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On Jonsson modules over a commutative ring 

ROBERT GILMER1' and WILLIAM HEINZERS> 

1. Introduction. Let R be a commutative ring with identity, let M be a unitary 
module over R, and let a be an infinite cardinal. Following the terminology of univer-
sal algebra [5], [3], we call M a Jdnsson a-module over R if \M\=a, while |N|<cc 
for each proper submodule N of M. Our attention to this topic was attracted by a 
recent paper of S H E L A H [13], who answered affirmatively the following old question 
of Kurosh: does there exist a Jonsson m1 -group — that is, a group G of cardinality u>1 

such that each proper subgroup is countable? Like Shelah, we concentrate primarily 
on the cases where A£ {GJ0, <%} in this paper, because these are the cases of principal 
interest within our context. 

If / is an ideal of R and if I, considered as an /{-module, is a Jonsson a-module, 
then we refer to I as a Jdnsson a-ideal of R. By passage to the idealization of R and 
an i?-module M, the theory of Jonsson a-modules is equivalent to the correspon-
ding theory for ideals, but we shall only occasionally make this transition to ideals 
via idealization. 

Section 2 of the paper deals with Jonsson a-modules, Section 3 with Jonsson 
w0 -modules, and Section 4 presents some pertinent examples. Corollary 3.2 shows 
that a finitely generated Jonsson a-module is simple, and hence the set of such modules 
over a given ring R is easily determined. Theorem 2.4 shows that if the cardinal a is 
countably inaccessible from below and if R belongs to the class !F of rings over which 
each (**)-module is finitely generated (see Section 2 for terminology; in particular, 
2F includes the class of Noetherian rings and the class of finite-dimensional chained 
rings), then each Jonsson a-module over R is finitely generated, hence simple; in 
particular, this result applies to Jonsson a^ -modules over a ring in 3F. Proposition 
2.5 is in this context a useful result; it states that if M is a non-finitely generated 
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4 Robert Gilmer and William Heinzer 

Jönsson a-module over R, then Ann (M) is a prime ideal and rM=M for each 
r£ .R-Ann(M). 

Assume that M is a non-finitely generated Jönsson co0 -module over the ring R. 
Theorem 3.1 shows that there exists a maximal ideal Q of R such that Ann (x) is a 
Q-primary ideal of finite index for each nonzero element x of R ; moreover, the powers 

CO 

of Q properly descend and p| Q' is a prime ideal of R. It follows from Theorem 3.1 
¡=i 

that in considering Jönsson co0-modules over R, there is no loss of generality in assum-
ing that the module is faithful and R is a quasi-local integral domain. Proposition 
3.2 shows that M can be expressed as the union of a strictly ascending sequence of 
cyclic submodules, and this leads both to a construction of classes of non-finitely 
generated Jönsson co0-modules by means of generators and relations (Theorem 3.5) 
and to a determination of the isomorphism class of non-finitely generated Jönsson 
cy0-modules over a Prüfer domain J (Proposition 3.7 and the paragraph preceding 
that result). 

The examples of Section 4 indicate certain restrictions on what can be said about 
the structure of a quasi-local domain D such that D admits a non-finitely generated 
Jönsson co0-module. Such a domain D need not be Noetherian, for example, and even 
for a Noetherian domain D, no restrictions can be placed on the (Krull) dimension 
of D. 

All rings considered in this paper are assumed to be commutative and to con-
tain an identity element; all modules considered are assumed to be unitary. 

2. Jönsson modules. If R is a commutative ring with identity and M is a maximal 
ideal of R such that \R/M\=a is infinite, then R/M is a Jönsson a-module over R. 
One of our purposes in this section is to attempt to determine the class of rings S 
such that each Jönsson module over S arises essentially in this way — that is, as 
S/M for some maximal ideal M of S with infinite residue field. 

The main results of this section are Corollary 2.3 and Theorem 2.4. In parti-
cular, Theorem 2.4 resolves the question of Jönsson modules over the rings normally 
encountered in commutative algebra. While the proof of Proposition 2.5 is not diffi-
cult, this result is an important tool in the development of Section 3 material. 

According to the terminology of [2, Ex. 17, p. 245], the infinite cardinal a is 
said to be regular if a ¿¿2! a ; f ° r each nonempty family {a,}^/ of cardinals with 

¡ a 
| / | <a and a ; < a for each i. As noted by SIMIS [14], this condition is equivalent to 
the statement that there is no cofinal set of cardinality less than a in the set of ordinals 
preceding the first ordinal of cardinality a. 

P r o p o s i t i o n 2.1. Assume that M is a Jönsson a-module over R, where a is a 
regular cardinal. If {M;}ie/ is a nonempty family of proper submodules of M, where 
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|/[<a, then M^ y, M,-. In particular, M is indecomposable and M has at most one 
ia 

maximal submodule. 

Proof . Since |Af;|<a for each i and since a is regular, it follows that | M-\< 

<a , and hence 2 ! M-^M. The statements in the second sentence of the proposition 

follow immediately from the first sentence. 

P r o p o s i t i o n 2.2. Assume that each proper ideal of the ring R has cardinality 
less than Then either R is finite or R is a field. 

Proof . We prove that if is infinite, then R is a field. Proposition 2.1 
shows that R has a unique maximal ideal P. Since l ^ c a , it follows that \R/P\=a; 
let { r b e a complete set of representatives of the residue classes of P in R. If 
x£P, then {rpx}QP, so there exist distinct /?, y£B so that rpx=ryx. Since 
r0—ry is a unit of R, then x=0 , so P=(0) and R is a field, as asserted. 

Coro l l a ry 2.3. Let M be an infinite, finitely generated R-module and let 
ct = \M\. Then M is a JdnSson module if and only ifM is cyclic and Ann (M) is a maxi-
mal ideal of R such that \R/Ann (M)|=a. 

P roo f . It's clear that the stated conditions are sufficient for M to be a Jonsson 
module. Conversely, if M is a Jonsson module and M=Rm1+Rm2+... + Rmn, 
then Proposition 2.1 implies that M=Rmi for some i. Thus, M and R/Ann (M) 
are isomorphic modules over R and over .R/Ann (M), so that R/Ann (M) is a field 
of cardinality a by Proposition 2.2. 

Following the terminology of [1], we call a module M a (**)-module if M cannot 
be expressed as the union of a strictly ascending sequence ... 
of submodules; we denote by the class of rings R such that each (**)-module over 
R is finitely generated (clearly a finitely generated module is a (**)-module for any R). 
Theorems 4.2, 4.7, and 4.10 of [1] show that contains the subclasses of Noetherian 
rings, finite-dimensional chained rings, and JF*-rings; Theorem 6.1 of [10] shows that 
SF also contains each ring R such that (1) R has Noetherian spectrum, (2) the 'de-
scending chain condition for prime ideals is satisfied in R, and either (3) each ideal of R 
is countably generated, or (4) each ideal of R contains a power of its radical. 

If a is an infinite cardinal, we say that a is countably inaccessible from below if 
ct^ y. oit for each nonempty countable family {a,}i€i of cardinals a f <a. According 

to this terminology, a>0 is countably accessible from below, while each infinite cardinal 
with an immediate predecessor (in particular, co^ is countably inaccessible from below. 
The next result deals both with the concept of countable inaccessibility from below 
and with the class J5". 
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Theorem 2.4. Assume that R is in the class and that the cardinal a is count-
ably inaccessible from below. To within isomoprhism, the set of Jdnsson a-modules is 
{i?/M;}i€/, where {M,}l£/ is the Set of maximal ideals of R whose associated residue 
class field has cardinality a. 

Proof . Clearly each R/Mi is a Jonsson a-module over R. Conversely, let L be 
a Jonsson a-module over R. If {Lj}JLj is an ascending sequence of proper submodules 

of L, then as in the proof of Proposition 2.1, it follows that L^ Lj. Thus, L is 
j=i 

a (**)-module over R, and since then L is finitely generated. It then follows 
from Corollary 2.3 that as an i?-module, for some ¿6/. 

In our further consideration of Jonsson a-modules, we shall begin in Section 
3 to concentrate our attention on the cases where a—co0 or a=a)j . Even for a>1, 
Theorem 2.4 resolves the question of Jonsson modules over the rings normally en-
countered in commutative algebra. Because co0 is countably accessible from below, 
however, Theorem 2.4 does not apply to this case. We know, in fact, that a Jonsson 
co„-module over a principal ideal domain need not be finitely generated; thep-quasi-
cyclic group Z(p°°), considered as a Z-module, illustrates this statement. (It is well-
known, in fact, that the p-quasicyclic groups are the only Jonsson «„-modules over 
Z [6, Ex. 4, p. 105].) 

We conclude Section 2 with a proposition and a corollary that are valid for ar-
bitrary cardinals a. In particular, Proposition 2.5 is used frequently in the rest of this 
paper. 

P r o p o s i t i o n 2.5. Let M be a Jdnsson a-module over the ring R. 
(1) If r£R, then either rM=M or rM=(0). 
(2) Ann (M) is a prime ideal of R. 

Proo f . To prove (1), assume that rM^M and let N= {m^M\rm—Q}. We 
show that N=M. We write rM as where | / |<a . If m£M, then rm=rmi 

for some i so that m^m^N. It follows that M— (J (m^N), and hence I M I s 
¡e/ 

• \N\. By hypothesis on M and I, we conclude that |7V]=a so that N—M as 
we wished to prove. It follows from (1) that if x, y£R—Ann (M), then M—xM= 
=yM, and hence M—xyM. Thus xy$ Ann (M), and Ann (M) is prime in R, as 
asserted. 

Coro l la ry 2.6. Assume that I is a Jdnsson a-ideal of the ring R. If /2?£(0), 
then I is a field, and hence I is a direct summand of R. 

Proo f . Take r, sdl such that rs^O. Then rl=l=sl by Proposition 2.5, 
and since r, s£l, then I—(r)=(s). By Corollary 2.3, it follows that I is a simple 
/{-module, so (rs) = 1= I2. We conclude that as an ideal of R, I is principal and is 
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generated by an idempotent. Hence / is a direct summand of R and the structure of I 
as an ^-module is the same as its structure as a ring. Consequently, / is a field, as 
asserted. 

It's clear that the converse of Corollary 2.6 is also valid. Namely, if K is an in-
finite field of cardinality a and if S is a nonzero ring, then AT is a Jonsson a-ideal of the 
ring S@K and K2T*(0). 

3. Jonsson o)0-modules. We restrict our consideration in this section to the case 
where a=co0, the first infinite cardinal, and in view of Corollary 2.3, we consider 
only Jonsson co0 -modules that are not finitely generated. Such a module M has a partic-
ularly simple description: M is not finitely generated, is countably infinite, and each 
proper submodule of M is finite3. 

Assume that M is a non-finitely generated Jonsson co0 -module over the ring R. 
What restrictions are imposed on the structure of R and M? Theorem 3.1 and Prop-
osition 3.2 provide some answers to this question. In particular, these two results 
allow us to restrict to the case where the module M is faithful and the ring J? is a 
quasilocal integral domain. In the case of a Priifer domain R, we determine the iso-
morphism class of non-finitely generated Jonsson co0 -modules over R. 

If N is an i?-module, we say that N is a torsion module if Ann (n) ̂  (0) for each 
n£N. On the other hand, the module /Vis torsion-free if Ann (n) = (0) for each non-
zero element n£N. The statement of Theorem 3.1 uses this terminology. 

T h e o r e m 3.1. Let M be a Jdnsson o)0-module over the ring R, where M is 
not finitely generated. Then M is a torsion R-module, and there exists a maximal ideal 
Q of R such that the following conditions are satisfied: (1) Ann (x) is a Q-primary ideal 
of finite index for each xO.M—{ 0}, (2) R/Q is finite, (3) the powers of Q properly 

descend, (4) f | Q is a prime ideal, and (5) if Ht= {x£M\Q'x = (0)}, then {•//1}l~1 ¡=i 
is a strictly ascending sequence of submodules of M such that M= [J Ht. ¡=1 

P r o o f . As the first step in the proof, we show that PM—M for each maximal 
ideal P of R. Thus, if PM^M, then Proposition 2.5 shows that PM=(0), and hence 
M is a J6nsson OJ0 -module over the field R/P. Since M is indecomposable, M is a 
one-dimensional vector space over R/P. This implies, however, that M is a cyclic 
.R-module, contradicting the fact that M is not finitely generated. Therefore PM=M 
for each maximal ideal P of R. 

For P a maximal in R, let Mx be the set of elements x of M such that 
Pa g j/Ann (x). Then Ma is a submodule of M since the inclusion Ann (x—y) 3 

3) We remark that "countably infinite" is redundant in this definition — if M is not fini-
tely generated and each proper submodule of M is finite, then M is countably infinite. 
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¡5 Ann (x) fl Ann (y) implies that ^Ann (x—y) ^Ann (x) f l ^Ann (y). We show 
that M is the direct sum of the family {Mj , taken over all maximal ideals Pa of R. 
If x£M— {0}, then RxczM implies that Rx is finite, so Rf Ann (x) is a finite ring. 

n 
Therefore, Ann (x) is uniquely expressible as a finite intersection p) C of primary 

¡=i ^ 

ideals with distinct (maximal) radicals Pa = f c ^ t . If B j= f \ CI( for l ^ j ^ n , 

then no maximal ideal of R contains each Bj, so R=B1 + ...+Bn, and 

l = 6 1 + 6 2 + . . . +b„ with b£Bt for each i. Then x=^bjx, where CabjX = (0) 

for e a c h a n d hence bjX^Mj. This proves that The sum is direct, for if a 
m£Mx D ( M a i + . . . + M X k ) , with a ^ a f o r each j, then Ann (m) ¡5 Pa + (Pa> f l . . . fl P^)= 
=R, so m = 0. Because M is indecomposable, we conclude that M=Ma for some a. 
Let Q=PX; by definition of Mx, Ann(x) is a g-primary ideal of finite index for 
each x£M— {0}; in particular, Q has finite index in R. Let Hi be defined as in the 
statement of Theorem 3.1. Clearly each Ht is a submodule of M, and HiQHi+1 

for each i. Moreover, for x€M, Ann(x) contains a power of Q since R/Ann (x) 
CO 

is finite, so that for some /'; that is H= IJ H^ Observe that Hi is a proper 
i = 1 

submodule of Mfor each isince M— Q'M?i(0). Finally, we note that the assumption 
Hi—Hi+1 leads to the contradiction that M—Hl; it suffices to show that Ht=Hi+1 

implies that Hi+1—Hi+Z. Thus, if x£Hi+i, then QxQHi+1=Hi, so Q'Qx—(0) 
and x£Hi+1, as was to be proved. The fact that for each i shows that 
Q'>Qi+1 for each i; in particular, 2 ^ ( 0 ) for each i so that Ann (x)7s(0) for each 

CO 

x£M— {0}, and M is a torsion module. The equality M= | J Hi implies that 
i = 1 oo 

Pi 2 ' = A n n (M), and Proposition 2.5 shows that Ann (M) is prime in R. This 
¡=i 
completes the proof of Theorem 3.1. 

If M is a non-finitely generated J6nsson co0 -module over R, then replacing R by 
J?/Ann (M), there is no loss of generality in assuming that M is faithful, and Proposi-
tion 2.5 shows that R/Ann (M) is an integral domain. Under these assumptions on R 
and M, let Q be as in the statement of Theorem 3.1 It is then possible to consider M 
as a module over the quasi-local domain RQ. To wit, for m£M and r/s£RQ, we 
define the product (r /s)-m to be rm1, where sm1=m. The product is well-defined, 
for Proposition 2.5 and Theorem 3.1 show that left multiplication by J induces an 
.R-automorphism of M. It is somewhat lengthy, but routine, to verify that M is an 
RQ-module under this definition, and we omit the details. We note that Rm=RQm 
for each m^M; for a proof, we need only show that RQmQRm — that is, we need 
to show that if s£R — Q and if sm1=M, then M^RM. This statement follows since 
Rm is finite and since left multiplication by s induces an injection of Rm into Rm 
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so that Rm=sRm. We conclude that the structure of M as an RQ -module is essen-
tially the same as the structure of M as an i?-module [7, Ex. 2, p. 8]. In particular, M 
is a Jonsson co0-module over RQ. Thus, in considering non-finitely generated J6nsson 
co0 -modules M over a ring R, we are led to consider the case where R is a quasi-local 
domain and M is faitful. The next result is stated for this hypothesis, and is somewhat 
analogous to Theorem 3.1. 

P ropos i t i on 3.2. Assume that M is a non-finitely generated faithful Jdnsson 
(o0-module over the quasi-local domain (D, P). For x£P— {0}, denote by M(x) the 
submodule of M consisting of elements annihilated by x. Then M(x) is finite and non-
zero, M(x) < M(x2) < M(x3) <..., and M=\J M{x{). Moreover, if m^M(x)-{0} 

¡=1 
and if elements m2,m3, are chosen successively so that mi—xmi+1 for each i, 

CO 
then Z)/w1<Z)/w2<... and M= (J Dm^ 

¡=i 

P roo f . Since M is faithful, then M{x)j±M, and hence M{x) is finite. Pick 
m£M— {0}. Since x£P= ^Ann (m), there exists a positive integer k so that xkm=0 
while xk~1m7i0. Thus xk~1m is a nonzero element of M(x). For a given i, we assume 
that s£M(xi+v)—M(:c'). Then s£xM implies s=xt for some t£M. Thus 

xi+2t=xi+1s=0, but xi+1t=xis?i0 so that teM(xi+2)-M(xi+1). Since Q M(xl) 
i = l 

is an infinite submodule of M, we conclude that M= | J M(xl). 
i = I 

If mx, m2, ... are as described in the hypothesis of Proposition 3.2, then the proof 
above shows that mi+1f_M(xi+1)-M(x') for each i so that Dmi<Dmi+1 and 
M—\J Dmh as asserted. 

i=i 

The next result is a partial converse of Proposition 3.2. The proof of this result 
is routine and will be omitted. 

P ropos i t i on 3.3. Let M be an R-module that can be expressed as the union of 
an infinite strictly ascending sequence {M,}™! offinite submodules. The following con-
ditions are equivalent. 

(1) M is a Jdnsson u>0-module. 
(2) Each proper submodule of M is contained in Some Mi. 
(3) If x£M—Mi for each i, then {JCJJIj generates M. 

If the notation and hypothesis are as in the statement of Proposition 3.2, if F 
is a free D-module on the countably infinite set { j^}^, and if cp is the natural sur-
jection of F onto M induced by the mapping yt—mit then, of course, M=F/ker cp, 
where ker <p contains the submodule generated by the set xyi+1}1°=1. This 
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observation provided the original motivation for Theorem 3.5. The next result provi-
des some motivation for the hypothesis in the statement of Theorem 3.5. 

P r o p o s i t i o n 3.4. Assume that P is a maximal ideal of the ring R such that the 
powers of P properly descend and such that P—P2+tR for some t£R. Then P':(t) = 
_ p i - i yor eacfl i 

Proof . Since P/P2 is a one-dimensional vector space over R/P, there are no 
ideals of R strictly between P and P2. It is known that this implies that P=Pn+tR 
and that {PJ'}"=1 is the set of ideals between P and P" for each n [7, (38,2)]. If / > 1 
then the inclusion P'^QP': (t) is clear. Moreover, t$P' implies that P':(t)^P. 
Now (/), for otherwise, Pi-1=Pi~i[P2+(t)\(gPi, contrary to the 
hypothesis that the powers of P properly descend. We conclude that P': (t) = P'~1, 
as asserted. 

Theorem 3.5. Assume that P=A1,A2,A3>... is a sequence of ideals of R and 
{/¡}°12 is a sequence of elements of R such that the following conditions are Satisfied: 
(1) P is a maximal ideal of R and R/P is finite, (2) the powers of P properly descend, and 
(3) for each z> 1, P=Ai+(Q, A^P\ and At: ( /¡)g/" '_ 1 . Then there exists a non-
finitely generated JdnSSon coa-module M over R such that Ann (x) is P-primary for 
each x€M-{0}. 

P roo f . Let F be a free /^-module on the set {x,-}^, let A be the submodule of F 
generated by j U { x i - / i + 1 x i + 1 } 1 ~ a n d let M=F/A; we prove that M 
has the required properties. Let yt=xt+A for each i. It is clear that x generates 
M and that (ji+i) for each /. We prove that the inclusion <Ji)ii 0>;-i) is 
proper by establishing the following property of the submodule A: if a£A — {0} 

k 
and if a= 2 r j x j ' where rk^Q, then rk£P. For some n, we can write a=a1x1 + 

j=i 
+ ...+a„x„ + h2(x1-t2) + ...+hn(xn_1-tnxn), where a£At and hj£R. If k—n, then 
rk=a„—h„tn£P. Otherwise, we obtain a sequence of equations 

a„-hnt„ = 0 

K+an-i-hn-itn-i = 0 

\+2+a*+i — hk+1tk+1 = 0. 

The first equation implies that hn£An: (t„)QP"~1, and hence, from the second equa-
tion, hn_1tn_1=hn+an_1^An_1 so that hn_1eAn_1: (t„_1)QP'"2. Inductively, we 
obtain hk+1£Pk. If 1, it follows that rk=hk+1+ak—hktk£P, and if k— 1, 
then rk=h2+a1 is also in P. This establishes the assertion concerning A, and hence 
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(yt)?± (yi+1) for each i. Thus, no finite subset of x generates M, and this implies 
that M is not finitely generated. 

We show next that each (yt) is finite. Since P £ Ann ( j j ) and R/P is finite, the 
submodule (j^) is finite. Assume that (yt) is finite. To prove that (j^+i) is finite, it 
suffices to prove that <y i+1)l{y¡) is finite. The annihilator of (yi+i)/(yi) contains 
Ai+1 and the element ti+1, hence the ideal Ai+1+(ti+1) = P. Therefore (yi+1)/(yi) 
is finite, and is finite. 

To complete the proof, we show that y $ (yt) implies that y^ (y). Choose k so 
that y£(yk+1>, yi(jk); thus ksi. Then y=ryk+1, and since Pyk+1^(yk), it 
follows that Hence R—Ak+1+rR and we write 1 = q+rs for some q£Ak+1 and 
s£R. Then yk+i = qyk+i + rsyk+1=sy and ^ ( j - W i ) = (y). This is sufficient to show 
that each proper submodule of M is finite, for if L is a submodule of M that is con-
tained in no (yt), then L contains and hence L=M. It is clear from the con-
struction that Ann (x) is P-primary for each x£M—{0}. 

Assume that (R, P) is a quasi-local domain such that P—tR is principal and 
R/P is finite. Then the hypothesis of Theorem 3.5 is satisfied for At—Pl and 
for each i. In this case, the module M constructed in the proof of Theorem 3.5 is 
isomorphic to R[\/t]/R, and in the case where this module is faithful (that is, where 
P) i"'=(0)), then R is a rank-one discrete valuation ring and R[\/t] is the quotient 
•=i 
field of R. The next result determines equivalent conditions in order that the Z>-module 
K/D, where D is an integral domain and K is the quotient field of D, should be a 
Jonsson co0-module. The statement of Theorem 3.6 uses the following terminology 
from [12]. The ring R is said to have the finite norm property (FNP) if R/A is finite 
for each nonzero ideal A of R (such a ring is said to be residually finite in [4]). 

Theorem 3.6. Let D be an integral domain with quotient field KT^D. Let D* 
be the integral closure of D. Then K/D is a Jdnsson (o0-module over D if and only if the 
following conditions are satisfied. 

(1) D has the finite norm property, 
(2) D* is a rank-one discrete valutation ring, and 
(3) D* is a finite D-module. 

P r o o f . Assume that K/D is a J6nsson <u0-module. If d is a nonzero nonunit of 
D, then Dd^/D is a proper submodule of K/D, and hence is finite. Since Dd~x/D 
and D/dD are isomorphic Z)-modules, it follows that dD has finite norm, and D has the 
finite norm property. Let J^ K be an overring of D. Since J/D is finite, J is integral 
over D; hence JQD* and AT is the only proper overring of D*. Therefore D* is a 
rank-one valuation ring finitely generated over D, a ring with (FNP), and hence /)* 
is rank-one discrete with (FNP). 
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Conversely, assume that conditions (1)—(3) are satisfied, and write V instead of 
D*. Assume that n is a generator of the maximal ideal of V. Since V is a finitely gen-
erated ¿»-module, the conductor C of D in V is nonzero; say C=nkV. We know 

that K= (J 7t_1K, where 7r - 1 F<7r - 2 F<. . . . To prove that K/D is a Jönsson co0-¡=i 
module, it suffices to show that n~'V/D is finite for each i and that each proper sub-
module of K/D is a submodule of n~'V/D for some i. n~'V/D is a finitely generated 
D-module and ni+k belongs to the annihilator of this module. Since the ring D/n'+kD 
is finite, it follows that n~'V/D is finite. To prove that each proper submodule of K/D 
is contained in some n~'V/D, it suffices to show that if N is a Z)-submodule of such 
that N%n~'V for each i, then N=K. Since K= IJ n~'D, it is enough to show 

1=1 
that n~l£N for each positive integer i. Choose n£N—n~(i+k)V. We write n as 
iz~su, where u is a unit of V and s>i+k. Then and ns~'u~1n=n~i£DnQ 
QN. This established Theorem 3.6. 

Considerations similar to those in the proof of Theorem 3.6 and in the para-
graph preceding that result enable us to determine to within isomorphism the class 

of all non-finitely generated Jönsson ©„-modules over a Prüfer domain J. In 
order for J ) to be nomepty, we know from Theorem 3.1 that it is necessary that 
there should exist a maximal ideal M of J such that J/M is finite and the powers of M 
properly descend. Assume that J has such a maximal ideal and let {Mi}ie/ be the 

OO 
family of all such maximal ideals of J. Since / is a Prüfer domain, Pt= P| Mk 

k = 1 
is prime in J and there is no prime of J properly between P{ and M{ [7, Chap. 23]. 
Moreover, Vi=(J/Pi)(Miipl)=JMJPiJMl is a rank-one valuation ring with residue 
field J/M^ and to within isomorphism. e3(J)={J ^(F,) . According to the next 
result, Proposition 3.7, the unique faithful, non-finitely generated Jönsson co0-module 
over Vi is KJVi, where K, is the quotient field of Vt, and this in turn yields a deter-
mination of <g(J). 

P r o p o s i t i o n 3.7. Let V be a rank-one discrete valuation ring with quotient 
field K and with finite residue field V/P. To within isomorphism, K/Vis the unique faith-
ful, non-finitely generated Jönsson a>0-module over V. 

Proo f . Let M be a non-finitely generated faithful Jönsson «„-module over V 
and assume that p generates P. According to Proposition 3.2, M can be expressed as 
OO 
| J Vxt, where x^O, pxx=0, and pxi+1=xi for each i. Noting that the set 
¡=i 
{p~'+ y}r+i generates K/V, it is then routine to verify that the mapping p~'+ K—JC,-
can be extended to a K-module isomorphism of K/V onto M. 

Assume that (D, P) is a quasi-local domain that admits a non-finitely generated 
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faithful J6nsson a>0-module. From Theorem 3.1 and Proposition 3.2, it follows that 
OO 

D/P is finite, that f | P'=(0), and that (0) can be expressed as the intersection of a 
i = 1 

strictly decreasing sequence i of P-primary ideals such that each D/Qt is 
finite. Based on considerations up to this point, it seems reasonable to ask if D must 
be one-dimensional, or Noetherian, or if the residue class rings D/P1 are finite. We 
present in Section 4 examples that show that each of these questions has a negative 
answer; moreover, if D is one-dimensional, then D need not be Noetherian, and con-
versely. 

4. Examples. The examples in this section indicate certain limitations on what 
can be said about the structure of a quasi-local domain (D, P) such that D admits a 
non-finitely generated faithful Jonsson co0 -module. In particular, the class of examples 
included in Example 4.1 is large enough to show that D need not be Noetherian, and 
that no restriction on the dimension of D is possible. 

Example 4.1. Assume that (V, M(F)) and (W, M(W)) are independent valua-
tion rings on a field K, that V is rank-one discrete, and that there exists a finite field so 
that V=k+M(V) and W=k+M{W). Set D=k+P, where P=M(V)C\M(W). 
Then (D, P) is quasi-local, dim Z)=dim W, and W/D is a non-finitely generated faith-
ful Jdnsson (o0-module over D. 

Proo f . Corollary 5.6 of [8] shows that (D, P) is quasi-local and dim D=dim W. 
Let v be a valuation associated with V and choose, by the approximation theorem for 
independent valuations [7, (22.9)], an element x^W—V so that v(x)= — 1. If 
d£D-{0} and if v(d)=rs?0, then dxr+1$D, so W/D is a faithful D-module. To 
prove that W/D is a non-finitely generated Jonsson a>0-module, we show that the 
sequence {(D+Dx')/D}T=1 of submodules of W/D satisfies the hypothesis and con-
dition (2) of Proposition 3.3. To do so, we prove first the following assertion. 
(*) If r£W, if s£W-V, and if v{s)^v{r), then r£D+DS. 

To prove (*), consider first the case where s is a unit and r is a nonunit of W. 
Then r/s£M(W), and since v(r/s)>0, then r/s£M(V) as well. Hence r£Ds in 
this case. On the other hand, if s is a nonunit of W, then we can replace s by the unit 

1 without affecting the hypothesis or the conclusion since S^ W— V, v(s)= 
^visj and D+Ds=D+Ds1. Similarly, if r is a unit of W, then r^r-u^M^W) 
for some nonzero element r of k, and replacing r by rx yields the desired conclusion. 
This establishes (*). 

It follows from (*) that W= [) (D+Dx1) and that D+Dx'QD+D;ti+1. 
¡=i 

The minimum of the «-values of elements of D+Dxl is —i, so xl+1^D+Dx' and 
the inclusion D+Dx'QD+Dx,+1 is proper. Statement (*) also implies that if TV is a 
proper £>-submodule of W containing D, then the set of v-values of elements of N is 
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bounded below, and hence NQD+Dx' for some i. Thus, to complete the proof of 
Example 4.1, we need only show that (D + Dx')/D is finite for each /'. It is clear, 
however, that M(W)C\(M(V)y is contained in the annihilator of (D+Dx^/D. 
As |F/(M(K)),'|=|A:|i is finite, the subring D/[M(W)fl (M(F))'] is also finite. 
Since (D+Dx') /D is a finitely generated D-module, we conclude that (D + Dx')/D 
is finite. 

If A: is a finite field and is a set of indeterminates over k, then the field 
admits independent valuations v, w such that v is rank-one discrete, the 

valuation ring Vof v is of the form k+M(V), and the valuation ring W of w is of the 
form k+M(W). Example 4.1 shows that W/D, where D=k+(M(V)C\M(W)), 
is a J6nsson ©0-module, and dim D=dim W can be any positive integer or it can be 
infinite. Moreover, if W is chosen so that M(W) is unbranched [7, p. 189], then no 
principal ideal of D is primary for M(V)C\M(W). Thus the assumption that a quasi-
local domain admits a faithful non-finitely generated Jonsson co0 -module does not 
imply that the domain is Noetherian, and it imposes no restriction on its dimension. 
We remark that the approximation theorem for independent valuations can be avoid-
ed in the proof of Example 4.1 and that the conclusion concerning W/D remains 
valid for any quasi-local domain W=k+M(W) with quotient field K such that 
W^ V. Using this fact, we see that if W is rank-one nondiscrete, if B^M(IV) is 
any M(W)-primary ideal and if J=k+(M(V)C\B), then J admits the non-finitely 
generated faithful Jonsson <%-module (k+B) /J , and yet J/(M(V)PiB)n is infinite 
for each «>1. 

There is an analogue, for generating sets, of the concept of a Jonsson a-module. 
Namely, we say that a unitary module M over a commutative ring R with identity is 
a JdnsSon a-generated module if M has a generating set of cardinality a, no generating 
set of smaller cardinality, and each proper submodule of M has a generating set of 
cardinality less than a. We have developed a theory of Jonsson a-generated modules 
in [11]. This theory contains many similarities, but also some differences, with the 
theory of Jonsson a-modules. The differences stem frequently from the fact that, by 
definition, a Jonsson a-generated module is not finitely generated, whereas a Jonsson 
a-module may be cyclic. In particular, a modification of the proof of [11, Example 3.3] 
establishes the following result. 

Example 4.2. Assume that D is an integral domain with quotient field K, that 
(fV, M) is a rank-one discrete valuation ring on K containing D, and that W/M=D/P 
is a finite field, where P is the center of W on D. Then K/W is a JdnsSon co0-module 
over D. 

Example 4.2 can be used to show that even in the case of a Noetherian domain D, 
existence of a non-finitely generated faithful Jonsson a>0-module over D imposes no 
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restriction on the dimension of D. For example, let k be a finite field, let n be a posi-
tive integer, and choose xlt x2, ..., x„£ Yk [[ J']] such that {x,}"=1 is algebraically 
independent over k. Then D=k[x1, ..., x „ ] ( X i x ) is an «-dimensional regular 
local ring and W=k\[Y$\C\k(x1, ..., x„) is a rank-one discrete valuation overring 
of D such that D and Whave residue field k. By Example 4.2, k(xx, ..., xn)/W is a 
faithful Jonsson (o0 -module over D. 

We remark that, in general, a Noetherian ring R admits a non-finitely generated 
Jonsson co0 -module if and only if R contains a maximal ideal M of positive height 
such that the residue field R/M is finite. This result follows from Theorem 2.7 of [11]. 
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Simple semimodules over commutative semirings 

J. JEZEK and T. KEPKA 

The problem of describing all simple medial groupoids (and so all minimal varie-
ties of medial groupoids) is still open, although simple groupoids and minimal varie-
ties are described in various special subclasses (see e.g. [2], [3], [4], [5] ; in a yet un-
published paper the authors described all finite simple medial groupoids and all simple 
commutative medial groupoids). It turns out that for the solution of this problem it is 
advantageous to have a description of all simple commutative semigroups with two 
commuting endomorphisms at hand. Now, commutative semigroups with a family of 
commuting endomorphisms are actually nothing else than semimodules over commu-
tative semirings. For this reason the authors became interested in simple semimodules 
over commutative semirings. Moreover, the problem of simple semimodules deserves 
a special attention, and this is why the present paper came to life. 

Section 1 contains the basic definitions. In Section 2 we prove that the class of 
simple semimodules over a commutative semiring can be divided into three subclasses : 

(1) two-element semimodules with zero addition; 
(2) simple cancellative semimodules; 
(3) simple idempotent semimodules. 

In Section 3 we describe the two-element semimodules with zero addition and in 
Section 4 the simple cancellative semimodules (at least in the case when the commu-
tative semiring is finitely generated or, more generally, finitely c-generated). We do not 
know all simple idempotent semimodules. However, in Section 5 we characterize all 
simple idempotent semimodules with a zero element o such that {o} is a subsemi-
module; in particular, all finite simple idempotent semimodules are found. Further, 
we repeat from [6] the description of simple idempotent semimodules over a commu-
tative semiring with at most two generators. Finally, in Section 6 we give a formula 
for the number of isomorphism classes of m-element semimodules over the free com-
mutative semiring with n generators (n, m are finite). 

Received June 24, 1981. 
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1. Preliminaries 

By a commutative semiring we mean an algebra R=R(+, •) with two binary 
operations such that -/?(+) and R( •) are commutative semigroups and x(y+z)— 
—xy+xz for all x, y, z£R. Throughout this paper let J? be a commutative semiring. 

By a (left R-) semimodule we mean an algebra M=M(+, rx) with one binary 
operation + and a family of unary operations x<-*rx (r£R) such that M ( + ) is a 
commutative semigroup and 

r(x+y) = rx+ry, (r+s)x = rx+sx, rs-x = r-sx 

for all x, y£M and r,s£R. 
A semimodule M is said to be 
— trivial if Card (M) = l, 
— idempotent if it satisfies the identity x+x=x (i.e., if M ( + ) is a semilattice; 

in this case we write x^y iff x—x+y), 
— a semimodule with zero addition if it satisfies the identity x+y=u+v, 
— cancellative if x+y=x+z implies y—z, 
— a module if M ( + ) is a group, 
— simple if idM and MxM are the only congruences of M. 
The semiring R is considered to be also a semimodule over itself. In this case, the 

subsemimodules of R are called ideals of R. 
By a bi-ideal of a semimodule M we mean a non-empty subset / of M such that 

M+IQI and RIQI. The equivalence ( /X/)UidM is then a congruence of M and 
we denote by M/7 the corresponding factor semimodule. If M is simple, then every 
bi-ideal of M is either at most one-element or equal M. 

An element a of a semimodule M is said to be the neutral element (the zero ele-
ment, resp.) of M if x+a=x {x+a—a, resp.) for all x£M. The neutral element is 
usually denoted by 0 and the zero element by o. 

For some results on semimodules with a neutral element over a commutative 
semiring with a neutral and a unit element see, e.g., [1]. 

For a semimodule M, put Ann (M)— {r^R; rx—ry for all x, y£M). If Ann (M) 
is non-empty, then this set is evidently an ideal of R and there exists an element 
e£M such that e=e+e=re=sx for all r£R, s£Ann (M) and the set {e} 
is a subsemimodule of M. 

1.1. Lemma. Let M be a simple semimodule with Ann (M)^0 . Then the 
element e with sx—e for all Ann (M) if either a neutral or a zero element of M. 

Proo f . The set {e+x ; x£M} is a bi-ideal of M containing e, so that it equals 
either {e} or M. In the first case evidently e is a zero element. If {e+x; x£M}=M 
then it is easy to verify that e is a neutral element. 
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A subsemiring S of R is said to be a closed subsemiring if b£S whenever 
a+b£S for some S. Let K be a non-empty subset of R. We shall say that R is 
c-generated by K if R is the only closed subsemiring of R containing K. 

For every non-empty set X there exists the free commutative semiring over X; 
its elements are the formal sums of elements of the free commutative (multiplicatively 
denoted) semigroup over X. If R is a free semiring over a set X of cardinality i s l , 
then the variety of i?-semimodules is equivalent to the variety of algebras A{+,f1, ..., 
..., fk) such that A{+) is a commutative semigroup a n d f , ..., fk are pairwise com-
muting endomorphisms of A(+). 

Let / be a homomorphism of a semiring S onto a semiring R. Then for any 
ii-semimodule M we can define an S-semimodule structure on M by Sx=f(s)-x 
(for all s£S and x^M). This correspondence provides an equivalence between the 
variety of i?-semimodules and some sub variety of the variety of S-semimodules. 
Since every semiring is a homomorphic image of some free semiring, it follows that 
in order to describe all simple semimodules over arbitrary (commutative) semirings 
it would suffice to describe all simple semimodules over free (commutative) semirings. 

2. The fundamental classification theorem 

2.1. Theo rem. Let M be a non-trivial simple semimodule over R. Then exactly 
one of the following conditions holds: 

(1) M is a two-element semimodule with zero addition; 
(2) M is cancellative; 
(3) M is idempotent. 

Proo f . If Card (M)=2, then everything is clear. Now we shall assume that 
Card ( M ) s 3. The rest of the proof will be divided into several lemmas. 

2.2. Lemma. M is not a semimodule with zero addition. 

Proo f . Suppose, on the contrary, that there exists an element o such that 
x+y=o for all x, y£M. We have ro—r(o+o)=ro+ro=o for all r£R. If r£R, 
then Ker (Lr), where Lr(x)=rx for all x£M, is a congruence of M; since M is 
simple, it follows that either Lr is injective or rx=o for all x^M. From this it 
follows that ((M\{o})X(M\{o}))UidM is a congruence of M; since M is simple, 
Card ( M ) ^ 2, a contradiction. 

A semimodule M is said to be unipotent if x+x—y+y for all x, y£M. 

2.3. Lemma. Suppose that M is unipotent; put o=x+x for all xdM. Then 
either M is cancellative or x+o=o for all x£M. 

2* 
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P r o o f . Put / ( x ) = x + x + x for all x£M. Then/ is an endomorphism of M and 
we have either K e r ( f ) = M x M or Ke r ( / )= id M . If K e r ( f ) = M x M then 
x+o—f(pc)—f(p)—o for all x(iM. Let Ker ( / )= id A i and a+c=b+c for some 
x, b, c£M. Then f(a)=a+o=a+c+c=b+c+c—b+o=f(b) and so a=b. 

2.4. L e m m a . Suppose that M is unipotent. Then M is cancellative. 

P r o o f . Suppose, on the contrary, that M is not cancellative. Put o = x + x for 
all x£M. By 2.3, x + o = o for all x£M. 

Suppose that a=b+c^o for some a,b,c£M. Put M*=MU{0} and 1= 
= {x+a; x£M*}U{x+ra; x£M*, r£R), where 0+a=a. Then / i s a bi-ideal of M 
containing {a, o} and so I=M. In particular, b£l and c£7. We shall consider only 
the case when b=x+ra and c=y+sa for some x, y£M* and r,s£R. (The 
remaining three cases are similar.) Then a=b+c=z+ra+sa where z=x+y£M* 
and therefore a=z+r(z+ra+sa)+s(z+ra+sa)=z+rz+sz+r2a+s2a+rsa+sra= 
=z+rz+sz+r2a+^a+o—o, a contradiction. 

We have proved that M is a semimodule with zero addition. However, this is in 
contradiction with 2.2. 

2.5. L e m m a . Suppose that M is not unipotent. Then M is either idempotent 
or cancellative. 

P r o o f . Put g ( x ) = x + x for all x£M. Then g is an endomorphism of M; 
since M is simple and not unipotent, g is injective. From this it follows that M can be 
embedded into a simple semimodule M' in which the mapping x>->x+x is an auto-
morphism; since subsemimodules of idempotent semimodules are idempotent and 
subsemimodules of cancellative semimodules are cancellative, it is enough to proceed 
under the assumption that g is an automorphism of M. Put M* = M{J {0} and define 
a binary relation H on M by (x, y)£H iff x=u+g'( j>) and y=v+gJ(x) for some 
u,v£M* and some integers 0 (if then x=m+g ' 0>) = " + g ' ~ X-V)+£' ~100 = 
=z1+gt~1(y) = ...=zt_j+gJ(y); similarly if and thus we can assume that 
i=j). Obviously, H is an equivalence. Let x, y, z£M, u, v£M*, Ic^O, x=u+gk(y), 
y=v+gk(x). Then z=g~kgk(z)—w+gk(z) for some w£M* and we have x+z= 
= u+w+gk(y + z) and y+z=v+w+gk(x+z). Moreover, rx = rx+gf(ry) and 
ry=rv+gk(rx). We have shown that H is a congruence of M. 

If H= idM then M is idempotent, since g(x)=x+g°(x) and x = 0 + g _ 1 ( g ( x ) ) 
imply (x, g(x))£H for all x£M. 

Let HT*idM, so that H=MxM. Let a+c=b+c for some a,b,c£M. 
Put N={x£M; a+x=b+x}. If x£N, then g(a+g-1(x))=a+a+x=a+b+x= 
=b+b+x—g(b+g~1(x)), so that a+g~1(x)=b+g~1(x) and consequently 
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g~1(x)Ç:N. Now, let y(LM. We have c£N, (c, y)£H and so y=z+gk(c) for some 
z£M* and fcsO. But gk(c)£N and so a+y=a+g?(c)+z=b+gk(c)+z=b+y, 
i.e., y£N. We have proved N—M. In particular, g(a)=a+a=a+b=b+b=g(b), 
a—b, and M is cancellative. 

3. Two-element semimodules with zero addition 

Denote by INDj(iî) the set of all subsets / of R with the following properties: 
(1) P + t f g / ; 
(2) RIQI; 
(3) if r,s£R\I then rs£R\I. 
For every /glND^i?) define a semimodule ZR I as follows: ZR I—{0,1}; 

x+y=0; if r£I then rx=0; if r£R\I then rx=x. 

3.1. Theo rem. The semimodules ZRJ with /ÇlND^i?) are pairwise non-iso-
morphic two-element semimodules with zero addition; every two-element semimodule 
with zero addition is isomorphic to one of them. 

P roo f . Easy. 

3.2. P r o p o s i t i o n . Let R be a free commutative semiring over a set K of cardi-
nality cc S i . Then Card (IND1(JR)) = 2". 

P roo f . It is easy to verify that the mapping I>-+IC\K is a one-to-one mapping 
of IND^i?) onto the set of all subsets of K. 

It follows that if R is a commutative semiring which can be generated by a set of 
cardinality a s l then l ^Ca rd (lND1(i?))^2a. If R contains a neutral element then 
Card (IND1(/Î)) = 1. 

4. Simple cancellative semimodules 

4.1. Lemma. Let M be a cancellative semimodule. Then there exists a unique 
(up to isomorphism over M) module N Such that M is a subsemimodule of N and 
N= {a—b; a, b£M). Moreover, if M is simple then N is also simple. 

Proof . Define a binary relation H on MxM by ((a, b), (c, dj)£H iff a+d= 
=b+c. Then H is a congruence of the semimodule MxM. Put N=(MxM)/H 
and denote by g the corresponding natural homomorphism. We have g(a,a)= 
=g(b, b)=0 for all a, b£M and 0 is a neutral element of N. Moreover, g(a, b)+ 
+g(b, a)=0 and we see that N is a module. The mapping ai—-g(a+a, a) is an injec-
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tive homomorphism of M into N and we can identify any element a£M with the 
element g(a+a, a) of N. The rest is easy. 

4.2. Lemma. Let M be a module. Then M is simple i f f {0} and M are the only 
submodules of M. 

Proo f . Easy. 

4.3. Lemma. Let M be a simple cancellative semimodule having a neutral ele-
ment 0. Then M is a module. 

Proo f . Denote by N the set of all a£M such that a+b—0 for some b£M. 
Then N is a subsemimodule of M and the relation H on M, defined by (x, y)£H 
iff x+iV=j>-|-iV, is a congruence of M ( + ) ; let us prove that it is a congruence of the 
semimodule M. For this, it is enough to show that if x+N=y+N, r£R and a£N, 
then rx+a£ry+N. We have x+a=y+b and ra+c=0 for some b, c£N; we 
have rx+a—rx+ra+c+a=r(x+a)+c+a=r(y+b) + c+a=ry+rb+c+a£ry+N. 
It follows that H is a congruence of the semimodule M. Since M is simple, either 
H—MxM or H= idM. If H=M+M, then N=M, M is a module and we are 
through. Let H= idM, so that N= {0}. Put K= ( (M\{0})x(M\{0}))Uid M . 
Let us prove that K is a congruence of M. Evidently, K is a congruence of M(+). 
Let x, j € M \ { 0 } and r£R. Since M is simple, the kernel of the endomorphism 
x>->-rx equals either MXM or idM; since /0=0, it follows that either rz=0 for all 
z£M or xi-^-rx is injective; from this it follows that (rx, ry)dK. Since M is simple, 
it follows that K= idM and M contains just two elements; thus M is a module. 

4.4. Theorem (The description of simple modules). 
(1) Let f be a homomorphism of the semiring R into a field F such that 

F= {a-b+c • 1; a, ¿>6/(P)U{0}, c£Z} where Z denotes the set of integers. Then F is 
a simple R-module (if we put rx=f(r)x). 

(2) Every non-trivial simple R-module can be constructed in the way described 
in (1). 

(3) Let f and g be homomorphisms of R into fields F and G, resp., such that 
F—{a-b+c -1; a, b£f(R)\J{0}, c£Z} and G={a-b+c-1; a, beg(R)\J{0}, 
c£Z}. Then the R-semimodules, F, G are isomorphic i f f there is a field isomorphism h 
of F onto G such that h{f(r))=g(r) for all r£R. 

Proo f . (1) Evidently, every submodule of the .R-module F is an ideal of the 
field F and we can use 4.2. 

(2) Let M be a non-trivial simple .R-module. Denote by F the set of endomor-
phisms of M and define two binary operations on F by (cp+1/0 (x)=(p(x)+\[/ (x) and 
(q>\l/)(x)=(p(\]/(x)). Evidently, P i s a skew field. For every r£R denote b y / ( r ) the 
endomorphism x>--rx, so that / is a homomorphism of R into F. Let us fix an 
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element u£M\{0}. For every x£F put g(x)—x(u). It follows from 4.2 that g is 
an isomorphism of the i?-module F onto the 7?-module M. Put {a-b+c-1; 
a, b£f(R)U{0}, c€Z}. Then S is a submodule of F and g(S)^{0}. Consequently 
g(S)=M and S=F. Now it is clear that F is commutative. 

(3) Let k be a semimodule isomorphism of F onto G. Put 
for all x£ F. Then A is a field isomorphism with the desired property. 

4.5. Theorem. Let M be a non-trivial simple cancellative semimodule. Then 
there exist a field F and a homomorphism f of R into F such that F— {a-b + c-\\ 
a, bdf(R)U {0}, c£Z}, where Z denotes the set of integers, M is a subSemimodule of 
the R-module F and F={a—b; a, b£M}. Moreover, M=F if 0£M. 

P r o o f . Apply 4.1, 4.3 and 4.4. 

4.6. Example . Denote by Q the field of rational numbers. Put RI={X£Q; 

x>0} and R2= {X£Q\ x ^ l } . Then Rx and R2 are commutative semirings. R1 is a 
simple cancellative -semimodule, Q={a—b; a, b^R^; R2 is a cancellative R2-
semimodule, Q= {a—b; a, b£R2}, and R2 is not simple. 

4.7. Theorem. Let R be finitely generated (or, more generally, finitely c-gen-
erated). Then every simple cancellative Semimodule is a finite module of prime power 
order. 

P r o o f . L e t / a n d F be as in 4.5. Since R is finitely c-generated, F is a finitely 
generated ring. However, then F is finite. Then evidently 06 M and M=F by 4.5. 

For every prime power p" (i.e. every prime number p and every positive integer n) 
denote by GF(p") the finite field with p" elements. For every prime power p" and every 
positive integer m let S(p, n, m) denote the set of ordered m-tuples (ax, ..., am) of 
elements of GF(p") such that GF(p") is generated as a ring by the set {a1; ...,am, 1} 
(observe that this set is always non-empty). Define an equivalence ~ on S(p, n, m) 
by (a1, ..., am)~(Z>1, ...,bm) iff b ^ f f a ) , ..., bm=f(am) for some automorphism 
/ of GF (/>"). 

4.8. Lemma. Card (S(p,n,m)l~)=(l/ri) 2 ft(n/k)pmk> ^ being the Mobius 
k\n 

function. 

P r o o f . Well known and easy. 

4.9. P ropos i t i on . Let R be a free commutative semiring freely generated by a 
finite set of cardinality m^l. Let p" be a prime power. Then the number of isomor-
phism classes of simple modules of order p" equals (1 /«) 2 n(n/k)pmk. 

*|n 
P roo f : It follows from 4.4 and 4.8. 
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5. Simple idempotent semimodules 

Denote by IND2(P) the set of all subsets I of R with the following properties: 
(1) R+IQI; 
(2) RIQI; 
(3) if r,s£R\I then r+s£R\I; 
(4) if r,s£R\I then rs£R\I. 

For every /£IND2(.R) define a semimodule XRI as follows: XRI= {0, 1}; 0 + 
+ 0 = 0 + 1 = 1 + 0 = 0 ; 1 + 1 = 1; if r£l then rx=0; if r£R\I then rx=x. 

Denote by IND3(i?) the set of all non-empty subsets / of R with the following 
properties: 

(1) 7 + / c / ; 
(2) RIQI; 
(3) if r, s£R and then r+s$I; 
(4) if r,s£R\I then rs£R\I. 

For every 76IND3(P) define a semimodule YR I as follows: YR I= {0, 1}; 0-t-
+ 0 = 0 + 1 = 1 + 0 = 0 ; 1 + 1 = 1; if r£I then rx=l; if r£R\I then rx=x. 

5.1. Theo rem. The semimodules XR I with /6IND2(.R) and the semimodules 
Yr i with ID IND3(i?) are pairwise non-isomorphic two-element idempotent semi-
modules; every two-element idempotent semimodule is isomorphic to one of them. 

P r o o f . Straightforward. 

5.2. P r o p o s i t i o n . Let Rbe a free commutative semiring over a set Kof cardi-
nality o ts l . Then Card (IND2(P))=2a and Card ( l N D 3 ( P ) ) = 2 a - l . 

P roo f . Easy. 

5.3. Theo rem. Let M be an idempotent semimodule with a zero element o 
such that {o} is a subsemimodule of M; let Card ( M ) s 3 . Then M is simple i f f the 
following three conditions are satisfied: 

(1) a+b—0 for all pairs a,b£M such that a^b; 
(2) for every r£R, the mapping x^-rx is either constant (with value o) or a per-

mutation of M; 
(3) if x, then y = rx for some r£R. 

P r o o f . First, let M be simple. For every a(iM denote by Ka the set of all 
x£M such that x^=ra (i.e. x=x+ra) for some r£R. Evidently, Ka is a bi-ideal of M 
containing o, and so either Ka—{o} or Ka=M. Put L={a£M; Ka= {o}}. Evi-
dently, L is a bi-ideal of M, and so either L=M or L contains at most one element. 
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If L=M then M is a semimodule with zero multiplication; since M is simple, 
Card ( M ) ^ 2 , a contradiction. Hence Card (L)S1. Then evidently LQ {»} and 
so we have proved that if a £ M \ { o } and x£M then x S r a for some r£R. 

