
{RIM};c1, where {M};, is the set of maximal ideals of R whose associated residue
class field has cardinality a.

Proof. Clearly each R/M; is a Jonsson «-module over R. Conversely, let L be
a Jénsson a-module over R. If {L;}72., is an ascending sequence of proper submodules

of L, then as in the proof of Proposition 2.1, it follows that L ZL Thus, L is

a (**)-module over R, and since R€, then L is finitely generated It then follows
from Corollary 2.3 that as an R-module, L=R/M; for some icl.

In our further consideration of Jénsson a-modules, we shall begin in Section
3 to concentrate our attention on the cases where a=w, or a=w,. Even for w,,
Theorem 2.4 resolves the question of Jonsson modules over the rings normally en-
countered in commutative algebra. Because w, is countably accessible from below,
however, Theorem 2.4 does not apply to this case. We know, in fact, that a Jénsson
w,-module over a principal ideal domain need not be finitely generated; the p-quasi-
cyclic group Z(p™), considered as a Z-module, illustrates this statement. (It is well-
known, in fact, that the p-quasicyclic groups are the only Jénsson w,-modules over
Z [6, Ex. 4, p. 105])

We conclude Section 2 with a proposition and a corollary that are valid for ar-
bitrary cardinals «. In particular, Proposition 2.5 is used frequently in the rest of this

paper.
Proposition 2.5. Let M be a Jonsson a-module over the ring R.
() If reR, then either tM=M or rM=(0).
(2) Ann (M) is a prime ideal of R.

Proof. To prove (1), assume that rM=M and let N={mecMjrm=0}. We
show that N=M. We write rM as {rm;};¢;, where |I|<a. If mcM, then rm=rm,
for some i so that mém,+ N. It follows that M= L€JI (m;+N), and hence |M|=
=|I]-|N|. By hypothesis on M and I, we conclude that |N]=a so that N=M as
we wished to prove. It follows from (1) that if x, y¢ R—Ann (M), then M=xM=
=yM, and hence M=xyM. Thus xy¢ Ann (M), and Ann (M) is prime in R, as
asserted.

Corollary 2.6. Assume that I is a Jénsson a-ideal of the ring R. If I*#(0),
then I is a field, and hence I is a direct summand of R.

Proof. Take r,s€l such that rs=0. Then r/=I=sI by Proposition 2.5,
and since r, s€I, then I=(r)=(s). By Corollary 2.3, it follows that I is a simple
R-module, so (rs)=I=12 We conclude that as an ideal of R, I is principal and is
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generated by an idempotent. Hence 7 is a direct summand of R and the structure of I
as an R-module is the same as its structure as a ring. Consequently, / is a field, as
asserted.

It’s clear that the converse of Corollary 2.6 is also valid. Namely, if X is an in-
finite field of cardinality « and if S is a nonzero ring, then Kis a Jdnsson a-ideal of the
ring S®K and K?%=(0).

3. Jonsson w,-modules. We restrict our consideration in this section to the case
where a=w,, the first infinite cardinal, and in view of Corollary 2.3, we consider
only Jénsson wy-modules that are not finitely generated. Such a module M has a partic-
ularly simple description: M is not finitely generated, is countably infinite, and each
proper submodule of M is finite3.

Assume that M is a non-finitely generated Jénsson wy,-module over the ring R.
What restrictions are imposed on the structure of R and M? Theorem 3.1 and Prop-
osition 3.2 provide some answers to this question. In particular, these two results
allow us to restrict to the case where the module M is faithful and the ring Ris a
quasilocal integral domain. In the case of a Priifer domain R, we determine the iso-
morphism class of non-finitely generated Jonsson w,-modules over R.

If N is an R-module, we say that N is a torsion module if Ann (n)(0) for each
n€N. On the other hand, the module N is torsion-free if Ann (n)=(0) for each non-
zero element n€N. The statement of Theorem 3.1 uses this terminology.

Theorem 3.1. Let M be a Jénsson wy-module over the ring R, where M is
not finitely generated. Then M is a torsion R-module, and there exists a maximal ideal
O of R such that the following conditions are satisfied: (1) Ann (x) is a Q-primary ideal
of finite index for each xc M —{0}, (2) R/Q is finite, (3) the powers of Q properly

descend, (4) ﬁ Q' is a prime ideal, and (5) if H;={xcM|Q'x=(0)}, then {H),
i=1

is a strictly ascending sequence of submodules of M such that M= D H;.
i

Proof. As the first step in the proof, we show that PM=M for each maximal
ideal P of R. Thus, if PM = M, then Proposition 2.5 shows that PM=(0), and hence
M is a Jénsson wy-module over the field R/P. Since M is indecomposable, M is a
one-dimensional vector space over R/P. This implies, however, that M is a cyclic
R-module, contradicting the fact that M is not finitely generated. Therefore PM =M
for each maximal ideal P of R.

For P, maximal in R, let M, be the set of elements x of M such that
P,SVAnn(x). Then M, is a submodule of M since the inclusion Ann (x—y)2

3) We remark that ‘“‘countably infinite” is redundant in this definition — ir M is not fini-
tely generated and each proper submodule of M is finite, then M is countably infinite.
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DAnn (x)NAnn (y) implies that YAnn(x—p)2VAnn(x)NYAnn(y). We show
that M is the direct sum of the family {M,}, taken over all maximal ideals P, of R.
If xéeM—{0}, then Rxc M implies that Rx is finite, so R/Ann (x) is a finite ring.

Therefore, Ann (x) is uniquely expressible as a finite intersection (j) C,,‘ of primary
" ideals with distinct (maximal) radicals Pa‘=}/_C:. If Bj:iDj 'C—,‘:‘ for 1=sj=n,
then no maximal ideal of R contains each B;, so R=B;+..+B,, and
1=by+by+...+b, with bcB, for each i. Then x= 1=21 b;x, where C,b;x=(0)
for each j, and hence b;x¢M;. This proves that M= 3 M,. Thesumisdirect, forif

meM,N(M, +...+M, ), withas=q; for each j, then Ann (m)2P, + (P, N...NP, )=
=R, so m=0. Because M is indecomposable, we conclude that M=M, for some a.
Let Q=P,; by definition of M,, Ann (x) is a Q-primary ideal of finite index for
each x¢é M —{0}; in particular, Q has finite index in R. Let H, be defined as in the
statement of Theorem 3.1. Clearly each H, is a submodule of M, and H;S H;,,
for each i. Moreover, for xé M, Ann(x) contains a power of Q since R/Ann (x)

is finite, so that x€ H; for some i; that is H =G H;. Observe that H; is a proper

submodule of M for each isince M=Q'M#(0). lFlinally, we note that the assumption
H;=H,,, leads to the contradiction that M= H;; it suffices to show that H;=H,,,
implies that H,,,=H,,,. Thus, if x¢H,,,, then QxCH,,,=H;, so Q'Qx=(0)
and x€H;,,, as was to be proved. The fact that H,<H;,, for each i shows that
Q'=Q'*! for each i; in particular, Q'#(0) for each i so that Ann (x)#(0) for each

x€M—{0}, and M is a torsion module. The equality M =D H; implies that
i=1

ﬁ Q'=Ann (M), and Proposition 2.5 shows that Ann (M) is prime in R. This
i=1

completes the proof of Theorem 3.1.

If M is a non-finitely generated Jénsson w, -module over R, then replacing R by
R/Ann (M), there is no loss of generality in assuming that M is faithful, and Proposi-
tion 2.5 shows that R/Ann (M) is an integral domain. Under these assumptions on R
and M, let Q be as in the statement of Theorem 3.1 It is then possible to consider M
as a module over the quasi-local domain Ry. To wit, for m€¢M and r/sc Ry, we
define the product (r/s)-m to be rm,, where sm,=m. The product is well-defined,
for Proposition 2.5 and Theorem 3.1 show that left multiplication by s induces an
R-automorphism of M. It is somewhat lengthy, but routine, to verify that M is an
R,-module under this definition, and we omit the details. We note that Rm=R,m
for each me M; for a proof, we need only show that R,mES Rm — that is, we need
to show that if s€e R—Q and if sm,=m, then m,€ Rm. This statement follows since
Rm is finite and since left multiplication by s induces an injection of Rm into Rm
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so that Rm=sRm. We conclude that the structure of M as an Ry-module is essen-
tially the same as the structure of M as an R-module [7, Ex. 2, p. 8]. In particular, M
is a Jénsson wy-module over Ry. Thus, in considering non-finitely generated Jénsson
w,-modules M over a ring R, we are led to consider the case where R is a quasi-local
domain and M is faitful. The next result is stated for this hypothesis, and is somewhat
analogous to Theorem 3.1.

Proposition 3.2. Assume that M is a non-finitely generated faithful Jonsson
wqy-module over the quasi-local domain (D, P). For x¢P—{0}, denote by M(x) the
submodule of M consisting of elements annihilated by x. Then M(x) is finite and non-

zero, M(x)<M(x)<M(x*)<..., and M= D M(x"). Moreover, if m€ M(x)—{0}
i=1
and if elements my, my, ...€ M are chosen successively so that m;=xm;., for each i,

then Dmy<Dmy<... and M= G Dm,.
i=1
Proof. Since M is faithful, then M(x)># M, and hence M(x) is finite. Pick
méeM —{0}. Since x€P=YAnn (m), there exists a positive integer k so that x*m=0
while' x*~1m 0. Thus x*~'m is a nonzero element of M (x). For a given i, we assume
that seM(x*t)—M(x). Then s€xM implies s=xt for some tcM. Thus

X+ =xt1g=0, but x'*it=x's#0 so that r&¢ M(x'*2)—M(x**?). Since CJ M (xH
i=1

is an infinite submodule of M, we conclude that M= U M(xY.

If my, m,, ... are as described in the hypothesis of Proposmon 3.2, then the proof
above shows that My €M (x*+1)— M (x%) for each i so that Dm;<Dm;,, and
M= D Dm;, as asserted.

i=1

The next result is a partial converse of Propositidn 3.2. The proof of this result
is routine and will be omitted.

Proposition 3.3. Let M be an R-module that can be expressed as the union of
an infinite strictly ascending sequence {M}:> , of finite submodules. The following con-
ditions are equivalent.

(1) M is a Jonsson wy-module.

(2) Each proper submodule of M is contained in some M.

) If x, ¢ M—M, for each i, then {x;};., generates M.

If the notation and hypothesis are as in the statement of Proposition 3.2, if F
is a free D-module on the countably infinite set {y;};>,, and if ¢ is the natural sur-
jection of F onto M induced by the mapping y;,—~m;, then, of course, M= F/ker ¢,
where ker ¢ contains the submodule generated by the set {y;—xy;..1};z,. This
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observation provided the original motivation for Theorem 3.5. The next result provi-
des some motivation for the hypothesis in the statement of Theorem 3.5.

Proposition 3.4. Assume that P is a maximal ideal of the ring R such that the
powers of P properly descend and such that P=P*+(R for some t€R. Then Pi:(t)=
=P~ for each i.

Proof. Since P/P? is a one-dimensional vector space over R/P, there are no
ideals of R strictly between P and P2. It is known that this implies that P=P"+ R
and that {Pf};f=1 is the set of ideals between P and P" for each n [7, (38,2)]. If i=1
then the inclusion P*~*C P*: (¢) is clear. Moreover, ¢4 P’ implies that P%: () S P.
Now p'~*E P': (1), for otherwise, P~'=P'"%[P24(:)]S P contrary to the
hypothesis that the powers of P properly descend. We conclude that P‘: (1)=Pi-1,
as asserted.

Theorem 3.5. Assume that P=A,, A, As, ... is a sequence of ideals of R and
{t.}2, is a sequence of elements of R-such that the following conditions are satisfied:
(1) P is a maximal ideal of R and R/P is finite, (2) the powers of P properly descend, and
(3) for each i=>1, P=A,+(t)), A;2 P', and A;: (t)S P'~. Then there exists a non-
finitely generated Jonsson wy-module M over R such that Ann (x) is P-primary for
each x€M—{0}.

Proof. Let Fbe a free R-module on the set {x;};=,, let 4 be the submodule of F
generated by {4,x;}> ,U{x;—t;41x:41}50,, and let M=F/4; we prove that M
has the required properties. Let y,=x;+ 4 for each i. Itis clear that {y,};z, generates
M and that (y)S(y;+1) for each i. We prove that the inclusion (y,)S{(y;-,) is
proper by establishing the following property of the submodule A: if a€ A — {0}
and if a= Zk' rjx;, where r, 0, then r,€ P. For some n, we can write a=a,x;+

Jj=1
. a,x,+hy (o — )+ .+, (X, 1~ 1, X,), where a,€A; and h;€R. If k=n, then
r.=a,—h,t,€ P. Otherwise, we obtain a sequence of equations

a,—h,t,=0

hn+an—l_hn—1tn—1.= 0

Mo+ a1 — Pty = 0.

The first equation implies that h,€4,: (1,) S P"~%, and hence, from the second equa-
tion, h,_3t,_1=h,+a,_1€A4,_, so that h,_,€A, ,:(¢,_)) S P""% Inductively, we
obtain A,..€P* If k=1, it follows that r,=hy . +a,—ht,€P, and if k=1,
then r,=#h,+a, is also in P. This establishes the assertion concerning A4, and hence
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(yy#(y;+1) for each i. Thus, no finite subset of {y;};2, generates M, and this implies
that M is not finitely generated. ’

We show next that each (y;) is finite. Since PSAnn (y,) and R/P is finite, the
submodule (y,) is finite. Assume that (y,) is finite. To prove that (y;.,) is finite, it
suffices to prove that (y;,,)/{y;) is finite. The annihilator of (y;,,)/(y;) contains
A; ;1 and the element ¢;,,, hence the ideal A;,,+(t;,,)=P: Therefore (y,+1)/(y,)
is finite, and (y,,,) is finite.

To complete the proof, we show that y ¢ (y;) implies that y,£(y). Choose k so
that y€(yx41), y4{(y); thus k=i. Then y=ry,,,, and since Py, E{y), it
follows that r¢ P. Hence R=A,,,+rR and we write 1 =q+rs for some g€ 4, and
SER. Then yy 1 =qYVis1+75Vrs1=5y and p;€ (yi+1) E (¥). This is sufficient to show
that each proper submodule of M is finite, for if L is a submodule of M that is con-
tained in no {y;), then L contains {y;};", and hence L=M. It is clear from the con-
struction that Ann (x) is P-primary for each x¢M — {0}.

Assume that (R, P) is a quasi-local domain such that P=¢R is principal and
R/P is finite. Then the hypothesis of Theorem 3.5 is satisfied for 4;,=P' and 1=t
for each i. In this case, the module M constructed in the proof of Theorem 3.5 is
isomorphic to R[1/t]/R, and in the case where this module is faithful (that is, where

ﬂ P=(0)), then R is a rank-one discrete valuation ring and R[1/¢] is the quotient

ﬁeld of R. The next result determines equivalent conditions in order that the D-module
K/D, where D is an integral domain and K is the quotient field of D, should be a
Jonsson w,-module. The statement of Theorem 3.6 uses the following terminology
from [12]. The ring R is sa1d to have the finite norm property (FNP) if R/A is finite
for each nonzero ideal 4 of R (such a ring is said to be residually finite in [4]).

Theorem 3.6. Let D be an integral domain with quotient field K= D. Let D*
be the integral closure of D. Then K/D is a Jonsson wy-module over D if and only if the
following conditions are satisfied. ‘

(1) D has the finite norm property,

2 D* is a rank-one discrete valutation ring, and

(3) D* is a finite D-module.

Proof. Assume that K/D is a Jénsson wy-module. If 4 is a nonzero nonunit of
D, then Dd~YD is a proper submodule of K/D, and hence is finite. Since Dd~1/D
and D/dD are isomorphic D-modules, it follows that dD has finite norm, and D has the
finite norm property. Let J= K be an overring of D. Since J/D is finite, J is integral
over D; hence JSD* and X is the only proper overring of D*. Therefore D* is a
rank-one valuatxon ring finitely generated over D, a rmg w1th (FNP), and hence D*
is rank-one discrete with (FNP).
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Conversely, assume that conditions (1)—(3) are satisfied, and write V instead of
D*. Assume that = is a generator of the maximal ideal of V. Since V is a finitely gen-
erated D-module, the conductor C of D in V is nonzero; say C=n*V. We know
that K= U n 'V, where n 'V <n"tV<.... To prove that K/D is a Jénsson w,-

=1
module, 1t suffices to show that n~'¥/D is finite for each i and that each proper sub-

module of K/D is a submodule of n='V/D for some i. n~'V/D is a finitely generated
D-module and ni+* belongs to the annihilator of this module. Since the ring D/'+*D
is finite, it follows that n='¥/D is finite. To prove that each proper submodule of K/D
is contained in some n~iV/D, it suffices to show that if N is a D-submodule of K such

that NEn~'V for each i, then N=K. Since K= U n~'D, it is enough to show

that 7 '€ N for each positive integer i. Choose nGN n=G+Oy We write n as
n~°u, where uis a unit of ¥ and s>i+k. Then n*~'¢C and n*~‘u~ln=n"‘'¢DnC
€ N. This established Theorem 3.6.

Considerations similar to those in the proof of Theorem 3.6 and in the para-
graph preceding that result enable us to determine to within isomorphism the class
%(J) of all non-finitely generated Jénsson w,-modules over a Priifer domain J. In
order for ¥ (J) to be nomepty, we know from Theorem 3.1 that it is necessary that
there should exist a maximal ideal M of J such that J/M is finite and the powers of M
properly descend. Assume that J has such a maximal ideal and let {M,};, be the

famlly of all such maximal ideals of J. Since J is a Priifer domain, P;= ﬂ Mk

is prime in J and there is no prime of J properly between P; and M; [7, Chap. 23].
Moreover, V;= (J/P)(M =Ty /PJ is a rank-one valuation ring with residue
field J/M;, and to within 1somorphlsm €)= U % (V). According to the next

result, Proposition 3.7, the unique faithful, non-ﬁmtely generated Jénsson w,-module
over V;is K,/V;, where K; is the quotient field of V;, and this in turn yields a deter-
mination of ¢ (J).

Proposition 3.7. Let V be a rank-one discrete valuation ring ‘with quotient
field K and with finite residue field V/P. To within isomorphism, K|V is the unique faith-
ful, non-finitely generated Jénsson wq-module over V.

Proof. Let M be a non-finitely generated faithful Jénsson w,-module over V
and assume that p generates P. According to Proposition 3.2, M can be expressed as
U Vx;, where x;#0, px,=0, and px,,,=Xx; for each i. Noting that the set

{p"+ V}i>, generates K/V, it is then routine to verify that the mapping p~'+ V- x;
can be extended to a V-module isomorphism of K/V onto M,
Assume that (D, P) is a quasi-local domain that admits a non-finitely generated
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faithful J6nsson wo-module From Theorem 3.1 and Proposition 3.2, it follows that
D/P is finite, that r] P'=(0), and that (0) can be expressed as the intersection of a

strictly decreasmg sequence {Q}r, of P-primary ideals such that each D/Q; is
finite. Based on considerations up to this point, it seems reasonable to ask if D must
be one-dimensional, or Noetherian, or if the residue class rings D/P! are finite. We
present in Section 4 examples that show that each of these questions has a negative
answer; moreover, if D is one-dimensional, then D need not be Noetherian, and con-
versely.

4. Examples. The examples in this section indicate certain limitations on what
can be said about the structure of a quasi-local domain (D, P) such that D admits a
non-finitely generated faithful Jénsson w,-module. In particular, the class of examples
included in Example 4.1 is large enough to show that D need not be Noetherian, and
that no restriction on the dimension of D is possible.

Example 4.1. Assume that (V, M(V)) and (W, M(W)) are independent valua-
tion rings on a field K, that V is rank-one discrete, and that there exists a finite field so
that V=k+M(V) and W=k+M(W). Set D=k+P, where P=M(V)NM(W).
Then (D, P) is quasi-local, dim D=dim W, and W/D is a non-finitely generated faith-
Jul Jénsson wy-module over D.

Proof. Corollary 5.6 of [8] shows that (D, P)is quasi-local and dim D=dim W.
Let v be a valuation associated with ¥ and choose, by the approximation theorem for
independent valuations [7, (22.9)], an element x¢ W—V so that »(x)=-—1. If
deD—{0} and if v(d)=r=0, then dx'+'¢ D, so W/D is a faithful D-module. To
prove that W/D is a non-finitely generated J6nsson wy-module, we show that the
sequence {(D+Dx%)/D};z, of submodules of W/D satisfies the hypothesis and con-
dition (2) of Proposition 3.3. To do so, we prove first the following assertion.
™ If reW, if seW-—V, and if v(s)<uo(r), then r€ D+Ds.

To prove (*), consider first the case where s is a unit and r is a nonunit of W.
Then r/s¢ M(W), and since »(r/s)=0, then r/s€e M(V) as well. Hence réDs in
this case. On the other hand, if s is a2 nonunit of W, then we can replace s by the unit
5;=s5+1 without affecting the hypothesis or the conclusion since s;€ W—V¥, »(s)=
=v(s)) and D+ Ds=D+ Ds,. Similarly, if r is a unit of W, then r=r—uc M(W)
for some nonzero element r of k, and replacing r by r, yields the desired conclusion.
This establishes (*).

"It follows from (*) that W=D (D+Dx") and that D+Dx'CD+Dx'*1,
i=1

The minimum of the v-values of elements of D+ Dx'is —i, so x'*1¢ D+ Dx’ and
the inclusion D+ Dx!C D+ Dx'*! is proper. Statement (*) also implies that if N is a
proper D-submodule of W containing D, then the set of v-values of elements of N is
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bounded below, and hence NC D+ Dx' for some i. Thus, to complete the proof of
Example 4.1, we need only show that (D4 Dx')/D is finite for each i. It is clear,
however, that M(W)N(M(¥V))' is contained in the annihilator of (D+ Dx‘)/D.
As [V/(M(V))|=|k|' is finite, the subring D/M(W)N(M(V))] is also finite.
Since (D+ DxY)/D is a finitely generated D-module, we conclude that (D +Dx')/D
is finite.

If k is a finite field and {X;};z, is a set of indeterminates over k, then the field
K=k({X,};) admits independent valuations », w such that » is rank-one discrete, the
valuation ring V of v is of the form k+ M (V), and the valuation ring W of w is of the
form k+M(W). Example 4.1 shows that W/D, where D=k+(M(V)NM(W)),
is a Jénsson w,-module, and dim D=dim W can be any positive integer or it can be
infinite. Moreover, if W is chosen so that M (W) is unbranched [7, p. 189], then no
principal ideal of D is primary for M (V)N M(W). Thus the assumption that a quasi-
local domain admits a faithful non-finitely generated Jénsson w,-module does not
imply that the domain is Noetherian, and it imposes no restriction on its dimension.
We remark that the approximation theorem for independent valuations can be avoid-
ed in the proof of Example 4.1 and that the conclusion concerning W/D remains
valid for any quasi-local domain W=k+M(W) with quotient field K such that
W E V. Using this fact, we see that if W is rank-one nondiscrete, if B M(W) is
any M(W)-primary ideal and if J= k+(M (V)N B), then J admits the non-finitely
generated faithful Jénsson w,-module (k+B)/J and yet J/(M (V)NB)" is infinite
for each n>1.

There is an analogue, for generating sets, of the concept of a J6nsson a-module.
Namely, we say that a unitary module M over a commutative ring R with identity is
a Jonsson a-generated module if M has a generating set of cardinality a, no generating
set of smaller cardinality, and each proper submodule of M has a generating set of
cardinality less than «. We have developed a theory of Jénsson a-generated modules
in [11]. This theory contains many similarities, but also some differences, with the
theory of Jénsson a-modules. The differences stem frequently from the fact that, by
definition, a Jonsson a-generated module is not finitely generated, whereas a J6nsson
a-module may be cyclic. In particular, a modification of the proof of [11, Example 3.3]
establishes the followmg result.

Example 4.2. Assume that D is an integral domain with quotient field K, that
(W, M) is a rank-one discrete valuation ring on K containing D, and that W/M = D/P
is a finite field, where P is the center of W on D. Then K/W is a Jénsson w,-module
over D. '

Example 4.2 can be used to show that even in the case of a Noetherian domain D,
existence of a non-finitely generated faithful Jénsson w,-module over D iniposes no
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restriction on the dimension of D. For example, let k be a finite field, let n be a posi-
tive integer, and choose x,, Xs, ..., X,€ Yk[[¥]] such that {x;};_, is algebraically
independent over k. Then D=k[x;,...,x), ., i5 an n-dimensional regular
local ring and W=k[[Y]]Nk(x,, ..., x,) is a rank-one discrete valuation overring
of D such that D and W have residue field k. By Example 4.2, k(x,, ..., x,)/W is a
faithful Jénsson wy-module over D.

We remark that, in general, a Noetherian ring R admits a non-finitely generated
Jénsson wy-module if and only if R contains a maximal ideal M of positive height
such that the residue field R/M is finite. This result follows from Theorem 2.7 of [11].
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Simple semimodules over commutative semirings

J. JEZEK and T. KEPKA

The problem of describing all simple medial groupoids (and so all minimal varie-
ties of medial groupoids) is still open, although simple groupoids and minimal varie-
ties are described in various special subclasses (see e.g. [2], [3], [4], [3]; in a yet un-
published paper the authors described all finite simple medial groupoids and all simple
commutative medial groupoids). It turns out that for the solution of this problem it is
advantageous to have a description of all simple commutative semigroups with two
commuting endomorphisms at hand. Now, commutative semigroups with a family of
commuting endomorphisms are actually nothing else than semimodules over commu-
tative semirings. For this reason the authors became interested in simple semimodules
over commutative semirings. Moreover, the problem of simple semimodules deserves
a special attention, and this is why the present paper came to life.

Section 1 contains the basic definitions. In Section 2 we prove that the class of
simple semimodules over a commutative semiring can be divided into three subclasses:

(1) two-element semimodules with zero addition;

(2) simple cancellative semimodules;

~ (3) simple idempotent semimodules.

In Section 3 we describe the two-element semimodules with zero addition and in
Section 4 the simple cancellative semimodules (at least in the case when the commu-
tative semiring is finitely generated or, more generally, finitely c-generated). We do not
know all simple idempotent semimodules. However, in Section 5 we characterize all
simple idempotent semimodules with a zero element o such that {0} is a subsemi-
module; in particular, all finite simple idempotent semimodules are found. Further,
we repeat from [6] the description of simple idempotent semimodules over a commu-
tative semiring with at most two generators. Finally, in Section 6 we give a formula
for the number of isomorphism classes of m-element semimodules over the free com-
mutative semiring with »n generators (n, m are finite).

Received June 24, 1981.
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1. Preliminaries

By a commutative semiring we mean an algebra R=R(+, -) with two binary
operations such that R(+) and R(.) are commutative semigroups and x(y+2)=
=xy+xz forall x, y, z€ R. Throughout this paper let R be a commutative semiring.

By a (left R—~) semimodule we mean an algebra M=M/(+, rx) with one binary
operation + and a family of unary operations x—rx (ré R) such that M(+)is a
commutative semigroup and

r(x+y)=rx+ry, (r+s)x= rx-i;sx, rs-x=r-sx

for all x, yéM and r,scR.

A semimodule M is said to be

— trivial if Card (M)=1,

— idempotent if it satisfies the identity x+x=x (i.e., if M(+) is a semilattice;

‘in this case we write x=y iff x=x+y),

— a semimodule with zero addition if it satisfies the 1dent1ty x+y=u+v,

— cancellative if x+y=x+z implies y=z,

— a module if M(+) is a group,

— simple if id); and M X M are the only congruences of M.

The semiring R is considered to be also a semimodule over itself. In this case, the
subsemimodules of R are called ideals of R.

By a bi-ideal of a semimodule M we mean a non-empty subset 7 of M such that
M+ICSI and RISI The equivalence (IxXI)Uid,, is then a congruence of M and
we denote by M/I the corresponding factor semimodule. If M is simple, then every
bi-ideal of M is either at most one-element or equal M.

An element a of a semimodule M is said to be the neutral element (the zero ele-
ment, resp.) of M if x+a=x (x+a=a, resp.) for all x€ M. The neutral element 18
usually denoted by 0 and the zero element by o.

For some results on semimodules with a neutral element over a commutative
semiring with a neutral and a unit element see, e.g., [1].

For a semimodule M, put Ann (M)={r¢ R;rx=ry forall x, y¢ M}.If Ann (M)
is non-empty, then this set is evidently an ideal of R and there exists an element
e€M such that e=e+e=re=sx for all r€R, s€cAnn(M) and x€M; the set {e}
is a subsemimodule of M.

1.1. Lemma. Let M be a simple semimodule with Ann (M)#=0. Then the
element e with sx=e for all s¢ Ann (M) is either a neutral or a zero element of M.

Proof. The set {e+x; x€ M} is a bi-ideal of M containing e, so that it equals
either {e} or M. In the first case evidently e is a zero element. If {e+x; xéM } M
then it is easy to verify that e is a neutral element.
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A subsemiring S of R is said to be a closed subsemiring if b€S whenever
a+be S for some acS. Let K be a non-empty subset of R. We shall say that R is
c-generated by K if R is the only closed subsemiring of R containing K.

For every non-empty set X there exists the free commutative semiring over X;
its elements are the formal sums of elements of the free commutative (multiplicatively
denoted) semigroup over X. If R is a free semiring over a set X of cardinality k=1,
then the variety of R-semimodules is equivalent to the variety of algebras A(+, fi, ...,

..s Ji) such that A(+) is a commutative semigroup and f;, ..., f; are pairwise com-
muting endomorphisms of A(+).

Let f be a homomorphism of a semiring § onto a semiring R. Then for any
R-semimodule M we can define an S-semimodule structure on M by sx=f(s) x
(for all s€ S and x€M). This correspondence provides an equivalence between the
variety of R-semimodules and some subvariety of the variety of S-semimodules.
Since every semiring is a homomorphic image of some free semiring, it follows that
in order to describe all simple semimodules over arbitrary (commutative) semirings
it would suffice to describeall simple semimodules over free (commutative) semirings.

2. The fundamental classification theorem

2.1. Theorem. Let M be a non-trivial simple semimodule over R. Then exactly
one of the following conditions holds:
(1) M is a two-element semimodule with zero addition;
(2) M is cancellative;
- (3) M is idempotent.

Proof. If Card (M)=2, then everything is clear. Now we shall assume that
Card (M)=3. The rest of the proof will be divided into several lemmas.

2.2. Lemma. M is not a semimodule with zero addition.

Proof. Suppose, on the contrary, that there exists an element o such that
x+y=o0 for all x, y¢ M. We have ro=r(o+o)=ro+ro=o for all rcR. If rcR,
then Ker (L,), where L,(x)=rx for all x€M, is a congruence of M; since M is
simple, it follows that either L, is injective or rx=o0 for all xé M. From this it
follows that ((M\{op)X(M\{o}))Uid,, is a congruence of M; since M is simple,
Card (M)=2, a contradiction.

A semimodule M is said to be unipotent if x+x=y+y for all x, ye M.

2.3. Lemma. Suppose that M is unipotent; put o=x+x for all xeM Then
either M is cancellative or x+o=o0 for all xeM.

2‘



20 J. JeZzek and T. Kepka

Proof. Put f(x)=x+x+x forall x¢ M. Then fis an endomorphism of M and
we have either Ker(f)=MXM or Ker(f)=idy. If Ker(f)=MXM then
x+o=f(x)=f(o)=0 for all xeM. Let Ker(f)=id,, and a+c=b+c for some
x,b,ceM. Then f(@)=a+o=a+c+c=b+c+c=b+o=f(b) and so a=b.

2.4, Lemma. Suppose that M is unipotent. Then M is cancellative.

Proof. Suppose, on the contrary, that M is not cancellative. Put o=x+x for
all x¢M. By 2.3, x+o=o0 for all xeM.

Suppose that a=b+c#o for some a,b, c€M. Put M*=MU{0} and I=
={x+a; xe M*}U{x+ra; x¢e M*, ré¢ R}, where 0+a=a. Then Iis a bi-ideal of M
containing {a, o} and so =M. In particular, b€l and c€l. We shall consider only
the case when b=x-+ra and c=y+sa for some x, y¢éM* and r,s€R. (The
remaining three cases are similar.) Then a=b+c=z+ra+sa where z=x+ycM*
and therefore a=z+r(z+ra+sa)+s(z+ra+sa)=z+rz+sz+r*a+s*a+rsa+sra=
=z+rz+sz+r%a+sa+o=o0, a contradiction.

We have proved that M is a semimodule with zero addition. However, this is in
contradiction with 2.2.

2.5. Lemma. Suppose that M is not unipotent. Then M is either idempotent
or cancellative.

Proof. Put g(x)=x+x for all x¢M. Then g is an endomorphism of M;
since M is simple and not unipotent, g is injective. From this it follows that Af can be
embedded into a simple semimodule M’ in which the mapping x—x+x is an auto-
morphism; since subsemimodules of idempotent semimodules are idempotent and
subsemimodules of cancellative semimodules are cancellative, it is enough to proceed
under the assumption that g is an automorphism of M. Put M*=M U {0} and define
a binary relation H on M by (x, y)¢H iff x_——=u+g"(y) and y=v+g/(x) for some
u, v€ M* and someintegers i, j=0 (if j<i then x=u+g'(y)=u+g" () +g' ()=
=z, +g" " W(y)=...=z,_;+g'(y); similarly if i<j, and thus we can assume that
i=j). Obviously, H is an equivalence. Let x, y, zEM, u, ve M*, k=0, x=u+g*(»),
y=v+g"(x). Then z=g *¢*(z)=w+g*(z) for some weM* and we have x+z=
=u+w+gt(y+z) and y+z=v+w+gi(x+z). Moreover, rx=rx+g*ry) and
ry=rv+g*(rx). We have shown that H is a congruence of M. '

If H=id,, then M is idempotent, since g(x)=x+g%(x) and x=0+g*(g(x))
imply (x, g(x))€H for all xeM.

Let Hw=id,, so that H=MXM. Let a+c=b+c for some a,b,ccM.
Put N={x€M; at+x=b+x}. If x¢N, then gla+g '(x))=a+a+x=a+b+x=
=b+b+x=g(b+g *(x)), so that a+g~'(x)=b+g '(x) and consequently
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g 1(x)eN. Now, let ye¢ M. We have cEN, (c, y)€H and so y=z+g*(c) for some
zEM* and k=0. But g*(c)éN and so a+y=a+gi(c)+z=b+g*(c)+z=b+y,
ie., yEN. We have proved N=M. In particular, g(@)=a+a=a+b=b+b=g(b),
a=b, and M is cancellative. )

3. Two-element semimodules with zero addition

Denote by IND, (R) the set of all subsets 7 of R with the following properties:

(1) R+REI;

(@ RIS

) if r,seR\J then rse R\J. ,

For every I€IND,(R) define a semimodule Zg ; as follows: Zg ,={0, 1};
x+y=0; if rel then rx=0; if r¢ R\J then rx=x. '

3.1. Theorem. The semimodules Zy ; with I¢ IND,(R) are pairwise non-iso-
morphic two-element semimodules with zero addition; every two-element semimodule
with zero addition is isomorphic to one of them.

Proof. Easy.

3.2. Proposition. Let Rbe a frée commutative semiring over a set K of cardi-
nality a=1. Then Card (IND,(R))=2"

Proof. Itis easy to verify that the mapping I—~I\K is a one-to-one mapping
of IND, (R) onto the set of all subsets of X.

It follows that if R is a commutative semiring which can be generated by a set of
cardinality @=1 then 1=Card (IND, (R)) =2° If R contains a neutral element then
Card (INDI(R))—I

4. Simple cancellative semimodules

4.1. Lemma. Let M be a cancellative semimodule. Then there exists a unique
(up to isomorphism over M) module N such that M is a subsemimodule of N and
N={a—b; a, bé M'}. Moreover, if M is simple then N is also simple.

Proof. Define a binary relation H on M XM by ((a, b), (¢, d))€H iff a+d=
=b+c. Then H is a congruence of the semimodule M X M. Put N=(MXM)/H
and denote by g the corresponding natural homomorphism. We have g{a, a)=
=g(b, b)=0 for all a, b¢ M and 0 is a neutral element of N. Moreover, g(a, b)+
+g(b, @)=0 and we see that N is a module. The mapping a~~g(a+a, a) is an injec-
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tive homomorphism of M into N and we can identify any element ac M with the
element g(a+a, a) of N. The rest is easy.

4.2. Lemma. Let M be a module. Then M is simple iff {0} and M are the only
submodules of M.

Proof. Easy.

4.3. Lemma. Let M be a simple cancellative semimodule having a neutral ele-
ment 0. Then M is a module.

Proof. Denote by N the set of all ac M such that a+5=0 for some beM.
Then N is a subsemimodule of M and the relation H on M, defined by (x, y)€H
iff x+N=y+N, is a congruence of M(+); let us prove that it is a congruence of the
semimodule M. For this, it is enough to show that if x+N=y+ N, r€ R and a€N,
then rx+a€ry+N. We have x+a=y+b and ra+c=0 for some b, cEN; we
have rx+a=rx+ra+ct+a=r(x+ay+c+a=r(y+b)+c+a=ry+rb+c+acry+N.
It follows that H is a congruence of the semimodule M. Since M is simple, either
H=MXM or H=idy. If H=M+ M, then N=M, M is a module and we are
through. Let H=idy, so that N={0}. Put K=((M\{0PXM\{0}))Uidy.
Let us prove that K is a congruence of M. Evidently, K is a congruence of M(+).
Let x, ye M\{0} and reR. Since M is simple, the kernel of the endomorphism
x—rx equals either M X M or id,,; since r0=0, it follows that either rz=0 for all
ZEM or x—rx is injective; from this it follows that (rx, ry)€ K. Since M is simple,
it follows that K=id,, and M contains just two elements; thus M is a module.

4.4, Theorem (The description of simple modules).

(1) Let f be a homomorphism of the semiring R into a field F such that
F={a—b+c-1;a,bef(R)U{0}, ccZ} where Z denotes the set of integers. Then F is
a simple R-module (if we put rx=f(r)x). ‘ _

(2) Every non-trivial simple R-module can be constructed in the way described
in (D).

(3) Let f and g be homomorphisms of R into fields F and G, resp., such that
F={a—b+c-1; a,bef(R)U{0}, c€Z} and G={a—b+c-1; a, beg(R)U{0},
¢€Z}. Then the R-semimodules, F, G are isomorphic iff there is a field isomorphism h
of F onto G such that h(f(r))=g(r) for all réR.

Proof. (1) Evidently, every submodule of the R-module F is an ideal of the
field F and we can use 4.2.

(2) Let M be a non-trivial simple R-module. Denote by F the set of endomor-
phisms of M and define two binary operations on F by (¢ +y)(x)=p(x)+¥ (x) and
(@) ()= (x)). Evidently, F is a skew field. For every r€R denote by f(r) the
endomorphism x~—rx, so that f is a homomorphism of R into F. Let us fix an
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element u€ M\ {0}. For every x¢F put g(x)=x(u). It follows from 4.2 that g is
an isomorphism of the R-module F onto the R-module M. Put S={a—b+c-1;
a, bef(R)U {0}, c€Z}. Then S is a submodule of F and g(S)={0}. Consequently
g(S)=M and S=F. Now it is clear that F is commutative.

(3) Let k be a semimodule isomorphism of F onto G. Put A(x)=k(x)(k(1))*
for all x€ F. Then A is a field isomorphism with the desired property.

4.5. Theorem. Let M be a non-trivial simple cancellative semimodule. Then
there exist a field F and a homomorphism f of R into F such that F= {a—b+c-'1;
a, be f(R)U {0}, c€Z }, where Z denotes the set of integers, M is a subsemimodule of
the R-module F and F={a—b; a, b6 M}. Moreover, M=F if 0cM.

Proof. Apply 4.1, 4.3 and 4.4.

4.6. Example. Denote by @ the field of rational numbers. Put R,={x€Q;
x>0} and R,={x€Q; x=1}. Then R, and R, are commutative semirings. R, is a
simple cancellative R;-semimodule, Q={a—b; a, b€ R\}; R, is a cancellative R,-
semimodule, Q={a—b; a, b€ R;}, and R, is not simple.

4.7. Theorem. Let R be finitely generated (or, more generally, finitely c-gen-
erated). Then every simple cancellative semimodule is a finite module of prime power
order.

Proof. Let fand F be as in 4.5. Since R is finitely c-generated, F is a finitely
generated ring. However, then F is finite. Then evidently 06 M and M=F by 4.5.

For every prime power p" (i.e. every prime number p and every positive integer »)
denote by GF (p") the finite field with p” elements. For every prime power p" and every
positive integer m let S(p, n, m) denote the set of ordered m-tuples (ay, ..., a,) of
elements of GF(p") such that GF(p") is generated as a ring by the set {a,, ..., a,, 1}
(observe that this set is always non-empty). Define an equivalence ~ on S(p, n, m)
by (a4, ..., @) ~(by, ..., b)) iff by=f(a), ..., b,=f(a,) for some automorphism
f of GF(p". :

4.8. Lemma. Card (S(p, n, m)/~)=(1/n) 3 u(n/k)p™, p being the Mobius
' kin
Sfunction. . :
Proof. Well known and easy.

4.9. Proposition. Let R be a free commutative semiring freely generated by a
finite set of cardinality m=1. Let p" be a prime power. Then the number of isomor-
phism classes of simple modules of order p" equals (1/n) > u(n/k)p™.

: ; . kin

Proof. It follows.from 4.4 and 4‘.8.
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S. Simple idempotent semimodules

Denote by IND;(R) the set of all subsets I of R with the following properties:

() R+ICT;

@) RIS

(3) if r,s€R\J then r+seR\J;

4 if r,s€e R\I then rseR\/
For every I€IND,(R) define a semimodule X, as follows: X, ,={0,1}; O+
4+0=0+1=140=0; 1+4+1=1; if rel then rx=0; if réeR\J then rx=x.

Denote by IND,(R) the set of all non-empty subsets I of R with the following
properties:

(1) I+ICT;

(@ RICH

(3) if r,s€R and s¢I then r+s¢l;

@ if r,s€e R\J then rs€R\J/.
For every I€IND;(R) define a semimodule Yy , as follows: Y ,={0,1}; O+
+0=0+1=140=0; 1+1=1; if rel then rx=1; if reR\J then rx=x.

5.1. Theorem. The semimodules Xy , with Ic IND,(R) and the semimodules
Ygi,1 with IEIND3(R) are pairwise non-isomorphic two-element idempotent semi-
modules; every two-element idempotent semimodule is isomorphic to one of them.

Proof. Straightforward. -

5.2. Proposition. Let R be a free commutative semiring over a set K of cardi-
nality az=1. Then Card (IND,(R))=2" and Card (IND,(R))=2"—1.

Proof. Easy.

5.3. Theorem. Let M be an idempotent semimodile with a zero element o
such that {0} is a subsemimodule of M; let Card (M)=3. Then M is simple iff the
Jollowing three conditions are satisfied: '

(1) a+b=0 for all pairs a, bé M- such that a=b;

(2) for every reR, the mapping xw—rx is either constant (with value o) or a per-
mutation of M; .

3) if x, yeM\{o} then y=rx for some reR.

Proof. First, let M be simple. For every a€ M denote by K, the set of ali
x€M suchthat x=ra (i.e. x=x+ra) forsome rc R. Evidently, K, is a bi-ideal of M
containing o, and so either K,={o} or K,=M. Put L={acM; K,={o}}. Evi-
dently, L is a bi-ideal of M, and so either L=M or L contains at most one element.
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If L=M then M is a semimodule with zero multiplication; since M is simple,
Card (M)=2, a contradiction. Hence Card (L)=1.  Then evidently LZ {0} and
so we have proved that if a€ M\ {o} and x€M then x=ra for some rcR.

“Let a,b,c€EM be such that a+b#0 and b+c=#o0. Then bxo0 and, as we
have just proved, there are elements r,s€R with b=r(a+b) and b=s(b+c).
We have b=ra+rb=rb=rsb+rsc and b=sb+sc=sb=sra+srb. Consequently,
b=rs(a+b+c) and so a+b+co.

Define a relation H on M by (x, y)€ H iff either x=y or x+y=0. Using the
assertion proved above, it is easy to check that H is a congruence of M. Hence either
H=idy, or' H=MXM. We get H=id,;, and (1) is proved.

_.Let' ré R. The mapping x—rx is an endomorphism of M, so that its kernel
equals either id,, or M X M. Hence the mapping x—rx is either constant (with
value o, since ro=o0) or .injective; if it is injective, then it is a permutation of M,
since rM is evidently a bi-ideal of M. We have proved (2) and the assertion (3) is
similar.

Now, let the conditions (1), (2), (3) be satisfied. Consider a congruence Hzid,,
of M. Put L={xe M\{o}; (x,0)¢H}. There is a pair (a, b)¢H with a=b. We
have a+b=o0 and (a, 0)cH, (b, 0)¢ H. Hence L is non-empty. It follows from (3)
that L=M\{o}, so that H=MXM.

5.4. Theorem. Let M be a finite simple idempotent semimodule containing at
least three elements. Then M contains a zero element o and {0} is a subsemimodule of M
(so. that M is as in 5.3).

Proof. Since M is a finite semilattice, it contains a zero element o. Suppose
that Ann (M)=0 and the element e with sx=e for all s€¢Ann (M) is a neutral
element of M. Then evidently M\ {e} is a bi-ideal of M, so that it contains at most
one element, contradicting Card (M)z=3.

Hence e is either a zero element or Ann (M) is empty; in both these cases evi-
dently {o} is a subsemimodule. o

In the rest of this section let R be the free commutative semiring over a set
{f, g} of cardinality 2. We shall give a list of all simple idempotent R-semimodules in
this case. Denote by Z the set of integers and by FE the set of real numbers. For every
positive integer n denote by Z,(+) the cyclic group of integers modulo n, and 1,
the natural homomorphism of Z(+) onto Z,(+). For every pair r, s of integers such
that (r, $)#=(0,0) denote by GCD(r, s) the greatest common divisor of r, s. The
promised list is the following (denote here by A the binary semimodule operation):

(1) the semimodule U; with U;={0, 1}, OAl=0, f(x)=x, g(x)=1;

(2) the semimodule U, with U,={0, 1}, 0A1=0, f(x)=1, g(x)=x;

(3) the semimodule U; with U;={0, 1}, 0Al =0, f(x)=g(x)=0;
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(4) the semimodule U, with U,={0, 1}, 0A1=0, f(x)=g(x)=1;

(5) for any positive integer n, the semimodule 4, with 4,={0, 1, ..., n}, xAy=x
if x=y, xAy=0 if x#y, f(0)=0, f(1)=2, f(2)=3, ..., f(n—D=nf(n)=1, g(x)=0;

(6) for any positive integer n, the semimodule B, with B,={0, 1, ..., n}, xAy=x
if x=y, xAy=0 if xs#y, f(x)=0, g(0)=0, g(1)=2, ..., glr—1)=n, gn)=1;

(7) for every quadruple z=(p, q, r, s) of integers such that p, q,r=1, O0=s<r
and GCD(r, s)=1, the semimodule C, with C,={0}U{Z,,XZ,)/K, where K,
is the subgroup {(l,p(O), qu(o))s (lrp(p)9 qu(_ sq)), (’rp(ZP)’ 'rq(_zsq))’ L] (l,p((l'—
—Dp, 1,(—(r—Dsq))}, xAy=x if x=y, xAy=0 if x#yp, f(0)=g(0)=0,
SH)Y=H+(1,,(1), 1,,(0)) and g(H)=H+(3,,(0), 1,,(1)) for all HE(Z,,XZ,)/K,;

(8) for every pair z=(n, m) of positive integers, the semimodule D, with D,=
={0}U(ZXZ)/K, where K, is the subgroup of Z(+)XZ(+) generated by (n, m),
xpy=x if x=y, xpAy=0 if x=y, f(0)=g0)=0, f(H)=H+(1,0) and g(H)=
=H+(0,1) for all He(ZXZ)/K,;

(9) for every pair r, s of integers such that GCD (r, s)=1 and either r<0<s
or s<O<r, the semimodule E,  with E, ,=Z, xAy=Min(x,y), f(x)=x+r,
gxX)=x+s;

(10) for every wu¢{-—1,1} and every irrational number ¢ such that either
u<0<g or g<0O<u, the semimodule F, , with F, ,=E, xAy=Min (x, ), f(x)=
=x+u, g(x)=x+q;

(11) for every u, g as in (10), every subsemimodule of F, ,.

As it is proved in [6], these R-semimodules, together with the trivial R-semi-
module, are simple idempotent R-semimodules and every simple idempotent R-semi-
module is isomorphic to one of them; the semimodules in (1)—(11) are pairwise non-
isomorphic, with the following exception: if M, is a subsemimodule of F, , and M,

Uy 4y
is'a subsemimodule of F, ., then M =M, iff u,=u,, 1=q; and M,=M,+a
for some real number a.

6. The number of isomorphism classes of finite simple semimodules

Let R be the free commutative semiring over a set of finite cardinality n=1.
For m=1, let N(n, m) denote the number of isomorphism classes of simple R-semi-
modules having m elements. '

Denote by a(n, k) the number of equivalences defined on an n-element set and
having exactly k blocks. Denote by A(n, m) the number of isomorphism classes of
m-element algebras A(f}, ... f,) with unary operations f; such that each f; is a permu-
tation of 4, f,f;=f,f; foralli, jand fi(x)#f;(x) for all i, je{l, ..., n}, ij, x€A,
and such that A(fy, ..., f,) contains no proper subalgebra.

The following theorem can be derived from the above results.
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6.1. Theorem. (1) N(n, =1 for every nz=l.
(2) N(n,2)=2"*2—1 for every nz=l.
() N(n, 3)=2-3"-2" for every n=z=l.
@ Na,m= 2 ank)itk,m—1)+ 3 ta(n,t)A(t—1,m—1)
Jor every n=1 and m=6 such that m is not a prime power.
() Nm,pm)= 2 amk)Akp"—1)+ Z ta(n,t)At—1,p"-1)+
1 2

=k=n =tsn
k41=p™ t=p™m

+(1/m) Z p(mfk) p™
klm
for every prime number p=2 and all integers n,m=1 such that p™=3.

The values A(1, m) and A(2, m) can be computed as follows:
A(l,m)=1 for every m=1;
AQ,my=—1+ 3 o@(k)e(m/k) for every m =1,
1=k=m
klm

where ¢ denotes Euler’s function and £(n) is the number of all i€ {1, ..., m} such thati
divides n.

As it follows from the results and remarks of this paper, every simple semimodule
over a commutative semiring with at most two generators is of cardinality =2%.
We shall end this paper with the following open problem.

Problem. Let R be a finitely generated (or countable) commutative semiring
and let M be a simple R-semimodule. Is it true that Card (M)=2%?
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Mal’cev conditions for regular and weakly fégular
subalgebras of the square

JAROMIR DUDA

1. Introduction. At the beginning of the seventies, Mal’cev conditions char-
acterizing varieties of algebras with regular congruences were given by B. CSAKANY
[3], [4], G. GRATZER [7], and R. WILLE [16]. Recently, algebras with regular tolerances
(=compatible symmetric and reflexive relations) were introduced and a Mal’cev
condition for varieties of algebras with regular tolerances was derived by I. CHAIDA
[2]. Since the concept of regularity can easily be extended for other sorts of compatible
relations we have also varieties of algebras with regular compatible reflexive relations
and varieties of algebras with regular quasiorders (=compatible transitive and reflex-
ive relations). The aim of this paper is to show that all the above mentioned varieties
form exactly two well-known classes of varieties. Moreover, Mal’cev conditions for
these two classes of varieties simplify the Mal’cev characterizations presented in
some former papers.-In the second part of this paper, analogous results for weakly
regular subalgebras of the square are derived.

2. Algebras with regular subalgebras of the square. Throughout this paper, the
same symbol stands for an algebra and its base set. Let 4 be an algebra and let S
be a subset of the square 4 X 4. We denote by

R(S) the compatible reflexive relation on A generated by S;

T(S) the tolerance on A generated by S;

a(s) the quasiorder on A4 generated by §; and

[4lS the subset {x€A; (@, x)€S}, where a is some element of 4.

Notice that [a]S is called a class of S. The rest of this section is formulated in terms of
compatible reflexive relations only; for tolerances, quasiorders, and congruences the
Definition and the Lemma below are modified in an evident way. :

Definition. Wesay that an algebra 4 has regular compatible reflexive relations
if any two compatible reflexive relations coincide whenever they have a class in com-

Received June 15, 1981.
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mon. A variety V of algebras has regular compatible reflexive relations provided each
algebra A€V has this property.

Lemma. For any algebra A, the following conditions are equivalent:

(@) A has regular compatible reflexive relations;

(b) For every compatible reflexive relation ¥ on A, ¥=R({a}X[a}¥) holds for
any element a of A;

(c) For every compatible reflexive relation ¥ on A and for each element a of A,
¥=R({a}XB) holds for some subset BS A.

Proof. (a)=(b). Apparently, for any compatible reflexive relation ¥ on A4,
{a}X[@P S R{a}X[a]P)S ¥ hold and thus also [a]({a}x[a]¥?)E[aR({a}Xx
X[a]P)S[a]¥. However, [d)({a}X[a]¥)=[a]¥, which implies [¢]R({a}X[d]P)=
=[a]?¥. By applying the hypothesis, the equality ¥ =R({a}x[a]¥) follows.

(b)=(a). If ¥ and & are two compatible reflexive relations on 4 with the same
class [@)¥=[a]®P then ¥=R({a}X[a]¥)=R({a}X[a]P)=9.

(b)=(c) is trivial.

(c)=(b). It is enough to verify the inclusion ¥ & R({a}X[a] ¥). By hypothesis,
R({a}xB)=¥ holds for some B and so we have {a}XBZE R({a}xB)=¥. This
yields BC[a)¥ and the conclusion ¥=R({a}XB)S R({a}X[a]¥) follows.

3. Varieties with regular subalgebras of the square. The main fact we will need
about varieties with regular congruences is the following

Theorem 1 (B. CsAKANY [3]). For any variety V, the following conditions are
equivalent:

(1) V has regular congruences;

(2) There exist ternary polynomials p, ..., p, such that

(z=pi(xsys 2), 1§i§n)<=>x=y.
In [5] we announced

Theorem 2. For any variety V, the following conditions are equivalent:

(1) V has regular and permutable congruences;

(2) V has regular tolerances;

() V has regular compatible reflexive relations;

(4) There exist ternary polynomials py, ..., p, and an (n+3)-ary polynomial r
such that o

X = r(x, Vs 2,2, .. Z), y= r(x’ Y 2, Pl(x’ Y, Z): ERad ] pn(x3 s Z)),
z=pix,x,2) for 1=i=n.

Proof. (1)=(3) follows directly from the Theorem of H. WERNER [11].