Let a,b,c£M be such that a+b^o and b+c^o. Then b?±o and, as we 
have just proved, there are elements r, s£R with b^r(a+b) and b^s(b+c). 
We have b^ra+rb^rb^rsb+rsc and b^sb+sc^sb^sra+srb. Consequently, 
b^rs(a+b+c) and so a+b+c^o. 

Define a relation H on M by (x,y)£H iff either x—y or x+y^O. Using the 
assertion proved above, it is easy to check that H is a congruence of M. Hence either 
H-idM or H=MxM. We get H= idM, and (1) is proved. 

Let r£R. The mapping x^rx is an endomorphism of M, so that its kernel 
equals either idM or MxM. Hence the mapping JO-*rx is either constant (with 
value o, since ro=o) or .injective; if it is injective, then it is a permutation of M, 
since rM is evidently a bi-ideal of M. We have proved (2) and the assertion (3) is 
similar. 

Now, let the conditions (1), (2), (3) be satisfied. Consider a congruence idM 

of M. Put Z,={x€M\{o}; {x, o)£H}. There is a pair (a,b)£H with a^b. We 
have a+b—o and (a, o)£H, (b, o)£H. Hence L is non-empty. It follows from (3) 
that L=Af \{o} , so that H=MxM. 

5.4. T h e o r e m . Let M be a finite simple idempotent semimodule containing at 
least three elements. Then M contains a zero element o and {o} is a subSemimodule of M 
(so that M is as in 5.3). 

P r o o f . Since M is a finite semilattice, it contains a zero element o. Suppose 
that Ann (M) 7^0 and the element e with sx=e for all i£Ann(M) is a neutral 
element of M. Then evidently M\{e} is a bi-ideal of M, so that it contains at most 
one element, contradicting Card 

Hence e is either a zero element or Ann (M) is empty; in both these cases evi-
dently {<?} is a subsemimodule. 

In the rest of this section let R be the free commutative semiring over a set 
{/, g} of cardinality 2. We shall give a list of all simple idempotent i?-semimodules in 
this case. Denote by Z the set of integers and by E the set of real numbers. For every 
positive integer n denote by Z„(+) the cyclic group of integers modulo n, and i„ 
the natural homomorphism of Z ( + ) onto Z„(+). For every pair r, s of integers such 
that {r, s) (0, 0) denote by GCD(r, s) the greatest common divisor of r,s. The 
promised list is the following (denote here by A the binary semimodule operation): 

(1) the semimodule with C/1 = {0, 1}, 0Al=0, f(x)=x, g(x) = l; 
(2) the semimodule U2 with U2={0, 1}, 0Al=0, / ( x ) = l , g(x)=x; 
(3) the semimodule U3 with £/3={0, 1}, 0Al=0, f(x)=g(x)=0; 
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(4) the semimodule C/4 with t/4 = {0,1}, 0Al=0, /(x)=g(;t) = l; 
(5) for any positive integer n, the semimodule An with A„={0, 1, ...,«}, xf\y=x 

if x=y,xAy=0 if xj£y, / ( 0 ) = 0 , / ( l ) = 2 , / ( 2 ) = 3, ...,f(n-\)=nf(n)=\, g(x)=0; 
(6) for any positive integer n, the semimodule B„ with Bn — {0, 1, ...,«}, xf\y—x 

if x=y, xf\y=0 if x*y, f(x)=0, g(0)=0, g(l)=2, ..., g(n-\)=n, *(n) = l ; 
(7) for every quadruple z=(p, q, r, s) of integers such that p. q, r s l , 0 S i < r 

and GCD(r, s) = l, the semimodule Cz with C2 = {0}U {Z,pXZ r q)/K z where Kz 

is the subgroup {(irp 

-l)p, irq(-(r-\)sq))}, xAy=x if x=y, xAy = 0 if x ^ y, /(0) = *(0) = 0, 
AH)=H+ (i rp(l), i„(0)) and g(H)=H+{irp(0), ¡ r , ( l )) for all He(ZrpxZrq)/Kz; 

(8) for every pair z=(n,m) of positive integers, the semimodule Dz with Dz= 
= {0}D(ZxZ)/Kz where Kz is the subgroup o f Z ( + ) x Z ( + ) generated by (n,m), 
xAy=x if x=y, *A>>=0 if x*y, f(0)=g(0)=0,f(H)=H+(h0) and g(H)= 
=H+(0, 1) for all He(ZxZ)/Kz; 

(9) for every pair r, s of integers such that GCD (r, s)= 1 and either r - = 0 < i 
or s < 0 < r , the semimodule Ers with Er s=Z, xAy=Min(x, y), f(x)=x+r, 
g(x)=x+s; 

(10) for every h£{— 1, 1} and every irrational number q such that either 
w < 0 < g or <7<0<w, the semimodule Fu q with Fu>q=E, xAy=Min (x, y), f(x) = 
=x + u, g(x) = x+q\ 

(11) for every u, q as in (10), every subsemimodule of Fuq. 
As it is proved in [6], these P-semimodules, together with the trivial P-semi-

module, are simple idempotent i?-semimodules and every simple idempotent ^-semi-
module is isomorphic to one of them; the semimodules in (1)—(11) are pairwise non-
isomorphic, with the following exception: if Mx is a subsemimodule of FUi,qi and M2 

is a subsemimodule of Fu „ , then MX=M2 iff u1=u2, qx=q2 and M2—M,+a ui* "2 
for some real number a. 

6. The number of isomorphism classes of finite simple semimodules 

Let R be the free commutative semiring over a set of finite cardinality 1. 
For m ^ l , let N(n, m) denote the number of isomorphism classes of simple jR-semi-
modules having m elements. 

Denote by a.(n, k) the number of equivalences defined on an «-element set and 
having exactly k blocks. Denote by A(n, m) the number of isomorphism classes of 
/n-element algebras A(f1, ... /„) with unary operations/f such that each / ( i s a permu-
tation of A, f i f j = f j f i for all i, j and /¡(x)^/^) for all i,jZ {1, ...,n}, i^j, x£A, 
and such that A(JX, ..., /„) contains no proper subalgebra. 

The following theorem can be derived from the above results. 
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6.1. Theo rem. (1) N(n, 1)=1 for every n s l . 
(2) N(n, 2) = 2"+2 — 1 for every 1. 
(3) N(n,3)=2-3n-2n for every n ^ l . 

(4) 2" «(«,*:) A(ifc,i«-1)+ 2 tz{n,t)l(t-\,m-\) 
lsksn 2StSn HlSm ram 

/or euerj? w^l such that m is not a prime power. 
(5) N(n, pm) = 2 «(»,*:) A(*:,p"-1)+ 2 tz(n, t) k(t-\, pm-\) + 

lSkSn 
k+lSpm tSpm 

+ (]/m)2ii(m!k)pnk 

fclm 
for every prime number p = 2 and all integers n.m^l such that 3. 

The values A(l, w) and 1(2, m) can be computed as follows: 
A(l, m) = 1 for every m ^ 1; 
A(2, m) = — 1 + 2 (p(k)e(m/k) for every m ^ 1, 

lStsm 

where <p denotes Euler's function and e(n) is the number of all /6 {1, ..., m} such that i 
divides n. 

As it follows from the results and remarks of this paper, every simple semimodule 
over a commutative semiring with at most two generators is of cardinality 
We shall end this paper with the following open problem. 

P rob lem. Let R be a finitely generated (or countable) commutative semiring 
and let M be a simple ü-semimodule. Is it true that Card (M)^28»? 
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Mal'cev conditions for regular and weakly regular 
subalgebras of the square 

JAROMlR DUDA 

1. Introduction. At the beginning of the seventies, Mal'cev conditions char-
acterizing varieties of algebras with regular congruences were given by B. C S A K A N Y 

[ 3 ] , [ 4 ] , G . G R A T Z E R [7 ] , and R. W I L L E [ 1 6 ] . Recently, algebras with regular tolerances 
(=compatible symmetric and reflexive relations) were introduced and a Mal'cev 
condition for varieties of algebras with regular tolerances was derived by I. C H A J D A 

[2]. Since the concept of regularity can easily be extended for other sorts of compatible 
relations we have also varieties of algebras with regular compatible reflexive relations 
and varieties of algebras with regular quasiorders (= compatible transitive and reflex-
ive relations). The aim of this paper is to show that all the above mentioned varieties 
form exactly two well-known classes of varieties. Moreover, Mal'cev conditions for 
these two classes of varieties simplify the Mal'cev characterizations presented in 
some former papers. In the second part of this paper, analogous results for weakly 
regular subalgebras of the square are derived. 

2. Algebras with regular subalgebras of the square. Throughout this paper, the 
same symbol stands for an algebra and its base set. Let A be an algebra and let S 
be a subset of the square AxA. We denote by 

R(S) the compatible reflexive relation on A generated by S; 
T(S) the tolerance on A generated by 5; 
Q(S) the quasiorder on A generated by S; and 
[a]5" the subset {x£A; (a, x)£ S}, where a is some element of A. 

Notice that [a]S is called a class of S. The rest of this section is formulated in terms of 
compatible reflexive relations only; for tolerances, quasiorders, and congruences the 
Definition and the Lemma below are modified in an evident way. 

De f in i t i on . We say that an algebra A has regular compatible reflexive relations 
if any two compatible reflexive relations coincide whenever they have a class in corn-

Received June 15, 1981. 



30 Jaromir Duda 

mon. A variety V of algebras has regular compatible reflexive relations provided each 
algebra A£V has this property. 

Lemma. For any algebra A, the following conditions are equivalent: 
(a) A has regular compatible reflexive relations; 
(b) For every compatible reflexive relation *F on A, !F=./?({a}x[a] P) holds for 

any element a of A; 
(c) For every compatible reflexive relation ¥ on A and for each element a of A, 

*F=R({a}xB) holds for some subset BQA. 

Proo f . (a)=*(b). Apparently, for any compatible reflexive relation f on A, 
{a} X [a] V ^R({a} X [a] f ) g f hold and thus also [a] ( {a} X M f ) i [a] i? ( {a} X 
X[a]!P)g[0]!P. However, [a]({a}x[a]ï /)=[a]ï /, which implies [a]i?({a}x[a] f ) = 
=[a] f . By applying the hypothesis, the equality f=J?({a}x[a]!P) follows. 

(b)=>(a). If T and 4> are two compatible reflexive relations on A with the same 
class [a]V=[a]<I> then î '= i ({a}x[a ] ï ' )= i i ({ i i}x[ f l ]$ )=$ . 

(b)=>(c) is trivial. 
(c)=>(b). It is enough to verify the inclusion !f g7î({a}x[a] if). By hypothesis, 

R({a}xB) = W holds for some B and so we have {a}x5gi?({a}x£) = Y- This 
yields B^[a]W and the conclusion xP = R({a}xB)<gR({a}x[a]xI') follows. 

3. Varieties with regular subalgebras of the square. The main fact we will need 
about varieties with regular congruences is the following 

Theorem 1 (B. C S Á K Á N Y [3]). For any variety V, the following conditions are 
equivalent: 

(1) V has regular congruences; 
(2) There exist ternary polynomials pl3 • ••,/>„ such that 

(z = pt(x, y, z), 1 S i S il) o x = 

In [5] we announced 

Theorem 2. For any variety V, the following conditions are equivalent: 
(1) V has regular and permutable congruences; 
(2) V has regular tolerances; 
(3) V has regular compatible reflexive relations; 
(4) There exist ternary polynomials pt, ...,pn and an (n+3)-ary polynomial r 

such that 

x = r{x, y, z, z, ..., z), y = r(x, y, z, Pi(x, y, z), ..., p„(x, y, z)), 
z - Pi(x, X, z) for 1 Sis/1. 

Proo f . ( 1 ) = > ( 3 ) follows directly from the Theorem of H . W E R N E R [ 1 1 ] . 
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(3)=>(4). Let F3(x,y, z) be the free algebra in V with free generators x, y, z. 
The compatible reflexive relation R(x, on F3(x, y, z) is finitely generated, so by 
Lemma (c) from Section 2 there is a finite subset {pt; y, z) with 
the property y)=R({z}x{pi; lSi^n})=R({(z, p(); l^i^n}). Now, con-
dition (x, y)£R({(z, p^; 1 ^i^n}) yields 

X = Q{Z,...,Z) a n d y = Q(PI, P„) 

for some n-ary algebraic function g over F3(x, y, z) and thus there are ternary poly-
nomials ply ...,pn and an (n+3)-ary polynomial r such that 

x = r(x,y,z,z,...,z) and y = r{x, y, z, pt(x, y, z), ..., p„(x, y, z)). 

Finally, the identities z=pi{x,x,z), l^i^n, follow immediately from the above 
equality R(x, y) = R({(z,Pi); 1 =§/=£«}). 

(4)=>(1). Regularity: Apparently, the ternary polynomials pi,...,pn satisfy 
condition (2) of Theorem 1, i.e., V has regular congruences. 

Permutability: It is easily seen that p(a,b,c)\=r{c,a,b,p1(b,a,b), ..., 
..., p„(b, a, b)) is the well-known Mal'cev polynomial and thus, by [10], the permu-
tability of V follows. 

(1)=>(2) again by [15]. 
(2)=>(1). Similarly as in the proof (3)=>(4), the formula 

T(x, y) = r ( { z } x {pr, 1 i sS n}) for some {pt; 1 S i ^ n} g F3(x, y, z) 

implies the existence of ternary polynomials px, ...,Pi, and of a (2n+3)-ary polyno-
mial t with 

x = t(x, y, z, z, ..., 2, px(x, y, z), ..., pn(x, y, z)), 

y = t(x, y, z, pt(x, y, z), ..., p„(x, y, z), z, ..., z), and 
Z = Pi(x, x, z) for 1 ^ i ^ n. 

Now, the regularity of Kis trivial since any congruence is a tolerance; the permuta-
bility of V is entailed by the Mal'cev polynomial 

p(a, b, c) := t(c, a, b, p1 (b, a, b), ...,pn(b, a, b), (c, b, b), ...,p„(c, b, b)). 

In this way, varieties with regular tolerances and also varieties with regular com-
patible reflexive relations are sufficiently described. For varieties with regular con-
gruences and for varieties with regular quasiorders, the following theorem holds. 

T h e o r e m 3. For any variety V, the following conditions are equivalent: 
(1) V has regular congruences; 
(2) V has regular quasiorders; 
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(3) There exist ternary polynomials p1, ..., p„ and (n+3 )-ary polynomials r1, ..., rk 

such that 
x = r1(x,y,z,z,...,z), 

fj(x, y, z, Pl(x, y, z),..., pn(x, y, z)) = rj+1(x, y, z, z, ..., z) for 1 Sj-^k, 

y = rk(x, y, z, Pl(x, y, z), ..., pn(x, y, z)), 

Z = Pi(x, x, z) for 1 SiSn. 
Proof . (1)=>(2). By Theorem 3 of J. H A G E M A N N [9; p. 11], varieties with reg-

ular congruences are n-permutable for some «>1. Then, using Corollary 4 of 
J. H A G E M A N N [9; p. 7], quasiorders coincide with congruences. 

(2)=>(3). The identities (3) are derived from the formula 

Q(x, y) = Q({z}x {pt; U i s „}) for some felsi^nji F3(x, y, z) 

in a similar way as above. 
(3)=>(1). Evidently, the polynomials plt ...,p„ satisfy condition (2) of Theorem 

1, i.e., V has regular congruences. 

Remarks , (i) As it was already noted in [13], [14], congruence regularity and 
congruence permutability are independent conditions. 

(ii) The Mal'cev condition from Theorem 2 simplifies the identities given in [1] 
and [2]. 

(iii) Part (3) of Theorem 3 is a slightly improved version of [3; p. 188]. 

4. Varieties with weakly regular subalgebras of the square. Let V be a variety 
having distinguished nullary operations clt ..., cm. We say that V has weakly regular 
congruences with respect to ci, ..., cm if [cj@ = [cj W, Isi^m, imply 6> = f for 
any two congruences 0 and !? on A£V. Analogously we introduce the concept of 
Aarieties with weakly regular tolerances, with weakly regular compatible reflexive 
relations, etc. This Section contains the variations on theorems of Section 3; the 
proofs are very similar to those of Section 3, so they can be omitted. For brevity we 
denote the sequences cf, ..., ct (n times) and qn(x, y), ..., qin(x, y) by cf and ¿7.7(x> y) 
respectively. 

Weakly regular varieties were first investigated by K . F I C H T N E R ; the following 
theorem is a paraphrase of his result [6; Theorem 1 (I), (IV)]. 

Theorem 4. For any variety V with nullary operations c1} ..., cm, the following 
conditions are equivalent: 

(1) V has weakly regular congruences with respect to cx, cm; 
(2) There exist an integer n^l and binary polynomials qtJ, I s i s m , 1 

such that 
(c,- = qu(x, y), 1 ^ i ^ m) o x = y. 
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Example . The variety of implicative semilattices (see, e.g., [11], [12] for this 
concept) has weakly regular congruences with respect to the nullary operation 1: 
For n=2, qn(x, y)=x*y, q12(x, y)=y*x, we have (l=x*y=y*x)-ox=y. 

T h e o r e m 5. For any variety V with nullary operations Cj, ..., cm, the following 
conditions are equivalent: . 

(1) V has permutable and weakly regular congruences with respect to cly ..., cm; 
(2) V has weakly regular tolerances with respect to c1; ..., cm; 
(3) Vhas weakly regular compatible reflexive relations with respect to clt ..., cm; 
(4) There exist an integer n^l, binary polynomials q(j, l s / s m , l s / s « , 

and an (mn+2)-ary polynomial w such that 

x = w(x, y, c l s ..., cm), y = w(x, y, qu(x, y), ..., qmJ(x, 7)), 

Ci = qi}{x, x) for 1 s i s m. 

Theorem 6. For any variety V with nullary operations clt ..., cm, thé following 
conditions are equivalent: 

(1) V has weakly regular congruences with respect to c l5 ..., cm; 
(2) V has weakly regular quasiorderS with respect to clt ..., cm; 
(3) There exist integers n,k^ 1, binary polynomials qtj, l^i^m, l ë / ë « , and 

(mn+2)-ary polynomials Wj, ..., wk such that 

x = Wj(x, y, cl5 ..., cm), 

wh(x, y, q^-ix, y),..., qmJ(x, y)) = wh+1(x, y, c l 5 . . . , cm) for 1 s h < k, 

y = wk(x, y, q^ix, y),..., qmj{x, y% 

. = qu(x, x) for 1 áiSm. 
Remarks , (i) The implication (1)=>(2) is again a direct consequence of Theo-

rem 6 and Corollary 4 from [9]. 
(ii) Part (3) of our Theorem 6 improves the identities exhibited in [6; Theorem 2]. 
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Tolerance trivial algebras and varieties 

IVAN CHAJDA 

Tolerances on algebras and varieties were studied in many papers, see e.g. [1], 
[4], [5], [6] and numerous references there. An importance and suitability of tolerances 
in algebraic constructions mainly for congruence investigations was shown in [2], 
[3] and [10]. In particular, the paper [10] uses the concept of tolerance trivial algebra 
for characterizations of order polynomial completeness of ordered algebras. The aim 
of this paper is to give necessary and sufficient conditions under which (principal) 
tolerances and (principal) congruences on a given algebra coincide.. 

0. Preliminaries. Let 91=04, F) be an algebra. A binary relation R on A, 
i.e., RQAxA, has the substitution property (briefly SP) on 21 if for each n-ary, 
/ € F we have {f{a1;..., a„), f(bu ..., bn))iR whenever (at, bt)£R for i = l , ...,«. 
in other words, it is a subalgebra of the direct product 91x91. 

A tolerance on an algebra 91=(A, F) is a reflexive and symmetric binary rela-
tion on A having SP (on 91). Denote by LT(9t) the set of all tolerances on 9T. Clearly, 
LT(91) is a complete lattice with respect to set inclusion [4]. Denote by V the join in 
LT(91). The meet evidently coincides with set intersection. Let a, b£A. By T(a, b) 
is denoted the least tolerance of LT(91) containing the pair (a, b). It is called a 
principal tolerance (generated by {a, b)). The principal congruence generated by 
(a, b) will be denoted by © (a, b). 

The following lemma is clear (see e.g. [4]): 

Lemma 1. For every algebra 91 and each T£LT(91), 

T=V{T(a,b); (a,b)£T). 

The next lemma is proved in [1] (see also [2]): 

Lemma 2. Let 9 l=(A, F) be an algebra and a^bfiA for i= 1, ...,«. Then 

(x,y)eV{T(ai,bd; i = l,...,n} 
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if and only if there exists a 2n-ary algebraic function q> such that 

x = (р(а1г..., a„, 2>j, ..., b„), у = <p{bx,..., bn, alt ..., a„). 

As usual, Con (21) denotes the congruence lattice of 21. Although every con-
gruence is a tolerance, in general, Con (91) is not a sublattice of LT{41) (see Section 
3 below). 

1. Tolerance trivial varieties. Definition. An algebra 21 is (principal) tolerance 
trivial if every (principal) tolerance on 91 is a congruence. A variety У of algebras is 
(principal) tolerance trivial if each Ш{У has this property. 

H . W E R N E R [ 1 1 ] proved that for each algebra 9 1 in a variety У every reflexive 
binary relation having SP on 21 is a congruence on 21 if and only if the variety У 
is congruence permutable. Hence congruence permutable varieties are tolerance 
trivial. The following theorem shows that also the converse statement is valid: 

Theorem 1. For a variety У of algebras, the following conditions are equiva-
lent: 

(1) У is tolerance trivial; 
(2) У is congruence permutable. 

P r o o f . Taking into account Werner's theorem [11] mentioned above, it re-
mains to prove only (1)=>(2). Let f " be a variety of algebras and 2Í—F3(x, y, z) 
the У-free algebra with the set of free generators {x, y, z}.-Since (x, y)£T(x, y), 
(y, z)€T(y, z) and, by (1), all tolerances are transitive, we obtain (x, z)£T(x, y)V 
УТ(у, z). By Lemma 2, there exists a 4-ary algebraic function <p over У such that 
x=(p(x, у, y, z), z=(p(y, x, z, у). Since 2l=F3(x, y, z), there exists a 7-ary poly-
nomial p over У such that 

X2, x3, Xt, X, y, z), 

i.e. x=p(x, у, y, z, x, y, z), z=p{y, x,z, у, x, y, z). Evidently, t(x, y, z) = 
=p(x, y, z, y, x, y, z) is the Mal'cev polynomial, i.e., t(x, x, z)=t(z, x, x)=z, 
whence У is congruence permutable. 

2. Principal tolerance trivial algebras and varieties. Clearly, every tolerance trivial 
algebra is also principal tolerance trivial (but not vice versa). However, a characteriz-
ation of principal tolerance trivial varieties and algebras is more complicated than 
that of tolerance trivial varieties. 

P ropos i t i on 1. If an algebra 21=(A, F) is principal tolerance trivial, then 
for each x, yd A there exist binary algebraic functions ф2 such that 

<l) Т(х,у)ЗТ(ф1(х,у),Мх,у)); 
(2) if (х,у)£в(а,Ь), then у)=ф1(ф1(а, b), ф2(а, b)) and 

Ых, b), b)). 
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P roo f . If (x, y)£0(a, b)=T(a, b), by Lemma 2 there exists a binary algebraic 
function <p over 91 such that x=<p(a, b), y=<p(b,a). Put «/^(xi, x^)=<p(x1, x^), 
i h ( x i , x2) = cp(xz, Xj). Hence x-fa(a, b), y-\j/2(a, b) and 

fa(x, y) = </»(*> y) = b), \j/2(a, b)), 

fa(x, y) = (P(y, x) = fa(fa(a, &), <Ai(a, &)), 

proving (2). Moreover, 

(fa (*> (*> j)) = <9 (*, j), <P O, *)>£ n*> j)> 
whence (1) is evident. 

Now, we give a sufficient condition for principal tolerance triviality in a form 
closely connected with that of Proposition 1. 

P ropos i t i on 2. Let 91=(A, F) be an algebra such that there exist binary 
algebraic functions , ij/2 over 91 with 

(1) T(x,y) = T(fa(x,y),fa(x,y))l 
(2) if (x, y)£ 0 (a, b), then there exists a binary algebraic function <p over 91 

such that il/1(x,y) = (p(ij/1(a,b),il/2(a,b)) and ih(x, y)=cp[}j/2(a,b), ^(a, b)). 
Then 91 is principal tolerance trivial. 

Proof . Clearly T(a, b)Q0(a, b) for each a,b£A. Prove the reverse inclu-
sion. Let (x,y)£0(a,b). By (2) and (1), we obtain 

(fa(x, y), fa{x, JO) = (<pOAiO, b), i¡/¡¡{a, b)), q> (i¡/2(a, b), fa (a,'&))>€ 

£T{fa(a,b),fa(a,b)) = na,b), 
i 

hence, by (1), T(x, y) = T(fa(x, y), fa(x, y))QT(a, b), which implies (x, y)€ 
€ n o n -

coronary 1. The variety of all distributive lattices is principal tolerance trivial 
but not tolerance trivial. 

Proof . By Theorem 1 (or by [6]), "V is not tolerance trivial. We prove by Prop-
osition 2 that "V is principal tolerance trivial. Put fy-iix, y)=xAy, y)=x\jy. 
Let reLT(9I) for 9l€*". If (x, y)£T, then also (x, x\Jy) = (x\Jx, x\y)^T and, 
analogously, (y, x\Jy)d T. Hence 

<xA y, xV y) = (xA y, (xV y)A (*V j)>€ T. 

Conversely, Jet (xAy,x\jy)£T. Then <x, x\Jy) = (x\](x,\y), x\j(x\jy))iT and, 
similarly, (y, x\Jy)dT, i.e., (x\jy,y)£T. Hence 

(x,y)=(xt\{xVy),{x\iy)\y)$.T. 
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Accordingly, T(x, y) = T(x/\y, x\Jy) is proved, i.e., \p2 satisfy (1) of Proposi-
tion 2. 

By [8], {x,y)£Q(a,b) if and only if 

x A j = [(aAb)V(xAj)]A(xVj) and xVy = [ (aVt)V(*Ay)]WxVy) . 

Putting (p(Xi, x2)=[x1y(xAy)]A(xVy) we have immediately (2) of Proposition 2 
which finishes the proof. 

Now, we give a characterization of principal tolerance trivial algebras based on 
a description of ©{a, b) by Mal'cev's lemma (see [9]) and that of T{a, b) by Lemma 2: 

Theorem 2. For an algebra 11=(A, F), the following conditions are equiv-
alent: 

(1) 21 is principal tolerance trivial; 
(2) for each a, b£ A and for all unary algebraic functions zlt ..., T„ over 21, if 

{x,(FL), T , ( B ) } N { T L + 1 ( F L ) , r i+1(b)} * 0 for i = 1, ..., n-1, 

then there exists a binary algebraic function (p over 21 such that t 1(d)=cp(a, b), 
?„(b)=(p(b, a); 

(3) For each a, b£A and for all binary algebraic functions (plt(p2 over 21, if 
q>i(b, a)=(p2(a, b), then there exists a binary algebraic function ty over 21 such that 
ip{a,b)=çl{a,b), ij/(b,a) = (p2(b,a). 

Proof . (2)=>(1). Let a,b£A, (x, y)£0(a, b). By Mal'cev's lemma (see [9] 
or [7]), there exist elements e0, ..., e„£A and unary algebraic functions (so called 
translations) T1,...,X„ over 21 such that { T , ( A ) , TJ(6)}={e J_1 , e,} for / = 1, .. . ,«, 
and either {^(fl), x„(è)}= {x, j } or {^(è), r„(a)}= {x, y}. By (2), there exists a 
binary algebraic function q> over 21 such that x—q>(a, b), y=<p(b, a), whence 
(x, y)ÇT(a, b). The reverse inclusion in evident. 

(3)=>(1). Let (x, y)£T(a, b), (y, z)£T(a, b). By Lemma 2, there exist binary 
algebraic functions <pt, <p2 over 21 such that (x, y)=(<p1(a, b), (Px(b, a)), (y, z)= 
= <<Ma> b), <p2(b, a)). By (3), (x, z)=(\p(a, b), i¡/(b, a)), whence (x, z)e T(a, b), 
proving the transitivity of T(a,b), i.e., T(a, b)=0(a, b). 

(1)=>(3). If {cpXa, b), <Pi(b, a)}— {Cj, C(+i} for i—1,2, then, by Lemma 2, 
(cuc2)£T(a, b), (c2, c3)eT(a, b). Since T(a,b)=G(a,b), also (clt c3)£T(a, b) 
and (3) is an easy consequence of Lemma 2. 

(1)=>(2) is analogous to that of (1)=>(3), only the Mal'cev's lemma is used instead 
of Lemma 2. 

The situation can be essentially simplified for a variety having a uniform restricted 
congruence scheme (for the definition, see [7]) and such principal tolerance trivial 
varieties can be characterized by a Mal'cev condition: 
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Theorem 3. Let "V be a variety of algebras having a uniform restricted congru-
ence scheme {p0, ...,/>„; /}. The following conditions are equivalent: 

(1) V is principal tolerance trivial; 
(2) There exists a 6-ary polynomial q over "V such that 

, Xi, x0, xt, y0, ; X<), Xl> JV Jl). 

q(xj, x0, x0, XI, y0 j j ) = pn(Xi-f^, x0, xlt jo, Ji). 

Proo f . (l)=>-(2). Let {/?„, ...,pn;f} be a restricted congruence scheme satis-
fied by "V. Let 2161̂ " be a -free algebra generated by the four-element set of free 
generators (x0, x1; y0, yx). Then (y0, y^0(xQ, x t) if and only if (see [7]) 

.Fo = Po(x/(o)> xo> xit Jo> yd, 
Pl(x1-m,X0,X1,y0,y1) = Pi + l ^ / f i + l ) , ^ , ^ ! , ^ , for i = 0, ..., n - 1 , 

yi = A. (*1-/(«)> X0, Xu y0, Ji). 
According to (1), <>'0, yi)£T(x0, x j , i.e., Lemma 2 yields the existence of a binary 
algebraic function cp over "T such that yo=<p(x0, yi = <p(x1, x0). Since 21 is a 
y-free algebra with generators xQ, xx, y0, ylt there exists a 6-ary polynomial q with 

<P(x, y) = g(x, y, x0, x l 5 y0, Ji) 

whence (2) is evident. 
The converse implication (2)=>(1) is a direct consequence of Lemma 2. 

3. Tolerance lattices of principal tolerance trivial algebras. It is easy to charac-
terize whether the congruence lattice is a sublattice of the tolerance lattice for a 
principal tolerance trivial algebra: 

Theorem 4. Let 21 be a principal tolerance trivial algebra. The following 
conditions are equivalent: 

(1) Con (21) is a sublattice of £7X21); 
(2) 21 is tolerance trivial, i.e., Con (2I)=/T(2I). 

P roo f . (2)=>(1) is trivial. To prove (1)=>(2), let T£LT(21). By Lemma 1, . 
T is the join of the tolerances {T(a, b); (a, b)£ T). Since 21 is principal tolerance 
trivial, Tis the join of the congruences {0(a, b); (a, b)£T) in LT(21) and, by (1), 
also in Con (20; thus 7^ Con (21), proving Con (2l)=Z,r(2l). 

Coro l l a ry 2. Let V be a principal tolerance trivial variety. The following con-
ditions are equivalent: 

(1) For each Con (21) is a sublattice of LT($t); 
(2) "V is congruence permutable. 

This is a direct consequence of Theorems 1 and 4, 
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On classes of ordered algebras and quasiorder distributivity 

GÁBOR CZÉDLI and ATTILA LENKE HEGYI 

0. Introduction. Many kinds of partially ordered algebras have appeared in the 
literature so far, for example partially ordered groups, rings, fields, etc. In some cases 
all the fundamental operations were supposed to be monotonic, but in some others 
there are operations having only special monotonity domains; moreover, some opera-
tions may be order reversing (or „antitone") with respect to a (may be the whole) 
part of their variables. (See F U C H S [ 5 ] , [ 6 ] . ) There is no doubt that one gets the most 
general concept, if one imposes no assumption on the monotonity or antitonity do-
mains of the operations. But then it seems to be hopeless to develop such an elegant 
(or at least approximately so elegant) theory, as the theory of varieties, equational 
logic, Mal'cev conditions, and so on. The circumstances for obtaining such results 
become far more advantageous if we require all operations to be monotonic in all of 
their variables. So we accept the following definition (the exact origin of which is not 
known for us): 

De f in i t i on 0.1. By a partially ordered algebra (in the sequel simply ordered 
algebra) we mean a triple 21=(A; F, =), where (A; F) is a universal algebra, ^ is a 
partial ordering on A, and all the operations / € F are monotone with respect to this 
ordering. (If there is no danger of confusion, we shall simply say „ / i s monotone".) 

Note that, according to this definition, partially ordered algebras are essentially 
the same as the algebras in the category of partially ordered sets (see F R E Y D [ 4 ] , 

PAREIGIS [ 9 ] ) . 

In our work we make an attempt to give a unified theory for these algebras, 
using such concepts as subalgebras, direct products, homomorphic images, subdirect 
decompositions, congruences, inequalities, Mal'cev conditions. 

1. Basic concepts and facts. In this section we remind the reader of the concepts 
of homomorphisms, subalgebras, direct and subdirect products, and then we define 
two kinds of congruences. 
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The operations on subalgebras and direct products are given as usual, the ordering 
is restricted to the subset in question and is understood componentwise. It would be 
possible to define subalgebras such that the ordering on them is obtained by weaken-
ing the restricted ordering, but we need not use such subalgebras, so we do not allow 
them. This agreement will seem to be natural after investigating varieties and their 
Birkhoff-type characterization, due to S . L. B L O O M [1]. 

By a homomorphism we mean a monotone, operation-preserving map from one 
algebra to another. A homomorphism (p: 91—© is said to be a Q-homomorphism, 
if the ordering of S restricted to Im cp cannot be weakened so that (p remains still 
monotone and the operations on Im cp remain still isotone („isotone" is used as a 
synonym for „monotone"). (It would be possible to describe g-homomorphisms 
constructively, but since it is straightforward from the proof of Theorem 1.1 below, 
it will be omitted.) 

S is a homomorphic image (resp. Q-homomorphic image) of 91, if there exists a 
surjective homomorphism (Q-homomorphism) 91—S. 

Def in i t i on 1.1. A binary relation 0 over A will be called an order-congruence 
of 21, if the following hold: 

(i) 0 is a congruence on (A; F); 
(ii) whenever for some natural numbers n,m and elements a,b, alt ...,a„-1, 

bx, we have 

a 0 f l x S a20 a3 S ...a„ = b 0 bt S b2 0 b3 S ...bm = a, 

we always have also a0b. (The sequence of elements of this form is a 0-circle with 
distinguished elements a, b.) 

It is clear, that finitely many 0-circles (with fixed distinguished elements) can 
always be unified so that they have common n and common m, moreover, n and m 
can be required to be equal. 

For a homomorphism (p: 91—© let Kcr <p denote the kernel of <p, i.e. the rela-
tion {(a, b)£A2\a(p=b(p}. The proof of the following theorem can also be found in 
[3], so here we give only the necessary construction. The theorem justifies Defini-
tion 1.1. 

Theorem 1.1. 0 is an order-congruence ofH i f f 0 =Ker q> for some homo-
morphism cp: 91—23 (SB is an ordered algebra of the same similarity type), or equiv-
alently, 0 = Ker cp' for some surjective Q-homomorphism cp': 91 —S'. 

P r o o f . The „if" part is obvious. Assume 0 is an order-congruence, and consi-
der the ordered algebra (A/0; F, where (A/0; F) is the corresponding 
quotient algebra, and 

[a]0 ^[b]0 iff fl0fl1Sa!0fl3S...a„ = i) for some n and -alt ..., an_^A. 
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Then the natural map a>-+[a] 0 is a surjective O-homomorphism onto the con-
structed ordered algebra (which will be usually denoted by 21/0). 

However, the order-congruences or, what are the same, the kernels of homomor-
phisms are not sufficient to reproduce the corresponding homomorphic images in the 
case when the homomorphisms are surjective, unless they are g-homomorphisms. 
But we need also homomorphic images, which are not g-images. So it is desirable to 
introduce such relations on the ordered algebras, which enable us to describe all 
homomorphic images completely. The following definition can be found implicitly 
i n B L O O M [ 1 ] . 

Def in i t i on 1.2. Let <p: 21—23 a homomorphism. By the directed kernel of <p_ 
we mean the relation 

Ker <p = {(a, b)£A2\aq> S bcp in 8}. 

The isomorphisms are those homomorphisms having a two-sided inverse map, 
which is also a homomorphism. 

It is obvious that knowing Ker (p for a surjective homomorphism (p, we can 
construct — up to isomorphism — the corresponding homomorphic image, thanks 
to the fact that Ker <p determines on Im <p the equality, the ordering and the opera-
tions, as well. 

The directed kernels can be characterized as follows: 

Theorem 1.2. A binary relation 0 over A is the directed kernel for some homo-
morphism o/2l into some ordered algebra if and only if 0 is a quasiorder compatible 
with the operations, which extends the ordering of 21 (i.e. a^b implies a0b). 

P r o o f . The „only if" part is trivial; for the converse let us consider the relation 
$ = 0 P l 0 _ 1 . It is easily seen, that 4> is an order-congruence; let [a] <PS[¿] <Z> iff 
a0b. Then S is a (well-defined) partial ordering on A/<P preserved by the operations 
of the quotient algebra. Now obviously 0 = K e r rj with rj the natural map a>—-[a] $ 
onto (A/4>; F, (The latter need not be equal to 2I/4>!) 

(Note that Bloom called such quasiorders „admissible preorders".) 
Let us denote the ordered algebra constructed in the previous proof by 21/0. 

We essentially proved also 

Theorem 1.3 (Homomorphism Theorem). If <p:2I —8 is a surjective homo-
morphism, then 21/Ker <p = 33, an isomorphism is given by [a] <P>-»a(p, where $ 
denotes the order-congruence Ker (p fl (Ker <p)-1. 

Next we investigate the connection between order-congruences and directed 
kernels (in the sequel we refer to the latter simply as quasiorders, as they are quasior-
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ders compatible with the operations, which extend the partial order on the 
algebra). 

P r o p o s i t i o n 1.4. The order-congruences are exactly the relations ©Pi© - 1 , 
where 0 is a quasiorder. 

P r o o f . We have already seen (proof of Theorem 1.2), that the relations © fl 0 
are all order-congruences. Now if $ is an order-congruence, then let 0 be the directed 
kernel of the natural homomorphism of 21 onto the quotient algebra 21/0 (see Theo-
rem 1.1). It is clear that $ = 0 D 0 - 1 . 

If 0 is a quasiorder, then 0 f l 0 _ 1 is called the order-congruence associated 
with 0; cf. B L O O M [1], where it is shown that 0 H 0 - 1 is a congruence in the usual 
sense. The same order-congruence may be associated with distinct quasiorders, as 
trivial examples show. But always there is a smallest among the them: namely, for 
an order-congruence <P the 0 in the proof of Proposition 1.4 is the least quasiorder 
such that = 0 fl 0 - 1 ; call it the quasiorder associated with <t>. It can also be defined 
as the only quasiorder 0 for which the natural map of 21 onto 2 1 / i s a g-homomor-
phism of 21 onto 21/0. 

For every binary relation HQ A2 there is a smallest quasiorder 0 on 21 such 
that HQ0; this is the quasiorder generated by H (denoted by 0(H)), and is equal 
to the intersection of all quasiorders containing H. If H consists only of the pair (a, b), 
then we say that 0 (H) is the principal quasiorder generated by (a, b), and denote it by 
0(a,b). 

T h e o r e m 1.5. The quasiorders of an ordered algebra 21 form an algebraic 
lattice under set inclusion with the universal relation of A as the unit and the ordering of 
21 as the zero. The join V of the quasiorders 0 , is given by 

ver 
a ( V @y)b iff a0yia10y2a2...an-10y b for some elements yer 

a x , . . . , and y1,...,y„£r. 

From now on, this lattice is denoted by Cqu (21) ("compatible quasiorders"). 
The straightforward proof of the next theorem will be omitted. 

T h e o r e m 1.6 (Second Isomorphism Theorem). Let 0 l 5 0 2 be quasiorders on 
SSL with 0\ — 0 2 , and let denote the order-congruence associated with 0t, i= 1,2. 
Then the relation 0 2 on 21/0! defined by 

M ^ S j i ] ^ iff a02b 

is a quasiorder on 21/0! and (2I/01)/02 is isomoprhic 21/02 via the map 
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where <P2 is the order-congruence associated with 02. Hence, the quasiorder-lattice of 
91/0 is isomorphic to the interval [0) of Cqu (91). 

The following statement is equally trivial: 

Theoerem 1.7 (First Isomorphism Theorem). Given an ordered algebra 91, 
a subalgebra 93 o/9l and a quasiorder 06Cqu (91), define [B] = {a£A\a$b for some 
b£B}, where $ is the order-congruence associated with 0 . Let 23 be the subalgebra 
of 91 determined by [5]. Then the mapping [Z>](<iH.8)>->-[i]($f[.B]) is an isomorphism 
between &/(0tB) and 23j(0\[B]). (Here t stands for restriction.) 

Now turn back to considering quasiorders generated by given set of pairs of 
elements. 

P ropos i t i on 1.8. For c,d,a,b£A (c, d)£0 (a, b) if and only if there exists 
a natural number n, unary algebraic functions q1 (x), ..., q„(x) over 91 and a sequence 
c = ult u2, ..., u2n=d of elements of A such that 

(i) M2i^M2i+1 for i = l, ...,n-l and 
(ii) u2i-1—qi(a), u2i=qt{b) for i=l,...,n. 

We omit the easy proof. Of course, if a^b, then 0(a, b) is just the ordering of 
91, as it follows at once from the definition of 0 (a, b), but it also follows from this 
proposition. Replacing (a, b) in (ii) by an arbitrary (vh we get the descrip-
tion of 0(H). 

For every HQ A2 let 0O(H) denote the congruence on (A; F) generated by H, 
and for any congruence 0 of (A; F) let 0 denote the smallest order-congruence of 91 
containing 0 . Then we can state: 

P ropos i t i on 1.9. Let 0 be a congruence of (A; F). Then for any a,b£A, 
a0b if and only if there is a sequence of the form 

a 0 ^ a20 a3 S•..«„= b 0 i)^ b20 b3 ^...bm = a. 

Consequently, 0$(H) is the order-congruence generated by H. 

By means of Proposition 1.9 and the well-known Mal'cev lemma concerning 

0O(H) it would be possible to give an explicit description for 0O(H), but we omit 
this. Obviously, Proposition 1.9 defines also the join of (arbitrarily many) order-
congruences. The formulation and the proof of the analogue of Theorem 1.5 is left to 
the reader (cf. also [3], Proposition 2.2). The order-congruence lattice o/9I is denoted 
by Con (91), and the order-congruence generated by (a, b) is 0 (a, b). 
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Finally, note that the Second Isomorphism Theorem holds also for order-con-
gruences, but in general the First does not, because the ordering of the congruence 
classes is defined by means of certain sequences of elements, and it can happen that 
there is no such sequence between two elements of B inside of B, but there is already in 
[B] (see Theorems 1.1 and 1.7). The corresponding variant of the Homomorphism 
Theorem is true for Q-epimorphisms (of course, replacing Ker by Ker). 

2. Operators on classes of ordered algebras. Varieties. Classes will always consist 
of ordered algebras of the same similarity type. Let I, H, Q, S, P and P s be the 
operators of forming all isomorphic, homomorphic, (7-homomorphic images, sub-
algebras, direct products and subdirect products, respectively (products of empty 
families — with the obvious meaning — are also allowed). A class Jf is a variety 
(resp. Q-variety) provided it is closed under H, S and P (resp. Q, S and P). It is easy 
to check (cf. [1]) that 

Theorem 2.1. For any class JT, HSP(X) is the smallest variety containing X. 

One would expect an analoguous result for g-varieties, but it does not hold in 
general, because the operator inequality S Q s Q S may be false, as it is seen from 
very simple counterexamples (see also the remark at the end of the previous section 
on the First Isomorphism Theorem). The characterization of the Q-variety generated 
by a class in terms of operators is an open problem yet. 

By an inequality of type x we mean a sequence of symbols f ^ g , where f and g 
are -r-terms. The expression "f~g holds in an algebra 21" (or more generally, in a 
class X ) has the obvious meaning. 

There is a BirkhofF-type characterization for varieties (BLOOM [ 1 ] ) : 

Theorem 2.2. A class JT is a variety if and only if X consists exactly of all 
the algebras satisfying a given set of inequalities. 

For any fixed type x, the varieties of type x are in one-to-one correspondence 
with the fully invariant quasiorders (i.e. invariant under all endomoprhisms) of the 
absolutely free t-algebra of rank Xo • From this fact one can easily conclude Bloom's 
four rules for the corresponding „inequational logic": 

(i) t ^ t ; 
(ii) t ^ t 2 and / 2 s r 3 imply t i ^ t 3 ; 

(iii) t ^ t ' f , i=\, ..., n, imply / ( / l 5 ..., ..., 0 for any n-ary opera-
tion symbol / ; 

(iv) /(*!, . . . ,xB)S/ ' (*i . •••»*«) implies t{qi, ..., q„)^t'{qi, ..., qn) for arbi-
trary terms qly ..., qn. (Of course, we are inside of T). 

Now we will consider free algebras over arbitrary posets; they will play an im-
portant role in the investigation of Mal'cev-type conditions. 
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Def in i t i on 2.1. Let X be a class of ordered algebras, £=(<¥; s ) a poset, 
JT, and let Q be a map X—F. g is the free algebra over X in Jf" with the canoni-

cal map Q, if the following hold: 
(i) Q is monotone, and XQ generates F; 

(ii) given any monotone map q>:X —21 into an algebra 2 t h e r e exists 
a (unique) homomorphism ij/: g—Ui such that 

3 is denoted by or simply by ($?*-(£), if we do not want to refer to <? 
explicitly. (Cf. [2] for topological algebras). 

P ropos i t i on 2.3. is unique in the sense that always there is an iso-
morphism £ between g^j(X) and HsfyiX) such that 

In what follows let us call the ISP-closed classes prevarieties. 

Theorem 2.4. If JT is a prevariety, then for any poset X, 0r£-(£) exists with 
some Q. Q is an order-isomorphism onto a subset of F, provided Jf contains a nontrivi-
ally ordered member, or X is trivially ordered and Jf contains an at least two-element 
member. 

P r o o f . The existence of can be seen in the usual way. For the second 
statement let x, y£X, x^=y, and a,b£21, 2t€JT. Then there is a monotone 
map cp: £—21 such that ycp=a, x<p=b. But then xg^yg, otherwise with the if 
of(ii) in Definition 2.1 we would get XQ\¡J^YGIP, i.e. bsa, a contradiction. The third 
statement is obvoius, since in that case we essentially work with usual universal al-
gebras, and the statement simply expresses that g is 1—1. 

So, in the two cases mentioned above, we may think X to be embedded in 
Sjr(X). If X is trivially ordered, then depends only on the cardinality of 
X. We will freely use such notations as b, c), etc. if this will result 
no confusion. 

The structure of 3^(3;) is given very easily, when X is trivially ordered: p^q 
in (where p, q are terms applied to elements of X) iff-the inequality p^q 
is identically true in X . This remark will be frequently used later on. In the general 
case we have no satisfactory description yet. 

3. Subdirect decompositions. For an ordered algebra 2 l=(A; F, s ) , let 
Or (21) denote the ordering of 21, i.e. the relation S . If 21 is a subdirect product of 
the algebras 2If, i£l, then 

A Ker7rf = Or (21), 
i<H 

where jr, is the i tb natural projection. We show that this condition characterizes sub-
direct decompositions. 
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T h e o r e m 3.1. Let 21 be an ordered algebra, ©¡$Cqu(21), i£I, and 
A{®i|?€/}=Or (21). Then 21 is isomorphic to a subdirect product of the algebras 
2 i / e t . 

P r o o f . Themap »//: №->•([«] where 0 t is the order-congruence associated 
with @i, gives the desired isomorphism (for the definition of 21/0 ( see Theorem 1.2 
and the remark after it). 

An ordered algebra is subdirectly irreducible, if in all its subdircct decomposi-
tions some of the projections is in fact an isomorphism, which by the preceding theo-
rem is equivalent to saying that Or (21) is completely meet-irreducible in Cqu (21), 
or in other words, Cqu (21) contains a smallest nonzero element. 21 is called simple 
(resp. weakly simple), provided Cqu (21) (resp. Con (21)) is the two-element chain. 
A simple algebra is always weakly simple, but not conversely. 

The analogue of Birkhoff's subdirect decomposition theorem holds: 

T h e o r e m 3.2 . Every ordered algebra is isomorphic to a subdirect product of 
its subdirectly irreducible quotient algebras. 

P r o o f . The claim follows from the fact that, Cqu (2i) being an algebraic lattice, 
every quasiorder of 2t is the meet of completely meet-irreducible quasiorders, from the 
definition of the orderings on the quotient algebras, and from the preceding theorem. 
For a more direct proof, let us consider for every a, 2>£2i with a a^b a maximal 
quasiorder ¡¡/(a, b) not containing (a, b). Then A {«A b)\a^b}=Or (21), and 
I¡/(a, b)\J0(a, b) is the least nonzero element of Cqu (2t/i¡/(a, b)), from which the 
assertion follows. 

Of course, there are several necessary and sufficient conditions on families of 
quasiorders to determine a finite direct decomposition. We formulate only the simplest 
of them: 

T h e o r e m 3.3. Let 0 X , 0 2 be quasiorders on 21, and let <I\, be the associated 
order-congruences. The correspondence 

defines an isomorphism between 2t and the direct product 2i/0!X2i/02 if and only if 
the following are satisfied: 

(i) 0 iA0 2 =Or(2 I ) ; 
(ii) <l\o <I>2 = <I\o <!>!=i (the universal relation). 

Obviously, (i) implies that <I\/\<I\=(a (the identity relation), but it is easily seen, 
that the latter is not sufficient for (i). 
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4. Conditions in quasiorder-lattices. The analogue of Jonsson's lemma. In this 
section we investigate the analogues of such properties, as («-) permutability and dis-
tributivity of all congruences on every algebra from a class, having so great impor-
tance in the theory of universal algebras. 

P ropos i t ion 4,1. Let X be a prevariety of ordered algebras with a nontriviqlly 
ordered member. Then there exist non-permutable order-congruences on an algebra 
from X. 

Proof . See [3]. 

We shall not deal with the «-permutability of, order-congruences for n>-2, 
because the idea of the proof of the next statement carries over easily. (Cf. [7].) 

P ropos i t ion 4.2. Under the assumption of the above proposition, the n-per-
mutability of quasiorders does not hold in ."/tí. 

Proof . For technical reasons, let n—2m. Assume that the quasiorders 0 — 
= V ®(a2i,a2i+1) and '!>= V ®(a2i+i> %+a) of the free algebra ..., 

I<m i<m 
...,an) are w-permutaWe. Then (a0, a„)€0o4>o0o implies the existence of a 

-v ' n times 
sequence ao=bo<I>b10b2(Pb3...bn^10bn—an. Here bi=qt(a0, ..., a„) for a term qt. 
If i is even, then 

qt(a0, a1,a1, a3> a3, a1, a2, as, a4 , ...)<2> 

®<li +1(«0> «1, «2, «3> «4> •••)®<li +l(«0> «2= «2, «4> «4» •••)• 
Consider the endomorphism £ of ¡y, • which leaves a0 fixed, and sends au+1 and 
a2i+2 to a2¡+2 for every i<m. Then Ker so 

<h(ao> fl2> «2> «4» «4) •••) = o> ai> ai> fl3> fl3> •••)£ — 
- ¿̂ + l(«0. «2» «2! «4> «4> •••)£ = tfi + lOo, «2. «2. «4. «4> •••)• 

Similarly, for i odd we have 

#¡(«1> «1, «3» «3. •••) — + «3» «3> •••)• 

Now let pi(x,y,z)—qi(x>...,x,y,z,...,z) with A* occurring i times for 1 
/?o(x, y, z)=x and p„(x, y, z)—z. Then in X there hold the following inequalities; 

(*) Pi(x, x, z) si pi+1(x, z, z), i — 1, ..., n 1. 
But take elements a~~b in some member of C/f and compute: 

b = p0(b, b, a) pi(b, a, a) sS p^b, b, a) á p2(6, a, a) =S pa(6, 6, a) 
...spn(b, a, a) = a; 

this is a contradiction. (Note, that pt(b, a, a)^Pi(b, b, a) is true by monotonity.) 
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This means that in nontrivially ordered prevarieties the description of the join 
of quasiorders cannot be reduced so that we take sequences of elements of a fixed 
length. 

C o r o l l a r y 4 .3 . Let JT be a prevariety of universal algebras, nfe2 a natural 
number, and suppose that all compatible quasiorders on algebras in Jf are n-permu-
table. Then all these quasiorders are congruences (i.e. are also symmetric). 

P r o o f . Endow all Jf-algebras with trivial order. Considering a pair (a, £>)£ 
€£>£Cqu (21), and defining the pt(x, y, z) as above, we can compute by ( * ) 
(which gives now equations!) and the compatibility of Q: 

b = p0(b, b, a) = p1(b, a, a)gp1(b, b, a) = Pz(b, a, a)QPz(b, b, a) = 

...= pn{b, a, a) — a, from which (b, a)£g follows. 

Fortunately, besides the negative phenomena mentioned so far, there are positive 
facts, too. The concept of quasiorder distributivity of all algebras in a prevariety is 
already useful. The significance of quasiorder distributivity is seen from the next two 
statements. All algebras are ordered algebras of a fixed type. We follow J6NSSON'S 
[8] original proofs mutatis mutandis, keeping also his notations. 

L e m m a 4.4. 7/21 is a subalgebra of Cqu(2I) is distributive and 
SU/cp is subdirectly irreducible, where <p£Cqu (21), then there exists an ultrafilter U 
over I such that U~\A ^q>. (For any filter V over I, V denotes the relation defined 
by xV'y iff {i\x(i)Sy(i)}£V.) 

P r o o f . Obviously, the V" are always quasiorders on (£=]]((£¡¡¡£1). Write 
J" instead of V", if V is the principal filter generated by a subset J of I. Let 
D={J\JQI and /~M=<p}, and let U be a maximal filter contained in D (Zorn's 
lemma applies since I£D). Then £/ ' — U ( J~ \J€ .U) , so U~\A^cp. We show, that 
U is an ultrafilter. For every J,KQI 

(1) I ^ J ^ K and KZD implies J$D, 

and (J[JK)"\A = ( / " M ) n ( A : " M ) , so by distributivity 

(2) tp = <pV({J\JKy\A) = (q>V(jr\A))n((pV(K-\A)) if JUK£D. 

But <p is meet-irreducible, so cp\J{J'\A)—<p or cp\J(K~\A)=(p, i.e. 

(3) JUkeD implies J£D or K£D. 

If U were not an ultrafilter, then we would have /(£ U and U for some JQI. 
Then by (1) and the maximality of U there exist sets K', K"£U such that JCiK'^D 
and (l\J)C)K"<tD. However, K=K'f}K"<iU, so and 
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U ( ( / \ / ) n K ). But this contradicts (3), since the members of the latter union do not 
belong to D by (1). 

Lemma 4.5. (Jonsson-lemma). If JT is a class of ordered algebras, is the 
variety generated by Jf", and all the Cqu(9l), , are distributive, then all sub-
directly irreducible members of "V belong to HSP^CjT), where Py denotes the model-
theoretic operator of forming ultraproducts. Consequently, "V =IP sHSP l /( jT) . 

P r o o f . Every algebra in Y is of the form 9l/<p, where 91 is a subalgebra of a 
direct product [J{<i¡|/'€/}, G ^ J f , and <p£Cqu(9t). If 91 ¡cp is subdirectly irre-
ducible, then for a suitable ultrafilter U over I by the preceding lemma. 
Therefore, 9l/q> is a homomorphic image of 91 (U"\A), and the latter is obviously 
a subalgebra of № {&i\i£I})IU". 

It remains to show, that ^ a n ultraproduct of members of 
J f . We point out, that this is just the ultraproduct of the over the ultrafilter U. 
Indeed, let [f]U denote the equivalence class modulo U of any function /6JJCf 
according to the definition of ultraproduct, and let 0 be the order-congruence asso-
ciated with £T, i.e. O ^ t r n C C T ) - 1 . Now [f]0=[g\0 means that {i|/(i) = 
^g(i)}fM and {i\g(i)^f(i)}£U, which is equivalent to {i\f(i)=g(i)}£U, i.e. 
[/] U=[g] U. From this it follows at once, that the operations are also the same. Let 
[f]0^[g]0, then fU~g (see the proof of Theorem 1.2), which means {'|/(;) = 
— B u t this expresses just the fact that [f]U^[g]U in the ultraproduct. 

Let us mention, that many results of Jonsson's fundamental paper [8] on congru-
ence distributivity can be reformulated and proved for ordered varieties, using 
quasiorders instead of congruences. To work with order-congruences is generally 
more difficult, although not always: for example, the authors succeeded in charac-
terizing order-congruence distributivity of prevarieties in [3] by Mal'cev-type con-
ditions, while for quasiorder distributivity there is no such result yet; there is only a 
criterion in terms of weak Mal'cev conditions (see below). 

5. Characterization of quasiorder-distributivity. Some examples. Now we intend 
to characterize the distributivity of quasiorders in a prevariety by a (weak) Mal'cev 
condition. This characterization will enable us to present some nontrivial examples, 
too. 

Theorem 5.1. Let X be a class of ordered algebras closed under I, S and P 
(i.e. a prevariety). Then the following two conditions are equivalent: 

(i) Cqu (91), the lattice of quasiorders of 91, is distributive for any member 91 
of 

(ii) For any even integer n S 2 there exists a positive multiple k of n/2 such that 
U(n, k) holds in <3f, where U(n, k) is a (strong) Mal'cev condition defined as follows 
((*„, :.., x„) is denoted by x and n/2 by m): 

4* 
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"There exist ((n+\)-ary and (n+2)-ary) terms 

Po(*), Pi 00, •••, pk(x), 

q}(t, x) for 1 & i, j S k, 

rlj(t, x) for 1 S i S / c , i odd, and O s j s f c - 1 , and 

s'j (/, x) for 1 s i, j S. k, i even, 

such that the following inequalities and identities hold: 

p0(x) = x0 , pk(x) = xn, 

Pi-i(x) = qi(x0, x), Pi(x) = q'k(x„, x) for l ^ i s fc, 

x) == qi+1(x0, x) /or 1 S i ^ f c , l S l < / c , 

Pi-i(x) = ri(*o> x), P;(x) = r i . ^ x ^ i , x) for i odd, 1 i =2 fc, 

r'(xaJ+1, x) =§ r{+1(*2J+2 , x) for i odd, l = i = fc, 0 S ; < m , O s / < f e - l , 

j=l(m), where + is understood modulo n so that 0 s 2 j + 2 < n , 

Pi-i(x) = si(x l5 x), pt(x) = s£(x„, x) /or i euen, 1 < i s /c, 

si(x2J, x) S s j + 1 ( x y + 1 , x) /or i euen, 1 < i s f c , 0 1 I < fc, j = /(m), 

w/iere + w understood modulo n so that 0 < 2 j + l S n . " 

P r o o f . Suppose (i) holds, n is an even positive integer, and consider the quasi-
orders a = 0 ( x o , ,r„), j?=0({(xo , *i), (xt, xs), ..., (x„_2, xB-i)}), y=0({(x 1 ,x 2 ) , 
(x3, Xi), ..., (x„-i, *»)}) o n the free algebra + freely generated by 

•••,*»}• Since (xo>*nKaA(0Vy), we have (x0, x„)£(af\P)\J(a/\y) as well. 
Therefore, x0=p0a/\Pp1aAyP2«A^P3^Ay•••Pk=xn holds for some multiple k of 
m and elements Pi=Pi{\) of g. Since (Pi-i, Pi)^a—0(xo, x„), by Proposition 
1.8 there are unary algebraic functions q\(t) on %, which can be considered as (M+2)-
ary terms q\(t, x) such that q\(x0,x)=pi-1(x), q'k(xn, x)=p f(x) and 
q\(x„, x)^q'l+1(x0, x) for 1 Both k and can be enlarged by repeating 
the last terms, whence they can be assumed to be equal. Now all the identities and 
inequalities involving some q\ hold for the generators of therefore they hold through-
out J f . The case of the rf and is a little bit more complicated from technical 
point of view, but can be handled similarly, while p0(x)=jc0 and pk(x)=x„ are 
evidently true in X . 

Conversely, let (ii) be satisfied. Assume 2l£X, a, /?, y€Cqu (91) and (a, fc)£ 
€aA(fiWf)\ then (a, fe)€(aAj5)V(aAv) has to be shown. From the assumption we 
obtain a sequence of the form a=a^axyazPa3y ...pan-xyan—b for some even n; 
moreover a0aatt. Let k be such a multiple of n/2 for which U(n, k) holds in J f . It 
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is sufficient to show that for p0(a0, ..., an)=p0(a) (notation!), />i(a), ...,pk(z) we 
have 

«0 = A>(a) a A/? ^ ( a ) a Ay p2( a) aA0 />3(a) ccAy ...pk{ a) = a„. 

Indeed, /Vi(a) = q[(a0, a)aq[(an, a) si q'2(a0, a)aq'2(a„, a.)^q'3(a0, a)a...si 
32 a)a^(a„, a) =pi(a) yields G?i-i(a), /»¡(a))^, for i odd />,_x(a) = 
= ro(ao, a ) ^ ( a i , a) S r[(a2, a)Pr[(a3, a) a)0r i

k_1(an-1, a) = />,(a) 
implies (pi-xi*), Pi(a))£l}, while (/>i_1(a), />;(a))6y for / even follows similarly. 

Before formulating a corollary to this theorem, two relevant remarks will be 
made. Firstly, the theorem is obviously applicable for any class J f of ordered alge-
bras, containing all free algebras ft^iX) for finite unordered X. Secondly, any uni-
versal algebra can be considered as a trivially ordered algebra. Thus the theorem 
also holds for certain classes (including varieties and prevarieties) of universal 
algebras. In this case Cqu (21) is the lattice of all compatible, reflexive and transitive 
binary relations of 91, and the inequalities in U(n, k) simply turn into identities. 

Coro l la ry 5.2. Let JT be a class as in Theorem 5.1, and let there exist a ternary 
term u(x, y, z) for which the identities u(x, x, y) = u(x, y, x) = u(y, x, x)—x hold 
throughout Jf" (i.e. u induces a majority function on the members of X ) . Then Cqu (91) 
is distributive for any 91 in j f . 

P roo f . It is sufficient to show that U(n, n) holds in X for any even n. Let us 
agree that all the terms p, q, r, s, h, g (with indices) contain at least the variables 
x0,xl3 ...,xn, but, for the sake of brevity, these common variables will not be in-
dicated. First we define p0, ...,p„ and h0(t), ...,h„(t) by induction: 

K(i) = t, p0 = h0(x0), 

= "(p.--1, xn, hi_1(t)), Pi = hi(Xi). 

The terms £i(0> •••> £»(0 a r e determined by 

i i ( 0 = K(t), g f+1(i) = u(gt(t), x„, ft;-i(*,)). 

For l^i^n set qi(t)=q2(t)=... =q'n_1(t)=Pi_1 (so in fact these terms do not 
depend on t) and q'n(t)=u(pi-1, gf(i)> ^¡-lfo))- For /odd, 1 let j=(i—1)/2, 

"4( f ) = ... = r } - i ( i ) = A - i . 

'•}(0 = "(Pi-1. *n> fti-iW), and r)+1(t) =... = r i_ x(i) = Pi. 

For i even, 1 set /=/ /2 , 

si(0 =•••= s}-i(0 = Pt-i, 

s}(i) = u(pi_1,xn, /ij-jCO), and s)+1(J) = . . . = s£(i) = 
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A trivial induction shows that hi(x„)=xa (O^/^n), gi(x„)=xn and gi(x0)=pi_1 

(l^iSn). Thus it is not difficult to check that the terms p, q, r, s (with the corre-
sponding indices) satisfy the identities and inequalities required in U(n, ri). 

We note that it is possible to state and prove an analogous general theorem which 
„translates" every lattice identity holding in all quasiorder-lattices of members in a 
prevariety, similarly as it was done in [3] for order-congruence lattices. This is 
straighforward enough, so we omit it. 

To conclude our paper, we present some examples. Since lattices are ordered 
algebras with their natural orderings and u(x,y, z)=(x [\y)\!(x [\z)\](y t\z) induces 
a majority function on any lattice, Cqu ( i f ) is distributive for any lattice =Sf. To give 
another example which is far from lattice orders, set SH=(A; u, S ) where A = 
— {a,b,c}, u is a ternary majority function such that u(x, y, z)=c provided 
{x, y, z}={a, b, c}, and a<c, are the only comparable pairs of distinct ele-
ments in (A, s ) . Then 91 is an ordered algebra, and any member of HSP(9l) is 
quasiorder distributive by corollary 5.2. 
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Toleranzrelationen als Galoisverbindungen 

H. J. BANDELT 

Über Toleranzrelationen auf Verbänden ist schon einiges geschrieben worden, 
siehe etwa den Überblicksartikel [6] von Ivan Chajda. Ein jüngst verfaßter Aufsatz 
[8] von Gábor Czédli gibt mir einen Anlaß, die bereits bekannten Ergebnisse um den 
im Titel genannten Aspekt zu ergänzen. Ich weiß zwar nicht, ob durch Interpretation 
der Toleranzrelationen als gewisse Galoisverbindungen zwischen Idealverband und 
Filterverband erstere oder letztere besser verstanden werden ; auf jeden Fall bleibt 
— wie eigentlich immer bei Galoisverbindungen — nicht viel zu beweisen. 

Zur Erinnerung sei gesagt, daß mit einer Toleranzrelation f auf einem Verband 
L schlicht ein reflexiver und symmetrischer Unterverband von LxL gemeint ist. 
Bezüglich Inklusion geordnet bilden die Toleranzrelationen auf L einen Verband 
E(L), der in [3] näher betrachtet wurde. Eine Toleranzrelation £ wird am besten durch 
ihre Blockstruktur verstanden ; jede maximale Teilmenge B von L paarweise modulo £ 
toleranter Elemente (also BXBCLÇ) heißt ein Block von Die von allen ¿¡-Blöcken 
erzeugten unteren Abschnitte und oberen Abschnitte bilden jeweils zueinander anti-
isomorphe Verbände von Idealen und Filtern (vgl. [8]). In der Tat wird diese Anti-
isomorphie durch eine Galoisverbindung zwischen Idealverband J ( L ) und Filter-
verband 3P{L) induziert. Es ist dann unschwer zu erkennen, daß der Toleranzverband 
S(L) isomorph ist zu einem gewissen Hauptfilter in dem Tensorprodukt von J(L) 
und ^ ( L ) . Vielleicht bedarf noch das Tensorprodukt M®N vollständiger Ver-
bände M und N einer Erklärung : Eine Galoisverbindung (er, T) zwischen M und N 
besteht aus (einander eindeutig bestimmenden) Abbildungen o\ M—N und 
T: N—M, für die y^xa mit x^yz gleichbedeutend ist. M®N besteht aus allen 
Galoisverbindungen (er, T) zwischen M und N, vertreten durch die Komponenten a. 
M®N ist bezüglich der punktweisen Ordnung ein vollständiger Verband, der sich 
bekanntlich als Verband bestimmter unterer Abschnitte in MX N darstellen läßt 
(eine Menge A heißt unterer Abschnitt, wenn mit jedem ad A auch jedes x S a 
zu A gehört). Hier sind natürlich nur algebraische Verbände von Interesse : 

Received March 9,1982. 
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Hi l f s sa tz . Es seien M und N algebraische Verbände, sowie S und T die zuge-
hörigen Halbverbände der kompakten Elemente. Das Tensorprodukt M®N ist 
isomorph zu dem (bzgl. Inklusion) geordneten System aller unteren Abschnitte H von 
SXT, die den nachfolgenden Bedingungen genügen: 

(i) 5x{0}, { 0 } x r g # , 

(ii) (uAx, vVy), (MV*, vNy)£H falls (u,v), (x,y)£H. 

Beweis. Wie mit Lemma 1.1 aus [1] gezeigt wurde, läßt sich M®N vermöge 
(O-, T ) — { ( X , y)£MxN\y^xo} identifizieren mit dem System der Scott-abgeschlos-
senen unteren Abschnitte G von MxN, die (0, 1), (1, 0 ) und mit (u, v), (x, y) auch 
(u[\x, v\Jy), («Vx, f Ay) enthalten. Es ist klar, daß für jede Menge G mit diesen Eigen-
schaften die Menge H=Gf)SXT ein unterer Abschnitt von SxT ist, der (i) und 
(ii) genügt. Umgekehrt läßt sich jeder solchen Menge H der Scott-Abschluß G=H 
in MX Abzuordnen; H besteht genau aus allen gerichteten Suprema (in MXN) von 
Elementen aus H. Übliches Hantieren mit algebraischen Verbänden (vgl. [10]) führt 
hier zur Einsicht, daß G*-H die gewünschte Isomorphie vermittelt. 

Standardbeispiele algebraischer Verbände sind Idealverbände (bzw. Fil-
terverbände irgendwelcher Verbände L. Die folgende Vereinbarung mag sich 
hier als sinnvoll erweisen: Die leere Menge zählt zu L) (bzw. zu ^ ( L ) ) genau dann, 
wenn L kein kleinstes (bzw. größtes) Element besitzt. Die Dedekind—MacNeille-
Vervollständigung eines Verbandes L wird bekanntlich mittels einer Galoisverbindung 
(t, |) zwischen J(L) und 3?(L) hergestellt; dabei werden einem Ideal I und einem 
Filter F von L der Filter / ' der oberen Schranken von I und das Ideal Fl der unteren 
Schranken von F zugeordnet. Eine beliebige Galoisverbindung (<r, T) zwischen J(L) 
und L) werde tolerant genannt, wenn I" stets V umfaßt (d. h. immer F i Q F z 

gilt). Die toleranten Galoisverbindungen bilden somit in dem Tensorprodukt 
J(L)®!F(L) gerade den von (1, 1) erzeugten Hauptfilter. 

Satz. Für jeden Verband L sind der Toleranzverband S(L) und der Verband der 
toleranten Galoisverbindungen zwischen J?(L) und ^(L) isomorph. 

Beweis. Die kompakten Elemente von L) und ¡F(L) außer der leeren Menge 
bilden einen Verband, der mit L bzw. dem zu L dualen Verband identifiziert werden 
kann. Offenbar ist eine Galoisverbindung (a, T) zwischen ^(L) und genau 
dann tolerant, wenn für jedes Hauptideal (x] der Filter (x]ff jeweils x enthält, d. h. 
wenn die Menge y={(x, y)£LXL\y£(x]"} eine reflexive Relation ist. Der Verband 
der toleranten Galoisverbindungen ist daher aufgrund des Hilfssatzes isomorph zum 
Verband F(L) aller reflexiven Unterverbände y von LxL, für die mit w ^ x , (x, y)£y, 
yS.z stets (w, z)£y gilt. Gemäß [2] ist vermöge y-»yfly_ 1 der Verband T(L) iso-
morph zum Toleranzverband 3(L). 
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Da das Tensorprodukt distributiver algebraischer Verbände wieder distributiv 
ist (siehe [1] oder [12]), folgt aus dem voranstehenden Satz sofort, daß Toleranzver-
bände distributiver Verbände stets distributiv sind (siehe [7], vgl. [4]). 

Für endliche Verbände L ist der obige Satz schon als Lemma 3 in [2] erwähnt 
worden: Der Toleranzverband 3(L) eines endlichen Verbandes L stimmt mit dem Ver-
band der verbindungstreuen Subjektionen (im Sinne von [13], [14], [15]), d. h. der ab-
steigenden residuierten Abbildungen (im Sinne von [5]) überein. Für eine gegebene 
Toleranzrelation £ wird dabei durch die zugehörige verbindungstreue Subjektion a 
jedes Element x abgebildet auf das kleinste Element xa, das zu x tolerant modulo i 
ist. Allgemeiner ergibt sich hier für einen beliebigen Verband L: Die zu einer Tolreanz-
relation £ auf L gehörige Galoisverbindung (er, r) ordnet einem Ideal I den größten 
Filter F—I" (bzw. einem Filter F das größte Ideal / = F t ) zu, so daß /Pi F in einem 
Block von £ enthalten ist. Umgekehrt liefert eine tolerante Galoisverbindung (er, T) 
vermöge {If)F\I=FT, F=I", IC]F^0} die Blöcke der zugehörigen Toleranzrela-
tion £ auf L. Rudimente dieser Beobachtung finden sich auch schon in [8] Theorem 
2. Es mögen und ^ " ( L ) die zueinander antiisomorphen Verbände aller 
Ideale der Form I a t bzw. aller Filter der Form F t a bezeichnen. Die voranstehende 
Beobachtung läßt sich dann auch wie folgt formulieren (und umfaßt somit [8] Theo-
rem 1): Das System L/£ aller Blöcke von £ kann mit dem Unterverband | 
| / f ] / V 0 } von J"(L) identifiziert werden; dieser Unterverband ist vermöge a anti-
isomorph zu ( F £ f l /-V0}. Der sogenannte Faktorverband von L 
modulo £ erbt seine Verbandsstruktur also von dem vollständigen Verband J"(L), 
wobei (c, t) die zugehörige Galoisverbindung ist. Die Art der Einbettung von jL/£ 
in i/"r(L) ist auch schnell geklärt: Die Ideale [x)r und die Filter (x]a liegen infimum-
dicht in bzw. S'za(L). Somit ist supremum- und infimumdicht in Ja1(L), 
d. h. J"(L) ist die Dedekind—MacNeille-Vervollständigung von 

Jeder endliche Verband kommt als Faktorverband eines endlichen distributiven 
Verbandes modulo einer Toleranzrelation vor, siehe [8] Theorem 3. Diese Tatsache 
leitet sich auch schon aus [11] Satz 7.2 ab: Jeder endliche Verband ist isomorph zum 
Skelett eines endlichen distributiven Verbandes. Das Skelett eines modularen Ver-
bandes L endlicher Länge ist nämlich das Bild einer gewissen verbindungstreuen 
Subjektion auf L (siehe [11] Lemma 6.1), also der Faktorverband von L modulo 
einer kanonischen Toleranzrelation (vgl. [3] Theorem 3.1). Ich weiß allerdings nicht, 
ob auch im unendlichen Fall jeder Verband als Faktorverband eines distributiven 
Verbandes modulo einer Toleranzrelation auftritt. 
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¿"-unitary covers and varieties of inverse semigroups 

MARIO PETRICH and NORMAN R. REILLY* 

1. Introduction and summary 

is-unitary inverse semigroups have attracted considerable attention as a result 
of the remarkable work of M C A L I S T E R [5], [6] concerning their structure and proper-
ties. He proved, inter alia, that every inverse semigroup S has an is-unitary cover, 
in the sense that there exists an is-unitary inverse semigroup P and an idempotent 
separating homomorphism of P onto S. Various properties and constructions of is-
unitary covers were further established by M C A L I S T E R and REILLY [7]. On the other 
hand, the lattice of varieties of inverse semigroups as algebras with a binary and a 
unary operation has been the focus of extensive investigations by several researchers; 
we mention only KLEIMAN [ 3 ] , [ 4 ] . 

The purpose of this note is to establish some surprising relationships between the 
two areas of research discussed above, viz., is-unitary covers and varieties of inverse 
semigroups. The main points of our consideration are: (i) which varieties admit is-
unitary covers for their members, (ii) for a given variety of groups "U, which varieties 
of inverse semigroups V have is-unitary covers over in the sense that every member 
S of "T has an is-unitary cover P such that Pjad^U- The class $ of all is-unitary 
inverse semigroups plays an important role in our investigation. 

The content of the paper is briefly as follows. Some preliminary material is 
discussed in Section 2 in order to establish the notation and terminology. Several 
characterizations of varieties with ¿'-unitary covers are established in Section 3. This 
is followed, in Section 4, by a description of subhomomorphisms in terms of homo-
morphisms of inverse semigroups, a result needed in the next section. The principal 
result of the paper, proved in Section 5 along with some consequences, provides sev-
eral criteria for the existence of an ¿'-unitary cover of an inverse semigroup S over 
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a group variety All varieties of inverse semigroups having ¿'-unitary covers over a 
fixed group variety % are described in Section 6 in several ways. The relation v3 

defined on the lattice of varieties of inverse semigroups by: "ttvzY if aUC\g='V C\& 
is discussed briefly in Section 7. 

2. Preliminaries 

We will follow the notation and terminology of H O W I E [ 2 ] . For background con-
cerning inverse semigroups, we also refer the reader to this book. 

Let S be an inverse semigroup. Then S is E-unitary if it satisfies the implication 
xy=y=>x2 = x. The semilattice of idempotents of S will be denoted by Es, the least 
group congruence by a, the universal congruence by co. The closure of a nonempty 
set A of S will be denoted by Aco. An inverse semigroup P is an E-unitary cover of 
S if P is ¿-unitary and there is an idempotent separating homomorphism of P onto 
S", if P/(T=G then P is an E-unitary cover of S over G. 

Let Q be a congruence on S. The set 

ker Q = {s£S\sQe for some e£Es} 

is the kernel of Q, tr Q = g|£s is the trace of Q. The least congruence on S with the 
same trace as q will be denoted by gmin. For a full discussion of these concepts, see 
PETRICH [ 9 ] . The natural homomorphism S-*S/Q will be denoted by If <P: S-*T 
is a homomorphism, we will denote by ker q> the kernel of the congruence on S in-
duced by (p. 

For any nonempty set X, we will denote the free inverse semigroup on X by Ix 

and the free group on X by Gx. The variety of all inverse semigroups will be denoted 
by J , that of all groups by ^ and the lattice of all varieties of inverse semigroups by 
& { J ) . The variety generated by the semigroup S will be denoted by (S). 

For a countably infinite set X and any "f £ £ £ ( J ) , let Q("V") denote the fully 
invariant congruence on I x corresponding to "f. 

3. Varieties with ¿-unitary covers 

The principal result here gives several characterizations of the varieties of inverse 
semigroups which have ¿-unitary covers. These characterizations involve free objects, 
¿-unitary inverse semigroups and the kernel of the corresponding fully invariant con-
gruence on the free object. 

We start with a simple useful result. 
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L e m m a 3.1. Let Q be a congruence on an inverse semigroup S. Then S/Q is 
E-unitary if and only if ker Q is closed. 

P r o o f . Suppose that S/Q is ¿-unitary and let a£(ker Q)CO. Then ea£ker Q 
for some e£Es and thus eaQ(eaf which implies that aoa2 since S/Q is ¿-unitary. 
But then ker Q and thus ker Q is closed. 

Conversely, assume that ker Q is closed, and let xy ox. Then (x~lx)ygx~1x 
so that j£(ker 0)oj=ker g and thus y2gy. Hence S/Q is ¿-unitary. 

The following concept is basic for our considerations. 

D e f i n i t i o n 3.2. A variety •f of inverse semigroups has E-unitary covers if, 
for every S€ f , there is an ¿-unitary cover of S in "V. 

We can now establish the first highlight of the paper. 

T h e o r e m 3.3. The following conditions on a variety ~f of inverse semigroups 
are equivalent. 

(i) "V has E-unitary covers. 
(ii) The free objects in "V are E-unitary. 
(iii) V is generated by its E-unitary members. 
(iv) ker Qi'f) is closed. 

P r o o f , (i) implies (ii). Let F be a "V-free inverse semigroup and S be an ¿-uni-
tary cover for F in "T. There is an (idempotent separating) epimorphism CP: S—F. 
Let XQ F be a set of "V-free generators of F, and let T be a cross section of the con-
gruence on S induced by <p. Define a bijection i¡J:X-*T by x\p = t if t£T and 
tcp—x. Then \j/ extends uniquely to a homomorphism ij/ of F into S. For any x£X, 
we have xi¡/(p=x so that \[/(p is an endomorphism on F which restricts to the identity 
on X. Since X is a set of •F -free generators of F it follows that t¡/cp is the identity map 
on F. But then i¡/ is one-to-one and thus a monomorphism of F into S. Since S is 
¿-unitary, so also is FIJ/. Since i¡/ is a monomorphism, it follows that F is ¿-unitary. 

(ii) implies (iii) trivially. 
(iii) implies (i). Let S(i V. By the general theory of varieties and the hypothesis, 

there exist ¿-unitary inverse semigroups Ta in Y , an inverse semigroup T which is a 
subdirect product of r a ' s and an epimorphism (p: T-+S. Let Q be the congruence 
on T induced by <p. Letting gmin be the least congruence on T with the same trace as Q, 
we obtain the following diagram of epimorphisms: 

T ^ S 

+ 
T/e^—^—T/Q 
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where T: tQmin-»tg (t£T), and Tj/ is an isomorphism. Since g and gm-m have 
the same trace, T is one-to-one on idempotents, that is to say, it is idempotent 
separating. In view of ([10], Theorem 4.2), a gmia b if and only if ae=be and 
e Q a~*a Q b^b for some e£Es. Thus a¡5 emin. This together with the fact that 
T is ¿-unitary implies 

ker gm!n Q ker a = ET 

and thus ker Qm-m=ET=ETa>. This implies by Lemma 3.1 that T/emia is ¿-unitary. 
Since T/Q^ay, we have proved that S has an ¿-unitary cover in "V. 

The equivalence of items (ii) and (iv) follows by Lemma 3.1. 

Remark . Part of Theorem 3.3 has been obtained independently by 
F . P A S T U N [ 8 ] . 

4. Subhomomorphisms 

The results proved in this section contain a description of subhomomorphisms 
in terms of homomorphisms and will be used in the construction of subdirect products 
which in turn will be needed in a construction of ¿-unitary covers. 

We start with a concept which will prove quite useful. 

De f in i t i on 4.1. Let S and T be inverse semigroups. Then a mapping 
(p: S—2T is a subhomomorphism of S into T if, for all s, t£S, 

(i) sq> * 0; 

(ii) (scp) (tip) g (si) <p; 

(iii) s~1q> = (s<p)~\ 

where, for any subset A of T, A~x = {a~i\a^A). 
From (ii) and (iii) it follows that S<p= U {s<p: is an inverse subsemi-

group of T and cp is said to be surjective, if S(p=T. 
If T is a group, then the subhomomorphism <p above is unitary if for any 

s£S, l£s(p implies s£Es. 

The following result will be needed. 

P ropos i t i on 4.2. [7] Let S and T be inverse semigroups and let <p be a 
(surjective) subhomomorphism of S into T. Then 

II(S, T, <p) = {(s, t)£SX T\t£s(p} 

is an inverse semigroup (which is a subdirect product of S and T). 
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Conversely, suppose that V is an inverse semigroup which is a subdirect product 
of S and T and let ip be the induced monomorphism of V into SXT. Then 
q> defined by 

scp = {/er|(s, o e m 

is a surjective subhomomorphism of S into T. Furthermore, Vij/—n(S,T,<p). 
Theorem 4.3. Let R, S and T be inverse semigroups. Let a: R—S bean 

epimorphism and fi:R-*T a homomorphism. Then (p =a-1/? is a subhomomorphism 
of S into T and every such subhomomorphism is obtained in this way. I f , in addition, 
T is a group, then <p is unitary if and only if ker pQ ker a. 

Proof , (i) It is clear that scp^ft (s£S), since a is an epimorphism. 
(ii) Let x£s(p, ydtcp. Then there exist x, y'dR with x'a=s, x'P=x, y'ot = t, 

y'P=y. Hence (x'y')a.—st while (x 'y ' )P=xy and xy£(st)(p. Therefore (s(p)(t<p)Q 
Q(st)q>. 

(iii) With x, x' as in (ii), (x') -1a=.y_1, Hence 
(scp^Qs^cp and conversely. Thus <¡9 is a subhomomorphism. 

Conversely, if <p is a subhomomorphism of S into T, let R=II(S, T, cp). 
Let a.:(s,t)—s and P:(s,t)—t be the projections of R onto S and onto T, 
respectively. Now, (i, t)£R if and only if t£scp while if and only if 
(s,t)£R which gives cp=a.~1p. 

Let T be a group, cp be unitary and r£ker p. Then rp=1 and 1 £(ra)<p. 
Since <p is unitary, ra£Es, r£ker a and so k e r k e r a. Conversely, if this 
inclusion holds and l£sq>, then for some r£R, ra=s and rp=1. Hence r£ker 
g k e r a so that s2=s and <p is unitary. 

The usefulness of Theorem 4.3 lies in the fact that by choosing R appropriately, 
for example to be a free inverse semigroup, it is possible to generate subhomo-
morphisms. This technique will be used in the next section. 

In fact, in order to obtain all subhomomorphisms it suffices to let R range 
over all free inverse semigroups, as we now show. 

P ropos i t i on 4.4. Let 9: S-+T be a subhomomorphism of the inverse semi-
group S into the inverse semigroup T. Then there exist a free inverse semigroup F, 
an epimorphism a.: F-+S, and a homomorphism p.F—T with 0 = a~1P 

Proof . By Theorem 4.3, there exist an inverse semigroup R, an epimorphism 
y:R—S and a homomorphism 5: R—T with d=y~15. Let IR be the free inverse 
semigroup on the set R and let n :IR—R be the homomorphism defined by the 
identity mapping on the set of generators R. Let a=ity, P=n8 and let x£S. 
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If y£xd, then x=zy, y=zd, for some z£R and so, considering z as a generator 
of IR, we have x=zny=za, y=zn5=zfi and so y€xa-1/?. Conversely, if ydxa^fl, 
then x—za=(zn)y, y=zf}=(zn)d, for some z£lR, and so y£xy~13—0. Therefore 
e=<x-'ip. 

5. ¿-unitary covers over a group variety 

The question that we now wish to consider is the following: for a given inverse 
semigroup S, or variety of inverse semigroups "V, and a given group variety 
when will S or every member of "V possess an ¿-unitary cover over some member 
of <U1 

For the purposes of the following discussion, we consider inverse semigroups 
and groups as algebras in the variety of unary semigroups, that is as algebras with 
a binary operation ( f x , y)-~xy) and unary operation x - 1 ) . 

N o t a t i o n 5.1. Let X be a countably infinite set. We denote the free unary 
semigroup on X by Ux. 

Any law in a unary semigroup is of the form u = v, for some u,v£Ux. A con-
struction for Ux was recently given by CLIFFORD [1] . 

For each set X, there exist fully invariant congruences x, X on Ux such that 
Ix and Gx are isomorphic to Uxjx and Uxjk, respectively, since Ix and Gx 

are free objects in their respective varieties. We will identify Ix and Gx with 
Ux\x and Ux\X, respectively. 

N o t a t i o n 5.2. Let X be any countably infinite set. For any variety of inverse 
semigroups "V, let Kr = ker g(Y) and for any variety of groups let Nv 

denote the corresponding fully invariant subgroup of Gx. 

Def in i t i on 5.3. Let f be a variety of groups, S an inverse semigroup 
and Y a variety of inverse semigroups. We will say that S (respectively, V ) 
has E-uniiary covers over if (for every SdY) there is a group for which 
there is an ¿-unitary cover of S over G. 

It follows that "V has ¿-unitary covers if and only if it has ¿-unitary covers 
over "VCYS. 

Recall that an inverse monoid S with a group of units G is called factorizable 
if for each s£S, there exists g£G such that s^g. We will need the following 
results. 

Theorem 5.4. [7] Let G be a group and let S be an inverse semigroup. Let 
F be a factorizable inverse monoid with group of units G which contains S as an 
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inverse subsemigroup. Suppose that, for each g£G, there exists s£S such that 
s^g. Then 

{ ( s , g ) € S x G M g} 

is an E-unitary cover of S over G. Conversely, each E-unitary cover is isomorphic 
to a cover obtained in this way. 

Propos i t i on 5.5. [7] Let S be an inverse semigroup and let G be a group. 
Suppose that <p is a surjective unitary subhomomorphism of S into G. Then 
fl(S, G, (p) is an E-unitary cover of S over G. Conversely, let P be an E-unitary 
cover of S over G with associated homomorphisms a: P—S, fS: P—G and let 
ij/:P—SxG be the induced monomorphism. Then <p defined by 

*<P = g)ePip} 

is a surjective unitary subhomomorphism of S into G and P=I1(S, G, cp). 

We are now ready for one of the main results of the paper. 

Theorem 5.6. Let S be an inverse semigroup, °U be a variety of groups and 
X be a countably infinite set. The following are equivalent. 

(i) S has an E-unitary cover over °U. 
(ii) If u2=u is a law in then it is also a law in S. 

(iii) For all homomorphisms a: IX~*S, AT^Ckera. 

Proof , (i) implies (ii). Let and P be an ¿-unitary cover of S over G. 
By Theorem 5.4, P is isomorphic to an inverse subsemigroup of a factorizable 
inverse monoid F with group of units G. Let u2=u be a law in say u= 
=u(xx, ..., x„). Let ¿i, ..., s„dS. Since F is factorizable, there exist •••, g„dG, 
with s^gi (i = 1,..., n). Then 

"(si> •••> «J ^ "(gi> g„) 

where u(glt ..., gn) is the identity of G, since and u2=u is a law in 
Hence u(slt ...,s„) is an idempotent and u2=u is a law in S. 

(ii) implies (iii). Let u£Ux be such that ux£Ky. Then uk£Nm so that 
u2=u is a law in % and so, by assumption, also in S. Hence, for any homomor-
phism f}:Ux—S, we have u2j?=ujS. In particular, for any a: 7X—S, = 
=u(x$a) or (u2x, ux)dctox~1. Hence kera. 

(iii) implies (i). Let a : I s—S be the homomorphism defined on the generators 
of Is by s—s, let G be the free group in % on the set of generators S and let 
ft: IS-*G be the natural homomorphism. By Theorem 4.3, 9=<x~1f} is a subhomo-
morphism of S into G. Since p is surjective so also is 9. 

We next show that ker p c ker a. The following diagram illustrates the proof. 

5 
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<A> 

Since it will help to clarify the discussion, we will denote by S the underlying 
set of S. 

Let a£ker Then there exists a finite subset A = {x±, ..., x„} of S such that 
a is contained in the inverse subsemigroup (A) of Js generated by A. Let us 
identify A with a subset of X and extend a|A arbitrarily to a mapping a.': X-+S. 
Let a": I X -~S be the unique extension of a' to a homomorphism of Ix into 5. 
Then 

Let Hx be the relatively free group in % on the set X and let /?': X-+Hx 

embed X identically. Let /?": lx—Hx be the unique extension of /?' to a homo-
morphism of Ix into Hx. Then ker fj"=K%. Furthermore, since P'\A=P\A 
we have P"\(Ay=P\(A)- Since agker/?, we have aGker Hence, by (iii), 

ker a" and so ker a. Thus ker/Sgker a. 
Hence by Theorem 4.3, 8 is a unitary subhomomorphism and by Proposition 

5.5, there exists an ¿-unitary cover of S over G. 

Theorem 5.6 has an obvious analogue for any variety of inverse semigroups "V, 
obtained by letting S range over "V. 

Coro l la ry 5.7. Let Y be a variety of inverse semigroups and % be a variety 
of groups. The following are equivalent. 

(i) "V has E-unitary covers over 
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(ii) If u2=u is a law in °U, then it is also a law in " f . 
(iii) Km<gK r. 

Coro l l a ry 5.8. Let S be an inverse semigroup and be a group variety. 
If S has an E-unitary cover over then (S) has E-unitary covers over ^U. 

Proof . Let u2=u be a law in aU. By Theorem 5.6 (ii), u2=u is also a law 
in S. But then u2=u is also a law in (S), and the desired conclusion follows from 
Corollary 5.7. 

As an application of the above theory, we now produce a variety of inverse 
semigroups which has ¿-unitary covers over almost all varieties of groups, but 
which does not itself have ¿-unitary covers. 

P ropos i t i on 5.9 . Let B2 denote the 5-element Brandt semigroup with 3 idem-
potents. Then (B2) has E-unitary covers over any nontrivial group variety. 

Proof . Let /x denote the free inverse semigroup on one generator. It follows 
from [9] that, for each integer n > 1, there is a congruence Q„ on such that 
Pn=hlQn is an ideal extension of the cyclic group Z„ of order n by B2 which is 
¿-unitary. Furthermore, the projection of P„ onto B2 is idempotent separating, 
since the ideal is a group. Hence each P„ is an ¿-unitary cover for B2. Now 

(P„) is simply the variety sin of abelian groups of exponent n. Thus B2 and 
so, by Corollary 5.8, (B2) has ¿-unitary covers over each variety sin («=> 1), of 
abelian groups of exponent n, and so over every nontrivial variety of groups. 

We shall now see how the equivalence of (iv) and (i) in Theorem 3.3 can be used 
to establish that varieties have ¿-unitary covers. 

In the various varieties generated by groups, semilattices and Brandt 
semigroups constitute an ideal isomorphic to the product of JSP(^) and a three 
element chain. (See KLEIMAN [ 3 ] . ) Following [ 9 ] , we will call any semigroup in any 
of these varieties a strict inverse semigroup. Each variety of strict inverse semigroups 
which is not a variety of groups and semilattices of groups is generated by a single 
Brandt semigroup. Moreover, if TT = (B) where B = JlQ (I, G, I; J) , then 
"V=(G)W(B2) where (G) is now a variety of groups. Similarly, any variety of 
semilattices of groups which is not a variety of groups is of the form where 
Ql is a variety of groups and y is the variety of semilattices. For more details 
on this subject, see KLEIMAN [ 3 ] : 

Propos i t i on 5.10. If "V is a variety of strict inverse semigroups containing 
nontrivial groups, then "V has E-unitary covers. 

Proof . First let "V=aU\](B^), where is a nontrivial variety of groups 
and let SZY. By the general theory of varieties, there exist T,A,B where A^fy, 

5* 
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BZ(B2) and TQAXB is a subdirect product of A and B together with an epi-
morphism <p of T onto S. Since % is nontrivial, by Proposition 5.9 there exists 
an ¿"-unitary cover P, say, of B over 01. Then Pd^\j(B2)=-r by ([7], Corollary 
1.8). Let a : P—B be an idempotent separating epimorphism and let T' = {(a, p)\ 
(a, pa)€T}<^ AXP. Since A is a. group and P is ¿-unitary, AXP is ¿-unitary. 
Hence T' is also ¿-unitary. Moreover, T'SjV and (a,p) —(a, pa)<p is an epi-
morphism of T' onto S. By Theorem 3.3 (iv), "V has ¿-unitary covers (overM). 
A similar argument will show that any variety of semilattices of groups has ¿-unitary 
covers and clearly varieties of groups do also. 

R e m a r k 5.11. The arguments of Proposition 5.10 would also apply to any 
variety of the form <%\j(B\), where "U is a non-trivial variety of groups. 

6. The Malcev product 

For any group variety we will now characterize the class of all inverse semi-
groups "V. which have ¿-unitary covers over tfl. It will turn out that the variety 
generated by the Malcev product Sf otfl, where denotes the variety of semi-
lattices, is the greatest variety of inverse semigroups having ¿-unitary covers over °ll. 
The variety generated by ¿Pofy. will be characterized in several ways. 

N o t a t i o n 6.1. We will denote by if the variety of all semilattices. For any 
variety of groups 6U, 

£foQl = {PdJ\P is ¿-unitary and P/u^} 

is the Malcev product of Sf and For any family of laws ua=va, ad A, we write 
(ux=vJadA) for the variety of inverse semigroups determined by these laws. 

Another highlight of the paper can now be established. 

T h e o r e m 6.2. The following statements are valid for any group variety fy. 
(i) (Sfo%)=(u2 = u\u2 is a law in 

(ii) (SPo<%)={S£J\S has an E-unitary cover over <%}. 
(iii) (f/'o6ll) is the largest variety of inverse semigroups with E-unitary covers 

over 
(iv) fy is the smallest variety of groups over which (Sf has E-unitary 

covers. 

Proo f , (i) Let '"T={Sf>o^i) and i(r-{u2=u\u2=u is a law in °U). First let 
SZSfo<%. and let » 2 =w.be a law in By the definition of tfo<?/, we have 
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SI<t£<% and thus ui=u is a law in Sja. Hence, for any substitution u of u in S, 
it follows that u2<ru, whence u£ker a=Es. Thus u2=u is a law in S. Consequently, 

and thus SPoWQiV. But then also Y=(SPoW)<gir. 
Conversely, let S^iV. Then by Theorem 5.6, S has an ¿-unitary cover 

P over G for some It follows that P^tfoqi and hence S£(SPo<%)=Y. 
Therefore "WQY and equality prevails. 

(ii) This is a direct consequence of part (i) and Theorem 5.6. 
(iii) This is an obvious consequence of part (ii). 
(iv) Let Y be a variety of groups over which (¿fofy) has ¿-unitary covers, 

and let G£°U. Then G^{9'o<}ll) and hence has an ¿-unitary cover P over Y. 
Now, P being an ¿-unitary cover of a group must itself be a group. Since G is 
a homomorphic image of P, we obtain that G£Y. Consequently as 
required. 

An interesting property of the varieties Y between °U and is provided 
by the next result. 

P ropos i t i on 6.3. For any variety of groups aU and any variety Y of inverse 
semigroups, the following holds: 

ker Q = ker Q(Y) YQ {¿TOif). 

Proof . First assume that ker ¿>(<20=ker Q(Y). This means that w3=w 
is a law in if and only if w2=w is a law in Y. It follows from Theorem 6.2 (i) 
that YQ{SPo%). Since is a group variety, tr QC%)=CO and thus t r g ( ^ ) 5 
¡2tr Q(Y). This together with the hypothesis that ker g(ty)=ker g(Y) implies 
that and thus <%QY. 

Conversely, assume that "UQYQ{i/'o6U). The first inclusion implies 
^ Q ( Y ) and thus ker g(<^)5ker g(Y). The second inclusion implies ker g(W)Q 
cke r g(Y) by Theorem 6.2 (i), as above. Therefore ker g(<%)=ker g(Y). 

7. An equivalence relation on .£?(</) 

We introduce a relation on which relates any two varieties if they have 
the same ¿-unitary members and consider some associated properties. 

In order to put the relation we are introducing into the proper perspective, 
we include two known relations vx and v2 in our scheme. For any Y£J§?(./), let 

°U\xY-oallC\st = YC\sJ, oilv^Y-oqiVW = YV\e§, f v , f « <%C\£ = Yf\S. 
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Here si, eS, and & denote the classes of all antigroups (fundamental inverse semi-
groups), groups and ¿-unitary inverse semigroups. The relations Vj and v2 were 
introduced by KLEIMAN [3], who showed that they are congruences. He defined vx 

as follows: and then proved the above equivalence. The 
relation v3 is new and the subject of our study in this section. 

We can say that "llv^f precisely when <2f and f have the same ¿-unitary 
members. 

P r o p o s i t i o n 7.1. v1Dv2Qv3gv2 . 

Proof . Let ^(vxPIv^tT and Since S is ¿-unitary, j f f l ( j = £ , 
the equality relation. Hence pC\a=s and thus 5 is a subdirect product of S/p 
and Sy<7. Here S/neWHs/ and S/o£<%C)<g. Since ^v^V, we have Sln^TCls/, 
and since <%v2f, we get But then S d { " f C \ f l Q "T, which 
proves that a t t D £ ' = i r r \ £ . By symmetry, we conclude that This proves that 
v1Dv2gv3 . If ° U C \ t h e n intersecting by we get aUV\<S="f^\'S. 
Hence VJQVJ. 

Remark 7.2. It should be noted that v3 is not a congruence on S£(J). If 
if=(B2),if'=(B\), then i f v 3 i f . However, (if\l<8)C\g c ( i T ' V ^ ) n 8. 

Proposition 5.9 shows that, in general, for a given variety of inverse semigroups 
- f , there is no minimum variety 6U of groups such that f has ¿-unitary covers 
over °U. This may be contrasted with the next result. 

P ropos i t i on 7.3. The following statements are true for any variety of inverse 
semigroups f . 

(i) ( f f l i f ) is the smallest member of the vs-class containing 1V. 
(ii) { f { M ) is the largest variety contained in having E-unitary covers. 

(iii) ("fC\S)={S£J\S has an E-unitary cover in - f ) . 

Proof , (i) First note that 

< f n * > n * g r e u s g < * n < f > n * 

which shows that (irC\S')v3r. Now let ifv^r. Then ifC\$="TC\S which 
implies that {"f{\g) = ( i f f \ g ) < ^ i f , as required. 

(ii) Since ( f n<?> is generated by ¿-unitary inverse semigroups, it has ¿-unitary 
covers by Theorem 3.3. Let if be a variety of inverse semigroups contained in 
"f and having ¿-unitary covers. Again by Theorem 3.3, we get i f = ( i f f l £ ) . 
Since also (if ( f f ) S ) , we conclude that i f ^ ^ f V s S ) , as required. 

(iii) We have already observed that every S in ( f f \ S ) has an ¿-unitary 
cover in < ) and thus in " f . Conversely, let S have an ¿-unitary cover 
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P in f . Hence P£Y f]SQ(Y f ) i ) and S is a homomorphic image of P so 
that S e ( Y n S ) . 

It can be verified easily that any group variety "ll alone constitutes a v3-class. 
If Y is a variety of inverse semigroups contained in <x"=x"+1), then no S in 
Y which is not a semilattice is ¿-unitary since a"=a"a and a2^a for any non-
idempotent element a in S. In view of this and the results of KLEIMAN [3 ] , we 
conclude that the join of all varieties v3-equivalent to Sf is equal to J . 

Some additional information about ( S f o i s provided by the following 
statement. 

P r o p o s i t i o n 7.4. For any group variety 1i, we have 

Proof . Let and let u2=u be a law in By Theorem 5.6, 
u2—u is also a law in G, and thus since every law in except xx~1=yy~\ 
can be written in the form u2=u. Consequently, {S/'o<1ll)C\eS'Q.%\ the opposite 
inclusion is obvious. 

Let Then S l a ^ o ^ l ) ^ = by the first formula. Since 
S is ¿-unitary, we obtain that S^Sfo^U. Therefore ( ^ o Q Sfo<%\ the 
opposite inclusion is trivial. 

In connection with the congruences and v2, and Theorem 3.3, the next 
proposition seems to be of some interest. For it, we need a known result. 

L e m m a 7.5. [3] For any variety of inverse semigroups Y , the minimum element 
of Y(vxflv2) is ( f f l ^ ) . 

P r o p o s i t i o n 7.6. Let Y be a variety of inverse semigroups. Consider the 
following conditions on Y. 

(i)—(iv) The conditions of Theorem 3.3. 
(v) For every S£Y, there exists G(zYfl^, an inverse semigroup T which 

is a subdirect product of S/fi and G, and an idempotent separating epimorphism 
(p: T-*S. 

(vi) Y is the minimum element of its vx fl v2-class. 
Then (i) implies (v) and (v) implies (vi). 

P roof , (i) implies (v). Let S, TdY where T is an ¿-unitary cover of S. 
Then T is a subdirect product of T/fi and Tja since fiC\<T—e. Since T is an 
¿-unitary cover of S it follows that T/fi^S/p, so that T is a subdirect product 
of S/n and S/a, where the latter is in Y 
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(v) implies (vi). Let the notation be as in part (v). Then S£(S/nXG)Ç= 
g < y r w > v ( m y ) which proves that Y V\<S)\ the opposite 
inclusion is trivial. By Lemma 7.5, we have that Y is the minimum element of 
its vx fl v2-class. 

The first implication in the above proposition cannot be reversed. For example, 
the variety V = ( x 3 = x 2 ) of inverse semigroups satisfies part (v) but not part (i). 
We have no counterexample for the converse of the second implication. 
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Separation of the radical in ring varieties 

M. V. VOLKOV 

Varieties of associative rings in which the Jacobson radical of every member 
is 1) nil, 2) nilpotent, or 3) a direct summand were studied in [1]. Varieties satisfying 
1) or 2) were described there; the same varieties were characterized independently 
by the author in [2]. As to condition 3), Theorem 19 from [1] states that varieties 
in which the Jacobson radical of every finitely generated ring is a direct summand 
may be given by a finite set of two-variable identities. However these identities 
cannot be found by the method from [I], and the problem of exact description of 
varieties satisfying condition 3) remained open. This note is devoted to solve that 
problem. 

Theorem. The following conditions on an associative ring variety X are equiv-
alent: 

(a) the Jacobson radical of every member is a direct summand; 
(b) the Jacobson radical of every finitely generated member is a direct summand; 
(c) X is generated by a finite (possibly empty) set of finite fields and by a nil-

ring of restricted index; 
(d) the identities 

(*) XkY = YXk = XkYn 

hold in X for some natural numbers k^l and n?± 1. 