Mal’cev conditions for regular subalgebras of the square 31

(3)=(4). Let F;(x, y, z) be the free algebra in ¥ with free generators x, y, z.
The compatible reflexive relation R(x, y) on F;(x, y, z) is finitely generated, so by
Lemma (c) from Section 2 there is a finite subset {p;; 1=i=n}C Fy(x, y, z) with
the property R(x, y)=R{z}X{p:;; 1=i=n})=R{(z, py); 1=i=n}). Now, con-
dition {x, y)eR({(z, p;); 1=i=n}) yields

x=0(z..,2 and y=0(ps,..-, Ps)

for some n-ary algebraic function ¢ over Fs(x, y, z) and thus there are ternary poly-
nomials py, ..., p, and an (n+3)-ary polynomial r such that

x=r(x,¥272..,2) and y=r(xy, z pi(x, ¥, 2), ..., (%, ¥, 2)).

Finally, the identities z=p;(x, x, z), 1=i=n, follow immediately from the above
equality R(x, y)=R({{z, py); 1 =i=n}).

(4)=(1). Regularity: Apparently, the ternary polynomials p, ..., p, satisfy
condition (2) of Theorem 1, i.e., V" has regular congruences.

Permutability: It is easily seen that p(a,b,c):=r(c, a,b,pi(b,ab), ...,
<ces Dn(b, a, b)) is the well-known Mal’cev polynomial and thus, by [10], the permu-
tability of ¥V follows. '

(1)=(2) again by [15].

(2)=(1). Similarly as in the proof (3)=(4), the formula

T, y)=T{z}X{pi; 1 =i=n)) for some {p;l=i=n}E F(xy 2)

implies the existence of ternary polynomials p,, ..., p, and of a (2n+3)-ary polyno-

mial ¢ with v ; .

X = t(xs Y 2,2, .05 2, pl(x’ Y, 2)9 LS ] pn(x’ Y, Z)),

y= t(xs V> 2z, pl(x’ Y, 2)9 (RRE] pn(-x’ Vs Z), Zy ey 2)9

and : '
: z=pix,x,2z) for 1=i=n.

Now, the regularity of V is trivial since any congruence is a tolerance; the permuta-

bility of ¥ is entailed by the Mal’cev polynomial

p(a, b, ¢) :=t(c, a, b,pi(b, a, b), ..., p(b, a, b), pr(c, b, b), ..., p(c, b, b))..

In this way, varieties with regular tolerances and also varieties with regular com-
patible reflexive relations are sufficiently described. For varieties with regular con-
gruences and for varieties with regular quasiorders, the following theorem holds.

Theorem 3. For any variety V, the following conditions are equivalent:
(1) V has regular congruences;
(2) V has regular quasiorders;
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(3) There exist ternary polynomials p,, ..., p, and (n+3)-ary polynomials ry, ..., r,
such that ’
X = rl(x9 Ys 2,2, ..., Z)’

' rj(x’ Y, 2, pl(x’ s Z)’ [EEE) pn(x9 Y, Z)) = rj+1(xa Y. 2,2, ..., Z) for 1 §] -< k,
y=ndx z n(x, 3, 2), ..., Pa(X, ¥, D)),
Z=p,~(x,x,z) for 1=i=n.

Proof. (I)=(2). By Theorem 3 of J. HAGEMANN [9; p: 11], varieties with reg-
ular congruences are n-permutable for some n=>1. Then, using Corollary 4 of
J. HAGEMANN [9; p. 7], quasiorders coincide with congruences.

(2)=(3). The identities (3) are derived from the formula

0(x,»)=0({z}x{p;1=i=n}) forsome {p;l=i=n}S Fxy,2)

in a similar way as above. :
(3)=(1). Evidently, the polynomials p,, ..., p, satisfy condition (2) of Theorem
1, i.e., V has regular congruences.

Remarks. (i) As it was already noted in [13], [14], congruence regularity and
congruence permutability are independent conditions. ,

(i)) The Mal’cev condition from Theorem 2 simplifies the identities given in [1]
and [2].
(i) Part (3) of Theorem 3 is a slightly improved version of [3; p. 188].

4. Varieties with weakly regular subalgebras of the square. Let V' be a variety
having distinguished nullary operations cy, ..., ¢,,. We say that ¥ has weakly regular-
congruences with respect to ¢,, ..., ¢, if []@=[c]¥, 1=i=m, imply @=¥ for
any two congruences ©® and ¥ on A€V. Analogously we introduce the concept of
aarieties with weakly regular tolerances, with weakly regular compatible reflexive
relations, etc. This Section contains the variations on theorems of Section 3; the
proofs are very similar to those of Section 3, so they can be omitted. For brevity we
denote the sequences c;, ..., ¢; (n times) and g, (x, ), ..., g (X, ¥) by & and di;(x, »).
respectively. ' -

Weakly regular varieties were first investigated by K. FICHTNER; the following
theorem is a paraphrase of his result [6; Theorem 1 (I), (IV)].

Theorem 4. For any variety V with nullary operations c,, ..., ¢,, the following
conditions are equivalent:
(1) V has weakly regular congruences with respect to ¢, ..., ¢y,
(2) There exist an integer n=1 and binary polynomials gq;;, 1=i=m, 1=j=n,
such that '
@EG=dyxy, l=i=m)ex=y.
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Example. The variety of implicative semilattices (see, e.g., [11], [12] for this
concept) has weakly regular congruences with respect to the nullary operation 1:
For n=2, g,,(x, Y)=x*y, q3(x, Y)=y+*x, we have (l—x*y yrX)eox=y.

Theorem 5. For any variety V with nullary operations c,, ..., ¢,,, the following
conditions are equivalent:

(1) V has permutable and weakly regular congruences with respect to c,, .

(2) V has weakly regular tolerances with respect to c, ..., Cpy;

(3) V has weakly regular compatible reflexive relations with respect to ¢y, ..., Cp;

(4) There exist an integer nz=1, binary polynomials q;, l1=i=m, IS]Sn
and an (mn+2)-ary polynomial w such that

.t
ves Coms

X = w(x, Vs Els sevy ém)9 y= w(x, Y, qu(x’ y)s ceey -q.mj(xs y))a
&=4q;(x,x) for 1si=m.

Theorem 6. For any variety V with nullary operations c,, ..., ¢,,, the following
conditions are equivalent:

(1) V has weakly regular congruences with respect to c,,

(2) V has weakly regular quasiorders with respect to cy, ..., Cp;

(3) There exist integers n, k=1, binary polynomial.é gy, 1=i=m, 1=j=n, and
(mn+2)-ary polynomials wy, ..., wy such that

ves Cs

X = wl(x, Y, Ela weey Em),
wh(x’-y’ qu(x’ y)’ vees qmj(x, y)) = wh+1(x’ Vs El) cey Em) for 1= h =< k,
¥ = wi(%, ¥, G106 1) o5 Gy (%, 1)),
Gi=qy(x,x) for 1=i=m.
Remarks. (i) The implication (1)=>(2) is again a direct consequence of Theo-
rem 6 and Corollary 4 from [9].
(i) Part (3) of our Theorem 6 improves the identities exhibited in [6; Theorem 2].
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Tolerance trivial algebras and varieties

IVAN CHAJDA

Tolerances on algebras and varieties were studied in many papers, see e.g. [1],
(41, (5], [6] and numerous references there. An importance and suitability of tolerances
in algebraic constructions mainly for congruence investigations was shown in [2],
[3] and [10]. In particular, the paper [10] uses the concept of tolerance trivial algebra
for characterizations of order polynomial completeness of ordered algebras. The aim
of this paper is to give necessary and sufficient conditions under which (principal)
tolerances and (principal) congruences on a given algebra coincide..

0. Preliminaries. Let A=(A4, F) be an algebra. A binary relation R on 4,
ie., RS AXA, has the substitution property (briefly SP) on U if for each n-ary,
fE¢F we have (f(ay,...,a,), f(by, ..., b,))ER whenever (g;, b)ER for i=1, ..., n
in other words, it is a subalgebra of the direct product A X 2.

A tolerance on an algebra U=(4, F) is a reflexive and symmetric binary rela-
tion on A4 having SP (on ). Denote by LT (%) the set of all tolerances on U. Clearly,
LT () is a complete lattice with respect to set inclusion [4]. Denote by V the join in
LT(W). The meet evidently coincides with set intersection. Let a, b€ 4. By T(a, b)
is denoted the least tolerance of LT (W) containing the pair {a, b). It is called a
principal tolerance (generated by {a, b)). The principal congruence generated by
(@, b) will be denoted by ©(a, b).

The following lemma is clear (see e.g. [4]):

Lemma 1. For every algebra W and each TcLT(),
T =V{T(a,b); (a, b)eT}.
The next lemma is proved in [1] (see also [2]):
Lemma 2. Let A=(4, F) be an algebra and a;,b€cA for i=1,...,n. Then
x, yYeV{T(a;, b); i=1,...,n}
" Received March 12, 1982.
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if and only if there exists a 2n-ary algebraic function ¢ such that

X = (p(ala ceey Gy b17 [} bn)’ y= (P(bl, ey bn, Ays oo an)'

As usual, Con (¥) denotes the congruence lattice of . Although every con-
gruence is a tolerance, in general, Con () is not a sublattice of LT (A) (see Section
3 below).

1. Tolerance trivial varieties. Definition. An algebra W is (principal) tolerance
trivial if every (principal) tolerance on 2 is a congruence. A variety ¥ of algebras is
(principal) tolerance trivial if each €Y~ has this property.

H. WERNER [11] proved that for each algebra U in a variety ¥ every reflexive
binary relation having SP on % is a congruence on U if and only if the variety ¥~
is congruence permutable. Hence congruence permutable varieties are tolerance
trivial. The following theorem shows that also the converse statement is valid:

Theorem 1. For a variety ¥ of algebras, the following conditions are equiva-
lent:

(1) ¥ is tolerance trivial;

(2) ¥ is congruence permutable.

Proof. Taking into account Werner’s theorem [11] mentioned above, it re-
mains to prove only (1)=>(2). Let ¥~ be a variety of algebras and U= F,(x, y, z)
the ¥ -free algebra with the set of free generators {x, y, z}:-Since (x, y)€T(x, »),
{y,2)€T(y, z) and, by (1), all tolerances are transitive, we obtain (x, z)€ T(x, y)V
VT(y, z). By Lemma 2, there exists a 4-ary algebraic function ¢ over ¥~ such that
x=0(x, y, ¥, 2), z=9(», X, z, ¥). Since U=Fy(x, y, z), there exists a 7-ary poly-
nomial p over ¥ such that

@ (X1, Xg, X35 Xg) = P(X1, X3, X3, X4, X, ¥, 2),

ie. - x=p(x, 92 x 1,2, z=p(y,X.2, ), X,¥,2). Evidently, (x,y, 2)=
=p(x, ¥, 2, y, x, ¥, z) is the Mal'cev polynomial, i.e., t(x,x,z)=t(z, x, x)=z,
whence ¥~ is congruence permutable.

2. Principal tolerance trivial algebras and varieties. Clearly, every tolerance. trivial
algebra is also principal tolerance trivial (but not vice versa). However, a characteriz-
ation of principal tolerance trivial varieties and algebras is more complicated than
that of tolerance trivial varieties.

Proposition 1. If an algebra N=(A4, F) is principal tolerance trivial, then
for each x, yEA there exist binary algebraic functions npl, Y, such that

M) T(x, ) 2TW1(x 3), Ya(x, ¥));

Q) i (x,)€0(a, b), then Y(x, »)=¥:1(V1(a, b), ¥»(a, b)) and
Ya(x, )=y (Y2(a, b), ¥1(a, b)).
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Proof. If {x, )€®(a, b)=T(a, b), by Lemma 2 there exists a binary algebraic
function ¢ over U such that x=¢(a, b), y=0¢®b, a). Put ¥,(x;, x)=0(x;, x),
Ya (¥, X2)=@(xz, x,). Hence x=y,(a,d), y=y2(a, b) and

lpl(x’ y) = (p(x, J’) = ll’l(lpl(a’ b)a lp2(a, b)),
Y (x, ¥) = 0 (3, x) = ‘pl(lpZ(as b), Y,(a, b)),

proving (2). Moreover,

Wi (x, ) Y205 ) = (0 (%, ), (0, XHET(x, p),
whence (1) is evident.

Now, we give a sufficient condition for principal tolerance tr1v1a11ty in a form
closely connected with that of Proposition 1.

Proposition 2. Let N=(A4, F) be an algebra such that there exist binary
algebraic functions i, Y1, over W with

(D) T(x, ) =T WY1 (x, ¥), Y2 (%, »));
(2) if (x,y)€O(a,b), then there exists a binary algebraic function ¢ over U

such that Y, (x, y)= (0(‘//1(‘1 b), Y2(a, b)) and ‘/’2(3‘, = ‘P(‘pz(a b), ¥ (a, b))

Then W is principal tolerance trivial.

Proof. Clearly T(a, b))S @(a, b) for each a, b€ A. Prove the reverse inclu-
sion. Let {x, y)€@(a, b). By (2) and (1), we obtain

<ll/1(xs J")’ l//2(-": y)> = <(P(!/’1(a9 b)’ ‘l’z(a, b))’ (P(‘pz(a’ b)s l:01(aslb))>€
ET(‘/’I (a’ b): lpﬂ(a’ b)) = T(a, b)a i

hence,. by (1), T(x,»)=T(¥:(x, p), Ya(x, »))S T(a, b), which implies (x, y)€
€T(a, b). :

Corollary 1. The variety of all distributive lattices is principal tolerance trivial
but not tolerance trivial.

Proof. By Theorem 1 (or by [6]), ¥” is not tolerance trivial. We prove by Prop-
osition 2 that ¥ is principal tolerance trivial. Put ¥, (x, y)=xAy, ¥s(x, y)=xVy.
Let TeLT (A) for Acy". If (x, )T, then also (x, xVyy = (xVx, xVy)€T and,
analogously, (y, xVy)¢T. Hence

xAy, xVy) = (xA\y, (xVy)A(xV y))eT.

Conversely, .let (xAy, xVy)€T. Then {(x, xVy) = (xV(xAp), xV(xVy))€T and,
similarly, {y, xVy)€T, ie., (xVy, y)¢T. Hence

(x, y) = (XA (xVy), (xVy)Ay)ET.
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Accordingly, T(x, y)=T(xAy, x\Vy) is proved, i.e., ¥,, ¥, satisfy (1) of Proposi-
tion 2.
By [8], {x,y)€@(a,b) if and only if

xAy =[(@aAB)V(APIA(xVyY) and xVy=[(aVb)V(EAYIA(xV ).

Putting ¢ (x;, x;)=[xV(xA»)IA(xVy) we have immediately (2) of Proposition 2
which finishes the proof. ‘

Now, we give a characterization of principal tolerance trivial algebras based on
a description of @(a, b) by Mal’cev’s lemma (see [9]) and that of T'(a, b) by Lemma 2:

Theorem 2. For an algebra N=(A, F), the following conditions are equiv-
alent:

(1) A is principal tolerance trivial;

(2) for each a,bc A and for all unary algebraic functions 1., ..., t, over W, if

{r:(@), (BN {ri11(a), 111 (D)} = O for i=1,..,n-1,

then there exists a binary algebraic function ¢ over W such that t,(@)=0(a, b),
7,(0)=0 (b, a);

(3) For each a,b€A and for all binary algebraic functions @,, @, over U, if
©,(b, a)=y(a, b), then there exists a binary algebraic function \y over W such that
Y (@, b)=01(a, b), ¥ (b, A)=0.(b, a). -

Proof. (9)=(1). Let a,bcAd, {x, y)¢O(a,b). By Mal'cev’s lemma (see [9]
or [7]), there exist elements e, ..., ¢,6 4 and unary algebraic functions (so called
translations) 7, ..., 7, over U such that {r,(a), 7,(b)}={e;-1, €} for i=1,..,n,
and either {r,(a), 7,(6)}={x, ¥} or {r,(b), 1.(a)}={x, »}. By (2), there exists a
binary algebraic function ¢ over U such that x=¢(a, b), y=¢(b, @), whence
(x, y)€T(a, b). The reverse inclusion in evident.

3)=(1). Let {x, y)¢T(a,b), {y,z)€T(a,b). By Lemma 2, there exist binary
algebraic functions ¢,, @, over A such that (x, y)={¢,(a, b), ¢;(b, @)}, (¥, z)=
=(0:(@, b), ¢a(b, @). By (3), (x,2)=((a, b), ¥(b, a)), whence (x,z)eT(a, b),
proving the transitivity of T(a, b), i.e., T(a, b)=0(a, b). .

M=0). If {pi(a,b), ¢;(b,a)}={c;, ¢;41} for i=1,2, then, by Lemma 2,
{er, c2)€T(a, b), {cp,c3)€T(a, b). Since T(a,b)=0O(a,b), also (¢, cs3)€T(a, b)
and (3) is an easy consequence of Lemma 2.

(1)=(2) is analogous to that of (1)=>(3), only the Mal’cev’s lemma is used instead
of Lemma 2.

The situation can be essentially simplified for a variety having a uniform restricted
congruence scheme (for the definition, see [7]) and such principal tolerance trivial
varieties can be characterized by a Mal’cev condition:
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Theorem 3. Let ¥ be a variety of algebras having a uniform restricted congru-
ence scheme {p,, ..., p,; f}. The following condmons are equivalent:

(1) ¥ is principal tolerance trivial;

(2) There exists a 6-ary polynomial q over ¥~ such that

q(xo5 X1, X9, X1, Yo, Y1) = Po(xf(O), Xg5 X1, Yos YD
q(x1, Xo, Xo, X1, Yo Y1) = pn(xl—f(n)9 Xos X1, Yo» Y1)
Proof. (1)=(2).Let {py, ..., P.; f} be a restricted congruence scheme satis-

fied by 7. Let Uc¥” be a ¥ -free algebra generated by the four-element set of free
generators {x,, x;, ¥y, ¥1}- Then (y,, y1)€@ (x4, x,) if and only if (see [7])

Yo = po(xf(O)a Xo» X1 Yoo Y1)
pi(xl—f(i)’ Xgs X1, Yor V1) = pi+1(xf(l+1)’ X, X1, Yo, Y1) for i=0,..,n-1,
h= pn(xl—f(n)’ Xos X15 Voo yl)'

According to (1), (¥e, ¥1)€ T(x,, X;), i.e., Lemma 2 yields the existence of a binary
algebraic function ¢ over ¥" such that y,=¢(xg, x1), y1=0(x;, X,). Since U is a
¥ -free algebra with generators x,, X1, ¥y, J1, there exists a 6-ary polynomial ¢ with

q’(x’ J’) = g(xa Vs Xo> X15 Yos yl)

whence (2) is evident.
The converse implication (2)=>(1) is a direct consequence of Lemma 2.

3. Tolerance lattices of principal tolerance trivial algebras. It is easy to charac-
terize whether the congruence lattice is a sublattice of the tolerance lattice for a
principal tolerance trivial algebra:

Theorem 4. Let W be a principal tolerance trivial algebra. The following
conditions are equivalent:

(1) Con () is a sublattice of LT(N);

(2) U is tolerance trivial, i.e., Con (U)=LT(N).

Proof. (2)=(1) is trivial. To prove (1)=(2), let T¢LT(A). By Lemma 1, .
T is the join of the tolerances {T'(a, b); (a, b)€ T}. Since A is principal tolerance
trivial, T is the join of the congruences {@(a, b); {a, b)€ T} in LT(A) and, by (1),
also in Con (2); thus T€Con (), proving Con (A)=LT(A).

Corollary 2. Let ¥ be a principal tolerance trivial variety. The following con-
ditions are equivalent:

(1) For each Ucv¥", Con () is a sublattice of LT(N);

(2) ¥ is congruence permutable.

This is a direct consequence of Theorems 1 and 4,
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- On classes of ordered algebras and quasiorder distributivity

GABOR CZEDLI and ATTILA LENKEHEGYI

0. Introduction. Many kinds of partially ordered algebras have appeared in the
literature so far, for example partially ordered groups, rings, fields, etc. In some cases
all the fundamental operations were supposed to be monotonic, but in some others
there are operations having only special monotonity domains; moreover, some opera-
tions may be order reversing (or ,,antitone”) with respect to a (may be the whole)
part of their variables. (See FucHs [5], [6].) Thereis no doubt that one gets the most
general concept, if one imposes no assumption on the monotonity or antitonity do-
mains of the operations. But then it seems to be hopeless to develop such an elegant
(or at least approximately so elegant) theory, as the theory of varieties, equational
logic, Mal’cev conditions, and so on. The circumstances for obtaining such results
become far more advantageous if we require all operations to be monotonic in all of
their variables. So we accept the following definition (the exact origin of which is not
known for us):

Definition 0.1. By a partially ordered algebra (in the sequel simply ordered
algebra) we mean a triple A=(A4; F, =), where (4; F) is a universal algebra, = isa
partial ordering on A, and all the operations f€ F are monotone with respect to this
ordering. (If there is no danger of confusion, we shall simply say ,,fis monotone™.)

Note that, according to this definition, partially ordered algebras are essentially
the same as the algebras in the category of partially ordered sets (see FREYD [4],
PAREIGIS [9]).

In our work we make an attempt to give a unified theory for these algebras,
using such concepts as subalgebras, direct products, homomorphic images, subdirect
decompositions, congruences, inequalities, Mal’cev conditions.

1. Basic concepts and facts. In this section we remind the reader of the concepts
of homomorphisms, subalgebras, direct and subdirect products, and then we define
two kinds of congruences.

Received December 2, 1981.
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The operations on subalgebras and direct products are given as usual, the ordering
is restricted 1o the subset in question and is understood componentwise. It would be
possible to define subalgebras such that the ordering on them is obtained by weaken-
ing the restricted ordering, but we need not use such subalgebras, so we do not allow
them. This agreement will seem to be natural after investigating varieties and their
Birkhoff-type characterization, due to S. L. BLoom [1].

By a homomorphism we mean a monotone, operation-preserving map from one
algebra to another. A homomorphism ¢: A—-B is said to be a @-homomorphism,
if the ordering of B restricted to Im ¢ cannot be weakened so that ¢ remains still
monotone and the operations on Im ¢ remain still isotone (,,isotone” is used as a
synonym for ,,monotone”). (It would be possible to describe Q-homomorphisms
constructively, but since it is straightforward from the proofof Theorem 1.1 below,
it will be omitted.)

B is a homomorphic image (resp. Q-homomorphic image) of 2, if there exists a
surjective homomorphism (Q-homomorphism) ¢: A-~B,

Definition 1.1. A binary relation @ over 4 will be called an order-congruence
of A, if the following hold:

(i) @ is a congruence on (4; F);

(ii) whenever for some natural numbers n, m and elements q, b, a, ..., a,_,,
by, ...,b,_1€4 we have

a@a;=a,0a;=...a,=bOb,=b,0b;=...b,, = a,

we always have also a@®b. (The sequence of elements of this form is a @-circle with
distinguished elements a, b.)

It is clear, that finitely many O-circles (with fixed distinguished elements) can
always be unified so that they have common »n and common m, moreover, n and m
can be required to be equal.

For a homomorphism ¢: A—-B let Ker ¢ denote the kernel of ¢, i.e. the rela-
tion {(a, b)€ A*|ap =b¢}. The proof of the following theorem can also be found in
[3], so here we give only the necessary construction. The theorem justifies Defini-
tion 1.1.

Theorem 1.1. O is an order-congruence of W iff @ =Ker ¢ for some homo-
morphism ¢: N—~B (B is an ordered algebra of the same similarity type), or equiv-
alently, @ =Ker ¢’ for some surjective Q-homomorphism ¢’: U ~%B’.

Proof. The ,if” part is obvious. Assume @ is an order-congruence, and consi-
der the ordered algebra (A/Q; F, <), where (A4/@; F) is the corresponding
quotient algebra, and

[a]J X [b]O iff aO@a,=a,0a,=..a,=b for some n and -ay, ..;, a,_,€A.
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Then the natural map a—[a]@ is a surjective Q-homomorphism onto the con-
structed ordered algebra (which will be usually denoted by U/@©).

However, the order-congruences or, what are the same, the kernels of homomor-
phisms are not sufficient to reproduce the corresponding homomorphic images in the
case when the homomorphisms are surjective, unless they are Q-homomorphisms.
But we need also homomorphic images, which are not Q-images. So it is desirable to
introduce such relations on the ordered algebras, which enable us to describe all
homomorphic images completely. The following definition can be found implicitly
in BLoowm [1].

Definition 1.2. Let ¢: A—B a homomorphism. By the directed kernel of ¢ _
we mean the relation

Kero = {(a, b)c A%*agp = by in B}.

The isomorphisms are those homomorphisms having a two-sided inverse map,
which is also a homomorphism.

It is obvious that knowing Ker ¢ for a surjective homomorphism ¢, we can
. construct — up to isomorphism — the corresponding homomorphic image, thanks
to the fact that Ker ¢ determines on Im ¢ the equality, the ordering and the opera-
tions, as well.

The directed kernels can be characterized as follows:

Theorem 1.2. A binary relation © over A is the directed kernel for some homo-
morphism of W into some ordered algebra if and only if © is a quasiorder compatible
with the operations, which extends the ordering of W (i.e. a=b implies a®b).

Proof. The ,,only if” part is trivial; for the converse let us consider the relation
d=0NOL It is easily seen, that & is an order-congruence; let [a] P=[b]PD iff
a@b. Then = is a (well-defined) partial ordermg on A/® preserved by the operations
of the quotient algebra. Now obviously @ = Ker n with n the natural map a—~[a] ®
onto (4/®; F, =). (The latter need not be equal to W/ P!)

(Note that Bloom called such quasiorders ,,admissible preorders”.)
Let us denote the ordered algebra constructed in the previous proof by U/O.
We essentially proved also

Theorem 1.3 (Homomorphism Theorem). If ¢: A—~B is a surjective homo-
morphism, then U/Ker ¢=PB, an isomorphism is given by [a) P—ap, where &
denotes the order-congruence Ker N (Ker ¢)~1.

Next we investigate the connection between order-congruences and directed
kernels (in the sequel we refer to the latter simply as quasiorders, as they are quasior-
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ders compatible with the operations, which extend the partial order on the
algebra).

Proposition 1.4. The order-congruences are exactly the relations @NO™Y,
where @ is a quasiorder.

Proof. We have already seen (proof of Theorem 1.2), that the relations @N O !
are all order-congruences. Now if @ is an order-congruence, then let © be the directed
kernel of the natural homomorphism of A onto the quotient algebra A/O (see Theo-
rem 1.1). It is clear that $=0NO-.

If @ is a quasiorder, then ©NO ! is called the order-congruence associated
with @; cf. BLooM [1], where it is shown that @N @ ! is a congruence in the usual
sense. The same order-congruence may be associated with distinct quasiorders, as
trivial examples show. But always there is a smallest among the them: namely, for
an order-congruence @ the @ in the proof of Proposition 1.4 is the least quasiorder
such that #=0MNO ~1; call it the quasiorder associated with ®. It can also be defined
as the only quasiorder @ for which the natural map of % onto /P is a Q-homomor-
phism of U onto A/O.

For every binary relation HE 4% there is a smallest quasiorder ® on ¥ such
that HS @; this is the quasiorder generated by H (denoted by O(H )), and is equal
to the intersection of all quasiorders containing H. If H consists only of the pair (a, b),

then we say that ) (H) is the principal quasiorder generated by (a, b), and denote it by
O (a, b).

Theorem 1.5. The quasiorders of an ordered algebra W form an algebraic
lattice under set inclusion with the universal relation of A as the unit and the ordering of
A as the zero. The join \/ O, of the quasiorders O, y€I', is given by

y€r :
a(V 0,)b iff a0,a,0,,a,..4,-,0, b for some elements
er

Ayy vy G,1€A and Yis -eos yner

From now on, this lattice is denoted by Cqu (¥) (“‘compatible quasiorders”).
The straightforward proof of the next theorem will be omitted.

Theorem 1.6 (Second Isomorphism Theorem). Let @,, ©, be quasiorders on
A with ©,=0,, and let ; denote the order-congruence associated with 0, i=1, 2.
Then the relation O, on W/O, defined by

[a]®,0,[b)®, iff a®,b
is a quasiorder on /O, and (91/@1)/@2 is isomoprhic N[O, via the map
: [[a] 4’1] 52 — [a] D,,
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where @, is the order-congruence associated with ©,. Hence, the quasiorder-lattice of
A/ O is isomorphic to the interval [@) of Cqu ().

The following statement is equally trivial:

Theoerem 1.7 (First Isomorphism Theorem). Given an ordered algebra ¥,
a subalgebra B of W and-a quasiorder @€Cqu (W), define [B]={ac Ala®b for some
beB}, where ® is the order-congruence associated with ©. Let B be the subalgebra
of W determined by [B). Then the mapping [b](P\B)—[b](®}[B]) is an isomorphism
between BI(O}B) and B/(Ot[B]). (Here t stands for restriction.)

Now turn back to considering quasiorders generated by given set of pairs of
elements.

Proposition 1.8. For ¢,d,a,béA (c, d)cO(a, b) if and only if there exists
a natural number n, unary algebraic functions q,(x), ..., g,(x) over W and a sequence
C=Uy, Uy, ..., Upy=d of elements of A such that ‘

(1) uy=uy,, -for i=1,...,n—1 and

() uy-1=¢:(a), uy;=qi(b) for i=1,....n.

We omit the easy proof. Of course, if a=b, then O (a, b) is just the ordering of
A, as it follows at once from the definition of @(a, b), but it also follows from this
proposition. Replacing (a, b) in (ii) by an arbitrary (v;, v;)€ H, we get the descrip-
tion of 6 (H).

For every HC A% let @4(H) denote the congruence on (A; F) generated by H,
and for any congruence @ of (4; F) let & denote the smallest order-congruence of %
containing @. Then we can state:

Proposition 1.9. Let @ be a congruence of (A; F). Then for any a, b€ A,
a@b if and only if there is a sequence of the form

aPa =a,0a;=..a,=bOb,=b,0b;=...b,, = a.

S
Consequently, @y(H) is the order-congruence generated by H.

By means of Proposition 1.9 and the well-known Mal’cev lemma concerning
-
©,(H) it would be possible to give an explicit description for @y(H), but we omit

this. Obviously, Proposition 1.9 defines also the join of (arbitrarily many) order-
congruences. The formulation and the proof of the analogue of Theorem 1.5 is left to
the reader (cf. also [3], Proposition 2.2). The order-congruence lattice of U is denoted
by Con (), and the order-congruence generated by (a, b) is ©(a, b).
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Finally, note that the Second Isomorphism Theorem holds also for order-con-
gruences, but in general the First does not, because the ordering of the congruence
classes is defined by means of certain sequences of elements, and it can happen that
there is no such sequence between two elements of B inside of B, but there is already in
[B] (see Theorems 1.1 and 1.7). The corresponding variant of the Homomorphism
Theorem is true for Q-epimorphisms (of course, replacing Ker by Ker).

2. Operators on classes of ordered algebras. Varieties. Classes will always consist
of ordered algebras of the same similarity type. Let I, H, Q, S, P and Py be the
operators of forming all isomorphic, homomorphic, g-homomorphic images, sub-
algebras, direct products and subdirect products, respectively (products of empty
families — with the obvious meaning -— are also allowed). A class X is a variety
(resp. Q-variety) provided it is closed under H, S and P (resp. Q, S and P). It is easy
to check (cf. [1]) that

Theorem 2.1. For any class A, HSP(X') is the smallest variety containing 5.

One would expect an analoguous result for Q-varieties, but it does not hold in
general, because the operator inequality SQ=QS may be false, as it is seen from
very simple counterexamples (see also the remark at the end of the previous section
on the First Isomorphism Theorem). The characterization of the Q-variety generated
by a class in terms of operators is an open problem yet.

By an inequality of type T we mean a sequence of symbols f=g, where fand g
are t-terms, The expression “f=g holds in an algebra UA” (or more generally, in a
class o) has the obvious meaning.

There is a Birkhoff-type characterization for varieties (BLooM [1)):

Theorem 2.2. A class o is a variety if and only if A" consists exactly of all
the algebras satisfying a given set of inequalities.

For any fixed type 7, the varieties of type 7 are in one-to-one correspondence
with the fully invariant quasiorders (i.e. invariant under all endomoprhisms) of the
absolutely free t-algebra of rank R,. From this fact one can easily conclude Bloom’s
four rules for the corresponding ,,inequational logic™:

() t=1;

(i) ,=t, and 1,=t; imply f;=t,;

(i) #;=1, i=1, ..,n, imply f(t, ..., t)=f(1], ..., t)) for any n-ary opera-
tion symbol f;

@(v) 1(xys oo X)) =t (x4, ..., x,) implies t(qy, ..., ¢)=t'(qy, -.-,q,) for arbi-
trary terms ¢y, ..., 4,. (Of course, we are inside of 7).

Now we will consider free algebras over arbitrary posets; they will play an im-
portant role in the investigation of Mal’cev-type conditions.
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Definition 2.1. Let X be a class of ordered algebras, X=(X; =) a poset,
FeA ', andlet o be a map X—~F. § is the free algebra over X in " with the canoni-
cal map g, if the following hold:

(i) ¢ is monotone, and Xp generates F;

(ii) given any monotone map ¢:X-%U into an algebra W€, ‘there exists
a (unique) homomorphism : F—A such that g =0¢.

& is denoted by F& (%), or simply by &, (X), if we do not want to refer to ¢
explicitly. (Cf. [2] for topological algebras).

Proposition 2.3. §,(X) is unique in the sense that always there is an iso-
morphism & between FYP(X) and F(X) such that ¢, E=g,.

In what follows let us call the ISP-closed classes prevarieties.

Theorem 2.4. If A" is a prevariety, then for any poset X, §% (%) exists with
some @. g is an order-isomorphism onto a subset of F, provided " contains a nontrivi-
ally ordered member, or X is trivially ordered and X" contains an at least two-element
member.

Proof. The existence of & (X), can be seen in the usual way. For the second
statement let x, y€X, x££y, and a<b, a, beU, A", Then there is a monotone
map ¢: X—U such that yp=a, xp=>. But then xpz%yp, otherwise with the
of (ii) in Definition 2.1 we would get xoy =yoy, i.e. b=a, acontradiction. The third
statement is obvoius, since in that case we essentially work with usual universal al-
gebras, and the statement simply expresses that ¢ is 1—1.

So, in the two cases mentioned above, we may think X to be embedded in
Fo(¥). If X is trivially ordered, then &, (¥) depends only on the cardinality of
X. We will freely use such notations as Ty (a b, ), §y(n), etc. if this will result
no confusion.

The structure of &, (X) is given very easily, when X is trivially ordered: p=gq
in §,(X) (where p, g are terms applied to elements of X) iff- the inequality p=g
is identically true in 2. This remark will be frequently used later on. In the general
case we have no satisfactory description yet.

3. Subdirect decompositions. For an ordered algebra UWU=(A4; F, =), let
Or () denote the ordering of U, i.e. the relation =. If U is a subdirect product of
the algebras U;, icl, then
A Kern, = Or (),
icl
where =, is the i*® natural projection. We show that this condition characterizes sub-
direct decompositions.
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Theorem 3.1, Let W be an ordered algebra, ©O,Cqu (), €I, and
AO\|i€I}=0r (N). Then A is isomorphic to a subdirect product of the algebras
AN/O,.

Proof. Themap ¥: a-(a]®),),c;, where &,is the order-congruence associated
with @,, gives the desired isomorphism (for the definition of 21/@, see Theorem 1.2
and the remark after it).

An ordered algebra is subdirectly irreducible, if in all its subdirect decomposi-
tions some of the projections is in fact an isomorphism, which by the preceding theo-
rem is equivalent to saying that Or () is completely meet-irreducible in Cqu (2[),
or in other words, Cqu (2) contains a smallest nonzero element., 2 is called simple
(vesp. wealkly simple), provided Cqu (2) (resp. Con ()) is the two-element chain.
A simple algebra is always weakly simple, but not conversely.

The analogue of Birkhofl’s subdirect decomposition theorem holds:

Theorem 3.2. Every ordered algebra is isomorphic to a subdirect product of
its subdirectly irreducible quotient algebras.

Proof. The claim follows from the fact that, Cqu () being an algebraic lattice,
every quasiorder of 9 is the meet of completely meet-irreducible quasiorders, from the
definition of the orderings on the quotient algebras, and from the preceding theorem.
For a more direct proof, let us consider for every a, b€ with a ab a maximal
quasiorder ¥ (a, b) not containing (a,b). Then A{Y(a, b)lagb}=O0r (Y), and
¥ (a, b)VO (a, b) is the least nonzero element of Cqu (W (a, b)), from which the
assertion follows.

Of course, there are several necessary and sufficient conditions on families of
quasiorders to determine a finite direct decomposition. We formulate only the simplest
of them:

Theorem 3.3. Let ©,, @, be quasiorders on W, and let ®,, @, be the associated
order-congruences. The correspondence

a > ([a] Dy, [d] Dy)

defines an isomorphism between W and the direct product W/O, X W|O, if and only if
the following are satisfied:

(i) ©1N0,=0r ();

(i) Pi0Py=DPy0P,=1 (the universal relation).

Obviously, (i) implies that ®; A®,=w (the identity relation), but it is easily seen,
that the latter is not sufficient for (i).
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4. Conditions in quasiorder-lattices. The analogue of Jénsson’s lemma. In this
section we investigate the analogues of such properties, as (#-) permutability and dis-
tributivity of all congruences on every algebra from a class, having so great impor-
tance in the theory of universal algebras.

Proposition 4.1. Let A be a prevariety of ordered algebras with a nontriviglly
ordered member, Then there exist non-permutable order-congruences on an algebra
from A,

Proof, See[3].

We shall not deal with the n-permutability of, order-congruences for n=2,
because the idea of the proof of the next statement carries over easily. (Cf. [7].)

Proposition 4.2, Under the assumption of the above proposition, the n-per-
mutability of quasiorders does not hold in A'.

Proof. For technical reasons, let n=2m. Assume that the quasiorders @@=
= \/ @(azi,aziﬂ) and &= \/ @(aml,amz) of the free algebra F=g, (@, ...

t<m
, @,) are n-permutable. Then (a, a,,)E@oqio@o odﬁ implies the existence of a

» times
sequence dy=>byPb;Ob,Pb;...b, ,Ob,=a,. Here b,=g;(ay, ..., a,) for a term g,.
If 7 is even, then
Qi(aﬂa ay, 41,43, dg, '-')dsqi(am ay, Ags g, Ay, )(l)
Dq;41(a0s ay, a, a3, g, ...)PGi11(ag, A, Asy Ay, Ag, ..
Consider the endomorphism ¢ of &, which leaves a, fixed, and sends ay.,, and
Qgyy9 O Ay for every i<m. Then &= Ker ¢, so
Qi(ao, Gy, Qgy Ay, Ay, "') = Qi(ao’ ay,dy, g, dg, ')6 =
= qi+1(a0’ QAgy Goy Qyy Ay, -“)6 = Qi+1(00’ Ay, Aoy Ay, Ay, '-')'
Similarly, for i odd we have
qi(ay, a1, as, as, ...) = q141(a4, ay, a3, dg, ...).
Now let p;(x,, 2)=q;(x, ..., X, ¥, 2, ..., z) with x occurring i times for 1=i<n,
Po(x, ¥, 2)=x and p,(x, y, z)=z. Then in A there hold the following inequalities;
(%) pi(*%, %, 2) = ppya(x, 2,2), i=1,.,n-L
But take elements a<b in some member of & and compute:
b = Po(b, bs a) = J2] (b, a, a) = pl(b, b, a) = Pz(b, a, a) = Pz(b, b’ a) =..
W= p,(b, a,a) = a;
this is a contradiction. (Note, that p,(b, a, a)=p,(b, b, a) is true by monotonity.)

4
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This means that in nontrivially ordered prevarieties the description of the join
of quasiorders cannot be reduced so that we take sequences of elements of a fixed
length.

Corollary 4.3. Let A be a prevariety of universal algebras, n=2 a natural
number, and suppose that all compatible quasiorders on algebras in A" are n-permu-
table. Then all these quasiorders are congruences (i.e. are also symmetric). -

Proof. Endow all » -algebras with trivial order. Considering a pair (a, b)€
€0€Cqu (A), Ac ", and defining the p;(x, y, z) as above, we can compute by (%)
(which gives now equations!) and the compatibility of ¢:

b= Po(b b, a) = py(b, a, a) op: (b, b, @) = px(b, a, a) ep.(b, b; a) =
= p,(b, a,a) ='a, fromwhich (b, a)co follows.

Fortunately, besides the negative phenomena mentioned so far, there are positive
facts, too. The concept of quasiorder-distributivity of all algebras in a prevariety is
already useful. The significance of quasiorder distributivity is seen from the next two
statements. All algebras are ordered algebras of a fixed type. We follow JéNSSON s
[8] original proofs mutatis mutandis, keeping also his notations.

Lemma 4.4. If W is a subalgebra of [] (€licI), Cqu (N) is distributive and
W/ is subdirectly irreducible, where € Cqu (W), then there exists an ultrafilter U
over I such that U™t A=¢. (For any filter ¥ over I, V" denotes the relation defined
by xV"y iff {ilx@)=y@)}eV.)

. Proof. Obviously, the ¥~ are always quasiorders on €= JJ(C|i€I). Write
J" instead of V", if V is the principal filter generated by a subset J of I. Let
D={JJCI and J tA=¢)}, and let U be a maximal filter contained in D (Zorn’s
lemma applies since 1€ D). Then. U™ =U (J"|JeU), 50 U tA=¢. We show, that
U is an ultrafilter, For every J, KSI

0 I2J2K and K¢D implies JeD,

and (JUK) 14 = (J"tA)N(K "t 4), so by distributivity

(03] @ = oV(JUK) 14) = (VI 1 D)N(eV (K"t 4)) if JUKeD.
But ¢ is meet-irreducible, so @V (J tA)=¢ or V(K t4)=¢, ie.

) JUKeD implies JeED or KEeD.

If U wete not an ultrafilter, then we would have J¢ U and INJ¢ U for some J cr
Then by (1) and the maximality of U there exist sets K/, K”¢U such that JNK’¢ D
and (INJ)NK”¢D. However, K=K'NK"¢U, so KeD, and K=UJNK)U
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U(N\I)NK ) But this contradicts (3), since the members of the latter union do not
belong to D by (1).

Lemma 4.5. (Jonsson-lemma). If A" is a class of ordered algebras, ¥~ is the
variety generated by X', and all the Cqu (), UCY", are distributive, then all sub-
directly irreducible members of ¥~ belong to HSPy(X'), where Py, denotes the model-
theoretic operator of forming ultraproducts. Consequently, ¥ =IPsHSPy(X").

Proof. Every algebra in ¥ is of the form U/p, where U is a subalgebra of a
direct product [J{G;icl}, €, and @cCqu(A). If /e is subdirectly irre-
ducible, then U t4=¢ for a suitable ultrafilter U over I by the preceding lemma.
Therefore, U/ is a homomorphic image of W(U"t4), and the latter is obviously
a subalgebra of (J]J{€licI})/U". ‘

It remains to show, that (J]{C;]licI})/U" is an ultraproduct of members of
2. We point out, that this is just the ultraproduct of the €; over the ultrafilter U.
Indeed, let [ f]U denote the equivalence class modulo U of any function f¢€ [[C;
according to the definition of ultraproduct, and let @ be the order-congruence asso-
ciated with U", ie. @=U"N(U")"L. Now [f]1@=[g]©® means that {i|f(i)=
=g(i)}cU and {i|g(})=f(i)}€U, which is equivalent to {i|f(/)=g(})}cU, ie.
[f1U=[g]U. From this it follows at once, that the operations are also-the same. Let
[f/10=[g]®, then fU"g (see the proof of Theorem 1.2), which means {i]f(i)=
=g(i)}eU. But this expresses just the fact that [f]U=[g]U in the ultraproduct.

Let us mention, that many results of Jonsson’s fundamental paper [8] on congru-
ence distributivity can be reformulated and proved for ordered varieties, using
quasiorders Instead of congruences. To work with order-congruences is generally
more difficult, although not always: for example, the authors succeeded in charac-
terizing order-congruence distributivity of prevarieties in [3] by Mal’cev-type con-
ditions, while for quasiorder distributivity there is no such result yet; there is only a
criterion in terms of weak Mal’cev conditions (see below).

5. Characterization of quasiorder-distributivity, Some examples. Now we intend
to characterize the distributivity of quasiorders in a prevariety by a (weak) Mal’cev
condition. This characterization will enable us to present some nontrivial examples,
too.

Theorem 5.1. Let A" be a class of ordered algebras closed under I, S and P
(i.e. a prevariety). Then the following two conditions are equivalent: .

() Cqu (), the lattice of quasiorders of W, is distributive for any member U
of A; ' '

(i) For-any even integer n=2 there exists a positive multiple k of nf2 such that
U(n, k) holds in A, where U(n, k) is a (strong) Mal’cev condition defined as follows
((xo5 X1, .y X) is denoted by x and nf2 by m):

4%
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“There exist ((n+1)-ary and (n+2)-ary) terms

Po(x), Py(X), ..., P (X),
gi(t,x) for 1=i, j=k,
ri(t,x) for 1=i=k, iodd, and 0 =j=k—1, and
sk(t,x) for 1=1i, j=k, i even,
such that the following inequalities and identities hold:

Po(X) = Xy, Pu(X) = Xx,,
Pi1® = gi(xo, X, P = gi(x, %) for 1=isk,
@Gx,, %) =gl1(x0,X) for 1=i=k 1=l<k,
Pi-1(®) = 1§(x0,X), Pi(X) =Ti_1(xy_1,X) for iodd, 1=i=k,

(%41, %) = r41(Xgj40,X) foriodd, 1=i=k, 0=j<m 0=l<k-1,
j=1(m), where + is understood modulo n so that 0=2j+2<n,
Pi-1(®) = s1(31, %), Ppi(X)=si(x,,X) for ieven, 1<i=k,

sH(xgj, X) = $i41(Xgj41,X) forieven, 1<i=k 0<j=m, 1=l<k, j=I(m),
where + is understood modulo n so that 0<2j+1=n,"

Proof. Suppose (i) holds, » is an even positive integer, and consider the quasi-
orders a=-é(x0’ Xn)s ﬁ=—é({(xo, X1)s (X25 Xg)s «ovs (Xn—2s xn—l)})9 Y=5({(~xl’ Xg),
(xgs Xa)y ---s (X1, X,)}) on the free algebra F=F,(n+1) freely generated by
{x0» X15 ..» X,}. Since (x,, x,)€aA(BVy), we bave (xo, x,)E(@ABV(xAY) as well.
Therefore, xo=poa\BP1aAYP:2NBPs2AY...Pr=X, holds for some multiple k of
m and elements p,=p;(x) of §. Since (p;_;, p,~)€a=5(xo, x,), by Proposition
1.8 there are unary algebraic functions §i(f) on &, which can be considered as (n+2)-
ary terms gqi(t,x) 1=Isk;, such that gi(xy, x)=p;—1(x), ¢.(x,,x)=p;(x) and
qi(xn, X)=gi,1(xs, x) for 1=I/<k;. Both k and k; can be enlarged by repeating
the last terms, whence they can be assumed to be equal. Now all the identities and
inequalities involving some g} hold for the generators of §, therefore they hold through-
out 2. The case of the r} and s! is a little bit more complicated from technical
point of view, but can be handled similarly, while po(x)=x, and p,(x)=x, are
evidently true in . ‘

Conversely, let (i) be satisfied. Assume €K, a, B, y¢Cqu(A) and (a, b)c
€aA(BVy); then (a, b)e(aAB)V(xAy) has to be shown. From the assumption we
obtain a sequence of the form a=a,fa,ya,fasy...pa,_ya,=b for some even n;
moreover a,ad,. Let k be such a multiple of n/2 for which U(n, k) holds in 2. It
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is sufficient to show that for py(ay, ..., a,)=po(a) (notation!), p;(a), ..., p,(a) we
have
ay = po(a) aAB pi(a) aly py(a) aAB ps(a) aly ... p(a) = a,.

Indeed, p;_1(a) = ¢; (a0, 2)aq} (a,, 2) = gi(ap, 2)ag;(a,, 2)=g4(ap, B)e... =
= qi(ao, )ag;(a,, 8) = py(a) yields (p;_.(a), pi(a))€a, for i odd p;_,(a) =
= r(i)(aOs a)ﬁr(i)(ala a) = "i(az, a)ﬂr;.(as’ a)=..= rll;—l(an—% a)ﬁ’lic—l(an—ls a) = p;(a)
implies (p;-1(a), p;(a))€B, while (p;_,(a), p;(a))€y for i even follows similarly.

Before formulating a corollary to this theorem, two relevant remarks will be
made. Firstly, the theorem is obviously applicable for any class " of ordered alge-
bras, containing all free algebras §, (X) for finite unordered X. Secondly, any uni-
versal algebra can be considered as a trivially ordered algebra. Thus the theorem
also holds for certain classes (including varieties and prevarieties) of universal
algebras. In this case Cqu () is the lattice of all compatible, reflexive and transitive
binary relations of 2, and the inequalities in U(n, k) simply turn into identities.

Corollary 5.2. Let X be a class as in Theorem 5.1, and let there exist a ternary
term u(x, y, z) for which the identities u(x, x, y)=u(x, y, x)=u(y, x, x)=x hold
throughout 2 (i.e. u induces a majority function on the members of ). Then Cqu(2[)
is distributive for any U in A .

Proof. It is sufficient to show that U(n, n) holds in A" for any even n. Let us
agree that all the terms p, q, r, s, h, g (with indices) contain at least the variables
Xg» X1, ..., X5, but, for the sake of brevity, these common variables will not be in-
dicated. First we define pq, ..., p, and hy(2), ..., h,(¢) by induction:

ho(®) = t,  po = ho(xp),
h() = u(pioy, Xp Bim1 (®), i = hi(x).
The terms g,(¢), ..., g,(¢) are determined by
gi1(t) = h(t), g ()= u(gi(t), Xy i1 ().

For 1si=n set ¢i(t)=q¢i(t)=...=¢'_,(t)=p;-, (so in fact these terms do not
depend on t)and g} (t)=u(p;-1, &(t), hi=1(x;)). Foriodd, 1=i<n, let j=(i—1)/2,

re(t) = ...=ri_1(t) = pi_y,
() = u(pi1s Xp b1 (), and ri () =...=ri_,() = p.
For i even, l<i=n, set j=if2,
si@) =...= 55—1(’) = Pi-1»

50 = u(pi-1s X, i1 (D), and  sj, () =...=sL(1) = pi.
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A trivial induction shows that h;(x,)=x, (0=i=n), g;(x,)=x, and g;(xs)=p;i_1
(1=i=n). Thus it is not difficult to check that the terms p, g, r, s (with the corre-
sponding indices) satisfy the identities and inequalities required in U(n, n).

We note that it is possible to state and prove an analogous general theorem which
Htranslates” every lattice identity holding in all quasiorder-lattices of members in a
prevariety, similarly as it was done in [3] for order-congruence lattices. This is
straighforward enough, so we omit it. »

To conclude our paper, we present some examples. Since lattices are ordered
algebras with their natural orderings and u(x, y, 2)=(xAY)NV(xAZN(¥Az) induces
a majority function on any lattice, Cqu () is distributive for any lattice .Z. To give
another example which is far from lattice orders, set W=(A4; v, =) where A=
={a,b,c}, u is a ternary majority function such that u(x,y, z)=c provided
{x,y, z}={a, b, ¢}, and a<c, b<c are the only comparable pairs of distinct ele-
ments in (4, =). Then U is an ordered algebra, and any member of HSP(Y) is
quasiorder distributive by corollary 5.2.
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Toleranzrelationen als Galoisverbindungen

H. J. BANDELT

Uber Toleranzrelationen auf Verbiinden ist schon einiges geschrieben worden,
siche etwa den Uberblicksartikel [6] von Ivan Chajda. Ein jiingst verfaBter Aufsatz
[8] von Gé4bor Czédli gibt mir einen AnlaB, die bereits bekannten Ergebnisse um den
im Titel genannten Aspekt zu erginzen. Ich weill zwar nicht, ob durch Interpretation
der Toleranzrelationen als gewisse Galoisverbindungen zwischen Idealverband und
Filterverband erstere oder letztere besser verstanden werden; auf jeden Fall bleibt
— wie eigentlich immer bei Galoisverbindungen — nicht viel zu beweisen.

Zur Erinnerung sei gesagt, daB mit einer Toleranzrelation ¢ auf einem Verband
L schlicht ein reflexiver und symmetrischer Unterverband von LXL gemeint ist.
Beziiglich Inklusion geordnet bilden die Toleranzrelationen auf L einen Verband
Z(L), der in [3] ndher betrachtet wurde. Fine Toleranzrelation ¢ wird am besten durch
ihre Blockstruktur verstanden; jede maximale Teilmenge B von L paarweise modulo &
toleranter Elemente (also BX BC &) heiBt ein Block von &. Die von allen £-Blicken
erzeugten unteren Abschnitte und oberen Abschnitte bilden jeweils zueinander anti-
isomorphe Verbénde von Idealen und Filtern (vgl. [8]). In der Tat wird diese Anti-
isomorphie durch eine Galoisverbindung zwischen Idealverband .#(L) und Filter-
verband % (L) induziert. Es ist dann unschwer zu erkennen, daB der Toleranzverband
Z(L) isomorph ist zu einem gewissen Hauptfilter in dem Tensorprodukt von £ (L)
und & (L). Vielleicht bedarf noch das Tensorprodukt M ®N vollstindiger Ver-
binde M und N ¢iner Erklirung: Eine Galoisverbindung (o, t) zwischen M und N
besteht aus (einander eindeutig bestimmenden) Abbildungen o¢: M—~N und
1: N=M, fiir die y=xo mit x=yt gleichbedeutend ist. M ® N besteht aus allen
Galoisverbindungen (o, 7) zwischen M und N, vertreten durch die Komponenten o.
M ®@N ist beziiglich der punktweisen Ordnung ein vollstindiger Verband, der sich
bekanntlich als Verband bestimmter unterer Abschnitte in M XN darstellen 148t
(eine Menge A heilit unterer Abschnitt, wenn mit jedem a€A auch jedes x=a
zu A gehért). Hier sind natiirlich nur algebraische Verbdnde von Interesse:
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Hilfssatz. Es seien M und N algebraische Verbdnde, sowie S und T die zuge-
horigen Halbverbénde der kompakten Elemente. Das Tensorprodukt MQ@N ist
isomorph zu dem (bzgl. Inklusion) geordneten System aller unteren Abschnitte H von
SXT, die den nachfolgenden Bedingungen geniigen:

(i) Sx{0}, {0}XTCE H,
(i) (uAx,vVy), (WVx,vAy)eH falls (u,v), (x, y)EH.

Beweis. Wie mit Lemma 1.1 aus [1] gezeigt wurde, 148t sich M® N vermoge
(0, 1)~ {(x, Y)EMXN|y=x0} identifizieren mit dem System der Scott-abgeschlos-
senen unteren Abschnitte G von M XN, die (0, 1), (1, 0) und mit (», v), (x, y) auch
(unx, vVy), (uVx, vAy) enthalten. Es ist klar, daB fiir jede Menge G mit diesen Eigen-
schaften die Menge H=GNSXT ein unterer Abschnitt von SXT ist, der (i) und
(ii) geniigt. Umgekehrt 148t sich jeder solchen Menge H der Scott-AbschluB G=H
in M X N zuordnen; H besteht genau aus allen gerichteten Suprema (in M X N) von
Elementen aus H. Ubliches Hantieren mit algebraischen Verbianden (vgl. [10]) fiihrt
hier zur Einsicht, da G<-H die gewiinschte Isomorphie vermittelt.

Standardbeispiele algebraischer Verbinde sind Idealverbiande (L) (bzw. Fil-
terverbande & (L)) irgendwelcher Verbinde L. Die folgende Vereinbarung mag sich
hier als sinnvoll erweisen: Die leere Menge zdhlt zu # (L) (bzw. zu & (L)) genau dann,
wenn L kein kleinstes (bzw. groBtes) Element besitzt. Die Dedekind—MacNeille-
Vervollstindigung eines Verbandes L wird bekanntlich mittels einer Galoisverbindung
(1, ) zwischen S (L) und & (L) hergestellt; dabei werden einem Ideal I und einem
Filter F von L der Filter I' der oberen Schranken von I und das Ideal F' der unteren
Schranken von F zugeordnet. Eine beliebige Galoisverbindung (e, t) zwischen £ (L)
und (L) werde tolerant genannt, wenn I° stets /' umfaBt (d. h. immer F'C F*
gilt). Die toleranten Galoisverbindungen bilden somit in dem Tensorprodukt
F(L)®F (L) gerade den von (4, }) erzeugten Hauptfilter.

Satz. Fiir jeden Verband L sind der Toleranzverband E(L) und der Verband der
toleranten Galoisverbindungen zwischen S (L) und % (L) isomorph.

Beweis. Die kompakten Elemente von # (L) und & (L) auBler der leeren Menge
bilden einen Verband, der mit L bzw. dem zu L dualen Verband identifiziert werden
kann. Offenbar ist eine Galoisverbindung (o, 7) zwischen # (L) und & (L) genau .
dann tolerant, wenn fiir jedes Hauptideal (x] der Filter (x]? jeweils x enthilt, d. h.
wenn die Menge y={(x, y)€LXL|y€(x]°} eine reflexive Relation ist. Der Verband
der toleranten Galoisverbindungen ist daher aufgrund des Hilfssatzes isomorph zum
Verband I' (L) aller reflexiven Unterverbinde y von LX L, fiir die mit w=x, (x, y)€y,
y=z stets (w,z)€y gilt. GemaB [2] ist vermdge y—~yMNp~! der Verband I'(L) iso-
morph zum Toleranzverband Z(L). '
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Da das Tensorprodukt distributiver algebraischer Verbiande wieder distributiv
ist (siehe [1] oder [12]), folgt aus dem voranstehenden Satz sofort, daB Toleranzver-
bande distributiver Verbinde stets distributiv sind (siehe [7], vgl. [4]).

Fiir endliche Verbidnde L ist der obige Satz schon als Lemma 3 in [2] erwédhnt
worden : Der Toleranzverband = (L) eines endlichen Verbandes L stimmt mit dem Ver-
band der verbindungstreuen Subjektionen-(im Sinne von [13], [14],[15]), d. h. der ab-
steigenden residuierten Abbildungen (im Sinne von [5]) iiberein. Fiir eine gegebene
Toleranzrelation ¢ wird dabei durch die zugehorige verbindungstreue Subjektion ¢
jedes Element x abgebildet auf das kieinste Element xo, das zu x tolerant modulo ¢
ist. Aligemeiner ergibt sich hier fiir einen beliebigen Verband L: Die zu einer Tolreanz-
relation ¢ auf L gehorige Galoisverbindung (o, 1) ordnet einem Ideal I den gréBten
Filter F=1I° (bzw. einem Filter F das grofte Ideal I=F")zu, so daB INF in einem
Block von ¢ enthalten ist. Umgekehrt liefert eine tolerante Galoisverbindung (o, 1)
vermoge {INF|I=F7, F=I°, INF=0} die Blocke der zugehorigen Toleranzrela-
tion & auf L. Rudimente dieser Beobachtung finden sich auch schon in [8] Theorem
2. Es mégen S°(L) und F*(L) die zucinander antiisomorphen Verbidnde aller
Ideale der Form I°° bzw. aller Filter der Form F™ bezeichnen. Die voranstehende
Beobachtung 148t sich dann auch wie folgt formulieren (und umfaBt somit [8] Theo-
rem 1): Das System L/¢ aller Blocke von ¢ kann mit dem Unterverband {/¢.#°7(L)|
IINI° =0} von S°7(L) identifiziert werden; dieser Unterverband ist vermdge ¢ anti-
isomorph zu {FeF (L) F'NF=0}. Der sogenannte Faktorverband L/¢ von L
modulo & erbt seine Verbandsstruktur also von dem vollstindigen Verband #7°(L),
wobei (o, 1) die zugehérige Galoisverbindung ist. Die Art der Einbettung von L/
in #°°(L) ist auch schnell geklart: Die Ideale [x)* und die Filter (x]° liegen infimum-
dicht in #£7°(L) bzw. #*°(L). Somit ist L/¢ supremum- und infimumdicht in #7°(L),
d. h. #7°(L) ist die Dedekind—MacNeille-Vervollstindigung von LJE.

Jeder endliche Verband kommt als Faktorverband eines endlichen distributiven
Verbandes modulo einer Toleranzrelation vor, siche [8] Theorem 3. Diese Tatsache
leitet sich auch schon aus [11] Satz 7.2 ab: Jeder endliche Verband ist isomorph zum
Skelett eines endlichen distributiven Verbandes. Das Skelett eines modularen Ver-
bandes L endlicher Linge ist ndmlich das Bild einer gewissen verbindungstreuen
Subjektion auf L (siehe [11] Lemma 6.1), also der Faktorverband von L modulo
einer kanonischen Toleranzrelation (vgl. [3] Theorem 3.1). Ich weiB allerdings nicht,
ob auch im unendlichen Fall jeder Verband als Faktorverband eines distributiven
Verbandes modulo einer Toleranzrelation auftritt.
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E-unitary covers and varieties of inverse semigroups

MARIO PETRICH and NORMAN R. REILLY?

1. Introduction and summary

E-unitary inverse semigroups have attracted considerable attention as a result
of the remarkable work of MCALISTER [5], [6] concerning their structure and proper-
ties. He proved, inter alia, that every inverse semigroup S has an E-unitary cover,
in the sense that there exists an E-unitary inverse semigroup P and an idempotent
separating homomorphism of P onto S. Various properties and constructions of E-
unitary covers were further established by MCALISTER and REILLY [7]. On the other
hand, the lattice of varieties of inverse semigroups as algebras with a binary and a
unary operation has been the focus of extensive investigations by several researchers;
we mention only KLEIMAN [3], [4].

The purpose of this note is to establish some surprising relationships between the
two areas of research discussed above, viz., E-unitary covers and varieties of inverse
semigroups. The main points of our consideration are: (i) which varieties admit E-
unitary covers for their members, (ii) for a given variety of groups %, which varieties
of inverse semigroups ¥~ have E-unitary covers over %, in the sense that every member
S of ¥ has an E-unitary cover P such that P/oc%. The class & of all E-unitary
inverse semigroups plays an important role in our investigation.

The content of the paper is briefly as follows. Some preliminary material is
discussed in Section 2 in order to establish the notation and terminology. Several
characterizations of varieties with E-unitary covers are established in Section 3. This
is followed, in Section 4, by a description of subhomomorphisms in terms of homo-
morphisms of inverse semigroups, a result needed in the next section. The principal
result of the paper, proved in Section 5 along with some consequences, provides sev-
eral criteria for the existence of an E-unitary cover of an inverse semigroup .S over
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a group variety %. All varieties of inverse semigroups having E-unitary covers over a
fixed group variety % are described in Section 6 in several ways. The relation v,
defined on the lattice of varieties of inverse semigroups by: ¥ v, ¥ if #N&=¥"NE
is discussed briefly in Section 7.

2. Preliminaries

We will follow the notation and terminology of HowiE [2]. For background con-
cerning inverse semigroups, we also refer the reader to this book.

Let S be an inverse semigroup. Then S is E-unitary if it satisfies the implication
xy=y=x2=x. The semilattice of idempotents of S will be denoted by Ej, the least
group congruence by o, the universal congruence by . The closure of a nonempty
set A of S will be denoted by Aw. An inverse semigroup P is an E-unitary cover of
S if P is E-unitary and there is an idempotent separating homomorphism of P onto
S; if Plo=G then P is an E-unitary cover of S over G.

Let ¢ be a congruence on S. The set

ker ¢ = {s€S|sge for some e€Eg)}

is the kernel of g, tr g=0| Eq is the trace of g. The least congruence on S with the
same trace as ¢ will be denoted by g¢,,;,. For a full discussion of these concepts, see
PETRICH [9]). The natural homomorphism $—S/¢ will be denoted by o8.If ¢: S—~T
is a homomorphism, we will denote by ker ¢ the kernel of the congruence on § in-
duced by ¢.

For any nonempty set X, we will denote the free inverse semigroup on X by Iy
and the free group on X by G. The variety of all inverse semigroups will be denoted
by £, that of all groups by ¢ and the lattice of all varieties of inverse semigroups by
& (F). The variety generated by the semigroup S will be denoted by (S).

For a countably infinite set X and any ¥ €2 (f), let o(¥") denote the fully
invariant congruence on Iy corresponding to ¥,

3. Varieties with E-unitary covers

The principal result here gives several characterizations of the varieties of inverse
semigroups which have E-unitary covers. These characterizations involve free objects,
E-unitary inverse semigroups and the kernel of the corresponding fully invariant con-
gruence on the free object.

We start with a simple useful result.
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Lemma 3.1. Let ¢ be a congruence on an inverse semigroup S. Then S/g is
E-unitary if and only if ker ¢ is closed.

Proof. Suppose that S/g¢ is E-unitary and let a€(ker g)w. Then eacker g
for some ecEg and thus eag(ea)® which implies that aga? since S/¢ is E-unitary.
But then acker ¢ and thus ker g is closed.

Conversely, assume that ker p is closed, and let xyox. Then (x~x)yox~lx
so that y€(ker g)w=ker ¢ and thus y%gy. Hence S/g is E-unitary.

The following concept is basic for our considerations.

- Definition 3.2. A variety ¥ of inverse semigroups has E-unitary covers if,
for every S€¥7, there is an E-unitary cover of S in ¥,

We can now establish the first highlight of the paper.

Theorem 3.3. The following conditions on a variety ¥ of inverse semigroups
are equivalent.
() ¥ has E-unitary covers.
(ii) The free objects in ¥ agre E-uniitary.
(iii) ¥ is generated by its E-unitary members.
(iv) ker g(¥") is closed.

Proof. (i) implies (ii). Let F bea ¥ -free inverse semi group and S be an E-uni-
tary cover for F in ¥". There is an (idempotent separating) epimorphism ¢: S—F.
Let XS F be a set of ¥ -free generators of F, and let T be a cross section of the con-
gruence on S induced by ¢. Define a bijection y: X—~T by xy=t if t€T and
t¢o=x. Then y extends uniquely to a homomorphism i of Finto S. For any x€X,
we have xiy¢=x so that Y@ is an endomorphism on F which restricts to the identity
on X. Since X is a set of ¥ -free generators of F it follows that ¢ is the identity map
on F., But then ¢ is one-to-one and thus a monomorphism of F into S. Since S is
E-unitary, so also is Fif. Since i is a monomorphism, it follows that F is E-unitary.

(i) implies (iii) trivially.

(iii) implies (i). Let S€¥". By the general theory of varieties and the hypothesis,
there exist E-unitary inverse semigroups 7, in ¥, an inverse semigroup 7 which is a
subdirect product of T,’s and an epimorphism ¢: T—S. Let ¢ be the congruence
on T induced by ¢. Letting g, be the least congruence on T with the same trace as g,
‘we obtain the following diagram of epimorphisms:

T___L-» S
A

[
+ |
T/ @min : T/ Q

o

min
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where 1:to,;,—~t0 (t€T), and ¥ is an isomorphism. Since ¢ and g, have
the same trace, t is one-to-one on idempotents, that is to say, it is idempotent
separating. In view of ([10], Theorem 4.2), a g,;, b if and only if ae=be and
egalagb b for some ecEg. Thus 62¢,;,. This together with the fact that
T is E-unitary implies

ker Qmia & kero = Eg

and thus ker g,;,=Er=Ew. This implies by Lemma 3.1 that T/¢_;, is E-unitary.
Since T/0min€¥ , we have proved that S has an E-unitary cover in ¥ .
The equivalence of items (ii) and (iv) follows by Lemma 3.1.

Remark. Part of Theorem 3.3 has been obtained independently by
F. PasToN [8].

4. Subhomomorphisms

The results proved in this section contain a description of subhomomorphisms
in terms of homomorphisms and will be used in the construction of subdirect products
which in turn will be needed in a construction of E-unitary covers.

We start with a concept which will prove quite useful.

Definition 4.1. Let § and T be inverse semigroups. Then a mapping
@: S—~2T is a subhomomorphism of S into T if, for all s, t€S,

(i) sp = 0;

(i) (s9) (to) & (D o;

(ii)) s7p = (sp) 7Y,
where, for any subset 4 of T, A~ ={a"|ac 4}.

From (ii) and (iii) it follows that S¢=U{s¢:s€S} is an inverse subsemi-
group of T and ¢ is said to be surjective, if Sp=T.

If T is a group, then the subhomomorphism ¢ above is unitary if for any
S€S, 1€s¢ implies s€Es.

The following result will be needed.

Proposition 42. [7] Let S and T be inverse semigroups and let ¢ be a
(surjective) subhomomorphism of S into T. Then

II(S, T, ¢) = {(s, NESX T|t€sep}

is an inverse semigroup (which is a subdirect product of S and T).
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Conversely, suppose that V is an inverse semigroup which is a subdirect product
of S and T and let y be the induced monomorphism of V into SXT. Then
@ defined by :

sp = {teT|(s, DeVY}

is a surjective subhomomorphism of S into T. Furthermore, VYy=II(S, T, ¢).

Theorem4.3. Let R,S and T be inverse semigroups. Let o.: R—~S be an
epimorphism and B: R—~T a homomorphism. Then @=o"'8 is a subhomomorphism
of S into T and every such subhomomorphism is obtained in this way. If, in addition,
T is a group, then ¢ is unitary if and only if ker S ker a.

Proof. (i) Itis clear that sp=0 (s€S), since a is an epimorphism.

(ii) Let x€s@, y€to. Then there exist x’, y’¢R with x'a=s, x'f=x, y'a=1,
¥’ B=y. Hence (x’'y)a=st while (x"y)f=xy and xy€(st)p. Therefore (s¢)(tp)<
S(st)e.

(i) With x,x” as in (i), () la=s~1, (x)"f=x"1. Hence x~'€sl¢p,
(s¢)1Ss~'¢ and conversely. Thus ¢ is a subhomomorphism,

Conversely, if ¢ is a subhomomorphism of § into T, let R=II(S, T, ¢).
Let o:(s,t)—s and f:(s,t)—~¢ be the projections of R onto S and onto T,
respectively. Now, (s, #)€R if and only if t€sep while r€sa™2f if and only if
(s, )ER which gives p=a"18. ‘

Let T be a group, ¢ be unitary and réker f. Then rf=1 and 1€(ra)o.
Since ¢ is unitary, ra€Eg, rékera and so ker fCker a. Conversely, if this
inclusion holds and 1€s¢, then for some réR, ra=s and rf=1. Hence reker <
Cker o so that s®=s and ¢ is unitary.

The usefulness of Theorem 4.3 lies in the fact that by choosing R appropriately,
for example to be a free inverse semigroup, it is possible to generate subhomo-
morphisms. This technique will be used in the next section.

In fact, in order to obtain all subhomomorphisms it suffices to let R range
over all free inverse semigroups, as we now show.

Proposition4.4. Let 0:S—T be a subhomomorphism of the inverse semi-
group S into the inverse semigroup T. Then there exist a free inverse semigroup F,
an epimorphism o: F—S, and a homomorphism p: F—~T with 0=a"18.

Proof. By Theorem 4.3, there exist an inverse semigroup R, an epimorphism
y: R—~S and a homomorphism é: R—~T with 6=y7%. Let I; be the free inverse
semigroup on the set R and let 7n:J;—~R be the homomorphism defined by the
identity mapping on the set of generators R. Let a=mny, =76 and let x€S.
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If yexf, then x=zy, y=z0, for some z€R and so, considering z as a generator
of Iy, wehave x=zny=za, y=zrnd=zf andso y€xa~'B. Conversely, if ycxa~18,
then x=za=(zn)y, y=zf=(zn)d, for some ze€l,, and so y€xy~1d=0. Therefore
0=a"18.

5. E-unitary covers over a group variety

The question that we now wish to consider is the following: for a given inverse
semigroup S, or variety of inverse semigroups ¥~, and a given group variety %,
when will S or every member of ¥~ possess an E-unitary cover over some member
of %?

For the purposes of the following discussion, we consider inverse semigroups
and groups as algebras in the variety of unary semigroups, that is as algebras with
a binary operation ((x, y)--xp) and unary operation (x—x72).

Notation 5.1. Let X be a countably infinite set. We denote the free unary
semigroup on X by Uy.

Any law in a unary semigroup is of the form u=v, for some u, v€Uy. A con-
struction for Uy was recently given by CLIFFORD [1].

For each set X, there exist fully invariant congruences x#, 4 on Uy such that
Iy and Gy are isomorphic to Uy/x and Uy/l, respectively, since Iy and Gy
are free objects in their respective varieties. We will identify Iy and G, with
Ux/x and Uy/A, respectively. :

Notation 5.2. Let X be any countably infinite set. For any variety of inverse
semigroups ¥", let K,=ker o(¥") and for any variety of groups %, let N,
denote the corresponding fully invariant subgroup of Gy.

Definition 5.3. Let % be a variety of groups, S an inverse semigroup
and ¥ a variety of inverse semigroups. We will say that S (respectively, ¥
has E-unitary covers over % if (for every S€7¥") there is a group G¢% for which
there is an E-unitary cover of S over G.

It follows that ¥~ has E-unitary covers if and only if it has E-unitary covers
over V' NY.

Recall that an inverse monoid S with a group of units G is called factorizable
if for each s€S, there exists g€G such that s=g. We will need the following
results. )

Theorem 5.4. [7] Let G be a group and let S be an inverse semigroup. Let
F be a factorizable inverse monoid with group of units G which contains S as an
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inverse subsemigroup. Suppose that, for each g€G, there exists s€S such that
s=g. Then ’
{(s, £)€SXGls = g}

is an E-unitary cover of S over G. Conversely, each E-unitary cover is isomorphic
to a cover obtained in this way.

Proposition 5.5. [7] Let S be an inverse semigroup and let G be a group.
Suppose that ¢ is a surjective unitary subhomomorphism of S into G. Then
II(S, G, @) is an E-unitary cover of S over G. Conversely, let P be an E-unitary
cover of S over G with associated homomorphisms o:P—~S, f: P~G and let
Y: P~SXG be the induced monomorphism. Then ¢ defined by

s¢ = {g€Gl(s, Q) PY}
is a surjective unitary subhomomorphism of S into G and P=II(S, G, ¢).
We are now ready for one of the main results of the paper.

Theorem 5.6. Let S be an inverse semigroup, % be a variety of groups and
X be a countably infinite set. The following are equivalent.
(i) S has an E-unitary cover over %.
(ii) If u=u isalawin %, thenitis also alawin S.
(iii) For all homomorphisms o:Iy—~S, K, Sker o.

Proof. (i) implies (ii). Let GE% and P be an E-unitary cover of § over G.
By Theorem 5.4, P is isomorphic to an inverse subsemigroup of a factorizable
inverse monoid F with group of units G. Let #*=u be a law in %, say u=
=u(xy, ..., X,). Let s, ...,5,6S. Since F is factorizable, there exist g, ..., £,€G,
with s;=g; (i=1, ...,n). Then

U(Syy oons 8p) = u(gyy oovs 8)

where u(g,, ..., g,) is the identity of G, since G€# and w?=u is a law in %.
Hence u(sy, ..., s,) is an idempotent and u?=u isalawin S.

(ii) implies (iii). Let ucUx be such that ux¢K,. Then ul€N, so that
w*=u is alawin % and so, by assumption, also in §. Hence, for any homomor-
phism B:Uy—~S, we have u?B=uf. In particular, for any a: Iy —S, u?(x%a)=
=u(xla) or (ux,ux)caoa~t. Hence uxcker a.

(iii) implies (i). Let a:/g—S be the homomorphism defined on the generators
of Iy by s—+s, let G be the free group in % on the set of generators S and let
B: I;—~G be the natural homomorphism. By Theorem 4.3, 8=«~1§ is a subhomo-
morphism of § into G. Since B is surjective so also is 8.

We next show that ker fSker a. The following diagram illustrates the proof.
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CA>
A
i \
X S
p q /l
HX..-—E—IX————>S < 15— %

¥

Since it will help to clarify the discussion, we will denote by S the underlying
set of S.

Let acker B. Then there exists a finite subset A={x,, ..., x,} of § such that
a is contained in the inverse subsemigroup (4) of Iy generated by A. Let us
identify A4 with a subset of X and extend a«l, arbitrarily to a mapping a’: X ~S.
Let «”:1,—~S be the unique extension of «’ to a homomorphism of Iy into S.
Then «”| =0l -

Let Hy be the relatively free group in % on the set X and let f': X—~Hy
embed X identically. Let B”:Iy—~Hy be the unique extension of f’ to a homo-
morphism of Iy into Hy. Then ker f”=K,. Furthermore, since f’|,=f|,
we have B| =Bl Since acker B, we have acker f”=K,. Hence, by (iii),
acker a” and so ackera. Thus ker SCker a.

Hence by Theorem 4.3, 8 is a unitary subhomomorphism and by Proposition
5.5, there exists an E-unitary cover of S over G.

Theorem 5.6 has an obvious analogue for any variety of inverse semigroups 77,
obtained by letting S range over ¥ .

Corollary 5.7. Let ¥ be a variety of inverse semigroups and % be a variety
of groups. The following are equivalent.
(1) ¥ has E-unitary covers over %,
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(i) If v*=u isalawin %, thenitis also alawin V.
(i) Ky Sk,

Corollary 5.8. Let S be an inverse semigroup and U be a group variety.
If S has an E-unitary cover over %, then (S) has E-unitary covers over %.

Proof. Let u*=u be a law in %. By Theorem 5.6 (ii), #®=u is also a law
in S. Butthen #*=u isalso alawin {S), and the desired conclusion follows from
Corollary 5.7.

As an application of the above theory, we now produce a variety of inverse
semigroups which has E-unitary covers over almost all varieties of groups, but
which does not itself have E-unitary covers.

Proposition 5.9 . Let B, denote the 5-element Brandt semigroup with 3 idem-
potents. Then (By) has E-unitary covers over any nontrivial group variety.

Proof. Let I; denote the free inverse semigroup on one generator. It follows
from [9] that, for each integer n>1, there is a congruence g, on I; such that
P,=1,/9, is an ideal extension of the cyclic group Z, of order n by B, which is
E-unitary. Furthermore, the projection of P, onto B, is idempotent separating,
since the ideal is a group. Hence each P, is an F-unitary cover for B,. Now
YN(P,) is simply the variety o, of abelian groups of exponent n. Thus B, and
so, by Corollary 5.8, (B,) has E-unitary covers over each variety 7, (n>1), of
abelian groups of exponent n, and so over every nontrivial variety of groups.

We shall now see how the equivalence of (iv) and (i) in Theorem 3.3 can be used
to establish that varieties have E-unitary covers.

In #(¥), the various varieties generated by groups, semilattices and Brandt
semigroups constitute an ideal isomorphic to the product of #(%) and a three
element chain. (See KLEIMAN [3].) Following [9], we will call any semigroup in any
of these varieties a strict inverse semigroup. Each variety of strict inverse semigroups
which is not a variety of groups and semilattices of groups is generated by a single
Brandt semigroup. Moreover, if ¥ = (B) where B =.4°(l,G,I; 4), then
¥ =(GYV(B,) where (G) is now a variety of groups. Similarly, any variety ¥~ of -
semilattices of groups which is not a variety of groups is of the form %V, where
% is a variety of groups and & is the variety of semilattices. For more details
on this subject, see KLEIMAN [3]:

Proposition 5.10. If ¥ is a variety of strict inverse semigroups containing
nontrivial groups, then ¥~ has E-unitary covers.

Proof. First let ¥ =%V(B,), where % is a nontrivial variety of groups
and let S€¥". By the general theory of varieties, there exist T, 4, B where A€,

5
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B¢(B,) and TS AXB is a subdirect product of 4 and B together with an epi-
morphism ¢ of T onto S. Since % is nontrivial, by Proposition 5.9 there exists
an E-unitary cover P, say, of B over %. Then Pc%\{B,)=%" by ([7], Corollary
1.8). Let a: P—~B be an idempotent separating epimorphism and let T'={(g, p)|
(a, p))eT}S AXP. Since A is a group and P is E-unitary, AXP is F-unitary.
Hence 7' is also E-unitary. Moreover, T'¢¥" and (a, p)—(a, pe)¢ is an epi-
morphism of 7 onto S§. By Theorem 3.3 (iv), ¥~ has E-unitary covers (over.%).
A similar argument will show that any variety of semilattices of groups has E-unitary
covers and clearly varieties of groups do also.

Remark 5.11. The arguments of Proposition 5.10 would also apply to any
variety of the form #V(B}), where % is a non-trivial variety of groups.

6. The Malcev product

For any group variety % we will now characterize the class of all inverse semi-
groups ¥~ which have F-unitary covers over %. It will turn out that the variety
generated by the Malcev product Yo%, where & denotes the variety of semi-
lattices, is the greatest variety of inverse semigroups having E-unitary covers over ”Zl
The variety generated by So% will be characterized in several ways.

Notation 6.1. We will denote by & the variety of all semilattices. For any
variety of groups %, ‘

Fody = {P€ S|P is E-unitary and PlocU} -

is the Malcev product of & and %. For any family of laws u,=v,, o€ A, we write
(u,=v,|a€ A) for the variety of inverse semigroups determined by these laws.

Another highlight of the paper can now be established.

Theorem 6.2. The following statements are valid for any group variety %.
(i) (FLo)=(P=ul? is a law in U).
(i) (FLoU)={Sc#|S has an E-unitary cover over U}.’
(iii) (Fo®) is the largest variety of inverse semtgroups with E-unitdary covers
over U.
(iv) % is the smallest variety of groups over which (Fo%) has E—umtary
covers.

Proof. (i) Let ¥ =(Fo%) and ¥ ={u*=ulu*=u is a law in %). First let
Sc%o%U and let u*=u be a law in %. By the definition of SLo%, .we have



E-unitary covers and varieties of inverse semigroups 69

S/o€% and thus «?*=u is a law in S/o. Hence, for any substitution # of u in S,
it follows that #%¢ii, whence #icker 6=Eg. Thus u*=u isalawin S. Consequently,
Se# and thus Lo SW. But then also ¥ =(FoUYCH .

Conversely, let Sc€#". Then by Theorem 5.6, S has an E-unitary cover
P over G for some GE€%. It follows that P€¥o% and hence S€(FoU)=V".
Therefore # S ¥~ and equality prevails.

(if) This is a direct consequence of part (i) and Theorem 5.6.

(i) This is an obvious consequence of part (ii).

(iv) Let ¥~ be a variety of groups over which (#o%) has E-unitary covers,
and let Ge%. Then Ge¢(%o%) and hence has an E-unitary cover P over ¥ .
Now, P being an E-unitary cover of a group must itself be a group. Since G is
a homomorphic image of P, we obtain that GE“// Consequently #<S ¥, as
required.

An interesting property of the varieties ¥~ between % and So% is provided:
by the next result. \

- Proposition 6.3. For any variety of groups % and any variety "/f of inverse
semigroups, the followzng holds:

kero(¥) =kero(¥) o U S V' S (FoU).

Proof. First assume that ker o(%)=ker ¢(¥"). This means that w?=w
isalaw in 4 if and only if w?*=w isa lawin ¥ . It follows from Theorem 6.2 (i)
that ¥ S{(Fo%). Since ¥ is a group variety, tr o(¥)=w and thus tr o(%)2
2tr g(¥7). This together with the hypothesis that ker g(#)=ker o(¥") implies
that o(#)2¢(¥) and thus ZESY¥. '

Conversely, assume that # S ¥ S(Fo%). The first inclusion implies o(%)=2
20(¥") and thus ker o(%)2ker ¢(¥"). The second inclusion implies ker o(%)<
Cker o(¥") by Theorem 6.2 (i), as above. Therefore ker o(%)=ker o(¥").

7. An equivalence relation on £ (%) -

We introduce a relation on % (#) which relates any two varieties if they have
the same E-unitary members and consider some associated properties.

In order to put the relation we are introducing into the proper perspective,
we include two known relations v, and v, in our scheme. For any %, ¥"€ #(%), let

UnY o UNA =V NA, UV & UNG =V NG, UV = UNE =V NE.
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Here o/, 4, and & denote the classes of all antigroups (fundamental inverse semi-
groups), groups and E-unitary inverse semigroups. The relations v, and v, were
introduced by KLEIMAN [3], who showed that they are congruences. He defined v,
as follows: ¥, ¥ <¥Uv9=vVv¥9, and then proved the above equivalence. The
relation vy is new and the subject of our study in this section.

We can say that %v,¥" precisely when % and ¥ have the same E-unitary
members.

Proposition 7.1. v,Nv;Sv;Cv,.

Proof. Let %(v,Nvy)¥ and Se¢#N&. Since § is E-unitary, s#No=¢,
the equality relation. Hence uNo=¢ and thus S is a subdirect product of S/u
and S/o. Here S/u€U%N and S/ocUN%. Since %Uv,¥", we have S/uc¥v N,
and since %vy¥", we get S/o€¥ NY. But then S¢(¥ NV NFS ¥, which
proves that # N&S ¥ NE. By symmetry, we conclude that #v;¥". This proves that
v, Sy, If #NE=7"N&, then intersecting by ¥, we get #N¥=v"NY.
Hence v;&v,.

Remark 7.2. It should be noted that v, is not a congruence on £(#). If
W =(By), W' =(B}), then Wvy#’'. However, (W VE)NE(W'VI)NE.

Proposition 5.9 shows that, in general, for a given variety of inverse semigroups
¥, there is no minimum variety % of groups such that ¥ has E-unitary covers
over %. This may be contrasted with the next result.

Proposition 7.3. The following statements are true for any variety of inverse
semigroups V.
(@) (#"N&) is the smallest member of the vg-class containing ¥ .
(1) (FNEY is the largest variety contained in ¥ having E-unitary covers.
(ili) (" NE&Y={ScF|S has an E-unitary cover in ¥°}.

Proof. (i) First note that
FNENE S vVNE S (VNENE

which shows that (¥ N&)vy¥". Now let #'v;¥". Then # NE=¥NE which
implies that (¥ N&)=(¥ NEYS W, as required.

(ii) Since (¥"N &) is generated by E-unitary inverse semigroups, it has E-unitary
covers by Theorem 3.3. Let #  be a variety of inverse semigroups contained in
¥ and having E-unitary covers. Again by Theorem 3.3, we get # =(W N&).
Since also (¥ N&YS(¥ NE), we conclude that # S (¥ N&E), as required.

(iii) We have already observed that every S in (¥"N&) has an E-unitary
cover in (¥ N&) and thus in ¥". Conversely, let S have an E-unitary cover
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P in ¥. Hence PE¥' NES{¥ NE) and S is a homomorphic image of P so
that S€(¥ Né&).

It can be verified easily that any group variety % alone constitutes a v,-class.
If ¥ is a variety of inverse semigroups contained in {(x"=x"+), then no S in
¥ which is not a semilattice is E-unitary since a"=a"a and a®7#a for any non-
idempotent element a in S. In view of this and the results of KLEIMAN [3], we
conclude that the join of all varieties vy-equivalent to & is equal to 4.

Some additional information about (Fo%) is provided by the following
statement.

Proposition 7.4. For any group variety %, we have
(FLoUYNEG =AU, (FoUYNE = LoU.

Proof. Let GE{Fo«)NY and let u*=u be a law in #. By Theorem 5.6,
u*=u isalsoalawin G, and thus G€% since every lawin %, except xx1=yy~1,
can be written in the form w?=u. Consequently, (FLo¥)NFZ%; the opposite
inclusion is obvious.

Let S€(FoU)NE. Then S/ee{(FoU)NY =% by the first formula. Since
S is E-unitary, we obtain that S€Fo%. Therefore (FoUYNE & Fok; the
opposite inclusion is trivial.

In connection with the congruences v; and v,, and Theorem 3.3, the next
proposition seems to be of some interest. For it, we need a known result.

Lemma 7.5. [3] For any variety of inverse semigroups V", the minimum element
of V(mNvy) is (V' NGW NA).

Proposition 7.6. Let ¥ be a variety of inverse semigroups. Consider the
following conditions on V",

(i)—(@iv) The conditions of Theorem 3.3.

(v) For every Sc¥, there exists GE¥ ¥, an inverse semigroup T which
is a subdirect product of S/u and G, and an idempotent separating epimorphism
¢:T-S.

(vi) ¥ is the minimum element of its v, (vy-class.

Then (1) implies (v) and (v) implies (vi).

Proof. (i) implies (v). Let §,T¢¥" where T is an E-unitary cover of S.
Then T is a subdirect product of T/u and T/o since uNo=e. Since T is an
E-unitary cover of S it follows that T/u=S/u, so that T is a subdirect product
of S/u and S/o, where the latter isin " N%,
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(v) implies (vi). Let the notation be as in part (v). Then S€(S/uXG)S
S NAWF NY) which proves that ¥ S NAW(¥ NY); the opposite
inclusion is trivial. By Lemma 7.5, we have that ¥~ is the minimum element of
its v, Nv,-class.

The first implication in the above proposition cannot be reversed. For example,
the variety ¥ =(x®*=x%) of inverse semigroups satisfies part (v) but not part (i).
We have no counterexample for the converse of the second implication.
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Separation of the radical in ring varieties

M. V. VOLKOV

Varieties of associative rings in which the Jacobson radical of every member
is 1) nil, 2) nilpotent, or 3) a direct summand were studied in [1]. Varieties satisfying
1) or 2) were described there; the same varieties were characterized independently
by the author in [2]. As to condition 3), Theorem 19 from [1] states that varieties
in which the Jacobson radical of every finitely generated ring is a direct summand
may be given by a finite set of two-variable identities. However these identities
cannot be found by the method from [1], and the problem of exact description of
varieties satisfying condition 3) remained open. This note is devoted to solve that
problem.

Theorem. The following conditions on an associative ring variety X are equiv-
alent:

(a) the Jacobson radical of every member is a direct summand;

(b) the Jacobson radical of every finitely generated member is a direct summand;

(c) X is generated by a finite (possibly empty) set of finite fields and by a nil-
ring of restricted index;

(d) the identities

™ XYy =YX*= Xx*Y"
hold in X for some natural numbers k=1 and n#1.

Proof. (a)—(b) obviously.

(b)—~(c). We consider for every prime number p the variety U, given by the
identities XY —YX=pX=0. There are finitely generated rings in A, in which the
radical is not a direct summand, for example, the ring S, of all 2><2 matrices of

the form (8 g ] is such where o« and B run through the p-clement field. Hence

Received April 13, 1982.
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X does not contain A, for any p, and some identity X"=X", m<n, holds in
X by the main theorem from [2]. ¥ is generated by its finite rings ([2], Corollary 1)
and therefore by its finite subdirectly irreducible rings. If R is such a ring then
we get by (b) that either R=J(R) (and R is nilpotent) or J(R)=0 (and R is
simple). A finite simple ring is either a finite field or the ring of all rXr matrices
over a finite field (r=1). However, rings of the second type cannot be contained
in X since every such ring contains the ring S, for some p as subring. We see
that the variety is generated by its finite nilpotent rings and finite fields. It remains
to note that only a finite number of finite fields may be contained in X and all
finite nilpotent rings from X satisfy the identity X™=0 (in view of the identity
X™=X" holding in X). Thus, the direct sum of all finite nilpotent rings from X is
the required nilring of restricted index.

(c)~(d). Let N, F,, ..., F, berings generating X where the identity X*=0
holds in N, and F, ..., F, are finite fields. If F; consists of m; elements
and n=(m,—1)...(m;—1)+1, then the identity X"=X holds in every field F,
We see that the identities (*) hold in all rings generating X, hence they hold in all
rings from %.

(d)—~(a). Let R be a ring satisfying (*). It is easy to see that J(R) is nil and
the idempotents of R lie in its center. Further, since an arbitrary ring of rxr
matrices over a field (r>1) does not satisfy (*) a standard application of Kaplansky’s
theorem about primitive P/-rings shows that R/J(R) is a subdirect sum of finite
fields and satisfies therefore the identity X"=X. Denote by E the ideal of R gener-

ated by all idempotents of R. Let y= Zm’ rie;,€J(R)NE, where r,€R, e; are idem-
i=1

potents. Let us consider the element

e= Zm'e,.— ee;+ 2 eeje—...+(—1mtle L e,.

i=1 1si<j=m . lsi<j<s=m
It can be immediately verified that e*=e and ee=e; for any i. Thus, y=ye=
=ye*=y"e*=y*1*=...=0. On the other hand, the image of the element x"~!
in the ring R/J(R) is an idempotent for every x€R. We lift it to an idempotent
e, of the ring R; then x—xe €J(R) and x=xe,+(x—xe,)EE+J(R). We see that
R is a direct sum of the ideals J(R) and E.

The theorem is proved.

Let us recall that a ring R is called a semidirect sum of an ideal J and a sub-
ring S if S+J=R, SNJ=0. In connection with our theorem we pose a natural

Question. What are the ring varieties in which the Jacobson radical of 1)
every, 2) every finitely generated member is a semidirect summand?
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Note that these classes of varieties are sufficiently large. Thus, all locally finite
varieties of prime characteristic belong to the second of them by Wedderburn’s
classical theorem about separation of the radical.

The author expresses sincere gratitude to Professor L. N. Sevrin for helpful
discussions.
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Disjoint sublattices of lattices.

M. E. ADAMS and J. SICHLER

1. Introduction

M. Sekanina asked whether there exist lattices 4 and B such that 4 contains
an arbitrarily large finite number of pairwise disjoint sublattices isomorphic to
B but does not contain infinitely many pairwise disjoint sublattices isomorphic
to B. Independently, I. Korec [2] and V. Kousek [3] have shown that such lattices
do indeed ‘exist. In fact, Koubek has shown that both 4 and B may be chosen
to be distributive.

The aim of the present paper is to strengthen Koubek’s result by showing that
the distributive lattices 4 and B may be chosen to be totally ordered sets. Actually
more will be shown. The principal result will be the followmg

Theorem. There exist totally ordered sets A and B,, for 0<2%% such that
O |4]= =2% (ii) B,=By if and only if a=B, and (iii) if a<22 then, for- n<w,
A contains n disjoint copies of B,, but it does not contain infinitely many such copies.

That A4 is uncountable is no coincidence. A routine proof, using Hausdorff’s
classification of the countable order types, shows that if A is a countable totally
ordered set that contains an arbitrarily large number of finite disjoint copies of
a totally ordered set B then A contains infinitely many d1s;ornt copres of B
(We shall not include the details. )

It is a pleasure to acknowledge the helpful suggestions made by the referee
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2. The construction

The construction of the totally ordered set A involves a new variation of
a technique first introduced by B. DUsHNIK and E. W. MILLER [1].

Let A denote the real line {0, 1) and 7 its rational members. The Dedekind
completion of a totally ordered set C will be given by C *. Observe that for two
totally ordered sets C and D any order preserving injection of C into D can be
extended to an order preserving injection of C* into D*. Since a monotone
function on A has at most countably many discontinuities, it is readily seen that
there are 2% order preserving injections of A into itself. With the exception of
the identity function, let G={g;|1=p<2%} be a list of all the order preserving
injections of A into itself.

We now define a dlstmgulshed countable subset of G. For l1=i<w and
l=k=i! define

Iy = [(k—D)/GY, k/GD);

that is, for each i, {I,;: 1=k=i!} is a system of pairwise disjoint intervals of length
1/(i!) covering A. If 1=j=i+1, define an order preserving injection f;;: A~4 by

i) = x/G+D+((k—Di+(—-D)/G+11)

for x€l; and k=1,...,il. Observe that f;(I,)=[(k—D/EN+(—1D/GE+1)),
(k=D/EN+jl+1D)= ”,‘_Iik for every j=1,...,i+1. The function f;; is
said to be of #ype i.

By way of example, it follows that there are exactly two functions of type one:

. . e . . 1
/11 Is an order preserving bijection of [0,1) to [0, 1/2) given by fn(x)=?x,

1 | . T
fm(x)=?x+3 is an order preserving bijection of [0, 1) to [1/2,1). There are
three functions of type two: f; is the order preserving bijection of [0, 1) to
1 1 1
[ ] [— ——J defined by fgl(x)——x, for 0<x<?, and fm(x)——x—i—— for

1
?Sx<1 ; fa2 is the order preserving bijection from [0, 1) to [ ] [

1 1 i
given by, for 0<x<— f,z(x)--——x-i- 5 and, for -2-Sx<l _ﬁm(x)— 2 ; finally,

.o . 5
fes 18 the order preserving bijection from [0,1) to [?, ?] U[z, 1] such that

1 1 1
f%(x)=?x+?, for 0§x<7, and ﬁza(x)=?x+? for 5§x<1.

Let F={f;|1=i<w and 1=j=i+1}; for xcA, denote F(x)={f(x)|feF};
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and, for XS, let F(X)={J(F(x): x€X). Note that, for every fcF, x is rational
if and only if f(x) is rational. Since F is countable, we may conclude the following:

Lemma 1. |{x€i|lx€ F(x)}|=
We shall also need the following lemma.

Lemma?2 For X,YE2, zf [X|=2% and |Y|<2® then there exists x€X
such that F(x)Y =0.

Proof. Suppose that for every x€X there exists an f€F with f(x)€Y. For
yeY, let X,={x€X|y€F(x)}. Thus, XS|J(X,: y€Y). Since |X|=2% and
|Y|<2%, it follows that X, is uncountable for some ycY. However, F is
countable. Hence, there are two distinct elements x of X, such that f(x)=y
for the same f¢F. Since each f¢F is one-to-one, this is a contradlctlon The proof
is complete.

Some further notation is necessary. For g€G, define gp={x€l|g(x)¢ F(x)}.
Then set Gp={g€G||gel<2%}. Clearly, FSGy follows from fy=0 for every
f€F; it is also easy to see that the inclusion is proper.

We are now ready to define the totally ordered sets 4 and B, for a<2%.
As will transpire, the totally ordered set A will be a subset of A that contains 7;
the definition will be given by transfinite induction. For B<2%, sets Ag, Cy,
DS will be defined; subsequently, 4 will be the set ANUJ(4;: f<2%) and,
for «<2", | J(C,: f<2%)S B,SU(C,UD,: B<2%). Intuitively, the mappings
from F will be used to exhibit arbitrarily many finite disjoint copies of B, in A4
and the construction will ensure that no g¢ Gy can be used to provide an order
preserving injection of B, into A.

Let Ay=0, Ag=1, Co=n, C4=0, and D,=9. By transfinite induction we will
define, for f<2%, 4;, 45, Cy, Cp, DS A such that (i) | 4], [4y], |Cyl, IC31, |Dg|<2%,
(ii) for y<B, 4,S 4, A;S 45, C,ECy, C;SCy, and D,C Dy, (iii) 4,NA; =0,
CyNC; =0, and (C,UC;)ND;=0 and (iv) F(Cp)S A4, and F(Dy)S4;. (Note
that these conditions are satisfied for f=0.) Suppose that, for y<f<2%, 4 , A;,
C,,C;, D, are defined and satisfy (i), (ii), (iii), and (iv).

Since gz: A4 is not the identity and is order preserving, there are 2% elements
x€A such that xs£ggz(x). Thus, because g, is injective, the set of all elements
x€A such that x=gy(x), x¢ U(C;: y<B)UU(D,: y<B), and gz(x)§ U(C,: y<B)U
UUD,: y<p) has cardinality 2%. By Lemma 2, choose such an x¢4 for which
Fx)NUMA,: y<p)=0. Let C;={ggx)}UU(C;: y<B).

By Lemma 2, there exists y€AN({x} UU(C;: A<p)UC; UUD,: y<p) such
that F(»)NU(4,: y<B)=90. Choose such a y€i. Let Dy={y}UU(D,: y<}p).

There are now two cases to consider.
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First, suppose gs€Gp. Let Ap=(4,: y<B), 4;=F(x)UF(»)UU(4,: y<B),
and Cp={x}U(C,: y<p). Clearly (i) and (ii) are satisfied. By the choice of
x€4, CgNCy =0 and, by the choice of x, y€4, 4;N A4, =0 and (C,UC;)NDy=0
thus, (iii) holds. Obviously, by definition, (iv) is also valid.

Second, suppose gz¢Gr. Thus, [(gp)r]=2%. Thus there are 2% elements
z€(gp)r such that z4C,UD, and, since g, is an injection, g4z(z)¢ F(x)UF(y)U
UU(4;:y=<B). By Lemma 2, we may choose the element z such that, in addition,
F@NU4,: y<p)=0. Let A,={g,(2)}UU(4,: y<B), 4;=F(x)UF(y)UF(z)U
UU4;: y<B), and Cp={x}U{z}U(C,: y<p). Clearly, (i) and (ii) are valid.
The choice of z€A is such that gx(z)¢ F(z); thus, since (F(x)UF(»)UF(z))N
NU4,: y<B)=0, it follows that 4;NA4;=0. By choice, C,NC;=9. As in the
first case C;NDy=0 and, by inspection, C,,ﬂDp @; thus (iii) also holds. Once
more it is clear that (iv) is valid.

As indicated earlier, we set A=A\U(4y: f<2%), A'=)(4;: f<2%),
C=J(Cy: B<2%), D= J(Dy: f<2%), and B=CUD. It follows, by (iii), that
A’C A. However, by (iv), F(B)S A’C 4. Thus f}B is an order preserving injection
from B into A for each f¢F. By (ii), |[D|=2%. Let (S,: 2 <22") be an indexing
of the power set of D, let B,=CUS, for a<22", Since B,C B, the mapping
f1B, is an order preserving injection of B, into 4 for a<2% and f¢F.

3. Proof of the theorem

We first show that, for distinct o, f<22'%, B, B;. If af, then S,=S;.
Suppose, with no loss of generality, that there exists s€S,\Ss. If S,==S; then
there is an order preserving injection g: B,—~B,. In which case, g extends to an
order preserving injection g*: Bf —~B;. Since nZB,, B;SA, it follows that
g*t:A—A. By (ili), CND=P; thus, s¢ B;. Consequently, g* is not the identity
function and, hence, g*€G. Whence, for some y<2%, g*=g . However, for
g,, thereis x€A for which x€C and g(x)€C’. By (iii), CNC’=H and DNC’'=0.
Since C&B,,B;SCUD, we conclude that x€B, and g,(x)¢B;. However,
g, is an extension of g: B,—~By; that is to say, g,(x)=g(x)€B,;. By contradiction,
we conclude that there is no order preserving injection g: B,—~B;. We have shown
the following:

Lemma 3. For a, <2, B,~B, if and only if a=§.

For the interested reader, we remark that, in the construction, 2 more judicious

choice of subsets of D yields the following stronger result: for distinct a, B <22“"
B, is not a sublattice of B; and B, is not a sublattice of B,.
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For a<22“°, we have already observed that, for ‘1=i<w and 1=j=i+1,
fit B, is an order preserving injection from B, into 4. We now show that, for
n<w, A contains n disjoint copies of B,. As stated previously, for lI=i<w
and 1=j=i+1, f;: Iy—~J;; is an order preserving bijection for every 1=k=il.
Since, for distinct 1=j,/=i+1,J;NJiu=0, it follows that f£,(A)Nf,(1)=0.
Consequently, the restrictions of the functions of type i to B, yield..i+1 order
preserving injections of . B, into A such that, for distinct 1=j, I=i+1, f;;}(B,)N
Nfut(B,)=9. Thus, we have shown:

Lemmad. Let a<2® For n<w, the totally ordered set A contains
n disjoint copies of. B,.

It remams to show that, for az<22 % 4 does not contain infinitely many disjoint

copies of B Since;, for every a<22k° CZC B,, it is sufficient to show that 4 does
not contain infinitely many disjoint copies of C.

Suppose that g: C—~4 is an order preservmg mjectlon Then g extends to
an order preserving injection g’r C*—-A+ Agam since #& 4, CE A, it follows
that g+ A~2A; thatis to say, if g " is not the 1dent1ty function then g*¢G.

Lemmas5. Let g:C—+A4 be an order preserving injection. If g is not the
Identzty Sfunction, then g+€Gg. . . : .

Proof. Suppose g*¢Gp. By ‘the a'bove’ 'comments there exists 1=pg<2%
such that g*=g,; thus, g,¢Gr. Hence, by the definition of Ag and Cg, there
is ze(gﬂ)p such that zEC,, and gg(z)€4,. Consequently, z¢€C. and g,(z)QA
However, gg 1san extension of g; whence, g,,(z)EA By contradiction, we conclude
g+eGy. :

Before considering infinitely many order preserving 1njectlons from C into
A we must derive Lemma 8.

Let g€Gr and I be a nonempty open interval of A. Since geGy, |{x€l |g(x)¢
¢ F(x)}|=|gpl<2%. Hence, |{x€1|g(x)€F(x)}]—2“° and, by Lemma I,
{xel I x#g(x)}|=2%. Consequently, there exists xc/ such that x=g(x) and
x#(k—1) /(i") for any 1=i<w and 1=k=il. Select such an x. Since I is
open there exists d>0 such that (x—d, x+d)S1. For d’=|g(x)—x|, choose
1=p<w such that 1/(p')<m1n {d, d’}. Hence, there exists ISrSp' such that
x€L,S1 but g(x)¢l, .

Lemma 6. There is a nonempty open interval 1’ S 1, such that, for - y€l’,
either ycgp or g(y)=1;(y) for some 1=i<p and 1§j§i+l.

Proof. For 1=q=p+1, f,,(,)=Jp;E1,.  Furthermore, by definition,
for psi<w and 1sjsi+l, fi;(I,)E1, Smce ,by hypothesis, x=(r—1) /(p!)

6
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and x#g(x), there is a nonempty open interval I’S 1, such that g(I")N1,,=0.
Thus, for yelI’, either g(y)¢ F(») (in which case, y€gy), or there exists 1=i<w
and 1=j=i+1 such that f(y)=g(y)¢1l,. Since y€l,, it follows that i<p.
The proof is complete.

Since g€Gy is assumeéd, it follows that the set of all ycI” with g(y)= f j(y)
for some 1=i<p and i=j=i+1 has cardinality 2%. Furthermore, any non-
empty open interval contained in I’ has the same property.

Lemma 7. There is a nonempty open interval 1"C1l’, 1=i<p, and 1§j§f+1
such that, for yel”, g(y)=f;(y).

Proof. Since I’ is nonempty and open, I'=(uy,v,) for some distinct
Uy, 05€4. Let Iy=I". For n<w, we inductively define a nonempty open interval
I,=(u,,v,) such that, for n=m<w, I,21,. Assume that 1, has been defined
and choose, if possible, distinct #,4,, v,+:€1, such that, for some y€I,, either
there exist 1=i<p and 1=j=i+1 such that g(y)=f;(y) but, for all
2€(Ups15 Vor1)y () ESj(2),. o yEgp but, for all z€(Uyi1, Vy41), 2¢8r. I 44y
and v,,; exist then set I,,,=(4,+1, v,41); otherwise, let' I,,,=1,. Since there
are only finitely many possibilities for i and j, there exists some n<w such that
I,=I, forall n=m—<=w. Let 1”=1,. We must show that 7” satisfies the require-
ments of the lemma. By the remark preceding Lemma 7, there exists y€I” such
that, for some l1=i<p and 1=j=i+1, (y, g(»))€f;;. Hence, by construction,
for any distinct #, v€l”, there exists u<z<v such that (z, g(z))¢f;; for the same
i and j; that is to say, the set of all elements z€1” such that g(z)=f;;(z) is dense
in 1”. Since g is order preserving and f;; is continuous on I” (recall that
I"CI'CI, and f; is continuous on I,), it follows that g(z)=f;;(z) for all
z¢l”. The lemma is verified.

The statement of the next lemma is immediate from the discussion following
Lemma 5 together with Lemma 6 and Lemma 7.

Lemma 8. Let gcGy andlet 1 be a nonempty open interval of ' A. Then there
‘exist a nonempty open interval JSI and fCF such that g(x)=f(x) for all x€J.

Suppose that, for n<w, h,: C ~4 is an order preserving injection.

Lemma 9. There exists a nonempty open interval IS ). such that if y€l is
rational then y=hy(x) for some rational Xx.

Proof. If hy is the identity function then, since #SC, any open interval
IS will satisfy the lemma. - If h, is not the identity then, by Lemma 5, h €G.
Thus, by Lemma 8, there is a nonempty open interval JS A, 1=i<w, and 1=sj=
=i+1 such that, for x€J, hf (x)=f;(x). Since A={: 1=k=i!), there is
some l=k=i! such that I;;NJ0. Choose a nonempty. interval 'S I;NJ.
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By definition, f;; is continuous on I;; and, hence, it is a continuous order preserving
injection on I’. Thus, f;(I’) is a nonempty open interval of A. Let I=f(I’).
If yeI then y=f;;(x)=hi(x) for some x€l’. By the definition of f;;, if y is
rational it follows that x is rational. Again, since 3 ESC, hf(x)=h,(x) and the
proof is complete.

Lemma 10. There exist x,yen and distinct n,m<w such that h,(x)=nh,(y).

Proof. Let I be given as in Lemma 9. Suppose that, for some l=n<o,
h, is the identity function. In particular, for y€l, y=h}(y). If y is rational
hf(y)=h,(y) and, by Lemma 9, the proof is complete. Thus, we assume that,
for 1=n<uw, h, is not the identity function.

Choose 1=p<w such that for some 1=r=p!, [,S1 Recall that, for all
ﬁ1=f€F of type iéps ﬁj(lpr)glprgl’

By Lemma 5, all A} belong to Gp. Lemma 8 yields the existence of an open
nonempty interval 7,S1, such that hf agrees with some f;)€F on I,. Define
inductively 7,,,E1, as a nonempty open subinterval on which A}, , agrees with
some fi,,EF. If some f,, is of type iz p, choose a rational x€1,. Then h,(x)=
=h; (x)=fn)(x)€I is rational, and, by Lemma 9, h,(x)=hy(x") for some rational x’.
Therefore, each f,, for 1=n<w is of type i,<p. Since there are only finitely
many of these functions, there exist l=m<n<w with hf\l,=f,,=fim,=
=h}tl,. For any rational x¢I, it follows that h,(x)=h}(x)=h}(x)=h,(x). The
proof is complete.