Proof , (a)—(b) obviously. 
(b)—(c). We consider for every prime number p the variety 21 p given by the 

identities XY—YX=pX—0. There are finitely generated rings in 2IP in which the 
radical is not a direct summand, for example, the ring Sp of all 2 x 2 matrices of 
the form is such where a and /? run through the p-element field. Hence 

Received April 13, 1982. 
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X does not contain 2IP for any p, and some identity Xm=X", m<n, holds in 
X by the main theorem from [2]. X is generated by its finite rings ([2], Corollary 1) 
and therefore by its finite subdirectly irreducible rings. If R is such a ring then 
we get by (b) that either R=J(R) (and R is nilpotent) or J(R)-0 (and R is 
simple). A finite simple ring is either a finite field or the ring of all rXr matrices 
over a finite field (/•> 1). However, rings of the second type cannot be contained 
in X since every such ring contains the ring Sp for some p as subring. We see 
that the variety is generated by its finite nilpotent rings and finite fields. It remains 
to note that only a finite number of finite fields may be contained in X and all 
finite nilpotent rings from X satisfy the identity Xm=0 (in view of the identity 
Xm=X" holding in X). Thus, the direct sum of all finite nilpotent rings from X is 
the required nilring of restricted index. 

(c) —(d). Let N, F1 ; ...,FS be rings generating X where the identity Xk = 0 
holds in N, and F l5 ..., Fs are finite fields. If F( consists of mi elements 
and n—imj^—l)...(ms—1) + 1, then the identity X"=X holds in every field F,-. 
We see that the identities (*) hold in all rings generating X, hence they hold in all 
rings from X. 

(d)—(a). Let R be a ring satisfying (*). It is easy to see that J(R) is nil and 
the idempotents of R lie in its center. Further, since an arbitrary ring of rXr 
matrices over a field (/•> 1) does not satisfy (*) a standard application of Kaplansky's 
theorem about primitive P/-rings shows that R/J(R) is a subdirect sum of finite 
fields and satisfies therefore the identity X"—X. Denote by E the ideal of R gener-

m 
ated by all idempotents of R. Let y = 2 rieidJ(R)C\E, where rtZR, are idem-

1=1 
potents. Let us consider the element 

«= Z e i ~ 2 + 2 eiejes~~ •••+(— l ) m + 1 ^ i ••• em. 

It can be immediately verified that e 2 =e and e{e=e; for any i. Thus, y—ye— 
=yek=y"ek=y2n~1ek=...= 0. On the other hand, the image of the element 
in the ring R/J(R) is an idempotent for every x£R. We lift it to an idempotent 
ex of the ring R; then x—xex£J(R) and x—xex+(x—xex)£E+J(R). We see that 
R is a direct sum of the ideals J(R) and E. 

The theorem is proved. 

Let us recall that a ring R is called a semidirect sum of an ideal J and a sub-
ring S if S+J=R, SDJ=0. In connection with our theorem we pose a natural 

Ques t ion . What are the ring varieties in which the Jacobson radical of 1) 
every, 2) every finitely generated member is a semidirect summand? 
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Note that these classes of varieties are sufficiently large. Thus, all locally finite 
varieties of prime characteristic belong to the second of them by Wedderburn's 
classical theorem about separation of the radical. 

The author expresses sincere gratitude to Professor L. N. Sevrin for helpful 
discussions. 
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Disjoint sublattices of lattices 

M. E. ADAMS and J. SICHLER 

1. Introduction 

M. Sekanina asked whether there exist lattices A and B such that A contains 
an arbitrarily large finite number of pairwise disjoint sublattices isomorphic to 
B but does not contain infinitely many pairwise disjoint sublattices isomorphic 
to B. Independently, I. K O R E C [2] and V. K O U B E K [3] have shown that such lattices 
do indeed exist. In fact, Koubek has shown that both A and B may be chosen 
to be distributive. 

The aim of the present paper is to strengthen Koubek's result by showing that 
the distributive lattices A and B may be chosen to be totally ordered sets. Actually 
more will be shown. The principal result will be the following: 

Theorem. There exist totally ordered sets A and Bx, for a<22i*°, such that 
(i) \A\ —2^, (ii) Bx^Bp if and only if a=p, and (iii) if a<22t<0 then, for n<a>, 
A contains n disjoint copies of Ba, but it does not contain infinitely many such copies. 

That A is uncountable is no coincidence. A routine proof, using Hausdorff's 
classification of the countable order types, shows that if A is a countable totally 
ordered set that contains an arbitrarily large number of finite disjoint copies of 
a totally ordered set B then A contains infinitely many disjoint copies of B. 
(We shall not include the details.) 

It is a pleasure to acknowledge the helpful suggestions made by the referee. 
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2. The construction 

The construction of the totally ordered set A involves a new variation of 
a technique first introduced by B . D U S H N I K and E . W . MILLER [1] . 

Let A denote the real line [0, 1) and t\ its rational members. The Dedekind 
completion of a totally ordered set C will be given by C Observe that for two 
totally ordered sets C and D any order preserving injection of C into D can be 
extended to an order preserving injection of C + into D+. Since a monotone 
function on A has at most countably many discontinuities, it is readily seen that 
there are 2S° order preserving injections of A into itself. With the exception of 
the identity function, let G = be a list of all the order preserving 
injections of A into itself. 

We now define a distinguished countable subset of G. For lsi'<ct> and 
1 Sk-^il define 

I* = [(*-l)/(i!), fc/(i!)); 

that is, for each /, {Iik: 1 s&^z!} is a system of pairwise disjoint intervals of length 
l/(/!) covering A. If l^j^i+l, define an order preserving injection ftJ: A—A by 

fuix) = x/(i + 1 ) + ( ( k — 1 ) i + 0 — l ) ) / ( i + 1 ! ) 

for xaik and k = l, ..., i\. Observe that / y ( / i / t )=[(A:- l ) /0 ' ! )+0 ' - l ) /0 '+l ! ) , 
(k-l)/(il)+j/(i+ll))=JiJkQIik for every j = l, ..., i+l. The function fu is 
said to be of type i. 

By way of example, it follows that there are exactly two functions of type one: 

fu is an order preserving bijection of [0, 1) to [0, 1/2) given by / n ( x ) = y x ; 

/ i 2 ( x ) = y x + y is an order preserving bijection of [0, 1) to [1/2, 1). There are 

three functions of type two: f21 is the order preserving bijection of [0, 1) to 

K)u y , j j defined by / 2 i ( x ) = y x, for 0 ; § x < y , and / a ( x ) = j x + y for 

- J - S x < l ; / 2 2 is the order preserving bijection from [0,1) to [—, —) U [—, —) 
2 [6 3 J [ 3 6 J 

given by, for / 2 2(x)=—x+— and, for — 1, /22(x)=-^-x+-^-; finally, 
2 3 6 2 3 2 

/2 3 is the order preserving bijection from [0,1) to | y , y j U l | such that 

/ 2 s ( * ) = y * + y , for 0 s x < y , and / 2 3 ( x ) = y X + y for y ? = x < l . 

Let F = {ftJ\i^i^a> and l;§/=5i + l}; for x£A, denote F(X)={/(X)1/IEF}; 
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and, for XQX, Jet F ( Z ) = U ( f (*): x£X). Note that, for every f£F, x is rational 
if and only if f(x) is rational. Since F is countable, we may conclude the following: 

Lemma 1. |{x£l|x€F(x)}| = K0. 

We shall also need the following lemma. 

Lemma 2. For X, YQX, if 1*1=2*° and |F |<2S° then there exists xdX 
such that F(x)C\Y 

Proof . Suppose that for every x£X there exists an / 6 F with / (x)€T. For 
y€Y, let Xy={xeXly€F(x)}. Thus, XQ\J(Xy: y£Y). Since \X\=2*° and 
|y|-=28», it follows that Xy is uncountable for some y£Y. However, F is 
countable. Hence, there are two distinct elements x of Xy such that f(x) = y 
for the same /€F . Since each / € F is one-to-one, this is a contradiction. The proof 
is complete. 

Some further notation is necessary. For g£G, define gF={x^X| g(x)$F(x)}. 
Then set GF = {g€G||gf|<2!<»}. Clearly, FQGP follows from fF=& for every 
/€ F ; it is also easy to see that the inclusion is proper. 

We are now ready to define the totally ordered sets A and Bx for a<2 i t°. 
As will transpire, the totally ordered set A will be a subset of X that contains rj; 
the definition will be given by transfinite induction. For /?<28», sets AP,CP, 
D^X will be defined; subsequently, A will be the set X\\J(Ap: and, 
for a<22"0, (J(Cy jS<2s»). Intuitively, the mappings 
from F will be used to exhibit arbitrarily many finite disjoint copies of Ba in A 
and the construction will ensure that no g$GF can be used to provide an order 
preserving injection of Bx into A. 

Let Ao = 0, A'0=t], C0 = t], Co = 0, and D„=0. By transfinite induction we will 
define, for A„, A'p, C„, C'p, DfiQX such that (i) \AP\, \A'f\, \Cf\,\C'p\, \D„\<2\ 
(ii) for AyQA„, A;QA;, CyQCfi, c ; g c ; , and D^Dp, ( i i i ) ^ n 4 = 0 , 
c „ n c ; = 0 , and ( c ^ u c ; ) 0 ^ = 0 and (iv) F(Cp) Q A'p and F(Dp)QA'p. (Note 
that these conditions are satisfied for P—0.) Suppose that, for Ay,A'y, 
Cy,C'y, Dy are defined and satisfy (i), (ii), (iii), and (iv). 

Since X is not the identity and is order preserving, there are 2"° elements 
X such that x^gp(x). Thus, because gp is injective, the set of all elements 

*<EA such that x*g„(x), y^P)U{J(Dy: and £,(*)<£ U(Cy: y</5)U 
U1J(D y:y<P) has cardinality 2X°. By Lemma 2, choose such an x£X for which 
F ( x ) n L M : y < / * ) = 0 - Let C; = { ^ ) } U U ( C ; : y < / i ) . 

By Lemma 2, there exists U U(CA: X<P)[JC'p U (J(£»y: y^P) such 
that F ( j ) n U ( A : Choose such a y£X. Let D , , = W U U ( ^ : y < j ! ) . 

There are now two cases to consider. 
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First, suppose gp£GF. Let Afi = \J(Ay: y^p), A'fi=F(x)UF(y)U\J(A'y: 
and C0={x}U\J(Cy: y<P). Clearly (i) and (ii) are satisfied. By the choice of 
x€A, C p n C p = 0 and, by the choice of x, AfiC]A'p=9 and (CpUC'fi)DDfi=9; 
thus, (iii) holds. Obviously, by definition, (iv) is also valid. 

Second, suppose gfi$GF. Thus, =2**°. Thus there are 2s» elements 
z£(gfi)F such that z$C'fiUI>fi and, since gp is an injection, gfi(z)$ F(;t)UF(j>)U 
UU(A' y:y<P). By Lemma 2, we may choose the element z such that, in addition, 
F ( Z ) n U ( ^ : y < / ? ) = 0 . Let ^ = W z ) } U U ( ^ : y < / i ) , A;=F(x)UF(y)(JF(z)U 
UU(A'y:y-=P), and C,={x}U{z}UU(C7:y<jS). Clearly, (i) and (ii) are valid. 
The choice of z£A is such that ge(z)^F{z)\ thus, since (F(x) U F(y) U F(z)) fl 
n U M y : it follows that Aff)A'p=&. By choice, Cpf\C'fi=9. As in the 
first case C'eC\Dp=d and, by inspection, CeC\Dp=Q; thus (iii) also holds. Once 
more it is clear that (iv) is valid. 

As indicated earlier, we set y 4 = A \ U ( ^ : £<2*°), A'=[J(A'p: j?<2N°), 
C={J(Cfi: £<2X"), D=\J(D„\ j?<2*°), and B=CUD. It follows, by (iii), that 
A'QA. However, by (iv), F(B)QA'QA. Thus f\B is an order preserving injection 
from B into A for each /£F . By (ii), |D|=2*°. Let (Sa: a<22S°) be an indexing 
of the power set of D, let Bx=CUSa for a<2z\ Since Ba<gB, the mapping 
f\Bx is an order preserving injection of Bx into A for <x<22S° and / €F . 

3. Proof of the theorem 

We first show that, for distinct a, p<2**0, Bx^B f i . If a ^ p , then S a ^ S p . 
Suppose, with no loss of generality, that there exists s£Sx\Sp. If Sxs=Sp then 
there is an order preserving injection g:Bx—Bp. In which case, g extends to an 
order preserving injection g+:B+-~Since rjQB„,BfiQX, it follows that 
g+:A—A. By (iii), Cn£>=0; thus, Consequently, g + is not the identity 
function and, hence, g+£G. Whence, for some 7<2S°, g+=gy. However, for 
gy, there is x£A for which x£C and gy(x)£C'. By (iii), C n C ' = 0 and Z)nC'=0. 
Since CQBX, BpQCUD, we conclude that x£Bx and gy(x)$Bfi. However, 
gy is an extension of g: Bx—Bf; that is to say, gy(x) = g(x)dBp. By contradiction, 
we conclude that there is no order preserving injection g: BX-*B0. We have shown 
the following: 

Lemma 3. For a, ^<22'to, Bx^Bf if and only if a=p. 

For the interested reader, we remark that, in the construction, a more judicious 
choice of subsets of D yields the following stronger result: for distinct a, 
Ba is not a sublattice of Bf and Bf is not a sublattice of Ba. 
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For a<22i<0, we have already observed that, for l s / < c o and 1 ^ j = i + 1 , 
fij\ Bx is an order preserving injection from Bx into A. We now show that, for 
n-cco, A contains n disjoint copies of Ba. As stated previously, for 1 
and fy: Iik-~J,jk is an order preserving bijection for every l ^ f c s / ! . 
Since, for distinct l^j,l^i+l,JiJkr\JUk=Q, it follows that fij{X)C\fa{X)=®. 
Consequently, the restrictions of the functions of type i to Bx yield / + 1 order 
preserving injections of Bx into A such that, for distinct 1 S j , l^i+l, fijl(Bx)(~} 
C\fn\(Ba)=9. Thus, we have shown: 

Lemma 4. Let a<2zHo. For n<<o, the totally ordered set A contains 
n disjoint copies of Bx. 

It remains to show that, for a<2 2 A does not contain infinitely many disjoint 
copies of Bx. Since, for every ot<22*°, CQBX, it is sufficient to show that A does 
not contain infinitely many disjoint copies of C. 

Suppose that g: C—A is an order preserving injection. Then g extends to 
an order preserving injection g+\ C + —A+. Again, since y QA, CQ A, it follows 
that g+: A—A; that is to say, if g + is not the identity function then g+€G. 

Lemma 5. Let g: C—A be an order preserving injection. If g is not the 
identity function, then g+£GF. 

Proof . Suppose g+ By the above comments, there exists 1 
such that g+=gpl thus, g0$GF. Hence, by the definition of At and Cf, there 
is z£(gp)F such that z£Cf and gp(z)£Ap. Consequently, z£C. and gf(z)$A. 
However, is an extension of g; whence, gp(z)£A. By contradiction, we conclude 
g+€GF. 

Before considering infinitely many order preserving injections from C into 
A we must derive Lemma 8. 

Let g£GF and I be a nonempty open interval of A. Since g£GF, 
$F(x)}|S|gF |<2 i t". Hence, 1 g(x)6F(x)}|=2s» and, by Lemma 1, 
|{x€/| x?ig(x)}|=28«. Consequently, there exists x£ l such that x ^ g i x ) and 
X7±{k—l)/(j!) for any and l s f c s / ! . Select such an x. Since I is 
open there exists </=>•0 such that (x—d, x+d)QI. For d' — \g(x)-x\, choose 
1 ^ / x c o such that 1 /(/>!)-«= min {d, d'}. Hence, there exists 1 Sr^pl such that 
x 6 / p r g / but g(x)<f/p,. 

Lemma 6. There is a nonempty open interval such that, for ydl', 
either y£gF or g(y)=ftj(y) for some 1 p and lS/Si + 1. 

Proof . For l^q^p + l, fpq(Ipr)=Jpir<^Ipr. .Furthermore, by definition, 
for p^i^co and 1 ^ / +1, fij(Ipr)gjIpr• Since, by hypothesis, X7±(r—\)/(p\) 

6 
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and x?*g(x), there is a nonempty open interval I'QIp, such that g ( / ' ) n / p r = 0 . 
Thus, for y£l', either g(y)$ F(y) (in which case, ydgF), or there exists 
and l^j^i+l such that fij(y)=g{y)$Ipr- Since ydlpr, it follows that i<p. 
The proof is complete. 

Since g£GF is assumed, it follows that the set of all yd/' with g(y)=f{j(y) 
for some 1 and ¡ = j = i + 1 has cardinality 2s». Furthermore, any non-
empty open interval contained in / ' has the same property. 

Lemma 7. There is a nonempty open interval I"QI\ p, and l^j^i+l 
such that, for yd I", g{y)=f,j(y)-

Proof . Since / ' is nonempty and open, I'=(u0, v0) for some distinct 
u0, vad?.. Let I0—T. For n<a>, we inductively define a nonempty open interval 
/„=(«„, v„) such that, for n^m<cx>, / „5 / m . Assume that /„ has been defined 
and choose, if possible, distinct u„+1, vn+1£ln such that, for some y(Lln, either 
there exist 1 p and 1 ^ j = i + 1 such that g(y)=ftj(y) but, for all 
z€(u„+1,v„+1), g(z)^f0-(z),. or yegF but, for all z€(u„+1, v„+1), z$gF. If u„+1 

and vn+1 exist then set /„+i=(w l l+i, i>„+1); otherwise, let /„+!=/„. Since there 
are only finitely many possibilities for i and j, there exists some w<co such that 
I„—Im for all n^m<co. Let / " = / „ . We must show that I" satisfies the require-
ments of the lemma. By the remark preceding Lemma 7, there exists ydl" such 
that, for some 1 Si<p and l ^ / ^ i + l , (y, g(y))dfij. Hence, by construction, 
for any distinct u, vdl", there exists M < Z < U such that (z, g(z))dfu for the same 
i and j; that is to say, the set of all elements zdl" such that g(z)—ftJ(z) is dense 
in /". Since g is order preserving and f{j is continuous on I" (recall that 
J"QTQIpr and f j is continuous on Ipr), it follows that g(z)=ftJ(z) for all 
z£/". The lemma is verified. 

The statement of the next lemma is immediate from the discussion following 
Lemma 5 together with Lemma 6 and Lemma 7. 

Lemma 8. Let g(LGF and let I be a nonempty open interval of /.. Then there 
exist a nonempty open interval JQI and fdF such that g(x)= f(x) for all xdJ. 

Suppose that, for n<co, h„: C-»A is an order preserving injection. 

Lemma 9. There exists a nonempty open interval IQX such that if y£l is 
rational then y=h0(x) for some rational x. 

Proof . If h0 is the identity function then, since t]QC, any open interval 
IQ A will satisfy the lemma. If h0 is not the identity then, by Lemma 5, h^dGF. 
Thus, by Lemma 8, there is a nonempty open interval JQ). , 1 S/<co, and = 
S / + 1 such that, for xdJ, h£(x)=fij(x). Since A=|J( / j t : l s f c s / ! ) , there is 
some l s f c ^ / ! such that I^ClJ^Q. Choose a nonempty interval I'QIikOJ. 
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By definition, /¡J is continuous on Iik and, hence, it is a continuous order preserving 
injection on / ' . Thus, / y ( / ' ) is a nonempty open interval of X. Let / = / | / / ' ) -
If y£l then y=fu(x)=h+(x) for some x£l'. By the definition of fu, if y is 
rational it follows that x is rational. Again, since i j g C , h^(x)—hQ(x) and the 
proof is complete. 

Lemma 10. There exist x, y£rj and distinct n, m<co such that hn(x)=hm(y). 

Proof . Let I be given as in Lemma 9. Suppose that, for some 1 
h„ is the identity function. In particular, for y£l, y=h+(y). If y is rational 
K(y)—K(y) and, by Lemma 9, the proof is complete. Thus, we assume that, 
for h„ is not the identity function. 

Choose 1 such that for some 1 Ip rQI. Recall that, for all 
/ „ = / € F of type i^P,fu(Ipr)^Ipr^I. 

By Lemma 5, all h+ belong to GF. Lemma 8 yields the existence of an open 
nonempty interval h Q Ipr such that /i* agrees with some f w £ F on I1. Define 
inductively I„+1QIn as a nonempty open subinterval on which h++l agrees with 
some /(„+i)€F. If some/ ( n ) is of type i^p, choose a rational x £/„. Then hn(x)~ 
=h+(x)=fin){x)£l is rational, and, by Lemma 9, hn(x)=h0(x') for some rational x'. 
Therefore, each f(n) for 1 ^«<ct> is of type i„<p. Since there are only finitely 
many of these functions, there exist with h+\I„—fw\I„=fm)\I„ = 
=/i+t/„. For any rational x£/„ it follows that h„(x)=h+(x)=h*(x)=hm(x). The 
proof is complete. 

Since iQC, Lemma 10 implies that there are distinct n, m<co such that 
/I„(C)n/Im(C)^0. 

Lemma 11. I f , for n<co, h„: C-*A is an order preserving injection then there 
exist distinct n,m<co such that hn(C)Ohm(C)7i0; that is to say, A does not 
contain infinitely many disjoint copies of C. 

Lemmas 3, 4, and 11 yield the Theorem. 
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Schwach distributive Verbände. II 

A. P. HUHN 

In [4] und [5] wurde der Begriff des «-distributiven Verbandes eingeführt. In 
denselben Arbeiten wurden Charakterisierungen der «-distributivität und, ohne 
diese weiter auszuführen, Beispiele für «-distributive Verbände angegeben. Ziel 
vorliegender Arbeit ist, diese früheren Arbeiten durch Angabe der noch nicht ver-
öffentlichten Beweisen zu vervollständigen. 

In der Einführung von [5] haben wir unserer Meinung Ausdruck gegeben, dass 
die wichtigsten Gebiete in dieser Theorie die folgenden sind: 

a) Verallgemeinerung der „reinen Theorie" der distributiven Verbände, vor 
allem bei Anwesenheit der Modularität, die für keine Folgerung der «-Distri-
butivität ist (vgl. die nachfolgende Definition). 

b) Untersuchung der Beziehungen zwischen der «-Distributivität und der 
Dimension von projektiven Geometrien. 

c) Anwendungen auf die Theorie der Varietäten von Verbänden. 
d) Untersuchung der «-Distributivität in Kongruenzverbänden universeller 

Algebren, hauptsächlich in Normalteilerverbänden von Gruppen. 
Untersuchungen zu a) haben wir in [5] begonnen und in [11] fortgesetzt. Die 

Gebiete b) und c) wurden in [9] bzw. [8] und [10] behandelt. Hier werden wir uns 
mit dem Gebiet d) beschäftigen. Da die Definitionen seit dem Erscheinen von [5] 
in neueren Arbeiten verändert worden sind, ist es nötig zuerst die Begriffe festzu-
legen. 

Ein Verband heisst «-distributiv, wenn er der Identität 

*A V Vi = V \xA V Vi 1 

i= 0 j=0 L •'=0 j 

genügt. Diese Definition ist dual zu der Definition in [5], und die Modularität wird 
Eingegangen am 24. August 1982, 
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nicht mehr wie in [5] gefordert. Es sei aber bemerkt, dass in dieser Arbeit nicht-
modulare «-distributive Verbände fast keine Rolle spielen. Diese werden in zwei 
anderen Arbeiten betrachtet [12], wo wir uns mit Kontraktionen-Verbänden von 
Graphen und mit Verbänden von konvexen Mengen beschäftigen. 

1. Der Chinesische Restsatz in universellen Algebren 

Genau so, wie im Bereich der ganzen Zahlen, können Kongruenzsysteme in 
beliebigen universellen Algebren definiert werden. Es seien A eine universelle 
Algebra, 0(A) der Kongruenzverband von A und ax, a2, ..., akdA,ßx, 02, •••, 0*€ 
£0(A). Dann heisst das System 

(1) x = at(0d, ¿ = 1,2, ..., fc 

ein Kongruenzsystem über A mit der Unbekannten A\ ES ist klar, wie die Lös-
barkeit und die Lösungen eines solchen Systems zu definieren sind. 

Def in i t i on . Eine Algebra A genügt dem Chinesischen Restsatz der Ordnung 
n (oder in Zeichen: dem C„-Satz), wenn für beliebige 

ax, a2, ...,ak£A und 02, 02 , . . . , ßk£0(A), k > n +1, 

die Lösbarkeit aller (n + l)-elementigen Teilsysteme von (1) auch die Lösbarkeit 
des ganzen Systems (1) nach sich zieht. (Ein «-elementiges „Teilsystem" braucht 
nicht aus n verschiedenen Kongruenzen zu bestehen, da identische Kongruenzen 
in (1) unter verschiededen Indizes aufgezählt werden können.) 

Wie leicht zu sehen ist, besagt der klassische Chinesische Restsatz, dass der 
Ring der ganzen Zahlen dem Q-Satz genügt. Eine Verbingung des C„-Satzes mit 
der /i-Distributivität ist in dem nächsten Satz enthalten. 

1.1. Satz. Damit eine universelle Algebra A dem C„-Satz genügt, ist es not-
wendig und hinreichend, dass für beliebige Kongruenzen cp, 0O, 01; ..., 6n£0(A) 
die Identität 

(2) <p-Ä0f= Ä \<P- Ä Oil 1=0 . j=0 «- 1=0 J 

gilt, wobei • und f\ das Produkt bzw. den Durschschnitt von Relationen bezeichnet. 
Wenn die Kongruenzen von A vertauschbar sind, d. h., wenn für beliebige 0, <p£0(A) 
6(p = (p9 gilt, so genügt A genau dann dem C„-Satz, wenn 0(A) n-distributiv ist. 

Beweis. Die zweite Aussage des Satzes folgt aus der ersten. In der Tat stimmt 
unter den Bedingungen der zweiten Aussage das Produkt der Kongruenzen von 



Schwach distributive Verbände. II 87 

A mit dem Supremum überein. Hieraus folgt die duale n-distributivität von 0(A). 
Im Falle der Vertauschbarkeit der Kongruenzen ist aber 0(A) auch modular 
und in modularen Verbänden ist die H-Distributivität selbstdual ([5]). Also reicht 
es, nur die erste Aussage zu beweisen. Wir schicken die folgenden zwei einfachen 
Bemerkungen voraus: 

l. Ist x0 eine Lösung des Systems (1), so ist die allgemeine Lösung von (1) 

2. Für k=2 ist (1) genau dann lösbar, wenn ax 0X02 a2 gilt. 
Nun zeigen wir dass die Bedingung des Satzes hinreichend ist. Es sei lSii«=: 

/r ̂  fc, und es bezeichne R (i1, i2, ..., ir) das folgende Teilsystem von (1): 

Ä (1,2, ..., n + 1) ist lösbar. Es sei n + l ^ r ^ k . Wir zeigen, dass die Lös-
barkeit von ft (1,2, ..., r+1) aus der Lösbarkeit von ft (1, 2, ..., r) folgt. 

Es sei xQ eine Lösung von ft (1, 2, ...,r). Dann ist die allgemeine Lösung 
von Ä( l ,2 , . . . ,r) 

Es genügt zu zeigen, dass diese Kongruenz zusammen mit ft(r+l) ein lösbares 
System bildet, d. h., dass die folgende Relation gilt: 

Es sei {/u i2, ..., {1,2, ..., r}. Dann ist x0 eine Lösung von R , ..., in). 
Die allgemeine Lösung von Äfo,'.. . , i„) ist 

* = a¡j(0¡,)> j = l, 2, ..., r. 

(3) ar+1 ÖR+1- A e¡ x( o-

ft (*!, ..., in, r+1) ist aber lösbar, also gilt 

n 

AR+I 0,+I\ A 0¡, 
: I ' 

So erhalten wir 

(4) 
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Wir werden nun zeigen, dass folgende Gleichung gilt: 

(5) Ä 0f = A [ör+i- A öj-
¡=1 *S{1,2 r) i€K 

|K|=n 

Durch Einsetzen von (5) in (4) ergibt sich dann (3). 
Um (5) aus (2) herzuleiten, zeigen wir durch Induktion, dass für beliebige 

i S n und Kongruenzen (p, ip0, i/^, ..., \]/s(iQ(A) die Identität 
s 

(2S) <p • A = A [<P- A </o] ¡=0 K£{0,1 s} i€ JE -|K|=n 
gilt. (Man erhält dann (5) aus (2r_i), indem man <p durch 0 r + 1 und i/̂  durch 
0 i + 1 ersetzt.) 

Für s=n ist (2,) mit (2) identisch. Es sei s>n und nehmen wir an, dass 
(2s_j) bewiesen ist. Es seien q>, ij/0, i/^, ..., ij/sd&(A). Es sei ferner 

ij/i für i = 0 ,1, . . . , n —1, 

Xi = f\ \j/j für i = n. 
j=n 

Dann können wir (2) anwenden: 
s n n R n "I R II —1 1 n —1 R s 1 

<p- Att = (p- Axi= A \<p- A Xi = A «Ai A A \<p- A <A( • i=0 i=0 J'= Ol- ¡=0 j i=0 j J=0 l 1=0 j 
•W Mi 

Auf der rechten Seite kann die Induktionsvoraussetzung angewendet werden und 
der somit erhaltene Ausdruck ist die rechte Seite von (2S). Damit ist die Hinlänglich-
keit der Bedingung bewiesen. 

. Um die Notwendigkeit zu zeigen, nehmen wir an, dass für gewisse Kongruenzen 
<p, 0O, 6lt ...,0n£0(A) gilt: 

<P• A 0/ * Ä \<P- Ä 4 ¡=0 j=0 L i=0 J 
Mi 

Dann ist die rechte Seite kleiner als die linke Seite, d. h., es gibt Elemente a, b£A, 
n n r Ii *1 

so dass a <p- f\Qi b ungültig, aber a f\\<p • QAb gültig ist. Daraus folgt, dass 
¡=o i=oL <=o J 

die («+l)-elementigen Teilsysteme des Systems 

x = b (0O) 

x = b (0„) 
lösbar sind, das ganze System aber unlösbar ist. Damit ist der Satz bewiesen. 
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Der Fall n=1 dieses Satzes ist bekannt (siehe Grätzer [2]). Grätzer hat das 
folgendes bewiesen: Es sei A eine universelle Algebra. Damit für alle ¿ > 2 und 
Kongruenzen x=at(ß^, i = 1,2, ..., k, über A die Bedingungen a{ = cij (d^dj), 

/, y = l ,2, ..., k, die Lösbarkeit von (1) nach sich ziehen, ist es notwendig 
und hinreichend, dass &(A) distributiv ist und seine Elemente vertauschbar sind. 
Es ist noch eine offene Frage, wie dieser Satz sich für beliebige n verallgemeinern 
älsst. 

2. MaPcev-PoIynome 

Im folgenden beschäftigen wir uns mit dem C„-Satz für Varietäten. Man findet 
den folgenden Satz in [6]. Weitere, äquivalente Bedingungen wurden von BAKER 

und PIXLEY [1] und von PIXLEY [ 1 6 ] gefunden. 

2.1., Satz. Für eine beliebige Varietät V und natürliche Zahl n sind die 
folgenden Bedingungen äquivalent. 

(A) Jede Algebra A£V genügt dem Cn-Satz. 
(B) Für beliebige A£V und Kongruenzen (p, ö0, 0x, ..., On£0(Ä) gilt 

v K e , = Ä\<P'K 4 i=0 j=o L «=o J 

(C) Es gibt ein Term n in n+2 Variablen über V, so dass 

¡i(x, ...,x,y) = fi(x, ..., x,y, x) = ...= n{y, x, ..., x) = x 

eine Identität von V ist. 

Bemerkung. Der Fall n = 1 ist schon von WILLE in [ 1 9 ] behandelt worden. 

Beweis. (A)o(B) folgt aus Satz 1.1. 
(B)-e>(C). Nehmen wir an daß (B) gilt. Es bezeichne F(n+2) die freie Algebra 

in V mit den freien Erzeugenden a0, ax, ..., an+1. Es sei 6t die kleinste Kongruenz, 
so dass a0, ..., ai-1, a i + 1 , ..., an+1 modulo 0f untereinander kongruent sind. 
Dann gelten 

"o 0n + i "i (' = 0,1, ..., n) 

ff öj 0', j = 0,1, ..., n, i ^ j) Daraus folgt 

«o Ä OjU„+i-l J—Q J 
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Somit gibt es ein Element ц(а0, ..., an+1)€F(n+2), mit 

n 
a0 + l niao^!, ...,a„+1) Д fl, an+!• 

i = 0 

Es folgt also 

«o ön+i /*(ао> «i» •••. an + i) 0„+1 flo> •••> «n+l)-

0„+x ist aber trivial auf der durch {a0, a„+i} erzeugten Teilalgebra, daher ergibt sich 

«o = :n(ßo, •••> «o> ön+i)-

Genau so folgt aus ¿í(a0, a1 ; ..., an+1) 0,я„+1 (г = 0, 1, ..., n), dass 

^(аИ + 1> •••> аП +1! aÍJ fln + l5 •••) an +1) = ЯП + 1 

für i =0, 1, ..., л gilt. Damit ist (C) bewiesen. 
Nehmen wir umgekehrt an, dass (C) gilt, d. h., dass ein ц mit der obigen Eigen-

schaft existiert. Wir werden zeigen, dass für beliebige Kongruenzen (p, 0O, 0X, ..., в„ 
irgendeiner Algebra A in V 

Л \<P- Л е ]ш<р- Д 0,-
j=oL г=о J ¡=o 

i / j 

gilt. (Die umgekehrte Ungleichung ist klar.) 
In der Tat, es seien x,y€A mit 

* Л \<P- Л 0« у-j=0 l i= 0 J 

Dann existieren Elemente t0, tlt ..., t„£A, so dass gilt: 

n 
x (P tj А 0г y ( j = 0,1, ..., n). 

i = 0 

Es sein ferner t=fi(t0,t1, ...,t„,y). Aufgrund der Identitäten für ц in (C) erhält 
man die folgenden Relationen: 

и 
x (p t А в, у. 

i= 0 

Zum Beispiel erhält man xq> t wie folgt: 

* = ц{х, x, ..., x, j>) (p n(t0, ix, ..., tn, y) = t. 

Damit ist der Satz bewiesen. 
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3. n-Distributivität in Untergruppenverbänden abelscher Gruppen 

Zweck dieses Abschnitt ist es, weitere Beispiele für «-distributive Verbände 
zu erwähnen und eine notwendige und hinreichende Bedingung dafür anzugeben, 
dass der Untergruppen verband einer abelschen Gruppe «-distributiv ist. S(G) 
(bzw. N(G)) wird den Untergruppenverband (bzw. Normalteilerverband) der 
Gruppe G bezeichnen. Für die Gruppenoperationen werden wir eine multiplikative 
Schreibweise verwenden. Dementsprechend bezeichnen wir das neutrale Element 
mit e. [al5 a2, ...] bezeichnet das Erzeugnis der Elemente in den eckigen Klammern. 

3.1. Satz. Für eine beliebige natürliche Zahl n ist der Untergruppenverband 
der durch n Elemente erzeugten freien abelschen Gruppe U„ ein n-distributiver, 
aber kein (n —^-distributiver Verband. 

Beweis. Es sein 2, und es seien die Elemente u1,u2, ...,«„ die freien 
Erzeugenden von U„. Ist v=u1u2...u„, so haben wir offensichtlich: 

d. h., S(U„) ist nicht (n — l)-distributiv. Für n = l ist dieser Teil der Behauptung 
trivial. (In Harmonie mit der Definition für sollen genau die ein-elementigen 
Verbände als O-distributiv definiert werden.) 

Umgekehrt ist wohlbekannt (vgl. ORE [15]), dass S(Ui) distributiv ist. Sei 
nun /i> 1 und nehmen wir an, dass für k — 1, 2, ..., n — 1 S(Uk) ^-distributiv 
ist. Es ist die folgende Beziehung zu beweisen: 

wobei A, B0, B1, ..., B„ beliebige Elemente von S(U„) sind. 
Es sei a£X, d .h . a=b0b1...bn£A mit bj£Bj (j=0, 1, ..., n). Es seien b~ 

=uß
1

lJ...uß
n"J (7=0, 1, ..., n), wobei u1,u2,...,un die freien Erzeugenden von 

U„ sind. Wir zeigen: a£Y. Wenn der Rang der Matrix B=(ßij)i=:1 „ kleiner 

als n ist, dann ist auch der Rang der Untergruppe [bo,^, ..., b„] kleiner als n 
(siehe K U R O S [ 1 3 ] ) , und, da diese Untergruppe auch frei ist, folgt 

[b0,blt...,bj3<S{UJ 

für ein k ^ n . Nach der Induktionsvoraussetzung ist aber der Verband S(Uk) 
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^-distributiv, also ist er auch «-distributiv. Oeshalb erhalten wir 

[a] = [a]A V = V \[a]A V [&J 1 ä F, 
(=0 _i=0«- 1=0 j 

d. h., a£Y. 
Also können wir annehmen, dass der Rang von B gleich n ist. Man betrachte 

nun für ein beliebiges aber festes 0, 1,. . . ,«} das Diophantische Gleichungs-
system 

(Ek) 2 ßij xJk = \ 2 ßu] h (¿ = 1,2,...,«) 
0 W=0 j 

in den Unbekannten xJk (j¿¿k) und tk. Es bezeichne Dk die Determinante von 
(Ek), d. h., es sei 

Dk = \ßij\i=i « J= 0,1 n;jVJt 

Es sei ferner die Determinante, die Durch Ersetzen der Spalte ()Jy),=1>2 „ 
in D t durch die Spalte (ßi0+ßn +...+ßi„)i=lt2 „ entsteht. Es ist leicht zu sehen, 
dass 

Xjk = W ~ ^ ü = 0, 1, ..., n; j * fc), 
(6) 

t k = A 
(A>*5 •••> Dk-l,k> -Dk> Afc + l.fc» •••> Ai*) 

eine Lösung von (fi^) ist, wobei in den Nennern der grösste gemeinsame Teiler von 
D0k, ..., Dk_l k, Dk, Dk+l k, ..., Dnk steht. Dieser ist nicht 0, da rang B = n ist. 
Die Determinanten DJk sind aber Summen oder Differenzen von Dj und Dk, 
somit gilt : 

(D0k, ...,Dk_Uk, Dk, Dk+lyk, ..., D^) = (D0, Dlt..., Dk, ...,D„). 

Deshalb können wir die Lösungen (6) von (Ek) auch in der folgenden Form schreiben. 

xJk = m nik—tT\ Ü = n'> J * o 1, • • •, Un) 
(7) 

Nun können wir das Gleichungssystem betrachten, das sich aus den Systemen 
(Ek) (k=0, 1, ..., n) und der Gleichung / 0 + ^ + ... + /„=1 zusammensetzt, d. h., 
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das System 

(8) 

2ßijXJk = \2ßi]tk (' = 1, ..., n; fc = 0,1, ..., n) 
j=o M=o J 
jV* 

2*k = l-
k=0 

Da dér grösste gemeinsame Teiler der Lösungen t0, tu ..., tn in (7) gleich 1 
ist, können wir ganze Zahlen y0,yi,---,yn finden, sodass t0y0

Jrt1yl +... + t„y„ — \ 
gilt. Es seien 

t'k = h -y k (fe = 0, 1, ..., n) 

x'jk = Xjk •yk (fc = 0,1, ..., n; j = 0,1, ..., n; j ^ k). 
tk und xJk genügen dem Diophantischen Gleichungssystem (8). Es sei ak=a'*. 
Es gilt offenbar a0a1...a„=a und ak€A. Wir zeigen ak£B0\/...\/Bk^\/Bk+1\/...yBn. 
In der Tat gilt: 

ak = a'k = (b0 V-• &„)'* -

_ ulflt + •••+/>,„)»£ u(ß„o+ - +ßnn>l'k = uZ(ß,jx'Jk\j^k) u£<ß„jx'jk\J*k) • 
1 • • • "n 1 • • • n 

= bf°«... b ^ - b f a - , . . b<ka Büy ...vBk_\jBk+\j ...vBn. 

Es ist also ak£A(B0\J...\/Bk-.1\/Bk+1\J...\jB„). Es folgt 

a = a0a1... a„£ V \AK V 5,1 = 7. 
j= 0 L i= o J 

iVj 
Q. E. D. 

Wir bemerken, dass die Sätze 3 . 1 und 1 . 1 . auch das Ergebnis von R A D O [ 1 7 ] 

enthalten, dass für Kongruenzen von U„ der C„-Satz gilt. Rado hat in [17] auch 
eine gemeinsame Verallgemeingrung des eben zitierten Satzes und des geometrischen 
Satzes von Helly bewiesen, diese Verallgemeinerung scheint aber von der Theorie 
der «-distributiven Verbände unabhängig zu sein. 

Im nächsten Satz werden die abelsche Gruppen charakterisiert die einen 
«-distributiven Untergruppenverband haben. Der Rang rang ((?) einer abelschen 
Gruppe G ist die kleinste natürliche Zahl «, so dass jede endlich erzeugte Unter-
gruppe von G durch n Elemente erzeugt wird. Der Rang existiert natürlich nicht 
für jede abelsche Gruppe. 
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3.2. Satz. Damit der Untergruppenverband einer abelschen Gruppe G n-distri-
butiv ist, ist es notwendig und hinreichend, dass der Rang von G kleiner oder 
gleich n ist. 

Beweis. Es sei rang(G)S«. Wir zeigen, dass für beliebige Untergruppen 
A0, B0, Blt ..., B„ von G 

X = Ah V Bi =§ V \ak v 5(1 = y 
i=0 j= o l i=o J 

Mj 

gilt. Es sei also a£X, d. h., a=b0b1...b„(£A), mit b,£Bt 0 = 0 , 1, ...,«). Da die 
Untergruppe [b0, bly..., b„] durch n Elemente erzeugt werden kann, ist sie ein 
homomorphes Bild von U„. Da die Untergruppenverbände abelscher Gruppen 
isomorph zu ihren Kongruenzverbänden sind, ist S([b0, ¿ l 5 ..., bn]) ein Teilverband 
von S(Un), und als solcher ist er auch «-distributiv. Folglich gilt 

[a] = [a]A V [bi] = V \[a] A V [¿,]1 g Y, 
¡=0 0 l ¡=0 J 

Mj 
d. h., a€T. 

Umgekehrt, nehmen wir an, dass rang (G)=/•>«. Dann gibt es eine Unter-
gruppe H von G, die durch r Elemente erzeugbar ist, nicht aber durch r—1 
Elemente. Es genügt zu zeigen, dass S(H) nicht «-distributiv ist. Nach dem Funda-
mentalsatz abelscher Gruppen kann H als ein direktes Produkt von zyklischer 
Gruppen dargestellt werden 

g= ( c n x . . . x c l t | ) x . . . x (Q 1 x . . . xQ , ) xCx . . . x c M , 
m Komponente 

wobei Co» die unendliche zyklische Gruppe ist, und die anderen Komponenten 
so bezeichnet sind, dass für gewisse Primzahlen p±,p2, . . . ,P s (Pt^Pj für i ^ j ) , 
die Mächtigkeiten von Cu ( j = l,2, ..., /c;) Potenzen von p-, sind. 

Wäre max kt+m<r, so könnte H als ein direktes Produkt von weniger 
als r zyklischen Gruppen dargestellt werden (diese sind: C u X . . . X C s l , C1 2X...X 
XCs2, ...,Cco (m Exemplare)), und so könnte H durch weniger als r Elemente 
erzeugt werden. Folglich gibt es ein kt, kt+m^r, so dass Cr

Pi ein homomorphes 
Bild von H ist. Der Verband S(Cr

p) ist nach [5] nicht (r-l)-distributiv, also ist 
er auch nicht «-distributiv, und dasselbe gilt für S(H). Q. E. D. 

Bemerkung. Dieser Satz enthält als Spezialfall das folgende Resultat von 
ORE [15]: Für eine Gruppe G ist S(G) genau dann distributiv, wenn G lokal 
zyklisch ist (d. h., wenn r a n g G s l ist). 
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4. «-Distributivität in Normalteilerverbänden 

In diesem Teil möchten wir eine Charakterisierung der «-Distributivität des 
Normalteilerverbandes einer Gruppe beweisen, die unseren Hauptsatz für abelsche 
Gruppen auch enthält. Eine solche Charakterisierung folgt durch Anwendung des 
Hauptsatzes des ersten Teiles [5] dieser Arbeit, d. h. des Satzes, der die «-distributiven 
Verbände in der Klasse aller modularen Verbände durch den Ausschluss des 
«-Diamanten (einer speziellen modularen Konfiguration) beschreibt (vgl. auch [8]). 
Es ist in [3] bewiesen worden, dass in dieser Beschreibung der n-Diamant auch durch 
den von Neumannschen («+1)-Rahmen ersetzt werden kann. So erhält man: 

4.1. Lemma. Es sei G eine Gruppe. Dann ist N(G) genau dann nicht n-distri-
butiv, wenn Normalteiler A¡ ( /=0 ,1 , . . . , « ) und Cu (i,j—0, 1, ..., n, i ^ j ) exis-
tieren, so dass A0, Ai, ..., A„ ein unabhängiges System in N(G) bilden und für alle 
i, j (i j) C¡j ein relatives Komplement von A¡ und Aj indem Interval [A¡Í\A}, 
AiVAj] des Verbandes N(G) ist. 

Um die versprochene Charakterisierung zu formulieren, ist es nötig einige 
weiteren Begriffe einzuführen. Sind A und B Normalteiler der Gruppe G so 
dass A^B in N(G) gilt, dann heisst die Faktorgruppe B/A ein Faktor von G. 
Der Faktor B/A heisst transponiert zu dem Faktor D/C (in Zeichen B/A—D/C), 
wenn entweder A\jD=B und A/\D=C oder B\JC=D und Bf\C=A gelten. 
B/A heisst. projektiv zu D/C, wenn es Faktoren Y-JX¡ (/=0, 1, ..., m) gibt, 
so dass 

B/A = Y0/X0 - Yl/X1 -...- YJXm = D/C 

gilt. Die primitive Breite von N(G) ist die grösste natürliche Zahl «, so dass N(G) 
ein unabhängiges System A0, Ax, ..., A„-t enthält, für das die Faktoren AJU 

n-l 
mit U= f\ Aj paarweise projektiv sind. Bezüglich der allgemeinen Definition 

j=o 
primitiver Begriffe siehe W I L L E [ 2 0 ] . 

Wir brauchen einen weiteren Begriff aus der Gruppentheorie. Es seien 
A, B, C, D Normalteiler der Gruppe G und es sei <p: B/A—D/C ein Isomorphis-
mus. q> heisst zentral, wenn gegenüber allen inneren Automorphismen von G 
invariant ist, mit anderen Worten, wenn für jede g£G und x£B/A 

{(g-iA)x{gA))<p = (g-iC)(x<p)(gC) 
gilt. 

4.2. Satz. Es sei G eine Gruppe. Für eine beliebige natürliche Zahl n sind 
die folgenden drei Aussagen äquivalent 

(A) N(G) ist nicht n-distributiv. 
(B) Die primitive Breite von N(G) ist grösser als n. 
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(C) Es gibt ein unabhängiges System A0, Ax, ..., A„ von Elementen von N(G), 

so dass die Faktoren AJU |mit U = f\ Ajj aufeinander durch zentralen Isomorphis-

men von G abgebildet werden können. 

Beweis. (A)=>(B) folgt unmittelbar aus Lemma 4.1. 
(B)=>(C). Sind zwei Faktoren projektiv, so gibt es einen zentralen Isomorphismus 

zwischen den beiden Faktoren. (In der Tat ist der kanonische Isomorphismus 
transponierter Faktoren zentral.) Somit ist dieser Teil der Behauptimg klar. 

(C)=>(A). Nehmen wir an, dass (C) gilt. Wir definieren die Ci} von Lemma 4.1. 
Es sei (pij (i j) ein zentraler Isomorphismus von AJU auf Aj/U. Es sei 
Cu = {x(xq>u) | x£AJU). Dann ist Cug G\U. Es sei Cu die Vereinigimg aller 
CZ-Nebenklassen in Cu, d.h. CiJ={JCij. So erhalten wir eine Teilmenge von G. 
Wir haben zu beweisen, dass Cu die in Lemma 4.1 formulierten Eigenschaften 
besitzt. Allgemein wird für einen Normalteiler X mit UQXQG der Faktor 
X]U mit X bezeichnet. Wir zeigen, dass die folgenden Aussagen gelten: 

(i) Cu ist ein Normalteiler von G. 
(ü) ¡V Cjj=Äj\jCij=A^JÄj, 

(iii) AiACu=AjACiJ=AiAAj-
Dann folgen die analogen Eigenschaften für CU,G, Ah Aj unmittelbar. 

Um (i) zu zeigen, bemerken wir, dass CtJ eine Untergruppe von G ist. In der 
Tat, ist ÄtyÄj das direkte Produkt von Ät und Äj. Deshalb sind die Elemente 
von Ät mit den Elementen von Äj vertauschbar. Mit <p = <pij sind x(xcp) und 
y(y(p) Elemente von C y . Dann gelten 

x{x<p)y(yq>) = xy(x(p)(ycp) = (xy)((xy)<p)€Cu 
und 

x(x<jo)x~1(x~1q>) = xx~1(x(p)(x~l<p) = e(xx~1)(p = e(e<p) = e, 

d.h. (xfxq)))-1=x~x(x'1^)^^. Somit ist Cu eine Untergruppe. Nun zeigen 
wir die Normalität. Es sei a£G und Dann gilt 

a~1(x(x(p))a = (a"1 xa)(a~1(x(p)a) = (a~1xa)((a~1xa)<p)€CiJ. 

Damit ist (i) bewiesen. 
Es sei z ein Element von Ä^Äj. Dann ist z von der Form z=x(y<p), 

x, y£Äi. Wir erhalten 

2 = x(ycp) = {xy-^yiyy^ÄiVCij, 
z = x(ycp) = (x(x<p))((x-1y)(p)eCtJV Äj, 

d. h. es gilt (ii). 
Schliesslich zeigen wir (iii). Es sei xS^-AC tJ, d. h. x—y(ycp) für irgendein 

Element y£Ät. Da jedes Element von Ä^JÄj eindeutig als ein Produkt a,aj 
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mit a l€Ä iyaj£Äj ausgedrückt werden kann, erhält man aus der Beziehung xe— 
=y(y<p) die Relationen x=y und ycp=e. Somit gilt x—y=e, d .h . ÄlAClJ={e}, 
wobei e das Einselement von G (d. h. die Untergruppe U) bezeichnet. Ähnlich 
erhält man CijAÄj={U}. Damit ist der Satz bewiesen. 

Als Anwendung geben wir einen neuen Beweis von Satz 3.2. Der Beweis der 
Notwendigkeit war leicht. Wir brauchen also nur zu beweisen, dass die angegebene 
Bedingung hinreichend für die «-Distributivität des Untergruppenverbandes ist. 
Es sei A eine abelsche Gruppe mit rang (A)^n. Es ist leicht zu sehen, dass 
rang (A')^n für jedes homomorphe Bild Ä einer Untergruppe von G gilt. 
Deshalb kann A" nicht die («+l)-ste direkte Potenz einer Gruppe sein. Also ist 
kein Faktor von A die («+l)-ste Potenz einer Gruppe, d. h, (C) ist unmöglich: 
S(A)(=N(A)) ist «-distributiv. Q. E. D. 
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«-Distributivgesetze 
HORST GERSTMANN 

0. Einführung und Überblick 

András Huhn prägte 1971 den Begriff der «-Distributivität, der eine Verall-
gemeinerung des gewöhnlichen Distributivgesetzes in Verbänden darstellt [10]. 
Wir nennen hier einen Verband X n-distributiv, wenn für jedes x£X und jede 

R 
«-elementige Teilmenge Y von X die Gleichung x[\\/Y = {xf\\JM\MQ 7 } 

n 
gilt. Dabei bedeutet MQY, daß M eine Teilmenge von Y mit weniger als 
n Elementen ist. Für n—2 ist dies das gewöhnliche Distributivgesetz. 

Es ist klar, daß für einen distributiven Verband das Distributivgesetz nicht 
nur für zweielementige Mengen Y, sondern sogar für alle endlichen Mengen gilt. 
Wir werden zeigen, daß in «-distributiven Verbänden die n-Distributivitäts-
gleichung auch für alle endlichen Mengen Y gilt. So wie man die gewöhnliche 
Distributivität zur V-distributivität verschärft, indem man die Distributivitäts-
eigenschaft für alle Teilmengen Y VOH SÍ verlangt, liegt es nun nahe, auf dieselbe 
Weise eine Verschärfung der n-Distributivität zu definieren, die sogenannte unend-
liche n-Distributivität. Die unendliche n-Distributivität ist gleichbedeutend zu den 
beiden Eigenschaften A-Stetigkeit und n-Distributivität (in Analogie zu dem bekannten 
Sachverhalt für n=2). 

So wie man aber auch die gewöhnliche (V-)Distributivität zur vollständigen 
Distributivität verschärft, läßt sich analog die (unendliche) «-Distributivität zur 
vollständigen n-Distributivität verschärfen. 

Als Werte für n lassen wir alle natürlichen Zahlen größer oder gleich 2 und 
N0 zu. Für « = 2 erhält man die gewöhnlichen Distributivgesetze, für n=K 0 die 
A-Stetigkeit und die Stetigkeit (im Sinne von D. SCOTT [12]), so daß die übrigen 
n-Distributivgesetze als „interpolierende" Eigenschaften zwischen V-Distributivität 
und A-Stetigkeit bzw. vollständiger Distributivität und Stetigkeit angesehen werden 

Eingegangen am 4. Oktober 1982. 
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können. Die Abschnitte 2, 3 und 4 dieser Arbeit sind in Anlehnung an Arbeiten 
von MARCEL E R N É [3], [6] entstanden. Es werden die «-Distributivgesetze in einem 
sehr allgemeinen Rahmen behandelt, nämlich für Mengen, auf denen lediglich ein 
Hüllenoperator definiert ist. Dieser Idee liegt die Erkenntnis zugrunde, daß die 
(V-, vollständige) Distributivität eines Verbandes eigentlich eine Homomorphie-
eigenschaft des Schnittoperators ist ([6], Seite 20). Nur die Anwendung der Distri-
butivgesetze für die mengentheoretische Durchschnitts- und Vereinigungsbildung 
(die ja immer gelten, also keine besondere Eigenschaft des Verbandes darstellen) 
führt auf das bekannte Aussehen der Distributivgesetze für Verbände. Der Vorteil 
dieser so allgemeinen Behandlung der «-Distributivität besteht in folgendem: Man 
erhält zum einen Charakterisierungen für diejenigen Verbände (sogar allgemeiner: 
quasigeordenete Mengen), die eine (vollständig, unendlich) «-distributive Schnitt-
vervollständigung oder Idealvervollständigung besitzen. (Unter anderem wurden 
die Fälle « = 2 und «=Xo in [4], [6] behandelt.) Zum anderen ergeben sich durch 
die Wahl des Hüllenoperators als diejenige Abbildung, die jeder Teilmenge einer 
gegebenen Algebra die kleinste sie enthaltende Subalgebra zuordnet, Charakteri-
sierungen für die (vollständige, unendliche) «-Distributivität des Verbandes der 
Subalgebren oder Kongruenzrelationen. Insbesondere ergibt sich hier ein Satz 
über die «-Distributivität, der zwei derartige Sätze von András Huhn betreffend 
abelsche Gruppen und idempotente Algebren umfaßt. Weiter stellt sich heraus, 
daß für den Verband der Subalgebren einer idempotenten Algebra die (unendliche) 
«-Distributivität und die vollständige «-Distributivität gleichwertige Eigenschaften 
sind. Die abelschen Gruppen mit vollständig «-distributivem Untergruppenverband 
sind genau diejenigen, die keine Elemente unendlicher Ordnung besitzen, und deren 
endlich erzeugte Untergruppen immer schon von weniger als n Elementen erzeugt 
werden (letzteres bedeutet, daß der Verband der Untergruppen «-distributiv ist). 
Dies gilt für alle «<K0 ; für «=K0 ist jeder Untergruppen verband vollständig 
«-distributiv (d. h. stetig). Insbesondere gilt: Der Untergruppenverband einer abel-
schen Gruppe ist genau dann vollständig distributiv, wenn jede nicht triviale, endlich 
erzeugte Untergruppe von Primzahlordnung ist. 

Weitere Anwendungen der «-distributivgesetze für Hüllenoperatoren erhält 
man durch die Wahl des Hüllenoperators als Abschlußoperator in topologischen 
Räumen. So ergibt sich zum Beispiel, daß für den Verband der abgeschlossenen 
Teilmengen eines 7VRaumes aus der unendlichen «-Distributivität die vollständige 
«-Distributivität volgt. 

Für alternative Verallgemeinerungen der klassischen Distributivgesetze wird 
der Leser verwiesen auf die Arbeiten [1], [5]. 

In den Notationen lehnen wir uns an die in [6] benutzte an. Zum Beispiel wird 
bei vorgegebenem Hüllenoperator r auf der Menge X der Abschnittoperator 
mit I bezeichnet, d .h. JK = U U > lyÉ Y ) Ist X ebe quasigeordnete 
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Menge, so ist A der Schnittoperator und / der Idealoperator auf X, also AY — 
= IY = {J{AM | MQJ) für YQX, wobei MQCY bedeutet, 
daß M eine endliche Teilmenge der Menge Y ist. bezeichnet die Menge 
aller Teilmengen von Y, die Menge aller Teilmengen von Y mit weniger 
als n Elementen und Y die Menge aller endlichen Teilmengen von Y. 

1. «-distributive Verbände 

Sei n eine natürliche Zahl, 2. Ein Verband X heißt n-distributiv, wenn 
für jedes x£X und jede «-elementige Menge YQX die Gleichung (d„) gilt. 

(d„) xAVY= \/{xA\/M\M<t y}. 

Die 2-Distributivität ist die gewöhnliche Distributivität. 

Satz 1.1. Der Verband X ist genau dann n-distributiv, wenn für jede endliche 
Menge YQeX die Gleichung (d„) gilt. 

Beweis. Ist X «-distributiv, so gilt (d„) für jede höchstens «-elementige 
Teilmenge von X. Angenommen, (d„) gilt für jede höchstens m-elementige Teil-
menge, m ^ n . Wir zeigen, daß dann (d„) auch für alle (m+l)-elementigen Teil-
mengen Y von X gilt. Sei also Y=Z{J{a,b}, \Z\=m—1. Setze z=a\jb. Da 
die Menge Y1=ZÖ{z} höchstens m Elemente hat, gilt xA\/Y—xA\/Y1 = 

= V {xt\MM | M t Z}\Z\/{xA\/(NÖ {z}) | N "g Z). Sei N "g Z fest gewählt. 
Setze Y2 = NU {a, b). Wegen |72 | == m gü t X A V ( A T U {z}) = xh\JYt= 

= \J{xh\JM\Mt Also gilt xA\JY = \J{XA\M\mL Z}VV'{V{*AVAf | 
M g Z} = V { * A V ^ | ^ S Y}-

Aufgrund von 1.1 liegt es nahe, den Begriff der V "Distributivität zu verall-
gemeinern : Ein vollständiger Verband X heiße unendlich n-distributiv, wenn für jede 
Menge YQX die Beziehung (d„) gilt. Die unendliche 2-Distributivität ist die 
V-Distributivität. Hier ist es sinnvoll, auch K0 als Wert für « zuzulassen: Die 
unendliche K0-Distributivität ergibt den bekannten Begriff der A-Stetigkeit (vgl. 
[2], Seite 15). 

Offensichtlich gilt: Erfüllen x£X und YQX die Gleichung (d„), so erfüllen 
sie auch (dm) für jedes mS/i. Insbesondere ist ein unendlich «-distributiver Ver-
band auch A-stetig. Wir erhalten sogar (als Verallgemeinerung des Satzes, daß 
ein vollständiger Verband genau dann V"distributiv ist, wenn er A-stetig und distri-
butiv ist): 
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Satz 1.2. Ein vollständiger Verband X ist genau dann unendlich n-distributiv, 
wenn er n-distributiv und /\-stetig ist. 

Beweis. Ist X A-stetig, so gilt für x£X und YQX: xA\/Y = V{*AV-W| 
JVQey}. Wenn X «-distributiv ist, gilt für jede endliche Teilmenge N von Y: 

XAVN = V{xAWM \M t N}. Es folgt somit: xA\/Y = \/{\/{xA\/M \ M t 2V}| 

ivger}=V{MVM|Mg Y). 
Ist also der Verband der Subalgebren oder der Verband der Kongruenzrelationen 

einer Algebra A «-distributiv, dann ist er sogar unendlich «-distributiv. 

Satz 1.3. Ein (vollständiger) Verband X ist genau dann (unendlich) n-distri-
butiv, wenn für jedes endliche System endlicher (beliebiger) Teilmengen von 
X gilt: 

(D„) A № \ Y W } =V{A{V/(iOIW}|/£ n 

Beweis. Es gelte xAV^ = V{*A\AM"|M g 7} für alle x£X und alle 
YQX (QCX). Sei (3/={Y1, ..., Yk} eine Menge von (endlichen) Teilmengen von X. 
Es wird mittels vollständiger Induktion gezeigt, daß für alle r=l,...,lc gilt: 

y:=Vr1A...AV^=V{VM1A...AV^AV^,+iA...AVn|^i I Y, für i= 1, ...,r}. 
(Für r — k erhält man die Behauptung.) Für r= 1 setze x:=yY2A---A\/Yk. 
Dann ist y=xAVY1=\J{xAVM1\M1 g ViV^AV^A-AV^I Mx t Y j . 

n 
Nehmen wir nun an, die Behauptung gilt für r, 1 S r < i . Seien Q Yx, ..., 

...,Mr t Yr gewählt. Mit z:=\/M1A..-AVKAVK+2A-AVYk folgt V ^ i A - A 

AVMrAVYr+1A--AVYk-zAVYr+1=\/{zAVMr+1jMr+1 t 7 r+1}. Hieraus ergibt 

sich: j = V { V M 1 A . . . A V M r A V M r + 1 A V y r + 2 A - A V ^ \ M { t T j ü r ¿ = 1, ...,/-+1}. 
Damit ist der Induktionsbeweis beendet. 

Es gelte umgekehrt (D„) für jedes endliche System von (endlichen) Teilmengen 
von X. Seien x£X und YQX(QeX) gewählt. Für <3/={{x}, 7 } folgt xA\/Y = 

= V W A V ^ = V { V W A V M | M | Y}=y{xA\JM\Mt Y). 

Wir nennen einen vollständigen Verband X vollständig n-distributiv, wenn 
die Gleichung (D„) für jedes Mengensystem Iß* erfüllt ist. Die vollständige 
2-Distributivität ist der bekannte Begriff der vollständigen Distributivität. Voll-
ständige N0-Distributivität ist dasselbe wie Stetigkeit (vgl. [8], Seite 58). 

Es bietet sich noch die folgende Variante für einen «-Distributivitätsbegriff an: 
Ein vollständiger Verband X heiße endlich n-distributiv, wenn die Gleichung (D„) 
für jedes Mengensystem 9 bestehend aus endlichen Teilmengen von X gilt. 
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Erfüllt das Mengensystem die Gleichung (Dn), so erfüllt <& offensichtlich 
auch (Dm) für jedes män . Insbesondere ist ein vollständig «-distributiver Verband 
auch stetig. In Analogie zu 1.2 gilt sogar: 

Satz 1.4. Ein vollständiger Verband ist genau dann vollständig n-distributiv, 
wenn er endlich n-distributiv und stetig ist. 

Beweis. Es ist noch zu zeigen, daß ein endlich «-distributiver und stetiger 
Verband X vollständig «-distributiv ist. Wenn X stetig ist, so gilt für ein beliebiges 
Mengensystem <&<gyX: A { V ^ | Y<L<&}= V ( A ( V / 0 0 | Yt<&} T I ^ Y ) . Wegen 

der endlichen «-Distributivität von X gilt für jedes / € JJ^Y: A{V/(^ ) | YZ<&}= 

= Es folgt somit: A{\/Y\Ye<2/} = 

= V { V { A { W № ) ) | Y€9}\gln9ynf(Y)}]fi jjycY}=y{A{Vh(Y)\Y(iW}\he 

2. Charakterisierungen der «-Distributivgesetze 
durch Eigenschaften des Schnittoperators 

Ist r ein Hüllenoperator auf der Menge X, so heißt der durch 

| F : = l J { r M \ M t 7} definierte Operator n-Abschnittoperator. 
n 

Die Bilder von | heißen n-Abschnitte. Ist f der Schnittoperator einer quasi-
n 

geordneten Menge X, so ist der Operator J für « = 2 der gewöhnliche Abschnitt-
operator und für n=der Idealoperator. Für den (hier nicht vorkommenden) 
Fall «>1^1 erhält man den Schnittoperator. Ist X sogar ein Verband, so gilt 
\Y=\{\JM\MLX}. 

Ist r ein Hüllenoperator auf der Menge X und ist SS eine Menge von 
«-Abschnitten bzgl. T, so sagen wir T erhält den Durchschnitt 0&, wenn gilt: 
f \ r [ & ] = r ( f \ % ) . (Hierbei kann „ = " durch „ g " ersetzt werden.) 

Satz 2.1. Sei A der Schnittoperator auf dem (vollständigen) Verband X, 

und sei A erhält genau dann den Durchschnitt Hi"^ | Yt<&}, wenn für 
<& die Gleichung (DJ gilt. 

Beweis, J r 6 f l r ) = n U V l r | Andererseits gilt 

Nun ist C\(\Y\Y£<&}=C\{\J{\\/M\M g y}| 
| W } = U { n O W ) Yi<&)\fi / 7 . % n = U 0 A { V / ( n | Y & ) \ f z n = 

. Y£9 ' ' YI® 

= l{A{Vf(Y)\Y£®}\f£ H%Y}. Hieraus ergibt sich die Behauptung. 
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K o r o l l a r 2.2. Ein vollständiger Verband ist genau dann vollständig n-distributiv, 
wenn der Schnittoperator beliebige Durchschnitte von n-Abschnitten erhält. 

Ein vollständiger Verband ist genau dann unendlich n-distributiv, wenn der Schnitt-
operator endliche Durchschnitte von n-Abschnitten erhält. 

Ein vollständiger Verband ist genau dann endlich n-distributiv, wenn der Schnitt-
operator beliebige Durchschnitte von endlich erzeugten n-Abschnitten erhält. 

Ein Verband ist genau dann n-distributiv, wenn der Schnittoperator endliche 
Durchschnitte von endlich erzeugten n-Abschnitten erhält. 

Dabei heißt bei gegebener Abbildung 4> von X in X eine Menge ZQX 
endlich erzeugt, wenn Z das Bild einer endlichen Teilmenge von X unter $ ist. 

Wir stellen noch einige Eigenschaften des «-Abschnittoperators zusammen. 
tl 

Sei r ein Hüllenoperator auf der Menge X und sei t der zu r gehörige n-Ab-
schnittoperator. Wie leicht zu sehen ist, gelten für jede Teilmenge 7 von X die 

n n m n n 
Beziehungen rY = \TY=T \ Y und \Y g l Y für m^n. Der Operator J ist 
extensiv und monoton, aber für 2 < « < K 0 im allgemeinen nicht idempotent (also 
kein Hüllenoperator). Wenn jedoch für jede Menge NQ-X ein xN£X mit rxN=TN 
existiert (was zum Beispiel für den Schnittoperator eines vollständigen Verbandes 

in n r 
der Fall ist), so gilt J o | = | mit r=(n—l)(m — 1)+1 bzw. wenn n oder 
m den Wert hat. 

DI R , m n . FFL , 

Beweis. KJ7) = \ j { r t i \ M g ( J{™| iV g 7}} = \ j { r M \ M < ^ UU*]v|-

•\NtY}}^\J{r«xN\N€Jr})\jr | % r } = U UXLWOl-^ g^P„7} = U { r 5 | -r r 
• | S g 7 } = | 7. Dabei geht an den mit (*) gekennzeichneten Stellen die folgende 
Beziehung ein: Aus KtgTL( für jedes i£l folgt r(\JKt)Qr(\J L,). 

izl i€/ 
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3. Die (unendliche) «-Distributivität 

Die Ergebnisse des nächsten Satzes stammen größtenteils von Marcel Erne 
und sind grundlegend für die Charakterisierungen der w-Distributivität und der 
unendlichen w-Distributivität. Wir geben hier einen etwas anderen Beweis dafür, 
daß aus der Aussage (b) die Aussage (c) folgt. Der Vollständigkeit wegen werden 
hier die Beweise aus [6] für „aus (a) folgt (b)" und „aus (c) folgt (a)" mit aufgeführt. 

Lemma 3.1. Seien r ein Hüllenoperator und Jt ein Mengensystem auf der 
Menge X, so daß für alle x^X die Menge {*} oder der Punktabschluß ix ein 
Element von JI ist. Die folgenden Aussagen (a)—(c) sind äquivalent. 

(a) Für jedes x£X und alle M^Jt mit x£FM gibt es eine Menge NQ \M 
mit rN= \x. 

(b) | * n r A f = r ( ^ n i M ) für alle x(LX,M<iJi. 
(c) r erhält endliche Durchschnitte von Mengen \M, M^Jt. 
Ist r ein algebraischer Hüllenoperator und ist Ji eine Menge von n-Abschnitten, 

die alle endlich erzeugten n-Abschnitte enthält, so ist (d) zu (a)—(c) äquivalent. 
n 

(d) Für jedes x£X und alle EQ eX mit x£TE gibt es eine Menge NQC\E 
mit TN=\x. 

Gilt rx={x) für alle x£X, dann ist (e) zu (a)—(c) äquivalent. 
(e) Für alle M<iJt ist FM=\M. 

Beweis, (a)—(b): Seien x£X,M£Ji und y£ Ix HTM. Dann gibt es eine 
Menge NQ\M mit TN= iy. Es folgt NQrN=[yQ\x, also NQ\xC\lM, 
und damit y £ r N Q r ( \ x r \ \ M ) . 

(b)—(c): Sei e&Q{\M\M<iJl}. Ist ^ = 0 , so ist (c) erfüllt. Es sei nun 
<2/={Y1, ..., fcsl. Es wird mittels vollständiger Induktion gezeigt, daß für 
r = l , ..., k gilt: 

( * ) nrm = r(Yin...nYrf]rYr+in...nrYk). 

Sei x G f y w wegen \xQrY2n.. .CiFYk ist x e j x n r y ^ r o x n r o g r c ^ n 
n/T2n...n.T7l). Es gelte nun (*) für ein r, l^r^k. Sei x € y 1 n . . . n F r D 
nry l.+1n...nry)t. Dann ist xaxnry r+1=roxnr,+1)gr(r1n...nF r+1n 
nryr+2n...nrr fc). Also gilt r(r1n...nr rnrr r+1n...n/T f c)gr(y in... 
...nr r+ inrr r+2n...nry fc). Damit ist der Induktionsbeweis beendet. 

(c)-(a): Seien M^Ji und x^FM. Es gilt \x=\xC\rM=F(lxr)\M)=rN, 
wobei JV—JxfUM einein \M enthaltene Menge ist. 

Zu (d): Ist r ein algebraischer Hüllenoperator und gilt {'LE | E Q ^ X } Q J / , 
so ist (a) zu der folgenden Bedingung äquivalent: (* ) Ist x£FE, EQCX, so ist 

n 
TK=\x für eine Menge K<^\E. Denn einerseits muß (*) gelten, da Ji alle 
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endlich erzeugten «-Abschnitte enthält. Ist andererseits so ist M = \S 
für eine Menge SQX. Ist nun x£TM=rS, so ist x£FE für eine Menge EQtS, 

da r algebraisch ist; aus Kq\e folgt KQ\S = M. Wegen rK=\J{rF \ FQtK) 
und x^rK gibt es eine Menge N<=tK mit x^TN und somit TN=\x. 

Zu (e): Gilt (a) und ist x£TM für eine Menge M£J/, so ist rN=Tx für 
eine Menge NQ\M. Aus rx = {x} folgt N = {x}. Also ist x£ \M. Damit ist 
gezeigt: TM= \M. Gilt umgekehrt TM— \M für alle M^M, so ist (b) offensichtlich 
erfüllt. 

Satz 3.2. Sei r ein Hüllenoperator auf der Menge X und sei ÜE das zu 
r gehörige Hüllensystem. Die folgenden Aussagen (a)—(d) sind äquivalent. 

(a) Für jedes x£X und jede endliche Teilmenge Y von X mit xdTY gibt 
n 

es eine Menge NQ J Y mit TN— Jx. 

(b) T x n r y = r ( | x n i F ) für alle x£X, YQeX. 
(c) r erhält endliche Durchschnitte von endlich erzeugten n-Abschnitten. 
(d) Das n-Distributivgesetz (d„) wird von allen Elementen von 9C erfüllt, die 

endlich erzeugt sind (bzgl. r). 
Ist r ein algebraischer Hüllenoperator, so ist (e) zu (a)—(d) äquivalent. 
(e) Für jedes x£X und jede endliche Teilmenge Y von X mit x£TY gibt es 

n 
eine Menge NQelY mit TN — Ix. 

Enthält SC alle einelementigen Mengen, so ist (f) zu (a)—(d) äquivalent. 

(f) Für alle Y^eX ist rY—"\Y. 

Beweis. Mit der Menge aller endlich erzeugten «-Abschnitte als Mengen-
system Jl ergibt 3.1 die Äquivalenz von (a), (b) und (c) und, unter den angegebenen 
Voraussetzungen, auch die Äquivalenz von (e) bzw. (f) zu (a)—(c). 

(c ) - (d) : Seien Zi9C und ..., Yn}QSC, Z=TE und Yi=rM{ 

für Mengen EQCX, MtQeX (¿ = 1,. . . ,«). Es ist \j<&=r({]<&)=rM mit M = 

= M 1 U. . .UM„. Aufgrund von (c) gilt Z A V ^ = ZPiTM = r{ZC\"\M). Nun 

gilt Zf)]M=zn\J{rN\N t M}Q\J{ZC)rN\N t 

Es folgt Z A V ^ i V { Z f \ \ J 2 £ \ 2 £ h < y \ 

(d ) - (b ) : Seien x<iX und Y^eX. Es gilt Jxn/T=.Txnr(U{/> 
= rxM{ry\y£Y} = V{rxAV{rj;|^Z}|Zg Y} = R ( U { L * N R Z | Z £ 7 } ) = 

=ruxn\j{rz\z t r } )=r ( i *n i r ) . 
Satz 3.3. Sei T ein Hüllenoperator auf der Menge X und sei SC das zu 

T gehörige Hüllensystem. Die folgenden Aussagen (a)—(d) sind äquivalent. 
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(a) Für jedes x£X und jede Teilmenge Y von X mit x£FY gibt es eine Menge 

NQ\Y mit rN= \x. 

(b) u n r y = r ( | x n i 7 ) für alle x£X, YQX. 
(c) r erhält endliche Durchschnitte von n-Abschnitten. 
(d) 3C ist ein unendlich n-distributiver Verband. 
Ist r ein algebraischer Hüllenoperator, so ist (e) zu (a)—(d) äquivalent. 
(e) Für jedes x£X und jede endliche Teilmenge Y von X mit x£TY gibt 

n 
es eine Menge NQC\Y mit TN = \x. 

Enthält 3C alle einelementigen Mengen, so ist (f) zu (a)—(d) äquivalent. 

(f) r = \ . 

Beweis. Aus 3.1 erhält man die Äquivalenz von (a), (b) und (c) und, unter 
den angegebenen Zusatzvoraussetzungen, auch die Äquivalenz von (e) bzw. (f) zu 
(a)—(c), wenn man als Mengensystem Jl die Menge aller «-Abschnitte bzgl. 
T nimmt. 

(c)—(d): Analog zum Beweis „(c)—(d)" von 3.2. 
(d)—(b): Analog zum Beweis „(d)—(b)" von 3.2. 

Wir wollen die Aussagen von 3.2 und 3.3 kurz für den Fall betrachten, daß 
r der Schnittoperator A eines (vollständigen) Verbandes X ist. Die Aussagen 
von 1.3 erhält man als Spezialfälle der Äquivalenz von (b) und (c) in 3.2 und 3.3 
(wenn man. die Charakterisierung der «-Distributivität von 1.1 voraussetzt). Die 
Äquivalenz von (a) und (b) in 3.2 ergibt für « = 2 die lokale Charakterisierung der 
Distributivität von Grätzer ([9], Seite 99). Daß die Aussagen (b) und (d) in 3.3 
äquivalent sind, bedeutet in diesem Fall, daß die unendliche «-Distributivität von 
X gleichbedeutend ist mit der unendlichen «-Distributivität der Schnittvervoll-
ständigung von X. Dies ist aber klar, da vollständige Verbände isomorph zu ihrer 
Schnittvervollständigung sind. 

. Die Äquivalenz von 3.3 (d) zu den anderen Bedingungen von 3.3 ist aber keines-
wegs für andere Hüllenoperatoren wertlos. Dies soll im folgenden verdeutlicht 
werden. 

Aus einem Satz über Polynomidentitäten (siehe [2], Seite 68) folgt, daß ein 
Verband genau dann «-distributiv ist, wenn dies für seinen Idealverband zutrifft. 
Aus 3.3 erhalten wir ein allgemeineres Resultat, wenn wir für F den Idealoperator 
/ wählen und beachten, daß der Operator I, auf endliche Mengen angewandt, mit 
dem Schnittoperator A übereinstimmt: 

K o r o l l a r 3.4. Für eine quasigeordnete Menge X sind äquivalent: 
n 

(a) Ist YQX und ist x^AY, so existiert eine endliche Teilmenge von i 7 , 
für die x kleinste obere Schranke ist. 
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(b) Für alle x£X und YQX gilt \x(MY=/(ixfl|y). 
(c) I erhält endliche Durchschnitte von n-Abschnitten. 
(d) Der Idealverband von X ist (unendlich) n-distributiv. 

Bezeichnet r den Schnittoperator A eines Verbandes X, so charakterisieren 
die äquivalenten Bedingungen (a)—(d) von 3.2 die «-Distributivität von X. In 
diesem Fall müssen also 3.2 (a) und 3.4 (a) übereinstimmen. Es soll nun untersucht 
werden, für welche quasigeordneten Mengen X die Bedingungen 3.2 (a) (für r=A) 
und 3.4 (a) sonst noch identisch sind: Im Gegensatz zu 3.2 (a) wird in 3.4 (a) zu 

n 
vorgegebener Menge YQeX und x£AY eine endliche Teilmenge N von mit 
AN = \x gefordert. Wie aus dem Beweis von 3.1 hervorgeht, kann in 3.2 (a) die 
Menge N als Durchschnitt eines Hauptabschnitts mit einem endlich erzeugten 
«-Abschnitt gewählt werden. Falls also X die Eigenschaft hat, daß im Durchschnitt 

n n 
|x Pll F eines Hauptabschnitts ix mit einem endlich erzeugten «-Abschnitt JF 

n 
eine endliche Menge E enthalten ist mit AE=A(\xC\ \F), so sind 3.2 (a) und 3.4 (a) 
äquivalent für X. Hier reicht es, diese Bedingung nur für alle (nicht leeren) Mengen 
F mit weniger als n Elementen zu fordern, denn für eine beliebige Teilmenge Z von 
X gilt \xC\"\Z = \J{\xf\AF\F t Z). 

In einem Verband ist aber u n i F = J x n J F = | x n J V ^ i O t A V ^ ) für 
Q^FQX. Als die geforderte Menge E kann man hier also {xAV^} nehmen. 
Im Fall « = 2 kann man offensichtlich genauso schließen, wenn X lediglich ein 
A-Halbverband ist ([6]). Daneben gilt die Äquivalenz von 3.2 (a) und 3.4 (a) natürlich 
auch für alle endlichen quasigeordneten Mengen. 

Es sei noch bemerkt, daß die Bedingung 3.4 (a)"für n=2 mit der von K A T R I N Ä K 

[11] gegebenen Definition der Distributivität eines V-Halbverbandes übereinstimmt. 
Die von Katrinäk bemerkte Tatsache, daß ein V-Halbverband genau dann distributiv 
ist, wenn dies für seinen Idealverband zutrifft, ist also ein Spezialfall von 3.4. 

Die Äquivalenz der Bedingungen (d) und (e) von 3.3 ergibt insbesondere auch 
eine Charakterisierung für die (unendliche) «-Distributivität des Verbandes Su (A) 
der Subalgebren einer Algebra A. Wir stellen dieses Ergebnis noch einmal besonders 
heraus: 

Koro l l a r3 .5 . Sei A eine Algebra. Su (A) ist genau dann (unendlich) n-
distributiv, wenn für jedes xdX und jede endliche Teilmenge Y von X mit x£[7] 

n 
eine Menge NQe\Y existiert mit [iV] = [x]. 

Die Bedingung in 3.5 läßt sich auch so formulieren: Ist x6[7], YQeX, so ist 
x£[AT], wobei jedes der endlich vielen Elemente von N in [x] und in einer Menge 

[M], M L y , liegt. 
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Ist A eine idempotente Algebra, so ist die «-Distributivität von Su (A) auch 
n 

gleichwertig mit der Bedingung J = F (siehe 3.3 (f)). Diese Charakterisierung der 
idempotenten Algebren mit «-distributivem Subalgebrenverband stammt von András 
Huhn. 

Die abelschen Gruppen mit «-distributivem Untergruppenverband wurden von 
András Huhn wie folgt charakterisiert: 

Sei G eine abelsche Gruppe. Su (G) ist genau dann n-distributiv, wenn jede 
endlich erzeugte Untergruppe schon von weniger als n Elementen erzeugt wird. 

Beweis (mit Hilfe von 3.5). Angenommen, U ist eine endlich erzeugte Unter-
gruppe von G, die nicht von weniger als n Elementen erzeugt wird. Wir können 
o.B.d.A. annehmen, daß U isomorph ist zu Z r X . . . X Z r mit Zahlen /-¡6N0:= 
:=NU{0}. Der größte gemeinsame Teiler von r l 5 ..., rn ist ungleich 1, denn sonst 
ließe sich ZrX...XZT in ein direktes Produkt mit weniger als « Faktoren ver-
wandeln: Ist etwa rXyí0 und r1=q1...qk die Zerlegung von rx in Primpotenzen, 
so ist Z ^ s Z ^ X - . X Z ^ ; wäre ggT(r l5 . . . , rn)=\, so könnte jeder Faktor Z ? j 

mit einem Faktor Zr., /£{2, ...,«}, vermöge Zf{XZ = Z r j.? verschmolzen 
werden. Nimmt man nun als Elemente von Y die den Vektoren (1, 0, ..., 0), ..., 
..., (0, ..., 0, 1) entsprechenden Elemente von U und für x das dem Vektor 

n 
(1,..., 1) entsprechende Element, so ist zwar x£[Y], aber [ l i T t M ] , denn in 
n 
i r f l [ x ] liegen nur Elemente von G, die Vektoren der Form (k1 r±, ..., k^),..., 
..., (k„r„, ..., k„r„) entsprechen (die j-te Komponente jeweils modulo rf); wäre 
x die Summe solcher Elemente, so müßte eine Gleichung der Form 1 = kx rx+... + kn r„ 
mit ganzen Zahlen klt ...,k„ gelten, im Widerspruch dazu, daß rlt rn teiler-
fremd sind. 

Andererseits gilt die Bedingung aus 3.5 für die «-Distributivität offensichtlich 
für alle Teilmengen Y von G mit weniger als n Elementen. Nehmen wir also an, 
daß die Bedingung aus 3.5 für alle (m—l)-elementigen Teilmengen von G erfüllt 
ist für ein ffl^n. Es sei nun Y— {yx, ...,ym}QG, x^[Y], o.B.d.A. x=y1+...+ym. 
Vorausgesetzt, [F] wird schon von weniger als n Elementen erzeugt, dann gilt 
[Y]^ZrX...XZrn für gewisse Zahlen ra, ...,/•„€ N0. Die Elemente von Y können 
also als (« —l)-komponentige Vektoren angesehen werden. Somit gibt es teiler-
fremde Zahlen kx, ..., km£Z mit k1y1 + ...+kmym—0. Also gilt xs,\—kjX= 
=kjy1+...+kjym=(kj-k1)y1+...HICj-!cm)ym(L[Yj] für Nach In-

n n 
duktionsvoraussetzung ist Da kx, km teilerfremd 
sind, gibt es ganze Zahlen mit k1t1 + ...+kmtm=\. Es folgt: x=(k1t1+... 
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4. Die vollständige n-Distributivität 

Satz 4.1. Sei T ein Hüllenoperator auf der Menge X und sei SC das zu 
r gehörige Hüllensystem. Die folgenden Aussagen (a)—(c) sind äquivalent: 

n 
(a) Für jedes x£X gibt es eine Menge NQX, so daß TN = \x und NQ\Y 

für alle Y<gX mit x^TY gilt. 
(b) r erhält beliebige Durchschnitte von n-Abschnitten. 
(c) SC ist ein vollständig n-distributiver Verband. 
Ist r ein algebraischer Hüllenoperator, so ist (d) zu (a)—(c) äquivalent. 

n 
(d) Für jedes x£X gibt es eine Menge NQCX, so daß TN=\x und NQe\Y 

für alle YQCX mit x^TY gilt. 
Enthält SC alle einelementigen Teilmengen, so ist (e) zu (a)—(c) äquivalent. 

(e) r = ] . 

Beweis, (a) - (b) : Sei Ist x^f\F[<&], so gilt x£TY für jedes Yi<&. 
n 

Nach Voraussetzung existiert eine Menge N mit x£TN und NQ lY für alle 

Y£<&. Also ist NQf\{\Y\Y<i<&}, und somit gilt x<E/W £ r ( f | { | l ' | Y£<3/}). 

(b)- (a) : Sei x£X. Setze N = f l { ^ | xZTY}. Nach Voraussetzung ist 

rN=f]{TY | x£JT} . Also gilt TN=\x und NQ\Y für alle YQX mit x^TY. 
(b)-(c) : Sei Wegen (b) gilt A ( V ^ | 3 r ^ = f \ { r ( J J S ) | 

= r ( n Ö O J * ) ! * ^ } ) . Es ist aber f ) { K U ^ ) | | M 
= I ZZSf) | / 7 i U { n { ^ ( U / ( ^ ) ) I &€ST}\ / € 

€ / H \ 2 £ \ Also folgt: A { V ^ | V { A { V / W | \ f t II 

(c)-(b) : Sei WQ^X- Es gilt YZ&}=A{V{ry\yeY}\Y£&} = 
= V{ A {V {ry I yef(Y)} \Ye&}\ /<E JJ% Y) = \/{/\{rf(Y) | ¥£<&} | /€ <P„F} = 

= J X U { n { W ) | Yt<st) \ftnjVnY})=r(r){U{rM|m t y) | W } ) = r ( n u y \ 

I Yi<&}). 

Zu (d): Ist T ein algebraischer Hüllenoperator, so kann man sich in der 
Bedingung (a) offensichtlich auf endliche Mengen beschränken. Die nach (a) 
existierende Menge N kann endlich gewählt werden, denn ist M eine beliebige 
Menge mit FM = |x, so gibt es eine endliche Teilmenge N von M mit TN = Jx. 

n 
Zu(e): Gilt T = \ , so ist (b) offensichtlich erfüllt. Umgekehrt folgt aber schon 

aus der unendlichen «-Distributivität, wenn SC alle einelementigen Teilmengen 
enthält: r = | . 
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Bezeichnet f den Schnittoperator oder den Idealoperator, so erhält man aus 
4.1 eine Charakterisierung derjenigen quasigeordneten Mengen, deren Schnitt-
vervollständigung bzw. Idealvervollständigung vollständig «-distributiv ist (ins-
besondere also stetig oder vollständig distributiv). Zum Beispiel ergibt sich für die 
Idealvervollständigung quasigeordneter Mengen: 

Koro l l a r 4.2. Für eine quasigeordnete Menge X sind äquivalent: 
(a) Für jedes x£X gibt es eine Menge NQeX, für die x kleinste obere Schranke 

n 
ist und die in jeder Menge \Y, YQeX, mit x£AY enthalten ist. 

(b) I erhält beliebige Durchschnitte von n-Abschnitten. 
(c) Der Idealverband von X ist vollständig n-distributiv. 

Nimmt man für F den Operator [ ], der jeder Teilmenge einer gegebenen 
Algebra A die kleinste sie enthaltende Subalgebra zuordnet, so ergibt sich aus 4.1: 

K o r o l l a r 4.3. Sei A eine Algebra. Su (A) ist genau dann vollständig n-
distributiv, wenn für alle x£A eine Menge NQeA existiert, so daß [iV] = [x] und 

NQ"\Y für alle YQeX mit x£[Y] gilt. 

Im Detail bedeutet die Bedingung in 4.3: Für alle x£A gibt es eine Menge 
tl 

NQCA mit [iV]=[x] und jedes Element von N liegt in einer Menge [M], M g Y, 
wenn x€[Y] gilt. 

Für idempotente Algebren gilt darüber hinaus (wegen (4) siehe [7]): 

Satz 4.4. Für eine idempotente Algebra A sind die folgenden vier Aussagen 
äquivalent: 

(1) Su (A) ist villständig n-distributiv. 
(2) Su (A) ist n-distributiv. 

(3) [ ] = !• 
n+s—1 n 

(4) Für alle Y Q A gilt [Y] = \Y, wobei die Stelligkeit von jeder Operation 
von A nicht größer als s ist. 

Bei abelschen Gruppen sind jedoch die «-Distributivität und die vollständige 
n-Distributivität des Subalgebrenverbandes keine äquivalenten Eigenschaften: 

Satz 4.5. Sei G eine abelsche Gruppe. Su (G) ist genau dann vollständig 
n-distributiv («<&o)> wenn G keine Elemente unendlicher Ordnung enthält und jede 
endlich erzeugte Untergruppe schon von weniger als n Elementen erzeugt wird (d. h. 
jede endlich erzeugte Untergruppe ist isomorph zu einem Produkt ZkX...XZk 

für natürliche Zahlen kx, ..., kn^0J. 
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Beweis. Nehmen wir an, G enthält ein Element x unendlicher Ordnung. 
Für jede Menge P = {plt •••,/>„} von « verschiedenen Primzahlen sei YP= 

= {{IIP,)x\j = l> •••>"}• Offensichtlich gilt 
i&j n 

Angenommen, die Menge H O T P | P «-elementige Menge von Primzahlen} ent-
hält ein Element y^O. Wähle eine «-elementige Menge 0 von Primzahlen. Wegen 

n 
y€lYQ gilt y—kqx für ein q£Q, k£ Z. Sei R eine Menge von n Primzahlen; 

n 

die alle größer als \kq\ sind. Dann ist ^^ j , da x unendliche Ordnung hat, 
Widerspruch. 

Hieraus folgt, daß die in 4.3 geforderte Menge N nicht existiert. Su (G) ist 
also nicht vollständig «-distributiv. Nehmen wir nun umgekehrt an, daß jede endlich 
erzeugte Untergruppe schon von weniger als « Elementen erzeugt wird und G keine 
Elemente unendlicher Ordnung enthält. 

Sei x£G. Sei P die Menge aller maximalen Primpotenzen, die ord x teilen. 
Wir setzen Nx={(ordx/p)x \p$.P}. Offensichtlich gilt [Ar

x]=[x], Es wird nun 
gezeigt, daß für alle YQeX mit x€ [ r ] gilt. 

n 
Hat Y weniger als « Elemente, so gilt [Y] = \Y. Wenn also in diesem Fall 

tl 
x ein Element von [7] ist, so ist NXQC\Y. Angenommen, für jedes x£G und 

für alle (w-l)-elementigen Teilmengen Y von G mit gilt: NxQe\Y (m^n). 
Sei Y = {y1, ...,ym}QG, x£[Y], o.B.d.A. x=y1+...+ym. Die Elemente von 
Y können als («—l)-komponentige Vektoren angesehen werden. Somit gibt es 
Zahlen kt, ..., km£Z mit größtem gemeinsamen Teiler 1 und k1y1+... +kmym—0. 
Sei p ein Primpotenzteiler von r : = o r d x . Da k1,...,km teilerfremd sind, gibt es 
ein ye{l, ...,m) mit ggT(kj, p)=\. Es ist xJ:=kJx^kJy1+...+kjym = 
=(kj-kJy1+...+(kj-kJym£[Yj] für Yj-.= Y\yj. Wegen ord xj=r/ggT(k], r) 
ist (ord Xj/p)Xj—(rsj/p)x mit sJ\=kjlggl(kj, r). Nach Induktionsvoraussetzung 

ist (ord X J / p ) Y j Q 1Y . Wegen g g T ( ^ , r ) = l gibt es Zahlen a, b£Z mit 
n 

arsj/p=r/p+br. Es folgt (axsj/p) x=(r/p) x£\Y. 
Aus dieser Charakterisierung der abelschen Gruppen mit vollständig «-distri-

butivem Untergruppenverband ergibt sich insbesondere, daß der Untergruppen-
verband von Z nicht vollständig distributiv (d. h. kein ^-Verband) ist. Für den 
Fall «=K 0 wird der vorangegangene Satz falsch: Für jede (endlich-stellige) Algebra 
A ist Su (A) algebraisch, also insbesondere stetig. 

Daß die Bedingungen 3.3 (f) und 4.1 (e) gleich lauten, hat unter anderem noch 
die folgende Konsequenz: Ist der Verband der abgeschlossenen Mengen eines 
Ti-Raumes unendlich «-distributiv, so ist er schon vollständig «-distributiv. Ins-
besondere sind also für eine 7\-Topologie die /\-Distributivität und die vollständige 
Distributivität gleichwertige Eigenschaften. 



/i-Distributivgesetze 113 

Schlußbemerkung 

Wir haben uns in dieser Arbeit zwar auf Werte von n beschränkt, die zwischen 
2 und So hegen, es soll jedoch nicht unerwähnt bleiben, daß man auch für andere 
Kardinalzahlen sinnvolle Sätze erhalten kann. Zum Beispiel gilt: Ist X ein topologi-
scher Raum, der das 1. Abzählbarkeitsaxiom erfüllt, so ist der Verband der abge-
schlossenen Mengen von X vollständig ^-distributiv. Dies gilt, weil in solch einem 
topologischen Raum jedes Element aus der topologischen Hülle einer Teilmenge 
schon Limes einer Folge von Elementen dieser Teilmenge ist, d. h. der topologische 
Hüllenoperator stimmt mit dem zugehörigen Ki-Abschnittoperator überein (woraus 
sich die Gültigkeit von 4.1 (b) ergibt). 

Der Autor ist Herrn Professor Erne für wertvolle Hinweise dankbar. 
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On lightly compact spaces 

ORHAN OZER 

1. Introduction. A topological space X is called lightly compact if every 
locally finite family of open sets of X is finite. Several characterizations of light 
compactness are given in [1] and [2]. Two well-known characterizations of these 
spaces are: a space X is lightly compact iff every countable open cover of X 
contains a finite subfamily whose union is dense in X\ and, every countable open 
filter base has an adherent point. The aim of this note is an investigation of lightly 
compact spaces. We give some characterizations of light compactness in term of 
regular-open, regular-closed sets. We also prove some structural properties of such 
spaces. 

Recall that a set U is regular-open if U = U and a set F is regular-closed if 
F = F where denotes the closure of a set and ° denotes the interior of a set. 

2. Results. We first prove a lemma. 

Lemma 1. The family of closures of members of a locally finite, infinite family 
is not finite. 

Proof . Let ¥ = {Wll\o!.£A} be a locally finite, infinite family of subsets 
of a topological space X. Suppose {¡^ | is finite, say only the sets 
W^, Wat, ..., Wtn are distinct. Since >P = {Wa | a£A} is an infinite family, then at 
least one of the sets W , W , ...,Wa is the closure of infinitely many Wa. 
Suppose W is the closure of infinitely many Wa. Take any x£Wx . Then this 
implies that every neighbourhood of x meets infinitely many Wa. This is a contra-
diction with iP being a locally finite family. 

The following theorem shows that the open sets in the definition of lightly 
compactness may be replaced with regular-closed sets. 

Theorem 1. A space X is lightly compact i f f every locally finite family of 
regular-closed sets is finite. 

Received June 16, 1982. 
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Proof . Let A' be a lightly compact space and &={FX \ a^A) be a locally 
finite family of regular-closed sets. Since Fa=Fa for each {Fx | a£A} is 
a locally finite family of open sets of the lightly compact space X. Hence {Fx \ ct£A} 
is finite. Thus the family & is finite. 

Conversely, suppose {Gx | at A} is a locally finite family of open sets. Then 
{G„ | a^A} is a locally finite family of regular-closed sets. By hypothesis, {Ga | a£A} 
is finite. By Lemma 1, the family {G„ | ot£A} is finite. Hence X is lightly compact. 

We next give another characterization theorem for light compactness. 

Theorem 2. In a topological space X the following are equivalent: 
(i) X is lightly compact. 

(ii) Every countable regular-open cover of X contains a finite subfamily whose 
unión is dense in X. 

(iii) For any countable family of regular-open sets {G„ | =1 ,2 , . . . } with the 
CO 

finite intersection property, p| 
n = 1 

(iv) For any countable family of regular-closed sets {F„ | « = 1,2, ...} such that 
co m „ 

f) F„=0, there exists a finite subfamily {Fl5 F2 , ..., Fm} such that H F ,=0 . 
n = l ¡ = 1 

Proof . It is straightforward. 

We next give a sufficient condition for a space X to be lightly compact. 

Theorem 3. Let X be any topological space. If every point of X is contained 
in only finitely many open sets, then X is lightly compact. 

Proof . Suppose X is not lightly compact. Then there exists a locally finite 
family !P of open sets which is not finite. Let x£X and let Nx be an open neigh-
bourhood of x meeting only finitely many W^ f , say NxC\W(X¡9í9 (/ = 1, 2, ..., ri) 
and NxC\Wa=0 for all a a ^ a2,...., a„. This implies that x$Wx if a ^ a j , a 2 , . . . , a„. 
By. Lemma 1, there are infinitely many Wx and x£X—Wx, a ^ ^ , a2, ..., a„. That 
is, x is contained in infinitely many open sets.. This is a contradiction which completes 
the proof. 

Theorem 4. A space X is lightly compact whenever a dense subset of it is 
lightly compact. 

Proof . Let A be a lightly compact dense subset of X. If {G„\n=1,2, ...} 
is a countable open filter base in X, then {G„f)A | n = l , 2, . . .} is a countable 

open filter base in A. Since f ) ( G „ r U ) V 0 , then f ) Hence X is lightly 
n = l 11 = 1 

compact. 
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We know that in a first countable Hausdorff space every countably compact 
subset is closed. The following theorem shows that a similar result can also be 
obtained for lightly compact spaces. 

Theo rem 5. Every lightly compact subset of a first countable Hausdorff space 
is closed. 

Proof . Let Y be a lightly compact subset of a first countable Hausdorff 
space X. Suppose Y is not closed in X. Take y£Y—Y. Let {G„ \ n=\, 2, ...} 
be a countable open neighbourhood base at y. Then {G„ny | «=1 ,2 , ...} is 
a countable open filter base in Y which has no adherent point because 

n ( G . n i y g n ( P i n y ) = { y } n r = 0-
n=l n=l 

This is a contradiction. 

It is known that a continuous image of a lightly compact space is lightly compact. 
For a weakly continuous function we have the following theorem. First recall that 
a function / : X—Y is weakly continuous [3] if for each x£X and each open set 
V containing f(x), there exists an open set U containing x such that f(U)QY. 
Equivalently, / : X— Y is weakly continuous iff for each open set V in Y, we have 
f-\V)Q[f-\V)f ([3], Theorem 1). 

Theorem 6. A weakly continuous image of a countably compact space is lightly 
compact. 

Proof . Let X be a countably compact space and f:X-*Y be a weakly 
continuous onto function. If {G„ [« = 1,2,. . .} is a countable open cover of Y, 

then U f~l{Gtt)=X• Since/is weakly cont inuous, / - 1 (GJg[/- 1 (G„)]°for«=l ,2 , . . . . 
n=i _ 

Hence {[/-1(G„)]° | n = l , 2, ...} is a countable open cover of X. Since X is 
countably compact, there exists a finite subfamily {Gx, G2, ..., G„} such that 

n _ 
U[/_1(G i)]°=A'- Take any y£ Y. Since / is onto, there exists an x£X such that 

>f{x)=y. Suppose xd[f-\Gj)f, 1 Sj^n. So xdf-\Gj), that is f(x)=y<iGj, 

l^j^n. Hence U G~Y. Thus Y is lightly compact. 
i»l 

N. LEVINE [4] has introduced the concept of strongly continuous function. 
A function f:X—Y is said to be strongly continuous iff f(A)Qf(A) for every 
subset A of X. For a strongly continuous function we have: 

Theorem 7. A strongly continuous image of a lightly compact space is countably 
compact. 
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Proof . Let X be a lightly compact space and f:X-»Y be a strongly continuous 
and onto function. If {G„ | n= 1,2, ...} is a countable open cover of Y then 

U f~KGn)=X. Since / is strongly continuous, hence continuous, {/~1(G„) \ 
n-l 
n= 1,2, ...} is a countable open cover of X. Since X is lightly compact there 

m 
exists a finite subfamily { / " K G i ) , / - 1 ^ ) f~\Gm)} such that \jf~x(G^=X. 

j=I 
This implies that 

(m \ m m m 

U / - 1 (Gf) ) = U f { f - \ G d ) g u / t r 1 «? , - ) ) = U Gt. 
i = l ' ¡=1 ¡ = 1 i = l 

That is, Y is countably compact. 

Theo rem 8. A one-to-one continuous map from a regular lightly compact 
space X onto a first countable Hausdorff space Y is a homeomorphism. 

P r o o f . Let f :X—Y be a continuous one-to-one and onto map. Let F be 
a closed subset of X. It can be shown that F can be written as an intersection 
of regular-closed subsets of the regular space X. Say F— C\Ca, where all C„ are 

xej 
regular-closed subsets. Since X is lightly compact, for all a£A, Ca is a lightly 
compact subset of X [1]. Hence for all cc£A, f(Ca) is a lightly compact subset 
of Y. By Theorem 5, for all ct£A,f(Ca) is a closed subset of Y. Since / is one-to-
one, therefore 

/ ( F ) = n / ( 0 
That is, / ( F ) is closed in Y. Thus / is a closed map, and hence it is a homeo-
morphism. 

Recall that a space (Z, r) is called first countable and Hausdorff minimal if 
r is first countable and Hausdorff, and if no first countable Hausdorff topology 
on X is strictly weaker than r. 

Coro l l a ry . [6. 2. 6. Theorem (vii)] A first countable, regular, lightly compact 
Hausdorff space is first countable and Hausdorff minimal. 

SINGAL [5 ] has introduced the concept of nearly compact space. A space X is 
called nearly compact if every open cover of X has a finite subfamily such that the 
interiors of closures of sets in this family covers X. It can be shown that a space is 
nearly compact iff the intersection of a family of regular-closed sets with finite inter-
section property is not empty. 

It is known that the product of a lightly compact space and a compact space is 
lightly compact. The next theorem gives a generalization of this result. 
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Theorem 9. The product of a lightly compact space and a nearly compact space 
is lightly compact. 

Proof . Let X be a nearly compact space and Y be a lightly compact space. 
To show that the product space XX Y is lightly compact, it is enough to prove that 
every countable open filter base has an adherent point in XxY. Let S—{G„ | 
« = 1,2,3, . . .} be a countable open filter base in XXY. Then n2(S) = {/72(G„) | 
«=1, 2, 3, ...} is a countable open filter base in Y, where iT2 is the second projec-

OO _ _ _ _ _ _ 
tion. Since Y is lightly compact, /72(<f) has an adherent point, that is Q /72(G„)Ti0. 

Take y£ f ) n2(G„). If V is an open set containing y, then for all n, vr\n2(Gn)9£9. 

Hence for all n, n2\V)C]Gtt^Q. Let 771(/72-1(F)nGII) = i7F,)1. All UVi„ are 
open sets in X. Now the family 

{E/v,n I V is °P e n i n Y and y£V, n=1,2,3,...} 

has the finite intersection property in X. In fact, 

UVl.nin UVi,„2 = i l1 (n2-1 ( K , ) n G J n n 1 (/72-1 ( F 2 ) n G j i 
i n, {[/72-' (KO 0 G„J n [/72-1 (F2) fl G„J} = I I 1 H F2) fl (Gni fl G„2)] ^ 0. 

Hence the family {UV-n \ V is open in Y and y£V, n = 1, 2, 3, ...} is a collection 
of regular-closed sets with the finite intersection property. Since X is nearly-
compact, Uv „^0. Let x^riUy „. If we show that (x, y) is an adherent point 

V,n ' V,n 

of the filter base $ in XX Y, then the proof will be completed. Suppose MxN 
is a basic open set containing (x, y) in XXY. It is clear that MC\ for 
all n. Thus MCMIi(II2 \N)HG„)^0 for « = 1 ,2 , . . . . Consequently (MXN)C1 
HGn?i0 for all n, that is (x, y)£ H G„. So XXY is lightly compact. 

n=i 
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A note on multifunctions 

ORHAN ÖZER 

1. Introduction 

A function F : X—p(Y) — {0} is called a multifunction from X to Y and 
is usually denoted by F : X—Y, where p(Y) is the power set of Y. The graph 
of F is the subset {(x, y)\x£X and j£F(x)} of XX Y. We will denote the graph 
of F by G(F). If X and Y are topological spaces and F : X— Y is a multi-
function we will say that F has a closed graph if G(F) is a closed subset of XX Y. 
The graph G(F) is closed iff for each point (x, y) $ G(F), there exist open sets 
UaX and VczY containing x and y, respectively, such that F(U)OV=0. 
The graph G(F) is said to be strongly closed [4] if for each point (x, j>)$G(F), 
there exist open, sets UcX and V<zX containing x and y respectively, such that 
F(C/)DF=0, where V denotes the closure of V. A multifunction F : X—Y 
is called upper semicontinuous (weakly upper semicontinuous) if for each x£X and 
each open set Fez Y containing F(x), there exists an open set UcX containing 
x such that F(U)czV (F(U)aV). It is not difficult to see that F is upper semi-
continuous iff F~1(K)={x£X\F(x)C\K7±<i)} is closed in X whenever K is 
closed in Y. We will say that a multifunction F : X—Y is point closed (point 
compact) if F(x) is closed (compact) in Y for each x£X. The definition of an 
open or closed multifunction is analogous to the definition of an open or closed 
single valued mapping. 