Since #EC, Lemma 10 implies that there are distinct »n, m<w such that
h,(C)Nh,(C)=0.

Lemma 11. If, for n<w, h,: C—~A is an order preserving injection then there
exist distinct n,m<cw such that h,(C)Nh,(C)=0; that is to say, A does not
contain infinitely many disjoint copies of C.

Lemmas 3, 4, and 11 yield the Theorem.
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Schwach distributive Verbinde. I

A. P. HUHN

In [4] und [5] wurde der Begriff des n-distributiven Verbandes eingefiihrt. In
denselben Arbeiten wurden Charakterisierungen der n-distributivitit und, ohne
diese weiter auszufiihren, Beispiele fiir n-distributive Verbdnde angegeben. Ziel
vorliegender Arbeit ist, diese fritheren Arbeiten durch Angabe der noch nicht ver-
offentlichten Beweisen zu vervollstindigen.

In der Einfiihrung von [5] haben wir unserer Meinung Ausdruck gegeben, dass
die wichtigsten Gebiete in dieser Theorie die folgenden sind:

a) Verallgemeinerung der ,,reinen Theorie” der distributiven Verbande, vor
allem bei Anwesenheit der Modularitiit, die fiilr n=2 keine Folgerung der n-Distri-
butivitat ist (vgl. die nachfolgende Definition).

b) Untersuchung der Beziehungen zwischen der n-Distributivitit und der
Dimension von projektiven Geometrien.

¢) Anwendungen auf die Theorie der Varietiten von Verbanden.

d) Untersuchung der n-Distributivitit in Kongruenzverbinden universeller
Algebren, hauptsachlich in Normalteilerverbdnden von Gruppen.

Untersuchungen zu a) haben wir in 5] begonnen und in [11] fortgesetzt. Die
Gebiete b) und ¢) wurden in [9] bzw. [8] und [10] behandelt. Hier werden wir uns
mit dem Gebiet d) beschiftigen. Da die Definitionen seit dem Erscheinen von [5]
in neueren Arbeiten verindert worden sind, ist es nétig zuerst die Begriffe festzu-
legen.

Ein Verband heisst n-distributiv, wenn er der Identitit

n n

*A Y yi=V [xA V 5]
i=0 j=0 i:(}

geniigt. Diese Definition ist dual zu der Definition in [5}, und die Modularitit wird

Eingegangen am 24. August 1982,
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nicht mehr wie in [5] gefordert. Es sei aber bemerkt, dass in dieser Arbeit nicht-
modulare n-distributive Verbande fast keine Rolle spielen. Diese werden in zwei
anderen Arbeiten betrachtet [12], wo wir uns mit Kontraktionen-Verbdnden von
Graphen und mit Verbinden von konvexen Mengen beschiftigen.

1. Der Chinesische Restsatz in universellen Algebren

Genau so, wie im Bereich der ganzen Zahlen, kénnen Kongruenzsysteme in
beliebigen universellen Algebren definiert werden. Es seien A4 eine universelle
Algebra,. @(4) der Kongruenzverband von 4 und a,, a,,...., ;€ A4,0,,0,, ..., 0,€
€0(4). Dann heisst das System

) x=a;0), i=1,2 ...,k

ein Kongruenzsystem iiber A mit der Unbekannten x. Es ist klar, wie die Los-
barkeit und die Lésungen eines solchen Systems zu definieren sind.

Definition. Eine Algebra A4 geniigt dem Chinesischen Restsatz der Ordnung
n (oder in Zeichen: dem C,-Satz), wenn fiir beliebige

A1y Aoy veny ak€A und 01, 02,..., OkEQ(A), k>n+1,

die Losbarkeit aller (n+1)-clementigen Teilsysteme von (1) auch die Losbarkeit
des ganzen Systems (1) nach sich zieht. (Ein n-elementiges ,,Teilsystem® braucht
nicht aus n verschiedenen Kongruenzen zu bestehen, da identische Kongruenzen
in (1) unter verschiededen Indizes aufgezihit werden kénnen.) '

Wie leicht zu sehen ist, besagt der klassische Chinesische Restsatz, dass der
Ring der ganzen Zahlen dem C,-Satz geniigt. Eine Verbingung des C, Satzes mit
der n-Distributivitit ist in dem néchsten Satz enthalten.

1.1. Satz. Damit eine universelle Algebra A dem C,-Satz geniigt, ist es not-
wendig und hinreichend, dass fiir beliebige Kongruenzen ¢,80,,80,, ...,0,€0(A)
die Identitat

® 0 NG, /"\ 0 A6,
. i=0 . 0. ::(; .

gilt, wobei - und A das Produkt bzw. den Durschschnitt von Relationen bezeichnet.
Wenn die Kongruenzen von A vertauschbar sind, d. h., wenn fir beliebige 0, o€ @ (4)
Op=0¢0 gilt, so geniigt A genau dann dem C,-Satz, wenn O (A) n-distributiv ist.

Beweis. Die zweite Aussage des Satzes folgt aus der ersten. In der Tat stimmt
unter den Bedingungen der zweiten Aussage das Produkt der Kongruenzen von
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A mit dem Supremum iiberein. Hieraus folgt die duale n-distributivitit von @ (4).
Im Falle der Vertauschbarkeit der Kongruenzen ist aber @(4) auch modular
und in modularen Verbinden ist die n-Distributivitit selbstdual ([5]). Also reicht
es, nur die erste Aussage zu beweisen. Wir schicken die folgenden zwei emfachen
Bemerkungen voraus: :

1. Ist ‘x, eine Losung des Systems (1), so ist die allgemeine Losung von (1)

X=X LZ\ 6,-).

2. Fiir k=2 ist (1) genau dann 16sbar, wenn g, 6,0, a, gilt.
Nun zeigen wir dass die Bedingung des Satzes hinreichend ist.” Es sei 1=i<
<ip<...<i, =k, und es bezeichne K (i, i, ..., #,) das folgende Teilsystem von (1):

X = aij (0”), j = 1, 2, weay T

](1,2,...,n+1) ist losbar. Es sei n+1=r<k. Wir zeigen; dass die Los-
barkeit von 8(1,2, ...,7+1) aus der Losbarkeit.von K(1,2,...,r) folgt.

Es sei x, eine Losung von (1,2, ...,r). Dann ist die allgemeine Losung
von 8(1,2,...,r) :

X=X (iz/r\1 Bi).

Es geniigt zu zeigen, dass diese Kongruenz zusammen mit R(r+l) ein 15sbares
System bildet, d. h., dass die folgende Relation gilt:

® @11 Orsa A\ O; %o.

Es sei {i, iy, ..., i} S {1, 2, ,r} Dann ist x, eine Losung von K5, ..., i,).
Die allgemeine Losung von R(i, ..., i,) ist

n
X=X, ['/\ 0,-,).
Ry, -y Iy» r+1) ist aber I6sbar, also gilt

n
ayy1 0,51 ‘/\1 oi, Xo-
J=

So erhalten wir

4 Ar+1 A [gr-l;l' A 01] Xo-
i€k -
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Wir werden nun zeigen, dass folgende Gleichung gilt:
(5) r+1 /\ 0( /\ [9r+l * '£\K 6[]'

=1 kcill.ér;';.,r)
Durch Einsetzen von (5) in (4) ergibt sich dann (3).
Um (5) aus (2) herzuleiten, zeigen wir durch Induktion, dass fiir beliebige
s=zn und Kongruenzen ¢, ¥,, ¥y, ..., Y,€0(4) die Identitit

) ‘P’/\‘pi= C'/\ [‘P /\'/’i]
B E e
gilt. (Man erhilt dann (5) aus (2, 1), indem man ¢ durch 0, und lh durch
;41 ersetzt.)
Fiir s=n ist (2,) mit (2) 1dentlsch Es sei s>n und nchmen wir an, dass
(2,-1) bewiesen ist. Es seien @, Yo, ¥y, .. . Y;€@(A). Es sei ferner

llbi fiir i=0, 1,...,n—1,
BEV Ay, fir i=n
j=n
Dann koénnen wir (2) anwenden:

o A =«/>-i£\o;a=j/=\o ¢-ii\ux,] [qo A !ﬁ.]/\ Ale- A %]
izj z#!

Auf der rechten Seite kann die Induktionsvoraussetzung angewendet werden und
der somit erhaltene Ausdruck ist die rechte Seite von (2,). Damit ist die Hinlanglich-
keit der Bedingung bewiesen.

. Um die Notwendigkeit zu zeigen, nehmen wir an, dass fiir gewisse Kongruenzen
©,0,,0,, ...,0,60(4) gilt: '

[ -i[\ ; # ,/\o ¢ /\ 6;|.
i#l

Dann ist die rechte Seite kleiner als die linke Seite, d. h., es gibt Elemente a, b€ 4,

so dass a ¢- /"\0,- b ungiiltig, aber a /"\ Q- /"\ 0| b giiltig ist. Daraus folgt, dass
i=o j=ol  i=q

i#j
die (n+1)-elementigen Teilsysteme des Systems
x=a (p)

x=b (00) ’
x=b (6,

losbar sind, das ganze System aber unlosbar ist. Damit ist der Satz bewiesen.
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Der Fall n=1 dieses Satzes ist bekannt (siche Gritzer [2]). Gritzer hat das
folgendes bewiesen: Es sei A eine universelle Algebra. Damit fiir alle k=2 und
Kongruenzen x=aq;(6;), i =1,2, ..., k, iiber 4 die Bedingungen a;= a; (0,V0)),
i#j, i, j=1,2,...,k, die Losbarkeit von (1) nach sich zichen, ist es notwendig
und hinreichend, dass ©(4) distributiv ist und seine Elemente vertauschbar sind.
Es ist noch eine offene Frage, wie dieser Satz sich fiir beliebige n verallgemeinern
dlsst.

2. Mal’cev-Polynome

Im folgenden beschiftigen wir uns mit dem C,-Satz fiir Varietiten. Man findet
den folgenden Satz in.[6]. Weitere, dquivalente Bedingungen wurden von BAKER
und PIxLEY [1] und von PIXLEY [16] gefunden

2.1.. Satz. Fiir eine beliebige Varletat V und natiirliche Zahl n sind die
folgenden Bedingungen dquivalent.

(A) Jede Algebra AcV geniigt dem C,-Satz. -

(B) Fiir beliebige A€V und Kongruenzen ¢, 0,,6,, ..., 0,€0(A) gilt

n

o ANbi= A (P'./\ei-
i=0 J=0 - i=0
i=j

(C) Es gibt ein Term p in n+2 Variablen tiber V, so dass
wlx, ., x, ) =ux, ... x, 3, x)=...=pu(y,x, .., x)=x
eine Identitdt von V ist.
Bemerkung. Der Fall n=1 ist schon von WILLE in [19] behandelt worden.

Beweis. (A)<(B) folgt aus Satz 1.1.

(B)<=(C). Nehmen wir an daB (B) gilt. Es bezeichne F(n+2) die freie Algebra
in V mit den freien Erzeugenden a,, 4y, ..., a,,,. Essei 6; die kleinste Kongruenz,
so dass ay, ..., @1, ;415 ..., Gye1 Modulo 6; untereinander kongruent sind.

Dann gelten
ag Uy4y a; (i=0,1,...,n)

a; 0} a, 41 (i, j =-0, 1, ey N, i #j)
Daraus folgt

20 [0u+1' j/—\ooj] apsa-

J#=i
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Somit gibt es ein Element u(a,, a,, ..., @,+1)€ F(n+42), mit

ag 0,4y p(ag, ay, ..., an;i'l) Z\oei UPESE
Es folgt also T
Ay Opi1 1(ag, ay5 o5 niy) Onyy u(ags oy -5 Ao, A1)
0,+, ist aber trivial auf der durch {4y, a,.,} erzeugten Teilalgebra, daher ergibt sich
ao = u(ag, .-, Ags Ap+1)-
Genau so folgt aus u(ag, @y, ..., y41) 0; @441 ((=0, 1,...., n), dass .
U(@ui1s s Gus1s Bis uirs oovs Gnar) = Gpiy

fir i=0, 1, ...,n gilt. Damit’ist (C) bewiesen.

Nehmen wir umgekehrt an, dass (C) gilt, d. h., dass ein u mit der obigen Eigen-
schaft existiert. Wir werden zelgen dass fiir beliebige Kongruenzen ®, 00, 0,,...,0,
irgendeiner Algebra A4 in

/\ @ /\ bil=0- A6
=0 0 i=0
wé.l

gilt. (Die umgekehrte Ungleichung ist klar.)
In der Tat, es seien x, y€A mit

X /\ Q- /\ 0,'
j=0% 1=t
izj
Dann existieren Elemente ¢, 14, ..., {,¢ 4, so dass gilt:
X ,/_\ogi y (j=0,1,...,n).
i

Es sein ferner t=p(t, 4y, ..., t,, ¥). Aufgrund der Identitdten fiir g in (C) erhilt
man die folgenden Relationen:

xot A6y
i=0
Zum Beispiel erhdlt man x ¢ ¢ wie folgt:

X = #(xs Xy oeey X, }") (/7 u(tOs tls ey trn y) =1L

Damit ist der Satz bewiesen.
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3. n-Distributivitit in Untergruppenverbéinden abelscher Gruppen

Zweck dieses Abschnitt ist es, weitere Beispiele fiir z-distributive Verbdnde
zu erwihnen und eine notwendige und hinreichende Bedingung dafiir anzugeben,
dass der Untergruppenverband einer abelschen Gruppe n-distributiv ist. S(G)
(bzw. N(G)) wird den Untergruppenverband (bzw. Normalteilerverband) der
Gruppe G bezeichnen. Fiir die Gruppenoperationen werden wir eine multiplikative
Schreibweise verwenden. Dementsprechend bezeichnen wir das neutrale Element
mit e. [a;, a,, ...] bezeichnet das Erzeugnis der Elemente in den eckigen Klammern.

3.1. Satz. Fiur eine beliebige natiirliche Zahl n. ist der Untergruppenverband
der durch n Elemente erzeugten freien abelschen Gruppe U, ein n-distributiver,
aber kein (n—1)-distributiver Verband.

Beweis. Es sein n=2, und es seien die Elemente u,, u,, ..., u, die freien
Erzeugenden von U,. Ist v=u,u,...u,, so haben wir offensichtlich:

oA Yt = 0= fe = ¥ [t V]

1#1

d. h., S(U,) ist nicht (n—1)-distributiv. Fiir n=1 ist dieser Teil der Behauptung
trivial. (In Harmonie mit der Definition fiir n=1 sollen genau die ein-elementigen
Verbinde als 0-distributiv definiert werden.)

Umgekehrt ist wohlbekannt (vgl. ORrE [15]), dass S(U,) distributiv ist. Sei
nun n>1 und nehmen wir an, dass fir k=1,2,..,n—1 S(U,) k-distributiv
ist. Es ist die folgende Beziehung zu beweisen:

X=AAV B = [A/\VB =Y,
=0 i#j
wobei A, By, By, ..., B, beliebige Elemente von S(U,) sind.
- Es sei a€X, d.h. a=byb,...b,6A mit b;¢B;(j=0,1,...,n). Es seien b;=
=ubu. b (j=0,1,...,n), wobei wu,up,...,u, die freien Erzeugenden von
U, sind. Wir zeigen: a€Y. Wenn der Rang der Matrlx B= (ﬂ”), ....n Kleiner

Jj= 0, »h
als n ist, dann ist auch der Rang der Untergruppe [be, by, ..., b,] Kkleiner als »n’
(siche KUROS [13]), und, da diese Untergruppe auch frei ist, folgt
[j_bo, by, ..., b)) = S(UY)

fiir ein k<n. Nach der Induktionsvoraussetzung ist aber der Verband S(U,)
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k-distributiv, also ist er auch n-distributiv. Deshalb erhalten wir

@l =talA V b = V [ialA V 3] =,
i=0 ji=0 1=0
i=j
d.h., acY.
Also konnen wir annehmen, dass der Rang von B gleich n ist. Man betrachte
nun fiir ein beliebiges aber festes k€{0, 1, ...,n} das Diophantische Gleichungs-
system '

(Ex) ﬁ' Bijxjn = [Zn'ﬂu] 4 (i=12,..,n)
gt =0

in den Unbekannten x; (j#k) und t,. Es bezeichne D, die Determinante von
(Ey), d. h,, es sei
D, = lBljl{:l,...,n
J=0,1,..,m; j#k
Es sei ferner Dy, die Determinante, die Durch Ersetzen der Spalte (B,;);=1,s,....n
in D, durch die Spalte (Bip+Bu+...+Bi)i=1,2,..,n entsteht. Es ist leicht zu sehen,
dass
D

(D0k9 sery Dk—l,k, Dk’ Dk+1,k9 ners an)

xjk= (]=03 19'-': na]¢k),

(6
L= D,
k (Dok’ ""Dk—l,k’ DluDk+l,k9 '-'san)

eine Lésung von (Ej) ist, wobei in den Nennern der grosste gemeinsame Teiler von
Dy ...oDy—y ks Dys Diyy s oo » Dy steht. Dieser ist nicht 0, da rang B=n ist.
Die Determinanten Dy sind aber Summen oder Differenzen von D; und D,,
somit gilt d

(D(lln [ERS ] Dk—l,ka Dk’ Dk+l,ky (SRR ] an) = (DO’ Dl’ LR E] ‘Dk, ""Dn)' .

Deshalb kénnen wir die Lésungen (6) von (E;) auch in der folgenden Form schreiben.

B Dy, . .
=Dy Dy, by UTOh I

M
D,

tk - (DO’Dls -'-9Dn)'

Nun konnen wir das Gleichungssystem betrachten, das sich aus den Systemen
(Ey) (k=0,1,...,n) und der Gleichung t,+1,+...+¢t,=1 zusammensetzt, d. h.,
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das System
é:ﬁuxik= [lg‘;ﬂ”]tk (l =1,...,n; k=0, 1,..., n)
ypit -
®)
2 h=
k=0

Da dér grosste gemeinsame Teiler der Losungen i, 4, ..., 1, in (7) gleich }
ist, konnen wir ganze Zahlen y,, y,, ..., ¥, finden, so dass t;yo+t, ) +... +t,y,=1
gilt. Es seien

h=t-y (*k=01,..,n) _
Xp=Xp-y (k=0,1,..,n;j=0,1,...,n; j#k).

t. und x; geniigen dem Diophantischen Gleichungssystem (8). Es sei a,=a'.
Es gilt offenbar aya,...a,=a und a,€A. Wir zeigen a,€ByV...VB;_1VBy+1V...VB,.
In der Tat gilt:

a, = a' = (boby... b)Y =

_ {(uﬂxo . no) (upu n1) (uﬁxn' ugnn)}‘," —

- ui”"’*"'“"")""... u,('p,,.,+...+p,,,,)r;‘ — uf:(ﬁux;,‘lj;ék).”uZ'(ﬁ"jx;,,U#k) _
n
’ ’ ’
= (uflou.ufno)xﬂz.“(ufl.k-l‘__ufn.k—l)xk—l,k.(ufl,kd-l.“ufn,ki-l)xki»l.k‘“(ufln U nn) "k —

= box...bM-usbiksuk  b™E BV ...VB,_ VB, V..VB,.

k+1

Es ist also a@,€A(B,yV...VBy-1VBy+1V...VB,). Es folgt

a=ayga;...a,€V {AA\V B‘] =Y.
J=0 =0
i#j
Q.E.D.

Wir bemerken, dass die Sidtze 3.1 und 1.1. auch das Ergebnis von Rapo [17]
enthalten, dass firr Kongruenzen von U, der C,-Satz gilt. Rado hat in [17] auch
eine gemeinsame Verallgemeingrung des eben zitierten Satzes und des geometrischen
Satzes von Helly bewiesen, diese Verallgemeinerung scheint aber von der Theorie
der n-distributiven Verbinde unabhingig zu sein.

Im nidchsten Satz werden die abelsche Gruppen charakterisiert die einen
n-distributiven Untergruppenverband haben. Der Rang rang (G) einer abelschen
Gruppe G ist die kleinste natiirliche Zahl n, so dass jede endlich erzeugte Unter-
gruppe von G durch n Elemente erzeugt wird. Der Rang existiert natiirlich nicht
fiir jede abelsche Gruppe.
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3.2. Satz. Damit der Untergruppenverband einer abelschen Gruppe G n-distri-
butiv ist, ist es notwendig und hinreichend, dass der Rang von G kleiner oder
gleich n ist.

Beweis. Es sei rang (G)=n. Wir zeigen, dass fiir beliebige Untergruppen
Ay, By, By, ..., B, von G

X=AAY B, v A/\VB,] Y
i=0 .

ij

gilt. Es sei also acX, d. h.,, a=byb,...b,(€4), mit b,€B; (i=0,1, ...,n). Da die
Untergruppe [bg, b, ..., b,] durch n Elemente erzeugt werden kann, ist sie ein
homomorphes Bild von U,. Da die Untergruppenverbinde abelscher Gruppen
isomorph zu ihren Kongruenzverbédnden sind, ist S([by, by, ..., b,]) ein Teilverband
von S(U,), und als solcher ist er auch »n- dlStI‘lbuth Folglich gilt

@l =taA V b) =V [1a1A V 1] £ 7,
i=0 Jj=0 i=0
i)
d. h., acY.

Umgekehrt, nehmen wir an, dass rang (G)=r=>n. Dann gibt es eine Unter-
gruppe H von G, die durch r Elemente erzeugbar ist, nicht aber durch r—1
Elemente. Es geniigt zu zeigen, dass S(H) nicht n-distributiv ist. Nach dem Funda-
mentalsatz abelscher Gruppen kann H als ein direktes Produkt von zyklischer
Gruppen dargestellt werden

H=(CpyX... X Ci )X oo X(Cy X .. X Cp )X Coa X .. X Cos,

m Komponente

wobei C.. die unendliche zyklische Gruppe ist, und die anderen Komponenten
so bezeichnet sind, dass fiir gewisse Primzahlen p,, p,, ..., p, (pi#p; fur ij),
die Michtigkeiten von C;; (j=1,2, ..., k;) Potenzen von p; sind.

Wire Jmax k,+m<r, so konnte H als ein direktes Produkt von weniger
als r zyklischen Gruppen dargestellt werden (diese sind: C;;X...XCy, C1aX... X
XCg, ..., C (m Exemplare)), und so kénnte H durch weniger als r Elemente
erzeugt werden. Folglich gibt es ein k;, k;+m=r, so dass C}, ein homomorphes
Bild von H ist. Der Verband S(C}) ist nach [5] nicht (r—1)-distributiv, also ist
er auch nicht r-distributiv, und dasselbe gilt fiir S(H). Q.E.D.

Bemerkung. Dieser Satz enthilt als Spezialfall das folgende Resultat von
ORE [15]): Fiir eine Gruppe G ist. S(G) genau dann distributiv, wenn G lokal
zyklisch ist (d. h., wenn rang G=1 ist). .
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4. n-Distributivitit in Normalteilerverbinden

In diesem Teil mdchten wir eine Charakterisierung der n-Distributivitit des
Normalteilerverbandes einer Gruppe beweisen, die unseren Hauptsatz fiir abelsche
Gruppen auch enthdlt. Eine solche Charakterisierung folgt durch Anwendung des
Hauptsatzes des ersten Teiles [5] dieser Arbeit, d. h. des Satzes, der die n-distributiven
Verbinde in der Klasse aller modularen Verbdnde durch den Ausschluss des
n-Diamanten (einer speziellen modularen Konfiguration) beschreibt (vgl. auch [8]).
Es ist in [3] bewiesen worden, dass in dieser Beschreibung der n-Diamant auch durch
den von Neumannschen (n+1)-Rahmen ersetzt werden kann. So erhélt man:

4.1. Lemma. Es sei G eine Gruppe. Dann ist N(G) genau dann nicht n-distri-
butiv, wenn Normalteiler A4; (i=0,1,...,n) und C;; (i,j=0,1,...,n, i#j) exis-
tieren, so dass Ay, Ay, ..., A, ein unabhdngiges System in N(G) bilden und fiir alle
i,j(i#j) Ci; ein relatives Komplement von A; und A; in dem Interval [A;\A;,
ANA;] des Verbandes N(G) ist.

Um die versprochene Charakterisierung zu formulieren, ist es nétig einige
weiteren Begriffe einzufiihren. Sind 4 und B Normalteiler der Gruppe G so
dass A=B in N(G) gilt, dann heisst die Faktorgruppe B/A ein Faktor von G.
Der Faktor BfA heisst transponiert zu dem Faktor D/C (in Zeichen B/A-D/C),
wenn entweder AVD=B und AAD=C oder BYC=D und BANC=A gelten.
B/A heisst . projektiv zu D/C, wenn es Faktoren Y,/X; (i=0,1,...,m) gibt,
so dass

BlA =Yo/X, = Y, /Xy ~...~ Y,/X,, = D|C

gilt. Die primitive Breite von N(G) ist die grosste natiirliche Zahl n, so dass N(G)
ein unabhanglges System Ay, A,, ..., 4,—, enthilt, fiir das die Faktoren A,/U

mlt U= /\ A; paarweise projektiv sind. Beziiglich der allgemeinen Definition

pnmmver Begnﬁ'e sieche WILLE [20].

Wir brauchen einen weiteren Begriff aus der Gruppentheorie. Es seien
A, B, C, D Normalteiler der Gruppe G und es sei ¢: B/A--D|C ein Isomorphis-
mus. ¢ heisst zentral, wenn gegeniiber allen inneren Automorphismen von G
invariant ist, mit anderen Worten, wenn fiir jede g€G und x€B/A4

(g2 x(g4A)e = (871 C)(x9)(gC)
gilt.
42.Satz. Es sei G eine Gruppe. Fiir eine beliebige natiirliche Zahl n sind
die folgenden drei Aussagen dquivalent
(A) N(G) ist nicht n-distributiv,
(B) Die primitive Breite von N(G) ist grésser als n..
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(C) Es gibt ein unabhdngiges System Ay, A,, ..., A, von Elementen von N(G),
n
so dass die Faktoren A,fU (mit U=AA4 j) aufeinander durch zentralen Isomorphis-
j=0 ,

men von G abgebildet werden konnen.

Beweis. (A)=(B) folgt unmittelbar aus Lemma 4.1. .
(B)=(C). Sind zwei Faktoren projektiv, so gibt es einen zentralen Isomorphismus
zwischen den beiden Faktoren. (In der Tat ist der kanonische Isomorphismus
transponierter Faktoren zentral.) Somit ist dieser Teil der Behauptung klar.
(C)=(A). Nehmen wir an, dass (C) gilt. Wir definieren die C;; -von Lemma 4:1.
Es sei ¢;; (i#j) ein zentraler Isomorphismus von A4,/U auf A4,/U. Es sei
C;;={x(xp;;) | x€4,/U}. Dann ist C;;SG/U. Es sei C;; die Vereinigung aller
U-Nebenklassen in C;;, d. h. C;;=|JC;;. So erhalten w1r eine Teilmenge von G.
Wir haben zu beweisen, dass Cij die in Lemma 4.1 formulierten Eigenschaften
besitzt. Allgemein wird fiir einen Normalteiler X mit USXSG der Faktor
X/U mit X bezeichnet. Wir zeigen, dass die folgenden Aussagen gelten:
(i) C; ist ein Normalteiler von G. ' )
(i) AvCy=ANC;=A4VA4;,
(iii) 4AC;= A,/\C,] A,/\A, :
Dann folgen die analogen Eigenschaften fiir C,j, G, A, 4, unmlttelbar
Unm (i) zu zeigen, bemerken wir, dass C;; eine Untergruppe von G ist. In der
Tat, ist AVA; das direkte Produkt von Z und 4;. Deshalb sind die Elemente’
von A; mit den Elementen von A; vertauschbar. Mit' ¢ =¢;; sind x(x(p) und
y(y9) Elemente von C;;. Dann gelten -

; x(x@)y(yo) = xy(x@) (¥9) = (xy)((x»)9)eCy;
un

x(x@)x7H(x71p) = xxTH(xp)(x @) = e(xx )@ = e(ep) = e,
d.h. (x(x@)~'=x"'(x"'@)eC,. Somit ist C,; eine Untergruppe. Nun zeigen
wir die Normalitit. Es sei a€G und x(x¢)€C;;. Dann gilt A
a Y (x(xp))a = (a"1xa)(a " (xp)a) = (a " xa)((a*xa)¢)eC;,.
Danmit ist (i) bewiesen. :
Es sei z ein Element von AVA;. Dann ist z von der Form z=x(yg),
x, y€ A;. Wir erhalten
z=x(y9) = (xy ) (y(e)E4V Ty,
z =x(yp) = (x(x¢)) (x"'»)p)eCyV 4;,
d. h. es gilt (ii). : _
Schliesslich zeigen wir (iii). Es sei x€A4;AC;;, d.h. x=y(yep) fir irgendein
Element y€A;. Da jedes Element von ANA; eindeutig als ein Produkt aa,
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mit- g€ A;, a,€ A; ausgedriickt werden kann, erhdlt man aus der Bezichung xe=
=y(yg) die Relationen x=y und yp=e. Somit gilt x=y=e, d. h. LAC;;=1{e},
wobei e das Einselement von G (d. h. die Untergruppe U) bezeichnet. Ahnlich
erhilt man C;;A4,={U}. Damit'ist der Satz bewiesen.

Als Anwendung geben wir einen neuen Beweis von Satz 3.2. Der Beweis der
Notwendigkeit war leicht. Wir brauchen also nur zu beweisen, dass die angegebene
Bedingung hinreichend fiir die n-Distributivitit des Untergruppenverbandes ist.
Es sei A eine abelsche Gruppe mit rang (4)=n. Es ist leicht zu sehen, dass
rang (A)=n fir jedes homomorphe Bild A4’ einer Untergruppe von G gilt.
Deshalb kann A" nicht die (n+1)-ste direkte Potenz einer Gruppe sein. Also ist
kein Faktor von A die (n+1)-ste Potenz einer Gruppe, d. h. (C) ‘ist unméglich:
S(A)(=N(4)) ist n-distributiv. Q. E.D.
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n-Distributivgésetze

HORST GERSTMANN

0. Einfithrung und Uberblick

Andras Huhn pragte 1971 den Begriff der n-Distributivitit, der eine Verall-
gemeinerung des gewdhnlichen Distributivgesetzes .in Verbinden darstellt [10].
Wir nennen hier einen Verband X n-distributiv, wenn fiir jedes x€X und jede

n-elementige Teilmenge Y von X die Gleichung xAVY =V {xAVM|M é Y}

gilt. Dabei bedeutet M é Y, daB M eine Teilmenge von Y mit weniger als
n Elementen ist. Fiir n=2 ist dies das gewohnliche Distributivgesetz.

Es ist klar, daB fiir einen distributiven Verband das Distributivgesetz nicht
nur fiir zweielementige Mengen Y, sondern sogar fiir alle endlichen Mengen gilt.
Wir werden zeigen, daB in n-distributiven Verbinden die n-Distributivitits-
gleichung auch fiir alle endlichen Mengen Y gilt. So wie man die gewdhnliche
Distributivitdt zur \/-Distributivitdt verschérft, indem man die Distributivitits-
eigenschaft fiir alle Teilmengen ¥ von X verlangt, liegt es nun nahe, auf dieselbe
Weise eine Verschirfung der n-Distributivitit zu definieren, die sogenannte unend-
liche n-Distributivitdt. Die unendliche n-Distributivitiit ist gleichbedeutend zu den
beiden Eigenschaften A-Stetigkeit und n-Distributivitit (in Analogie zu dem bekannten
Sachverhalt fiir n=2).

So wie man aber auch die gewdhnliche (\/-)Distributivitit zur vollstindigen
Distributivitit verschirft, 140t sich analog die (unendliche) n-Distributivitit zur
vollstéindigen n-Distributivitit verschirfen.

Als Werte fiir n lassen wir alle natiirlichen Zahlen gréBer oder gleich 2 und
8o zu. Fiir n=2 erhilt man die gewShnlichen Distributivgesetze, fiir n=x, die
A-Stetigkeit und die Stetigkeit (im Sinne von D. Scott [12]), so daB die iibrigen
n-Distributivgesetze als ,,interpolierende” Eigenschaften zwischen V-Distributivitit
und A-Stetigkeit bzw. vollstindiger Distributivitdt und Stetigkeit angesehen werden

Eingegangen am 4. Oktober 1982.
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konnen. Die Abschnitte 2, 3 und 4 dieser Arbeit sind in Anlehnung an Arbeiten
von MARCEL ERNE [3], [6] entstanden. Es werden die n-Distributivgesetze in einem
sehr allgemeinen Rahmen behandelt, nimlich fiir Mengen, auf denen lediglich ein
Hiillenoperator definiert ist. Dieser Idee liegt die Erkenntnis zugrunde, daB die
(V-, vollstindige) Distributivitit eines Verbandes eigentlich eine Homomorphie-
eigenschaft des Schnittoperators ist ([6], Seite 20). Nur die Anwendung der Distri-
butivgesetze fiir die mengentheoretische Durchschnitts- und Vereinigungsbildung
(die ja immer gelten, also keine besondere Eigenschaft des Verbandes darstellen)
fithrt auf das bekannte Aussehen der Distributivgesetze fiir Verbinde. Der Vorteil
dieser so allgemeinen Behandlung der n-Distributivitit besteht in folgendem: Man
erhilt zum einen Charakterisierungen fiir diejenigen Verbdnde (sogar allgemeiner:
quasigeordenete Mengen), die eine (vollstindig, unendlich) n-distributive Schnitt-
vervollstindigung oder Idealvervollstindigung besitzen. (Unter anderem wurden
die Félle n=2 und n=g, in [4], [6] behandelt.) Zum anderen ergeben sich durch
die Wahl des Hiillenoperators als diejenige Abbildung, die jeder Teilmenge einer
gegebenen Algebra die kleinste sie enthaltende Subalgebra zuordnet, Charakter-
sierungen fiir die (vollstindige, unendliche) n-Distributivitit des Verbandes der
Subalgebren oder Kongruenzrelationen. Insbesondere ergibt sich hier ein Satz
iiber die n-Distributivitit, der zwei derartige Sdtze von Andras Huhn betreffend
abelsche Gruppen und idempotente Algebren umfaBt. Weiter stellt sich heraus,
daB fiir den Verband der Subalgebren einer idempotenten Algebra die (unendliche)
n-Distributivitit und die vollstindige n-Distributivitit gleichwertige Eigenschaften
sind. Die abelschen Gruppen mit vollstindig n-distributivem Untergruppenverband
sind genau diejenigen, die keine Elemente unendlicher Ordnung besitzen, und deren
endlich erzeugte Untergruppen immer schon von weniger als » Elementen erzeugt
werden (letzteres bedeutet, daBB der Verband der Untergruppen n-distributiv ist).
Dies gilt fiir alle n<®,; fiir n=g, ist jeder Untergruppenverband vollstindig
n-distributiv (d. h. stetig). Insbesondere gilt: Der Untergruppenverband einer abel-
schen Gruppe ist genau dann vollstindig distributiv, wenn jede nicht triviale, endlich
erzeugte Untergruppe von Primzahlordnung ist.

Weitere Anwendungen der n-distributivgesetze fiir Hiillenoperatoren erhilt
man durch die Wahl des Hiillenoperators als AbschluBoperator in topologischen
Riaumen.- So ergibt sich zum Beispiel, daB fiir den Verband der abgeschlossenen
Teilmengen eines T)-Raumes aus der unendlichen n-Distributivitit die vollstindige
n-Distributivitit volgt.

Fiir alternative Verallgemeinerungen der klassischen Distributivgesetze wird
der Leser verwiesen auf die Arbeiten [1], [5].

In den Notationen lehnen wir uns an die in [6) benutzte an. Zum Beispiel wird
bei vorgegebenem Hiillenoperator I' auf der Menge X der Abschnittoperator
mit | bezeichnet, d. h. {Y=J{I'y |y€Y} (YSX). Ist X eine quasigeordnete
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Menge, so ist A der Schniitoperator und I der Idealoperator auf X, also AY =
=N{y | YSw}, IY=UUM|MS. Y} fir YEX, wobei MS.Y bedeutet,
daB M eine endliche Teilmenge der Menge Y ist. ‘BY bezeichnet die Menge
aller Teilmengen von Y, PB,Y die Menge aller Teilmengen von Y mit weniger
als n Elementen und PB.Y die Menge aller endlichen Teilmengen von Y.

1. n-distributive Verbinde

Sei n eine natiirliche Zahl, n=2. Ein Verband X heiBt n-distributiv, wenn
fiir jedes x€X und jede n-elementige Menge Y S X die Gleichung (d,) gilt.

,) xAVY = V{xAVM|MC ¥}
Die 2-Distributivitit ist die gewShnliche Distributivitit.

- Satz 1.1. Der Verband X ist genau dann n-distributiv, wenn fiir jede endliche
Menge YC X die Gleichung (d,) gilt.

Beweis. Ist X n-distributiv, so gilt (d,) fiir jede hochstens n-elementige
Teilmenge von X. Angenommen, (d,) gilt fiir jede hochstens m-elementige Teil-
menge, m=n. Wir zeigen, daB dann (d,) auch fiir alle (m+ 1)-elementigen Teil-
mengen Y von X gilt. Sei also Y=ZU/{q,b}, |Z|=m—1. Setze z=avb. Da
die Menge Y, =2ZU{z} hochstens m Elemente hat, gilt xAVY=xAVY,=

=V{AVM | M E ZWVAVNUE)|N'E Z). Sei N'CZ fest gewshit.
Setze Y, =NU{a,b}. Wegen |[Y,|l=n=m gilt xAVNU{Z})=xAVY,=

=VEAVM|ME 1) Also gilt xAVY = V{xAVM | M E Z)WVAV{xAVM |
M & NU{a, B} | NS Z}=VixavM|M & 1},

Aufgrund von 1.1 liegt es nahe, den Begriff der \/-Distributivitit zu verall-
gemeinern: Ein vollstindiger Verband X heiBe unendlich n-distributiv, wenn fiir jede
Menge YSX die Bezichung (d,) gilt. Die unendliche 2-Distributivitit ist die
V-Distributivitdt. Hier ist es sinnvoll, auch ¥, als Wert fiir » zuzulassen: Die
unendliche N-Distributivitdt ergibt den bekannten Begriff der A-Stetigkeit (vgl.
[2], Seite 15).

Offensichtlich gilt: Erfiillen x€¢X und YCX die Gleichung (d,), so erfiillen
sie auch (d,,) fir jedes m=n. Insbesondere ist ein unendlich n-distributiver Ver-
band auch A-stetig. Wir erhalten sogar (als Verallgemeinerung des Satzes, daB
ein vollstindiger Verband genau dann \/-distributiv ist, wenn er A-stetig und distri-
butiv ist):
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Satz 1.2.. Ein vollstindiger Verband "X ist genau dann unendlich n-distributiv,
wenn er n-distributiv und )\-stetig ist. :

Beweis. Ist X A-stetig, so gilt fiir x€X und YSX: xAVY = V{xAVN|
NC_.Y}. Wenn X n-distributiv ist, gilt fiir jede endliche Teilmenge N von Y:

*AVN=V{xAVM | M S N}. Es folgt somit: xAVY=V{V{xAVM|M S N}|
NE.Y}=V{xAVM|M S ¥},

Ist also der Verband der Subalgebren oder der Verband der Kongruenzrelationen
einer Algebra A n-distributiv, dann ist er sogar unendlich n-distributiv.

Satz 1.3. Ein (vollstindiger) Verband X ist genau dann (unendlich) n-distri-
butiv, wenn fiir jedes endliche System @ endlicher (beliebiger) Teilmengen von
X gilt:

(D) AVY[Yew} =V{/\{Vf(Y)IY€”"/}lf€y£L B,Y}.

Beweis. Es gelte xAVY =V {xAVM |M_é_ Y} fiir alle x€X und alle
YEX (EX). Sei #={Y,, ..., ¥}} eine Menge von (endlichen) Teilmengen von X.
Es wird mittels vollstandlger Induktion gezelgt daB fiir alle r=1,...,k gilt:

y=VYiAAVY=V{VMA AV MAV Y, A AV Y | M, g Y, fur i=1,..,r}.
(F’iir r =k erhdlt man die Behauptung) Fiir r=1 setze x:=VY,A.. AVYk.

Dann ist y= x/\VY1—V{x/\VM1|M1 Y}=V{VMIAVT.A.. /\VYkIMl Yi}.
Nehmen wir nun an, die Behauptung gilt fiir r, 1=r<k. Seien M, g Yy, -.

..M, S Y, gewdhlt. Mit z:=\/MA. AVMAV Y,s0A - AVY, folgt VM A...A
/\VMrAVYr-l-l/\---/\VYkzz/\er+1=V{Z/\VMr+1|Mr+1 < Yr+l}' Hieraus erglbt

sich: y=V{VMA...AVMAV M, AV Y i2A AVY | M; € Y fiir i=1, ..., r+1}.
Damit ist der Induktionsbeweis beendet.

Es gelte umgekehrt (D,) fiir jedes endliche System von (endlichen) Teilmengen
von X. Seien x€X und YSX (S X) gewahlt. Fir #={{x}, Y} folgt xAVY =

=VASAVY =V{VRAVM | M € Y)=Vi{zavM | € 1},

Wir nennen einen vollstindigen Verband X volistindig n-distributiv, wenn
die Gleichung (D,) fiir jedes Mengensystem #S PX erfiillt ist. Die vollstindige
2-Distributivitidt ist der bekannte Begriff der vollstindigen Distributivitit. Voll-
stindige R,-Distributivitit ist dasselbe wie Stetigkeit (vgl. [8], Seite 58).

" Es bietet sich noch die folgende Variante fiir einen n-Distributivititsbegriff an:
Ein vollstindiger Verband X heiBe endlich n-distributiv, wenn die Gleichung (D,)
fiir jedes Mengensystem % bestehend aus endlichen Teilmengen von X gilt.
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Erfiillt das Mengensystem % die Gleichung (D,), so erfiillt % offensichtlich
auch (D,,) fiir jedes m=n. Insbesondere ist ein vollstindig n-distributiver Verband
auch stetig. In Analogie zu 1.2 gilt sogar:

Satz 1.4. Ein vollstindiger Verband ist genau dann vollstindig n-distributiv,
wenn er endlich n-distributiv und stetig ist.

Beweis. Es ist noch zu zeigen, daB ein endlich n-distributiver und stetiger
Verband X vollstindig n-distributiv ist. Wenn X stetig ist, so gilt fiir ein beliebiges

Mengensystem %< PX: /\{VYIYE@I} V{/\{Vf(Y)lYE@}IfE ]]‘JS,Y} Wegen
der endlichen n-Distributivitit von X gilt fiir jedes f¢ H B.Y: /\{\/ f(Y)l YeW)=
=V{AlVe(/(D) | Ye@}|ge JT /X)) Es folgt somit: MVY| Y€} =
=VAVIAVE(F)| Ye®)| g€ T Buf (D} fe I BT}=V{AVAI)|¥ed) | he
/4 B,Y}.

2. Charakterisierungen der n-Distributivgesetze
durch Eigenschaften des Schnittoperators

Ist I' ein Hiillenoperator auf der Menge X, so heit der durch
?Y::U{FM |M é Y} definierte Operator 'i: PX -~ PX  n-Abschnittoperator.
Die Bilder von : heien n-Abschnitte. Ist I der Schnittoperator einer quasi-

geordneten Menge X, so ist der Operator ’i fiir n=2 der gewdhnliche Abschnitt-
operator und fiir n=g, der Idealoperator. Fiir den (hier nicht vorkommenden)
Fall n>|X| erhdlt man den Schnittoperator. Ist X sogar ein Verband, so gilt
WY=y{VM|M < X}. - :

Ist I' ein Hiillenoperator auf der Menge X und ist & eine Menge von
n-Abschnitten bzgl. I', so sagen wir I' erhdlt den Durchschnitt (%, wenn gilt:
NI'(Z1=r(N%). (Hierbei kann ,,=* durch ,,S* ersetzt werden.)

Satz 2.}. Sei A der Schnittoperator auf dem (volistindigen) Verband X,

und sei YEPX. A erhilt genau dann den Durchschnitt ﬂ{{YI Y%}, wenn fur
% die Gleichung (D,) gilt.

Beweis. n{ay|ye@/} NHVY | Yed)= ;/\{vy|Ye@}*Andererseits gilt

aNfix|reay= W(n{&YIYe@}) Nun ist N {1¥ | Ye®}= NUGVM|M E 1}
| Ye@}=U{NHVIQ) | Yed} | fe H‘B,.Y} ULAVAY) | Yed} | fe JL %Y} =

_t{/\{Vf(Y) , Ye¥} , Je ]] B,Y } Hleraus ergibt sich die Behauptung
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Korollar 2.2. Ein vollstindiger Verband ist genau dann vollstindig n-distributiv,
wenn der Schnittoperator beliebige Durchschnitte von n-Abschnitten erhdlt.

Ein vollstindiger Verband ist genau dann unendlich n-distributiv, wenn der Schnitt-
operator endliche Durchschnitte von n-Abschnitten erhilt.
" Ein vollstindiger Verband ist genau dann endlich n-distributiv, wenn der Schnitt-
operator beliebige Durchschnitte von endlich erzeugten n-Abschnitten erhdilt.

Ein Verband ist genau dann n-distributiv, wenn der Schnittoperator endliche
Durchschnitte von endlich erzeugten n-Abschnitten erhdlt.

Dabei heiBit bei gegebener Abbildung ® von X in X eine Menge ZSX
endlich erzeugt, wenn- Z das Bild einer endlichen Teilmenge von X unter & ist.

Wir stellen noch einige Eigenschaften des n-Abschnittoperators zusammen.
Sei I' ein Hiillenoperator auf der Menge X und sei 'i derzu I gehorige n-Ab-
schnittoperator. Wie leicht zu sehen ist, gelten fiir jede Teilmenge Y von X die
Beziehungen I‘Y='¢'1"Y=I"'¢I Y und TY g:Y fiir m=n. Der Operator I ist
extensiv und monoton, aber fiir 2<n<4g, im allgemeinen nicht idempotent (also
kein Hiillenoperator). Wenn jedoch fiir jede Menge NS X ein xy€X mit I';y=I'N
existiert (was zum Beispiel fiir den Schnittoperator eines volistindigen Verbandes
der Fall ist), so gilt To’;,:&r mit r=n—1)(m—1)+1 bzw. r=8,, wenn n oder
m den Wert &, hat.

Beweis. {(1¥) = U{TM|M S U{TN|N & ¥}} = U{IM| M S U{Txy]-
ANEYREU(xy | NeAD | & EBTFEU (TUM) | H S BT }=UTS]-

. | S é Y }=¢' Y. Dabei geht an den mit (%) gekennzeichneten Stellen die folgende
Bezichung ein: Aus K;STI'L; fiir jedes i€l folgt T(:U K)cr(y L.
. €I i€l
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3. Die (unendliche) n-Distributivitit

Die Ergebnisse des ndchsten Satzes stammen groBtenteils von Marcel Erné
und sind grundlegend fiir die Charakterisierungen der n-Distributivitit und der
unendlichen n-Distributivitit. Wir geben hier einen etwas anderen Beweis dafiir,
dall aus der Aussage (b) die Aussage (c) folgt. Der Vollstindigkeit wegen werden
hier die Beweise aus [6] fiir ,,aus (a) folgt (b)* und ,,aus (c) folgt (a)** mit aufgefiihrt.

Lemma 3.1. Seien I' ein Hillenoperator und M ein Mengensystem auf der
Menge X, so daB fir alle x¢X die Menge {x} oder der Punktabschluff I'x ein
Element von A ist. Die folgenden Aussagen (a)—(c) sind dquivalent.

(a) Fiir jedes x€X und alle Mc# mit xcTM gibt es eine Menge NS iM
mit T'N=x.

b)Y IxNIM=T(xNiM) fir alle x€X, Me M.

(¢) I' erhdlt endliche Durchschnitte von Mengen VM, Mc /.

Ist T' ein algebraischer Hiillenoperator und ist M eine Menge von n-Abschnitten,
die alle endlich erzeugten n-Abschnitte enthilt, so ist (d) zu (a)—(c) dquivalent.

(d) Fir jedes x€X und alle EC X mit x¢TE gibt es eine Menge NC ,tE
mit TN=x. '

Gilt I'x={x} fur alle x€X, dann ist (€) zu (a)—(c) dquivalent.

(e) Fir alle Me A ist TM=)M.

Beweis. (a)—~(b): Seien x€X, Mc# und y€}x(\I'M. Dann gibt es eine
Menge NS M mit 'N=ly. Es folgt NCI'N=}yCix, also NSixNiM,
und damit ye TNCST(ixNiM).

(b)—(c): Sei ¥C{iM |M€./l}. Ist #=0, so ist (c) erfiillt. Es sei nun
&= {Yl, ..., Y3}, k=1, Es wird mittels volistindiger Induktion gezeigt, daB fiir
r=1 k gilt:

(x) NC#)=T(¥,N...NY,N\TY,:N...NTY,).

Sei x€N#). Wegen xETI'Y,N..NT'Y, ist x€ixNI'Y,=I'(IxNY)SI(¥,N
Nry,N...Nry,). Es gelte nun (%) fiir ein r, 1=r<k. Sei x¢Y;N...NY,N
NIy, ,yN...Nry,. Dann ist x€{xNI'Y,,,=I'(xNY,,)SI(¥N...NY,;.N
NLY,,sN..NTY). Also gt (¥ N...0Y,NTY,,N...0TY)SI(Y,N
.NY, . NIY,, .N...NTI'Y,). Damit ist der Induktionsbeweis beendet.

(c)—+~(a): Seien Me# und xeI'M. Es gilt lx—&xﬂ[’M:I‘(&xﬂ;M)=I‘N,
wobei N.={xN}M eine in {M enthaltene Menge ist.

Zu (d): Ist I' ein algebraischer Hiillenoperator und gilt {&E ]E XIS A,
so ist (a) zu der folgenden Bedmgung dquivalent: (%) Ist x¢T'E, EC_X, so ist

I'K=ix fiir eine Menge K& &E. Denn einerseits muB3 (*) gelten, da 4 alle
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endlich erzeugten n-Abschnitte enthdlt. Ist andererseits M¢#, so ist M =';S
fiir eine Menge SSX. Ist nun x€I'M=TS, soist x€T'E fiir eine Menge EC.S,
da I' algebraisch ist; aus KC}E folgt KC1S =M. Wegen TK=U{I'F| FS K}
und x€T'K gibt es eine Menge NS K mit x¢I'N und somit 'N=lx.

Zu (e): Gilt (a) und ist x¢I'M fiir eine Menge M¢c#, so ist TN=Ix fiir
eine Menge NC{M. Aus I'x={x} folgt N={x}. Also ist x€{M. Damit ist
gezeigt: T'M =M. Gilt umgekehrt 'M =M fiir alle M¢.#, so ist (b) offensichtlich
erfiillt. .

Satz 3.2. Sei I ein Hiillenoperator auf der Menge X und sei % das zu
I' gehdrige Hitllensystem. Die folgenden Aussagen (a)—(d) sind dquivalent.
(a) Fiir jedes x€X und jede endliche Teilmenge Y von X mit xc€I'Y gibt

es eine Menge Ng'i Y mit T'N=\x.

(b) TXNTY =T(4xN1Y) fir alle x€X, YS X.

(c) ' erhilt endliche Durchschnitte von endlich erzeugten n-Abschnitten.

(d) Das n-Distributivgesetz (d,) wird von allen Elementen von % erfiillt, die
endlich erzeugt sind (bzgl. I').

Ist T ein algebraischer Hillenoperator, so ist (€) zu (a)—(d) dquivalent.

(e) Fiir jedes x€X und jede endliche Teilmenge Y von X mit x€I'Y gibt es
eine Menge Nge'iY mit 'N=\x.

Enthdlt & alle einelementigen Mengen, so ist (f) zu (a)—(d) dquivalent.

() Fiir alle YS X ist [Y=\Y.

Beweis. Mit der Menge aller endlich erzeugten n-Abschnitte als Mengen-
system .4 ergibt 3.1 die Aquivalenz von (a), (b) und (c) und, unter den angegebenen
Voraussetzungen, auch die Aquivalenz von (e) bzw. (f) zu (a)—(c).

(c)~(d): Seien Z€ZX und ¥={Yy,..., Y, )=, Z=TE und Y,=I'M,
fir Mengen EC X, M;S X (i=1,..,n). Es ist V#=I({J%)=I'M mit M=

— M,U...UM,. Aufgrund von (c) gilt ZAVY = ZOTM = (ZN}M). Nun
gilt ZN}\M=ZNU{TN|N S MYSUEZNIN|N € UB)SUZNIU2)|Z S @).

Es folgt zAv@cv{zAvymc ).
(d)~(b): Seien x€X und YC.X. Es gilt xNI'Y=CxNT(U{Ty| yey})_

= rx/\v{FnyeY} = V{Fx/\V{FylyeZ}IZ € ¥} =T(UWxNIZ|Z S YY) =
=I(xNUrz|z ¢ c Y)= rGxNiy).

Satz 3.3. Sei I' ein Hiillenoperator auf der Menge X und sei & das zu
I' gehirige Hilllensystem. Die folgenden Aussagen (ay—(d) sind dquivalent.
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(a) Fiir jedes x€X und jede Teilmenge Y von X mit x€I'Y gibt es eine Menge
NC1Y mit [N=jx.

() IxNTY=T(1xN1Y) fiir alle x€X, YCX.
(c) I' erhdlt endliche Durchschnitte von n-Abschnitten.
(d) & ist ein unendlich n-distributiver Verband.
Ist I' ein algebraischer Hiillenoperator, so ist (¢) zu (a)—(d) dquivalent.
" (e) Fiir jedes x€X wund jede endliche Teilmenge Y von X mit xcI'Y gibt

es eine Menge NC jY mit 'N=\|x.
Enthilt & alle einelementigen Mengen, so ist (f) zu (a)—(d) dquivalent.

® r=h.

Beweis. Aus 3.1 erhilt man die Aquivalenz von (a), (b) und (¢) und, unter
den angegebenen Zusatzvoraussetzungen, auch die Aquivalenz von () bzw. (f) zu
(a)—(c), wenn man als Mengensystem .# die Menge aller n-Abschnitte bzgl.
' nimmt.

(¢)—~(d): Analog zum Beweis ,,(c)—~(d)* von 3.2.

(d)—(b): Analog zum Beweis ,,(d)—~(b)* von 3.2.

Wir wollen die Aussagen von 3.2 und 3.3 kurz fiir den Fall betrachten, daB
I der Schnittoperator A4 eines (vollstindigen) Verbandes X ist. Die Aussagen
von 1.3 erhilt man als Spezialfille der Aquivalenz von (b) und (c) in 3.2 und 3.3
(wenn man.die Charakterisierung der n-Distributivitdt von 1.1 voraussetzt). Die
Aquivalenz von (a) und (b) in 3.2 ergibt fiir n=2 die lokale Charakterisierung der
Distributivitit von Gritzer ([9], Seite 99). Dal die Aussagen (b) und (d) in 3.3
dquivalent sind, bedeutet in diesem Fall, daB die unendliche n-Distributivitit von
X gleichbedeutend ist mit der unendlichen n-Distributivitit der Schnittvervoll-
stindigung. von X. Dies ist aber klar,.da volistindige Verbande 1somorph zu ihrer
Schnittvervollstindigung sind.