A multifunction F : X—Y is said to be almost upper semicontinuous if for 
each point x£X and each open set F c Y containing F(x), there exists an open 
set UczX containing x such that F(U)<zV, where V denotes the interior of 
the closure of V. 

A subset K of a topological space X is called quasi H-closed relative to X 
if for each open cover {Ga \ a£A} of K, there exists a finite subfamily {G^ | 

n _ 
/ = 1,2, ..., «} such that Kc (J Ga . If X is quasi //-closed relative to X, then it is 

¡=i ' 
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called quasi //-closed. When X is Hausdorff, the word "quasi" is omitted in these 
two definitions. 

A Hausdorff space X is said to be locally H-closed [4] if every point of X has 
a neighbourhood which is //-closed. A space X is called c-compact [3] if every 
closed set of X is quasi //-closed relative to X. 

Let X be a topological space and AaX. If D is a directed set and 0: D-+A 
is a net, then we say it r-accumulates [3] to xdA if for each open set VaX contain-
ing x and every b£D, <P(Tb)f)Vwhere Tb= {c£D | c^b}. A space X is 
c-compact iff for each closed set AcX and each net { x j in A, there exists a point 
x£A such that {xa} /--accumulates to x [3, Th. 3]. 

2. c-compact, //-closed spaces and multifunctions with strongly closed graph 

Theorem 2.1. Let F\X-*Y be a multifunction and Y be a c-compact space. 
If F has strongly closed graph, then F is upper semicontinuous. 

Proof . Suppose there exists a closed subset K in Y such that F~l(K) is 
not closed in X. Take x0^F~\K) — F~\K). Hence there exists a net {xa}ae/1 

in F-*(K) such that xx-*x0. Now let { j ^ } ^ beanet in K such that ya^F(xa)f]K 
for each a. Since K is closed and Y is c-compact, there exists a point y0€.K such 
that the net {ya}aiA /--accumulates to y0. Since then (x 0 ,y 0 )$G(F) and 
since G(F) is strongly closed, there are open sets UcX and V<zY containing 
x0 and y0, respectively, such that (UXV)C\G(F)=0. But xx—x0 implies there 
exists an a0£A such that for every a£A and a=a0> xx£U, and {ya}aeA r-accu-
mulates to y0 implies there exists some a±£A and such that ya From 
this it follows that (x^, j> a i)£(i /xF)nG(F) which is a contradiction. Hence 
F is upper semicontinuous. 

Theorem 2.2. Let F.X—Y be a point compact multifunction and Y a locally 
H-closed (H-closed) space. If for each subset K, H-closed in Y, F~\K) is closed 
in X then F has strongly closed graph. 

Proof . Suppose Y is locally //-closed. Take any point (x, j>)$G(F). Then 
y $ F(x). Since Y is Hausdorff, F(x) is compact and y $ F(x), there are disjoint 
open sets V1 and W in Y such that y^V1 and F(x)czfV [1, p. 225]. r1DtV=0 
implies V1CV¥=Q. On the other hand, there exists a neighbourhood V2 of y which 
is //-closed. Put V = VinV2. Then V is an open set containing y and WC|F=0. 
Since Y is Hausdorff and V2 is //-closed in Y, then V2 is closed in Y. Thus 
Vc.V2. V is a regularly closed subset in the //-closed set V2. Therefore F is 
//-closed in V2, so F is //-closed in Y. According to our assumption, F - 1 ( F ) 
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is closed in X. Put U—X—F~\V). Then U is an open set in X containing 
x and F(U)CIK=0. This shows that G(F) is strongly closed. 

Theorem 2.3. Let F : X—Y be an almost upper semicontinuouspoint compact 
multifunction and Y Hausdorjf. Then F has a strongly closed graph. 

Proof . Let (x, y)$G(F). Since F(x) is compact, y (J F(x) and Y is Haus-
dorff, there are disjoint open sets V and W containing y and F(x), respectively. 
We can write Vf)lV=Q. Since F is almost upper semicontinuous there is an open 
set U in X containing x such that F(U)<zW. Now we have F(U)C\V—9. 
That is, G(F) is strongly closed. 

Corol la ry . Let F : X—Y be a point compact multifunction and Y an H-closed 
space. The following are equivalent: 

(i) F is almost upper semicontinuous, 
(ii) F has strongly closed graph, 
(iii) For each subset K, H-closed relative to Y, F~l{K) is closed in X, 
(iv) For each H-closed subset K of Y, F~l(K) is closed in X. 

Proof . According to Theorem 2.3, (i) implies (ii). (ii) implies (iii), by Theorem 
4.15 [4]. Since an //-closed subset of Y is //-closed relative to Y (the converse 
need not be true), the implication (iii)=>(iv) is obvious. 

Let us prove that (iv) implies (i). For any x£X, let W be an open set contain-
ing F(x). W is a regularly open set containing F(x). Y—W is a regularly closed 
set. Since Y is //-closed then Y-W is //-closed. Hence by (iv), F'^Y-W) 
is closed in X and x(£ F~\Y—W). Thus there exists an open set U containing 
x such that UHF-^Y-W)^. This implies that F(U)c.W, that is, F is almost 
upper semicontinuous. 

Our next result is a generalization of Theorem 11 in [3], which was proved for 
a single valued mapping. 

Theorem 2.4. If F : X—Y is an open and closed multifunction from a regular 
space X into a c-compact space Y, and if F~1(y) is closed for each Y, then 
F is upper semicontinuous. 

Proof . According to Theorem 3.4, Corollary 3.5 [5] F has closed graph. 
For an open multifunction the condition closed graph and strongly closed graph 
are identical. Hence F : X— Y has a strongly closed graph and Y is c-compact, 
so by Theorem 2.1, F is upper semicontinuous. 
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T h e o r e m 2.5. If F : X—Y is an upper semicontinuous point compact multi-
function, then F is compact preserving. 

P r o o f . Let K be a compact subset of X and suppose {Wa \ a£A} is an open 
cover of F(K). Take any x(LK, then F(x) is a compact subset of Y and F ( x ) c 
<zF(K). Thus {Wa | CL£.A) is an open cover of F(x). Hence there is a finite sub-

n 
cover, say {Wa (x), ...,WX (x)}. Now put V(x) = (J Wa (x). V(x) is an open set 1 " i=1 ' 
containing F(x). Since F is upper semicontinuous, there exists an open set U(x)czX 
containing x such that F(£/(x))cF(x). Now {£/(x) | x ^ K ] is an open cover of 
K and K is a compact subset of X. Take x i , x 2 , ..., xmaK such that {U(x() | 
/ = 1, ..., m} is a subcover. Let F(x1), V(x2), ..., V(xm) be the open sets correspond-
ing to U(xj), U(x2),..., £/(xm), respectively. Thus 

(m \ m m 

U £/(*,) = U c u V(xd = 
¡=i > >•=i ¡=i 

1= U { W a i ( X l ) , WPl(xm), ..., w„s{xm)} 

That is, we have a finite subcover of {Wa | a£A}. Hence F(K) is compact in Y. 

C o r o l l a r y . Let F : X—Y be an onto closed multifunction. If F has compact 
point inverses, then for each compact subset K of Y F~\K) is compact in X. 

P r o o f . Since (F~1)~1=F , then F - 1 : Y—X is an upper semicontinuous 
point compact multifunction, hence F - 1 is compact preserving. 

T h e o r e m 2.6. Let F : X—Y be a weakly upper semicontinuous point compact 
multifunction. Then F maps a compact subset K of X onto subset F(K) quasi 
H-closed relative to Y. 

P r o o f . The proof is the same as in Theorem 2.5. 

Let F : X—Y be a multifunction. We can define a new multifunction F: X—Y 
by setting F(x)=F(x) for all x£X. If Y is normal and F : X—Y is upper semi-
continuous then F :X—Y is upper semicontinuous [2]. We have the following 
new result. 

T h e o r e m 2.7. If F : X—Y is weakly upper semicontinuous, then F : X—Y 
is weakly upper semicontinuous. 

Proo f . Let x£X and W an open set in Y containing F(x). Since F ( x ) c 
cF((x=F(x)czW and F is weakly upper semicontinuous there is an open set 
U in X containing x such that F{U)aW. This implies that F{U)czW. On the 
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other hand 
F(U) = U F(x) = IJ W \ 

xiU x£U 

Hence F{U)dW, that is, F is weakly upper semicontinuous. 

Theo rem 2.8. If F : X—Y is weakly upper semicontinuous and Y is regular, 
then the graph of F is closed in XX Y. 

Proof . F : X—Y is weakly upper semicontinuous, by Theorem 2.7. Now 
suppose (x, y)$G(F). y$F(x) = F(x). Since Y is regular, there are open sets 
V and W containing y and F(x), respectively, such that V f ) W —0. Hence 
K f W = 0 . From the weakly upper semicontinuity of F, we have an open set 
U in X containing x such that F(U)czW. Hence F(U)C\V=&. That is, G(F) 
is closed in Z X Y. 

Corol la ry . [5, Theorem 3.3] If F : X—Y is a point closed upper semicontinuous 
multifunction into a regular space, then F has a closed graph. 

Acknowledgement. The author wishes to thank the referee whose comments 
improved the exposition of the paper. 
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On variation spaces of harmonic maps into spheres 

A LEE and G. TÓTH 

1. Introduction 

Given a harmonic map f : M — S " [3] of a compact oriented Riemannian 
manifold M into the Euclidean «-sphere S", « ^ 2 , a vector field v along / , i.e. 
a section of the pull-back bundle 2F =f*(T(S")), gives rise to a (one-parameter, 
geodesic) variation f , = expo(tv): M—S", i€R, where exp: T(S")S" is the 
exponential map. The element V£C°°(JF) is said to be a harmonic variation if 
f , is harmonic for all i£R and the set of all harmonic variations v (or the variation 
space) of / is denoted by F(/)cC~(J*"). Then [11] v£ V ( f ) if and only if 
|| v|| = const, and 

(i) V2i>=trace R(f*, v)f* (i.e. v is a Jacobi field along / [3]), 
(ii) trace (/», V»)=0, 

where < , ) and V are the induced metric and connection of the Riemannian-
connected bundle J5" <g> A* (T*(M)), V2 = trace VoV [9], R is the curvature 
tensor of S" and the differential /» of / is considered as a section of ^ <g> T*{M). 
Denote by K(J) the linear space of all vector fields v along / satisfying (i) and (ii). 
The equation (i) being (strongly) elliptic [9] d i m / : ( / ) < ~ and V(J)={v£K(f) \ 
|||p||=const.}cAT(/) is a subset with the obvious property RK 0 ( / )=K( / ) , where 
r 0 ( / M < > W ) | N I = i}-

The purpose of this paper is to give a geometric description of the variation 
space V(i)cK(i) of the canonical inclusion i: Sm—S", where N— 
=m(m+1)/2+(«—m)(m +1). In Section 2 we collect the necessary tools from matrix 
theory used in the sequel, especially we describe the singular value decomposition 
of rectangular matrices (see e.g. [7]). In Section 3 the problem of determining V0(i) 
is reduced to the geometric characterization of an (algebraic) set of matrices. Then 
the singular value decomposition of these matrices are exploited to get a description 
of V0(i)czK(i) as a set of orbits (under a linear Lie group action) which contains 
a (twisted) simplex as a global section (Theorem 1). In particular, we prove that 
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F(ids!r.,), r£N, is the double cone over the irreducible Hermitian symmetric 
space SO(2r)/U(r)(=V0(idsir-i))- (Note that F(id s , r)=0 because x(S2r)=2 [11].) 
In Section 4 we first give an alternative description of the linear space K ( f ) . In 
particular, we obtain that there is a one-to-one correspondence between the elements 
°f Po ( / ) a r )d the orthogonal pairs f,P~. M—S" of harmonic maps with the same 
energy density e(f)=e(f1) [3]. Second, as an example, we determine K ( f ) for the 
Veronese s u r f a c e / : 5 2 - 5 4 and prove that K(f)^K(ids4) and V(f)=V(ids,)=0 
hold. 

Throughout this paper all manifolds, maps, bundles, etc. will be smooth, i.e. 
of class C°°. The report [3] is our general reference for harmonic maps though we 
adopt the sign conventions of [6]. 

We thank Professor Eells for his valuable suggestions and encouragement 
during the preparation of this work. 

2. Preliminaries from matrix theory 

First we fix some notations used in the sequel. Denote by M(p, q) the linear 
space of (pXq) matrices and, as usual, let Ip and 0P the unit and zero elements 
of M(p,p). A matrix A£M(p, q) with entries au, i = \, ...,p, j = \, ...,q, is 
said to be (rectangular) diagonal if 

_ fO, if i i = 1, ...,p, j = 1, ..., q, 
a ' J ~ lo-j, if i = j, 1 = 1,... , min (p, q) 

holds. We write y4=diag (alt ..., crd)% with d=min(p,q) and, in case p=q, 
we omit the indices p and q. 

The singular value decomposition of rectangular matrices is given in the follow-
ing theorem. (For the proof, see [7].) 

Theorem A. For any matrix B£M(p,q) there exist orthogonal matrices 
VeO(p) and UeO(q) such that 

VTBU = d i ag fo , ...,<7d)f 

with CT.SO, i = 1, ..., J = min (p, q). The matrices V,U and the values <xt are 
determined by the relations: 

(Ax) VTBBTV = diag (o\, ..., ^ , ..., a% 

(A2) UrBTBU = diag (at, ..., a*,..., o% 

(A3) BU — Fdiag (at, ...,od)5, 

where o—Q for d<i^max(p,q). 
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Remark . The numbers o^sO, / = 1, ...,d, are called the singular values of 
B. Clearly, V and U can always be chosen such that c r^o^S . . . holds. 

Denote by Ar£so(2r) the skew-symmetric matrix 

0 n r 0 1] 
A ' = d i 4 l - i o] [ - 1 ol) 

and put Ax = A. In the next theorem we collect some properties of skew-symmetric 
matrices (cf. [8] pp. 151, 231). 

Theorem B. For any matrix jZsoip) we have 
(BO r a n k / = 2 r r s p ; 
(B2) The 2r nonzero eigenvalues of £ appear in pairs A2i_1=A2i= 

with ffj>0, / = 1, ..., r, while zero is an eigenvalue with multiplicity p—2r\ 
(B3) There exists U^O(p) such that 

(1) UTfU= diag(0p_2,, a, A, ..., arA) 

or equivalently 
_ fdiag (<M, ..., 6pt%A), if p is even, ( ) u ju - | d . a g (Q) & i A > t & [ p / i ] A ) i i f p i s o d d > 

where i 1 = . . .=^ [ ( p_2 r ) / 2 ]=0 and o-[(p_2r)/2]+i=o-£, i = 1, ..., r; 
(B4) With the same matrix UZO(p) we have 

T 2 rdiag &h2h) if p is even, 
(2) V (— f2) U = |diag (0> _ i f p is odd) 

in particular, the nonzero singular values of £ have even multiplicities. 

3. Variation space of the canonical inclusion i: Sm-»S" 

Let i: S™-*S" be the canonical inclusion and let W1, ..., Wk, k=n—m, 
denote the system of orthonormal parallel sections of the normal bundle of i defined 
by the standard base vectors em+2, ..., en+1ÇRn+1. 

According to a result of [11] v£K(i) if and only if the tangential part ß of 
v is a Killing vector field on Sm and there exist vectors bx, ..., èk€Rm+1 such that 
the orthogonal decomposition 

f x - /x+2(bj,x)Wi, x£Sm, 
j=i 

is valid. Hence the linear map W: K(i)—so(m+l)XM(k, m+1) defined by T(v)= 
=C/ , B), v£K(i), where ß is the tangential part of v and B£M(k, m+\) 

9 
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consists of the row vectors blt ...,£>*€Rm+1 occurring in the decomposition of 
v above, is a linear isomorphism. In what follows, we identify K(i) and 
so(m+l)XM(k, m+1) via V. Further, V(i)=RV0(i)czK(i), where V0(i) = 
= {»€A:(0|||P| = 1}. Thus, for p = ( / , B)eV0(i), we have 

1 = I W I 2 = II A l l 2 + 2 (bj, x>2 - <-/2x, x)+(BrBx, x), x£S">, 
¿=i 

i.e. 
" o ( 0 = {(J?,B)Zso(m + l)xM(k,m + l)\-J?*+B?B=-- /-+1}. 

The objective of this section is to give a geometric description of the set K0(z)c 
<zK(i). Before stating our main theorem we introduce some notations. For the given 
positive integers m and n, m^n, set 

{min ((m +1)/2, [kj2]), if m + 1 is even, 
min (m/2, [(k —1)/2]), if m + 1 is odd, 

where k=n—m, and define 

A, = {(ffx, ..., ff,)6R* 11 S ax S . . . S a, S 0}. 

So J f c R ' is a (linear) simplex which reduces to a point if t= 0. (Note that t £ — 1 
and equality holds if and only if m=n is even, in which case Fo(i)=0 [11] and we 
put A. 1 =0. ) 

A linear representation of the Lie group 0(m+l)X0(k) on the vector space 
K(i)=so(m+l)XM(k, m+l) is given by 

(IU, V) -<J,B) = ( U / U T , VBUT), 

(U, F ) € O ( m + l ) X 0 ( k ) , (f,B)£so(m+l)XM(k, m+1). Clearly, the subset F 0 ( / ) c 
<zK(i) is invariant, i.e. V0(i) is the union of orbits crossing V0(i). Finally we 
introduce certain subgroups of 0(m+\)X0(k) which will be the isotropy sub-
groups at points of V0(i). For given nonnegative integers a0, b0, c2, . . . , c s + 1 

with m + l = a o + 2 c ! + . . .+2c s + 1 and k=a0+2c1 + ...+2cs+b0 define the subgroups 

9 fa, ...,cs+1) = {(A0,Cit ..., C J + 1 ; A0,CU ..., C„ B0)eO(m + l)xO(k) | 

A0eO(a0), B0ZO(bJ,C,eU(cO, i = l,...,s + l}, 

where U(c,) is considered as a subgroup of SO(2ct) via the canonical embedding 
i7(Cj)—SO(2ct), i = 1, ..., s +1. The isotropy type i.e. the set of all conjugacy classes 
of a subgroup ^ c O ( m + l ) X O ( i ) is denoted by (9). The main result of this 
section is the following: 

T h e o r e m 1. There exists an embedding At-~K(i) such that $(A,) is 
a global section of the invariant subset V0(i) (i.e. <P(A,)c: V0(i) and any orbit on 
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V0(i) cuts <P(A,) at exactly one point). Moreover, for a = (a0, ..., c0) ..., ..., 
as+1, ..., as+1)£At, where L = F F 0 > ( 7 1 > . . . > ( J J > ( R s + 1 = 0 and at occurs c; times in 
a, i =0, ..., 5+1, the isotropy type of the orbit through 0(a) is (@(clt ..., cs, cs+i+ 
+ ([(m+l)/2] —i)+) ( + = positive part) or equivalently this orbit has the form 

(0(m + l)XÖ(fc))/^(Cl, ..., c s , c s + 1 +([m+l) /2] ] -0+) . 

In particular, for each open face A of the simplex A, the orbits through 0(A) have 
the same type. 

R e m a r k s 1. Each orbit consists of 1,2 or 4 components. More precisely, 
the subgroups 9(clf..., cs+1)<zSO(m+l)XSO(k) being connected, the orbit 
(0(m+\)X0(k))j<S(c1, ..., cs, c s + 1 +([(m+l) /2]- i )+) has N components, where 

N = 
1, if k > 0 and a^bo > 0, 
2, if k > 0, a0 b0 = 0 and a0 + b0 > 0 or if k = 0, 
4, if k > 0 and a0 = b0 = 0. 

2. By a result of [13] for any locally rigid harmonic embedding / : M—S" 
we have V(f)=V(i), where i:Sm-+Sn is the inclusion and m is the dimension 
of the least totally geodesic submanifold of S" containing the image of f . Thus 
Theorem 1 gives a description of the variation space of all locally rigid harmonic 
embeddings. 

The proof of Theorem 1 is broken up into a few lemmas. Let ( J , B)£V0(i) 
be fixed. Then, by Theorem B, there exists U£0(m+1) such that UTfU and 
UT(-/2)U have the form (1') and (2), resp., with 

O - ^ l - - - t̂(m + l)/21-

Thus, by BTB=Im+1+/2, we obtain 

UtBtBU - 1 d i a g < T [ 2 ( m + 1 ) / 2 j / ^ ' if m+1 is even' ~ ldiag(l , a \I2 , ..., <rf(m+1)/2]/¡¡), if m + 1 is odd, 

where o? = l-d% i = l, ..., [(m+l)/2]. Clearly, lë<72ë...è<7(
2

(m+1)/21^0 is satis-
fied. Then the values erf, i = 1, ..., [(m+l)/2], occurring twice in BXB, are the 
eigenvalues of the positive semidefinite matrix BTB. The nonzero eigenvalues of 
BTB and BBr being the same, the system of eigenvalues of BBr£M(k, k) can be 
obtained from that of BTB£M(m+l, m+1) by supplementing or omitting 
\k-(m+1)| zeros according as i ë m + 1 or k<m +1. In the latter case, for some 
index /o—[^/2], ffi=0, i> t a , must be valid. The determination of the minimal 
value of t0 can be done by making distinction according to the parity of k. Hence 

9 » 
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we have 
UTBT.BU = 

d i a g ( ( T i / 2 , . . . , CT(m+1)/2^2) for fc£m + l , m + 1 even, 

d i a g ( C T ? / 2 , . . . , t r | / 2 / 2 , 0 O T + 1 _ t ) f o r k even, fc< m + 1 , m + 1 even, 

d i a g ( < r ? / 2 , . . . , o f t / 2 ] / 2 , 0 m + 1 _ 2 [ k / 2 ] ) for k o d d , k < m + 1 , m + 1 even, 

d i a g ( 1 , c r f / 2 , . . . , < T [ ( m + i ) / 2 ] / 2 ) for k fe m + 1 , m + 1 o d d , 

d i a g ( l , . . . , < T ^ _ 1 ) / 2 / 2 , 0 m + 1 _ t ) for k o d d , k < m + 1 , m + 1 o d d , 

d i a g ( 1 , <r? / 2 , . . . , o f ( 4 - i ) / 2 ] / 2 , 0 m -2 [ (* - i ) /2]) f o r k even, k < m + 1 , m + 1 o d d . 

A case-by-case verification shows that the minimal value of t0 is the number t 
defined before Theorem 1. Thus we obtain 

UtBtBU - {dias if m + i is even' 
~ l d i a g ( l , < 7 f / 2 , . . . , ff?/2, 0 m _ 2 t ) , i f m + 1 i s o d d , 

and consequently (1') has the form 

•p idiag ..., &,A, ^(m+i-^j/a), if m + 1 is even, 
U $JJ = •{ Idiag (0, &XA, ..., 6,A, •̂ (m-2»)/2)> if m + 1 is odd. 

L e m m a 1. Let (/,B)£K{i). Then (f,B)£V0(i) if and only if there exists 
(£/, F)£0(m+1)XO(A:) such that ( / , B)=(U/(&)UT, VB(<x)UT, where 

l d i a g ^ m + 1 ' " e t w i 

~ Idiag (0, ^ A , ..., &,A, ^(„-zo/a), i / m + 1, is odtf, 

_ fdiag (ffi/a, ..., fft/2, 0d_2,)£ ,+\ i / m + l, ¡'s even, 
ldiag (1, 0<i-i-2t)k+1, if m + i, is odd, 

with <r£At, &i=yi + of, i = l , ..., and d=min(m+\,k). 

Proo f . If ( / , £ ) £ F0(i) then there exists £/€<9 (m+1) such that U1B1BU= 
=B{afB{a) and UT/U=/(d) with 0m& 1 S . . .Sd U m + 1 ) m . The diagonal 
entries of UTBrBU are the eigenvalues of BTB and hence, by Theorem A, there 
exists F€0(k) such that the pair (U, V) perform the singular value decomposition 
of B, i.e. we have VTBU=B(o). Thus, (UTfU, VrBU)=(f(d),B(cj)), o£A,. 
The converse being obvious the proof is finished. 

By the lemma above the map <P:A,-*K(i), <t>(o)=(f(6),B(a)), a€A,, is an 
embedding with (0(m+l)x0(k))- &(A,)=F0(i). Moreover, the eigenvalues of 
£ and the singular values of B are invariants characterizing the orbit through 
( J , B) uniquely. Thus $(A,) is a global section on VQ(i) which accomplishes the 
proof of the first statement of Theorem 1. 
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L e t a = ( a 0 , ..., <r0, 0!, ..;,<7l5 ...,<rs+1, ..., as+1)£A t be fixed with 1=<t0> 
>ff1>...><7s><7s+1=0 and <7, occurs Cj times in a, i = 0, ..., 1. It remains 
to compute the isotropy type of the orbit through <P(cr). The isotropy subgroup 
at <P(o) consists of pairs (U, V) such that Uf(6)=f{6)U and VB(a)=B(a)U. 
First we study the second relation. Consider B(a)£M(k, m+l) as a matrix 

[I 01 '«Mo oJ-
5 

where 2;=diag (<r0/ , ..., asIic )£M(r, r), r=aQ+22c„ 
0 1 3 I 

(2 c0, if 
~ l2c0+l, 

and 0 on the right lower corner is of size (k—r)X(m+1 —r). 

i2c0, if m + 1 is even, 
1 1 if m + 1 is odd, 

Lemma2 . Let (U, V)iO(m+l)XO(k) such that VB(<j)=B(o)U holds. 
Then we have F=diag (A0, C l 5 ..., Cs, B0) and U=diag (A0, Clt ..., Cs, Cs+1), 
where A0£O(.a0), B^O(k-r), C,€0(2c,), / = 1, ..., s, C s + 1 €0(m + l - r ) . 

Proof . Let V€0(k) and U^O(m+X) have the partitioned forms (conformal 
to that of B(c) above): 

rV0 Ri _ rU0 P 

where V0, U0£M(r, r), B0£M(k-r, k-r), C s + 1 € M ( m + l - r , m+1 - r ) . (The size 
of C5 + 1 can be expressed as m+1— r=2c s + 1+2([(m+l)/2] —/)+). Substituting 
these into the equations VB(p)=B(p)U, VVr-Ik, UUr=Im+1 we obtain R-0, 
S=0, V0eO(r), B„eO(k-r) and P—0, 2 = 0 , U^O{r), Cs+1eO(m+l-r). Thus 
the first equation reduces to V0X=SU0, i.e. by det I=a\cK..o\c->0, V0=ZU0Z~1. 
Substituting this into the orthogonality relation VjV0=Ir we get U0I2=I2 U0 

which gives for (70=(Cy), C00£M(a0, a0), Cm^M(2ci, a0), C0J£M(a0, 2cj), CtJ£ 
€M(2cf, 2c/), /,7 = 1, ..., s, the relations Cu = 0, if /Vy. Hence, using the nota-
tions C00=A0 and Cu=Ct, / = 1, ...,s, we obtain i/0=diag (A0, Clt ..., Cs) 
with A0€O(a0), C j€0(2c,), / = 1, ..., s. As U0 and X commute we have V0=U0 

which accomplishes the proof. 

Consider now the second equation Uf(d)=f(6)U, where U has the form 
given in Lemma 2. Clearly, this equation is satisfied if and only if Ci£Z(ACi), 
i = l, ..., s, Cs+1£Z(/4 (m+1_ r ) /a), where Z(Ap) denotes the centralizer of Ap 

in 0(2/?). 
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Lemma 3. The centralizer Z(Ap)czO(2p) is connected and there exists 
U0£O(2p) such that Ad (U0)Z(Ap)=U(p)<zSO(2p), where Ad denotes the adjoint 
representation of 0(2p). 

Proof . It is well-known that Z(AP) c SO (2p) (cf. [8], Ch. IV. § 29, p. 248). First 
we prove that Z(Ap)c:SO(2p) is connected. Clearly, exp ((n/2)Ap)=Ap, where 
exp: so(2p)-"SO(2p) is the exponential map. Hence T—exp (RAp)<zSO(2p) is 
a toroidal subgroup which contains Ap, i.e. its centralizer Z(T) is contained in 
Z(AP). On the other hand, if U£Z(Ap) then the geodesies ji—exp ((n/2)sAp) • U, 
s>->-U • exp ((7tl2)sAp), (with respect to a biinvariant metric on SO(2p)) have 
common tangent vector at s=0, i.e. exp ((nl2)sAp)U — U exp ((n/2)sAp) which 
implies that U£Z(T). Thus Z{Ap)=Z(T) and hence connected (cf. [4], Cor. 
2.8. p. 287). Finally, let 

and choose U0eO(2p) with Ad (U0)Ap=/p. Then Ad (U0)Z(Ap)=Z(Ad (U0)AP)= 
=Z(/P) and the fixed point set of the automorphism Ad C/p) of SO(2p) is Z{/p). 
It is known that Z ( / p ) = U ( p ) c SO(2p) ([4], p. 453^454) which accomplishes the 
proof. 

By Lemmas 1—3, (£/, V) belongs to the isotropy subgroup at <P(o) if and 
only if (U, + l)xO(fc) is conjugate to an element of ^(clt..., cs, c s + 1 + 
+([(w+1)/2] —i)+) (under a conjugation which does not depend on (U,V)) 
which completes the proof of Theorem 1. 

Example (Variation space of the identity of odd spheres). Consider the special 
case when m=n=2r—1 odd. Then i = 0 and F0(ids!r-i) reduces to a single 
orbit through Ar£so(2r) under the adjoint representation of 0(2r) on so(2r). 
We claim that this orbit is a disjoint union 

Ad (SO(2r))A,\J Ad (SO(2r))A~, 

where A~=diag (A , . . . , A, — A)dso(2r). Indeed, denoting R=diag (1, ..., 1 , - 1 ) 6 
€0(2r), we have RArR=A~ and hence if U£0(2r) such that Ad (U)Ar=A~ 
then Ad (RU)Ar=Ar which implies RU£SO(2r), i.e. det C/= - 1 . 

The Killing form of so(2r) is a negative definite Ad-invariant scalar product 
on so(2r) and so it follows easily that any ray in so(2r) starting at the origin cuts 
the orbit Ad (SO(2r))Ar (or Ad (SO(2r))A~) at most once. 

Case I: r is even. Then Ad (U^Ar = — Ar with i/0=diag (1, —1,1, —1, ..., 
..., 1,-1)G5'0(2/-), i.e. the orbit Ad(SO(2r))A r (and Ad (SO(2r) )A~) is 
central symmetric to the origin. Thus F(ids,r_i) = R • F0(ids.r_i) is a double 
cone over Ad (SO (2r))Ar=SO (2r)/U(r). 
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Case II: r is odd. It follows easily that any line through the origin cuts 
F0(ids!r_,) twice and that the components Ad (SO(2r))A, and Ad (SO(2r))A~ 
are central symmetric to each other, i.e. F(ids,r-i) is again a double cone over 
SO(2r)/U(r). 

Remark . In the special case r=2 the space F0(ids3) is the disjoint union 
of two samples of S2(=SO(4)/U(2)) which was already noticed in [13]. 

4. The Veronese surface 

Let M be a compact oriented Riemannian manifold and consider a harmonic 
map / : M—S": By the inclusion j: i"1—Rn+1 the map / becomes a vector-
valued function / : M—R"+1. Moreover, translating vectors tangent to 5 "cR" + 1 

to the origin, a vector field v along / : M—S" gives rise to a map 6: M—R"+1 

with the property </, C)=0. The following lemma characterizes the elements of 
K ( f ) in terms of the induced functions C. 

Lemma 4. Let v be a vector field along f : M—S". Then v£K(f) if and 
only if AMt—2e(f)t holds, where e(f)= ||yi||2/2 denotes the energy density of f . 

Proof . The covariant differentiation on S" can be obtained from that of 
Rn + 1 by performing the orthogonal projection to the corresponding tangent space 
of 5" and thus, for X^'X.(M), we have 

( y x v y = X ( f f ) - ( X ( p ) , f ) f , 

where X acts on t> componentwise. An easy computation shows that 

(Vy V ^ r = YX(fi) - (YX(fi), />/- (X(t), f ) Y ( f ) , X, 7€ *(M), 
i.e. 

(V*v)~ =-AM6+(AM6, / ) / - trace (db, f ) df 

holds. On the other hand, we have 

(trace R ( f , »)/.)"=(trace </., v)ft)'-2e(f)i>= 

=trace ( d f , t)df-2e(f)t= - t race </, db) df-2e(f)0. 

The identities yield that t> is a Jacobi vector field along / if and only if 

(1) AMb-(AMb,f)f=2e(f)b 

is satisfied. Moreover, we have 

trace </,, Vu)=trace (df c#)>-trace (db,f)(dfif). 
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By | | / | | 2=1 the second term vanishes and so equation (ii) of Section 1 is equivalent 
to the following 

(2) trace ( d f , df>) = 0. 

Further, harmonicity of / means that AMf=2e(f)f is valid and hence we get 

(AMt,f) = — (V20, / > = - t race V(df), />+trace (dti, d f ) = 
= trace V<0, df)+trace (df), d f ) = 2 trace (df), df)+( 0, AMf) = 2 trace (df), d f ) . 

Assuming v£K(i) we obtain that (AMt,f)=0 and hence (1) reduces to the equa-
tion given in the lemma. Conversely, multiplying this equation with / we get 
(AMf),f)=0 and hence (1) and (2) are satisfied which accomplishes the proof. 

Coro l la ry . Let f,f':M-»S" be orthogonal harmonic maps with e(f)—e(f). 
Then the (unique) vector field v along f with ||u[| = 1 and expo((n/2)v)=f is 
a harmonic variation. 

Proof . By hypothesis f) =/„ /2 = / ' and harmonicity of f yields AM0= 
=2e(f')to=2e(f)f). Applying the lemma above we obtain that v£K(f) which ac-
complishes the proof. 

Remark . According to a result of [11] a vector field v along / is a harmonic 
variation if and only if v is a Jacobi field along / and e(ft)—e{f) holds for all 
i£R. Hence there is a one-to-one correspondence between the harmonic variations 
°f V 0 ( f ) and the orthogonal pairs of harmonic maps / , / ' : M—Sn with e ( f ) = e ( f ) . 

Now we turn to the variation space of the Veronese surface. Consider the 
eigenspace of the Laplacian A—As* of the Euclidean sphere S2 corresponding 
to the (second) eigenvalue /l2=6 [1]. An element of is the restriction (to S2) 
of a homogeneous polynomial p : R3—R of degree 2 which has the form 

3 
P = 2akVk+2 2 bijVij, *=i (<j 

3 
where ak,btJ^R with 2 ak=0 and (pk,<pa, k=1,2,3, l s / < / s 3 , are scalars 

k = l 

on S2 defined by cpk{x)=x2
k, <pij(x)=xixJ, x=(xx, x2, x3)£S2. (cf. [1] p . 176), 

in particular dim ^f2=5. 
Integration over S 2 defines a Euclidean scalar product on Denoting 

^ = II<PJ2 and J—\\(Pij\\2, the Veronese surface / : >S2—S4 is defined by 
N 8 ( 11 2N 

/(*!, X2, X3) = -j—J-2^ (*it-yj <Pk + — 2}
XiXj<Plj> (X l ' X2> xs)€S2, 

where N=- 0 is a normalizing factor given by the condition | | / | | = 1. Then / is 
full and homothetic [1]. It is well-known [1] that / factors through the canonical 
projection n :S 2 -»RP 2 yielding an embedding of RP2 into S4. 
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Lemma 5. For the Veronese surface f : S2-*S\ if v£K(f) then 0: 
has the decomposition 

3 
e = 2"k<pk+2 2 bij<Pij> 

* = 1 

where ak, bu, k—l, 3, 1 ^3 , are scalars on S2 determined by the formulas 

fl^x) = — Ex!+ex3+2oc1x1x2+2/?1 X1X3 2(a2 + j83)x2x3, 

a2(x) = ex'i-ext + 2[}2x1x2 — 2(P1 + a3) xx x3 + 2a2 x2 x3, 

a3(x) = -ex'i+sxl-2(oL1+p^x1x2+2oi3x1x3+2p3x2x3, 

bi2(x) = —x'f—x2~i ——x3 2y1x1x3+2y2x2x3, 

&»(*) =^±£Lxl-^-xl-^xl-2y2xlx2 + 2y3x1x3, 

bi3(x) = - - y x f + x |—yxi+2y 1 x 1 x 2 -2y 3 x 2 x 3 , 

x=(x l 5 x2, x3)es2, E, atk, pk, yk£R, 1,2,3. In particular, dim.K(/)=10. 

Proof . As f) maps into we have the decomposition of f) as above with 
3 

2 ^k—0- On the other hand, Lemma 4 implies that 

0 = A0-6D = 2(A<*K-6AJ<PK + 2 2№U-6BU)<PTJ 
k=1 

and hence orthogonality of the polynomials q>tj, / < j, and the relations (<pk, <py)=0, 
(q>k, q>r)=J+Skr(I—J), k, r—\, 2, 3, i'</, yield that the scalars ak, bu, k=\, 2, 3, 
/ < j , belong to • Thus 

3 
ar= 2 al<Pk + 2 2 bljVij, r = 1, 2, 3, 

lt = l i-ej 
and 

= 2 + 2 2 1 ^ P < 9 ^ 3, 

» = 1 i < ; 

where ar
k,br

ij,a™,b%£R such that 3 3 
(Q) = 0 and 2^9 = 0, r — I, 2,3, 1 s p < ^ g 3, 

i = l 4 = 1 
3 

hold. Moreover, from the equation 2 a k~0 we obtain 
*=i 

3 3 
(C2) «i = 0 and = 
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Finally, the orthogonality relations for <pk and <pu above imply that the condition 
( f , 0 ) = 0 is equivalent to the equation 

3 

2 akx2
k + 4 2 bijXiXj = 0, (x t , x2, x3)£S2. 

k=1 i c j 

Substituting the explicit expressions of ak and b-,j we get 

2 2ak <Pk<Pr+2 2 2 2bff<Pij<Ppq = o. k = 1 r = l r =-1 i -cj 

A straightforward computation, determining the coefficients of the fourth order 
homogeneous polynomial on the left hand side, shows that this equation is satisfied 
if and only if the following relations hold : 

(C3) 4=0 for k=l, 2, 3, 
(C4) b\2+2a\2=b\2+2a\2=b\3+2a\a=b\3+2a\3=623+2a23=i>23+2a3

3=0, 
(C5) for 
(C6) b\3+2«f++=+2a1/+4b™+=è*2 +2a?+4b%+=0. 

Putting £=a2 , the relations (Q)—(C2>—(C3) imply that the matrix A=(cfk)£M(3,3) 
has the form 

0 s -s 
A = -E 0 e 

e - e 0 
and consequently, by (C5), fejj = 0 for z< j. Introducing the new (independent) 
variables 

oil = a2 = b23, a3 = ¿3
3, 

Pi — ^13' = 1̂2» P3 — 2̂35 
7i = 72 = 7s = 63. 

we see that all the remaining coefficients are expressible in terms of the variables 
{e, ak, yk | k= 1, 2, 3} and a straightforward computation leads to the coefficients 
given in Lemma 5. 

Our last result asserts that the Veronese surface is rigid. More precisely, we have 
the following 

Theorem 2. For the Veronese surface f : S2—Si the variation space V ( f ) 
is zero. 

Proof . Using the notations of Lemma 5 we parametrize K ( f ) with the 
variables {e, ak, yk \ k = 1,2, 3}. Putting v£K(f) we have 

3 

8= 2akVk + 2 2bij<Pij> 
4 = 1 i c j 

where the coefficients ak, bu, k=1, 2, 3, are given in Lemma 5. 



On variation spaces of harmonic maps into spheres 
1.33 

Note that the parametrization of K ( f ) is chosen in such a way as the cyclic 
permutation 7t=(123) of the indices on the right hand sides will permute the scalars 
Oi,a2,a3 and b12, b23, b13 cyclically. Now suppose, on the contrary, that {0}, 
i.e. we may choose vd V ( f ) with ||u||2=4 i/. Then we have 

4 / = I N 2 = 2 2akar(<Pk><pr)+2bh = V - J ) 2al+4J 2K> 
fc=li- = l i s j k = l i c j 

or equivalently 

(3) i = y 2 c l + 2 b h * = 1 ¡«J 

I-J 1 

on S2, where we used the equality = — which can be obtained by integrating 

the polynomials <p\ and <p\3 on S2. Thus 
1 3 

(x2+x2 + x§)2 = 2 akixit x2> -x^)2-!- 2 bij(x1, x2, x3)2 

is satisfied for all x2, x3)£R3. By computing the coefficients of the fourth order 
homogeneous polynomial on the right hand side we obtain a system of 15 quadratic 
equations in which the first 5 are given as follows 

(i) 4e2+a J+/J2+(a2+/?3)2=4, 
(ii) £ (a,+2ft) - ft y! - (a 2 +ft ) y2=0, 

(iii) - £ (ft + 2a3) + a, y! + (a 2 +ft) y3=0, 
(iv) e(a2-)?3)+2(a1f t-^2()81+a3)-a3(a1+^2))-a1y2+fty3-4y2y3=0, 
(V) — 2e2+4 ( a j + / ? 2 + ( a x + f t ) 2 ) + f t — f t (ft+a3)—a2 ( a 2 +f t )+ 8 (y2+y2)=4, 

and, the equation (3) being invariant under the cyclic permutation 7t=(123) of the 
indices, the last 10 equations are obtained from (i)—(v) by performing the index 
permutations it and n2. Denote the equations of the permuted systems by (i)„—(v)„ 
and (i)„2—(v)„i, respectively. Our purpose is to show that these equations have no 
solution. To do this, first denote by s the symmetric polynomial given by y)= 
=x2+xy+y2, x, j €R . Then (v) can be written as 

-2e 2 + 8s(a1 ,ft) + ( a 1 f t - / ? f - f t a 3 - a 2 - a 2 f t ) + 8(yi+yt) = 4. 

Performing the index permutations n and n2 and adding these three equations 
we get 

-662+7(s(a1 ,^2)+s(a2 ,^3) + s(a3,)S1))+16(7?+yi+yD = 12. 

In a similar way, from (i)—(i)„—(i)„2 it follows that 
12£2+2(s(a1, ft)+s(a2, ft)+s(a3, ft)) = 12, 
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i.e. eliminating the terms containing the polynomial s we have 

(4) . 24( l -e 2 ) + 8(yK7l+yD = 9-

On the other hand, fixing y(, i = l ,2 , 3, the equations (ii)—(ii)n—(ii),, and (iii)— 
(iii)„—(iii),« form a linear system for the variables af,/J„ /' = 1,2,3. Denoting by 

?2. 6) its matrix, we compute detM(y1, y2, 73). For R 
define 

e 2e 0 — £ —t] —q 
—2s - e £ rj 0 

s ( £ „ n _ £ 2 e 0 - C 

0 - n - C - C e 2s 
r/ rj £ 0 — 2e —e 

Permuting the rows and the coloumns of M(ylt y2, 73) by the permutation (25) 
we obtain S(y1,y2,y3) and consequently det M(ylt y2, y3)=det ¿'(yi, y2, y3). 
Similarly, by performing (135462) and (132465) on the rows and coloumns of 
M(yr, y2,y3) we get S(y2,y3,7i) and S(y3, yl5 y2) i.e. det 5(7!, y2, y3) = 
=det S(y2, y3,7i)=det .S(73, y1; y2). Thus, it is enough to compute det S(£, rj, Q. 
To do this, let S(£, r\, have the decomposition 

where A£M(4, 4). The matrix A is centroskew and so by using a result of [2] 
a direct computation shows that det yi=(3e2 — ̂ 2)2. Assuming 3a2 we have [2] 

det t], C) = det A det (D—CA~1£) = 3£2(3e2-(^2+?/2+C2))2. 

Suppose now that y\=y\=y2
3=?>z2. Then equation (4) implies that 15 + 8e2=0 

which is impossible. Hence there exists /'6 {1,2,3} such that y ^ l z 2 . Then, by 
the above, det M{yx, y2, y3)=3e2(3e2 - (y2+y2+y2))2. Further, det M(y, ,y2,y3)*0 
since otherwise 7i+7a+73=3e2 which contradicts to (4). Thus the linear system 
in question has only trivial solution a x = a i = a i = f i - i = f i i = f l s = 0 . Then equations 
(iv)—(iv)„—(iv)nj imply that two of the numbers 7i, 72, 73 vanish. By equations 
(v)—(v)„—(v)„s we obtain ¿=0 which again contradicts to (4). 
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On partial asymptotic stability and instability. II 
(The method of limiting equation) 

L. HATVANI 

1. Introduction 

In [1] we established criteria on the partial asymptotic stability and instability 
based on Ljapunov functions with semidefinite derivatives not requiring boundedness 
of solutions. We proved an alternative for every solution of an autonomous system 
saying that either all the controlled coordinates tend to zero or the vector of the 
uncontrolled coordinates tends to infinity as i—°° (see [1], Theorem 3.1). Combining 
this result with additional hypotheses on the Ljapunov function we found sufficient 
conditions for the partial asymptotic stability and instability of the zero solution. 
By the aid of these theorems we could study stability properties of equilibrium 
positions of certain mechanical systems in the presence of dissipative forces. How-
ever, as it was mentioned in [1], to apply the alternative to certain mechanical systems 
one needs additional conditions of other types. For example, consider a material 
point moving on a surface in a constant field of gravity in the inertial frame of 
reference 0 x y z (0z directed vertically upward) and subject to viscous friction [1]. 
Let the point be constrained to move on the surface of the equation z=(l/2)j>2X 
X[1 + 1/(1 +x2)]. Theorems in [1] cannot be applied to prove asymptotic ^-stability 
for the equilibrium position x=y=0. Nevertheless, it is reasonable to conjecture 
that the equilibrium position possesses this property. For, if a motion (x(i), X 0 ) 
is bounded, then 0 as °° (see [1], Theorem A). On the other hand, 
if |x(i)| —00 as i-» then the motion (x(t), y(t)) is "asymptotically near" to 
a motion of the point on the surface of the equation .z=(l/2)}>2, for which the 
equilibrium position x—y=0 is asymptotically ^-stable. 

The purpose of this paper is to establish partial asymptotic stability and in-
stability of the zero solution of such system whose right-hand side allows a limiting 
process as the vector of the uncontrolled coordinates tends to infinity in norm. 

The paper is organized as follows. In Section 3 we treat such autonomous 

Received March 29,1982. 
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system whose right-hand side has a uniform limit as the vector of uncontrolled 
coordinates tends to infinity in norm. In Section 4 results of the previous section 
will be applied to study partial stability properties of the equilibrium position with 
respect to all generalized velocities and some of generalized coordinates in the sclero-
nomic holonomic mechanical systems being under the action of viscous friction. 
The method to be presented works also for the nonautonomous differential systems. 
Section 5 is devoted to this generalization. Whilst Section 3 is based upon the 
standard sphere of concepts of stability theory and is selfcontained, Section 5 is 
strongly connected with a recent topic of the theory of limiting equations developed 
byZ. ARTSTEIN [ 2 ] — [ 4 ] , some of whose results are necessary préliminaires for applying 
our main theorem. 

2. A nonautonomous invariance principle 

All the necessary notations and definitions have been introduced in [1] (see 
Section 2) excepting the following one. Consider the system of differential equation 

(2.1) x = X(x,t) (t£R+,x£Rk), 

where the function X is continuous in x, is measurable in t, and satisfies the 
Carathéodory condition locally on the set r y . Let us given a Ljapunov function 
V : r'y-"R (for r'yczryczRmXRnXR+ see [1], Sec. 2). For c£R denote by 
V~*[c, °o]0 the set of the points y£Rm for which there exists a sequence {(y,, z„ /¡)} 
such that yt-y, V(y„ z{, t,) - c and V(yh zh tt) - 0 as 
Obviously, V~Llc, Ho is closed relative to r'y. 

We shall need the following nonautonomous invariance principle even in Sec-
tion 3 where the basic differential system is assumed to be autonomous. 

Theorem A. [5]—[7] Assume that for every compact set KcRk there is a 
such that if u: [a, P\—K is continuous then 

(2.2) \f X(u(t),i)dt\^pK(f}-a). 
a 

If V : r'x-+R is a Ljapunov function bounded below, and <p\ [?0, is 
a solution of (2.1) for which \(p(t)\^H"<H' holds for all t^t0, then Qx(<p) is 
contained in a component of °°]0 for some constant c. 

In order to make Section 3 selfcontained we sketch the proof. Since V is 
locally Lipschitzian, the function v(t)=V(ç>(t), t) is locally absolutely continuous 
and 

(2.3) -£-v(t)=V(<p(t),t)^0 
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for almost all t^t0. Thus v(t) is nonincreasing and v(t)—c as t—°° for some 
constant c. Suppose that the statement is false. Then there exist p£Qx(<p) and 
E>0 such that Bk(p, 2e)P\Vk

1[c, °°]o=0> where Bk(p, 2e) denotes the closed 
ball in Rk with center p and radius 2E. Obviously, 

(2.4) l i m s u p { V ( c p ( t ) , t): t £ T, <p№Bk(p, 2e)} < 0, 

thus, however large the time T* may be, the point <p(t) cannot be contained in the 
set Bk(p,2s) for all t^T* since v is bounded below. Therefore, cp(t) enters 
Bk(p, e) and leaves Bk(p, 2e) infinite number of times. In view of (2.2)—(2.4) 
this means that v is not of bounded variation, which is a contradiction. 

3. Autonomous equations 

Consider the differential system 

(3.1) x = X(x) (x£Rk; X(0) = 0), 

where X :Gy—Rk is continuous. By the partition x = ( y , z) (ytRm, z£R"\ 1 ^m^k, 
n=k—m) the system (3.1) can be written in the form 

(3.2) y = Y(y, z), z = Z(y, z). 

Throughout this section we assume that Y(y, z)—Y*(y) uniformly in y£Bm(H') 
as |z| — oo. 

T h e o r e m 3.1. Suppose that there is a Ljapunov function V : G'y-»R of (3.2) 
satisfying the following conditions: 

(i) V is positive y-definite; 
(ii) for every c > 0 the set (K(3.2))-1(0)n F - 1 ( c ) contains no complete trajectory 

of (3.2), and 
(iii) the set V~x[c, °°]0 contains no complete trajectory of the system 

(3.3) j> = r . o o 

except the origin of Rm. 
Then the zero solution of (3.2) is asymptotically y-stable. 

Proof . Since V is positive y-definite and V(s 2)(y, z)S0 on G'y, the zero 
solution of (3.2) is y-stable (see [8], p. 15), i.e. for every £ > 0 there exists a <5(E)>0 
such that |X0|<(5(£) implies \y(t\ x0) |<£ for all /SO. Let 0 < E 0 < / / ' and define 
a=5(fi0)>0. We shall prove that for every x0$Bk(a) we have |j>(i; x0)[—0 as 

oo. 

10 
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Let x=<p(t)=(\p(t), X(0) be a solution of (3.2) such that tp(0)€Bk(al The 
function v(t)=F(<p(t)) is nonincreasing and nonnegative, hence v(t)—v0^0 as 
t—co. If y0=0 then №(01-0 as since V is positive y-definite. Assume 
that r0>0. By Theorem 3.1 in [1], this assumption together with (ii) imply 

(3.4) limlxCOl oo 

Consider the system 

(3.5) y = Y(y,X(t)) (yiBmm, t(LR+) 

and the function U: Bm(H')XR+-*R defined by U(y, t) = V(y, x(0)- Obviously, 

(3.6) UC3.5)(y>0 = V(B.2)(y,x(0)^0, 

therefore U is a Ljapunov function of (3.5) and u(t)=U(\J/(t), /)—f0 as 
The function y=>p(t) is a solution of equation (3.5), whose right-hand side is bounded 
for (y, t)£Bm(H')XR+, and for all /==0. By Theorem A in 
Section 2 we have the inclusion i2J,(i/^)cC/~1[t?0, °°]0. Furthermore, in view of 
(3.4) and (3.6), £/~1ft>0, H o C F ^ ' K , oo]0. Taking into account the obvious fact 
that the positive y-limit set Qy((p) of the solution x=<p(t) of (3.2) coincides with 
the positive limit set Qy(i//) of ip, being a solution of (3.5), we obtain 

(3.7) Qy((p) = Qy(>P)<zV-1[va,^]0. 