. Die Aquivalenz von 3.3 (d) zu den anderen Bedingungen von 3. 3 ist aber keines-
wegs fiir andere Hiillenoperatoren wertlos. Dies soll im folgenden verdeutlicht
werden.

Aus einem Satz iiber Polynomidentititen (siehe [2], Seite 68) folgt, daB ein
Verband genau dann n-distributiv ist, wenn dies fiir seinen Idealverband zutrifft.
Aus 3.3 erhalten wir ein allgemeineres Resultat, wenn wir fiir I’ den Idealoperator
I wihlen und beachten, dall der Operator I, auf endliche Mengen angewandt, mit
dem Schnittoperator 4 iibereinstimmt:

Korollar 3.4. Fiir eine quasigeordnete Menge X sind dquivalent:

(a) Ist YSX und ist xcAY, so existiert eine endliche Teilmenge von ’IY,
fur die x kleinste obere Schranke ist.
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(b) Fiir alle x¢X und YSX gilt xNIY =1(xN}Y).
(¢) I erhdlt endliche Durchschnitte von n-Abschnitten.
(d) Der Idealverband von X ist (unendlich) n-distributiv.

Bezeichnet I' den Schnittoperator A eines Verbandes X, so charakterisieren
die dquivalenten Bedingungen (a)—(d) von 3.2 die n-Distributivitit von X. In
diesem Fall miissen also 3.2 (a) und 3.4 (a) iibereinstimmen. Es soll nun untersucht
werden, fiir welche quasigeordneten Mengen X die Bedingungen 3.2 (a) (fiir I'=4)
und 3.4 (a) sonst noch identisch sind: Im Gegensatz zu 3.2 (a) wird in 3.4 (a) zu

vorgegebener Menge YS X und x€d4Y ceine endliche Teilmenge N von ’iY mit
AN =}x gefordert. Wie aus dem Beweis von 3.1 hervorgeht, kann in 3.2 (a) die
Menge N als Durchschnitt eines Hauptabschnitts mit einem endlich erzeugten
n-Abschnitt gewdhlt werden. Falls also X die Eigenschaft hat, daB im Durchschnitt

¢xﬂ'iF eines Hauptabschnitts {x mit einem endlich erzeugten n-Abschnitt riF

eine endliche Menge E enthalten ist mit 4AE =A(J,xﬂ'Jl,F ), sosind 3.2 (a) und 3.4 (a)
dquivalent fiir X. Hier reicht es, diese Bedingung nur fiir alle (nicht leeren) Mengen
F mit weniger als n Elementen zu fordern, denn fiir eine beliebige Teilmenge Z von

X gilt 1xNIZ=U{xN4F|F € Z).

In einem Verband ist aber &xﬂ'iF:txﬂAF:&xﬂ IWF=WxAVF) fir
0=FSX. Als die geforderte Menge E kann man hier also {xA\F} nehmen.
Im Fall n=2 kann man offensichtlich genauso schlieBen, wenn X lediglich ein
A-Halbverband ist ([6]). Daneben gilt die Aquivalenz von 3.2 (a) und 3.4 (a) natiirlich
auch fiir alle endlichen quasigeordneten Mengen.

Es sei noch bemerkt, daB die Bedingung 3.4 (a)'fiir »=2 mit der von KATRINAK
[11] gegebenen Definition der Distributivitdt eines V-Halbverbandes iibereinstimmt.
Die von Katritidk bemerkte Tatsache, daB ein \/-Halbverband genau dann distributiv
ist, wenn dies fiir seinen Idealverband zutrifft, ist also ein Spezialfall von 3.4.

Die Aquivalenz der Bedingungen (d) und (e) von 3.3 ergibt insbesondere auch
eine Charakterisierung fiir die (unendliche) »n-Distributivitit des Verbandes Su (A4)
der Subalgebren einer Algebra 4. Wir stellen dieses Ergebnis noch einmal besonders
heraus:

Korollar 3.5. Sei A eine Algebra. Su(A) ist genau dann (unendlich) n-
distributiv, wenn fz‘ir Jedes x€X und jede endliche Teilmenge Y von X mit x€[Y]

eine Menge NC eJ,Y existiert mit [N]=[x].

Die Bedingung in 3.5 1aBt sich auch so formulieren: Ist x€[Y], YS X, so ist
x€[N], wobei jedes der endlich vielen Elemente von N in [x] und in einer Menge
M), M C Y, liegt.
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Ist 4 eine idempotente Algebra, so ist die #-Distributivitit von Su (4) auch

gleichwertig mit der Bedingung 3=1" (siehe 3.3 (f)). Diese Charakterisierung der
idempotenten Algebren mit #-distributivem Subalgebrenverband stammt von Andras
Huhn.

Die abelschen Gruppen mit n-distributivem Untergruppenverband wurden von
Andrds Huhn wie folgt charakterisiert:

Sei G eine abelsche Gruppe. Su(G) ist genau dann n-distributiv, wenn jede
endlich erzeugte Untergruppe schon von weniger als n Elementen erzeugt wird.

Beweis (mit Hilfe von 3.5). Angenommen, U ist eine endlich erzeugte Unter-
gruppe von G, die nicht von weniger als n Elementen erzeugt wird. Wir kdnnen -
0.B.d.A. annehmen, daB U isomorph ist zu Z, X...XZ, mit Zahlen r,€Ny:=

:=NU{0}. Der groSte gemeinsame Teiler von r, ..., r, ist ungleich 1, denn sonst
lieBe sich Z, X XZ, in ein direktes Produkt mit weniger als n Faktoren ver-
wandeln: Ist etwa rl;éO und r,=g¢,...q; die Zerlegung von r; in Primpotenzen,
so ist Z,=Z,X..XZ, > ware eeT(ry, ..., =1, s0 k<'5nnte jeder Faktor Z,

mit einem Faktor Z,, i€{2,...,n}, vermoge Z, X2y, verschmolzen
werden. Nimmt man nun als Elemente von Y die den Vektoren (l 0,...,0),...,
.5 (0, ..., 0, 1) entsprechenden Elemente von U wund fiir x das dem Vektor

(1, ..., 1) entsprechende Element, so ist zwar x€[Y], aber x¢ ['iY N[x]], denn in

?Yﬂ[x] liegen nur Elemente von G, die Vektoren der Form (kyry, ..., k1), ...,
vees (Kylny -..y kyry) entsprechen (die j-te Komponente jeweils modulo r;); wire
x die Summe solcher Elemente, so miite eine Gleichung der Form 1=k r,+...+k,7,
mit ganzen Zahlen k,,...,k, gelten, im Widerspruch dazu, da§ ry,...,r, teiler-
fremd sind.

Andererseits gilt die Bedingung aus 3.5 fiir die »-Distributivitit offensichtlich
fiir alle Teilmengen Y von G mit weniger als n Elementen. Nehmen wir also an,
daB die Bedingung aus 3.5 fiir alle (m—1)-elementigen Teilmengen von G erfiillt
ist fiir ein m=n. Essei nun Y ={y,, ..., ¥u}SG, x€[Y], 0.B.d.A. x=p;+...+y,.
Vorausgesetzt, [Y] wird schon von weniger als n Elementen erzeugt, dann gilt
[Y]=Z, X...XZ, fir gewisse Zahlen r,, ..., 7,€N,. Die Elemente von Y konnen
also als (n—1)-komponentige Vektoren angesehen werden. Somit gibt es teiler-
fremde Zahlen ki, ...,k,€Z mit kg, +...+k,y,=0. Also gilt x;:=k;x=
=k +... kg ym=(k;—k) i+ ... Hk;—k,)yu€lY;] fir Y;;==Y\y;. Nach In-
duktionsvoraussetzung ist x,-E['iY ;NI E ['iY N[x]]. Da ky, ..., k, teilerfremd
sind, gibt es ganze Zahlen ¢, ..., t,, mit k., +...+k,t,=1. Es folgt: x=(k,t,+

ikt X =13+ .. 1, Xp€ ['iYﬂ[x]].
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4. Die vollstindige n-Distributivitit

Satz 4.1. Sei I' ein Hiillenoperator auf der Menge X und sei ¥ das zu
I gehirige Hillensystem. Die folgenden Aussagen (a)—(c) sind dquivalent:

(a) Fir jedes xcX gibt es eine Menge NS X, so daff 'N=\|x und Ng’iY
furalle YCX mit x€I'Y gilt.

(b) I' erhdlt beliebige Durchschnitte von n-Abschnitten.

(¢) & ist ein vollstindig n-distributiver Verband.

Ist T ein algebraischer Hiilllenoperator, so ist (d) zu (a)—(c) dquivalent.

(d) Fiir jedes xcX gibt es eine Menge NS X, so daf I'N=\x und Ng,';Y
fiiralle YS X mit xeI'Y gilt. :
Enthilt & alle einelementigen Teilmengen, so ist (e) zu (a)—(c) dquivalent.

(e) F=1.

Beweis. (a)~(b): Sei ¥SBX. Ist xe \I'[#¥], so gilt xcT'Y fiir jedes Y€F.
Nach Voraussetzung existiert eine Menge N mit x¢I'N und Ng'iY fiir alle
YE¥. Also ist N& ﬂ{’iYI Y€%}, und somit gilt xEFNgF(ﬂ{'iY| Ye@)).

(b)—~(a): Sei x€X. Setze N =ﬂ{$Y |er‘Y }. Nach Voraussetzung ist
IN=N{I'Y | xel'Y}. Also gilt N=1|x und NC}¥ fiir alle ¥ S X mit xel'Y.

(b)~(c): Sei FTPBE. Wegen (b) git A{VE|ZeS}=N{FU2)|Zcs}=
=F(N(HU2Z)| Zeo). Bs ist aber N(IUZ) | Zes)=n{UITM | M SUZ}|
|9’€«9’}=U{ﬂ{1"¢(-”2’)|3’€9’}|ll’€5]€]y‘l3n(uf)} S U{N{rur(2) | ze sy fe
Eg]efy%«”f}- Also folgt: /\{Vi"|9’€5’}§V{/\{Vf(3’)]Zf€y}|f€2]€]y1‘nf3}-

©—(b): Sei HCSPX. Es gilt N{IY|YeW=A\{V{l[y|yeY}| YeP}=
=V{NVA{Ty | yef ()} | Ye@}lfeylgg B.Y}=V{NMIf(¥)| Y@} Iféyle]y PB.Y}=

=T(U{NI) | Ye) | fe JT B, Y)=T(O{UITM | M & ¥} | YeaY)=r(n{i¥ |

| Yea)).

Zu (d): Ist I' ein algebraischer Hiillenoperator, so kann man sich in der
Bedingung (a) offensichtlich auf endliche Mengen beschrinken. Die nach (a)
existierende Menge N kann endlich gewidhlt werden, denn ist M eine beliebige
Menge mit I'M =|x, so gibt es eine endliche Teilmenge N von M mit I'N =|x.

Zu(e): Gilt I ='i, so ist (b) offensichtlich erfiillt. Umgekehrt folgt aber schon
aus der unendlichen »-Distributivitit, wenn % alle einelementigen Teilmengen

enthilt: I =1.
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Bezeichnet I' den Schnittoperator oder den Idealoperator, so erhilt man aus
4.1 eine Charakterisierung derjenigen quasigeordneten Mengen, deren Schnitt-
vervollstindigung bzw. Idealvervollstindigung vollstindig n-distributiv ist (ins-
besondere also stetig oder vollstindig distributiv). Zum Beispiel ergibt sich fiir die
Idealvervollstindigung quasigeordneter Mengen:

Korollar 4.2, Fir eine quasigeordnete Menge X sind dquivalent:
(a) Fir jedes x€X gibt es eine Menge NS X, fur die x kleinste obere Schranke

ist und die in jeder Menge ’iY, YCS X, mit x€AY enthalten ist.
(b) I erhdilt beliebige Durchschnitte von n-Abschnitten.
(c) Der Idealverband von X ist vollstindig n-distributiv.

Nimmt man fiir I" den Operator [ ], der jeder Teilmenge einer gegebenen
Algebra A4 die kleinste sie enthaltende Subalgebra zuordnet, so ergibt sich aus 4.1:

Korollar4.3. Sei A eine Algebra. Su(A) ist genau dann volistindig n-
distributiv, wenn fiir alle x€A eine Menge NG . A existiert, so daff [N]=[x] und

NC\Y fur alle YS X mit xc[¥] gilt.

Im Detail bedeutet die Bedingung in 4.3: Fiir alle x€A4 gibt es eine Menge

NES.4 mit [N]=[x] und jedes Element von N liegt in einer Menge [M], M é Y,
wenn x€[Y] gilt.
Fiir idempotente Algebren gilt dariiber hinaus (wegen (4) siehe [7]):

Satz 4.4. Fur eine idempotente Algebra A sind die folgenden vier Aussagen
dquivalent:

(1) Su(4) ist villstindig n-distributiv.

(2) Su(A) ist n-distributiv.

® =kt

(4) Fur alle Yy C 4 gt [Y ]=';Y, wobei die Stelligkeit von jeder Operation
von A nicht gréfer als s ist.

Bei abelschen Gruppen sind jedoch die n-Distributivitit und die vollstindige
n-Distributivitit des Subalgebrenverbandes keine dquivalenten Eigenschaften:

Satz 4.5. Sei G eine abelsche Gruppe. Su(G) ist genau dann vollstindig
n-distributiv (n<g,), wenn G keine Elemente unendlicher Ordnung enthilt und jede
endlich erzeugte Untergruppe schon von weniger als n Elementen erzeugt wird (d. h.
Jjede endlich erzeugte Untergruppe ist isomorph zu einem Produkt Z,‘IX...XZ,‘
far natiirliche Zahlen ki, ..., k,0). "
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Beweis. Nehmen wir an, G enthilt ein Element x unendlicher Ordnung.
Fiir jede Menge P={p,, ..., p,} von n verschiedenen Primzahlen sei ¥p=

—{(]]p)x|j—l ..,n}. Offensichtlich gilt EYP-—[plx]U U[p,x).

Angenommen die Menge ﬂ{&YP | P n-elementige Menge von Primzahlen} ent-
hilt ein Element y0. Wihle eine n-elementige Menge Q von Primzahlen. Wegen

ye';YQ gilt y=kgx fiir ein gqcQ, k€Z. Sei R eine Menge von n Primzahlen,

die alle gréBer als |kg| sind. Dann ist yQ;Y R> da x unendhche Ordnung hat,
Widerspruch.

Hieraus folgt, daB die in 4.3 geforderte Menge N mcht ex1st1ert Su (G) ist
also nicht vollstindig n-distributiv. Nehmen wir nun umgekehrt an, daB jede endlich
erzeugte Untergruppe schon von weniger als n Elementen erzeugt wird und G keine
Elemente unendlicher Ordnung enthilt.

Sei x€G. Sei P die Menge aller maximalen Primpotenzen, die ord x teilen.
Wir setzen N,={(ord x/p)x]pEP}. Offensichtlich gilt [N,]=[x]. Es wird nun

gezeigt, da ng'jY fiir alle YC X mit x€[Y] gilt.
Hat Y weniger als n Elemente, so gilt [Y ]—'iY Wenn also in diesem Fall
x ein Element von [¥] ist, so ist N. ,__JY Angenommen, fiir jedes x€G und

fiir alle (m —1)-elementigen Teilmengen ¥ von G mit x€[Y] gilt: nge&Y (m%n).
Sei Y={y1, ..., ¥m}EG, x€[¥], 0.B.d.A. x=y;+...+y,. Die Elemente von
Y konnen als (n—1)-komponentige Vektoren angesehen werden. Somit gibt es
Zahlen ki, ..., k,€Z mit groBtem gemeinsamen Teiler 1 und kyy;+... +k, y,,=0.
Sei p ein Primpotenzteiler von r:=ord x. Da ki, ..., k, teilerfremd sind, gibt es
ein  je{l,...,m} mit ggT(k;,p)=1. BEs ist xp=k;x=k;yi+...+k;y,=
=(kj—k)yt...+k;—kn)ym€lY;] fir Y;:=Y\y;. Wegen ordx;=r/ggT(k;, r)
ist (ord x;/p)x;=(rs;[p)x mit s;:=k;/ggT(k;,r). Nach Induktionsvoraussetzung

ist (ordxj/p)xje'ing'iY. Wegen ggT(s;,r)=1 gibt es Zahlen a,b€Z mit

ars;/[p=r/p+br. Es folgt (ars,-/p)x:(r/p)xE'iY.

Aus dieser Charakterisierung der abelschen Gruppen mit vollstindig n-distri-
butivem Untergruppenverband ergibt sich insbesondere, daB der Untergruppen-
verband von Z nicht vollstindig distributiv (d. h. kein A-Verband) ist. Fiir den
Fall n=g, wird der vorangegangene Satz falsch: Fiir jede (endlich-stellige) Algebra
A ist Su(A) algebraisch, also insbesondere stetig.

Daf die Bedingungen 3.3 (f) und 4.1 (e) gleich lauten, hat unter anderem noch
die folgende Konsequenz: Ist der Verband der abgeschlossenen Mengen eines
T,-Raumes unendlich n-distributiv, so ist er schon vollstindig n-distributiv. Ins-
besondere sind also fiir eine T)-Topologie die A-Distributivitit und die vollstandlge
Distributivitit gleichwertige Eigenschaften.
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SchluBbemerkung

Wir haben uns in dieser Arbeit zwar auf Werte von n beschrinkt, die zwischen
2 und 8, liegen, es soll jedoch nicht unerwihnt bleiben, daB man auch fiir andere
Kardinalzahlen sinnvolle Sdtze erhalten kann. Zum Beispiel gilt: Ist X ein topologi-
scher Raum, der das 1. Abzihlbarkeitsaxiom erfiillt, so ist der Verband der abge-
schlossenen Mengen von X vollstindig §,-distributiv. Dies gilt, weil in solch einem
topologischen Raum jedes Element aus der topologischen Hiille einer Teilmenge
schon Limes einer Folge von Elementen dieser Teilmenge ist, d. h. der topologische
Hiillenoperator stimmt mit dem zugehérigen §;-Abschnittoperator iiberein (woraus
sich die Giiltigkeit von 4.1 (b) ergibt).

Der Autor ist Herrn Professor Erné fiir wertvolle Hinweise dankbar.
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On lightly compact spaces

ORHAN OZER

1. Introduction. A topological space X is called lightly compact if every
locally finite family of open sets of X is finite. Several characterizations of light
compactness are given in [1] and [2]. Two well-known characterizations of these
spaces are: a space X is lightly .compact iff every countable open cover of X
contains a finite subfamily whose union is dense in X; and, every countable open
filter base has an adherent point. The aim of this note is an investigation of lightly
compact spaces. We give some characterizations of light compactness in term of
regular-open, regular-closed sets. We also prove some structural properties of such
spaces.

Recall that a set U is regular-open if U=U and a set F is regular-closed if
F=F where ~ denotes the closure of a set and ° denotes the interior of a set.

2. Results. We first prove a lemma.

Lemma 1. The family of closures of members of a locally finite, infinite family
is not finite.

Proof. Let ¥={W,|acd} be a locally finite, infinite family of subsets
of a topologlcal space X. Suppose ¥={W,|acd} is finite, say only the sets
W, W, .., W, are distinct. Since ¥={W,|a€d} is an infinite family, then at
least one of the sets W W .. Wa,, is the closure of infinitely many W,.
Suppose Wl is the closure of 1nﬁmtely many W,. Take any xEWal. Then this
implies that every neighbourhood of x meets infinitely many W,. This is a contra-

diction with ¥ being a locally finite family.

The following theorem shows that the open sets in the definition of lightly
compactness may be replaced with regular-closed sets.

Theorem 1. A space X is lightly compact zﬁr every locally finite family of
regular-closed sets is finite.
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Proof. Let X be a lightly compact space and &={F,|ac4} be a locally

finite family of regular-closed sets. Since F,=F, for each acd, {F,|acd) is
a locally finite family of open sets of the lightly compact space X. Hence {F,|x€d4}
is finite. Thus the family & is finite.

Conversely, suppose {G, |a€4} is a locally finite family of open sets. Then
{G, | €4} is a locally finite family of regular-closed sets. By hypothesis, {G, | €4}
is finite. By Lemma 1, the family {G, | «€4} is finite. Hence X is lightly compact.

We next give another characterization theorem for light compactness.

Theorem2. Ina topologtcal space X the following are equmalent
(i) X is lightly compact.
(ii) Every countable regular-open cover of X contains a ﬁmte subfamily whose
union is dense in X.
(iii) For any countable famzly of regular-open sets {G,|=1,2,...} with the

finite intersection property, ﬂ G,=0.

(iv) For any countable famtly of regular-closed sets {F, ln—l 2, ...} such that
ﬁ F,=9, there exists a finite subfamily {F,, Fs, ...,  F,.} such that ﬂ F,=0.
n=1 i=1

Proof. It is straightforward.
We.next give a sufficient condition for a space X to be lightly compact.

Theorem 3. Let X be any topological space. If every point of X is contained
in only finitely many open sets, then X is lightly compact.

Proof. Suppose X is not lightly compact. Then there exists a locally finite
family ¥ of open sets which is not finite. Let x€X and let N, be an open neigh-
bourhood of x meeting only ﬁnitely many WeY¥, say N,NW, =0 (i=12,..,n)
and N,NW,=0 for all a=a,,a,, ..., a,. This implies that x¢ W, if azay, ag, -
By Lemma 1, there are infinitely many W,. and xeX— W,, asay, a,, ..., a,. That
is, x is contained in infinitely many open sets. This is a contradiction which completes
the proof.

Theorem 4. A4 space X is ltghtly compact whenever a dense subset of 11 Is
lightly compact.

Proof. Let 4 be a ligh'_dy compac't'dense'subset of X. If {G,]n=1,2,. ‘ -}
is a countablé open filter base in X, then {G,N4 [n =1,2,..} is a countable
open filter base in 4. Since ﬂ (G,N Ay, then ﬂ GX<0. Hence X is hghtly

compact.
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We know that in a first countable Hausdorff space every countably compact
subset is closed. The following theorem shows that a similar. result can also be
obtained for lightly compact spaces.

Theorem 5. Every lightly compact subset of a first countable Hausdorff space
is closed.

Proof. Let Y be a lightly compact subset of a first countable Hausdorff
space X. Suppose Y is not closed in X. Take ycY-Y. Let {G,|n=1,2,...}
be a countable open neighbourhood base at y. Then {G,NY |n=1,2,...} is
a countable open filter base in Y which has no adherent point because

o

NGNYY € N @NY)= pINT=0.

This is a contradiction.

It is known that a continuous image of a lightly compact space is lightly compact.
For a weakly continuous function we have the following theorem. First recall that
a function f:X=Y is weakly continuous [3] if for each x€X and each open set
V. containing f(x), there exists an open set U containing x such that f(U)CV.
Equivalently, f: X—Y is weakly continuous iff for each open set ¥ in ¥, we have
SEL V)P (3], Theorem 1).

Theorem 6. A weakly contmuous tmage of a countably compact space is lightly
compact. L

Proof. Let X be-a countably compact space and f: X—Y be a weakly
continuous onto function. If {G,|n=1,2,...} is a countable open cover of Y,

then U f~YG,)=X. Since fis weakly continuous, f~YG,)S[f~*(G,)]° for n=1,2,.
Hence {[ UG |n=1,2,...} -is a countable open. cover of X. Since X is
countably compact, there exists a finite subfamily {G,,G,, ..., G,} such that
.L"j[ f~YG)P=X. Take.any y€Y. Since f is-onto, there exists an .x€X such that
J@)=. Suppose x€[f{G)I’, 15j5n. So xef7G). that is f(x)=y€G;,
1=j=n. Hence U G;=Y. Thus Y is llghtly compact.

i=1

N. LeviNE [4] has introduced the coricept of strongly continuous function.
A function f:X-Y is said to be strongly continuous iff f(A)C f(4) for every
subset 4 of X. For a strongly continuous function we have:

‘Theorem'7. 4 strongly continuous image of a Itghtly compact space is countably
compact.
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Proof. Let X bealightly compact spaceand f: X—Y be a strongly continuous
and onto function. If {G,|n=1,2,...} is a countable open cover of Y then

U fYG,)=X. Since f is strongly continuous, hence continuous, {f~(G,)|
n 1,2,...} is a countable open cover of X. Since X is lightly compact there
exists a finite subfamily {fXGy), f~YGa), ..., f~G,)} such that |J/(Gp)=X.
This implies that =

0 =1=£(0 7@) = U s7G) € U016 = UG

That is, Y is countably compact.

Theorem 8. A one-to-one continuous map from a regular lightly compact
space X onto a first countable Hausdorff space Y is a homeomorphism.

Proof. Let f: X—+Y be a continuous one-to-one and onto map. Let F be
a closed subset of X. It can be shown that F can be written as an intersection
of regular-closed subsets of the regular space X. Say F= NC,, where all C, are

acd
regular-closed subsets. Since X is lightly compact, for all ac4d, C, is a lightly

compact subset of X [1]. Hence for all ac4, f(C,) is a lightly compact subset
of Y. By Theorem 5, for all €4, f(C,) isa closed subset of Y. Since f is one-to-
one, therefore

Sf(F) = ﬂ J(Co).

That is, f(F) is closed in Y. Thus f 1s a closed map, and hence it is a homeo-
morphism.

Recall that a space (X, 1) is called first countable and Hausdorff minimal if
t is first countable and Hausdorff, and if no first countable Hausdorff topology
on X is strictly weaker than . .

-Corollary. [6. 2. 6. Theorem (vii)] A first countable, regular, Itghtly compact
Hausdorff space is first countable and Hausdor[f minimal.

SINGAL [5] has introduced the concept of nearly compact space. A space X is
called nearly compact if every open cover of X has a finite subfamily such that the
interiors of closures of sets in this family covers X. It can be shown that a space is
nearly compact iff the intersection of a family of regular-closed sets with finite inter-
section property is not empty.

It is known that the product of a lightly compact space and a compact space is
lightly compact. The next theorem gives a generalization of this result.
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Theorem 9. The product of a lzghtly compact space and a nearly compact space
is lightly compact.

Proof. Let X be a nearly compact space and ¥ be a lightly compact space.
To show that the product space XX Y is lightly compact, it is enough to prove that
every countable open filter base has an adherent point in XXY. Let &={G, |
n=1,2,3,...} be a countable open filter base in XXY. Then II,(&)={I14G,) |
n=1,2,3,...} is a countable open filter base in ¥, where I, is the second projec-

tion. Since Y is lightly compact, IT,(£) has an adherent point, that is ﬁ II(G,)=0.
n=1

Take y¢ ﬁ I1,(G,). If V isan open set containing y, then for all n, VN I1,(G,)=9.
n=1

Hence for all n, I;YV)NG,#9. Let IL(II;YV)NG)=Uy,. Al Uy, are
open sets in X. Now the family

{Uy,,|V isopenin Y and y€V, n=1,2,3,...}
has the finite intersection property in X. In fact,
Uy Uy = (T NG )N (T (F)NG,) 2
2 {7 (VNG NI (VING,)} = LU (i NV N(G,,NG,)] # 9.

Hence the family {U, ,|V isopenin Y and y€V,n=1,2,3,...} is a collection
of regular-closed sets with the finite intersection property. Since X is nearly-
compact, ﬂ Uy, ,#0. Let x€ ﬂ Uy.,. If we show that (x, y) is an adherent point

of the ﬁlter base & in XXY, then the proof will be completed. Suppose MXN
is a basic open set containing (x, y) in XXY. It is clear that MNUy ,=0 for
all n. Thus MNIL(I;(N)NG,)=P for n=1,2,.... Consequently (MXN)N

NG,=0 for all n, that is (x, y)€ ﬁ G,. So XXY is lightly compact.
n=1
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A note on multifunctions

ORHAN OZER

1. Introduction

A function F: X-p(Y)—{0} is called a multifunction from X to Y and
is usually denoted by F : X—Y, where p(Y) is the power set of Y. The graph
of F is the subset {(x,y)|x€X and y€F(x)} of XXY. We will denote the graph
of F by G(F). If X and Y are topological spaces and F: X—Y is a multi-
function we will say that F has a closed graph if G(F) is a closed subset of XX Y.
The graph G(F) is closed iff for each point (x, y)§ G(F), there exist open sets
UcX and. VCY containing x and y, respectively, such that F(U)NV =0.
The graph G(F) is said to be strongly closed [4] if for each point (x, y)¢ G(F),
there exist open.sets UcX and VCX containing x and y respectively, such that
F(U)NV=0, where V denotes the closure of V. A multifunction F:X-Y
is called upper semicontinuous (weakly upper semicontinuous) if for each x¢X and
each open set V'CY containing F(x), there exists an open set UCX containing
x such that F(U)cV (F(U)cV). It is not difficult to see that F is upper semi-
continuous iff F~XK)={xcX|F(x)NK =0} is closed in X whenever K is
closed in Y. We will say that a multifunction F : X—Y is point closed (point
compact) if F(x) is closed (compact) in ¥ for each x€X. The definition of an
open or closed multifunction is analogous to the definition of an open or closed
single valued mapping. -

A multifunction F:X-Y is said to be almost upper semicontinuous if for
each point x€X and each open set VY contammg F (x), there exists an open

set UcX containing x such that F (U)CV where V denotes the interior of
the closure of V.

A subset K of a topological space X is called quasi H-closed relative to X
if for each open cover {G,|a€d} of K, there exists a finite subfamily {G, |

i=1,2,...,n} such that Kc L"J G, . If X is quasi H-closed relative to X, then it is
i=1 t

Received June 16, 1982, and in revised form December 14, 1982.



12 . Orhan Ozer

called quasi H-closed. When X is Hausdorff, the word “quasi” is omitted in these
two definitions.

A Hausdorff space X is said to be locally H-closed [4] if every point of X has
a neighbourhood which is H-closed. A space X is called c-compact [3] if every
closed set of X is quasi H-closed relative to X.

Let X be a topological space and AcX. If D is a directed set and @: D~ A4
is a net, then we say it r-accumulates 3] to x€ A if for each open set ¥CX contain-
ing x and every beD, &(T,)NV =0, where T,={c€D |c=b}. A space X is
c-compact iff for each closed set 4CX and each net {x,} in A, there exists a point
x€A such that {x,} r-accumulates to x [3, Th. 3).

2. c-compact, H-closed spaces and multifunctions with strongly closed graph

Theorem 2.1. Let F : X—Y be a multifunction and Y be a c-compact space.
If F has strongly closed graph, then F is upper semicontinuous.

Proof. Suppose there exists a closed subset X in ¥ such that F-}(K) is
not closed in X. Take x,€F(K)—F}(K). Hence there exists a net {X,},c4
in F~1(K) suchthat x,—~x,. Nowlet {y,},c, beanetin K suchthat y,€ F(x,)NK
for each a. Since K is closed and Y is c-compact, there exists a point y,€K such
that the net {y,},c, r-accumulates to y,. Since y,¢ F(x,), then (xy, yo)¢ G(F) and
since G(F) is strongly closed, there are open sets UcX and V' CY containing
X, and y,, respectively, such that (UXV)NG(F)=0. But x,—x, implies there
exists an «y€ A such that for every acA and a=oy, x,€U, and {y,).,c, r-accu-
mulates to y, implies there exists some o;6 A and o, =a, such that ya,EV- From
this it follows that (C yal)E(UXV)ﬂG(F) which is a contradiction. Hence
F is upper semicontinuous.

Theorem 2.2. Let F: X—+Y be a point compact multifunction and Y a locally
H-closed (H-closed) space. If for each subset K, H-closed in Y, F~%(K) is closed
in X then F has strongly closed graph.

Proof. Suppose Y is locally H-closed. Take any point (x, y)¢ G(F). Then
y§ F(x). Since Y is Hausdorff, F(x) is compact and y¢ F(x), there are disjoint
opensets ¥V, and W in Y such that y€V; and F(x)cW [1, p.225]. V;NW =0
implies ;W =0. On the other hand, there exists a neighbourhood ¥, of y which
is H-closed. Put ¥ =V,NV,. Then V isan open set containing y and WNV=0.
Since Y is Hausdorff and ¥, is H-closed in ¥, then ¥V, is closed in Y. Thus
VcV,. V is a regularly closed subset in the H-closed set ¥,. Therefore V is
H-closed in V,, so V is H-closed in Y. According to our assumption, F~4(V)
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is closed in X. Put U=X—F-(V). Then U is an open set in X containing
x and F(U)NV=0. This shows that G(F) is strongly closed.

Theorem 2.3. Let F :X—Y be an almost upper semicontinuous point compact
multifunction and Y Hausdorff. Then F has a strongly closed graph.

Proof. Let (x, )¢ G(F). Since F(x) is compact, y¢ F(x) and Y is Haus-
dorff, there are disjoint open sets ¥ and W containing y and F(x), respectively.

We can write ¥ "W =0. Since F is almost upper semicontinuous there is an open

set U in X containing x such that F(U)cW. Now we have F(U)NV =0.
That is, G(F) is strongly closed.

Corollary. Let F : X—Y be apoint compact multifunctionand Y an H-closed
space. The following are equivalent:
(i) F is almost upper semicontinuous,
(ii) F has strongly closed graph,
(iiiy For each subset K, H-closed relative to Y, F~Y(K) is closed in X,
(iv) For each H-closed subset K of Y, F~Y(K) is closed in X. '

Proof. According to Theorem 2.3, (i) implies (ii). (ii) implies (iii), by Theorem
4.15 [4]. Since an H-closed subset of Y is H-closed relative to Y (the converse
need not be true), the implication (iii)=(iv) is obvious.

Let us prove that (iv) implies (i). For any x€X, let W be an open set contain-
ing F(x). W is a regularly open set contammg F (x) Y- W is a regularly closed
set. Since Y is H-closed then Y W is H-closed. Hence by (iv), F~(Y - W)
is closed in X and x&{F Wy - W) Thus there exists an open set U containing

x such that UNF~Y(Y — W) §. This implies that F (U)CW that is, F is almost
upper semicontinuous.

Our next result is a generalization of Theorem 11 in [3], which was proved for
a single valued mapping.

Theorem 2.4. If F: X—Y Is an open and closed multifunction from a regular
space X into a c-compact space Y, and if F~Yy) is closed for each y€Y, then
F is upper semicontinuous.

Proof. According to Theorem 3.4, Corollary 3.5 [5] F has closed graph.
For an open multifunction the condition closed graph and strongly closed graph
are identical. Hence F : X—Y has a strongly closed graph and Y is c-compact,
so by Theorem 2.1, F is upper semicontinuous.
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Theorem 2.5. If F:X-Y is an upper semicontinuous point compact multi-
function, then F is compact preserving.

Proof. Let K be a compact subset of X and suppose {W,|a€4} is an open
cover of F(K). Take any x€K, then F(x) is a compact subset of ¥ and F(x)C
CF(K). Thus {W,|acd} is an open cover of F(x). Hence there is a finite sub-

cover, say {W,(x), ..., W, (x)}. Now put V(x)=iL"J W, (x). V(x)is an open set
1 n =1 (!

containing F(x). Since F is upper semicontinuous, there exists an open set U(x)cX
containing x such that F(U(x))c¥V(x). Now {U(x)|x€K} is an open cover of
K and K is a compact subset of X. Take x,, x;, ..., x,€K such that {U(x) |
i=1,...,m} isasubcover. Let ¥V (x,), V(xy), ..., V(x,,) be the open sets correspond-
ing to U(xy), U(xy), ..., U(x,,), respectively. Thus

F(K) < F[g1 U(x,.)] = igl F(U®)) © ,.Q Vix) =

!= U {Wal (xl)’ RERE Wa,, (xl)s ceey Wﬁ, (xm)a sevy Wﬁ, (xm)}

That is, we have a finite subcover of {W,|a€4}. Hence F(K) is compact in Y.

Corollary. Let F : X—~Y be an onto closed multifunction. If F has compact
point inverses, then for each compact subset K of Y F~YK) is compact in X.

Proof. Since (F™)™'=F, then F™':Y—X is an upper semicontinuous
point compact multifunction, hence F~! is compact preserving.

Theorem 2.6. Let F:X—Y be a weakly upper semicontinuous point compact
multifunction. Then F maps a compact subset K of X onto subset F(K) quasi
H-closed relative to Y.

Proof. The proofis the same as in Theorem 2.5.

Let F: X-Y bea multifunction. We can define a new multifunction F: X—Y
by setting F(x)=F(x) for all x¢X. If ¥ isnormal and F:X-Y is upper semi-
continuous then F :X-Y is upper semicontinuous [2]. We have the following
new result.

Theorem 2.7. If F:X—Y is weakly upper semicontinuous, then F : X—~Y
is weakly upper semicontinuous.

Proof. Let x€X and W an openset in Y containing F(x). Since F(x)C
CF((x=F(x)cW and F is weakly upper semicontinuous there is an open set
U in X containing x such that F(U)cW. This implies that F(U)cW. On the
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other hand

FU)= U F(x= U F@x) c FU).
xeU xeU

Hence F(U)cW, thatis, F is weakly upper semicontinuous.

Theorem 2.8. If F:X—+Y is weakly upper semicontinuous and Y is regular,
then the graph of F is closed in XXY.

Proof. F:X-Y is weakly upper semicontinuous, by Theorem 2.7. Now
suppose (x, Y)¢(G(F). y¢F (x)=F(x). Since Y is regular, there are open sets
V and W containing y and F(x), respectively, such that VW =0. Hence
VNW =0. From the weakly upper semicontinuity of F, we have an open set
U in X containing x such that F(U)cW. Hence F(U)NV=0. Thatis, G(F)
is closed in XXY.

Corollary. [5, Theorem 3.3] If F : XY is a point closed upper semicontinuous
multifunction into a regular space, then F has a closed graph.

Acknowledgement. The author wishes to thank the referee whose comments
improved the exposition of the paper.
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On variation spaces of harmonic maps into spheres

A LEE and G. TOTH

1. Introduction

Given a harmonic map f: M—~S" [3] of a compact oriented Riemannian
manifold M into the Euclidean n-sphere S", n=2, a vector field v along f, ie.
a section of the pull-back bundle & =f*(T(S"), gives rise to a (one-parameter,
geodesic) variation f; = expo(tv): M—~S", t€R, where exp: T(S") -~ S" is the
exponential map. The element v€C=(F) is said to be a harmonic variation if
/¢ is harmonic for all 7€R and the set of all harmonic variations v (or the variation
space) of f is denoted by V(f)cC=(%¥). Then [11] veV(f) if and only if
o) =const. and

(D) V2v=trace R(fs, v)f+ (i.e. v is a Jacobi field along f [3]),

(ii) trace (fi, Vv)=0,
where (,) and V are the induced metric and connection of the Riemannian-
connected bundle F @ A*(T*(M)), V2= trace VoV [9], R is the curvature
tensor of S” and the differential £ of f is considered as a section of & @ T*(M).
Denote by K(f) the linear space of all vector fields v along f satisfying (i) and (ii).
The equation (i) being (strongly) elliptic [9] dim K(f)<e= and V(f)={veK(f)|
|||v||=const.}cK( f) is a subset with the obvious property RV,(f)=V(f), where
Vol )= {eK(N) |10l =1}.

The purpose of this paper is to give a geometric description of the variation
space V(i)cK(i) (=R™) of the canonical inclusion i:S™-S", where N=
=m(m+1)/2+(m—m)(m+1). In Section 2 we collect the necessary tools from matrix
theory used in the sequel, especially we describe the singular value decomposition
of rectangular matrices (see e.g. [7]). In Section 3 the problem of determining ¥ (i)
is reduced to the geometric characterization of an (algebraic) set of matrices. Then
the singular value decomposition of these matrices are exploited to get a description
of Vy(i)cK(i) as a set of orbits (under a linear Lie group action) which contains
a (twisted) simplex as a global section (Theorem 1). In particular, we prove that

Received August 9, 1982,
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V(idger-1), r€N, is the double cone over the irreducible Hermitian symmetric
space SO(2r)/U(r) (=V4(idgs»-1)). (Note that ¥ (ids)=0 because x(S*)=2 [11].)
In Section 4 we first give an alternative description of the linear space K(f). In
particular, we obtain that there is a one-to-one correspondence between the elements
of Vo(f) and the orthogonal pairs f, f1: M—~S" of harmonic maps with the same
energy density e(f)=e(f") [3]. Second, as an example, we determine K(f) for the
Veronese surface f: S2—S* and prove that K(f)=K(idg) and V(f)=V(idg)=0
hold.

Throughout this paper all manifolds, maps, bundles, etc. will be smooth, i.e.
of class C=. The report [3] is our general reference for harmonic maps though we
adopt the sign conventions of [6].

We thank Professor Eells for his valuable suggestions and encouragement
during the preparation of this work. '

2. Preliminaries from matrix theory

First we fix some notations used in the sequel. Denote by M(p, g¢) the linear
space of (pXgq) matrices and, as usual, let I, and 0, the unit and zero elements
of M(p,p). A matrix 4€M(p,q) with entries a;;, i=1,...,p, j=1,...,q, 18
said to be (rectangular) diagonal if

—{0, if l¢]9 i=1,--->P,j=1,---,q, .
%4 = o, if i=j, i=1,..., min(p, q)

holds. We write A=diag (6y, ..., 0,)f with d=min(p,q) and, in case p#q,
we omit the indices p and g.
The singular value decomposition of rectangular matrices is given in the follow-

ing theorem. (For the proof, see [7].)

Theorem A. For any matrix BcM(p, q) there exist orthogonal matrices
VeOo(p) and U€O(q) such that

VTBU = diag (03, ..., 0,)%
with 0,=0, i=1,...,d=min (p, q). The matrices V,U and the vdlues o; are
determined by the relations:
(A) VBBV = diag (03, ..., 03, ..., 02),
(A,) UTBTBU = diag (63, ..., 03, ...,03),
(A;) BU =V diag (o4, ..., 6,)8,

where 6;=0 for d<i=max(p,q).
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Remark. The numbers 0,=0, i=1,...,d, are called the singular values of
B. Clearly, V and U can always be chosen such that ¢,=g,=...=0¢; holds.
Denote by A4,€s50(2r) the skew-symmetric matrix

- 01 01
A'=d’ag([—1 0 ""’[—1 0]

and put Al;A In the next theorem we collect some properties of skew-symmetric
matrices (cf. [8] pp. 151, 231).

Theorem B. For any matrix fg€so(p) we have
. (By) rank #=2r=p;
(By) The 2r nonzero eigenvalues of # appear in pairs ly_1=lo;=1V —lo;

with 6;>0,i=1, ..., r, while zero is an eigenvalue with multiplicity p—2r;
(Bs) There exists UeO(p) such that
6} UT #U = diag(0,—s,, 014, ..., 5,4)
or equivalently
diag (6,4 A), if p is even,
a Ut U { g (& Gy ) fP. .
diag (0, 61 ws Opye14), if p is odd,
where 6‘1=...=6[(p_2,)/2]=0 and 6[(p—2r)/2]+i=o-i’ i=1,..r;

(By) With the same matrix UcO(p) we have

@ UT(—#HU = {diag (81, ..., 832 Ly) if p is even,
diag (0, 611, ..., 8%, 1o, if p is odd,

in particular, the nonzero singular values of # have even multiplicities.

3. Variation space of the canonical inclusion i: $™ - S"

Let i: S™—~S" be the canonical inclusion and let W1, ..., W* k=n—m,
denote the system of orthonormal parallel sections of the normal bundle of i defined
by the standard base vectors e,.s, ..., €,41€R" % '

According to a result of [11] v€K(i) if and only if the tangential part # of
v is a Killing vector field on S™ and there exist vectors by, ..., b, R™t! such that
the orthogonal decomposition :

-k .
v = Ft (b, x)Wi, xes™
=1

is valid. Hence the linear map ¥: K(i)—+so(m+1)XM(k, m+1) defined by ¥(v)=
=(4, B), v€K(i), where ¢ is the tangential part of v and . BeM(k,m+1)

9
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consists of the row vectors by, ..., b,€R™' occurring in the decomposition of
v above, is a linear isomorphism. In what follows, we identify K(i) and
som+1DXMk,m+1) via ¥. Further, V({@)=RV,(i)cK(i), where V,(i)=
={v€K (i) | ol =1}. Thus, for v=(F, B)EV,(i), we have

k .
t=lod2 =202+ 2 (bj, x)* = (= £*x, x)+ (BT Bx, x), x€S",
j=1
ie. :
Vol) = {(#, B)eso(m+1)X Mk, m+1)|— £+ BB = ).
The objective of this section is to give a geometric description of the set V(i)

CK(i). Before stating our main theorem we introduce some notations. For the given
positive integers m and n, m=n, set

' {min ((m+1)/2, [k/2]), if m+1 is even,

~ lmin (m/2, [(k—1)/2]), if m+1 is odd,
where k=n—m, and define '

4,={(61,..,0)R |1 =0, =...2 0, = 0}.

So 4,CR’ isa (linear) simplex which reduces to a point if r=0. (Note that 1= —1
and equality holds if and only if m=n is even, in which case ¥,({)=0[11] and we
put 4_,=0.)

A linear representation of the Lie group O(m+1)XO(k) on the vector space
K(@)=so(m+1)XM(k, m+1) is given by

(U, V)-(#, B)=(UFUT, VBUT),

(U, V)EO (m+1)X O(k), (£, B)eso(m+1)X M(k, m+1). Clearly, the subset V,(i)C
CK(i) is invariant, i.e. V(i) is the union of orbits crossing V,(i). Finally we
introduce certain subgroups of O(m+1)XO0(k) which will be the isotropy sub-
groups at points of V,(i). For given nonnegative integers ay, by, ¢1, Ca, .., Cs41
with m+1=ay+2¢,+...+2¢,41 and k=ay+2c,+...+2¢,+b, define the subgroups

G(C1s s Cs41) = {(Aos Cys -5 Cyi15 4o, Cis .., C, B)€O(m+1) X O(K) |

Aoeo(ao)a Boeo(bo), C;E U(Cg), l = 1’ ceey S+1},

where U(c,) is considered as a subgroup of SO(2¢;) via the canonical embedding
U(c)—+~S0Q2c), i =1, ..., s+1. The isotropy type i.e. the set of all conjugacy classes
of a subgroup 4cO(m+1)XO0(k) is denoted by (¢). The main result of this
section is the following:

Theorem 1. There exists an embedding ®:A4,~K(i) such that @®(4,) is
a global section of the invariant subset V(i) (i.e. ®(4,)V(i) and any orbit on
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V(i) cuts ®(4,) at exactly one point). Moreover, for 6=(04, ..., Oy, G1y .ces O1, ...y
Gst1s -5 Os41)Eds, Where 1=0y>01>...>0,>0,,,=0 and o; occurs c; times in
0, i=0, ..., s+1, the isotropy type of the orbit through ®(c) is (Z(cy, ...y Cos Cop1+
+((m+1)/21—1)*) (*= positive part) or equivalently this orbit has the form

(O(m+1)XOE)/F(c1y ..r C5» Cgir+([m+1)/20]~1)*).

In particular, for each open face A of the simplex A, the orbits throuéh' P(4) have
the same type. '

Remarks 1. Each orbit consists of 1,2 or 4 components. More precisely,
the subgroups %(cy, ..., C;4+1)CSO(m+1)X SO (k) being connected, the orbit
(O(m+1)XO0K))%(cy, ..., €55 Coar1+([(m+1)/2]—1)*) has N components, where

1, if k=0 and a4by =0,
N=12, if k>0, ayby=0 and ay+by>0 orif k=0,
4, if k>0 and ao-_:bo:o.

2. By a result of [13] for any locally rigid harmonic embedding f: M —S"
we have V(f)=V (), where i: S"+S" is the inclusion and m is the dimension
of the least totally geodesic submanifold of S” containing the image of f. Thus
Theorem 1 gives a description of the variation space of all locally rigid harmonic
embeddings. .

The proof of Theorem 1 is broken up into a few lemmas. Let (¢, B)cV, (i)
be fixed. Then, by Theorem B, there exists UcO(m+1) such that UT#U and
U'(—_#®)U have the form (1°) and (2), resp., with

0=6,=...= 8p1y2-
Thus, by B'™B=1,,,+ #2, we obtain

UTBTBU < {d‘iag (o%lz; vees af(,,,;l,mlz), ‘if m+1 .is even,

diag (1, 63 Ly, ..., 6fm+ny21le), if m+1 is odd,
where af=1-8%, i=1,...,[(m+1)/2]. Clearly, 1=0}=... =0, .1,»=0 is satis-
fied. Then the values o}, i=1, ...,[(m+1)/2], occurring twice in BTB, are the
eigenvalues of the positive semidefinite matrix BTB. The nonzero eigenvalues of
B™B and BBT being the same, the system of eigenvalues of BBT¢M(k, k) can be
obtained from that of BTBcM(m+1,m+1) by supplementing or omitting
[k—(m+1)| zeros according as kz=m+1 or k<m+1. In the latter case, for some
index t,=[k/2], 6,=0, i>1,, must be valid. The determination of the minimal
value of #, can be done by making distinction according to the parity of k. Hence

9%
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we have ,
UTBTBU =

{diag (0ih, ..., Ofmsnye ) for k =m+1, m+1 even,
diag (631;, ..., 63215, 0,41-3) for k even, k <m+1, m+1 even,

__Jdiag (611;, ..., 0fya1lz, Opy1-2pe) for k odd, k <m+1, m+1 even,

“ \diag (1, 631, ..., 6fme1yele) for k= m+1, m+1 odd,
diag (1, 631y, ..., 6%—1yj2 15, Opy1-p) for k odd, k <m+1, m+1 odd, .
ldiag (A, 631, ..., 6fg—1y2172> Om—srx—1y2)) for k even, k < m+1, m+1 odd.

A case-by-case verification shows that the minimal value of 7, is the number ¢
defined before Theorem 1. Thus we obtain

diag (631;, ..., 021,,0,,1-2), if m+1 is even,
UTBTBU={.g(122 xzz +1-20) ! .

diag (1, 631, ..., 062 1,,0,_,), if m+1 is odd,
and consequently (1”) has the form

Ut gU {diag (614, ..., 8,4, Apir—2n), if m+1 is even,
FU= diag (0, 8,4, ..., 8,4, Apm—sy2)s if m+1 is odd.
Lemmal. Let (%, B)cK(i). Then (£, B)cV,(i) if and only if there exists
(U, V)EO(m+1)XO(k) such that (#, B)=(Uf#(@B)UT, VB(e)U", where
diag (644, ..., 6,4, Apme1-2ny2) Iif m+1, is even -
diag (0, 61/1, AN 6‘/1, A(m—?x)/2), if m+1, is Odd, .
diag (61 1,, ..., 6,15, 0,98t if m+1, is even,
diag(l,0, 5, ...,0,1,,0;,_1_,)F*Y, if m+1, is odd,

s@={

B(o) = {

with ¢€d,, 6;=V1+oi,i=1,..., ¢t and d=min (m+1, k).

Proof. If (#, B)EV,(i) then there exists U€¢O(m+1) such that UTB'BU=
=B(6)"B(c) and U'gU=g(6) with 0=8,=...S6(n+12 The diagonal
entries of UTBTBU are the eigenvalues of BTB and hence, by Theorem A, there
exists ¥€0(k) such that the pair (U, V') perform the singular value decomposition
of B, ie. we have VTBU=B(s). Thus, (U'#U, V*BU)=(#(8), B(s)), s€A4,.
The converse being obvious the proof is finished.

By the lemma above the map @:4,—~K(), ®(0)=(2(8), B(0)), 0€4,, is an
embedding with (O(m+1)XO0(k))- (4)=V,(i). Moreover, the eigenvalues of
# and the singular values of B are invariants characterizing the orbit through
(#, B) uniquely. Thus &(4,) is a global section on ¥,(i) which a_ccomplishés the
proof of the first statement of Theorem 1. - '
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Let 6=(0g, ... Ggs Ops iy Ops ooy Ogy1s «-vr Os11)EA, be fixed with 1=g,>
>0,>...>0,>0,,;=0 and ¢, occurs ¢; times in o, i=0, ..., s+1. It remains
to compute the isotropy type of the orbit through &(g). The isotropy subgroup
at (o) consists of pairs (U, V) such that U#(6)=_#(6)U and VB(c)=B(c)U.
First we study the second relation. Consider B(c)€ M (k, m+1) as a matrix

o= .

) . s
where Z=diag (601, 011y, ---» Oslp. JEM(r, 1), r=ao+2i§ €

{2c0, if m+1 is even,
% = 12¢,+1, if m+1 is odd,

and O on the right lower corner is of size (k—r)X(m+1—r).

Lemma2. Let (U, V)EO(m+1)XO(K) such that VB(c)=B(c)U holds.
Then we have V =diag(4,,C;, ...,Cs, By) and U=diag(4,,C,, ...,Cs, Css1),
Where AoEO(ao), BOEO(k—r), Ci€0(2c,~), i=1, ceny S,y Cs+1€0(m+l—r).

Proof. Let Ve€O(k) and UcO(m+1) have the partitioned forms (conformal
to that of B(s) above):

" [V0 R] iU [Uo P ]
= an = .
. S BO Q Cs+1

where Vo, U M(r,r), B¢ M(k—r, k—r), Cs11€ M(m+1—r,m+1—r). (The size
of C,4, can be expressed as m+1—r=2c,,,+2([(m+1)/2]—1)*). Substituting
these into the equations VB(¢)=B(o)U, V¥V '=I,, UUT=I,,, we obtain R=0,
§=0, V,€0(r), B,cO(k—r) and P=0, Q=0, U,cO(r), Cy1r,€0(m+1—r). Thus
the first equation reduces to V,Z=2XU,, i.e. by det Z=0¢2%...0%%=>0, V,=ZU,Z "1
Substituting this into the orthogonality relation V[ V,=I, we get U,22=22U,
which ‘gives for U,=(C;;), Coo€ M(ay, ag), Cio€ M (2¢;, ay), Coj€M(ay, 2¢;), Cyi€
EM(2¢c;, 2¢), i, j=1, ..., s, the relations C;;=0, if isj. Hence, using the nota-
tions Cg=4, and Cu=C;, i=l,...,s, we obtain U,=diag(4,,C;,...,C,)
with 4,€0(ay), C€0(2c), i=1, ...,s. As U, and Z commute we have V,=U,
which accomplishes the proof.

Consider now the second equation U_#(8)=_¢(8)U, where U has the form
given in Lemma 2. Clearly, this equation is satisfied if and only if Ci€Z(4,),
i=1,...,5 Cs41€Z(Am+1-np), ‘Where Z(A,) denotes the centralizer of 4,
in O(2p).
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Lemma 3. - The centralizer Z(A,)CO(2p) is connected and there exists
Uy€O0(2p) such that Ad (UyZ(A,)=U(p)cSO(2p), where Ad denotes the adjoint
representation of O(2p).

Proof. Itiswell-known that Z(A4,)cSO(2p) (cf.[8], Ch. IV. § 29, p. 248). First
we prove that Z(A4,)cSO(2p) is connected. Clearly, exp ((n/2)4,)=4,, where
exp: so(2p)~SO(2p) is the exponential map. Hence T =exp (RA,)cSO(2p) is
a toroidal subgroup which contains A4,, ie. its centralizer Z(T) is contained in
Z(A,). On the other hand, if U€Z(A,) then the geodesics s—exp ((n/2)s4,)- U,
s—U -exp ((n/2)sA,), s€R, (with respect to a biinvariant metric on SO(2p)) have
common tangent vector at s=0, ie. exp((n/2)sA,)U=U exp ((n/2)s4,) which
implies that U€Z(T). Thus Z(A,)=Z(T) and hence connected (cf. [4], Cor.
2.8. p. 287). Finally, let

- OP IP
I = [—1, 0,
and choose U,€0(2p) with Ad (Up)4,=4,. Then Ad (Uy)Z(A4,)=Z(Ad (UpA,)=
=Z(#,) and the fixed point set of the automorphism Ad (%) of SO(2p) is Z(%,).
It is known that Z(£,)=U(p)<SO(2p) ([4}, p. 453—454) which accomplishes the
proof.
By Lemmas 1—3, (U, V) belongs to the isotropy subgroup at @®(¢) if and
only if (U, V)€O(m+1)XO0(k) is conjugate to an element of %(cy, ..., ¢, Coryt+

+([(m+1)/2]—¢)*) (under a conjugation which does not depend on (U, V))
which completes the proof of Theorem 1.

Example (Variation space of the identity of odd spheres). Consider the special
case when m=n=2r—1 odd. Then =0 and V,(ids.,.,) reduces to a single
orbit through A4,€s0(2r) under the adjoint representation of 0(2r) on so(2r).
We claim that this orbit is a disjoint union

Ad (SO (2r)4,UAd (SO(2n)4;,

where A =diag (4, ..., A, — A)€so(2r). Indeed, denoting R=diag(l, ..., 1,—1)€
€0(2r), we have RA,R=A; and hence if U€O(2r) such that Ad(U)A,=A]
then Ad (RU)A,=A, which implies RUESO(2r), ie. detU=-1.

The Killing form of so(2r) is a negative definite Ad-invariant scalar product
on so(2r) and so it follows easily that any ray in so(2r) starting at the origin cuts
the orbit Ad(SO(2r)4, (or Ad(SO(2r))4;) at most once.

CaseI: r is even. Then Ad(UgA,=—A, with Uy,=diag(l, —1,1, —1, ...,
.oy 1, —=1)€ESO(2r), ie. the orbit Ad(SO(2r)4, (and Ad(SO@2r)A;) is
central symmetric to the origin. Thus V(idg,-1) = R-V,(idg-,) is a double
cone over Ad(S0(2r)A,=S0@2r)|U(r).
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Case Il: r is odd. It follows easily that any line through the origin cuts
Vo(idgsr—s) twice and that the components Ad(SO(2r))4, and Ad(SO(2r)4;
are central symmetric to each other, i.e. ¥(idg..,) is again a double cone over
SoQ@nU®).

Remark. In the special case r=2 the space V(ids) is the disjoint union
of two samples of §2(=S0(4)/U(2)) which was already noticed in [13].

4. The Veronese surface -

Let M be a compact oriented Riemannian manifold and consider a harmonic
map f:M-S" By the inclusion j: S"—~R"+' the map f becomes a vector-
valued function f: M-R"*'. Moreover, translating vectors tangent to S"CR"+!
to the origin, a vector field v along f: M—S" gives rise to a map §: M—R"+!
with the property (f, 9)=0. The following lemma characterizes the elements of
K(f) in terms of the induced functions 9. :

Lemmad4. Let v be a vector field along f: M—+S". Then v€K(f) if and
only if AM9=2e(f)D holds, where e(f)=|f.|?/2 denotes the energy density of f.

Proof. The covariant differentiation on S" can be obtained from that of
R**! by performing the orthogonal projection to the correspondmg tangent space
of *S" and thus, for XE%(M ), we have

(Vxt)" = X(O)—(X®), £) £,

where X acts on § componentwise. An easy computation shows that

(VyVxv)™ =YX (@O)—YX®), /)f—X®), /HY(), X, YeX(M),

(V20)~ = —AM D+ (M, f) f—trace {dD, f)df
holds. On the other hand, we have
(trace R(fi, v) )" =(trace {fi, 0} fs) " —2e(f)b=
=trace (df, 0)df—2e(f)D= —trace (f, dd) df—2e(f)b.

The identities yield that » is a Jacobi vector field along f if and only if
© Ao— (M, =20
is satisfied. Moreover, we have '

trace { fi, Vv)=trace (df, ddy—trace {db, f){df,f )

ie.
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By [If2=1 the second term vanishes and so equation (ii) of Section 1 is equivalent
to the following

) trace (df, dd) = 0.
Further, harmonicity of f means that A¥f=2e(f)f is valid and hence we get
dM9, fY=—(V2D, f) = —trace V{dD, f)+trace (dd, df) =
= trace V (§, df )+trace (dd, df ) = 2 trace (dD, df )+(D, 4™ f) = 2 trace (db, df ).

Assuming v€K (i) we obtain that (49, f)=0 and hence (1) reduces to the equa-
tion given in the lemma. Conversely, multiplying this equation with f we get
(49, f)=0 and hence (1) and (2) are satisfied which accomplishes the proof.

Corollary. Let f,f’: M—~S" be orthogonal harmonic maps with e(NH=e(/).
Then the (unique) vector field v along f with |lv|=1 and expo((n/2)v)=f" is
a harmonic variation. .

*

Proof. By hypothesis d=f, ,=f" and harmonicity of f’ yields AMp=
=2e(f")0=2e(f)?. Applying the lemma above we obtain that v€K(f) which ac-
complishes the proof.

Remark. According to a result of [11] a vector field v along f is a harmonic
variation if and only if v is a Jacobi field along f and e(f)=e(f) holds for all
tcR. Hence there is a one-to-one correspondence between the harmonic variations
of V,o(f) and the orthogonal pairs of harmonic maps f, f': M—S™ with e(f)=e(f").

Now we turn to the variation space of the Veronese surface. Consider the
eigenspace 5, of the Laplacian 4=45" of the Euclidean sphere S$2 corresponding
to the (second) eigenvalue 1,=6[1]. An element of 5 is the restriction (to S?)
of a homogeneous polynomial p: R3—+R of degree 2 which has the form

p= Zak(pk+2 Zblj(pl_]’

where ay, b;;€R with Z’ak—O and ¢y, 05, k=1,2,3, 1=i<j=3, are scalars

on S? defined by (pk(x) =xi, o,;(x)= =x,X;, X= (%15 X3, X5)€S% (cf. [1] p. 176),
in particular dim 5%=>5.

Integration over S? defines a Euclidean scalar product on ;. Denoting
I=|lp,)? and J=|¢;l|?, the Veronese surface f: S?—~S* is defined by

N 8
f(xhxz’ xs)— I— J kz [xk 3](pk+ Zxxj(pij’ (xlaxmxs)eSz’
where N>0 is a normalizing factor given by the condition | f|j=1. Then f is
full and homothetic [1]. It is well-known [1] that f factors through the canonical
projection n: §2—~RP? yielding an embedding of RP? into S*



On variation spaces of harmonic maps into spheres 137

Lemma 5. For the Veronese surface f:S2~S8% if veK(f) then d:S*—#,
has the decomposition

b= kgal' ak¢k+2i§i b;; i},
where a,,b;;, k=1,3, 1=i<j=3, are scalars on S* determined by the formulas
ay(x) = —ex3+exZ+ 200 x, X5+ 21 X1 X3 — 2 (ta + B3) X2 X5,
ay(x) =ex3—ex3+2P5%; X3 — 2 (By +05) Xy X3+ 205 X5 X3,

ag(x) = —exi+exz—2(x+ ) x1 X2+ 2°‘3x14x3 +2B3%; X3,

o o+
blz(x)'—‘-—‘jle ﬁz x5+ 1232 3—2Y1 X1 X3+ 273X X3,
o+ a,
by (x) = _z_z__ﬂ_:;x%__?zxg__g_:; X3— 299X, Xy + 273 X1 X3,
o
by3(x) = —ﬁ xi+ s+ xz—ﬁ’-x§+2y1x1x2—2y3x2x3,

2 72
x=(X;, Xz, X3)€S?, &, 0, By, kER, k=1,2,3. In particular, dim K(f)=10.
Proof. As # maps into % we have the decomposition of £ as above with

3
> a,=0. On the other hand, Lemma 4 implies that
k=1

0=4b—-60= Z(Aak_6ak)¢k+2 Z(Abu 6bi.i) Pij

l<]

and hence orthogonality of the polynomials ¢,;, i<j, and the relations (@, ¢;;)=0,
(@, 0ry=J+6,,(I—J), k,r=1,2,3, i<}, yield that the scalars a, b;;, k=1,2,3,
i<j, belong to ;. Thus
3
a, = Za;(pk-l_zzb;l(pu’ r= 1’ 2’ 3:
k=1 i<j
and
3
b, = Z,;a,f"qo,‘+2 2 by, 1=p<g=3,
. i<j

where a, bj;, af?, bIJ€R such that
3 3 ’
(C) Sa,=0 and JFaf?=0, r=123 1=p=<g=3
k=1 k=1

3
hold. Moreover, from the equation 2’ a,=0 we obtain

© Zaw—o and b =0,

r=1
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Finally, the orthogonality relations for ¢, and ¢;; above imply that the condition
(f, 9)=0 is equivalent to the equation

Z’akxk+4 Z'buxx =0, (x;, Xy, X5)ES2.

i<j

Substituting the explicit expressions of g, and b;; we get

3 3
Z Zak(Pk‘Pr+22 Z(b +2a”)(P,(PU+8 2 Zb (plj(ppq 0‘

k=1r=1 i<jr= i<jp<g

A straightforward computation, determining the coefficients of the fourth order
homogeneous polynomial on the left hand side, shows that this equation is satisfied
if and only if the following relations hold:

(Cy) a&=0 for k=1, 2 3,

(Co b}2+2a12—b2 ay?=by,+2a;°=b}, + 24,2 =bj, 4+ 24 = b3, + 243 =0,

(Cs) ai+di+8bii=0 for 1si<j=3, -

(Cs) b +2a§“+4b‘3+4b‘2—b2 +2a3® +4b% + 4byi =b3, + 2a}? + 4b% + 4b3 =0.
Putting e=al, the relations (C,}—(C,)—(C;) imply that the matrix A=(a})eM (3, 3)
has the form

0 ¢ —¢
A=]|—¢ 0 ¢
¢ —¢ O

and consequently, by (Cy), bii=0 for i<j. Introducing the new (independent)
variables

@ = bls, ay = bj;, a3 = bl;,

B1 = bls, B2 = bla, By = b,

71= b1}, 72 = bi3, vs = b,
we see that all the remaining coefficients are expressible in terms of the variables
{&, s Brs Vi | k=1,2,3} and a straightforward computation leads to the coefficients

given in Lemma 5.
Our last result asserts that the Veronese surface is rigid. More precisely, we have

the following

Theorem 2. For the Veronese surface f:S*—~S* the variation space V(f)
is zero.

Proof. Using the notations of Lemma 5 we parametrize K(f) with the
variables {e, o, By, x| k=1,2,3}. Putting v€K(f) we have

3
b= kZI' @ Qr+2 Z b0y,

where the coefficients @, b;;, k=1,2,3, 1=i<j=3, are given in Lemma 5.
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Note that the parametrization of K(f) is chosen in such a way as the cyclic
permutation n=(123) of the indices on the right hand sides will permute the scalars
ay, dy, az and by, by, by cyclically. Now suppose, on the contrary, that ¥ (f)> {0},
i.e. we may choose v€ ¥V (f) with {v]|2=4_¢. Then we have

3 3 3
W=lol= 3 3 aalpn o) +4] Zbh=(—J) S+l 3B,
. =1lr= i<j = <
or equivalently

(3) =7§; E'*'Zbu
I—

i<j

. J 1 . . . .
on S%, where we used the equality 7 =7 which can be obtained by integrating

the polynomials ¢? and ¢}, on S% Thus

1 3
(x§+x§+xa 2 = Ekzi ak(xh X2, x3)2+_2 bij(xlv X2, X3)2
= i<j

is satisfied for all (x,, x;, x3)€R3. By computing the coefficients of the fourth order
homogeneous polynomial on the right hand side we obtain a system of 15 quadratic
equations in which the first 5 are given as follows

(i) 4¢®+oi+Bi+ (ot Bo)*=4,

(i) e(o+2B5)—Bry1— (a2 +B5)72=0,

(i) —&(By+205)+ 07, + (@z+ B3)75=0,

(iv) e(ag—p5)+2 (“1 By — B2 (B1+05) —at3 (a1 + B2)) — 1 Yo + Br ¥a — 47275 =0,

(V) —2e24+4(of 4 B3+ (2 + B2)?) + 01 Boa— 1 (By + ) — aa (o%a + B3) + 8 (3 +95) =4,
and, the equation (3) being invariant under the cyclic permutation n=(123) of the
indices, the last 10 equations are obtained from (i)}—(v) by performing the index
permutations 7 and =% Denote the equations of the permuted systems by (i),—(v),
and (i),»—(v),2, respectively. Our purpose is to show that these equations have no
solution. To do this, first denote by s the symmetric polynomial given by s(x, y)=
=x¥+xy+y? x, yER. Then (v) can be written as

—26%4+85(ay, B) + (o, Bo— Bi— Bros— o —ta B3) +8 (3} +9D) = 4.

Performing the index permutations # and =% and adding these three equations

we get
‘652+7(5(“1a B2) +5(aa, B3)+s(a, ﬂl))+16(?§+)’§+7§) =12.

In a similar way, from (i}—(i),—(i),. it follows that

1262+ 2(s (o, Bo)+5 (@, Ba) +5(xs, B) = 12,
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i.e. eliminating the terms containing the polynomial s we have - -
@ -~ 24(1~-e)+8(i+yi+yd) =9

On the other hand, fixing v, i=1,2, 3, the equations (ii)—(ii),—(ii),. and (iii)—
(iii),—(iii),. -form a linear system for.the variables a;, f;, i=1,2,3. Denoting by
M(yy, 72, 73)EM (6, 6)- its matrix, we compute det M(y,, y2,7s). For &, n, (€R
define
e 26 0 —¢ —p —1n
2% - ¢ & n 0
—& —¢& & 2 0 ¢
E0 -2% — [ ()
0 —-n -0 =0 & 2
n n ( 0 -2 —¢

SEn)=

Permuting the rows and the coloumns of M (yy, 7., y5) by the permutation (25)
we obtain  S(y,7s,7s) and consequently det M(y,, s, 7s)=det S(71, V2, V5).
Similarly, by performing (135462) and (132465) on the rows and coloumns of
M(?l" 4?2’ 'Y3) we get S()’z, Vs» yl) and S()’S: 71, )’2) ‘ e det S()’n V25 '}’3) =
=det S(7z, y3, y)=det S(y3, 71, 2)- Thus, it is enough to compute det S(&,n, {).
To do this, let S(&, n, &) have the decomposition

SEn0 = [

where A€M (4,4). The matrix A is centroskew and so by using a result of [2]
a direct computation shows that. det 4=(3e2—¢2)2. Assuming 3e*#¢2 we have [2]

det S(¢,n,0) =det 4 det.(D—CA‘lB) = 3e2(3e— (E2+n2+ (D)) _

Suppose now that y2=y2=y2=3¢%. Then equation (4) implies that 15+ 8e2=0
which is impossible. Hence there exists i€ {1,2,3} such that 7;3¢2. Then, by
the above, det M (1, ¥z, ¥5)=36%(3e>—(y} +y:+73)?%. Further, det M(y,, 75, y5)#0
since otherwise pi+y2+y2=3¢? which contradicts to (4). Thus the linear system
in question has only trivial solution- a;=0,=03=p8,=8,=p;=0. Then equations
(iv)—(iv),—(iv),: imply that two of the numbers 7,,y,, ys vanish. By equations
(v)—(v),—(v),: ‘we obtain ¢=0 which again contradicts to (4).
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On partial asymptotic stability and instability. I
(The method of limiting equation)

L. HATVANI

1. Introduction

In [1] we established criteria on the partial asymptotic stability and instability
based on Ljapunov functions with semidefinite derivatives not requiring boundedness
of solutions. We proved an alternative for every solution of an autonomous system
saying that either all the controlled coordinates tend to zero or the vector of the
uncontrolled coordinates tends to infinity as t— o (see[1], Theorem 3.1). Combining
this result with additional hypotheses on the Ljapunov function we found sufficient
conditions for the partial asymptotic stability and instability of the zero solution.
By the aid of these theorems we could study stability properties of equilibrium
positions of certain mechanical systems in the presence of dissipative forces. How-
ever, as it was mentioned in [1], to apply the alternative to certain mechanical systems
one needs additional conditions of other types. For example, consider a material
point moving on a surface in a constant field of gravity in the inertial frame of
reference Oxyz (0z directed vertically upward) and subject to viscous friction [1]:
Let the point be constrained to move on the surface of the equation z=(1/2)y% X
X [1+1/(1+x%). Theorems in [1]-cannot be applied to prove asymptotic y-stability
for the equilibrium position x=y=0. Nevertheless, it is reasonable to conjecture
that the equilibrium position possesses this property. For, if a motion (x(z), y(1))
is bounded, then |y(#)|~0 as t-c (see [1], Theorem A). On the other hand,
if |x(t)]~e as t—eo, then the motion (x(¢), »(t)) is “asymptotically near” to
a motion of the point on the surface of the equation .z=(1/2)y?, for which the
equilibrium position x=y=0 is asymptotically y-stable. :

The purpose of this paper is to establish partial asymptotic stability and in-
stability of the zero solution of such system whose right-hand side allows a limiting
process as the vector of the uncontrolled coordinates tends to infinity in norm.

The paper is organized as follows. In Section 3 we treat such autonomous
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system whose right-hand side has a uniform limit as the vector of uncontrolled
coordinates tends to infinity in norm. In Section 4 results of the previous section
will be applied to study partial stability properties of the equilibrium position with
respect to all generalized velocities and some of generalized coordinates in the sclero-
nomic holonomic mechanical systems being under the action of viscous friction.
The method to be presented works also for the nonautonomous differential systems.
Section 5 is devoted to this generalization. Whilst Section 3 is based upon the
standard sphere of concepts of stability theory and is selfcontained, Section 5 is
strongly connected with a recent topic of the theory of limiting equations developed
by Z. ARTSTEIN [2]—{4],some of whose results are necessary preliminaires for applying
our main theorem.

2. A nonautonomous invariance principle

All the necessary notations and definitions have been introduced in [1] (see
Section 2) excepting the following one. Consider the system of differential equation

2.1 x=X(x,1 (€R,,xERY,

where the function X is continuous in x, is measurable in 7, and satisfies the
Carathéodory condition locally on the set I',. Let us given a Ljapunov function
V:I~R (for I,cI,CR™XR"XR, see [1], Sec. 2). For c¢€R denote by
V. [c, o], the set of the points y€R™ for which there exists a sequence {(y;, z;, 1,)}
such that y;~y, |z]—>e, ti~>oo, V(2 t) ~¢ and V(y,z,8) ~0 as i—oo
Obviously, ¥ '[c, <], is closed relative to I';.

We shall need the following nonautonomous invariance principle even in Sec-
tion 3 where the basic differential system is assumed to be autonomous.

Theorem A. [51—7] Assume that for every compact set KCR* there is a
Ug€X such that if u:[a, fl—~K is continuous then '

@2 | f X(u(2), 1) di] = pg(B—0).

If V:TI'.~R is a Ljapunov function bounded below, and ¢:[t,, «)~R* is
a solution of (2.1) for which |p(t)|=H"<H’ holds for all t=t,, then Q.(p) is
contained in a component of Vi [c, =), for some constant c.

In order to make Section 3 selfcontained we sketch the proof. Since V is
locally Lipschitzian, the function v(t)=V(p(t), t) is locally absolutely continuous
and : ‘

2.3) % v(=V(e®, ) =0
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for almost all ¢=¢,. Thus v(¢f) is nonincreasing and uv(f)—~c as t-c for some
constant c¢. Suppose that the statement is false. Then there exist peQ.(¢) and
¢>0 such that B,(p, 2e)\V; ¢, «<}o=9, where B,(p,2¢) denotes the closed
ballin R* with center p and radius 2e. Obviously,

(2.9 lim sup {Vlp®,1): t =T, (B, (p, 2e)} <0,

thus, however large the time T may be, the point ¢(z) cannot be contained in the
set By(p,2¢) for all t=T* since v is bounded below. Therefore, ¢(¢) enters
B{(p,e) and leaves B,(p,2¢) infinite number of times. In view of (2.2)—(2.4)
this means that v is not of bounded variation, which is a contradiction.

3. Autonomous equations

Consider the differential system

3.1 %=X (x€R*; X(0)=0),

where X : G,~R* is continuous. By the partition x=(y, z) (y€R™, zER"; 1=m=k,
n=k—m) the system (3.1) can be written in the form

G2 y=Y©,z2), £=2(,2).

Throughout this section we assume that Y (y, z)—~Y.(y) uniformly in y€B,(H’)
as |z|—>oo,

Theorem 3.1. Suppose that there is a Ljapunov function V : G,~R of (3.2)
satisfying the following conditions:
(i) V is positive y-definite;
(ii) for every c¢>0 the set (Vig.5)"(0)NV ~1(c) contains no complete trajectory
of (3.2), and
(il) the set V¢, =], contains no complete trajectory of the system

(3.3) y=Y.(»)

except the origin of R™.
Then the zero solution of (3.2) is asymptotically y-stable.

Proof. Since V is positive y-definite and V34 (y,2)=0 on G,, the zero
solution of (3.2) is y-stable (see [8], p. 15), i.e. for every &>0 there exists a 5(g)=0
such that |xo|<d(e) implies |y(#; xo){<e for all 1=0. Let O<g,<H’ and define
a=05(g,)=0. We shall prove that for every x,€B,(6) we have |p(¢; x)|—0 as

{—+ oo,

10
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Let x=(1)=(y(r), x(7)) be a solution of (3.2) such that ¢(0)€ B,(c). The
function v(#)=V(p(t)) is nonincreasing and nonnegative, hence v(t)—~v,=0 as
t—~oo, If v,=0 then |Y(¢)|—~0 as t—oo since V is positive y-definite. Assume
that v,=>0. By Theorem 3.1 in [1], this assumption together with (ii) imply

(3.4 ' Hm [y ()] =e=.

Consider the system

(3.5 y=Y(y, x(0) (¥€B.(H), tcR,)

and the function U: B, (H)XR,—R defined by U(y, )=V (p, x(1)). Obviously,
(3.6) U5 (0 1) = Vi (3, 2(0) =0,

therefore U is a Ljapunov function of (3.5) and u(t)=U(y(?), 1)~v, as t—oo,
The function y=y(¢) is a solution of equation (3.5), whose right-hand side is bounded
for (y,1)€B,(H)XR,, and W (t)|s¢,<H’ for all t=0. By Theorem A in
Section 2 we have the inclusion Q,(y)cU,"[v,, «),. Furthermore, in view of
(3.4) and (3.6), U;'[vy, =)oV [1, <),. Taking into account the obvious fact
that the positive y-limit set ,(¢) of the solution x=¢(t) of (3.2) coincides w1th
the positive limit set Q,() of ¥, being a solution of (3.5), we obtain .

(G.7) 2,(9) = 2,() < Vi [v0, <o

On the other hand, property (3.4) implies that Y(y, x(t))—~Y+«(y) uniformly
in y€B,(H’) as t-co. Thus (3.3) is the limit equation of (3.5) and Q,() is semi-
invariant with respect to (3.3) (see [8], p. 304). Now we can conclude the proof by
showing that Q(@)={0}, i.e. [Y(t)|~0 as t—-co. Indeed, if the nonempty set
Q,(¢) contains any point besides the origin of R™, then it contains also a complete
trajectory of (3.3) different from the origin because it is semiinvariant with respect
to (3.3). But, in consequence of (3.7), this contradicts condition (iii) of the theorem
The proof is complete.

In certain applications condition (ii) in Theorem 3.1 proves to be rather re-
strictive. For example, it may happen that the potential energy P(4, §) of a mecha-
nical system is §-definite, in every neighbourhood of the origin §=4=0 there
exists an equilibrium position belonging to the set P(g, §)=0, . nevertheless the
origin is asymptotically §-stable (see [1], Examples). Now we relax this condition
of the theorem (compare with Theorem 3.3in [1]). '

Theorem 3.2. Suppose that the function Z in (3.2) is bounded on the set G,,
and there is a Ljapunov function V : G,~R of (3.2) satisfying conditions (i), (m)
in Theorem 3.1. Assume, in addition, that
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(i) for every c¢>0, if the set (Vgg)™*(0)NV ~1(c) contains a complete
trajectory of (3.2) then this trajectory is contained in the set {(y,z): y=0}.
Then the zero solution of (3.2) is asymptotically y-stable.

Proof. We have to modify the proof of Theorem 3.1 only from that point
where we assumed v,>0. It is enough to prove that in this case ,(¢)={0}.

Let 0#g€Q,(p). Then, by Lemmas 3.1—3.2 in [1], either there exists an r¢R"
such that (g, N€Q,(@)CM (v))=V(52) *(0)NV ~2(vy) or |x(t)]~< whenever
;e and Y(#;)—>q as i—oo. In the first case, by the semiinvariance property
of Q. (@) with respect to (3.2), the set M(v,) contains a trajectory of (3.2) not
contained in the set {(y, z): y=0}, which contradicts (ii’). Therefore, if 7;—~oo
and ¥ (¢;) converges to a point different from the origin of R™, then |x(¢,)|—><
as i—oo,

We shall prove that in the case 9,(¢){0} the inclusion Q,(p)CN(vy)=
=V vy, =], holds. But Q,(p) is compact and connected, and N(v,) is closed,
so it is enough to show that Q,(¢)\{0}<N(v,). Suppose the contrary. Then there
exist g€ Q,(p) (g%0) and &>0 such that B, (g, 2e)N[N(v)U {0}]=0. We state that

(3.8). o= lix}lasgp {V@®, x®): t =T, Y ()€B,(g, 2e)} <O.

Indeed, otherwise there is a sequence {#;} for which #;—~e, V(p(#))~0, ¥ (t)—~
—+q'€B,(q,2¢) and, consequently, |x(t;)|—~o as i+, ie. ¢'¢N(v)), which
contradicts the definition of &. Since ¥ is bounded below, (3.8) implies that ) (¢)€
€B,(g, 2¢) cannot be satisfied on any whole interval [T, «). From this fact it
follows that there exist sequences {;}, {r{} with the properties

<t <t fi—e; WE)—gl=¢ W) —ql =2,
e=ly(@)—ql=2 (i=t=1;i=12..).
Since Y (¥ (), x(¢)) is bounded, #;—t;=p>0 for all i with some constant f and

(i) —v(r) = él' f V(p(®)dt = iaf —~— o,

which is a contradiction.

It remains to prove that for every g€Q,(¢) (g#0) the system (3.3) has a
complete trajectory through g lying in Q,(¢). Consider the sequence of the func-
tions {'(#)=vy (t;+1)} whose i-th member is a solution of the initial value problem

}.’ = Y(y3 X(ti+t))’ y(O) = lp(ti) (l = 11 21 "')'

Since Z is bounded, |x(#;+t)| =< uniformly with respect to ¢ on each compact
interval {a, b] as i—<o. Thus, Y(y, x(t;+1))~Y«(y) uniformly in (y, )¢ B, (H")X
X[a, b], and Y (t)—~q. Consequently, there exists a subsequence of {§'()} which

10*
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converges uniformly on [a, b] to a solution y of the initial value problem y=Y.(y),
y(0)=q (see[8], p. 297). Foreach t=0 the point y(r) is the limit of a subsequence
of Y(1+1). Butalso t;+t—eo, 50 y(t)€Q,(p), which means that Q ((p) contains
a complete trajectory of (3.3) different from the origin.

We have proved that if there exists a g€ Q,(¢) (¢#0) then there exists also
a complete trajectory of (3.3) different from the origin that is contained by Q,(¢)
and, because of Q,(p)cN(v), by N(vy) as well, in contradiction to assumption
(iii). The proof is complete.

Our method can be used for deriving instability theorems, too.

Theorem 3.3. Suppose that there is a Ljapunov function V : G,~R of (3.2)

satisfying the following conditions.:
(i) V is bounded below;

(ii) for every 6=0 there exists an x,€B,(5) such that V(x,)<0;

(iii) for every c<O the set (V(55) *(0)NV ~1(c) contains no complete trajectory
of (3.2), and

(iv) the set V¢, =]y contains no complete trajectory of (3.3).
Then the zero solution of (3.2) is y-unstable.

Proof. We have to prove that there is an g>0 such that from every neigh-
bourhood of the origin in R* there starts a solution of (3.2) which leaves the set
B, (g) X R".

Let O<gy<H’. For an arbitrary 6 (0<d-<g;) take an xy€B,(d) such that
¥V (x,)<0, and consider a solution x=¢ ()=} (), x(z)) of (3.2) with ¢(0)=x,.
We shall prove that y(T)=¢g, for some T=0. Suppose the contrary, i.e. [y (#)|=¢,
for all +=0. Then v(t)>vy<V(x)<0 as t—-e. By Lemma 3.1 in {I] and
invariance property of Q.(¢), assumption (iii) implies (3.4). As it was shown in
the proof of Theorem 3.1, from these facts it follows that the nonempty set ,(¢)
is a subset of ¥ Yv,, =)o (see (3.7)) and it is semiinvariant with respect to (3.3).
. Consequently, the set ¥,'[v,, ], contains at least one complete trajectory of
(3.3) in contradiction to assumption (iv) of the theorem. The proof is complete.

Remark 3.1. Let y=(yy,ys) be a partition of y€R™ (y,€R™, y,€ R™,
1=m,<m, m,+my=m) and suppose that for some &3>0 the inequalities |y|,=¢,,
V(y1, ¥e, 2)<0 imply |y,|=H’. Analysing the proof of Theorem 3.3 one can
easily see that, in fact, in this case the zero solution of (3.2) is y;-unstable.

As we shall see in the applications, we often have an estimate of the type
Vis2(», 2)=U(y), which allows us to simplify the last condition in Theorems
3.1—3.3. In the following simple proposition even a slightly more general case is
considered.
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Proposition 3.1. Suppose that for a Ljapunov function V :G,~R of (3.2)
there exists a continuous function W : G,—~R such that
@) Voo (. 2=W (7,220 (7, 2)€G});
(i) W(p, z2)~U(p) uniformly in y€B,(H') as lzl—»oo
Then for every cER,
E(c) = U1 0)NV31c, =] D Vie, <.

4. An application

Consider again the holonomic mechanical system of r degrees of freedom
described by the Lagrangian equation

d 0T OT _ 3P
@.1) 95 9 +Q (¢, g€ R),

where the following notations are used (see [1]). P(g) is the potential energy (P(0)=0),
T(q, 9)=(1/2)§"4(q)4 is the kinetic energy, and Q(g, §) is the resultant of non-
energic and dissipative forces with complete dissipation.

Let g=col(q,,9,;) be a partition of the vector of generalized coordinates
(1€ R, @€ R™, 1=r,=r, r,-+ry=r). Applying our results we give sufficient con-
ditions for asymptotic stability and instability of the equilibrium g=¢=0 (possibly
non-isolated) with respect to the velocities ¢ and coordinates ¢, in the case when the
system is “asymptotically g,-independent”. It is worth emphasizing that the coordi-
nates of g, are not supposed to be bounded along the motions.

The system (4.1) is defined to be asymptotically qz-mdependent if for some
constant H’>0 and for every compact set KCR"

(a) there are A=>0 and c€X such that

. 1. . " . .
AlgF= —qTA (41, 994, O"(q1> 92, )4 =—c (4]

for all g,€B, (H) g€ R™, ER,

(b) Aqr, 42)~Ax(q)s Pqs, g2)~Pu(gs) as |gs|~<o; in addition, Q(qu, gz, 4)—~
~0.(q1, §) uniformly in ¢,€B, (H'), €K as |gy| >, as well as 04/dg, dP/dq
converge uniformly in ¢,€B,(H’) as |gy|—> .

We are going to apply Theorems 3.2 and 3.3 while z=q, and V is the total
mechanical energy. For this purpose we introduce the Hamiltonian variables
g, p=A(g)4, by the aid of which the system (4.1) can be rewritten in the form

p= —%pT [-aA(;;(q)] op +Q(q, 1(q)p)

(4.2)
4g=A4A"(q)p.
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In view of asymptotic g,-independence, the equilibrium ¢g=¢=0 of (4.1) and the
zero solution p=qg=0 of (4.2) have the same stability properties.

Consider the total mechanical energy H defined by H=H(p, q,,q,)=T+P.
As is known (see [8], p. 358),

4.3 Huz(p, 41, ) = 07(g, A7 (9)p) A7 (9)p = —d(Ip))
for all (p, q1)€B, ,,(H'), € R+ with a suitable de¢’. Consequently, H is
a Ljapunov function of (4.2), and ‘
4.4) (Hu2) Y (ONH(c) = {col (p, 9): P(g9) =¢, p=0} (c€R),
so the trajectories of (4.2) contained in this set are the equilibria p=0, g=¢, for
which P(g,)=c.

Now let us determine the set

E(C) = Hr:-}-r[ca °°]md_l(o) = {COI (P, ql): p = 0:- ql = Pr_l'llc’ °°]}s

" figuring in Proposition 3.1. Since dP/dq, is continuous and converges uniformly
as |gy]—~eo, the function P(-,qz):B,l(H’)—»R is continuous uniformly in ¢,€R",
From this fact it follows that

4.5) E(c) = {col (p, q1): p =0, P,(q)) = c}.

The system (4.2) is asymptotically ¢,-independent, hence its limit system as
[gs| —~ < reads as follows:

. 1 04, oP ; -

4.6) P = Qi(q, A% p)
i = 347 (@)l
k=1

for i=1,2,...,r; j=nr+1,...,r. In view of (4.5), if E(c) contains a trajectory
of (4.6) then it is of the form p=0, 4,=(g,),=const., furthermore

dP, —o
dg 9,=(a), '

CY)) P,((g)) =c,

Theorem 4.1. Suppose that the mechanical system (4.1) is asymptotically
qs-independent.

1. If (i) the potential energy P is positive q,-definite, (ii) system (4.1) has no
equilibrium position in the region {(q1, q5): P(q1, 42)>0, ¢,7#0}, and (iii) the equality
dP.(q,)/dq,=0 implies either q,=0 or P.(q,)=O0, then the equilibrium q=¢=0
of (4.1) is asymptotically (q,, §)-stable.
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I1. If (i) the potential energy P has no local minimum at q=0, (ii) the system
(4.1) has no equilibrium position in the region {q: P(q)<O0}, and (iii) the equality
dP.(q,)/dq,=0 implies P.(q)=0, then the equilibrium q=q4=0 of (4.1) is
qr-unstable.

Proof. I. We show that (4.2) and the total mechanical energy H as'a Ljapunov
function satisfy the conditions of Theorem 3.2. Condition (a) in the definition of
the asymptotic g,-independence and (i) assure H to be positive (g,, p)-definite.
In consequence of (4.4), for the system (4.2) condition (ii) precludes the possibility
of having such a complete trajectory in the set (H,4_2,)‘1(0)0H ~1(c) (¢=>0) that
is not in {(g1. ¢s, P): ¢.=0, p=0}. Finally, using (4.7), condition (ii), and Propo-
sition 3.1 we obtain that the limit system (4.6) cannot have any trajectory in the set
H iile, ey (c=0) except the origin.

I1. One can similarly check the conditions of Theorem 3.3, from which (g, p)-
instability follows. According to Remark 3.1, for the purpose of proving g,-instability
it is enough to show that |g,|=¢,, H(¢,, p, 2)<0 imply |p|=M for some constants
g,>0, M. Observe, that P is bounded below on the set ‘]?3',,1(80)><R'z because of
gs-independence. Therefore, T is bounded above, which together with (a) imply
that p belongs to a bounded set. The proof is complete.

Concluding this section we note that in possession of Theorem 4.1 one can
easily prove the conjecture made in the Introduction in connection with the motion
of a material point on the surface z=(1/2)p¥1+1/(1+x%).

5. A generalization to nonautonomous systenis

The LaSalle principle and the invariance property of limit sets with respect to the
limiting equation, which served as the two main tools in the proofs of Section 3
have been extended to quite general nonautonomous systems. These extensions
enabel us to generalize our results to the equation

(5.1) %=X 0 (X0,7=0).

Namely, we give a theorem on the partial asymptoticstability of the zero solution of
(5.1) without any assumptions on the boundedness of solutions. To formulate and
prove it we need some concepts and results from topological dynamics given in

[2]—[4]. The theorem will -be followed by a corollary, containing only analytical
conditions and, consequently, more suitable for applications.

t
As is known, (5.1) is equivalent to the integral equation x(r) =x(a)+ f X (s,x(s))ds,

i.e. to the functional equation x=x(a)+1I,x, where the 6perator I, is defined by
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t
Lx(t)= f X(s, x(s))ds. In the method of limiting equation there occur such functional

equatiorqs in which the operator I, is more general than the integral with a kernel.
An ordinary integral-like operator I is a mapping which associates with each con-
tinuous function ¢:[«, B)—~R* and a€[e, B) a continuous function I,¢ so that
(1) if ¢;: [o, B)—~R* are continuous and ¢@,;(t)—~¢(¢) uniformly, then I,¢,(t)—~
—+ILp(t) uniformly in t€[a,b], as i—w for all [a, blC[a, B); (2) Lo(t)=
=Lo(s)+1Le(t) for all a,s, té[a, B). We shall denote by u=IJu the functional
equation u=u(a)+I,u associated with the ordinary integral-like operator I.

For t€¢R, we define the translate X' of X by X'(x,s)=X(x,t+s) (SER,).
We denote by tran (X) the collection of all translates X* of X (1€R.). An or-
dinary integral-like operator equation u=1Iu is a limiting equation of (5.1) if there
exists a sequence {t;} converging to infinity so that X* integrally converges to
I as i—~o, ie. whenever ¢;:[a, b]—R* converges uniformly to ¢ then

b
[ X (i), ti+s)ds ~ Lo(b) (i ~=).

The set tran (X) is said to be precompact if every sequence in it has an integrally
converging subsequence.

Theorem B. [4) Suppose that tran(X) is precompact and ¢:[t,, <=)—=R"
is a solution of (5.1). Then Q.(¢) is semiinvariant with respect to the family of the
limiting equations of (5.1), i.e. for each p€Q.(¢) there is a limiting equation u=1Iu
of (5.1) and a solution 7y of the equation u=p+Iu so that y(t)cQ.(¢) for all
t in the domain of 7.

By our standard partition x=(y, z) the system (5.1) can Be written in the form

(5.2 y=YWz0, :=Z(yz0 ((y z DET,).
Let O<H’<H. ‘ '

Theorem 5.1. Suppose that the right-hand sides of (5.2) satisfy the following
conditions:
(i) for each compact set KCR® and continuous function y: R, -~R" with
()|~ as t—eo, there are functions p,q€A so that for arbitrary continuous
functions v:[a, b}—+B,(H’), w: [a, b]-K

b b
|f Y00, x@, )a = pb—a), | [ X(o®), w(), ) di| = q(b—a);

(ii) tran (X (x, ¢)) is precompact;
(iii) tran (Y (7, x(1), 1)} is precompact for every continuous function x: R, —R
with ()| > as t—eo,
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Suppose, in addition, that there is a positive y-definite Ljapunov function V': I',—~R
of (5.2) having the following properties:

(iv) for each c¢=0 neither limiting equation of (5.2) has a positive semitrajectory
in the set V;'[c, o3

(v) for each ¢>0 and continuous function x:R,—~R" such that |x(t)|—
as t—oo, neither limiting equation of y= Y(y, (1), t) has a positive semitrajectory
in the set V,'[c, =], different from O.

Then the zero solution of (5.2) is asymptotically y-stable.

Proof. The zero solution of (5.2) is y-stable (see 8], p. 15); therefore, it is
sufficient to prove that if x=¢ ()=} (¢), x(¢)) is a solution of (5.2) and [y (¢)|=
=H"<H’ for all t=1,, then Y (t)~0 as {—oo,

Let us introduce the notations u(t)=V(p(t),1) and ve=1lim v(¢). We dis-
tinguish two cases: e

a) Assume that |x(¢)[4~< as t-~o. We show that in this case v,=0, which
implies Y(t)—~0 because ¥V is positive y-definite.

The limit set Q.() is not empty and, by Theorem A, Q. (p)CV, vy, =]o.
On the other hand, Q,(¢) is semiinvariant with respect to the family of the limiting
equations of (5.2) (see Theorem B). Consequently, one of them has at least one
positive semitrajectory in ¥ '[v,, o}o. Thus, in view of (iv), v,=0.

b) Let |x(t)]—> as t—oco, We show that either v,=0 or Q (¢)={0}.

Consider the equation

(5.3) y=Y(» 20,1 (¥eB,(H"), t€R,)
and its Ljapunov function U(p, t)=V(p, x(t),t). Using again Theorem A we
obtain
G4 2,(9) = 2,(Y) © Uz [vg, «<lo € Vi [vg, =<]o-
On the other hand, Q,(¢) as the limit set of the solution y=y () of (5.3) is semi-
invariant with respect to the family of the limiting equations of (5.3). If there is
a g€Q(p), ¢#0, this means that one of the limiting equations of (5.3) has a positive
semitrajectory different from {0} which is a subset of 2,(¢). Then, according to
(5.4) and hypothesis (v), v,=0. The proof is complete.

Corollary 5.1. Suppose that
(i) for each compact set KCR" there are locally integrable functions p;, v;: R, —
t
—-R,, j=1,2 so that the functions f p;(s)ds are uniformly continuous on R,
0

t+1
the functions f vi(s)ds are bounded on R, and

IY(ya Z, t)l = .ul(t)’ |Z(W, t)‘ = #2(0:
Y, 2, )-Y(0', 2, Dl = wm@y—r1, X (W, D=X W', D)} = v, () |w—w']
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for all y,y'€B,(H"), z¢R", w, w € B, (H)XK, t¢ R,. Suppose, furthermore, that
there is a positive y-definite Ljapunov function V. T'y—~R of (5.2) having the following
properties:

(i) if for a function X.:T',~R there is a sequence {1;} so that t;—< and

f‘X(x, s+t)ds -~ f' X,.(x,8)ds (i ~e)

Jor every fixed (x,t)¢I,, moreover, if ¢=>0, then the set V;'[c, =), contains
no positive semitrajectory of the equation x=X.(x, t);

(iil) if for a function Y.: B,(H')XR,-R™ there exist a sequence {t;} and
a continuous function x: Ry —~R" so that t;~oco (i—<0), |x(t)] = (t+) and

t t
[ Y x(s+1), s+6)ds — [ Yo(y,5)ds (i —=)
0 . 0
for every fixed (p,t)€B,(H)YXR,, moreover, if ¢>0, then the set Ve, =],
contains no positive semitrajectory of the equation y=Y.(y,t) except the origin
y=0. ' _
Then the zero solution of (5.2) is asymptotically y-stable.

Proof. As it follows from [2] (Theorem 4.1), under assumption (i) both
tran (X (x, 1)) and tran (Y (y, x(¢), t)) are precompact, and all the limiting equa-
tions are ordinary differential equations whose right-hand sides are the almost-
everywhere derivatives of

t t
lim f X(x,s+1t)ds, lim f Y(y, x(s+1), s+1,)ds,
o i+eo ¢

respectively. This means that all ascumptions of Theorem 5.1 are satisfied.
Theorem 5.1 can be used for the case when X(x,t) is periodic in t. For
example, if we assume that Y (y, z, 1)~Y.«(y, t) uniformly in (y, t)éB,,(H')XR,
as |z|-eo, then both tran (X(x, r)) and tran(Y(y, x(?), t)) are precompact,
and the limiting equations read

X = X(xa t+t0)7 y = Y*(,V, t+t0)9
respectively.

Remark 5.1. Suppose assumptions (i), (ii), (iv) in Theorem 5.1 to be satisfied.
Suppose, in addition, that

(v") for every continuous function y: R, —R", for which |x(t)|—>oo as t—oo,
there is a limiting equation u=Ju of Y(y, x(t), t) so that for every ¢>0 the set
V¢, =), contains no positive trajectory of u=u(0)+Ju.



On partial asymptotic stability and instability. II 155

Then the zero solution of (5.2) is equiasymptotically y-stable, i.e. it is y-stable
and for every t,€R, there is a o (#)>0 such that |y(¢; xo, t,)]—0 uniformly
in x,€B,(a(ty)) as t—oo.

To show this ' we have to modify only part b) of the proof of Theorem 5.1.
Namely, we prove that also in this case 2,=0. After proving (5.4) consider the
limiting equation

(5.5) u = u(0)+ Jyu.

For a sequence {r;} the sequence of translates Y%(y, x(¢),t) tends to J integrally
as i—~o. From assumption (i) it follows that the functions {y;(t)=y(t+¢,)} being
solutions of the equations y=Y"(y, x(t), 1) are uniformly bounded and equi-
continuous on every fixed interval [0, T]. By Arzela—Ascoli theorem, we can
assume that y;—~. uniformly on [0, T], thus . is a solution of (5.5). Obviously,
P« (1)€Q,(p) for all 1=0. According to (5.4) and assumption (v'), v,=0.

So we have proved that V(x(f; xo, ,))—~0 as t—oo for every fixed 7,€R,
and for all x, with sufficiently small |x,]. By the classic covering theorem of
Heine—Borel—Lebesgue, this convergence is uniform with respect to x, [9], which
implies equiasymptotic y-stability since ¥ is positive y-definite.

Remark 5.2. The statement in Remark 5.1 remains valid if assumption (v")
is weakened so that V_'[c, =], contains no positive semitrajectory of the limiting
equation u=u(0)+J,u except the origin y=0, but it is supposed, in addition,
that V(y, z, t)—~0 uniformly in (z, t)éR*XR, as y—0.

To see this one has to observe only that the additional condition on ¥ obviously
precludes the possibility of .(¢)=0 for the function ¥.(f) occurring in the argu-
ment in Remark 5.1.

These two remarks make it easier to see that our result generalizes and improves
the main theorem of [10].

Acknowledgement. The author is very grateful to L. Pintér and J. Terjéki for
many useful discussions.
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On the stability and convergence of solutions of
differential equations by Liapunov’s direct method

J. TERJEKI

1. Introduction

By means of a modification of Liapunov’s direct method we give sufficient
conditions for the stability of solutions of ordinary differential equations and for
the existence of finite limits of certain functions (specially, of a part of coordinates)
~along solutions as ¢—~co. For the study of this problem, T. A. BurTON [2], J. R.
HappoOCk [5, 6] and L. HATVANI [8, 13] used modifications in which the derivative
of the Liapunov function was estimated by the norm of a linear combination of
components of the right-hand side of the system. T. A. BURTON [3] has extended
this method for the estimate in which a power of a linear combination of the
right-hand sides occurs. In this paper we investigate the case when the estimate
contains a monotone function of a linear combination of the right-hand sides. We
apply our results to studying the asymptotic behaviour of solutions of certain
second order non-linear differential equations and the stability properties of motions
of mechanical systems under the action of potential and dissipative forces depending
also on the time.

2. The main results

Consider the differential system
2.1) x() =X, x),
where 1€R,=[0, =), x belongs to the n-dimensional Euclidean space R", X¢
€EC(R XTI, R"; 'cR" is an open set.

Let us introduce some notations. Denote by (x, y) the scalar product of

vectors x, yER". |lx] =(x, x)!/* is the norm of the vector x€¢R". Let By denote
the set of elements x¢€R" such that [x|<H (H=0). The distance o(H,, H))

Received May 24, 1982 and in revised form January 11, 1983.
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between the sets H,, H,CR" is defined by
o(Hy, Hy) = inf {|x—y|: x€H,, y€H,}.

H denotes the closure of the set H. Let K denote the class of increasing functions
acC(R,, R,) for which a(0)=0 and a(s)=0 for all s=>0. Denote by L* the
class of Lebesgue measurable functions f: R, —~R,U{e}, by L} (0<p<e)
and L} the classes of the functions f€L+ with

[ 1r@ds<w, supess f(5) <<=,
0 SER,

respectively. Let u(t; ¢y, 4,) be the maximal noncontinuable solution of the
equation
2.2 i =r(t, u)

through (¢, 4,), where r€C(R,.XR,, R,).

Let us given a function w€C(R,XR,,R,) with w(¢, -)EK. In the sequel
we shall often have to solve an inequality of type w(r, f(¢))=g(¢) for the function f.
This motivates the following notations:

o, =) = lim o, 8) (=),
o™, v) = max {u: o(t, ¥) = v},
w“l(t, w(t, 00)) = oo,

The function ©~(¢, v) is defined for #€R,, 0=v=w(t, «), it is increasing in u,
continuous on the right and satisfies the inequality

o Yo, u)=u (1€R,, u€R,).

For every 8 (0<d=e<o) denote by D; the set of functions f€L* for which f(t)=
=w(t, 8) (1€ R,), and define the map Q;: D,~L* by

(@O =078, () (E€R,,fED,).

For a function VECL(R,.XI’,R¥) (I'cl') we define the derivative V¢
€C(R,XTI’, R of the function ¥ with respect to (2.1) as follows

_ V(%) V(1)

V(t,x) = o " X(t, x) (t€R,.,x€D).

Obviously, if x(r) is a solution of equation (2.1), then

4y (o, x(0) = V(6 x ()
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Let us given a function WeCY(R, XTI, R®). In the sequel we examine the
asymptotic behavior of W along solutions of (2.1), ie the asymptotic behavior

of the function W (¢, x()). In the following theorem we use the set ﬂ w([t, =), I'),

which consists of all we R* for which there exist sequences {t;}, {x} with x;€T,
t; oo, W(t, x)—>w as i—oo.

Theorem 2.1. Suppose that for each wy,wy€ () W((t, =), I') there exist
t=0 .

functions VECYR,XTI,R,), r,ry,w€EC(RyXR,, R,), open sets H,, H,CR*
and a constant T=0 satisfying the following conditions:

(A) wi€H,, wo€Hy, 0(H,, Hp)>0; ] .

(B) r(t,u) is increasing in u and the solutions of equation (2.2) are bounded;

(C) r(t,u) is increasing in u and ri(-,u)€L; (WER,);

(D) w(t, -)eK (t€R,) and Q.. maps D.NL] into L},

(EB) V(t,x)=r(t, V(t, x)) (t€R,, x€T);

F) V({t,x)=—o(, IW(E )+t Vi, x)
for all (t,x) such that t=T, xeI', W(t,x)¢ H UH,.

Then for every solution x(t) of (2.1) deﬁned on [ty, =) either [|[W(t, x(t))]| -
or W(t, x(t))~const. as 1= oo.

Proof. First of all, observe that
2.3) ' r(-, u)€Ly  (uER,).
Indeed, let ©,€R,. By virtue of the monotonicity of r(f,u) in u we have

w(t; to, ug) = r(t, u(t; to, u)) = r(t, u);

therefore, assertion (2 3) holds.
Now, consider a solution x: [fy, «)~R" of (2.1) and put w(t)=W(t, x(1)).
Suppose that the assertion of the theorem is not true, i.e., there exist two distinct

elements wy, w, of the set () w([¢, «)). Consider some sets H,, H,, functions
t=ty
V,r, r, o and some constant T corresponding to w,,w, in the sense of the
assumptions of the theorem.
By the basic theorem on' differential inequalities, from assumptions (B) and
(E) we obtain the estimate

V(t, x(0) = u(t; ty, V(ty, xo)) = C = const  (t€[1y,.0)).
So,

%(V(t,x(t))} f r(s, C)ds) = (1, x(t))—r.(t, C)=0,

consequently, ' '
SO =r@ CO)—=V(t, x(O)ELF.
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Since wj, W2€,Q W(TOO)): there exist two sequences {t;}, {t;} such that
(2.3) a T=st<ti<t,y, (=12.), Eij{}o’i=°°?
wt)eH,, w(itHeH, (i=1,2,..),
w(¢ H,UH, [tE lj , t}")].
Introduce the notation 4 S
g () = max (0, min (@ (t, =), r, (2, C)=V (¢, x(1))).
Then by condition (F) we have
g0 =o( 1901 (i€ 0@, ).
So,
o1 =07 50) (1€ 0@, )
Therefore,
No(Hy, H) = 3w (@) -w(i =
i

= é”f W) di| = éfi =1, g(1) dt.

This means that w=*(-, g(-))¢ L,. Consequently, by condition (D), g¢ L;.
On the other hand, we have

g =nr( CO)-V(x®) =f(O)+nr@ C)
for all 7 such that r,(#, C)—V (¢, x(¢))=0. By virtue of f(#)=0, r,(t, C)=0 we have
g =fO+n C) (ER,),
which contradicts f, ry(-, C)€L;. The theorem is proved.

Theorem 2.2. Suppose that there exist functions VEC.,“(R+ XTI, R,), r, €
€C(R+ X Ry, R,) such that assumptions (B), (D) and

(F) V(t, x) =—o(, IWE x))+r(E V(E x) (€R,, x€T)

are fulfilled. Then W (t, x(t))—~const. as t--e for every solution x(t) of (2.1)
defined on [t;, ).

Proof. By Theorem 2.1, it is sufficient to show that w(r)=W (s, x(1)) is
bounded for every solution of (2.1) defined on [#,, =).
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Suppose the contrary. Then there exist two sequences {t;}, {t/} and a natural
number M=0 such that

Ts4<tf=t,, (=12, }imti=oo,

lw@l =i, lw@ll =i+1 (=M M+1,..),
i<lw@l <i+l, te(t, ) (=M M+1,..),
are fulfilled. So

N+M
Ns= izzﬂ" (w DN =lw @) =

MaN B d MmN
= —_ Dl dt = v()| dt.
i f rivolde= > f @I

Hence, by virtue of (F,) we have

N

N= 2 fco 11, g, (D) dt = f o™it g, () dt,

where
g1 () = min(w(t, =), (1, sup v, x())=V @, x@)).

This inequality contradicts g€ L;", which concludes the proof.

Theorem 2.3. Let 0¢I’ and X(t,0)=0 for all tcR,. Suppose there exist
Sfunctions a, b€K, VEC' (R, XBy, R,) (Bycl), o,réC(RyXR,,R,) such that

By r(t,0=0 for all t€R,, r(-,u)eL} for all u=0, r(t,u) is increasing
in u and the zero solution of equation (2.2) is unique;

(D)) o(t, -)EK (t€R,) and the map Q.:D.NLf~L} is continuous at
u(t)=0 in Ly-norm;

(F2) V({t, x)=—a(|W (i, x)e(s, W, x)[|)+r(t V(t, x)) for all t¢R,, x€By;

(G) V(t,0=0,W(,0=0 for all tcR, and b(|xD=V(, x)+[|W(t, x|
(t€R,, x€By).