On the other hand, property (3.4) implies that Y(y, x(t))-"Y*(y) uniformly 
in y€Bm{H') as i—oo. Thus (3.3) is the limit equation of (3.5) and is semi-
invariant with respect to (3.3) (see [8], p. 304). Now we can conclude the proof by 
showing that Qy(q>)= {0}, i.e. 1^(01—0 as i—oo. Indeed, if the nonempty set 
Qy((p) contains any point besides the origin of Rm, then it contains also a complete 
trajectory of (3.3) different from the origin because it is semiinvariant with respect 
to (3.3). But, in consequence of (3.7), this contradicts condition (iii) of the theorem. 
The proof is complete. 

In certain applications condition (ii) in Theorem 3.1 proves to be rather re-
strictive. For example, it may happen that ths potential energy P(q, q) of a mecha-
nical system is ^-definite, in every neighbourhood of the origin q—q=0 there 
exists an equilibrium position belonging to the set P(q, q)>0, nevertheless the 
origin is asymptotically ^-stable (see [1], Examples). Now we relax this condition 
of the theorem (compare with Theorem 3.3 in [1]). 

Theorem 3.2. Suppose that the function Z in (3.2) is bounded on the set G'y, 
and there is a Ljapunov function V : Gy—R of (3.2) satisfying conditions (i), (iii) 
in Theorem 3.1. Assume, in addition, that 
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(ii') for every c>0, if the set (F(3 2 ) ) ( 0 ) H F ( c ) contains a complete 
trajectory of (3.2) then this trajectory is contained in the set {(y, z): ^=0}. 

Then the zero solution of (3.2) is asymptotically y-stable. 

Proof . We have to modify the proof of Theorem 3.1 only from that point 
where we assumed r0>0. It is enough to prove that in this case £2y(^) = {0}. 

Let 0?iq£Qy{(p). Then, by Lemmas 3.1—3.2 in [1], either there exists an rdR" 
such that {q, r)eQx(<p)czM{v0)=(K^.a))"1 ( 0 ) H F - 1 (y0) or whenever 
tt—°° and ip(ti)-*q as z — In the first case, by the semiinvariance property 
of Qx(<p) with respect to (3.2), the set M(v0) contains a trajectory of (3.2) not 
contained in the set {(y,z):y=0}, which contradicts (ii'). Therefore, if /¡—°o 
and i//(ti) converges to a point different from the origin of Rm, then —00 

as z —oo. 
We shall prove that in the case Qy((p)?i {0} the inclusion Qy((p)czN(v0)= 

= V~1[v0, °°]o holds. But Qy(cp) is compact and connected, and N(v0) is closed, 
so it is enough to show that £2j,(<p)\{0}c:7V(i;0). Suppose the contrary. Then there 
exist q£Qy(cp){q?i0) and £>0 such that Bm{q, 2e)Pi[Ar(i;0)U {O}]=0. We state that 

Indeed, otherwise there is a sequence {/¡} for which V{(p(t$)—0, iPOt)— 
—qXEm(q,2e) and, consequently, |;c(i,)! —°° as i — i . e . q'tN(v0), which 
contradicts the definition of £. Since V is bounded below, (3.8) implies that 
£Bm(q, 2s) cannot be satisfied on any whole interval [T, From this fact it 
follows that there exist sequences {/•}, {?"} with the properties 

t'i -= t'{ < t'i+!, t\ - (if) - q I = 6, l̂ r (if) - q\ = 28, 

£ =S h K 0 - ? | = 2 e W = 1 = 1 = 2> •••)• 

Since Y(\j/(t), x(t)) is bounded, /•£/?>() for all i with some constant fi and 

which is a contradiction. 
It remains to prove that for every qdQy(<p) (q^O) the system (3.3) has a 

complete trajectory through q lying in Î2y(q>). Consider the sequence of the func-
tions {iA'(i)=<K'i+0} whose z-th member is a solution of the initial value problem 

Since Z is bounded, IxOi+OI-*"00 uniformly with respect to t on each compact 
interval [a, fa] as i - « , . Thus, Y(y, x(ti+t))-Y*(y) uniformly in (y, t)£Bm(H')Y. 
X[a, b], and t//(/,)—<7. Consequently, there exists a subsequence of {ip'(t)} which 

(3.8) a = lim sup {VtyOl x('))- t S T, <p(tKBm(q, 2s)} < 0. 

y = Y(y,x(ti+t)), y(0) = Htd 0 = 1,2,. . .) . 

10* 
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converges uniformly on [a, b] to a solution y of the initial value problem y=Y,(y), 
y(0)=q (see [8], p. 297). For each /SO the point y(/) is the limit of a subsequence 
of i¡/(t + ti). But also /;+/—oo, so y(t)dQy((p), which means that Qy((p) contains 
a complete trajectory of (3.3) different from the origin. 

We have proved that if there exists a q£Qy((p) (q^0) then there exists also 
a complete trajectory of (3.3) different from the origin that is contained by Qy((p) 
and, because of Qy(<p)<zN(v0), by N(v0) as well, in contradiction to assumption 
(iii). The proof is complete. 

Our method can be used for deriving instability theorems, too. 

Theorem 3.3. Suppose that there is a Ljapunov function V : Gy-*R of (3.2) 
satisfying the following conditions: 

(i) V is bounded below; 
(ii) for every <5>0 there exists an x0£Bk(5) such that F(x0)<0; 
(iii) for every c < 0 the set (F(3.2))_1(0)n F - 1 ( c ) contains no complete trajectory 

of (3.2), and 
(iv) the set V~ *[<:, °°]0 contains no complete trajectory of (3.3). 

Then the zero solution of (3.2) is y-unstable. 

Proof . We have to prove that there is an e 0>0 such that from every neigh-
bourhood of the origin in Rk there starts a solution of (3.2) which leaves the set 
Bm(e0)XRn. 

Let 0 F o r an arbitrary S (0<<5<e0) take an x0£Bk(S) such that 
F(x0)cO, and consider a solution x=(p(t)=(<p{t), / ( /)) of (3.2) with <p(0)=x0. 
We shall prove that i//(T)>£0 for some T>0. Suppose the contrary, i.e. \\p(t) 
for all /SO. Then u(/)—u0<F(x0)<0 as By Lemma 3.1 in [1] and 
invariance property of Qx{(p), assumption (iii) implies (3.4). As it was shown in 
the proof of Theorem 3.1, from these facts it follows that the nonempty set Qy(q>) 
is a subset of V~x[vQ, »]0 (see (3.7)) and it is semiinvariant with respect to (3.3). 
Consequently, the set V~\vQ, «>]0 contains at least one complete trajectory of 
(3.3) in contradiction to assumption (iv) of the theorem. The proof is complete. 

Remark 3.1. Let y=(y i ,y 2 ) be a partition of y iR m (y1eRm', y ^ R m \ 
1 ̂ m ^ m , m1 + m2=m) and suppose that for some e 0 >0 the inequalities ly^^ep, 
V(yx, j 2 , z)<0 imply |y2| =H'. Analysing the proof of Theorem 3.3 one can 
easily see that, in fact, in this case the zero solution of (3.2) is ^-unstable. 

As we shall see in the applications, we often have an estimate of the type 
Vy3 2)(y, z)^U(y), which allows us to simplify the last condition in Theorems 
3.1—3.3. In the following simple proposition even a slightly more general case is 
considered. 
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Propos i t i on 3.1. Suppose that for a Ljapunov function V : G'y—R of (3.2) 
there exists a continuous function W : G'y-+R such that 

(i) V(3,2)(y,z)^fV(y,z)^0 ((y, z)6G;); 
(ii) fV(y, z)-»U(y) uniformly in y£Bm(H') as |z| — 

Then for every c£R, 
E(c) = U-i^rW-'ic, H 3 V-i[c, Ho-

4. An application 

Consider again the holonomic mechanical system of r degrees of freedom 
described by the Lagrangian equation 

/ . .. d dT dT _ BP , „.s 
<4A) 17 3 4 - ^ ' ( q ' q ' R ) > 
where the following notations are used (see [1]): P(q) is the potential energy (P(0)=0), 
T(q, q) = (l/2)qTA(q)q is the kinetic energy, and Q(q, q) is the resultant of non-
energic and dissipative forces with complete dissipation. 

Let q=col (qx, q2) be a partition of the vector of generalized coordinates 
(q^R^, q2£Rr t, l ^ r ^ r , r1+r2—r). Applying our results we give sufficient con-
ditions for asymptotic stability and instability of the equilibrium q—q=0 (possibly 
non-isolated) with respect to the velocities q and coordinates qx in the case when the 
system is "asymptotically ^-independent". It is worth emphasizing that the coordi-
nates of q2 are not supposed to be bounded along the motions. 

The system (4.1) is defined to be asymptotically q2-independent if for some 
constant 0 and for every compact set KczRr 

(a) there are 1 > 0 and such that 

AlípSyg^í?!, q2)q, QT(ql5 q2, q)q^-c{\q\) 

for all q^B r i(H') , q 2 ü R \ qiRT\ 
(b) A(qt, P(q1¿ q2)-P*(qx) as in addition, Q(qu q2, q)-

uniformly in qx^Br(Ji'), q£K as |q2\ — °°, as well as dA/dq, BPjBq 
converge uniformly in q ^ B ^ H ' ) as 

We are going to apply Theorems 3.2 and 3.3 while z~q2 and V is the total 
mechanical energy. For this purpose we introduce the Hamiltonian variables 
q,p=A(q)q, by the aid of which the system (4.1) can be rewritten in the form 

1 T(BA-\g)\ dP n( ,_lf . v 

(4.2) 
q = A 1(g)p, 
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In view of asymptotic ^-independence, the equilibrium q = q=0 of (4.1) and the 
zero solution p—q=0 of (4.2) have the same stability properties. 

Consider the total mechanical energy H defined by H=H(p, ql, q2)=T+P. 
As is known (see [8], p. 358), 

(4.3) tf(4.2)(p, qlt qj = QT(q, A~1(q)p)A~1(q)p S -d(\p\) 

for all (p, qi)£Bri+r(H'), q2£Rr' with a suitable d£tf. Consequently, H is 
a Ljapunov function of (4.2), and 

(4.4) ( / W _ 1 ( 0 ) n H ~ * ( c ) = {col (p, q): P{q) = c, p = 0} (c£R), 

so the trajectories of (4.2) contained in this set are the equilibria p=0, q=q0 for 
which P(q0)—c. 

Now let us determine the set 

E(c) = H'Uc, Hf l r f -H0) = {col(p, q,): p = 0, <7i = P^[c, H}, 

figuring in Proposition 3.1. Since dPjdqx is continuous and converges uniformly 
as |?2| — °°, the function P(-, q2): Br (H')-~R is continuous uniformly in q2£Rr*. 
From this fact it follows that 

(4.5) E(c) = {col (p, gi):p = 0, PJqJ = c}. 

The system (4.2) is asymptotically ^¡¡-independent, hence its limit system as 
\q21 —00 reads as follows: 

P ^ - j p i A ^ A ^ p - ^ Q i ^ A ^ p ) 

(4.6) PJ = Q U c h , A ; \ P) 

<?' = 2 M i 1 M L / 
* = I 

for / = 1, 2, ..., j=r1 + l, ..., r. In view of (4.5), if E(c) contains a trajectory 
of (4.6) then it is of the form p=0, qx=(qL) — const., furthermore 

dP 
(4-7) P,{(q,\) = c, = 0. 

4l=(9l)„ 

Theorem 4.1. Suppose that the mechanical system (4.1) is asymptotically 
q2-independent. 

I. If (i) the potential energy P is positive q^definite, (ii) system (4.1) has no 
equilibrium position in the region {(<?i, q2): P(qi, <72)=-0, q^O), and (iii) the equality 
dP,(q1)ldq1=0 implies either qt=0 or P*(q1) = 0, then the equilibrium q=q=0 
o/(4.1) is asymptotically (qx, q)-stable. 
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II. If (i) the potential energy P has no local minimum at q = 0, (ii) the system 
(4.1) has no equilibrium position in the region {q: P(q)<0}, and (iii) the equality 
dP,(q1)/dq1=0 implies P*(q1)^0, then the equilibrium q = q = 0 of (4.1) is 
qx-unstable. 

Proof . I. We show that (4.2) and the total mechanical energy H asaLjapunov 
function satisfy the conditions of Theorem 3.2. Condition (a) in the definition of 
the asymptotic ^¡¡-independence and (i) assure H to be positive />)-definite. 
In consequence of (4.4), for the system (4.2) condition (ii) precludes the possibility 
of having such a complete trajectory in the set (Hf4 2))_1(0)H// _ 1 (c) (c>0) that 
is not in {(qx, q2,p)'- <7i=0, />=0}. Finally, using (4.7), condition (ii), and Propo-
sition 3.1 we obtain that the limit system (4.6) cannot have any trajectory in the set 
H-\r[c, Ho (c>0) except the origin. 

II. One can similarly check the conditions of Theorem 3.3, from which (qlt p)-
instability follows. According to Remark 3.1, for the purpose of proving ^-instability 
it is enough to show that Ss0 , H(q1, p, ?2)<0 imply \p\^M for some constants 

0, M. Observe, that P is bounded below on the set Br (e0) X Rr* because of 
^-independence. Therefore, T is bounded above, which together with (a) imply 
that p belongs to a bounded set. The proof is complete. 

Concluding this section we note that in possession of Theorem 4.1 one can 
easily prove the conjecture made in the Introduction in connection with the motion 
of a material point on the surface z=(l/2)y2[l +1/(1 +x2)]. 

5. A generalization to nonautonomous systems 

The LaSalle principle and the invariance property of limit sets with respect to the 
limiting equation, which served as the two main tools in the proofs of Section 3 
have been extended to quite general nonautonomous systems. These extensions 
enabel us to generalize our results to the equation 

(5.1) x = X(x,t) (X(0,t) = 0). 

Namely, we give a theorem on the partial asymptotic stability of the zero solution of 
(5.1) without any assumptions on the boundedness of solutions. To formulate and 
prove it we need some concepts and results from topological dynamics given in 
[2]—[4]. The theorem will be followed by a corollary, containing only analytical 
conditions and, consequently, more suitable for applications. 

t 
As is known, (5.1)is equivalent to the integral equation x(r)=x(a)+ J X(s,x(s))ds, 

a 
i.e. to the functional equation x=x(a)+Iax, where the operator Ia is defined by 
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Iax(t)=JX(s, x(sj)ds. In the method of limiting equation there occur such functional 
a 

equations in which the operator la is more general than the integral with a kernel. 
An ordinary integral-like operator I is a mapping which associates with each con-
tinuous function cp: [a,)?)—Rk and a,/?) a continuous function Ia<p so that 
(1) if (p^. [a, /?)— Rk are continuous and (pt(t)-*(p(t) uniformly, then /a<p,(f ) — 
—Ia<p(t) uniformly in t£[a, b], as i —«> for all [a, 6]c[a, /?); (2) Ia<p(t)= 
=la(p{s)-\-Is<p(t) for all a, s, t£[tx, fi). We shall denote by u=Iu the functional 
equation u=u(a)+Iau associated with the ordinary integral-like operator I. 

For t£R+ we define the translate X' of X by X'(x, s)=X(x, t+s) (s£R+). 
We denote by tran (Z) the collection of all translates X' of X (t£R+). An or-
dinary integral-like operator equation u=Iu is a limiting equation of (5.1) if there 
exists a sequence {/,} converging to infinity so that X'1 integrally converges to 
I as ¡'-oo, i.e. whenever <pt\ [a, b]—Rk converges uniformly to <p then 

b 
J. X{cpi{s), ti+s) ds - Ia<p{b) (i - <*>)• 
a 

The set tran (X) is said to be precompact if every sequence in it has an integrally 
converging subsequence. 

T h e o r e m B . [4] Suppose that tran (X) is precompact and cp\ [/0, ^—R" 
is a solution of (5.1). Then £2x(<p) is semiinvariant with respect to the family of the 
limiting equations of (5.1), i.e. for each pdQx(cp) there is a limiting equation u=Iu 
of (5.1) and a solution y of the equation u—p+J0u so that y(t)£Qx((p) for all 
t in the domain of y. 

By our standard partition x=(y, z) the system (5.1) can be written in the form 

(5.2) y = Y(y,z,t), z=Z(y,z,t) ((y,z,tXry). 

Let 0 

Theorem 5.1. Suppose that the right-hand sides of (5.2) satisfy the following 
conditions: 

(i) for each compact set K<zR" and continuous function X- R+ with 
lz(0l~*°° as t—<x>, there are functions p,q£Jf so that for arbitrary continuous 

functions v: [a, b]-»Bm(H'), w: [a, b]—K 

\/Y(v(t), X(t), t)dt\ p(b-a), \fx(v(t), w(t), t)dt\ q(b-a); 
a a 

(ii) tran {X(x, t)) is precompact; 
(iii) tran (y(_y, x(t), i)) ,s precompact for every continuous function X- R+—R 

with |x(0| — °° as t—°°-
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Suppose, in addition, that there is a positive y-definite Ljapunov function V: Ty—R 
of (5.2) having the following properties: 

(iv) for each c > 0 neither limiting equation of (5.2) has a positive semitrajectory 
in the set Vk\c, Ho! 

(v) for each c > 0 and continuous function /: R+ -+R" such that IxiOl-*00 

as t — neither limiting equation of y~ Y(y, x(t), t) has a positive semitrajectory 
in the set F~1[c, °°]o different from 0. 

Then the zero solution of (5.2) is asymptotically y-stable. 

P r o o f . The zero solution of (5.2) is y-stable (see [8], p. 15); therefore, it is 
sufficient to prove that if x=(p(t)=(ip(t), / ( /)) is a solution of (5.2) and №(01 = 

for all t ^ t 0 , then ^ ( 0 - 0 as 
Let us introduce the notations v(t)=V(q>(t), t) and u 0 =l im»(0- We dis-

tinguish two cases: 
a) Assume that |x(0l-^°° a s We show that in this case t>0=0, which 

implies ij/(t)—0 because V is positive y-definite. 
The limit set Qx(q>) is not empty and, by Theorem A, Q^^CZV^IVQ , °°]o-

On the other hand, S2x(<p) is semiinvariant with respect to the family of the limiting 
equations of (5.2) (see Theorem B). Consequently, one of them has at least one 
positive semitrajectory in °°]o- Thus, in view of (iv), v0=0. 

b) Let | x ( 0 l - ° ° as t—»=. We show that either u0=O or Qy(<p)= {0}. 
Consider the equation 

(5-3) y = Y(y, X(f), i) t£R+) 
and its Ljapunov function U(y, t)—V(y, x(t), t). Using again Theorem A we 
obtain 
(5.4) Qy(cp) = QyM c U~lK, Ho c= V'^vo, Ho-
On the other hand, Qy(<p) as the limit set of the solution y=^(t) of (5.3) is semi-
invariant with respect to the family of the limiting equations of (5.3). If there is 
a qdQy(<p), q?i 0, this means that one of the limiting equations of (5.3) has a positive 
semitrajectory different from {0} which is a subset of Qy(<p). Then, according to 
(5.4) and hypothesis (v), v0=0. The proof is complete. 

C o r o l l a r y 5.1. Suppose that 
(i) for each compact set KczR" there are locally integrablefunctions pj, v,-: R+ — 

t 
-*R+,j = 1,2 so that the functions J fij(s)ds are uniformly continuous on R+, 

0 
t + 1 

the functions J Vj(s)ds are bounded on R+, and 

|Y(y, z, 0| ^ 0, IZ(w, 01 ̂  №s(0> 
|Y(y, z, t)-Y(y', z, 0 | 3= v ^ O l y - / ! , | X ( w , t)-X(w', t)\ s v 2 ( 0 | w - w ' | 
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for all y,y'£Bm(H'),z£Rn,w,w'eBm(H)XK,t£R+. Suppose, furthermore, that 
there is a positive y-definite Ljapunov function V: r'y—R of (5.2) having the following 
properties: 

(ii) if for a function X*:Ty—R there is a sequence {/,} so that /¡ —°° and 
t t 

f X(x,s + tt)ds- f X^(x, s) ds (i 
0 o 

for every fixed (x, t)£.r'y, moreover, if c>0, then the set Vk
x[c, Ho contains 

no positive semitrajectory of the equation x=X*(x, t); 
(iii) if for a function Y*\ Bm(H')XR+—Rm there exist a sequence {/J and 

a continuous function y \ R+ —R" so that (/-<»), IxiOl-*00 ('-00) and 

t t 
f Y{y, y_(s + t-l),s + U) ds- f r* (y, s) ds (i - - ) 
O 0 

for every fixed (y, t)£Bm(H')XR+, moreover, if c>0, then the set °°]0 

contains no positive semitrajectory of the equation y — Y*{y,t) except the origin 
y=0. 

Then the zero solution of (5.2) is asymptotically y-stable. 

Proof . As it follows from [2] (Theorem 4.1), under assumption (i) both 
tran (X(x, t)) and tran ( r ( j , x(0> 0 ) a r e precompact, and all the limiting equa-
tions are ordinary differential equations whose right-hand sides are the almost-
everywhere derivatives of 

1 t 
lim f X(x, s + ti) ds, lim f Y(y, x(s+tt), s+t^ds, 

respectively. This means that all asrunptions of Theorem 5.1 are satisfied. 
Theorem 5.1 can be used for the case when X(x, t) is periodic in t. For 

example, if 
we assume that Y(y,z, t) — Y*(y, t) uniformly in (y, t)£Bm(ff/)XR+ 

as |z| — then both tran (X(x, /)) and tran x(0> 0) a r e precompact, 
and the limiting equations read 

x = X(x, t+t0), y = Y*(y, t+t0), 
respectively. 

Remark 5.1. Suppose assumptions (i), (ii), (iv) in Theorem 5.1 to be satisfied. 
Suppose, in addition, that 

(v') for every continuous function x : R+ for which IxiOl-*00 ^ 
there is a limiting equation u=Ju of Y(y, x(t), t) so that for every o O the set 
V^lc, Ho contains no positive trajectory of u—u(0)+J0u. 
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Then the zero solution of (5.2) is equiasymptotically y-stable, i.e. it is y-stable 
and for every t0£R+ there is a <r(i0)>0 such that |y(/; x0> /0)|-^0 uniformly 
in x0£Bk(o(t0)) as / -co . 

To show this we have to modify only part b) of the proof of Theorem 5.1. 
Namely, we prove that also in this case i?0=0. After proving (5.4) consider the 
limiting equation 

(5.5) u = u(0) + J0u. 

For a sequence {/¡} the sequence of translates Y'<(y, x(t), 0 tends to J integrally 
as i — From assumption (i) it follows that the functions {<Pi(t) = ^(l + ti)} being 
solutions of the equations y=Y'<(y, x(t), /) are uniformly bounded and equi-
continuous on every fixed interval [0, T\. By Arzela—Ascoli theorem, we can 
assume that i¡/* uniformly on [0, T], thus ip* is a solution of (5.5). Obviously, 
\l/*(t)£Qy(<p) for all / £ 0 . According to (5.4) and assumption (v'), r0 = 0. 

So we have proved that V(x(t; x0, /0))—0 as t — <*> for every fixed t0£R+ 

and for all x0 with sufficiently small |x0|. By the classic covering theorem of 
Heine—Borel—Lebesgue, this convergence is uniform with respect to x0 [9], which 
implies equiasymptotic ^-stability since V is positive y-definite. 

R e m a r k 5.2. The statement in Remark 5.1 remains valid if assumption (v') 
is weakened so that V~x[c, °°]o contains no positive semitrajectory of the limiting 
equation u — u(0)+J0u except the origin y = 0, but it is supposed, in addition, 
that V(y, z, /)—0 uniformly in (z, t)tR"XR+ as y - 0 . 

To see this one has to observe only that the additional condition on V obviously 
precludes the possibility of ^»(/)=0 for the function ip*{t) occurring in the argu-
ment in Remark 5.1. 

These two remarks make it easier to see that our result generalizes and improves 
the main theorem of [10]. 

Acknowledgement. The author is very grateful to L. Pintér and J. Terjéki for 
many useful discussions. 
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On the stability and convergence of solutions of 
differential equations by Liapunov's direct method 

J. TERJfiKI 

1. Introduction 

By means of a modification of Liapunov's direct method we give sufficient 
conditions for the stability of solutions of ordinary differential equations and for 
the existence of finite limits of certain functions (specially, of a part of coordinates) 
along solutions as t—For the study of this problem, T. A. B U R T O N [2], J. R. 
H A D D O C K [5, 6] and L. H A T V A N I [8, 13] used modifications in which the derivative 
of the Liapunov function was estimated by the norm of a linear combination of 
components of the right-hand side of the system. T. A. B U R T O N [3] has extended 
this method for the estimate in which a power of a linear combination of the 
right-hand sides occurs. In this paper we investigate the case when the estimate 
contains a monotone function of a linear combination of the right-hand sides. We 
apply our results to studying the asymptotic behaviour of solutions of certain 
second order non-linear differential equations and the stability properties of motions 
of mechanical systems under the action of potential and dissipative forces depending 
also on the time. 

2. The main results 

Consider the differential system 

(2.1) x(t) = X(t,x), 

where t£R+ =[0, °°)> x belongs to the «-dimensional Euclidean space R", X£ 
eC(R+xr,Rn); r<^R" is an open set. 

Let us introduce some notations. Denote by (x, y) the scalar product of 
vectors x,y£R". ||x|| =(x, x)1/2 is the norm of the vector x£R". Let BH denote 
the set of elements x£Rn such that ¡¡xj|<// (H>0). The distance Q(H1, H2) 
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between the sets H-i, H2cR" is defined by 

< ? ( # ! , # a ) = 'nf{| |x-.y| |: x£Hlt yiH2). 

H denotes the closure of the set H. Let K denote the class of increasing functions 
a£C(R+,R+) for which a(0)=0 and a(s)>0 for all j > 0 . Denote by L+ the 
class of Lebesgue measurable functions / : R+ — R+ U {«>}, by (0</><°°) 
and L t the classes of the functions / € L + with 

f / p ( s ) ds sup ess/(s) <00, 

respectively. Let u(t;t0,u0) be the maximal noncontinuable solution of the 
equation 
(2.2) it = r(t, u) 

through (f0,w0), where r£C(R+XR+, R+). 
Let us given a function a>£C(R+ XR+, R+) with a>(t, • )£K. In the sequel 

we shall often have to solve an inequality of type w(t,f(t))^g(t) for the function / . 
This motivates the following notations: 

co(t, 00) = lim co{t, u) ( s °=)> 

00 

a)_1(i, v) = max {«: co(t, u) S v}, 
fi)-1(f, w( i , °=)) = c o -

The function a>_1(/, v) is defined for t£R+, 0 = v^co(t, it is increasing in u, 
continuous on the right and satisfies the inequality 

co-^t, (o{t, u)) S u (t£R+, u£R+). 

For every 8 denote by Dd the set of functions / 6 L + for which / ( i ) — 
Sco(t, <5) (t£R+), and define the map QS:DS—L+ by 

(0 , /XO = c o - ^ t j i t ) ) ( t t R + j e D } ) . 

For a function ViC1(R+ XT', Rk) ( f c f ) we define the derivative 
€C(R+ XT', Rk) of the function V with respect to (2.1) as follows 

Obviously, if x(t) is a solution of equation (2.1), then 

±V(t,x(t)) = V(t,x(t)). 
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Let us given a function W^.C1(R+ XT, Rk). In the sequel we examine the 
asymptotic behavior of W along solutions of (2.1), i.e. the asymptotic behavior 
of the function Wit, x(t)\ In the following theorem we use the set Pi W{\t, T), 

tSO 
which consists of all w£Rk for which there exist sequences {ij, {x,} with x,€.T, 

W(tt, xt)—w as 

T h e o r e m 2.1. Suppose that for each wx, w2£ f ) W([t, °°)> 0 t^iere exist 

t £ 0 
functions V£C\R+xr, R+), r, rlt co£C(R+ XR+, R+), open sets H1,H2cRk 

and a constant 0 satisfying the following conditions: 
(A) 0; 
(B) r{t, u) is increasing in u and the solutions of equation (2.2) are bounded; 
(C) rx(t,u) is increasing in u and rx(-, (u£R+); 
(D) co(t, -)£K (t£R+) and Q^ maps D „ n L + into £,+ ; 
(E) V(t, x)^r(t, V(t, x)) (t£R+, x € r ) ; 
(F) V(t, x) si -a>(t, | |W(t, ^ iD+z-^ / , V(t, x))_ 

for all (t, x) such that t^T, x<ZT, W(t, x)iH1UH2. 
Then for every solution x(t) of (2.1) defined on [?0, either \\W(t, x(r))ll — 00 

or W(t, x(t)) -•const, as t—<=. 

Proo f . First of all, observe that 

(2.3) r{.,u0)£Lt (u0iR+). 

Indeed, let u0£R+. By virtue of the monotonicity of r(t, u) in u we have 

u(t; t0, m„) = r(t, u(t; t0, u0)) S r{t, w0); 

therefore, assertion (2.3) holds. 
Now, consider a solution x: fi0, R" of (2.1) and put w(t) = W(t, x(t)). 

Suppose that the assertion of the theorem is not true, i.e., there exist two distinct 
elements w1, w2 of the set P| w([t, Consider some sets H1, H2, functions 

t sto 
V, r,r^,(o and some constant T corresponding to Wj, w2 in the sense of the 
assumptions of the theorem. 

By the basic theorem on differential inequalities, from assumptions (B) and 
(E) we obtain the estimate 

V(t, x(0) u(t; t0, V(t0, x0)) ^ C = const (i€[/0, 

So, 

f r(s, C)ds) = V(t, x{t))-r{t, C) 0, 

consequently, f(t) = r{t, C)-V(t, x(t))eL?. 
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Since w1; VV2£ H vv([/, «=)), there exist two sequences {/,}, {/?} such that 
( s » o 

(2.3) T ^ t ^ t t ^ t ^ (¿ = 1,2, . . . ) , l imi , = oo; 
»-•OO 

w W e H x , w ( i f ) 6 H , (i = 1, 2 , . . . ) , 

w i O i ^ U H , ( ' e L K ' i . t f ) ) . 
Introduce the notation 

g (/) = max (0, min (a> (i, n (t, C) - F (r, x (/)))). 

Then by condition (F) we have 

g ( o s <o(t, i iw(oii) 

So, 

II w 

Therefore, 

v(0ll == 03-% g ( o ) ( ' € ¿ t o , * ? ) ) . 

NQ(Hlt H2) == 2 l|w(ij)-w(if)|| = 
¡=i 

t* t* 

= i l l f Ht)dt\\ ^ z S 8(f)) dt. 

This means that a)_1( •, g( • )) $ Lx. Consequently, by condition (D), g $ 
On the other hand, we have 

g( i ) S r x ( i , C) — V(t, x(t)) = / ( 0 + r i i f , C) 

for all t such that r^t, C)-V(t, x ( 0 ) = 0 . By virtue of f(t)^0, rx(/, C ) s O we have 

g ( î ) ë / ( i ) + r 1 ( / 1 C ) (tiR+), 

which contradicts / , •, The theorem is proved. 

T h e o r e m 2.2. Suppose that there exist functions V£C\R+ XT, R+), r,co£ 
£C(R+ XR+, R+) such that assumptions (B), (D) and 

(F,) V(t, x) ^-co(/, | |W(t, x)||) + r(f, Vit, *)) (t£R+, x<LT) 

are fulfilled. Then W(t, x(tj)—const, as t—°° for every solution x(t) of (2.1) 
defined on [i0, 

P r o o f . By Theorem 2.1, it is sufficient to show that w(t)=W{t, x ( 0 ) is 
bounded for every solution of (2.1) defined on [/„, «•). 
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Suppose the contrary. Then there exist two sequences {/,}, {/?} and a natural 
number M > 0 such that 

(i = 1, 2, ...), jim tt = 

IIW (Oil = U II w (i*)ll = i + 1 (i = M,M+1, ...), 

i < ||w(i)|| < i + 1, i € ( i „ i f ) (i = M , M + l , . . . ) , 

are fulfilled. So 
N + M 

N ^ 2 ( l | w W ) l l - l | w ( O I I ) = 

M + N '* M + N '* 
= 2 / -J-IKOfldfS 2 / IIw(Oil dt. i=M r dt i=m r 'i 't 

Hence, by virtue of (Fx) we have 

M + N '* '«,+ Jr 
N ^ 2 f to-ifagiUfidts J <0-^(1, gl(t))dt, 

where 
gi(0 = min(co(t, r(t, sup F(i, * ( / ) ) ) x ( 0 ) ) . 

1 S T 

This inequality contradicts gi^Z^, which concludes the proof. 

T h e o r e m 2.3. Let 06T and 0)=0 /or all t£R+. Suppose there exist 
functions a,b£K, V£C\R+XBH,R+) (BHczr), a>, r£C(R+XR+, R+) such that 

(Bj) r(t, 0) = 0 for all t£R+, r( •, u)£L+ for all w>0, r{t, u) is increasing 
in u and the zero solution of equation (2.2) is unique; 

(Dx) a>(/, • )£K (t£R+) and the map B^OLf —Lf is continuous at 
u(t)=0 in L^norm; 

(F2) V(t, x) ^ —a(\\W(t, x)||)co(i, *)||) + r(/, V(t, x)) for all tiR+, x£BH; 
(G) V(t,0)=0,W(t,0)=0 for all t£R+ and ¿(||jt||)s=K(/, x) + \\W(t, jc)|| 

(t£R+, x£BH). 
Then the zero solution of equation (2.1) is stable, and for every solution x(t) 

of (2.1) with sufficiently small ||*(/0)ll the function W(t, x(t)) has a finite limit as 
i - o o . 

Proof . We first prove that the zero solution of equation (2.2) is stable. Suppose 
the contrary. Then there exist a number £o>0, sequences {w,}, {/,} of solutions 
of (2.2) and positive numbers, respectively, such that 

M, (0)-»0 as i -*«>, 

"/('/) = «o, « i ( 0 < £o (0 S ( < t„ i - 1, 2, . . . ) . 

it 
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Define 
f r(t,u,(/)) 0 r<('H 0 

By virtue of (Bj) we have 

0 — /*¡(0 — f{t, £Q) 0 = 1,2,. . .) , r , ( 0 - 0 as i - o o (t£R+). 

Applying Lebesgue's dominated convergence theorem we obtain 
tf CO 

f r(t,Ui(t))dt = fri(t)dt-+0 as i - «> . 
0 0 

By integration of (2.2) it follows that 

e 0 - « l ( 0 ) = f'r(t, u-Stydt. , 
o 

Hence, if we get e0=0, which is a contradiction. Consequently, the zero 
solution of (2.2) is stable. 

Let us denote by ^(e) , <52(e) the numbers corresponding to e in the definition 
of stability of the zero solution of (2.2) and in the definition of continuity of Q„, 
respectively. Let 0 < £ < / / , t0€R+ be fixed arbitrarily. Choose Sj so that 

(2.4) 8 l <&(«), f + 

£ 
and define <5=<5(£, i0) such that 0<<5<y and ||x0|| < 8 imply 

(2.5) K ( ' o . * « W i ( e i ) , l|W('o,*o)ll < ( b ( e ) - £ , ) / 2 . 

Consider a solution x(t) of (2.1) with ¡|x(i0)|| <<5. Denote by [/„, A) the maximal 
interval to the right in which ||x(/)||.-c/i is true. By assumption (F2) we have 

V(t, x(t)) f(t, V(t, x(t))) (K[t0,A)), 

hence and from (2.5) it follows 

V(t, *(/)) ^ u(t, V(t0, x(t0))) El (i€[t0, A)). 

We show that the inequality ||x(/)ll <£ also is satisfied for t£[t0,A). Otherwise 
there exists a T£(t0,A) such that | |x(r) | |=e. Consequently, 

\\W(T, *(D)|| S b(\\x(T)\\)-V(T, x(T)) £ b(8) Ei. 

So, by (2.5) there are t1, t2£(t0, A) such that the function w(t)—W(t, x(t)) satisfies 

IKOI I = (6(e)-e i)/2, ||w(/2)|| = b(E)-El, 
(b(E)-£l)/2 < ||w(OH < b(e)-e1 (i€(/i, k)). 



Stability and convergence of solutions of differential equations 163 

Using assumption (F2), we obtain 

H*(0| | = « ( 0 ) ( '€ ( i i , O ) 
where 

• ( , x r(t, eJ-Vit, x(t))) 

By integration over (f l s t2) this implies that 

(2.6) «(0 )dt S (b(e)-e1)l2. 
'i 

On the other hand, from (2.4) it follows that 

/ « ( 0 d t ^ t f r f r e j d t + v ^ x i t j y v ^ x i t j ) ) a { i b { £ )
l _ e i ) / 2 ) S 

" a((b(e)-£l)/2) (,/ r(f' *('*») ^ ^((b(s)-£l)l2), 

which contradicts (2.6). This means that ||x(i)||-=:£ is satisfied for all tZ[t0, A). 
Therefore, A = °° and the zero solution is stable. 

The other statements of the theorem follows from Theorem 2.1. 

Remark 2.1. If we put W(t, x)=(x1; ..., xk)(1 ^k^n), where xlt ..., xk, ...,xn 

are the components of the vector x, then our theorems with 

( k V'2 

yield conditions on the convergence of the components ..., xk along solutions. 

Remark 2.2. If 

V{t, x) + W(.t, xW as, x - R n \ r or ]|x|| - » 

for every then under the assumptions of Theorem 2.2 every solution of 
equation (2.1) can be continued to [/0, »). 

Remark 2.3. If there exists d£K such that 

\\ft(t,x)\\tid(\\x\\) KR+,x£BH) 

then in Theorem 2.3 assumption (Dj) may be replaced by the following : 
(D2) oj(t, • )£K (t<zR+) and the map Î2é: DôPiL+ —L+ is continuous at 

u(t)=0 in Zx-norm for some ¿=-0. 
In the following we give realization of assumptions (D), (Dx), (D2) in some 

important special cases. Let N(u) be a continuous convex function which satisfies 

il* 
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the following conditions: 

N£K, lim — — = 0, hm —^— = 
U—~ U u~ CO U 

Put 
" i d 1 

M(u) = f sup : N(t) ^ s | ds. 

If s(t), r(t) are measurable on [0, T] and 
T T 

f N(s(t))dt f M(r(f))dt< co 
0 0 

then, by the generalized Holder inequality (see [10], p. 222—233) the function 
s(t)-r(t) is integrable and 

(2.7) / s ( i ) r ( 0 dt s ( l + / iV(s(i)) ¿ í ) ( l + / M ( r (i)) d*). 
0 0 0 

L e m m a 2.1. Let a continuous function A(i)—0 satisfy the inequality 

If oj(t, u) is defined by a>(t,u)=N(X(t)u) (t£R+,u£R+) then (D) is satisfied. 

P r o o f . It is easy to see that A(/)>0 almost everywhere, and 

f°=, A ( i ) > 0 , 
o)( • 

(o~h(/, «) = ( A ( 0 > 0, 

Let D-D«. Applying inequality (2.7) we have 

o A(r>o 
t«=r 

for all r > 0 . So, J co-1(f, «(/)) which was to be proved. 
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Remark 2.4. If co(t, u)=p.(t)ua (t£R+, u^R+), where l<a=const . , 
£C(R+, R+), then assumptions (D), (Dx) are satisfied. 

This assertion follows from the ordinary Holder inequality. T. A. BURTON [3] 
considered this case studying the boundedness and the existence of the limit of 
solutions. 

Obviously, if co(t,u)=fx(t)u where /i£C(R+; [c, °°)) and 0<c=const. , 
then (D), (Dj) are satisfied. This case was studied in [2, 5, 6, 7, 13]. 

Lemma 2.2. Let g be a continuous strictly increasing function such that 

lim g(u) = g(u) is cu" (0 = m = m0), 
U-*-oo 

where o O , v ^ l are some constants. Let us choose a continuous function k{t) 
such that l/l£LiKv_1)C\L+ and put a>(t, u) = X(t)g(u). Then (D2) is satisfied. 
Moreover, if 

(2.8) O d i m i n f - ^ -
u—~ U 

then (Dj) is also true. 

Proof . The assumptions imply 

kit) ^ Cj = const. > 0 (t£R+), co(t, oo) = oo (/£i?+), 

o>~\t, v) = g-^v/Ht)) (v£R+, t£R+), g~\v) s (f/c)1/v ( O s t s g(u0)). 

Let u£Lf DDg. Then, for v > l by means of Holder inequality we obtain 

and 
^ M f ' u ^ d t ) l l v i f m r ^ d t ) ^ - 1 ' 

f œ-%u(t))dt S / g - t ^ d t ^ - ^ — f u(t)dt. 

Consequently, 

/co'^t, u(t)) dt =s c2 ( / u ( t ) d t f v + c 3 f u(t) dt 
0 0 0 

for some c2, c3>0. This inequality is obvious for v = l , therefore (D2) is satisfied, 
indeed. 



166 J. Terjeki 

By (2.8) there exist positive constants K and u1 such that g~x(u)^Ku (w^u) . 
If then 

/ a>~i{t,u<J))dt s f - f u(t)dt, 
l^sVl) C1 0 

UeSuMSUt 0 0 

so, using the preceding argument, it is easy to verify assumption (D^. 

Example 2.1. Let us define 

f A ( f ) e x p [ l o g s w ] , « > 0 
« * . « ) - { 0 > M = 0 ( / . « € * • ) . 

where ).{t) is continuous, A(/)Sc=const. > 0 and 

/ e x p f l o g ^ ] ^ -

(e.g., A(/)=exp[/3] or exp [5 log3 (1 + i)], where ¿>1) . Then (D) is satisfied. 

(t, u) = e x p [ l o g 1 ' 3 — ] (/€*+, w€i?+), 

Indeed 

CO 

and if then 

/ co~\t, ii(/)) dtm f exp [log1/3 g J dt+ f exp [ l o g 1 ' 3 ^ ] dt 
0 «(OS« 1 u(,)ice L 

~ r c e 1 1 ~ 
s J exp|tog1/3 j^\dt+— J u(t)dt 

3. Applications to second order differential equations and mechanical system 

I. Consider the differential equation 

(3.1) (p(0*)"+?(0g(*) = 0, 
X 

where/7,9€C1(JR+,^+), g€C(R, R), />(0>0, q(t)>0 (*€*+), / (xgi?). 
o 

Attractivity and asymptotic stability of the trivial solution x = x = 0 have been 
studied by many authors under the assumption that x=0 is an isolated solution 
of the equation g(x)=0 [8, 9, 12]. Now we are going to apply Theorem 2.2, 2.3 
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to get sufficient conditions for the existence of lim x(t) in the case when x=Q 
X~*oo 

is, possibly, a non-isolated solution of g(x)=0. 

By introducing the variable y=p(t)x, equation (3.1) can be written in the form 

(3-2) x = y/p(t), y = — q(t)g{x). . 

For this equation let us choose the Liapunov function 

V(t, x, y) = e(t) <7(0 f g(u) du, 

where E^.C1(R+, R+\{0}). The derivative of V with respect to (3.2) reads as 
follows: 

V(t, x, y) = ^ + (Q(t)q(t)y f g(u)du. 

Let the functions W, r, co be defined by 

Then we have 
V^-co(t, \W\) + r{t, V), W= y/p(t). 

We note that in this case the solutions of equation (2.2) are bounded provided that 
the inequality 

0 . 3 ) 

0
J <?(0<7(0 

is fulfilled. By virtue of Remark 2.4 

imply assumption (D). Consequently, from Theorem 2.2 it follows the following: 

Coro l la ry 3.1. If there exists a function Q£C\R+, R+) such that (3.3) and 
(3.4) are true, then the limit of every solution x(t) of (3.1) defined on [i0, exists 
as t—°°. 

Suppose that 

(3.5) ^ g c = const. > 0 (t£R+). p(t) 

Then V(t,x, y) + \W{t, x, y)\s=(y2/2)c+\x\. Using Remark 2.2 and Theorem 2.3, 
and taking into consideration the fact that the function V(t, x, y) is non-increasing 
along the solutions of (3.2),' provided that lim g(t)q(t) exists, we get 
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Coro l l a ry 3.2. Suppose, that (3.3)—(3.5) are fulfilled. Then the zero solution 
of system (3.2) is stable. For every solution x(t) of equation (3.1), lim x(t) exists. 
Moreover, if lim q(t)g(t) exists, then lim g(t)x(t) exists, too. 

I — oo t — oo 

f ds . 
It is worth noticing that these corollaries work in case / < «>, whose mter-

o />(•*) 
est consists in the fact that it cannot be reduced to an equation of type 
* + a ( 0 s ( x ) = 0 . 

On the other hand, one can easily see that if 

ds 1 
E + / S 9 ( 0 

~ ds 
for / sufficiently large with some £>0, and / <=>, then the fuctinon 

o7 />(*) 

fl(0 = P(0 

satisfies the conditions of Corollary 3.2. 

II. Consider the differential equation 

(3.6) * + / ( / , x, *)|x|*x + g (x) = 0, 

where f£C(R+XRXR, R+), 0^a=const . , g£C(R,R). A great number of papers 
have been devoted to the study of the conditions of the asymptotic stability and 
attractivity of the zero solution x = x = 0 . In these papers it is assumed that / is 
either bounded above or tends to infinity sufficiently slowly as i—«> [1,7,8]. 
R. J. BALLIEU and K. PEIFFER [1] analyzed whether this condition is necessary. 
They proved for the case a = 0 f(t, x, x)=3(t), lim sup g(x)/x<co the following 

00 dt 
assertions: a) If 9(/) is increasing and f then the zero solution of (3.3) 

o 5 ( 0 
r dt is asymptotically stable, b) If 9(t) is increasing and J ^ ^ < then the zero 

solution of (3.3) is not attractive. Applying Theorem 2.3 we obtain that in the latter 
case the zero solution of (3.3) is stable, and every solution has a finite limit as (-«>. 

Coro l la ry 3.3. Suppose that 
X 

J g ( « ) i i a ê 0 (|x| = const.), 
o 

f(t, x, x) s 0 ( 0 6 ( 1 * 1 ) (t£.R+, |x | , \i\m c), 
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where b£K and l/9€i} / (1+0[), 9 ( 0 is continuous. Then the zero solution of (3.6) 
is stable and for every solution x(t) of (3.6), *(/)— const., x(0—0 as f — p r o v i d e d 
that x2(t0) + x2(t0) is sufficiently small. 

Proof . Equation (3.6) may be written in the form 

(3.7) x = y, y=-fit,x,y)\y\°y-g(x). 

Let the Liapunov function V be defined by 

V(x,y)=y*/2+ fg(u)du. 
o 

Since 
V(t, x, y) = - f ( t , x, y)\y\x+2 (x, y<iR, KR+), 

we have the estimate 

V(t,x,y)^-Ht)b(\x\)\yr* it£R+,\x\, \y\ ^ c). 

Therefore, by co(t, m)=9(0M"+2 , Wit, x, y)=x we obtain 

V(t, x, y) ^-b(\x\)o>(t, |Wit, x, J0|) (t£R+, |*|, \y\ ^ c). 

Consequently, by Remark 2.4 the assumptions of Theorem 2.3 are fulfilled. So, 
x—y=0 is stable and lim x(t) exists if x2(/0)+y2(/0) is small. On the other hand, 
V(t, x, j ) is nonincreasing along solutions. This implies the existence of the limit 
lim yit), which, obviously, cannot differ from zero. 

III. Corollary 3 can be generalized to mechanical systems with friction if the 
damping is increasing sufficiently fast in the time. 

Consider a holonomic, rheonomic mechanical system being under the action of 
conservative, gyroscopic and dissipative forces, which may depend also on the time. 
The equation of motions in Lagrange's form reads as follows: 

n ox d dTjq, q) dTjq, q) dnjt, q) , 
( 3 - 8 ) Tt—H dT~ = — d j - + Q 0 ' q ' q ) ' 

where q^TczR", q£Rn denote the vectors of the generalized coordinates and 
velocities, respectively; T^C^rxR", R+) is the kinetic energy, n^C^R+XT, R) 
is the potential energy of the system, Q^CiR+XTXR", Rn) denotes the resultant 
of the gyroscopic and dissipative forces. We assume that 

Tiq, q) = qTAiq)ql2, 

where Aiq) is a symmetric positive definite matrix for each Suppose that 
OCA dll(t, 0)/dq=0, Q(t, q, 0 )=0 (t£R+,q£r). Under these conditions the state 
q=q=0 is an equilibrium of (3.8). 
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Coro l l a ry 3.4. Suppose 

n(t, q) S 0, dn(t, q)ldt ^ r{t, E{t, q)) (t£R+ , qdB„cO, 

(Q(t,q,q),q)^-ma(\\q\\)g(\\q\\) (t£R+, q,q£BH), 

where a£K, r£C\R+XR+, R+), r(t, -)£K, f r(t, u)dK°° (t,u£R+)-, furthermore, 
o 

suppose there exists a natural number /i such that g£K, g'(0) =... = g ( " - 1 ) ( 0 ) = 0, 
£<">(0)^0, 1 / 9 6 9 is continuous. 

Then the equilibrium q = q—0 is stable and q(t)—const.£Rn as (->•<» provided 
that q2(to) + q2(to) is sufficiently small. 

Proof . A(q) is positive definite, so, introducing the new variables x=q,y=q 
equation (3.8) can be written in the form 

(3.9) x = y, y = F(t, x, y). 

In the capacity of Liapunov function choose the total mechanical energy 

V(t,x, y) = T{x, y) + n(t,x). 

As is known [4], 

V(t, x, y) = (Q(t, x, y), y)+dn{^x) (t£R+, xiT, x£R). 

Consequently, if we define W(t, x, y)=x, co(t, u) = 9(t)g(u) we obtain 
V(t, x, y) S-fl(| |*| |)S(0g(||^||) + r(i, II(t, x)) ^ 

si-a(||*||)a»(i, \\W(t, x, j O | | ) + r ( i , V(t, x, y)) 

for every t£R+, x, y£BH. Therefore, the assertion follows from Theorem 2.3., 
Lemma 2.2 and Remark 2.3. 

Acknowledgement. The author is very grateful to L. Pintér and L. Hatvani 
for many useful discussions. 
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Meromorphic functions of operators 

TAVAN T. TRENT 

Let T be a bounded operator on a separable Hilbert space. Combining 
previous results of HALMOS [ 4 ] and FILLMORE [ 3 ] concerning operator identities of 
the forms 0 =f(T*) and T—f(T*) with / entire, M O O R E [ 6 ] proved the following 
general theorem: 

Theorem A. [6] Suppose that p is a polynomial, f is an entire function, and 
p(T)= f(T*). Then there is a polynomial q (of the same degree as p when T is 
not algebraic) such that p(T) = q(T*). 

The proof of this theorem required a key replacement of the operator identity 
by a complex variable identity, followed by a version of the Jacobi polynomial 
expansion theorem, resultant arguments, and a theorem of Picard. In this paper 
we begin with the complex variable identity and generalize Theorem A utilizing 
a more geometric argument, motivated by FILLMORE [ 3 ] and based on the monodromy 
theorem and the Weierstrass preparation theorem. A good reference for the classical 
complex variable theorems is HILLE [5 ] . We prove: 

Theo rem 1. Let r be a rational function, M a meromorphic function in the 
complex plane, and assume that r(T)=M(T*). (Thus the poles of r and M lie 
outside of a (T) and a(T*), respectively.) Then there is a rational function q such 
that r(T)=q(T*). Moreover, when T is not algebraic, M itself must be rational 
and of the same order as r. 

Before beginning the proof we state the replacement theorem of M O O R E [ 6 ] 

for convenience. 

Theorem B. [6] Let f and g be analytic in neighborhoods of o(T) and <r(T*), 
respectively, and suppose that g(T)=f(T*). Then for z£a(T), g(z)=f(z). 

Proof of Theorem 1. If a(T) is finite then o(r(T)) is finite and r(T) 
is normal, hence algebraic. Thus T and T* are algebraic, and M may be replaced 
by a rational function. 

Received February 3, 1982, and in revised form July 6, 1982. 
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Otherwise A(T) is infinite and contains a limit point a. First note that if r has 
order less than one, F(T*)—0 for some entire function F, so T* and thus T is 
algebraic and the theorem holds. Hence we may assume that N, the order of r, 
satisfies iVS 1. 

By Theorem B we know that r(z)=M(z) for z in A(T). Clearly we 
may take a = 0 and r(0)=0, modifying T,M, and r, if necessary. Then 
z"r1 (z)—zMM1(z) for z in c t ( T ) , where ^(0)^0, M1(0)^Q and n and m are 
positive integers. Taking the modulus and letting z€<x(r)—0, we see that n=m. 
Thus we may write r(z)=/i(z)m and M(z)—k(z)m, where h and k are analytic 
and invertible in a neighborhood W of 0. Since (h(z))m=(k(z))m for z's in A(T) 
(which is an infinite set), we may assume that h and k are chosen so that h(z„)= 
=k(z„) for some sequence {zn}aa(T) with z„—0. 

Computing, z„=h~1ok(zn), so zn=h~1ok(zn)=R~1oJc(zn), where R(z) is 
defined to be h(z). 