Then the zero solution of equation (2.1) is stable, and for every solution x(t)
of (2.1) with sufficiently small |x(t,)| the function W (1, x(t)) has a finite limit as

{— oo,

Proof. We first prove that the zero solution of equation (2.2) is stable. Suppose
the contrary. Then there exist a number >0, sequences {u;}, {#;} of solutions
of (2.2) and positive numbers, respectively, such that

u;(0) >0 as | -roo,
u(t)==¢6, w()<g O=t<t,i=12..).

11
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Define
r(tu () 0=r=t,
0 L=t

ri(= {
By virtue of (B,) we have
O=r()=r(te) (=12.) r—=0 as i+ (t€R,).
Applying Lebesgue’s dominated convergence theorem we obtain
t; co
[ rtw@)di= [ r@ydi~0 as i—~e.
1} 0

By integration of (2.2) it follows that
1]
eo—(0) = [r(t, w(®)dr.
g

Hence, if i—~e, we get g,=0, which is a contradiction. Consequently, the zero
solution of (2.2) is stable.

Let us denote by &, (), 85(g) the numbers corresponding to & in the definition
of stability of the zero solution of (2.2) and in the definition of continuity of Q.
respectively. Let O<e<H, t,€ R, be fixed arbitrarily. Choose &, so that

@49 f=<b@, [ re)dite < 52[1»(8)2-81]“(})(8)2—81]

and define 5=5(e, o) such that 0<5<§ and x| <6 imply

(2.5) V(to, x0) < 61(e), W (8o, Xo)ll < (b (3)"31)/2-

Consider a solution x(¢) of (2.1) with' [[x(#)[ <d. Denote by [t,, 4) the maximal
interval to the right in which |x(¢)]|.<H is true. By assumption (F,) we have

I'/(t3 x®)=rt, V({t,x([®) (t€[ty, 4)),
hence and from (2.5) it follows
V(t, x(0) = u(t, V(te, x(t)) = &1 (t€[te, A)).

We show that the inequality x(t)|<e also is satisfied for tE(ty, A). Otherw1se
there exists a T€(fy, A) such that [|x(T)|=e. Consequently,

W (T, x(T))| = b(Ix(T) =V (T, x(T)) = b(e)—&;.
So, by (2.5) there are t,, 1,€(t,, A) such that the function w(r)=W(t, x(t)) satisfies
Iwll = (b(e)—e)2, Iwl = b(e)—e,
(bE—e)2 <llw) < be)—er (t€(t1, ).
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Using assumption (F,), we obtain

IIW(t)II s, u(®) (€, iz))

where

r(t, e)—V(t x (t))]
q((b (&)—enf2) )’

By integration over (f;, #,) this implies that

u(f) = min [w (2, ),

2.6) f " 011, u(®) dr = (b(e)—e,)/2.

On the other hand, from (2.4) it follows that

f2 u(f)dt = [fz r(t 8 di+V (6, ()~ V (f, X() a((b (8)1—81)/2) =

L1

= m( S e de+V(n, x(1)) < 8:((b()—2)/2),

which contradicts (2.6). This means that |[x(z)]<e is satisfied for all t€[1,, A).
Therefore, A=< and the zero solution is stable.
The other statements of the theorem follows from Theorem 2.1.

Remark 2.1. If we put W (¢, x)=(xy, ..., x;) (1=k=n), where x,, ..., x;, ..., X,
are the components of the vector x, then our theorems with

. 1/2
Wl =( 3 xee »)
i=
yield conditions on the convergence of the components x,, ..., x; along solutions.

Remark 2.2, If
Vi, x)+ W@, x)| - as, x>R\T or [x]| >

for every t¢R,, then under the assumptions of Theorem 2.2 every solution of
equation (2.1) can be continued to [z,, =2).
Remark 2.3. If there exists d¢K such that
W, )| =d(xl) t€R,, x€By)
then in Theorem 2.3 assumption (D,) may be replaced by the following:
(D) o(t, -)€K (t€R,) and the -map Q,: D,NL,~L; is continuous at
u(t)=0 in L,-norm for some 6=0.

In the following we give realization of assumptlons (D), (DY), (D) in some
important special cases. Let N(u4) be a continuous convex function which satisfies

11*
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the following conditions:

N (u)

vk, jim M)

=0, lim

fi=> 0

Put

M) = fsup{t: %N(t)§s}ds

0

If s(¢), r(t) are measurable on [0, T] and

_[TN(s(t))dt<oo, fM(r(t))d1<oo

then, by the generalized Holder inequality (see [10], p. 222—233) the functlon
s(t)-r(¢) is integrable and

T T
2.7 f s@r@de =(1+ [ Nis@)di) (1+ [ M(r@)di).

Lemma 2.1. Let a continuous function A(t)=0 satisfy the inequality

ry 1
(L Yar <o
of AQ@®)
If o(t,u) is defined by o(t,u)=N(A(t)u) (1€R,, ucR,) then (D) is satisfied.
Proof. It is easy to see that A(¢)>0 almost everywhere, and

w, A(t) >0,
@t =) ={o, A0 =0,

N7'(u)
()

Let u€¢L] ND.. Applying inequality (2.7) we have

Fo _ N-(u(1) =
ofw (t,u(t))dt—msl;()Tdt
t<T

= (1+fN(N"1(u(t)))dt) [1+fM[w)J ]§

§(1+f u(t)dt)[1+fM(l(t)] ]

for all T>0. So, f ~(t, u(t)) dt< e which was to be proved.
0

o™t u) = (A() =0, ueRrR,)
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Remark 24. If w(t,w)=u(®)u® (t€R,,u€R,), where l<a=const., u¢
€C(R4, R,), 1/u€Ly,_,, then assumptions (D), (D,) are satisfied.

This assertion follows from the ordinary Hoélder inequality. T. A. BURTON [3]
considered this case studying the boundedness and the existence of the limit of
solutions.

Obviously, if w(f,u)=u(t)u where p€C(R,;[c,«)) and O<c=const.,
then (D), (D,) are satisfied. This case was studied in [2, 5, 6, 7, 13].

Lemma 22. Let g be a continuous strictly increasing function such that
limg(u) ==, gw)=cu’ 0=u=u),

where ¢=0, v=1 are some constants. Let us choose a continuous function A(t)
such that 1/A€Ly,_yNLY and put o(t,u)=A(t)g). Then (D) is satisfied.
Moreover, if

(2.8) 0< ﬁ,{‘_‘,ijlfg_s?'
then (D,) is also true.
Proof. The assumptions imply
A(t) = ¢, =const. > 0 (t€R.), a_>(t, =) = oo (tER,),
o1, v) = g7 (v/A()) (vER,,1ER,), g7 () = (/)M (0 = v = guy)).

Let u¢LfND,. Then, for v>1 by means of Hélder inequality we obtain-

1 u(H\W
o Yt u@®) dt = — (—) dt =
u(t)=c, g(ug) ct/ (8= glug) A(D)
1 r v . —_y vi(v—
= aw ([ w0 @ ([ Gopre-ra)’e
and
5 0o
o7t u())dt = g (g©)) dt = u(f) dt.
¢; g(ug) =u(t) ¢ g(uoils_'u(t) 51 g(“o) o'[
Consequently,

oo oo

f o Mt u@®)dt = e ([ u@di)"+c; [ u(o) dt

0 0

for some ¢,, cg=0. This inequality is obvious for v=1, therefore (D,) is satisfied,
indeed.



166 " 1. Terjéki

By (2.8) there exist positive constants K and u, such that g~*(u)=Ku (u;=u).
If ucL;, then

oo

[ o™'(s u(t))dzgfﬁ [ uds,

uy=u(t) 0
-1 L
[ oL u@)drs 87 (/o) [ u@a,
ugSu(t)=u, Uy 0

s0, using the preceding argument, it is easy to verify assumption (D,).
Example 2.1. Let us define

A({f)exp[logdu], u=0
w(l, u) = { 0 w=0 (1, uER,),

where A(f) is continuous, A(t)=c=const. >0 and
;o ce
exp [log”3 ——] dt <o
(,f A
(e.g., A(t)=exp[t®] or exp[d log® (1+1)], where 6>1). Then (D) is satisfied.
Indeed, ' '
-1 _ s _Y_
@ (t’ u) exp [log ]. (t) ] (t€R+a uE R+)’
and if u€L}, then

jw‘l(t, u()dt = f exp []og1/3 )%] dt+ f €xp [loglls %] dt

u(t)=ce u(t)=ce

oo

= r 1/3_ci] i oo
_ofexp[log 0 dt+c fu(t)dt< .

0

3. Applications to second order differential equations and mechanical system

I. Consider the differential equation
(3.1) (p(*)+g(Ng(x) =0,

where p, g€CY(R,, R,), g€C(R, R), p(1)=0, q(¢)=0 (t€R,), flg(u) du=0 (x€R).

0
Attractivity and asymptotic stability of the trivial solution x=%=0 have been
studied by many authors under the assumption that x=0 is an isolated solution
of the equation g(x)=0 [8,9, 12]. Now we are going to apply Theorem 2.2, 2.3
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to get sufficient conditions for the existence of ]im x(¢) in the case when x=0

is, possibly, a non-isolated solution of g(x)=0.
By introducing the variable y= p(t)%, equation (3.1) can be written in the form

G2 x=y/p@®, y=-g90gx).
For this equation let us choose the Liapunov function
V%) =G+ 090 [ 2@ du

where p€C(R,, R+\{0}) The derivative of ¥ with respect to (3.2) reads as
follows:

7650 = (22 Lt (e0a ) f 8 du.

Let the functions W, r, ® be defined by

[®a@)], = * _ PO (e®Y ,
“eay % ChW=-73 (p(t)]”
Ve—ol, W)+r@t, V), W=yp@.

We note that in this case the solutions of equation (2.2) are bounded provided that
the inequality

Wi, x,y)=x, rit,uy=

Then we have

[(ea)1.
3.3 f TN
is fulfilled. By virtue of Remark 2.4
. ds .
(4 f FOROROY T (g(t)/p(t)) <0 (€R,)

imply assumption (D). Consequently, from Theorem 2.2 it follows the following:

Corollary 3.1. If there exists a function ¢€CYR,, R,) such that (3.3) and
(3.4) are true, then the limit of every solution x(t) of (3.1) defined on [t,, =) exists
as t(—eo,

Suppose that
3.5) e _

()~

Then V(t, x, y)+{W (¢, x, y)|=(»*2)c+|x|. Using Remark 2.2 and Theorem 2.3,
and taking into consideration the fact that the function ¥ (7, x, ) is non-increasing
along the solutions of (3.2), provided that tl_i.rg e(t)q(t) exists, we get

=c=const. >0 (t€R,).
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Corollary 3.2. Suppose, that (3.3)—(3.5) are fulfilled. Then the zero solution
of system (3.2) is stable. For every solution x(t) of equation (3.1), }LIE, x(t) exists.
Moreover, if }gn q(t)o(t) exists, then ;132 e(t)x(t) exists, too.

. . . . F ds .
It is worth noticing that these corollaries work in case f —(5< =, whose inter-
¢ P
est consists in the fact that it cannot be reduced to an equation of type

X+a(t) g(x)=0.
On the other hand, one can easily see that if

p(Nq(?) = c =const. >0, (p(N)q()) [s+ f p——d(fs—)] =40

. . = ds .
for ¢t sufficiently large with some ¢>0, and f _U< =, then the fuctinon
o P

~ ds
N =p( [ + —]
@ =r@|s+ [ 75
satisfies the conditions of Corollary 3.2,

11. Consider the differential equation
(3.6) X410 x, X)[x[*x+g(x) =0,

where fEC(R,XRXR, R,), 0=a=const., gtC(R, R). A great number of papers
have been devoted to the study of the conditions of the asymptotic stability and
attractivity of the zero solution x=x=0. In these papers it is assumed that f is
either bounded above or tends to infinity sufficiently slowly as t—< [1,7,8].
R. J. BaLLieu and K. PEFFER [1] analyzed whether this condition is necessary.
They proved for the case a=0 f(¢, x, X)=3(2), lirP*%up g(x)/x<o the following

. & odt .
assertions: a) If 9(¢) is increasing and f 9(_t)=°°’ then the zero solution of (3.3)
0

. . .. . &~ odt

is asymptotically stable. b) If 3(¢) is increasing and f 5m< oo, then the zero
(1]

solution of (3.3) is not attractive. Applying Theorem 2.3 we obtain that in the latter

case the zero solution of (3.3) is stable, and every solution has a finite limit as #—oo.

Corollary 3.3. Suppose that

fg(u) du=z=0 (jx]=c = const),

0

S x, %) =30 b(Ix) (€R,, Ix|, 1X = o),
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where béK and 1/..9.EL1,(1 +ap» 3(t) is continuous. Then the zero solution of (3.6)
is stable and for every solution x(t) of (3.6), x(t)—~const., X(t)—~0 as t—co provided
that x%(ty)-+x2(ty) is sufficiently small.

Proof. Equation (3.6) may be written in the form

(3.7) X=y, y=—ft,x, " r—gk).
Let the Liapunov function V be defined by

y
V(x,») = 2+ [ g du.
[1]
Since ]
Vt,x, ) =~f x, ) yI*? (x, yER, tER,),

we have the estimate

V{t, x,3) =—=3@Ob(xD|yl*? (t€R., |x], [yl = o).
Therefore, by w(t, u)=9(t) [u|**% W(t, x, y)=x we obtain
V(t, X, y) = _b(lxl) w(t’ !W(t: X, J’)l) (t€R+ s le’ |y| = ¢).
Consequently, by Remark 2.4 the assumptions of Theorem 2.3 are fulfilled. So,
x=y=0 is stable and }Lrg x(t) exists if x2(t5)+y%(f) is small. On the other hand,

V(t, x, y) is nonincreasing along solutions. This implies the existence of the limit
}im y(t), which, obviously, cannot differ from zero.

III. Corollary 3 can be generalized to mechanical systems with friction if the
damping is increasing sufficiently fast in the time.

Consider a holonomic, rheonomic mechanical system being under the action of
conservative, gyroscopic and dissipative forces, which may depend also on the time.
The equation of motions in Lagrange’s form reads as follows:

d 0T(q,9) 0T(q,q9) oM, q) .
(3.8) FTAREF rEy et +0(1, g, 9),

where gcI'CR", g¢R" denote the vectors of the generalized coordinates and
velocities, respectively; T€C¥I'XR", R,) is the kinetic energy, II€ECY(R,. XTI, R)
is the potential energy of the system, Q€C(R.XI'XR", R") denotes the resultant
of the gyroscopic and dissipative forces. We assume that

T(q, 9) = 4" 4(9)d/2,

where A(g) is a symmetric positive definite matrix for each ¢g€I'. Suppose that
0¢rl, 911 (t, 0)/3g=0, Q(t, q,0)=0 (¢€R,, q€I'). Under these conditions the state
g=¢=0 is an equilibrium of (3.8).
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Corollary 3.4. Suppose
n(,g)=0, oI, q)dt=r(t,0(t q) (t€R,, gE€ByCT),
Q. 9.9, 9) =-9(®a(lgeWldl) (€R+, g,4EBy),

where a€K, reCY(R. X R,, R.), r(t, - )€K, f r(z, W) dt<eo (t,u€ R,); furthermore,

0
suppose there exists a natural number p such that g€k, g’(0)=...=g*-1(0)=0,
g¥0)=0, 1/9¢Ly;,, 9 is continuous.
Then the equilibrium q=4=0 is stable and q(t)—~const.€ R" as t- < provided
that q?(t)+q%(ty) is sufficiently small.

Proof. A(q) is positive definite, so, introducing the new variables x=gq, y=4
equation (3.8) can be written in the form

3.9 =y, y=FQtxy).
In the capacity of Liapunov function choose the total mechanical energy

Vit, x, y) =T(x, y)+ 1 (1, x).
As is known [4], .

5 1
v, x, ) =(Q x, ), y)+a%)2 (t€R,, x€T, X€R).

Consequently, if we define W, x, y)=x, o(t, u)=9(t)g(u) we obtain
V(t, x, y) = —a(lx) @ gy +r(t, I, x) =
= —a(|]x||)w(t, ”W(t’ X, y)||)+r(ts V(t’ X, y))

for every t€R,, x, y€ By. Therefore, the assertion follows from Theorem 23,
Lemma 2.2 and Remark 2.3.

Acknowledgerhent. The author is very grateful to L. Pintér and L. Hatvani
for many useful discussions.
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Meromorphic functions of operators

TAVAN T. TRENT

Let T be a bounded operator on a separable Hilbert space. Combining
previous results of HaLmos [4] and FiLLMORE [3] concerning operator identities of
the forms 0=f(T*) and T=f(T*) with f entire, MOORE [6] proved the following
general theorem:

Theorem A. [6] Suppose that p is a polynomial, [ is an entire function, and
p(T)=f(T*). Then there is a polynomial q (of the same degree as p when T is
not algebraic) such that p(T)=q(T™).

The proof of this theorem required a key replacement of the operator identity
by a complex variable identity, followed by a version of the Jacobi polynomial
expansion theorem, resultant arguments, and a theorem of Picard. In this paper
we begin with the complex variable identity and generalize Theorem A utilizing
a more geometric argument, motivated by FILLMORE [3] and based on the monodromy
theorem and the Weierstrass preparation theorem. A good reference for the classical
complex variable theorems is HILLE [5]. We prove:

Theorem 1. Let r be a rational function, M a meromorphic function in the
complex plane, and assume that r(T)=M(T*). (Thus the poles of r and M lie
outside of o(T) and o(T?*), respectively.) Then there is a rational function q such
that r(T)=q(T*). Moreover, when T is not algebraic, M itself must be rational
and of the same order as r.

¢

Before beginning the proof we state the replacement theorem of MOORE [6]
for convenience.

Theorem B. [6] Let f and g be analytic in neighborhoods of o(T) and o(T*),
respectively, and suppose that g(T)=f(T*). Then for zco(T), g(2)=/(2).

Proof of Theorem 1. If ¢(T) is finite then o(r(T)) is finite and r(T)
is normal, hence algebraic. Thus T and T* are algebraic, and M may be replaced
by a rational function.

Received February 3, 1982, and in revised form July 6, 1982.
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Otherwise ¢ (T) is infinite and contains a limit point «. First note that if » has
order less than one, F(T*)=0 for some entire function F, so T* and thus T is
algebraic and the theorem holds. Hence we may assume that N, the order of r,
satisfies N=1.

By Theorem B we know that r(z)=M(Z) for z in o(T). Clearly we
may take o«=0 and r(0)=0, modifying T, M, and r, if necessary. Then
2'r(2)=2z"M,(Z) for z in o(T), where r(0)>=0, M;(0)0 and n and m are
positive integers. Taking the modulus and letting z€o(T)—~0, we see that n=m.
Thus we may write r(z)=h(z)" and M(z)=k(Z)", where h and k are analytic
and invertible in a neighborhood W of 0. Since (h(z))"=(k(2))" for z’s in o(T)
(which is an infinite set), we may assume that & and k are chosen so that h(z,)=
=k(Z,) for some sequence {z,}Co(T) with z,~0.

Computing, z,=h"'0k(Z,), so Z,=h ‘ok(z,)=h'ok(z,), where h(z) is
defined to be @

Let S={zcW:zZ=h"'ok(z)}. Then o(T)cS. Using a consequence of the
Weierstrass preparation theorem [7], we conclude that S is the intersection of
(real analytic) arcs with only a finite number in any compact set. Using the fact that
S contains a limit point we conclude that § contains a real analytic arc y. Choose
a point z, in y so that r'(z) is not zero or infinity. '

Thus Z=h"'ok(z) for z in y, so h(z)=koh~'ok(z) for z in y. Because
all functions are analyticin W we conclude that h(z)=koh~10k(z) for all z in W.

By choice of z,, r is invertible in a connected neighborhood of z, contained
in W, Q. Again, let Rw)=r(w+z¢)—r(zy), A(W)=M(W+Z)—~M(Z,), Qe=Q -2z,
and y,=y—z,. Hence R(z)=.#(Z) for z€y, and R is invertible in Q,. Then
arguing as before z=R o #(Z) so R(z)=MoR‘lo./_il—(z)_for all z in Q,. .

Denote the complex plane by C. Define Z(f, a)={z€C: f(z)=a}. Let Z,=
={z6C: #(2)€Z(R’, 0)UZ(R’, «)}. Each of the sets Z(R/,d) contains at most
2N elements since R has order N. But .# is meromorphic in the complex plane,
so the set of points with .#(z)=c for any fixed ¢ has no finite limit points. Thus
we may join each of the points of Z; by a simple curve 9; accumulating only at <,
chosen so that if Q,=C—y,, then @, is connected and simply connected. R~!
is one branch of the inverse of R in ©,. By construction branches of the inverse
of R exist at every point of C—y,. By the monodromy theorem (see [1, p. 134))
we see that R~ can be continued into ,, defining a single-valued analytic func-
tion (again denoted by R™Y) in Q. .

Recall that R(z)=.# oRlo(z) for z€Q,. Thus by permanence of func-
tional relations R(z)=.#oRYo.#(z) for z€Q,.

Suppose that for some c€Q,, |Z(A#, c)|>N. Let d=.MoR*c). Then

N=|Z(R, d)| = |Z(MoR oM, d)| = |Z(H, c)| > N.
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This contradiction shows that .# is at most N-valent in Q,. Since €, is open
and dense in C, the open mapping principle shows that .# is at most N-valent
in C. Applying the Casorati—Weierstrass theorem and the open mapping principle
(or using the great Picard theorem), we see that o is not an essential singularity
of #. Thus M is a rational function of order less than or equal to N. A sym-
metric argument shows that the order of M equals the order of r,

Note that in the case when both » and M are entire, the conclusion that M
has order N means that M is a polynomial of degree N.

Remarks. (a) Letting 7 be a unitary operator shows that takmg r to be
a polynomial with M meromorphic does not allow us to conclude that M is
itself a polynomial.

(b) Theorem 1 covers the case that g(T™*)p(T)=f(T*)q(T), where f and
g are entire, p and ¢ are polynomials, and ¢(T) and g(T*) are invertible. We
do not know how to handle more gerieral identities with T and T* appearing
on both sides.

(c) There should be some “Riemann surface” version of Theorem 1 valid for
r an algebraic function with appropriate hypotheses concerning M.

" We briefly wish to consider what compact sets K can be the spectrum of an

operator T satisfying

) ‘ AT) = FI),
where f and F are analytic in a neighborhood of K. Notice that if
@ f(2)=F(®

for z in K, then (1) can be solved for a normal operator 7T and in many cases
nonnormal operator solutions can be constructed as well.

Denote the real and imaginary parts of f and F by w, v and U, V, respectively.
We see that (2) is equivalent to

3) u—U=0 and v+¥V =0 for z in K.

On the otherhand, let P and @ be any real-valued harmonic functions in a neigh-

borhood of K with single-valued conjugates (denoted by P and (, respectively)

in a neighborhood of K. Then if

@ P=0 and Q=0 for zin K 4

we may writ¢ P=u—U and Q=v+V where u=(P—-0)/2, U=(—0—P)/2, v=4,

and ¥ =U. Thus letting f=u+iv and F=U+iV we have established
Theorem 2. There exist analytic functions f and F in a neighborhood of

K with f(z)=F(z) for z in K. if and only if there exist real harmonic functions

P, Q in a neighborhood of K with single-valued conjugates in a nezghborhood of
K and with P(z2)=0 and Q(z)=0 for z in K.
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Corollary. Suppose that Q is a real harmonic function with single-valued
conjugate in a neighborhood of K and Q(z)=0 for z in K. Then —Q+iQ=

=—0+iQ for z in K.
Proof Take P=0 in Theorem 2.

Theorem 2 and the corollary are useful for constructing various examples.

By the corollary, to understand K we must look at the zero set of a harmonic
function. We mention a few well-known facts. Simply because a harmonic function
h is locally a real analytic function in x and y, the Weierstrass preparation theorem
[6] shows that locally Z(h, 0) is a finite union of analytic arcs. Moreover, if the
gradient of h vanishes at some point s, then the derivative of h+i/ vanishes at s.
Thus locally the number of arcs and the types of singularities of Z(k, 0) are restricted.
In the case when f and F are analytic in a simply connected set, the maximum
principle says that Z(h, 0) contains no closed curves.

It may be of interest to see how the paks revious remmarnd geoetric considera-
tions lead to a proof of a special case of Theorem A. Let K be an infinite compact set.
Suppose that p(z)=q(z) for z in K, where p and g are polynomials with
max (deg p, degg)=m. Let y,=Rep—Reqg and wu,=Imp+Img. Then u,=0
and #,=0 for z in K, where u; and u, are real harmonic polynomials of degree
m. Since u; and wu, vanish at so many common points (see [2, Chapter 1}), it
follows that u; and u, have a common polynomial factor, h, of degree greater
than 0. Let f=u,+iif,. Then f is a polynomial in z of degree m. So, at oo,
Z(u,, 0) has 2m branches. However the degree of u,/h is less than m, so Z(h, 0)
must contain some branch which extends to <. But then p(z)=g(z) holds for some
sequence of z's approaching . Since p and ¢ are polynomials, the degrees of
p and ¢q are equal.

I do not know whether Theorem 1 or even Theorem A can be proved analogously
to the above special case with a more thorough understanding of the zero sets
involved.
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An exact description of Lorentz spaces

LARS ERIK PERSSON

1. Introduction

We assume that f is a measurable complex-valued function on a measure space
(@, p), where p is a o-finite positive measure. The function f can be rearranged
to a non-increasing function, denoted f*, on [0, «[. The function f* is continuous
from the right and equidistributed with f (see e.g. [13, p. 131)).

We suppose that p and ¢ are real numbers satisfying O<p-<oo, 0<g=<oco,
The Lorentz space L(p, q) consists of all functions f satisfying

11 = (f s~ deff <.

See [7], [9] or [13, p. 132]). The L(p,g)-spaces are of great interest in pure and
applied mathematics. In particular, they appear as intermediate spaces in the theory
of interpolation (see e.g. [6, p. 264] or [13, p. 134)).

Obviously L(p, p)=L". Itis well known that if g,=gq;, then |f|} o =If 7 o
(see [6, p. 253]). In particular, L(p,q)DL? when p<q and L(p,q)cL” when
p=g. Moreover, in a sense, every L(p, g)-space is “close to” the corresponding
LP-space. In particular, by generalizing the definition of the L(p, ¢)-norm in the
natural way we obtain the usual weak LP-space when g=. However, it is not
possible to identify an L(p, g)-space by some Orlicz space of the type LP(log LY.
One aim of this paper is to give an exact description of the L(p, g)-spaces at least
in similar terms.

Throughout this paper we let the letter h stand for a strictly positive and
continuous function on [0, o[ which is constant on [0, 1].

The following theorem by the present author can be found in [12, p. 270].

Received May 28, 1982.
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Theorem A. Let p>gq. Then

1

f (f*)qlq/r‘ dt < oo
0
if and only if
1

.1 [ (f*hog* fH)Pdi -

0

for some function h such that, for some a>0,

(12) h(x)a* is a decreasing or an increasing function of x
and
(1.3) [ (r(e)rta=2 dx < oo,

1 .

We may assume, without loss of generality, that log=log,.
In Section 2 of this paper we shall state a theorem (Theorem 2.1) which gener-
alizes Theorem A in two directions. On the one hand, by also studying conditions

of the type f (f*)1197~'dt< - and, on the other hand, by also considering the case
; A
p<q. In this way we obtain an exact characterization of the L(p, g)-spaces not

only for the special case when p(Q)<e and p>g¢. Some applications to the theory
of Fourier series (and transforms) are also given in Section 2. In particular, we
shall see that the conclusion we usually extract from Hausdorff—Young’s inequality
(see e.g. [14, vol 11, p. 101]) is, in a sense, far from being the sharpest possible.
Some useful lemmas can be found in Section 3. The proof of the main theorem in
Section 2 is carried out in Sections 4 (the case p>g) and 5 (the case p<g).

We say that the function f belongs to the Lorentz—Zygmund space
L% (log L), 0<p<woo, 0<g=<oo, —co<p=<oco if the quasi-norm

11 g = ([ (F* @2 (llog £]+ 1)) dif1) s

is finite (see {2, p. 71). In particular, we have L”%(log LY*=L(p,q) and L”?(logL)*
can be identified with the Zygmund space L”(log L)* (see [2, p. 35]).

In Section 6 we shall generalize our main theorem so that we obtain an exact
characterization of the spaces L”9(log L)*. We shall also point out the fact that
a recent embedding result by BENNETT and RUDNICK [2, p. 31] is a consequence
of this characterization. ‘
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In Section 7 we shall give some concluding remarks. In particular, we shall
compare the functional spaces introduced in this paper with the similarly defined
Beurling—Herz spaces (see [1, p. 2} and [5, pp. 298—300]).

Acknowledgement. 1wish to thank professor Jaak Peetre, Lund, for his comments
and suggestions which has improved the final version of this paper.

2. A description of the L(p, g)-spaces

We make the following definition.

Definition. Let p>gq. Then

1

(2.1) [ (F*hQlog* fH)Pdr <o

0
for some function k such that, for some a>=0,
22) h(x)a* is a decreasing or an increasing function ol x
and
(2.3) [ (r)ea=Pdx <oo.

1

b) f€E.(p,q) if f*()=0 and

2.4 f [f*h(log*%]]p dt <o

for some function h satisfying (2.2) and (2.3).
Let p<gq. Then
c) fEE(p,q) if (2.1) holds for every function % satisfying (2.2) and (2.3).
d) feE.(p,q) if (2.4) holds for every function h satisfying (2.2) and (2.3).
Let p#=q. Then

e) fEE(p,q) if feE(p,q) and f€E.(p,q)
The main theorem in this section can now be formulated in the following way.
Theorem 2.1. Let O<p<eco and Q<g<oo. Then
a) fl(f*)"t"/"‘ldt<oo if and only if fECE(p, q)
and ’
b) f(f*)"t"/”‘ldt<oo if and only if f€E.(p, q).
1

12*
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We see that part a) of this theorem gives an exact.description of the desired
type for the case when the y-measure of Q is finite. By combining the equivalences
in Theorem 2.1 we obtain a characterization of the L(p, g)-spaces in the general
case, namely that

2.5) feL(p, q) if and only if fEE(p, q).

It can be somewhat difficult to see what this equivalence really means so we shall
formulate it in another way. Therefore welet D be a subset of © such that |f|=1
on D and |[f[=1 on @\D. Then we can make some elementary calculations to
find that f€E(p,q) if and only if

p
@9 [ (f1ndogl Dy du+ [ [lflh[logi]] dp <o
5 o%p /1
for some (the case p=>gq) or every (the case p<gq) function h satisfying (2.2) and
(2.3). In the sequel we say that f€L?h(log L) when (2.6) holds. For the special
case h(x)=x" we get the Zygmund space L°(log L)*. We can now formulate the
equivalence (2.5) in the following way.

Theorem 2.2. Let O<p<e and O<=g<eoo,

a) Let p>gq. Then fcL(p,q) if and only if f€LPh(log L) for some function
h satisfying (2.2) and (2.3).

b) Let p<q. Then fE€L(p,q) if and only if fcLPh(log L) for every function
h satisfying (2.2) and (2.3).

We apply Theorem 2.2 with A(x)=x1+20/2-1P §=.0, and find* at  p=>gq,
then, for every &=0,

2.7 L(p, ) > L?(log Lyv/e-1/r+e
and if p<gq, then, for every &>0,
(2.8) L(p,q) c LP(log L)V/a~1r—¢,

The inclusions (2.7) and (2.8) are the sharpest possible in the sense that they are
in general false if we permit ¢=0. In order to verify this fact we set (Q, )=
=([0, 1], dx) and study the function :

1

fx)= U7 (log 1/x)a (log (log 1/x+2))*"

Then, as -0,
1
tlog1/t(log(log 1/t+2))°

(f*)q 14/P—1
and

1
= tlog 1/t (log (log 1/t+ 2))*

() (log* f*+1)P/a=2
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We obtain suitable counterexamples by choosing « satisfying 1/p<a<1/q for
the case p>g and l/g<a=1/p for the case p<gq.

We shall how consider a function f on [0, 1]. Let c,, n€Z, be the complex
Fourier coefficients of f (with respect to a uniformly bounded system of ortho-
normal functions). The sequence (c}); is the sequence (|c,|)=.. rearranged in
non-increasing order. Hausdorff—Young’s inequality (see e.g. [14, vol. II, p. 101])
can be used to obtain the following implication:

29 if feL?, 1<p<2, o' =pl(p—1). then 3 e, <eo..

By an estimate of Paley it is also well known thatif f€ L?, 1 <p<2, then 2”' (cyPnP—2<
. 1

<= (see e.g. [14, vol II, p. 123)).
Therefore we can use Theorem 2.1 b) and make some straightforward calcula-
tions to obtain the following more precise implication than that in (2.9).

Corollary 2.3. If feI?, 1<p<2, p’=p/(p—1), then

I 1 e-plp-1 |
5l s (i0g 1)) <o

for some function h, h=1, satisfying (2.2) and

(2.10) S —h(l—x)dx <o,

Remark. The result in Corollary 2.3 cannot be improved. In fact, by using
the results obtained in [12, p. 268] we find that the implication in Corollary 2.3 can be
replaced by an equivalence in a relatively large class of functions. This class consists
at least of all non-negative functions f satisfying the condition that

ff*(u)duéKff(x)dx

for some constant K. Of course it is impossible to replace the implication in (2.9)
by an equivalence in some similar relatively large class of functions.

In Corollary 2.3 we have seen that the condition f¢L? is an unnecessarily

restricted condition to ensure the convergence of the series > |c,|[”. However, it is
. ) s
well known that also the condition f (f* 7 —2dt (that is fEL(p, p")) implies that
0

_2”' le,[¥ <oo (see [14, vol 1I, p. 124]). Therefore we can use Theorem 2.1 a) and

obtain the following more precise criterion,
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Corollary 2.4. Let 1<p=<2 and p'=p/(p-1). If

1

[ 1717 (hQog* £~ dx <o

]

for every function h,h=1, satisfying (2.2) and (2.10), then

-
2 eyl <ee.
—co

Remark. We can use the estimates obtained in [12, p. 268] to see that the
implication in Corollary 2.4 can be replaced by an equivalence in the same class of
functions as that in the remark after Corollary 2.3.

Finally we note that we can use Theorem 2.1 and similar arguments as before
to obtain the corresponding results for a function f€ R" and its Fourier transform
feR". For example the corollary corresponding to Corollary 2.3 can be formulated
in the following way.

Corollary 2.5. If feIP(R"), l<p<2,p’'=p/(p—1), then
ST (h(log [F[)e-P/CdE <o
Rn

Jfor some function h satisfying (2.2) and (2.10).

Remark. It may be tempting to try to find some function h,, not depending
on f, such that

@.11) IFl, = 1= [I717 ho(|log |F1]) dE = Ky <o
-

However, this is not possible for any positive function h; such that hy(x)—>o
as x—oo. This fact follows when using the following homogeneity argument:
Let f be a function on R" such that f(¢)=a,>0 on aset E of positive measure.
If f;,(x)=al”’f(ax1, Xoy eeey xn)a then

1, =171, =1, L@=a 7(3 e, e
and

L=_[1f@ ho(llogfu@)dz = [ 17 I ho(llog (=7 fm)) dn.

R'l
Since hy(x)—> as x—oo we can choose a small enough to obtain that
hy(llog (@Y7 f(n)]) = 2K,/(m(E)al) on E.

Therefore 1,=m(E)al 2K /(m(E)as)=2K,. We conclude that (2.11) does not hold
for any of the functions h, considered.
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3. Some lemmas

T _ _ )
Lemma 3.1. Let 2 ¢, be a non-negative and divergent series. If S,= > c,,
1 1

then the series D ¢\/S, is divergent and, for every a=0, the series 3 c,/Syt% is
1 1

convergent.

A proof of this lemma by Abel can be found for example in [4, p. 121]. We shall
now state two useful regularization lemmas.

Lemma 3.2. Let > a, be a positive and convergent series and let c>1. Then
k=0 . ’

there exists a sequence (by),—, such that, for k=0,1,2, ..., we have @ =b,, c™1=
=b,1/by=c and
= = c+1
kgt; - c—1y Zak

Lemma 3.3. Let § be a positive number and let g be a positive, integrable
function on [1, «[ such that, for some b=0, g(x)x® is a decreasing or an increasing
Sunction of x. Then there exists a constant K (depending only on b and &) and
a function gy(x), such that gy(x)= g(x),

3.1 g1(xX)x!1+® s increasing,
3.2 g1(x)x'=% s decreasing,
and

fgl(x)dX§ng(x)dx.

Somewhat less précise versions of Lemmas 3.2 and 3.3 have beén proved in {11, pp.
292--294). The proofs we shall give here are elementary and based on convolutions.

Proof of Lemma 3.2. We choose b,= Sa,,c""‘"l'. Then
‘n=0
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Moreover,

o k oo
byyr= Z(')a,,c""“""' = Z(')anc-(k+1—n)+ > a,,c““"‘:
n= . n=

n=k+1
=c! Za c¢"Mte Z’ a,ct=m,
n= n=k+1
Therefore, we find that b,.,=cb, and b,,,=cb;. Trivially a,=b,. The proof
is complete,

Proof of Lemma 3.3. Let g(x)x® be an increasing function of x. Then,
for 2¥=x=2%1 k=0,1,2, ...,

(33 27052 = g(x) = D@,
Therefore
(3.4 Seev2=s23 [ soar=2 [ pdr <=

Now we can use Lemma 3.2 with ¢=2° to obtain real numbers d,, k=0, 1,2, ...,
such that d,=g(2"), > d2* <,
(1}

(.5) 2-04+9) = 4, /d, = 27149,
and

L]
(.6) dez" = ;,,“ 3 g (292~

We define the function g, in the following way:
g(x) = g (2" = 22(d) ~“(dis)%, k=0,1,2,.., 0 su=1.
Observe that, for 0=y, =u,=1,

EX)] 2-@FD gy < gl 8:::3 (d:}“] T 2 20Dy
k

and, fOl' k2> kl )

2%) d
3.8 2~ @+1)(ky=k) < g ( Y < 2(G-1)tkg—F),
G9 2@ &,
According to the estimates (3.7)—(3.8) we find that our function g, satisfies the
growth conditions (3.1) and (3.2).

We may, without loss of generality, assume that d<1. Then, by (3.3), (3.5),
and the fact that d;,,=g(2**1), we get

21(0) = g, (%) = 22 (@)1 4(dy )" = 2020-90-0 g, = 2bd, = Db (K1) = g(x).
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Finally, by (3.4), (3.6), and (3.7), we have

13
w2+l

f B@dx=3 f gi(x)dx = 2 £, (292 =

2941 241

: ~2b2d,,2k<2b 2 (2")2"<22"2 [ g(x)dx.

e

The case when g(x)x" is a decreasing function of x can be carried out anélogously.
The proof is complete.
4. Proof of Theorem 2.1; the case p>¢q
In this case part a) of Theorem 2.1 is identical with Theorem A so it is sufficient

to prove part b) of the theorem.
First we assume that

[ (fysie=idr <eo,
1

and choose ¢ satisfying O0<¢<gq/p. We can now use Lemma 3.3 to find a function
g(1), such that g(®)=/*(©),

4.1 (g(n))e#P+¢ is increasing,

4.2 (g)) pr=e i decreasing,

and

4.3 f () 1/P~1dt <o,
: .

For k=0,1,2,... we set b,=(g(2"2"7)* and observe that, by (4.1)>—(4.3), the
series Z’ b, converges. We also note that we may, without loss of generality, assume
that g(t)<1

We define the function h at the points x,=log (1/g(2%) by h(x,)=bg=Pes,
k=0,1,2, .... According to (4.1)—(4.2) we find, for O0=u=1 and £=0,1,2,...,
4.4 g1(2)2—uaIP+e) = ga(Qk+u) < ga(Qk)Quz—a/P),

We can now use (4.4) and make some elemeg'iary calculations to obtain the following
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useful estimates:

e bk+1 _ [g(2k+1)2(k+1)/p)4 .

4.5) 2= by = PIPOYLE =2°

h(xy+1)
4.6 2-ep—9)/pa < Tk < He(p-a)lpa
@0 ()
and

1(q 1(gq

4.7 0<—[—-—s]§x -X §—(—+a).
4.7) 7 \p k1T X =

We extend the definition of the function h by setting
h (x) = ((h (xk))""‘u(h (xk + 1))xk + 1_")1/("1:1» 1~ %)

for x,=x=x,,4, k=0,1,2,.... We can make some elementary (but rather labo-
rious) calculations and find, for some =0, that

4.8) ' H(x)2%* is increasing
and .
4.9 h(x)2~% is decreasing.

(We can for example choose d=¢(p—q)/(g—pe).)
According to (4.5)—(4.9) we obtain, for x,=x=x,,,, k=0,1,2, ..., and for
some 6y=>0,
‘ 2=%h(x) = h(x) = 2%h(x,).

(If we choose d=e(p—q)/(g—pe), then we can have J,=e(p—q)/pg.) Therefore,
by (4.7), we have

ca

f (h (x))pq/(q-p) dx = 2°° ?“(h (x))pq/(q—p) dx =

*o

(4.10) = 2%Pa/a=P) 2.0 (R(x))PI=P (x4 — X)) = 2%PUVE=P) 3 b, (x4, —%) =
< 4 0
= 26,,pq/(q—p)i (l-{- g) 2.0 by <eo.
q\p 0

We use (4.4) once more and obtain, for 2*=r=2*+1 £=0,1,2, ...,
4.11) : g (28 2-@+rira = g() = g(2Y).
Hence we can use (4.8)—(4.9) to obtain that, for 2*=¢=2%+1,
h (log _(1_3) =h (lég( 1 J.M]] 298 (log(g(0)/9(2)) +(q+pe)/pPa) =
g .

2k
@12) g2 " pg

=h (lo_g ] 225(a+pe)/pq

g(2h
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Furthermore, according to (4.11)—(4.12),

gk+1

/ [g(t) hoe (t)J] = 5[ [g(t)h(k’g 90) ]]pd =

1

4.13)
= KOZ (g(@Yh(x))P2* = Z' bP/"2 "bl p/ak = K0 2 b, <eo.

(We can for example choose K,=2%@+p9)/4))

By choosing ¢ small enough and using the growth condition (4.8) we see that
yh (log (1/)) is an increasing function of y, 0<y<1. Therefore, by (4.13) and the
fact that f*(r)=g(¢t), we have

f[ *h(log*-fl—*)]pdt<oo.

Since the function h satisfies (4.8)—(4.10) we conclude that fEE..(p, q).

In order to prove the converse implication we assume that f€E.(p,q). Let
(x)7 be the nondecreasing sequence of the least real numbers &, such that 2-*-1=
=f*t)=2"* when o,_,=t<x,k=0,1,2,.... Let h(x) be the function associated
with the definition of E..(p,q). We assume that h(x)2%*, for some =0, is an
increasing function of x. Therefore, if o, _,; =t =0, then

h()2%=h (longl(l)—] = h(_k+1)2".

Thus the assumption

F o ) =

1
implies that

@1 F 2P (0P ) <o

Moreover,

(4.15) j' (FHLeP-1dt = Z f (f*)q,q/p 1y =P 22 ak (ol — o IP),

X1

We use Holder’s inequality and an elementary estimate and obtain

S o) = 32 o)
(4.16)

1—g/p

= (5 2-2% (R (k))? (o — ot - 1)Jqlp (é’o (n (k))pq/(q_—p))
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From the growth and integrability properties of h-we deduce that the series
S(h(k))"“"""’ converges. Hence, by (4.14)—(4.16), we obtain
1 .

oo

[ yelerde <o,

1

The case when h(x)2 —% is a decreasing function of x can be handled analogously.
The proof is complete.

5. Proof of Theorem 2.1; the case p <gq

We assume
1

[ (Fryee=tdr <o,

0

Let-h be any function -én [0, [ such that for some &, 0<d<p,

G.D ' _ h(x)2% is increasing,
5.2 | h(x)2~% is decreasing
and

.3) [ (h@)ap dx <oo.

1 .
Let (B)s be the nonincreasing sequence of the least real numbers B, such that
2k-1= fX(¢)=2%, when B,=t<pB_,, k=0,1,2,.... Then

B o Br-1 oo
4 [ pmeian=3 [ (e th%Z—" 3 2% (BEP, — BUP).
1 By 1

0

Moreover, by (5.1),

ﬁo . o ﬁ"—l
[ (Frhog* fHydi=3 [ (f*h(og* fM)dt =
0 1 g,

(5.5)
=3 27%(h (K))? (Be—1—B)-

We use Hélder’s inequality and find

1-plq

oo - oo . Pla f o
6o 3 rwpia—po=(Z26a-pw) (S0 ((c_))w(«-m]
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Since (Bi—1—B)"P=piP, —BUP we can use (5.4) and the integrability assumption
on f* to obtain

.7) 3 284 (B _y — B)UP <o,

.

The conditions (5.1)—(5.3) imply that the series 2“' (h(k)yP/@=P converges. There-
1 -
fore, according to (5.6)—(5.7), 3 2%(h(k))’(Br-1—PBi)<<>. In view of (5.5) we
1

conclude that

J (f*rQog* [y dt <o

for every function h satisfying (5.1)—(5.3).

Finally we suppose that the conditions (5.1) and (5.2) on the function h, are
replaced by the general condition that, for some a=0, h(x)a" is increasing or de-
creasing. Then we can use Lemma 3.3 to obtain a function h,=h satisfying
(5.1)~5.3). We have just proved that

1
J (f*hQog* fHydt <o
0
and, thus, since h,=h, :
1
S (f*hQog* My dr<e
0

so that f€Ey(p, q).
In order to prove the converse implication we assume that f€E.(p,q). Let
h be an arbitrary function satisfying (5.1)—(5.3). Then

5o w Bxoy
[ (rhtogrropar=3 [ (rengog oy ar =
(5.8) ’ e
Z= 2P0+ ; 2P (h(K))? (Bx-1— By)-

Hence, by assumption and (5.8), the series S‘2”"(h(k))"(ﬂ,‘_1— B converges. We
1

make an Abelian transformation on this series and find
(5.9) S 2 (bR B, <o

1
Since

ﬂo o Bi-1 p d .
f (f*)q (alp—1 4t = 12 j (f*)qtq/p—l dt = _q_ 2 2qkﬂz/_pl,
0 B 1 ) .
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it is sufficient if we can prove that 2 2%p2P<o. We assume the contrary, viz.
1
;’2“kﬁ§/”=oo. For k=1,2,3,... we set ¢,=2%puP and d,=2a-Pgair=1 By

assumption the series 3 ¢, diverges so we can use Lemma 3.1 and obtain
1

10 Sop o 3.
1 Sk 1 k
and, for a=p/(q—p),
=(d, )ql(q—p) =S
205 =25 T

We choose &, 0<d<p, and set a,=d,/S,. We apply Lemma 3.2 to the series

©o

> al@=P to obtain a sequence (b,); such that b =aq,
1

G.1D) (b2°7%); is an increasing sequence,
(5.12) (be27%797 is a decreasing sequence,
(5.13) > bila=P < oo,

1

and, by (5.10),
(5.14) 5 2Pk, b, = o.
. 1

For k=1,2,3,... and O=u=1 we define h(x)=h(k+u)=(b,""b},)"?. Then,

k+1

by (5.11)—(5.14), we can see that there exists a function A satisfying (5.1)—(5.3) but

5 204, (h ()P = <=.

This fact contradicts the condition (5.9). We conclude that our assumption is false

so that
1

f (fH197-1dt <o,
1]
The proof of part a) of the theorem is complete.

In order to prove part b) we study the nondecreasing sequence (x,); of the
least real numbers o, such that 2% =f*(1)=2-% when o _,=t<o, k=
=0, 1,2, .... The proof of part b) can now be carried out by arguing exactly as
in the proof of part a). Therefore we leave out the details.
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. 6. A description of the spaces L7 ?(log L)*

Theorem 2.1 can be generalized in the following way.

Theorem 6.1. Let O<p<oo, 0<g<oo and —oco<g<oo,
a) Let p>q. Then

6.1 fl(f*tl/l’ (log t]+ 1)) dtft <o
if and only if '
(6.2) f(f*(10g+f*+ D*h(log* fH)y dt <o

0 : :
for some function h, such that, for some real number a,
6.3) h(x)a* is a decreasing or an increasing function of x
and
6.9 f (R(x))Pa/@=P) dx < oo,

i

b) Let p<q. Then (6.1) holds if and only if (6.2) holds for every function h
satisfying (6.3) and (6.4).
c) Let p>q. Then

(6.5) f (f* /2 (log |+ 1)) dtft < oo
if and only if b
=, 1 ¥ 1YW
(6.6) 1j [f [10g+7+ 1] h [log*’F)] dt <o

for some function h satisfying (6.3) and (6.4).
d) Let p<gq. Then (6.5) holds if and only if (6.6) holds for every function h
satisfying (6.3) and (6.4).

The proof of Theorem 6.1 can be carried out in a similar way as the proof of
Theorem 2.1 so we omit the details. Moreover, we can use Theorem 6.1 and argue
in a similar way as before to obtain the following exact characterization of the
Lorentz—Zygmund spaces.

Theorem 6.2. Let O<p<oo, Q<g<eoo and — co<q < oo,
a) Let p>gq. Then fel™%(log L)" if and only if fc¢L*h(log L) for some func-
tion h satisfying (6.3) and

oo

(6.7) [ (h(x)x)pala=p dx <o,

1
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b) Let p<q. Then fcL?%(log L)* if and only if f€LPh(log L) for every func-
tion h satisfying (6.3) and (6.7).

The following recent embedding result by BENNETT and RUDNICK [2, p. 31]
can be deduced from Theorem 6.2.

Corollary 6.3. Let O<p<oo, 0<g<oo, 0<g <o, —oo<a<d and — com
<@, <<eco, Then

(6.8) L4 (log Ly* & LP%(log LY.
whenever either

6.9) qg=¢q, and a+l/qg=ou+1/q,
or

(6.10) g=q, and a=gqa,.

Remark. It is easy to find elementary examples showing that the inclusion
(6.8) does not hold in general if we permit some o satisfying a=a,+1/q,—1/q
when g=>gq, orsome a satisfying a<a; when g=gq, (see[2, p. 33]).

In our introduction we have noted that L(p,q)cL’ when p=g and
L(p,q)>L? when p<gq. Therefore, by applying Corollary 6.3 with g=p, a=0
and ¢;=p, ;=0 and by using the inclusions (2.7) and (2.8), we obtain the following
chains of inclusions: If 0<g<p<-<oe, then, for every &>0,

L? (log L)a~Yp+ < L(p, q) < LP < LP4(log L)V?~1/a~¢
and if O<p<g<oo, then, for every &>0,
L7 (log Lyvr-va+e = 12 < L(p, q) € LP(log L)/a~-1r—¢

All inclusions are the sharpest possible in the sense that we can nowhere permit
that £=0.

Proof of the corollary. We assume that f€L”?(logL)* and g=>gq,.
First we consider the case p>gq. Then, by Theorem 6.2 a), f¢ L?h(log L) for some
function h satisfying (6.3) and

oo = x= pal(p—)
—a\pg/(4—~p) = _
(6.11) | 1f (h(x)x—%) dx 1j ( ; (x))

dx < oo,

We put a=q(p—q,)/q.(p—q) and use Holder’s inequality to obtain

P‘le(P"ll pra/(p— q) 1/a oo ) .y
(2,~a)qq,/(4—4,) —ia
(h(x)) [ [h(x)] ] (i[ x dx)i=.
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The assumption a+1/g=>ea,+1/q, implies that (o; —a)gq,/(g—¢q,) < —1. Therefore,
according to (6.11),

X% ra,/(p—q,)
] dx <eo,

(6.12) jo(h(x)x—u,)m,/(qrp)dx= f[m

We have just proved that fEL"h(Iog L) for some function h satlsfymg (6.3) and
(6.12). Thus, by Theorem 6.2 a), fe L% (log L)n.

For the case p<g, we assume that h is an arbitrary function satlsfymg 6.3)
and (6.12). We put a=q,(p—q)/q9(p—q¢,) and use Holder’s inequality and the
assumption that (o; —a)gq,/(g—q,)<—1 to see that k also satisfies the condition
(6.11). Therefore, according to Theorem 6.2 b), fc¢ L?h(log L). By using Theorem
6.2 b) once more we conclude that feL”%(log Ly,

For the case p=q our assumption means that feL’h(log L) for h(x)=x"
We note that the function h satisfies (6.3) and (6.12). We use Theorem 6.2 a) and
conclude that f€ LP%(log L)*.

When p=gq, we can use Theorem 6.2 b) to see that f€LPh(log L) for every
function h satisfying (6.3) and (6.11). We note that the function h(x)=x* satisfies
these conditions. Thus, f€LP(log L)* which in this case is equivalent to that
feLPu(log Ly,

Finally we suppose that g,<p<gq. Then we can use Theorem 6.2 b) to see that
f€LPh(log L) for every function h satisfying the conditions (6.3) and (6.11). In
particular, the assumption (¢; —)9q,/(g—¢,)<~—1 implies that the function

h(x) = x((=,~a)qq,/p+(aq~2,4,)}/(4—4)

satisfies these conditions. But this function h(x) satisfies also the condition (6.12)
so we can use Theorem 6.2 a) to conclude that fc L»%(log L), Thus the proof of
the case ¢,<gq is complete.

If g,=q we may, without loss of generality, assume that «;=«. The proof of
this case is analogous and even simpler so we leave out the details.

7. Some concluding remarks

Professor Jaak Peetre has made me aware of the fact that our description of
the L(p, g)-spaces is similar to the definition of the spaces Bj (), defined by
PeeTRE {10} and GILBERT [3, pp. 242—243] in the following way: Let @ be a non-
negative weight function, 0<6<1, 1=p<o, 1=g=o and y=1/p—1/q. Let &g
be the set of nonnegative functions ¢ on [0, e[, such that

oo

(1) ol = [ 0% =1,

13



194 . Lars Erik Persson

and

(1.2)  °¢?(t) is nondecreasing.

Then -
U {L%le = 0’9" (»)}, when y =0,

B (w) = "%
9.4 N {Lfo = &’¢’(w)}, when 7 =0.

vEdg

In particular, when the underlying measure space is (R", dx) we obtain the usual
Beurling—Herz spaces ' '
(B2, .(xI"), when g < p,

Pra —
L B, (-l}l—l;), when g¢q = p.

The Beurling spaces 4” and BP are the special cases L' and ?L*, respectively
(see [3, p. 247] and [5, pp. 298—300}). '

We can use our Theorem 2.2 and make some elementary calculations to see that
the L(p, g)-spaces can be characterized in similar terms. More exactly, we can in
fact define the L(p, g)-spaces in the following way: Let O<p<oo, 0<g<eo and
y=1/p—1/q. Let ®p be the set of nonnegative functions ¢ on [0, «[, satisfying
(7.1) and, for some real number a,

7.2y (1) is nondecreasing (or nonincreasing).

Then .
eL% {L*(p(L))’}, when 7y =0,

L(P: q) = ﬂP{L”((p(L))V}, when p=0.

PED

It is also interesting to compare how the spaces L(p, q) (or, equivalently, E(p, q))
and B} (w) (and, thus, the Beurling—Herz spaces ’L7) occur as intermediate
spaces in analogous situations in the theory of interpolation. For example we have

(LP, L, .k = L(p, 9) (=E(p, 9))
when 1/p=(1—0)/ps+0/p, (see e.g. [13, p. 134]) and
(Lp, Lﬁ)o,q;x = Bg,q(w)

(see [3, p. 243] and [10, pp. 64—66]).
Lorentz has in [7] defined that a function f belongs to the space A(g, q) if

[ yodi<e.
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Here ¢ is a nonnegative and integrable function on [0, «[. Lorentz has also given
an exact characterization of the spaces A(g, 1) which are also Orlicz spaces (see
[8, pp. 130—132]. Roughly speaking, the result of Lorentz shows that this can
happen if and only if we impose integrability conditions on ¢ such that the space
A(p, 1) is fairly close to L1,

In this context we also note that it is feasible to generalize Theorem 6.1 for
example by replacing the factor (log —)* in the conditions (6.1)—(6.2) and (6.5)—
(6.6) by any “logarithmic varying” function ¢. (We say that a function ¢ is
logarithmic varying if there exist x, and a such that, for x=x,, ¢(x)(log x)*
is a decreasing or an increasing function of x.) We can still use essentially the same
techniques as in the proofs in Sections 4 and 5.
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Compact and Hilbert—Schmidt composition operators on
Hardy spaces of the upper half-plane

S. D. SHARMA

Introduction. Let H”(n*) denote the Banach space of functions f holomorphic
in n* (the upper half-plane) for which

I, = S,BE{I_Z |f(x+in)|P djclllp} < oo,

Let T:znt—na* be analytic. Then the composition mapping Cr, defined by
CTf=fo T’

maps HP(n*+) into the vector space of all analytic functions on n*. This mapping
Cy is a linear transformation. If the range of Cy is a subspace of H?(n*) and
Cr happens to be bounded, we call it the composition .operator induced by T.
We are interested in the case when p=2. In this case H2(z*) becomes a Hilbert
space. For the sake of simplicity we will denote | ||; simply by || [|. Composi-
tion operators on H2?(n*) have been studied by SINGH [6] and SINGH and SHARMA
[7]. In [7], we have proved that if T is an analytic function from zn* into itself and
the only singularity that T can have is a pole at infinity, then Cy is a bounded
operator on H*(n*) if and only if the point at infinity is a pole of 7. In Section 2,
we give a characterization of compact composition operators on H2(nt). A sufficient
condition for a composition operator to be compact is also.provided. In Section 3,
Hilbert—Schmidt composition operators are characterized.

2. Compact composition operators on H2(n*). A linear operator 4 on a Hilbert
space H is called compact if ‘4 takes bounded sets into sets with compact closures.
This definition is equivalent to the statement that the image of every bounded
sequence under A has a convergent subsequence [2]. This is further equivalent
to saying that if f,—f weakly in H, then Af,—Af strongly in H. In this section
we give a characterization of compact composition operators on H2(nt).

Received March 1, 1982.
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Theorem 2.1. Let C; be a composition operator on H*(n*), Then Cy is
compact if and only if for every sequence f,—f uniformly on compact subsets of
n* and bounded in H2(n%) norm, the image sequence Cyf,—~Cqyf strongly.

We need the following lemmas to prove the theorem.
Lemma2.1. Let feH:*(n*). Then |f(x+iy)P=|fl*2rny for x+iyern™.
Proof. First suppose f€ H*(n*). Then by Cauchy-formula {1, p. 195},

N1 SO
= 1
Jw) = (2ni) _!: p— dr.
Writing w=x+iy and taking absolute values we get

fx+inl =@t [ 1£0)]dr = 11ly2my.

(Here |f]l, is the H!(n*)-norm.)

Let fceH%*(n*). Then we can write f=B.g, where B is a Blaschke product
and g is an analytic function in 7% and does not have any zero in z* [3, pp. 132—133].
It is obvious that ||f]|=||gll. Let h;=g? Then h,¢ H'(n*). Hence f=B-h}"* and

|fGet+ip)l = [B(x+ip)| |hy (e +iy) |2 = || llY%/V 27y,
which implies that | f(x+z‘y)|""_§ 1f1%2=y for every x+iyent.

Lemma22. Let {f,} be a sequence in H*(n*). Then f,~f in norm implies
that f,—~f uniformly on compact subsets of ©*.

Proof. Suppose f,~f strongly. Let K be a compact subset of n*. Then

by Lemma 2.1
| Ce+ip) =S (e +ip)| = @m) =2 Ml £, 11,

where M= sup {y-Y2). The right hand side tends to zero as n—os for every
x+iy€EK - ’
point x+iy€K. Since K is an arbitrary compact subset of =+ and f,—~f uniformly

on the compact subset K of n*, the proof follows.

- Lemma23. If {f.} is a bounded sequence in H*(n"), then there exists a sub-
sequence {f, } which converges uniformly on compact subsets.

Proof. Inthe light of Thebrer_n 14.6 of [4] it is enough to show that the sequence
{f.} is uniformly bounded on each compact subset of zn+.. If K- is'a compact
subset of =t then again by Lemma 2.1 we have for x+iy€K that

filx+iy)] = Qr)~V2 MM,
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where My is as in Lemma 2.2 and M =0 is such that ||f]|=M for all n. This
finishes the proof.

Proof of Theorem 2.1. Suppose Cy is compact. Let {f,} be a sequence
in H3(n*) and f€H?*(n*) such that f,—f uniformly on compact subsets of =+
and let M=0 be such that | f,|=M for all n. Then we want to show that

ICrfa=Crfll -0 as n—e.

Suppose this is not true. Then there exists a subsequence Crf, and an &>0 such
that |Crf, —Crfll=e>0. Since {f,} is norm bounded and C; is compact,
there exists a subsequence { f,,k‘} such that C. Ju, 8 strongly for some g€ H*(n ™).
Hence, by Lemma 2.2, Cr So & uniformly on compact subsets. Also, the sub-
sequence { f"k;} converges to f 'uniformly on compact subsets, implying that {Cy. f,,k;}
converges to Cypf .uniformly on compact subsets. This shows that Crf=g, which
is a contradiction. This proves that |Cyf,—Crfl| >0 as n—eo,

In order to prove the converse, let F be a bounded set in H2(x*). We want
to show that the closure of {C;f:f€F} is compact. Let {Cyf,} be a sequence in
this closure. Then, sincé {f,} is norm bounded, by Lemma 2.3 there exists a sub-
sequence {f, } of {f,} converging uniformly on compact subsets to some function f.
Hence, by our hypothesis, Crf, ~Crf strongly, which shows that {Cr /»} has an
accumulation point. Thus the closure of {Crf:f¢F} is countably compact and
hence compact. This completes the proof.

In the next theorem the above result is used to give a sufficient condition for
a composition operator to be compact.

Theorem 2.2. Let T :nt—nt be an analytic function such that Cy is a
bounded operator on H%*(n*%). Suppose T«(x)=lim T(x+iy) exists a.e. and Te(x)ET,
y—=0

for almost all x€R (the set of reals). If f°° [im Tu(x)] 1dx< oo, then Cy is a compact
composition operator on H2(n™). - '
The following lemma is required‘to prove the theorem.
Lemma24. If T*(x)=1yi_{13 T(x+iy) exists ae. and T.(x)ent for almost
all x€R, then for every fEH*(nt)
(foTs) (x) = (foT), (x) ae. on R.

Proof. Let E;={x€R:Ty«(x) does not exist}, E,={xcR: Tu(x)¢n*} and
E=E,UE,. Then for x€R\E, T*(x)=ling T(x+iy) belongs to n*. Since f is
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analytic at T.(x), it follows by the continuity of. f that
(foT4) () = f(lim T(x+iy)) = lim (foT) (x+iy) = (foT).(x)
for every x€ R\E. Since the set £ has Lebesgue measure zero, the result follows.

Proof of Theorem 2.2. Let {f,,}- be a bounded sequence in H2(z*) such
that f,—f uniformly on compact subsets, If we show that Cyf,~Cyf strongly,
then we are done. Using Lemmas 2.4 and 2.1 we have

(Crfo=Cr )= |(f,0T),—(foT), )2 =
= |(fy o T @)~ (fo T = (i~ (T (X)) = Mim T (x),

where M =0 is such that | f,—f||/2n=M for all n. Since Ti(x)én* for xER\E
and the convergence is uniform on compact subsets, we have

(Crfa—Cr )@ =fi(Te(x))—f(Tx(x)) >0 as n > e for al xER\E,

where E is the set as described in Lemma 2.4. This shows that [(Crf,—Crf)+*—~0
as n—eoo pointwise on R\E and the functions |Crf,—Crf)|* are bounded by an
integrable function g defined by g(x)=1/im T«(x) for x€R. Hence, by Lebesgue’s
dominated convergence theorem and by the equality ’

1fI= [ IAGIRdx for every feH*(n*)

—oco

(see[l, p. 190]), it follows that |Cy f,—Crf]|2—~0 as n—-ee. This completes the proof.

3. Hilbert—Schmidt composition operators on H%(zt). A linear operator 4 on
an infinite dimensional separable Hilbert space is said to be Hilbert—Schmidt if
there exists an orthonormal basis {e,: n€N} in H such that

G.n 2 el <ee.
neN )

It is easy to see that the sum on the right side of (3.1) does not depend upon the
particular choice of the orthonormal basis {e,: n€N} [5].

In Theorem 2.2 it has been analysed that if an analytic function 7' maps the
upper half-plane into the upper half-plane and C; is a composition operator on
H2(n*), then the following condition

©o

(3.2) J UYimTi(x)dx <<

-0

is sufficient for C; to be a compact composition operator on H?2(z*). In fact,
the condition (3.2) turns out to be a necessary and sufficient condition for-Cy to be
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a Hilbert—Schmidt composition operator on HZ2(n*). This we demonstrate in the
following theorem.

Theorem 3.1. Let T :zn*—n'* be an analytic function such that Cr is a
composition operator on H2(n*). Suppose T«(x)=lim T(x+iy) exists a.e. and
y—-0 '

T«(x)en* for almost all x€R. Then the condition (3.2) is necessary and sufficient
for Cg to be Hilbert—Schmidt.

Proof. We know that the family of functions S, defined by

_ (=Y _
= T i n=0,1..)

forms an orthonormal basis for H2%(rnt). Therefore, CT is Hllbert—Schmldt if
and only if

oo > ZucTS 2= 2 f (S, 0T), (x)[*dx = 2 f |8 (T, ()2 dx

S, (w)

(the equalities above follow from [1, p. 190] and Lemma 2.4, respectively). A simple
computation yields that Cy is Hilbert—Schmidt if and only if

o>t [ [4imT,(x)] " dx.
Hence the theorem. )

Remark. It is worthwhile to remark here that Theorem 2.2 follows as an easy
consequence of Theorem 3.1. In spite of this we have presented an independent
proof to Theorem 2.2 because of the following reason: With a little modification
Theorem 2.1 and consequently Theorem 2.2 can easily be developed for the Banach
spaces HP(nt) (1= p=<-<). Hence if we consider a composition operator on H?(zn*),
the condition (3.2) turns out to be sufficient for a composition operator Cy to be
compact on HP(r+). Whereas, in case of H*(n*), the condition (3.2) is necessary
as well as sufficient for a composition operator Cy to be a Hilbert—Schmidt operator.

Acknowledgement. The author wishes to express his indebtedness to Dr. R, K.
Singh and Dr. Ashok Kumar for their constant encouragement and guidance through-
out this work.
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On the absolute Riesz summability of orthogonal series

L. LEINDLER

1. Let Za, be a given infinite series and .s,, denote its nth partial sum. If
{p.} is a sequence of positive numbers, and
n

P,= > p,—~o as n —eo,
k=0

then the nth Riesz mean R, of Za, is defined by

1 n

(1.1) R, = 7 2> DiSk-
n k=0

If the series

1.2) 2 |Ry— R, 4|

n=1

1l

converges, then the series Za, is said to be summable |R, P,, 1|. It is clear that
if p,=1 then (1.1) reduces to the classical (C, 1)-mean, and |R,n+1, 1| means
that the series Xa, is absolute (C, 1)-summable.

Let {¢,(x)} be an orthonormal system defined on the finite interval (a, b).
We consider the orthogonal series

(1.3) Soa® with > <o
k=0 ) k=0

Furthermore let P(x) be a strictly increasing function such that P(n)=P,
and linear between n and n+1. We denote the inverse function of P(x) by A(x)
and put v,,=[4(2™)], where [x] denotes the integral part of x.

K. TANDOR! [5] proved that the condition

oo gm+1 1/2
(14 - I
- m=0 \n==2M+1

Received December 5, 1981.
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is necessary and sufficient that series (1.3) for every orthonormal system {p,(x)}
should be absolute (C, 1)-summable, or summable |R,n+1,1| almost everywhere
in (a, b).

We ([1]) showed that condition (1.4) is also necessary and sufficient that series
(1.3) for every orthonormal system {¢@,(x)} be absolute (C, o)-summable with o=>1/2
almost everywhere. In [1] we also gave conditions implying the absolute (C, 1/2)-
and (C, «)-summability with —1<a<1/2.

The result of Tandori was generalized by F. M6ricz [3] to the absolute Riesz
summability as follows.

. Theorem A. Orthogonal series (1.3) for every orthonormal system {p.(x)}
is summable |R, P,, 1| almost everywhere if and only if

o Va1 1/2
1.5) 2{ 2 cﬁ} <o,
m=0 ln=v,+1 - :

Vm+1
where C,,,={ > c3}1/2=0 if Vyps1=Vp-

n=v,+1

Recently Y. Okuyama and T. TSUCHIKURA [4] gave a condition which is equiv-
alent to (1.5) and it does not use the concept of A(x).
More precisely they proved

Theorem B. Condition (1.5) is equivalbentbto

. : : o vz -
a9 gppﬂ{ZP% 2df <=

Usmg these theorems and some lemmas the authors of [4] also proved the
following -

Theorem C. If the series

o ' Y
an . pr 1{21’: l(ak+b2)}
converges, then almost all series-of .

(1.8) > +(a, cos nx+b, sin nx)
n=1

are summable |R, P,, 1| almost everywheré,.énd if series (1.7) diverges, then almost
all series of (1.8) are non-summable |R, P,, 1| almost everywhere.

2. In the present note we prove certain symmetrical analogues of Theorems B
and C. : :
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Theorem 1. Condition (1.5) is equivalent to

@.1) | =2°; o { _ﬁ;pk c,‘}llz <o,

By Theorem A and Theorem 1 we 1mmed1ately obtain

Corollary 1. Condition (2.1) is necessary and sufﬁciént that series (1.3)' for any
orthonormal system {¢,(x)} should be summable |R,P,,1| almost. everywhere.

Hence we get

Corollary 2. If

) o . °°P o 1/'2

then series (1.3) for every orthonormal system {@,(x)} is summable |R, P,, 1| almost
everywhere.

It is well known, by the Riesz—Fischer theorem, that series (1.3) converges in
L? to a square-integrable function f; and if EP(f) denotes the best approximation
to f in the metric of L? by means of polynomials. of ¢, ..., ¢,-1, then

’
/

w V2
v (n={3a} .
. k=n .
Thus, by Corollary 2, condition '
@.3) ZE L E® (f) <o

also implies the |R, P,, 1| _summability of (1.3) for every orthonormal system {g,} -
almost everywhere. -

If {o,} is the trigonometric system, i.e., if we con51der the following orthogonal
series

(2.4) f® ~%+"§; (a,cos nx+ Bn éin ni) = 'é; A, (%),
thel; using Corollafy 2 and tile follovs-/ing estimation (see [2], Hilfss‘atz . -
EO(D=wd (2, 1),
‘ | 3 o= o Ve
w26 = {5 ([ o247 6-20-2f o dx)arf

we also have a further
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CoroHary 3. If
‘ < D» 1
@3) Sup(L,s) <=
then series (2.4) is summable |R, P,, 1| almost everywhere.
The next theorem is the analogue of Theorem C.

Theorem 2. If the series

@) SefSamrd

converges, then all series of (1.8) are summable |R, P,, 1| almost everywhere, and
if series (2.6) diverges, then almost all series of (1.8) are non-summable |R, P,,1|
almost everywhere.

3. In order to prove our theorems we require the following lemmas.

Lemma 1 ({3]). Suppose that the set of points for which the Rademacher series
5' Catn(X) is summable |R, P,,1| is of positive measure, then condition (1.5) holds.
n=0

Lemma 2. Let
A, (x) = g,cos (nx+Q,) with g, = (a2+b2)V2.
If the series

@) 5ol S a0

converges on a set E, of positive measure, then the series

- o 1/2
(32 SolSar)
converges. Conversely, the convergence of (3.2) implies that of (3.1) for every x.

The proof of Lemma 2 follows the same line as that of an analogous lemma of
Y. OkuvamA and T. TSUCHIKURA [4]. :

Proof. First we prove the implication (3.1)=(3.2). By the assumption there
exists a set ECE, of positive measure such that

. hinsd haid ‘1/2
(3.3) I=3p {kz Prigk cosz(kx+Qk)} dx = Ku(E), .
n=1 E =n

where K denotes a positive constant and p(E) denotes the Lebesgue measure of
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E. Using the Minkowski inequality with p=1/2, we obtain that

1= 3. 3 ([Ptouloos G+ dx)2}1/2 -
n=1 =n g

(B4
= an{fPl:zei(f |COS(kx+Qk)Idx)2} "
n=1 E

k=n

Using the Riemann—Lebesgue theorem and the following estimation

flcos kx+Q)|dx = fcos2 kx+Q)dx = —%— f(1+cos 2(kx+Q,)) dx =
E E ~ E

1 1
= E-u(E)+—2-éfcos 2(kx+0,) dx

we obtain that for sufficiently large k=k,

: L1 .
(3.5) flcos (kx+Qp|dx = —Z,u(E) = A.
E
Thus, by (3.4) and (3.5), we have that
e . 12
(3.6 1=4 3 n{ Zra}
whence .

S p—2 2
2 Pilol <
=1

follows obviously, and this implies that

kg—1 o 12
37 S o S rita} <=
n=0 n

Summing up, by (3.3), (3.6) and (3.7), the implication (3.1)=(3.2) is proved.

207

Since 45(x)=¢}, the implication (3.2)=>(3.1) is trivial. Thus the proof is

completed.

4. Now we can start the proofs of the theorems.

Proofof Theorem 1. First we prove that condition (1.5) implies (2.1).

An elementary calculation shows that

eo o 12 © Vi1 oo 1/2
2 pk{ P;zc%} =2 2 pk{ZP;%ﬁ} =
k=vy+1 n=k

“.1)

o Vi1 oo . 21/2 o Vi oo L Vi1 21/2
=3 3ol 3 pral =3 % pSmn{ e =3
m=0k=v, +1 n

n=v,,+1
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Since
“.2) P, =P+ = P(A(Z‘)) = 2
thus ‘
2hs 2 E P 227°C=227'C 3 2 =
m=0k=v,+1 i=m i=0 m=0k=v,, +1
.3) = 327 $'ps rcp(aey) =2 3¢

By (4.1) and (4.3) the implication (1.5)=(2.1) is proved.
Next we prove the converse implication. It is clear.that

44 P, = P(A(2™) = 2",
thus, by (4.2) and (4.4), we have that
V1 - )
( 2 ]P"-mu Py 41— Pvm JPL =@ -2n )2l = —
k=vm_1+1 4

Using this inequality we obtain that

oo oo VY t1
>C,=4 2'( 2 pk)P.,mlﬂC
m=1

m=1\k=v,, _,+1
[ Vm+1 : Vm+1 1/2
4.5) =43 pk{ P,,'zc,z,} =3,
m=1 n=v, _,+1 n=v_+1
where

means zero if v,,=v,,,. Therefore
Vim +1

4.6 : 42' > PG (D),

B=Vmo1

where 3’ denotes that the summation runs just through such indices m which
m

" have the property V,.;=v,+1. Then

Vt+1 Vo t+1 o 1/2
> 2 new=x 3 pk{gkp;zcs} =

m k=v,, Vm-1t1
Ym+1 oo vz
@) => 3 n{Sred =
m k=v, _,+1 n=k ’
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By (4.5), (4.6) and (4.7) we have

T e o o 1/2
Sc,=8 In{Srra),
ms=1 k=0 n=k
which proves the implication (2.1)=(1.5), and this completes the proof of Theorem 1.

Proof of Theorem 2. The proof is the same as that of Theorem C, the only
difference is that we use Theorem 1 and Lemma 2 instead of Theorem B and Lemma 2
of [4]. .

The sketch of the proof is the following: By Lemmas 1 and 2 and Theorem 1
we have to follow the Paley and Zygmund argument (cf. [6, p. 214]).
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Approximation in L* by Kantorovich polynomials

V. TOTIK

1.

This paper is a continuation of two earlier ones [11, 12]. Let

(k+1)/(n+1)

K0= 3040 [ fd)ba@d, b= () #a-a

k/(n+1)

be the Kantorovich-variant of the Bernstein operator. A series of papers contains
results for the approximation properties of K,(f) in integral metrics (for references
see the survey article [3]). However, the analogue of the well-known equivalence
theorem of BERENS and LORENTZ [5] or that of LORENTZ and SCHUMAKER [7] and
Di1z1AN [6] is not known for them. The problem is the characterization of ||K,(f)—
—fllir01y=0(n"%) (0<a<1) in terms of a certain modulus of smoothness, and
the aim of this paper is to give this characterization.
For feL?(0, 1), p>1 we proved in [12]

Theorem A. If l<p<oo, O<a<1 and f€L?(0,1) then
@ 1K) —fllee =0 @m™)

and

(ll) (a) ”A:m (f’ x)"LP(h’,l—h’) = O(hza)a
B ¢+ = lrro-n = O(K)

are equivalent.

Here

4 (f; %) =f(x—h)=2f () +f (x+h)

(we deviate from the custom and write || f(x)||,, instead of | f(-)ll,, if the former
is more suggestive).

Received November 12, 1981
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For the saturation case a=1 we have (see [9, 10, 4, 12])
Theorem B. If 1<p<c and fEL*(0, 1) then the following are equivalent:

@) 1K, (N—flr = O(n7Y),
(i) f has an absolutely continuous derivative with x(1—x)f"(x)€L*(0, 1)
(iii) [|(x (1 —x) 45 (F; 1-m = O(hY),
(i) [ x(1—x) 45 (f; X Len,1-ny = O (B?);
(V) ”A:}/m (f: x)”LP(h!,l—hl) = O(hz)

Here F(x)= f f () du and naturally (ii) means that “f coincides a.e. with a function

0
which has absolutely continuous derivative”.
Turning to L' let us mention the saturatlon result (see [8 2D:

Theorem C. For fELl(O 1) the followzng condztlons are equzualent

@) 1K ()= flpu=0@"),

(i) -f ‘is absolutely ‘continuous and x(1—x)f’(x) is of bounded varzatzon,
@) x(1—x) 45 (F, )|y -+ L=, 1-1y = O (h?)

Here BV + L> denotes the sum of the two norms: total variation and ess. supremum.
Examples show that Theorem B does not hold for LY, i.e., the BV-norm in TheoremC
seems to be the appropriate one and we cannot hope in replacing it by an L!-norm.
The difference betweén Theorems B and C suggests also that we should exchange
the LP-norm in Theorem A for a BV-norm or something like that to obtain a correct
result in I! (see also the conjecture in [3]). Thus, it is rather surprising that Theo-
rem A holds word for word when p=1:

Theorem 1. If O<a<1 and feI*(0,1) then
O 1K) =Sl =0@n~%) '

and
@) ) 14}z O D,y = OB,
B 1£C +B)—f( N, 1-m = O

are equivalent.

Let us mention that although (ii)=(i) holds also for a=1, neither (ii) (a).
nor (ii) () is necessary for (1) in the case «=1. This is shown by the function f(x)=
=log x (x€(0, 1)).

The first result with the modulus of smootheness sup [IA“, 5 Lol 1Y)

(more precisely with its analogue) was proved in v[ll] for the Sz4sz—Kantorovich

operators:
(k+1)/n

M= Z(n [ F0)du) () p"k<x>—e-“("") L x=0

[
k=0 k/n k :
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Theorem D. For 1<p<o, O<a<1 and feLP(0, =) the following conditions
are equivalent:

() 1M, (f)~Flis, = = O (1),
@) @ 1455 (3 D pogn, oy = OH®)
® 1/(- +h) —f( ez, = O(H).

This is true just as well for 1}= 1:
Theorem 2. Theorem D holds also when p=1.

We shall prove only Theorem 2, but our method works also for K, (the technical
details are somewhat easier for M,); we refer to [12] for the necessary changes in
the proof (observe that [12] relates to [11] about as Theorem 1 relates to Theorem 2).
The only point in our proof which might not be, obv1ous for K, is the delicate for-
mula (2.5) but the analogue of this was given in [12 (4.5)1. '

Although Theorems A and 1 (D and 2) have the same form, here we have to
use a different method since in the case p>1 the proof rested heavily on the maximal
inequality. Nevertheless, the roots of the proofs of the inverse parts are the same:
the so called elementary method of inverse results developed by BERENS and LORENTZ
[5], and BECKER and NEsSEL [1].

2. Pfoof of Theorem 2

I. Proof of (11):»(1) Flrst we derive from (ii) three further 1nequaht1es
Inequality 1. :

h o h o h—e h
[[If=fOdxdy =2 [ de [ |f(x+e)—f@)dx = K [ s*de = Kh+1.
“o L S : o

Inequality 2. | '

A, h) &= =Kh* (h=0).

L f O D—f Gl de

L1(n2, o0)

Proof. Forany f€L'(0, <),

2h2

f”% fx[f(xir)]drdx = Kh~ ff[f(x+u)ldudx+
hYu

+K [ 1/

2h?.

LdusKifle
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and if f is absolutely continuous with f’¢ L, then

A(f,h) = f fdtlf[f’(x+u)|du|dxs

N
=[% f (hVx—u)) |f (£ w)| dudx = KK| £ la
Let now f€L!' be arbitrary for which (ii) (8) holds, and let

I
800 = g5 | feetdde
For this

h® ' he
1f-gulle = b2 [ 1 +D=f(ladt = Kh~2 [ 12 dv = K

and

lgalle = A2 f(- + ) —f( ) = Kh*—2
by which .

AL = A(f—gw, )+ A(g, D = K(I f- g,.llu+h“’llg;.llu) = Kh*,
Inequality 3.

h}’x
f 43 (f; %)) dv

=

LY(h2, o)

1 'l
= | [ iz 9l du
0

Ll(h’,eo)
1 . S 1/ '
=+ oj 142yz (s Disgs,  du = K+ 0f u? du = Kh*.

Now the analogous inequalities for L? were the only tools used at the proof
of (ii)=() in [11, Theorem 1}, and this proof equally holds, using Inequalities 1—3,
for p=1. For the details see [11].

II. Proof of (i)=(ii) (8). Let
o3 ) = o(/) = sp I/ (- +B)~/ (s,

It is sufficient to prove that for O0<h=1, n=1,

v(h)§ K [n“+nhv (—i—]],

see [1, Lemma 2.1]. o ‘
But ’ : ‘
o(f; ) = o(f—M,(f); h)+o(M,(f); h)
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and here, by (i), _
o(f—=M,(f); h) = 2] f~M,(Nln = Kn™"

in o . N .
M;(f:%) =n 2[ nf (7 (E—i-uJ—’—f(k:l+u)]du]p_,,,,‘(x)
oo h h
v(M,(f); )= [ dx [ IM;(f; x+w|dus= [ |M;(f)|du=

s (B

= .hn k=2.:) 6;."
PP

By

we have

co

duf npn,k();)dx= _
[}
w 1m|. 1 1
= nZ’f ( du = hn f[+;) Lléhnv[—-n—],
and the proof is complete.

k=n 0
For later application let us prove also the inequality

2.1) I(f; 8) = = Ké%.

5
‘/—;(f

(+6V%) ~f (5= V%)

Hzres, )
1n fact, for the function
‘ R ‘ :
8 =5 [ flx+u)du
0
we have proved above
3 R
1= gallzs = 672 [ 1A +0)—f( )l du = Ks*™
0 : S )

and ‘
sl = 8721 +8)—F()lls = K6=2,

I(f: 8) = I(f—g5; 6)+1(gs; 6) =

= [(f— ) (x+ 8V D Licsr, oy + 1~ 2 X =8V acan, =y +

by which

j' ( f |g5 (x+u)| du) dx = Ko* + fa flg‘,(x+ul/_)ldudxs
L —ﬂ" .

[4 : .
= K" +K5 [ gl = K +8gjllw) = Ko™
' bt

HI. Proof of (i)=(ii) («). First let us prove the following
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Lemma. Let O<h=1, h*=n"'=h, k=0, 1,2, .... Then there_is an absolute
constant K for which

oo h}’_lz 2
o f dx ([ paGctutodudes kEEED
—BYx/2 n
foo If' oo
) dx Pup(x+utv)dudv = Kh?,
K2 hy—/Z ('x_i_u'i-v)2

o h}"/x(k—(x'*'u‘*‘v)]

@ [ []

' 2
Pa(X+u+v)dudv = K%.

K Yo (x+u+v)?
Proof. p,i(x) increases on (0, k/n) and decreases on (k/n, =), hence
NED ‘ '
ff Pni(x+utv)dudv =
~h¥x/2

h2xp, (x+hVx) for x€(0,k/n—hVk/n),
Bexmax p,i(y) for xé(k/n—hVkln, kjn+2hVkln),

htxp, ,(x—hVx) for xe(k/n+2hVk/n, «).
Since

f lgGx1hYx) dx = 2 f () dx, xpu() ="

pﬂ k+1(x)

~ 1
6[ pn,k(x) dx - —7-1-

and max Pui(P)=Pnr(k/n)=K[Vk+1 (use Stirling’s formula), we obtain easily

o hVx/2
fdx ff DPnix(xtu+vydudo =
h? -h}’"/z
K+ D LT (et
= KB byt e £ L V) = x(BED) 01,0

For k=2 inequality (2) follows from (1), since kx~2p, ;(x)= (n2/(k 1))p,,, x—-2(%).
For k=1 we have

jod hYx/2 L tato) o p.y'h Vx l‘tl -
x ff n(x+u+v)~le “*dudy=n f dx . f nx+9 Jr =
h2 —hYzl2 X - —nY= x+7

BY=

=2n f (V’;—- f e ") d-c) dx = Kh?.
Y —hYx
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Finally, (3) follows from (1) for k=0, and for k=1 we have.

Poi(x+ utv)dudo =

- g BYZ2 (kjn—(x+ u+ o))
,;,[ dx‘h{;_{; (x+utv)® |

ot rYx/2 k+1 2
SKf dx ff ( Do (x+utv)dudo+

K ;.V‘/ n(x+u+v)

eod h}/_/Z

f - ff ;—(x+u+v)) D, k(x+u+v) dudv.
2h? —h}/—/z . '

Here the first term is at most Kh?/n® for k=1 (see (2)) and

2ht hYx/2
K[ dx [[ pi- 2(x+u+v)dudv = Kh® = Kh¥/n?
B _nyae ,

for k=2,

The second term can be estimated as we have done in inequality (1) (use that
(k{n—x)?p,, . (x) increases on (O, (k+1)/n—V2k +1/n) and decreases on ((k+1)/n+
+V2k + 1/n, =) together with the facts

cn(k )2 ' 1
of‘;[—n-—x Pai(x)dx = —
k+1 ' +4h e d .h}/;lz k - . .
f L Eruto) patturoduds

“[lil_vzk:l_h'l/#;hz] ~¥xl2

RE(E) () et

n2
Let us turn back to (ii) («), and let
o(f; ) =@ = sup [ |47:(f; 0dx.
O<hz=d B2

It is sufficient to prove that for O<h®=1/n=hs= I we have .

o= K[n-%+h2n(n-a+w{%)]],
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see [1, Lemma 2.1]. Since (i) yields

vz (= Ma () Xl s, oy = K N~ M, (Nl = Kn,

an easy consideration shows that it is enough to prove

€D (0% M = Kin v ()] (=L =)
ket w( k+1)/n |
n

_ " 1/n
ey 9= Zn [ 70 pua9 = Mfs D= [ )

k=

-

a) (i) (B) (which we have proved above) gives

1/n t 1Un
l(n [ Fydu) 4%z =) = Kknk?| [ f(u)du| =

LY(h?, o)

= Knh? f[- +%] —f(- )”u = Knh*n~®.

b) Let Fl(x)=ff(t) dt, Fz(x)=_‘f F,(H)dt and -

F u ] u . .
j;(x)=312—fdu f f(x+vl/;)dv=-glz—fduf(f(x+vl/;)+f(x—v}/§))dv=

. .
=5 A:y; (F; x).
We have :
1 é u L
24) Vf~filuss,= = =5 [ du [ 1450 D, dv = 0(0)
0 (1] R
and

4 2 2
f ) = s A3y (Fas X) =i 4, z(Fis 9=
S 1
~ 3557 (F1(X+5}/§)—Fl(x—-6}/;))+%A;‘V;(f; x)+

5y (F O+ 8V D~ (= 8VD) + 5z (£G4 8VR) Hf (2~ 0V,
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and the key point in our theorem is that the latter is equal to

A =260~ )50 5 f Ay (f; x) dr+

1

(25) +gog 4303 Db 43y (s Dy (F x40V D) —f (2= 6V7)~

5x3,2 5 f (f x4+ 1Y) —fx— 1Y) de.
Now
“A:V;(-/”,.(f); x)”Ll(hz,oo) =

= [[4uyz (G110 s,y H [y (40 D5 D, o)

,V; ¥n
and below we estimate the two terms on the right side separately.
¢) Since
, nf(k >k
(pn,k(x)) = —x? [(—"1"—2’:] ] pn k(x)’

we obtain by (2) and (3) from the Lemma, and by (2.4) that

hYx/2

f lA;.V'("/[ - f ) x)ldx— fdxl ff J/”(f——fl,X+u+v)dudvl
—h¥x/2 .
w  (k+1)/n BYx/2 2
- ST rrwa{fo [ el
, o nyx/2 k
Xp,,,k(x+u+v)dudv+h_! dx ,,'}['/; m”" k(x+u+v)du} =
e Gkt )n ) _ 1
éKhznkgl'“ If—f%l(u)du=Kh2nI|f—f_y1§||Ll(%’m)§Khznw(ﬁ].'

d) We have also

ok () = 22 kg ()= 2P 1 D)+ u(®)) (k= 1,2, 1.0y Ppoa(3) = 0),
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thus
[ M (A7 ); 9] dx =
K2 - }/,-,
c., 1/n hVx/2
= n? fdx [ ffff [ +u+v+w)dudvdw] ff Pux(x+s+Ddsdt+
h? —hYxi2
8/n 8/n hYxl2
[ 2n [ f1 (u)du+n7[f_1(u)duJ Jf Puolx+s+idsd =

1/n Vu —hYxl2

oo 1/n
=K k;z[ fff fi (——-+u+v+w] dudvdw]kh2

2/n 3/n
+Knk? (| [ 1 () du|+| z][ f1(du]) =
1/n V; n V;
1/n k
= Knh? Zkfff (n+u+v+w] dudvdw+
+Knh2[ "’+w(Vn]] = Knh®* A+ Knh? [n"“+&)[V%)],
where |
= f ff'[ (k+u+v+w) dudvdw,
k=1

and where we used that

2/n 3/n
1 (Wyd l 1(@du = f—fa 1
L / fﬁ(u) ]+ J fﬁ(u) u=|f fﬁllu(?w)+

+|jf(u)du—jf(.u)du|+|yff(u)du_jf(?)dul§K[w(‘/_1;]+vn_a].

To estimate 4 we apply (2.5). Taking absolute value in (2.5) term by term
we increase |f7 (x)|. Now the first term on the right of (2. 5) contrlbutes to A at
Ya. .
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most by
P 1/n ) 1/yYn f N k ‘
2k , Inf dsJ 4 ———'~[f; —+u+v+w] dildudvdw =
Bt Lyl
vfn s k
§2nf ds k [f;'—+u+v+w) dudvdw =
0 0 -;+u+v+w n i

vy s
=Kn f ds f “A:V; : x)“,'_,( ]dt SKco[ )

0 0 Vn

Quite similarly the contribution of the second, third and fourth terms to A is at

1
most Ko —]
" Kol
Using inequality (2.1), the fifth term contributes to 4 at most by

Zkfyf( Vn f(§+ u+v+w+V—1;|/ §+u+u+w]—

3/2
+u+v+w]
dudv d\& =

f[k+u+ +w———1— E+u+v+w)
“A\n v ﬁVn

= 1
éKl/‘[VT;

IRER P

and a similar estimate can be given for the contribution of the sixth term:

gkf_lf{‘"f[ 2]/; ] [l/— _l/f f( +u+v+w+t|/ %+u+v+w) -

+utot+w
f( +u+v+w—t|/ %+u+v+w] dt] dudvdw =
1/|,- 1 1/Yn
T f e —re- Rl as g [ s ke

Collecting our estimates from a) to d) we obtain (2.2) by which the proof is complete.
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* On the equiconvergence of different kinds of partial sums
of orthogonal series

V. TOTIK

Let NY(d=1) be the set of d-tuples i=(j, ..., i;) with non-negative integral
coordinates. Let ¢={p;|i€N?} be an orthonormal system (ONS) on [0, 1].
Consider the d-multiple orthogonal series

] 2 a;0i(x), 2 af <eo.
ieNd

ieNd

Fixing a sequence Q={0Q, | k=0, 1,...} of finite sets in N? with properties

© P=0cOc@C .., UQk - N9,

we can define the Q-partial sums of (1) (see e.g. [1]):
sf(x) = 2' a9;(x) (k=1, 2 .)-

i€Q,
If P={P,} is another sequence satisfying similar conditions to (2) we write Q=P
when the a.e. convergence of {s2(x)};>, always implies that of {sf(x)}=,. If not
Q=P then we write shortly O P.

F. M6ricz [1] proved among others that if

= {i€ N"]lrgjggd i; =k}

[,él i%]ll2 = k}

and

—fen
then Q'>»P’ and P'#=(Q’.
* The aim of this note is to give necessary and sufficient conditions for Q=P.
Our result has several corollaries which are interesting in themselves.
With the notation P,=N*\ P, we prove

Theorem 1. We have Q=P if and only if there is a number K such that
() each Qu+1\Qx is the union of at most K sets (Qy+1\Q)N(Pr+1\Pn)s

. Received December 21, 1981. -
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(ii) for every k, P, and P, are the (not necessarily disjoint) union of at most

K sets Of the form Qr+s\Qr (S=1, 2: coey °°)s Pm+1\Pms (Qr’+1\Qr’)n(Pm'+1\Pm')-

Corollary 1. The systems Q and P are equivalent (i.e. P=>Q and Q=>P)
if and only if there is a K such that

@) each (Qys1)\QW)U(Ppse1\Pn) is the union of at most K sets (Q;+1\02)N
n(P rt I\P r/s

(ii) each Q, and P, is the union of at most K sets (Qs“\Qs)ﬂ(P,“\P,)
and K sets of the form P, \P, and Q,..\Qy, respectively.

With the notation
(3) . (k, l) = {ks k+1, ehes l} (k = l: k,' IGNI)

(k, ) = {k,k+1, ...}
we have

Corollary 2. Let {p,} and {q.} be two subsequences of the natural numbers.
Then the a.e. convergence of {s, (x)};~., implies that of {s, (x)}k >, for every orthogonal
series

@ L Zan@ Sd<e

if and only if the number of the q’s in the mtervals (p,,,, p,,,+1) is bounded (here
s is the ordinary k-th partial sum of (4)).

Corollary 3. With the above notations the a.e. equiconvergence of {s, (x¥)}i.,
and {s, (x)}i~, for every orthogonal series (4) is equivalent to the existence of a. K-

Jor which p,<gq, implies pyy1<qi+x and q<p, implies g 1<pyeg:

Corollary 1 follows easily from the proof of Theorem 1. Corollaries 2 and 3
were also proved by H. SCHWINN [3]..

To formulate another consequence of Theorem 1let d=1, N=N* and n: N-N
be a mapping of N onto N for which the inverse image n~'(k) of every number
k is finite (one can see easily that the: following problem becomes trivial if some of
the n~'(k) are infinite). Our problem is the following: - determine which- = .has
the property: if the orthogonal series (4) converges a.c. then the same is true for
the rearranged and bracketed series

co

&) : , 2 5 ap(x)
en—1(k) )
The answer is given by

Theorem 2, The a.e. convergence of (4) implies that of (5) for every orthogonal
series (4) if and only if there is a K such that for every k, n~1(0,k) and n~1(k, )
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are the (not necessarily disjoint) union of at most K sets of the form (I, m)
(m=1,2, ..., ) or n~1(s).

For the definition of (I, m) see (3).

Corollary 4, If n: N~N is a permutation of N then the a.e. convergence of
(4) implies the a.e. convergence of

oo

kz.' Az k) Pr (k) (%)

Sor every orthogonal series (&) if and only if there is a K such that for every k, n (0, k)
consists of at most K chains of consecutive integers.

Remarks. 1. Although we formulated Theorem 1 in d dimensions, the prob-
lem and the solution is essentially one-dimensional, namely Theorems 1 and 2 are
equivalent (see the proof of Theorem 1 below).

2. If @=P then our proof yields an orthogonal series (1) for which {s2(x)}>,
converges a.e. but {sP(x)};-, diverges on a set of positive measure. By a
standard modification of the proof one could achieve also the a.e. divergence of
{stke-

3. The ONS {p;} above could be defined on any non-atomic measure space
instead of [0, 1] (compare to [2]).

4. Our proof shows that if Q=P and {s,,(x)}k -, converges on a set E then
Jlim sp(x)=lim 52(x) a.e. on E, ie. the P-sums and Q-sums are equal a.e. auto-
matically.

5. Finally, let us remark that to the proof of Corollaries 2 and 3 needs only the
consideration used in the proof of the necessity of Theorem 1 (i), by which we obtain
a very short proof of Schwinn’s results (see [3]). The same is true for a part of
Mobricz’s theorem mentioned earlier (see [1, Theorem 3}).

After these we turn to the proofs our theorems. First we prove Theorem 2.

Proof of Theorem 2. I. Necessity. Let us suppose on the contrary that
e.g. for each n there is a k such that z~%{0, ..., k}=n"1(0, k) (see (3)) cannot be
represented as the union of at most n sets (/, m) and at most n sets n~1(/).

We define sequences {N,}, {M,}, {m,}, M}, k™ < k& <...< k™ and
GO, i (P, .7 in the following way: put Ny=M,=my=mi=0 and
if all of the above numbers are already defined up to n—1,1et N, and m¥ be so
large that

‘ Nn - Mn—I’ n—l(oa Nn) 2 (Os mn—l)r m: >.mn—ls (O’ m:) —2 7'5_1(0, Nn)

be satisfied. By our assumption there is an M,> N, such that a=1(N,+1, M,)\
(0, m¥) cannot be represented as the union of at most n sets (/, m) and at most

15
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n sets 77i(l). Let n~Y(N,+1, M)\, m)=(ry, s)U(rs, s5)U...U(r,, s) where

s;=r; and r,>s5;+1. We claim that there are n numbers k™ <...<k® belong-

ing to (N,+1,M,) and numbers i€n 1(ki)\(0, m}) (e=1,...,n) such that

neither two of the i, belong to the same (r,,s,). In fact, let if¢(ry, 5y), n(i7)=k7

and if ij, k; (¢<n) are already defined and iJ€(r, ,s.) (1=u=p), then, since

the ¢ lntcrvals (re > 5 ) and the ¢ sets n71(k}) (1=u=¢g) do not cover
" Y(N,+1, M,))\(0, m*), “there is an

€ Mo 1, NG, mOIN (0, s 90) U [0 7r660))

Let k;,,=n(i},1). We can continue this up to ¢=n, and all what we have to do
is to rearrange the set {k%,...,k} into an increasing order k{<k(P<...<k®
and to carry over this rearrangement to {if}, ..., i,¥}, by which we obtain {i{”, ..., i}.
Let 1("’ belong to (rr > Sz.) and let us put j(")=s, +1 (¢=1, ..., n). Finally, let
m,>m} be so large that (0, m,) contains =~*(0, M,,) as well as the numbers

+(n) (")
e 0,1{: definition is complete and let us observe the following:
©) 7740, M,-1) & (0, my-) & 270, V) E (0, mp),
¢ my < ié") <j£") =m, (¢=1,..,n)

®) M, ,<N,<k® <..<k®=M,,

® iPen1 k), jP¢n'0,M,) (e=1,...,n),
(10) max j&1 < min i,

1=p¢=n-1 1=o=n

) (m)

(11) every two i"<i{” is separated by ji’: i{< _]‘g")<l o
Now we sha]l use that there is an orthogonal series (4) with partial sums S;(x)
which diverges unboundedly a.e. on [0,1). This gives that there is a sequence

k-1
P1<Pg=<... such that with g,= 3 p, we have
. . =1

12) sup max [Sg+1(X) =8, ()] == (a.e.).
Let now s
‘ 1
(13) Vo) = Vo0 =50, ,,09 G€l0, 1],
a4 . b,g:,,)‘z' "bjgp,.) =4 e

for n=1,2,... and ¢=1,...,p, and let ¥, (x)=0 (x€[0, 1]), b,=0 otherwise.
1
Since each ¥, is orthogonal to all but at most one ¥, =k and since f W=1/4

0
(k,1=0, 1, ...), a standard argument yields that the system {y,};>, can be extended
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onto {—1,1] in such a way that it constitutes an ONS on [—1, 1], and for every
x€[—1, 0) all but at most two of the numbers {i,(x)};~, are zero.
By (10), (11), (13) and (14) the k-th partial sum s,(x) of

Z b

is equal either to 0 or to some a,¢,(x)/2 if x€[0,1]). Here ! tends to infinity
together with k (take into account that if k>m, then necessarily />g,), and by

oo 1 L= -]
> [ (@e@pdc= 3 a} <o,
=0y =0

a,¢,(x) tends to O a.e. as /[+oo. Hence, s;(x) tends to zero a.e. on [0, 1] as
k—e and so {s,(x)}i=, is convergent a.e. on [—1, 1] (for x€[—1,0), {se(*)}>.
is constant from-a certain point on).

However, by (6), (7), (13) and (14)

Nn

2 bllpl(x) =0 (XE[O, 1])’

k=01l€xn-Xk)
hence by (8) and (9)

WP KPw

bY,0= 3 3 bu@= 3 babiea() =

k=0 len-1(k) =N, +1lcn-1(k)

Q

= Z;';’aq..n(oq..ﬂ(x) = ‘;‘(Sqn+0(x)—sqn(x)) (A=e=p)

s=

and thus, using (12), we obtain that

5 3 b
k=01¢en~1(k)

diverges a.e. on [0, 1].

The necessity of the assumption concerning n~1(k, «) can be proved similarly,
we omit the details.

The proof of the necessity is thus complete (clearly, it is indifferent that the
constructed system {{,}i=, is orthonormal on [—1, 1] and not on [0, 1]).

1. Sufficiency. 1. First we prove that there are no integers

X1 <J1 <Xy < Vs <..=< Ysg+2 < XaK+3

with n(x)==n(x) (0=/,/=4K+3) but z(@p=zn(y) (1=j,1=4K+2, jsI).
Let us suppose the contrary and let n(x;)=k (1=;=4K+3). We distinguish two
cases.

15¢
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(a) Atleast:2K+1 of the distinct numbers =(y;) (1= j=4K+2) -are less than k
We may suppose without loss of generality that

X) < Y1 <Xy <...< Yag41 < Xek+25 n(Y}) <k (l=j=2K+1).

For any n, n~*(0, n) is the disjoint union of sets of consecutive integers, i.e., for
some T,,

s ' _ n~1(0, n) = (a{”, b"'))U U(a®, b®)

where a{7,>b{” (1=j<1,). Letus put n=k—1 into (15) and let us determine the
numbers i; (1=7=2K+1) by y,E(ag"”, bﬁ’;'l)). Since x; (1=j=2K+2) does
not belong to #~(0, k—1), we have

x; < af'; V=y;= bg';" < Xjp1 < a,“:) (1 =j<2K+1),
hence the numbers iy, iy, ..., lax+; are all different from each other..
By the assumption of our theorem there are numbers 1=h<...<lg=71,_,
and 0=m<...<n=k—1 so that

(16) =1(0, k—1) = (af* ¥, b )U... U@, bie” n)Uzz'l(nl)U...Un‘l(nK).

Now at least K+1, say iy, i, ..., ix+1, Of the numbers i, iy, ..., lpg4y are dif-
ferent from every I/;(1=;=K) (i.e, we may suppose without loss of generality
that i;=[, for 1=j=K+1, 1=j'=K) and at least one, say n(y,), of the K+1
distinct numbers w(yy), #(P), ..., W(Yg+1) is different from’ every n; (1=;=K).
Thus, y, does not belong to

'(aSk—l) b‘gk—l))U U(a;k—l)'bgk—l))

1 *7h k 27k

since y,€(af 7Y, b{Y) and i =l; for 1=/=K and also y, does not belong. to
n (npU...Un"1(n)

since m(y,) is different from every n, (1=j=K). By (16) this means that
y1§7n7Y0, k—1) which contradicts the assumed mequahty n(y;)<k. This contra-
diction proves our assertion in the case (a). .
(b) If at most 2K of the numbers yj, ..., ¥;x+g are less than k then at
least 2K+1 of them are greater than k. Now using =~ (k+1, oo) instead of
n~1(0, k—1) we arrive at a contradiction exactly as above.
2. Let for k=0,1,2, ...

= {r 1 ()N @, bM|n = 0,1,2, ..., 1 = j = 1,}

(for the definition of af” and b§” see (15)). Our next claim-is that for each k and
x€n~L(k) there are at most 8K+3 distinct sets A€Il, with x€A4. In fact, if
there were numbers n,<mny<...<mngg .4 and for each 1=;=8K+4 an léijé‘rnj
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such that the sets (xe)(a("f) bg'f)) Nn~1(k) are all different then either for at least
4K+2 of the j’s we would have

a7 . @+? a "'f’ DNz "(k);éﬂ

LA

or for at least 4K+2 of the j’s
(b‘"f’+1 b+ YN~ (k) = 0.

. LIS
We might suppose the first case and also that (17)-holds for j=1,2,...,4K+2,
ie, for j=1,...,4K+2 there would be numbers

xja€(alyly?, alP—DNn (k).

Putting x,=x€(a}", bg'l))ﬂn‘l(k) ‘and y;=af’—1 (1=j=4K+2) we would
have y,€n~(0, njﬂ) but y; 710, ny), iey m(y)=np<n(y;e) (1=7=4K+1),
and also y;¢n~1(k). Thus, we would get a system of numbers

XsK+3 < Vak+1 < Xagtz <. < N1 <X
with n(x;)ck (1=7=4K+3) but n(y)#n(y;) (1=j,/=4K+2, j#j') and this
would contradict the fact proved in point 1 above.
3. After these preliminary considerations we turn to the proof of the sufficiency
part of our theorem. First of all, by point 2 above - -

> > f (Zam(x))zdx = (8K+3) zai <o

k=0 A€ €m0
and hence

lim Za-go,-(x) 0 (ae)

independently of the choice of the sets AkEH k-
Let us suppose that the series (4) converges a.e. and let x be any point in
[0, 1] for which

18) Jim > o9 =0 (A€
@ o jma@=s@ (w0= Janw)
. . . . .. i=0 .

exist. It is enough to show that (5) converges at this point x.
~ From (19) we have. also .

0. llm (sH,k (x) Sk (x)) 0
whatever /=1 be.

Foragiven p let p<p,<p,<ps be chosen so that 7(0, p)S (0, pl),‘ 7~1(0, pi)g
C(0, py), m(0, pa)S(0, ps) “be satisfied. ‘For n=p; we have n71(0,n)2(0, pg) 2
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2(0, p;) and by the assumption of the theorem
1 7710, n) = (af?, b{HU...U@®, bM)Un =t (kpU...Un "1 (k,)

for some i;<...<i, and k;<...<k,, where 14+0=K (if 7=0 or ¢=0 then the
corresponding terms are missing). Since (0, po)En~2(0,n) we may assume (by
increasing K by 1 if necessary) i;=1, (0, p)S(a™, b") and then, since 7~1(0, p,)<
€(0, p,), we can drop those of the k;’s for which k;=p,. Thus, we may assume
that in (21) each k;> p, and so, since n*(0, p;)2(0, p),
274 k)N(p+1, b{) = n-1(k)N(aP, bM) L AP (1 =j=1).

For 1=j=t and 2s/=¢ let 4P=r"(k)N(a,b{"). Then Ag-‘)enkj (I=j=r,
1=I=g) and for n= ps we have the representatlon

7710, n) = (0, HU(p+1, bM)U(af®, b U ... U(a®, b)U
Uy (n_l(kj)\ v .Aﬁ”)
Jj=1 =1

and here the terms on the right are already disjoint. According to this

n

2 ai¢i(x)_i§ai¢i(x) =

k=0 icm-1(k)
5™ »™
P 1 4 b T T e P
3+ 3+% 3+3 3 3 Jao- Sa0w)|=
i=0 i=p+1 j=2i=a" j=1i€n- 1(k‘,) j=11=1 zeASl) i=0
iy

=l @=s,00+ Slom@-sm @+ 3] 3 o)+
1 i=2 "i; = Jj=1 i€n-1(k,

133 > ao)

i=1i=1 ,Uj

and (18) and (20) give that here the right hand side tends to zero as p—~o by
b‘"’aa<"’>b<'°>p (2=j=¢) and k;>p (notice that n kel for 1=j=t
and take into account that g¢+t=K). Since s5,(x)—~s(x) as p—+« and n>p;=

= p,(p) was arbitrary; we get the convergence of the series (5) at x and the proof
is complete.

Proof of Theorem 1. Let us arrange the non-void sets (Q+1\QuN
N(Pn+1\P,) Into a sequence A, 4, ..., A,, ... in such a way that Q,= Lj A,
: =0
(k=1) be satisfied for some sequence m<mn,<... .

I. Sufficiency. Let us suppose (i), (ii). and the a.e. convergence of {s2(x)}
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where s@ are the Q-partial sums of the series (1). Let for k=0, 1,2, ...

(22) D (x) = Z' a4p:i(x), b=} 2 &
]/ Z’ a2 ié icd
i€ A,

k

if b,#0 and

(23) Pi(x) = 2 ¢i(x), b,=0

VErd
icd,

in the opposite case. Then {&.};=, is an ONS on [0, 1] and if S, denotes the
k-th partial sum of the ordinary orthogonal series S’b, @,(x) then
=0

29) s2(x) =S, (x) (k=12..).
() gives m . —m=K by which '

f(s,(x) S,,k(x))zdeKZ’bz K 3 at <oo,

k=1n =l<m ;¢ i€N4
and so
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