Let S = {z£W: z = R~1olc(z)}. Then o(T)czS. Using a consequence of the 
Weierstrass preparation theorem [7], we conclude that S is the intersection of 
(real analytic) arcs with only a finite number in any compact set. Using the fact that 
S contains a limit point we conclude that S contains a real analytic arc y. Choose 
a point z0 in y so that r'(z0) is not zero or infinity. 

Thus Z = /J - 1 O/C(Z ) for z in y, so h(z)=koR~1olc(z) for z in y. Because 
all functions are analytic in W we conclude that h(z)=koR~1olc(z) for all z in W. 

By choice of z0, r is invertible in a connected neighborhood of z0 contained 
in W, Q. Again, let ii(w) = r(w+z0)—r(z0), ^(h>)=M(m>+z0)—M(z0), Q0=Q—z0, 
and y0=y—z„. Hence R(z)=Jt(z) for z£y0 and R is invertible in £20. Then 
arguing as before z=R~loJiiz) so R(z)=MoR~^oJi(z) for all z in £20. . 

Denote the complex plane by C. Define Z ( / , a )={z€C: / (z )=a} . Let Zx = 
= {z(EC: J?(z)£Z(R', 0)UZ(R', «>)}. Each of the sets Z(R', a) contains at most 
2N elements since R has order N. But Jl is meromorphic in the complex plane, 
so the set of points with Ji(z)=c for any fixed c has no finite limit points. Thus 
we may join each of the points of Z j by a simple curve yx accumulating only at 
chosen so that if i21=C—y1$ then (2X is connected and simply connected. R _ 1 

is one branch of the inverse of R in Q0. By construction branches of the inverse 
of R exist at every point o f ' C — f t . By the monodromy theorem (see [1, p. 134]) 
we see that R~l can be continued into £21, defining a single-valued analytic func-
tion (again denoted by R- 1 ) in 

Recall that R{z)—JioR~loJi(z) for z£Q0. Thus by permanence of func-
tional relations R{z) = JtoR~1oJ{(z) for z£i2x. 

Suppose that for some c€i2x, \Z{Jt, c)|>iV. Let d—JioR-\c). Then 

N ri |Z(R, d)| ^ \Z(Jfo@-iojF,d)\ s \Z{Jt, c)| > N. 
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This contradiction shows that Jt is at most iV-valent in Since i3x is open 
and dense in C, the open mapping principle shows that Jt is at most TV-valent 
in C. Applying the Casorati—Weierstrass theorem and the open mapping principle 
(or using the great Picard theorem), we see that °° is not an essential singularity 
of Jt. Thus M is a rational function of order less than or equal to N. A sym-
metric argument shows that the order of M equals the order of r. 

Note that in the case when both r and M are entire, the conclusion that M 
has order N means that M is a polynomial of degree N. 

Remarks , (a) Letting T be a unitary operator shows that taking r to be 
a polynomial with M meromorphic does not allow us to conclude that M is 
itself a polynomial. 

(b) Theorem 1 covers the case that g(T*)p(T)=f(T*)q(T), where / and 
g are entire, p and q are polynomials, and q(T) and g(T*) are invertible. We 
do not know how to handle more general identities with T and T* appearing 
on both sides. 

(c) There should be some "Riemann surface" version of Theorem 1 valid for 
r an algebraic function with appropriate hypotheses concerning M. 

We briefly wish to consider what compact sets K can be the spectrum of an 
operator T satisfying 
(1) f(T) = F(T)*, 
where / and F are analytic in a neighborhood of K. Notice that if 

(2) f ( z ) = F(zj 
for z in K, then (1) can be solved for a normal operator T and in many cases 
nonnormal operator solutions can be constructed as well. 

Denote the real and imaginary parts of / and F by u, v and U, V, respectively. 
We see that (2) is equivalent to 
(3) u-U= 0 and v + V=0 for z in K. 
On the otherhand, let P and Q be any real-valued harmonic functions in a neigh-
borhood of K with single-valued conjugates (denoted by P and Q, respectively) 
in a neighborhood of K. Then if 
(4) P = 0 and Q = 0 for z in K 
we may write P = u-U and Q = v+V where u = (P-Q)/2, U=(-Q-P)/2, v = G, 
and V = 0. Thus letting f=u+iv and F = U+iV we have established 

Theorem 2. There exist analytic functions f and F in a neighborhood of 
K with f{z) — F{z) for z in K if and only if there exist real harmonic functions 
P,Q in a neighborhood of K with single-valued conjugates in a neighborhood of 
K and with P(z) = 0 and Q(z)=0 for z in K. 
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Corol la ry . Suppose that Q is a real harmonic function with single-valued 
conjugate in a neighborhood of K and Q(z)=0 for z in K. Then —Q+iQ = 
--Q+iQ for z in K. 

Proof . Take P = 0 in Theorem 2. 

Theorem 2 and the corollary are useful for constructing various examples. 
By the corollary, to understand K we must look at the zero set of a harmonic 

function. We mention a few well-known facts. Simply because a harmonic function 
h is locally a real analytic function in x and y, the Weierstrass preparation theorem 
[6] shows that locally Z(h, 0) is a finite union of analytic arcs. Moreover, if the 
gradient of h vanishes at some point s, then the derivative of h + ih vanishes at s. 
Thus locally the number of arcs and the types of singularities of Z(h, 0) are restricted. 
In the case when / and F are analytic in a simply connected set, the maximum 
principle says that Z{h, 0) contains no closed curves. 

It may be of interest to see how the paks revious remmarnd geoetric considera-
tions lead to a proof of a special case of Theorem A. Let K be an infinite compact set. 
Suppose that p{z)=q{z) for z in K, where p and q are polynomials with 
max(deg/>, degq)=m. Let u1=Rep~Ke q and w2=Im/?+Im q. Then 
and u2—0 for z in K, where ux and uz are real harmonic polynomials of degree 
m. Since and m2 vanish at so many common points (see [2, Chapter 1]), it 
follows that and w2 have a common polynomial factor, h, of degree greater 
than 0. Let f=u1+iu1. Then / is a polynomial in z of degree m. So, at 
Z(M15 0) has 2m branches. However the degree of ujh is less than m, so Z(h, 0) 
must contain some branch which extends to But then p{z)=q(z) holds for some 
sequence of z's approaching Since p and q are polynomials, the degrees of 
p and q are equal. 

I do not know whether Theorem 1 or even Theorem A can be proved analogously 
to the above special case with a more thorough understanding of the zero sets 
involved. 
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An exact description of Lorentz spaces 

LARS ERIK PERSSON 

1. Introduction 

We assume that / is a measurable complex-valued function on a measure space 
(i2, n), where fi is a <r-finite positive measure. The function / can be rearranged 
to a non-increasing function, denoted /* , on [0, The function / * is continuous 
from the right and equidistributed with / (see e.g. [13, p. 131]). 

We suppose that p and q are real numbers satisfying 0 0 
The Lorentz space L(p, q) consists of all functions / satisfying 

0 

See [7], [9] or [13, p. 132]. The L(p, #)-spaces are of great interest in pure and 
applied mathematics. In particular, they appear as intermediate spaces in the theory 
of interpolation (see e.g. [6, p. 264] or [13, p. 134]). 

Obviously L(p, p)=LP. It is well known that if q2^qx, then 11/1* 
(see [6, p. 253]). In particular, L{p, q)^>LP when p<q and L(p, q)<zLp when 
p>q. Moreover, in a sense, every L(p,q)-space is "close to" the corresponding 
//-space. In particular, by generalizing the definition of the L(p, </)-norm in the 
natural way we obtain the usual weak Lp-space when q=°°. However, it is not 
possible to identify an L(p, q)-space by some Orlicz space of the type Lp(log L)°. 
One aim of this paper is to give an exact description of the L(p, g)-spaces at least 
in similar terms. 

Throughout this paper we let the letter h stand for a strictly positive and 
continuous function on [0, which is constant on [0, 1]. 

The following theorem by the present author can be found in [12, p. 270]. 

Received May 28, 1982. 
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Theorem A. Let p>q. Then 
l 

f ( f y p / ' - ' d t 
0 

if and only if 
i 

(1.1) / (f*h(iog+f*)ydi - • 
0 

for some function h such that, for some a> 0, 

h(x)ax is a decreasing or an increasing function of x 

(1.3) f (/i(x))M/(?-P> dx 
1 

We may assume, without loss of generality, that log=log2. 
In Section 2 of this paper we shall state a theorem (Theorem 2.1) which gener-

alizes Theorem A in two directions. On the one hand, by also studying conditions 

of the type J (/*)* tq,p~1dt< °° and, on the other hand, by also considering the case 

p<q. In this way we obtain an exact characterization of the L(p, g)-spaces not 
only for the special case when ¿i(i2)< °° and p>q. Some applications to the theory 
of Fourier series (and transforms) are also given in Section 2. In particular, we 
shall see that the conclusion we usually extract from Hausdorfif—Young's inequality 
(see e.g. [14, vol II, p. 101]) is, in a sense, far from being the sharpest possible. 
Some useful lemmas can be found in Section 3. The proof of the main theorem in 
Section 2 is carried out in Sections 4 (the casep>q) and 5 (the case p<q). 

We say that the function / belongs to the Lorentz—Zygmund space 
Lp,q(logL)x, 0<<7«=:°°, — °=<a< » if the quasi-norm 

is finite (see [2, p. 7]). In particular, we have Lp'«(log L)°=L(p,q) and LP'p{\ogLf 
can be identified with the Zygmund space ¿/(log Lf (see [2, p. 35]). 

In Section 6 we shall generalize our main theorem so that we obtain an exact 
characterization of the spaces Lp'q(log L f . We shall also point out the fact that 
a recent embedding result by BENNETT and R U D N I C K [ 2 , p. 3 1 ] is a consequence 
of this characterization. 

i i / I I ; . « . - ( / ( r ( 0 i l / p ( i i o g / i + i r ) ? ^ ) : 

0 
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In Section 7 we shall give some concluding remarks. In particular, we shall 
compare the functional spaces introduced in this paper with the similarly defined 
Beurling—Herz spaces (see [1, p. 2] and [5, pp. 298—300]). 

Acknowledgement. I wish to thank professor Jaak Peetre, Lund, for his comments 
and suggestions which has improved the final version of this paper. 

2. A description of the L(p, ^-spaces 

We make the following definition. 

D e f i n i t i o n . Let p > q . Then 
a) f£E0(p, q) if 

(2.1) / ( / * M l o g + / * ) ) p ^ < ~ 
o 

for some function h such that, for some a > 0, 

(2.2) h(x)cf is a decreasing or an increasing function of x 
and 

oo 

(2.3) f (h(x)yM9-'>djc<co. 
i 

b) f£E„(p,q) iff*(*>0 and 

(2.4) / ( / * f r ( l o g + y * ) ) P d i < ~ 

for some function h satisfying (2.2) and (2.3). 
Let p < q . Then 
c) f£E0(p,q) if (2.1) holds for every function h satisfying (2.2) and (2.3). 
d) f^E„(p, q) if (2.4) holds for every function h satisfying (2.2) and (2.3). 
Let pj*q. Then 
e) fdE(p, q) if f£E0(p, q) and f£Em(p, q). 

The main theorem in this section can now be formulated in the following way. 

T h e o r e m 2.1. Let and 0 T h e n 

a) / (/*)* fil'-ldt< ~ if and only if f£E0(p, q) 
o 

and 
oo 

b) / ( f y f ^ d t ^ oo if and only if f£E„(p, q). 
i 

12« 
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We see that part a) of this theorem gives an exact description of the desired 
type for the case when the ¿¿-measure of Q is finite. By combining the equivalences 
in Theorem 2.1 we obtain a characterization of the L(p,q)-spaces in the general 
case, namely that 

(2.5) /€£0», q) if and only if f£E{p, q). 

It can be somewhat difficult to see what this equivalence really means so we shall 
formulate it in another way. Therefore we let D be a subset of £2 such that | / | S 1 
on D and | / | on Q\D. Then we can make some elementary calculations to 
find that f€E(p, q) if and only if 

(2.6) / ( | / | ft (log | f i i f d n + J ^ ( | / | h ( l o g i j | ) ) V < -

for some (the case p>q) or every (the case p<q) function h satisfying (2.2) and 
(2.3). In the sequel we say that /6Lp/i(log L) when (2.6) holds. For the special 
case h(x)=xa we get the Zygmund space / /( log L f . We can now formulate the 
equivalence (2.5) in the following way. 

Theorem 2.2. Let 0</)<<» and 0 
a) Let p>q. Then f£L(p, q) if and only if f£Lvh(\og L) for some function 

h satisfying (2.2) and (2.3). 
b) Let p<q. Then f£L(p, q) if and only if /£Lp/i(log L) for every function 

h satisfying (2.2) and (2.3). 

We apply Theorem 2.2 with h{:c)=je<1+a><1/«-Vp)j <5>0, and find" a' p>q, 
then, for every £>0, 

(2.7) L(p, q) 3 ¿7(logL) l l q~1 / p + e 

and if p < q , then, for every e>0, 

(2.8) L{p,q) <= Lp(log L) 

The inclusions (2.7) and (2.8) are the sharpest possible in the sense that they are 
in general false if we permit e=0. In order to verify this fact we set (£2, p)= 
=([0, 1], dx) and study the function 

fix) = 1 

Then, as i - 0 , 

(j*yt<tip-1 ~ 

x1" (log i /x)1'" (log (log l/x+l))* • 

1 

and 

( / * ) p a o g
+ / * + i ) W 4 - 1 

i log 1/t (log (log l / f + 2 ) f ' 

1 
t log 1/t (log (log l/t+2)Yp ' 
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We obtain suitable counterexamples by choosing a satisfying l / p c a d / ^ for 
the case p > q and l l q « x ^ l / p for the case p<q . 

We shall how consider a function / on [0,1]. Let c„,n£Z, be the complex 
Fourier coefficients of / (with respect to a uniformly bounded system of ortho-
normal functions). The sequence is the sequence (|c„|)!!„ rearranged in 
non-increasing order. Hausdorff—Young's inequality (see e.g. [14, vol. II, p. 101]) 
can be used to obtain the following implication: 

(2.9) if f£L>, 1 < p < 2, p' = pl(p-1), then J \cH\* < . 
— oo 

By an estimate of Paley it is also well known that if f€L", 1 </><2, then 2 (c*)p«p_2< 
I 

< oo (see e.g. [14, vol II, p. 123]). 
Therefore we can use Theorem 2.1 b) and make some straightforward calcula-

tions to obtain the following more precise implication than that in (2.9). 

Corol lary 2.3. If f£Lp, p'=p/(p-l), then 

( ( 1 \ Y 2 ~ p ) l l p ~ t > 

i w ' H ' ^ H J J 
for some function h, h^l, satisfying (2.2) and 

( n o ) / m d x ^ -

Remark. The result in Corollary 2.3 cannot be improved. In fact, by using 
the results obtained in [12, p. 268] we find that the implication in Corollary 2.3 can be 
replaced by an equivalence in a relatively large class of functions. This class consists 
at least of all non-negative functions / satisfying the condition that 

t t 
f f*(u)du^K f f(x)dx 
0 0 

for some constant K. Of course it is impossible to replace, the implication in (2.9) 
by an equivalence in some similar relatively large class of functions. 

In Corollary 2.3 we have seen that the condition f£Lp is an unnecessarily 
oo 

restricted condition to ensure the convergence of the series 2 \cn\p'- However, it is 
— oo 

1 
well known that also the condition J (f*Y f ^ d t (that is f^L(p,p')) implies that 

o 

2 W < c o ( s e e [14> V°1 H> P- 124]). Therefore we can use Theorem 2.1 a) and 
— oo 

obtain the following more precise criterion. 
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Corol la ry 2.4. Let 1<J?<2 and p'=p/(p-l). If 

f\f\p(h(log+\f\)y-*dx^-
o 

for every function h, h^l, satisfying (2.2) and (2.10), then 

— CO 

Remark. We can use the estimates obtained in [12, p. 268] to see that the 
implication in Corollary 2.4 can be replaced by an equivalence in the same class of 
functions as that in the remark after Corollary 2.3. 

Finally we note that we can use Theorem 2.1 and similar arguments as before 
to obtain the corresponding results for a function f£R" and its Fourier transform 
fdR". For example the corollary corresponding to Corollary 2.3 can be formulated 
in the following way. 

Corol lary 2.5. If f£Lp(R"), l< Jp<2, p'=p/{p-l), then 

f l/rCKIiogl/ll))^-^-1^^-
R" 

for some function h satisfying (2.2) and (2.10). 

Remark. It may be tempting to try to find some function h0, not depending 
on / , such that 

(2.11) 11/11,^ 1=> / l / r m i o g l / l D d f s A o ^ c o . 
R" 

However, this is not possible for any positive function h0 such that h0(x)—°° 
as This fact follows when using the following homogeneity argument: 
Let / be a function on R" such that / ( ¿ ; ) s a 0 > 0 on a set E of positive measure. 
If fa(x)=a1/pf(ax1, x2, ...,*„), then 

\\fa(x)\\P = 11/11, ^ 1, fa(® = a1'""1 / ( f - , -»•«.) 

and 

= . /\fa(0rhQ(\log?a(0\)dZ = f \Kr,)\p'h0(\log(a-^'f(n))\)dtl. 
R" R" 

Since h0(x)-*-°° as x—<=° we can choose a small enough to obtain that 

h 0 ( \ \ o g ( a - ^ M ) \ ) a 2KJ(m(E)ap-) on E. 

Therefore Ia ̂ m(E)a*'2KJ(m(E)a%)=2K0. We conclude that (2.11) does not hold 
for any of the functions h0 considered. 
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3. Some lemmas 

CO FC 
Lemma 3.1. Let ^ ck be a non-negative and divergent series. If Sk = ^c„, 

i i 
CO CO 

then the series 2 ck/Sk is divergent and, for every a> 0, the series ' s 

i i 
convergent. 

A proof of this lemma by Abel can be found for example in [4, p. 121]. We shall 
now state two useful regularization lemmas. 

Lemma 3.2. Let ^ ak be a positive and convergent series and let o 1. Then 
k=a 

there exists a sequence (¿t)~=0 such that, for k = 0, 1,2, ..., we have akSbk, c - 1 ^ 
^bk+1/bk^c and 

~ c + 1 °° 

4=0 C— 1 FC=0 

Lemma 3.3. Let 5 be a positive number and let g be a positive, integrable 
function on [1, such that, for some g(x)xb is a decreasing or an increasing 
function of x. Then there exists a constant K (depending only on b and 5) and 
a function gi(x), such that gi(x) ^ 

(3.1) gj (x)x1+s is increasing, 

(3.2) g1(x)x1~s is decreasing, 

and 
OO CO 

J gl(x)dx7s¿K f g(x)dx. 
i i 

Somewhat less precise versions of Lemmas 3.2 and 3.3 have been proved in [11, pp. 
292—294]. The proofs we shall give here are elementary and based on convolutions. 

P roof of Lemma 3.2. We choose bk= 2 anc~\k-"K Then 

2 h = ¿ i x c - < * - » > + ¿ ¿ a„c<*-"> k=Q k=0 n=0 k=0n=Hl 

oo oo oo n—1 f* _1_ 1 oo 
= 2«nC" 2c-k+ 2anc- 2 

n=0 k—n n=1 fc=0 c -1 n=0 
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Moreover, 

n=0 11=0 n=fc+l 

n =0 B=«I+1 

Therefore, we find that bk+1^cbk and Trivially ak^bk. The proof 
is complete. 

P roo f of Lemma 3.3. Let g(x)xb he an increasing function of Then, 
for 2k^x^2k+\ k=0, 1,2, ..., 

(3.3) 2 - " g ( 2 k ) ^ g { x ) ^ 2 b g ( 2 ^ ) . 

Therefore 

(3.4) 2g(2k)2k^2b2f g(x)dx^2"f g(x)dx^<~. 
o o ¿i f 

Now we can use Lemma 3.2 with c=2i to obtain real numbers dk, k—0, 1, 2, ..., 

such that dk^g(2k), 2,dk 
o 

(3.5) == dk+1/dk ^ 2-1+', 

and 
©O -)d 1 OO 

(3.6) 2dk2k^=^-r2sW. 
0 ~~1 0 

We define the function gx in the following way: 

g i ( x ) = g i ( 2 ' + " ) = 2b(dky-"(dk+1)u, k = 0,l,2,...,0^u^l. 

Observe that, for O S u ^ u ^ l , 

{ ) ~ g i ( 2 * + u 0 I dk ) - Z 

and, for k2^-k1, 

(3 8) 2 - ( i + 1 ) ( * « - * i ) S g l ( 2 * 8 ) = s 2 ( S ~ 1 ) ( k i ~ k i ) 

gi(2k0 dkl 

According to the estimates (3.7)—(3.8) we find that our function gx satisfies the 
growth conditions (3.1) and (3.2). 

We may, without loss of generality, assume that <5< 1. Then, by (3.3), (3.5), 
and the fact that dk+1^g(2k+1), we get 

g»(*) = fi(2k+u) = 2»(dky-"(dk+iy § 2»2«-sM->dk+1 ^ 2"dk+1 S 2»g(2*«) S g(x). 
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Finally, by (3.4), (3.6), and (3.7), we have 

CO 2FC + L 

/ g i ( * ) dx = 2 f g i ( * ) d x ^ i gl(2k)2k = 
f 0 2" 0 

= 2"2dk2k m 2 " | g(2k)2k - 2 2 b | J ± i f g ( x ) dx. 

The case when g(x)xb is a decreasing function of x can be carried out analogously. 
The proof is complete. 

4. Proof of Theorem 2.1; the case p>q 

In this case part a) of Theorem 2.1 is identical with Theorem A so it is sufficient 
to prove part b) of the theorem. 

First we assume that 
oo 

f ( / * ) « / « / " - ! CO, 

1 

and choose e satisfying 0<e<<///>. We can now use Lemma 3.3 to find a function 
g i t ) , such that g ( t ) ^ f * ( t ) , 

(4.1) ( g ( t ) ) 9 t q / p + s is increasing, 

(4.2) {g(t))qtqlP~e is decreasing, 

and 
oo 

(4.3) / ( g ( 0 ) , i i / p - 1 d i < ° ° . 
I 

For k=0, 1 ,2 , . . . we set bk=(g{2k)2klP)q and observe that, by (4.1)—(4.3), the 

series 2 converges. We also note that we may, without loss of generality, assume 
o 

that g(/) = l-
We define the function h at the points xfc=log (l/g(2*)) by h(xk)=biq~p)lpq, 

k=0,1,2,.... According to (4.1)—(4.2) we find, for 0==«=£l and k=0,1,2,..., 

(4.4) g ,(2 i)2_" ( , / p + E ) S gq(2k+a) gi(2k)2u^-qlpK 

We can now use (4.4) and make some elementary calculations to obtain the following 
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useful estimates: 

i ; bk { g(2k)2k/p ) 

and 

(4.7) 0 

We extend the definition of the function h by setting 

h(x) = { ( h ( x k ) ) * - * " * * > . 

for xk^x^xk+1, k=0,1,2, ... . We can make some elementary (but rather labo-
rious) calculations and find, for some ¿>0, that 

(4.8) h{x)2Sx is increasing 
and 
(4.9) h(x)2~Sx is decreasing. 

(We can for example choose S=e(p—q)/(q—pe).) 

According to (4.5)—(4.9) we obtain, for xk^xSxk+i, k~0, 1,2, ..., and for 
some c50>0, 

2-'oh(xk) ^ h(x) ^ 2*oh(xky 

(If we choose d=e(p—q)/(q—ps), then we can have d0=e(p—q)/pq.) Therefore, 
by (4.7), we have 

/ (/¡Cx))"9««-"» dx 2 J*\h W ) p , / ( , - p ) dx ^ 
x0 0 xfc 

(4.10) ^ 2 W - * 2 (h{xk)Y"^-^{xk+1-xk) =§ 2sopql(q~p) 2 bk(xk+1-xk) s 
0 0 

s 2\PIKI~P)L ( l + f i ) 2 bk < 
q \ p Jo 

We use (4.4) once more and obtain, for 2k^t ^2k+1, k=0,1,2, ..., 

(4.11) g(2k)2~l9+pe)/pq ^ g(r) ^ g(2*). 

Hence we can use (4.8)—(4.9) to obtain that, for 2'== t ^2k+1, 

(4.12) 
h ( l o g ? L ) - h ( l o g f - ^ + i ^ ) ) 2'<""<«co/.c»0)+(,+*)/«) ^ 

^ h ( l o g - j l j y j 2 M ( , + p i ) / M . 
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Furthermore, according to (4.11)—(4.12), 

/ [ g m ( l o z ^ p t = J f {sm ( l o s - ^ p t -

(4.13) 

^ KoZ(g(2k)Hxk))p2k = K<>2 b£»2-kbl-r">2k = K 0 Z b k ^ ~ . 
0 0 0 

(We can for example choose K0=2U(q+pe)/q.) 
By choosing £ small enough and using the growth condition (4.8) we see that 

yh (log (1 ly)) is an increasing function of y, 1. Therefore, by (4.13) and the 
fact that /* ( / ) = g(0> we have 

/ H ^ f ) ) ' " ' 
Since the function h satisfies (4.8)—(4.10) we conclude that f£Em(p, q). 

In order to prove the converse implication we assume that feE^p, q). Let 
(at)~ be the nondecreasing sequence of the least real numbers ak such that 2 - f i - 1 S 
S/*(r)=2"~\ when k=0, 1,2, ... . Let h(x) be the function associated 
with the definition of E„(p,q). We assume that h(x)2Sx, for some ¿>0 , is an 
increasing function of x. Therefore, if =ak, then 

h{k)2~>^ h (log-y^r) ^ h(k +1)2*. 

Thus the assumption 

implies that 

(4 .14) ¿ 2 - p * ( / z ( f c ) ) " ( a * - « * - i ) 
k= 0 

Moreover, 

(4 .15) f (J*ytqlp~idt= 2 f ( j y t q l p - 1 dt — 2 2~qk(a.qlp—xl,p
1). 

<*0 1 "k-1 9 1 

We use Holder's inequality and an elementary estimate and obtain 

l i 
(4 .16) 

/ c*> \9/P ( co \ l - « / p 
^ { 2 2 - p k ( m n « k - * k - i ) } [2{h(k)Yq"q-»\ . 
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From the growth and integrability properties of h we deduce that the series 

¿(/i(A:))OT/(9"p) converges. Hence, by (4.14)—(4.16), we obtain 
i 

j (f*yP"-ldtcoo. 
i 

The case when h(x)2~ix is a decreasing function of x can be handled analogously. 
The proof is complete. 

5. Proof of Theorem 2.1; the case p < q 

We assume 
i 

f (f*)qtqlp~1 dt <<=•=. 
o 

Let h be any function on [0, such that for some <5, 0<<5</>, 

(5.1) h(x)2Sx is increasing, 

(5.2) h(x)2~Sx is decreasing 

and 

(5 .3) f (h{x))pqKq-p) dx 
i 

Let 0?*)^ be the nonincreasing sequence of the least real numbers pk, such that 
2k~1^f*(t)^2k, when k=0,1,2, ... . Then 

(5 .4) f (f*)qtq'p-1dt = 2 f (f*)qf"p-1 dt s —2~q 2 2'"i(Ptpi-Pqk"') 
o 1 fii q 

Moreover, by (5.1), 

f°(f*h(log+f*))pdt = 2 f~\f*h(\og+f*))pdt s= 
o 1 Pi 

(5.5) 

^2ip22pk(h(k))p(J}k_1-j}k.). 
i 

We use Holder's inequality and find 

/ ~ \Pl4 ( OO 
(5.6) 2 2 p k { h ( k ) ) p ( f i k . 1 - p k ) ^ [ 2 2 q k ^ k - 1 - p k ) q l p j [2 (Hk) ) p q K q - p ) 
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Since (Pk-i-Pk)q lPsPl lE1-Pq
k

lp we can use (5.4) and the integrability assumption 
on / * to obtain 

(5.7) 
1 

M 
The conditions (5.1)—(5.3) imply that the series 2( / l(^))P 4 / ( ,~P ) converges. There-

i 
fore, according to (5.6)—(5.7), ¿ 2 p t ( / i ( A : ) № - i - f t ) < ~ . in view of (5.5) we 

i 
conclude that 

/ ( /* / j ( log + /*)) p <*'<~ 
o 

for every function h satisfying (5.1)—(5.3). 
Finally we suppose that the conditions (5.1) and (5.2) on the function h, are 

replaced by the general condition that, for some 0, h{x)ax is increasing or de-
creasing. Then we can use Lemma 3.3 to obtain a function h ^ h satisfying 
(5.1)—(5.3). We have just proved that 

/ ( / * ( l o g + f * ) ) p d i < °° 
o 

and, thus, since h ^ h , 

f ( f * h ( l o g + r ) ) p d t ^ ~ 
0 

so that f€E0(p, q). 
In order to prove the converse implication we assume that f£E0(p, q). Let 

h be an arbitrary function satisfying (5.1)—(5.3). Then 

f°(f*h(iog+r)Ydt = i J ~ \ r W o g + f * ) ) p d t s 

(5.8) 

i 

Hence, by assumption and (5.8), the series 22pk{h(k))p(/}k- 1—Pk) converges. We 
i 

make an Abelian transformation on this series and find 

(5 .9 ) ¿ 2 Pk(h{kj)»pk^<~. 
i 

Since 

J ( f y e " " - 1 dt = 2 / 1 ( f y p i " - 1 dt -s—2 29kpq
k

lp
1, 

o i ¿1 Q i 
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it is sufficient if we can prove that ^ We assume the contrary, viz. 
i 

22qkPllp=°°. F o r A : = l , 2 , 3 , . . . w e s e t ck=2qkPl'p a n d dk=2k(q~p) Pllp~\ B y 
i 

assumption the series 2 ck diverges so we can use Lemma 3.1 and obtain 

(5.10) = = 
1 ¿>k l 

a n d , f o r a=pfcq—p), 

\qKi-p) 

oo 

°° ( d \qM~p> ~ c 

We choose <5, 0<<5<p, and set ak=dk/Sk. We apply Lemma 3.2 to the series 
00 

^fli/fa-p) to obtain a sequence (&t)~ such that b k ^a k , 
1 

(5.11) {bk2Spk)i is an increasing sequence, 

(5.12) (bk2~Spk)i is a decreasing sequence, 

(5.13) 
i 

and, by (5.10), 

(5.14) 22 p k P k b k =~> . 
i 

For k= 1 ,2 ,3 , . . . and 0==w=il we define h{x)=h{k+u)={b\-ubu
k+1flP. Then, 

by (5.11)—(5.14), we can see that there exists a function h satisfying (5.1)—(5.3) but 

¿ 2 pkf}k{h{k)Y = ~>. 
i 

This fact contradicts the condition (5.9). We conclude that our assumption is false 
so that 

x 
J ( j y t

q i p - 1 d t < ° ° . 
o 

The proof of part a) of the theorem is complete. 
In order to prove part b) we study the nondecreasing sequence (at)J° of the 

least real numbers <xk such that 2~k~1^f*(t)^2~k, when k= 

=0, 1,2, ... . The proof of part b) can now be carried out by arguing exactly as 
in the proof of part a). Therefore we leave out the details. 
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6. A description of the spaces LP''(log L)x 

Theorem 2.1 can be generalized in the following way. 

Theo rem 6.1. Let 0<<7<°° and — 
a) Let p>q. Then 

I 

(6.1) / ( /* tllp (|log t\ +1)*)« dt/t < °° 
0 

if and only if 

(6.2) / V * ( l o g + / * + l )"Mlog + /*)) '^ 
o 

for some function h, such that, for some real number a, 

(6.3) h(x)ax is a decreasing or an increasing function of x 

and 

(6.4) f (h(x))pq/(q~p) dx <o°. 
i 

b) Let p<q. Then (6.1) holds if and only if (6.2) holds for every function h 
satisfying (6.3) and (6.4). 

c) Let p>q. Then 

(6.5) / ( / ^ ( l l o g i l + i r ^ r f i / i ^ -
1 

if and only if 

(6.6) J ( /* (log+ +1)* h ( log+J*)!" d/ < °° 

for some function h satisfying (6.3) and (6.4). 
d) Let p<q. Then (6.5) holds if and only if (6.6) holds for every function h 

satisfying (6.3) and (6.4). 

The proof of Theorem 6.1 can be carried out in a similar way as the proof of 
Theorem 2.1 so we omit the details. Moreover, we can use Theorem 6.1 and argue 
in a similar way as before to obtain the following exact characterization of the 
Lorentz—Zygmund spaces. 

Theorem 6.2. Let 0</?<°°, 0<<jr<°° and — 
a) Let p>q. Then f£Lp'q (log Lf if and only if f£Lph(log L) for some func-

tion h satisfying (6.3) and 

(6.7) / (h(x)x-ayql^-^ dx <». 
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b) Let p<q. Then f£Lp-q (log Lf if and only if f£Lph(log L) for every func-
tion h satisfying (6.3) and (6.7). 

The following recent embedding result by BENNETT and RUDNICK [2, p. 31 ] 

can be deduced from Theorem 6.2. 

C o r o l l a r y 6.3. Let -=»<»<» and -«>< 
<a!<<». Then 

(6.8) L"-q (log Lf g Lp'qi (log Lf* 

whenever either 

(6.9) and a+l/q > ax + l/^ 

R e m a r k . It is easy to find elementary examples showing that the inclusion 
(6.8) does not hold in general if we permit some a satisfying a ^ a j + l / ^ — Ijq 
when or some a satisfying a < a j when q=q± (see [2, p. 33]). 

In our introduction we have noted that L(p, q)<^LP when p>q and 
L(p,q)^>LP when p<q. Therefore, by applying Corollary 6.3 with q=p, a=0 
and qi=p, «1=0 and by using the inclusions (2.7) and (2.8), we obtain the following 
chains of inclusions : If then, for every e>0 , 

All inclusions are the sharpest possible in the sense that we can nowhere permit 
that e=0 . 

P r o o f of t he co ro l l a ry . We assume that /££,p , ,(log Lf and q > q \ . 
First we consider the case p>q. Then, by Theorem 6.2 a), f£Lph (log L) for some 
function h satisfying (6.3) and 

or 

(6.10) q = qx and a ^ a •l • 

Lp (logL)1,q~llP+t c L(p, q)aLp<z Lp-'l(logL)1/p-1''>-° 

and if 0 t h e n , for every £>0, 

Lp-9 (log L)llp~llq + e c L ' c L(p, q) c Lp(logL)1'q-1'p-c. 

(6.11) 

We put a—q(p—q1)lq1(p—q) and use Holder's inequality to obtain 

ЛV¿T, \P«I / ( P - « , ) ( \ P « / ( P - 4 ) V / O °° 

M * • { / { & ) H (f *•'->«>>«-'> 
,P<IAP-1I> 

dx £ i l - l /o 
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The assumption a + + implies that (c^—a) qqj(q—< — 1. Therefore, 
according to (6.11), 

We have just proved that f£Lph(log L) for some function h satisfying (6.3) and 
(6.12). Thus, by Theorem 6.2 a), /<E LP"(log L)\ 

For the case p<q± we assume that h is an arbitrary function satisfying (6.3) 
and (6.12). We put a—q^(p—q)\q(p—q^) and use Holder's inequality and the 
assumption that ( a x — o ^ q q ^ q — — 1 to see that h also satisfies the condition 
(6.11). Therefore, according to Theorem 6.2 b), f£L"h(log L). By using Theorem 
6.2 b) once more we conclude that f£LB,qi(log L)"1. 

For the case p=q our assumption means that /£Lp/j(log L) for h(x)=x". 
We note that the function h satisfies (6.3) and (6.12). We use Theorem 6.2 a) and 
conclude that «»(log L)"1. 

When p = q i we can use Theorem 6.2 b) to see that f£L"h(\og L) for every 
function h satisfying (6.3) and (6.11). We note that the function h(x)=x*1 satisfies 
these conditions. Thus, f£Lp (log L)** which in this case is equivalent to that 
f£Lp,tl (log L)"1. 

Finally we suppose that qx<p<q. Then we can use Theorem 6.2 b) to see that 
f£Lph(log L) for every function h satisfying the conditions (6.3) and (6.11). In 
particular, the assumption (a!—v)qq-J(q — — 1 implies that the function 

satisfies these conditions. But this function h(x) satisfies also the condition (6.12) 
so we can use Theorem 6.2 a) to conclude that f£L"'qi(log L)"1. Thus the proof of 
the case q ^ q is complete. 

If qi_=q we may, without loss of generality, assume that ax = a. The proof of 
this case is analogous and even simpler so we leave out the details. 

Professor Jaak Peetre has made me aware of the fact that our description of 
the L(p, #)-spaces is similar to the definition of the spaces B% q(co), defined by 
PEETRE [10] and GILBERT [3, pp. 2 4 2 — 2 4 3 ] in the following way: Let co be a non-
negative weight function, O < 0 < 1, and y=l/p—l/q. Let 4>c 

be the set of nonnegative functions (p on [0, such that 

(6.12) dx <<=>. 

h(x) = x((ai~t,)"Vp+(a,~oti9i))/(,!~''i) 

7. Some concluding remarks 

(7 .1) 
dt 

13 
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and 

(7.2) i V ( 0 is nondecreasing. 

Then 

= 

U {Lp
a|<T = c o V (<«)}, when y s O , 

n {LpIff = a>V(<»)}> when y g O . 
,«>£®c 

In particular, when the underlying measure space is (Rn, dx) we obtain the usual 
Beurling—Herz spaces 

№ 7 > 9 ( | X | " ) , when q < p, 
"Lq = 

^•«("¿"l' w h e n q > p ' 

The Beurling spaces Ap and B" are the special cases pLl and PL°°, respectively 
(see [3, p. 247] and [5, pp. 298—300]). 

We can use our Theorem 2.2 and make some elementary calculations to see that 
the L(p, <7)-spaces can be characterized in similar terms. More exactly, we can in 
fact define the L(p,q)-spaces in the following way: Let 0 a n d 
y = \\p — \\q. Let <PP be the set of nonnegative functions <p on [0, satisfying 
(7.1) and, for some real number a, 

(7.2)' f(p{t) is nondecreasing (or nonincreasing). 

Then 

L(V, q) = 
U {Lp(cp(L)y}, when y ^ O , 

<pi<&P 

n {Lp((p(L))y}, w h e n j s o . 
<pii>p 

It is also interesting to compare how the spaces L(p, q) (or, equivalently, E{p, q)) 
and Bp

q(oj) (and, thus, the Beurling—Herz spaces pLq) occur as intermediate 
spaces in analogous situations in the theory of interpolation. For example we have 

(Lp°,Lp%q;K = L(p, q) (=E(j>, q)) 

when l/p=(l-9)lp0+9lpi (see e.g. [13, p. 134]) and 

(Lp,Lp,\q.K = Bg,q(o>) 

(see [3, p. 243] and [10, pp. 64—66]). 
Lorentz has in [7] defined that a function / belongs to the space A(cp, q) if 

f (f*)q(pdt <<=o. 
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Here cp is a nonnegative and integrable function on [0, Lorentz has also given 
an exact characterization of the spaces A((p, 1) which are also Orlicz spaces (see 
[8, pp. 130—132]. Roughly speaking, the result of Lorentz shows that this can 
happen if and only if we impose integrability conditions on q> such that the space 
A(q>, 1) is fairly close to L1. 

In this context we also note that it is feasible to generalize Theorem 6.1 for 
example by replacing the factor (log —)" in the conditions (6.1)—(6.2) and (6.5)— 
(6.6) by any "logarithmic varying" function (p. (We say that a function cp is 
logarithmic varying if there exist x0 and a such that, for x^x0, <p(x)(log x)a 

is a decreasing or an increasing function of x.) We can still use essentially the same 
techniques as in the proofs in Sections 4 and 5. 
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Compact and Hilbert—Schmidt composition operators on 
Hardy spaces of the upper half-plane 

S. D. SHARMA 

Introduction. Let H"(n+) denote the Banach space of functions / holomorphic 
in 7i+ (the upper half-plane) for which 

EO 

11/11, = Sup{| / | / (x+i jO| 'd* | 1 / p }<=o. 

Let T : n + — n + be analytic. Then the composition mapping CT , defined by 

CTf=foT, 

maps Hp(n+) into the vector space of all analytic functions on n+. This mapping 
CT is a linear transformation. If the range of CT is a subspace of Hp(n+) and 
CT happens to be bounded, we call it the composition operator induced by T. 
We are interested in the case when p=2. In this case H2(n+) becomes a Hilbert 
space. For the sake of simplicity we will denote || ||a simply by || ||. Composi-
tion operators on H 2 (TT+) have been studied by SINGH [6] and SINGH and SHARMA 
[7]. In [7], we have proved that if T is an analytic function from n+ into itself and 
the only singularity that T can have is a pole at infinity, then CT is a bounded 
operator on H2(n+) if and only if the point at infinity is a pole of T. In Section 2, 
we give a characterization of compact composition operators on H2(n+). A sufficient 
condition for a composition operator to be compact is also provided. In Section 3, 
Hilbert—Schmidt composition operators are characterized. 

2. Compact composition operators on H2(n+). A linear operator A on a Hilbert 
space H is called compact if A takes bounded sets into sets with compact closures. 
This definition is equivalent to the statement that the image of every bounded 
sequence under A has a convergent subsequence [2]. This is further equivalent 
to saying that i f / , — / weakly in H, then Afn—Af strongly in H. In this section 
we give a characterization of compact composition operators on H2(n+) . 

Received March 1,1982. 
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T h e o r e m 2.1. Let CT be a composition operator on H2(n+). Then CT is 
compact if and only if for every sequence f„—f uniformly on compact subsets of 
n+ and bounded in H2(n+) norm, the image sequence CTf„—CTf strongly. 

We need the following lemmas to prove the theorem. 

Lemma 2.1. Let f£H2(n+). Then \f(x+iy)\2^\\f\\2/2ny for x+iy£n+. 

Proof . First suppose /6fl r l(7 I +)- Then by Cauchy-formula [1, p. 195], 

/(w) = (27n)_1 f m . * . 
J r — w — oo 

Writing w=x+iy and taking absolute values we get 

\f(x+iy)\ == (2ny)-i f | / ( r ) | dr = WfWJlny. 

(Here II/HJ is the //1(7t+)-norm.) 
Let f£H\n+). Then we can write f=B-g, where B is a Blaschke product 

and g is an analytic function in n+ and does not have any zero in n+ [3, pp. 132—133]. 
It is obvious that | | / | |=| |g| | . Let h^g2. Then /i1€#1(jr+). Hence f=B-h\12 and 

\f(x+iy)\ = |5(*+00||fci(*+'>)l1/2 ^ WKwni/i^, 

which implies that |/(;t-Hj>)|2S||/||2/27y> for every x+iy£n+. 

Lemma 2.2. Let {/,} be a sequence in H2(n+). Then f„—f in norm implies 
that f„—f uniformly on compact subsets of n+. 

Proof . Suppose /„—/ strongly. Let K be a compact subset of n+. Then 
by Lemma 2.1 

Ifnix+iy)-f(x+iy)\ S (2n)~1/2MK||/„ —/II, 

where MK= sup {y-1/2}. The right hand side tends to zero as n-*<=° for every x + ijigK 
point x+iy£K. Since K is an arbitrary compact subset of n+ and f„-*f uniformly 
on the compact subset K of n + , the proof follows. 

Lemma 2.3. If {/,} is a bounded sequence in H2(n+), then there exists a sub-
sequence {/,J which converges uniformly on compact subsets. 

Proof . In the light of Theorem 14.6 of [4] it is enough to show that the sequence 
{/,} is uniformly bounded on each compact subset of n + . If K is a compact 
subset of 7t+, then again by Lemma 2.1 we have for x+iydK that 

\fn(x+iy)\ ^ (2n)~1,2MKM, 
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where MK is as in Lemma 2.2 and Ms0 is such that | | / J ^M for all n. This 
finishes the proof. 

P r o o f of T h e o r e m 2.1. Suppose CT is compact. Let {/,} be a sequence 
in H2(n+) and f£H2(n+) such that fn —f uniformly on compact subsets of n + 

and let M s 0 be such that || / J ^ M for all n. Then we want to show that 

\\CTf„-CTf\\ - 0 as n-CO. 

Suppose this is not true. Then there exists a subsequence CTf„k and an £ > 0 such 
that | |C r / , f c—C r / | | S£>0. Since {/„J is norm bounded and C T is compact, 
there exists a subsequence {/„, } such that CTf„. —g strongly for some g£H2(n+). 

h . *< 
Hence, by Lemma 2.2, CTf„k —g uniformly on compact subsets. Also, the sub-
sequence {f„k} converges to / uniformly on compact subsets, implying that {CTf„k } 
converges to CTf uniformly on compact subsets. This shows that CTf=g, which 
is a contradiction. This proves that | | C r / , — C r / | | -»0 as w—<». 

In order to prove the converse, let F be a bounded set in H 2 (n + ) . We want 
to show that the closure of {CT f : f£F} is compact. Let {CT / ,} be a sequence in 
this closure. Then, since {/„} is norm bounded, by Lemma 2.3 there exists a sub-
sequence { / . J of {f„} converging uniformly on compact subsets to some function / . 
Hence, by our hypothesis, CTf„k—CTf strongly, which shows that {CTf„} has an 
accumulation point. Thus the closure of {CTf: /6jF} is countably compact and 
hence compact. This completes the proof. 

In the next theorem the above result is used Jo give a sufficient condition for 
a composition operator to be compact. 

T h e o r e m 2.2. Let T:n+-»n+ be an analytic function such that CT is a 
bounded operator on H2(n+). Suppose T^tX) = lim T(x+iy) exists a.e. and T»(x)dn+ 

y~0 
0 0 ' 

for almost all x£R (the set of reals). If 00} then CT is a compact 
— 0 0 

composition operator on H2(n+). 

The following lemma is required to prove the theorem. 

L e m m a 2.4. If r»(x)=lim exists a.e. and T*{x)£n+ for almost 

all x£R, then for every f£H2(n+) 

( / o r . ) (JC) = ( / o r ) , (x) a.e. on R. 

Proof . Let £ V T , { x ) does not exist), E2={x£R: T,(x)$n+} and 
E=E1[JE2. Then for x£R\E, r*(x)=lim T(x+iy) belongs to n+. Since / is 
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analytic at T*(x), it follows by the continuity of / that 

(foT*)(x) =f(limT(x+iy)) = \im(foT)(x+iy) = (foT).(x) 

for every x £ R \ E . Since the set E has Lebesgue measure zero, the result follows. 

P roo f of T h e o r e m 2.2. Let {/„} be a bounded sequence in H2(n+) such 
that fn-*f uniformly on compact subsets. If we show that CTfn—CTf strongly, 
then we are done. Using Lemmas 2.4 and 2.1 we have 

l ( C r / „ - c T A W P = l ( / » ° n - ( / ° n W P = 

= \(fn°T*)(x)—(foT,)(x)|2 - \(fn-f){T,(x)f S M/im T,(xl 
where M i s 0 is such that \\fn-f\\/2n^M for all n. Since T*(x)£n+ for x£R\E 
and the convergence is uniform on compact subsets, we have 

( C r / „ - C r / ) , ( * ) = fn(T.(x))—f(T*(x)) — 0 as for all x£R\E, 

where E is the set as described in Lemma 2.4. This shows that |(CT/„—C r/)*|2—0 
as n—pointwise on R\E and the functions \CTfn—CT/)|2 are bounded by an 
integrable function g defined by g(x)=l/ im T*(x) for x£R. Hence, by Lebesgue's 
dominated convergence theorem and by the equality 

il/ll2 = / I M x ) \ ' d x for every f£H\n+) 

(see[l,p. 190]), it follows that \\CTfn-CT/¡2—0 as This completes the proof. 

3.Hilbert—Schmidt composition operators on H2(n+). A linear operator A on 
an infinite dimensional separable Hilbert space is said to be Hilbert—Schmidt if 
there exists an orthonormal basis {en \ «6N} in H such that 

(3 .1) 2 \ \ A e n V — -
NGN 

It is easy to see that the sum on the right side of (3.1) does not depend upon the 
particular choice of the orthonormal basis {e„: n£N} [5]. 

In Theorem 2.2 it has been analysed that if an analytic function T maps the 
upper half-plane into the upper half-plane and CT is a composition operator on 
H 2(n+) , then the following condition 

EO 

(3.2) f l/imT*(x)dx <~ 
— ©O 

is sufficient for CT to be a compact composition operator on H2(n+). In fact, 
the condition (3.2) turns out to be a necessary and sufficient condition for CT to be 
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a Hilbert—Schmidt composition operator on H2(n+) . This we demonstrate in the 
following theorem. 

Theorem3.1. Let T: 7t+—7i+ be an analytic function such that CT is a 
composition operator on H2(n+). Suppose r«(x) = lim T(x + iy) exists a.e. and 

j—o 
T,(x)£n+ for almost all x£R. Then the condition (3.2) is necessary and sufficient 
for CT to be Hilbert—Schmidt. 

Proof . We know that the family of functions Sn defined by 

CW-I')" 
= (» = 0 , 1 , . . . ) 

forms an orthonormal basis for H2(n+). Therefore, CT is Hilbert—Schmidt if 
and only if 

OO > 
11=0 
2\\CTSnV=2 f \(S„oT\(x)\2dx= 2 J \Sn(Tt{x))\2dx 
. — A — n * M A ' 

(the equalities above follow from [1, p. 190] and Lemma 2.4, respectively). A simple 
computation yields that CT is Hilbert—Schmidt if and only if 

f [4 i m T ^ x ^ d x . 

Hence the theorem. 

Remark. It is worthwhile to remark here that Theorem 2.2 follows as an easy 
consequence of Theorem 3.1. In spite of this we have presented an independent 
proof to Theorem 2.2 because of the following reason: With a little modification 
Theorem 2.1 and consequently Theorem 2.2 can easily be developed for the Banach 
spaces Hp(n+) ( 1 S < = ° ) . Hence if we consider a composition operator on H"(n +), 
the condition (3.2) turns out to be sufficient for a composition operator CT to be 
compact on Hp(rt+). Whereas, in case of H2(n+), the condition (3.2) is necessary 
as well as sufficient for a composition operator CT to be a Hilbert—Schmidt operator. 

Acknowledgement. The author wishes to express his indebtedness to Dr. R. K. 
Singh and Dr. Ashok Kumar for their constant encouragement and guidance through-
out this work. 
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On the absolute Riesz summability of orthogonal series 

L . L E I N D L E R 

1. Let Ia„ be a given infinite series and s„ denote its nth partial sum. If 
{/?„} is a sequence of positive numbers, and 

n 

k=0 

then the nth Riesz mean R„ of Ian is defined by 

1 " 
(1-1) K 2 PkSk-

n=o 
If the series 

(1-2) 2 \R*~Rn-i\ 
Fl=l 

converges, then the series Ea„ is said to be summable \R, Pn, 1|. It is clear that 
if pk=1 then (1.1) reduces to the classical (C, l)-mean, and \R, n +1, 1| means 
that the series Ia„ is absolute (C, l)-summable. 

Let {<•/)„ (x)} be an orthonormal system defined on the finite interval (a, b). 
We consider the orthogonal series 

(1.3) 2ckcpk(x) with 
k=0 fc=0 

Furthermore let P(x) be a strictly increasing function such that P(n)=P„ 
and linear between n and n+1. We denote the inverse function of P(x) by A(x) 
and put vm=[A(2m)], where [x] denotes the integral part of x. 

K. TANDORI [5] proved that the condition 

(1.4) 2 \ 2 c*n\ <co 
m=0 ln=2m+X J 

Received December 5, 1981. 
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is necessary and sufficient that series (1.3) for every orthonormal system {<pn (x)} 
should be absolute (C, \)-summable, or summable n+1, 1| almost everywhere 
in (a, b). 

We ([1]) showed that condition (1.4) is also necessary and sufficient that series 
(1.3) for every orthonormal system {<p„(x)} be absolute (C, a)-summable with a=- 1/2 
almost everywhere. In [1] we also gave conditions implying the absolute (C, 1/2)-
and (C, oc)-summability with — 1 < a < l / 2 . 

The result of Tandori was generalized by F . MÓRICZ [3] to the absolute Riesz 
summability as follows. 

T h e o r e m A. Orthogonal series (1.3) for every orthonormal system {q>n(x)} 
is summable P„, 11 almost everywhere if and only if 

~ f vm + 1 -.1/2 
(1-5) 2 \ 2 é < » , 

m=0 *7>=v_+l J 

where C m = { 4 1 / 2 = 0 { f = 
ln=vm + l J 

Recently Y . OKUYAMA and T . TSUCHIKURA [4] gave a condition which is equiv-
alent to (1.5) and it does not use the concept of A{x). 

More precisely they proved 

T h e o r e m B. Condition (1.5) is equivalent to 

(1 .6) . i 7 r ! M i A 2 - i c i } 1 / 2 < ~ . 

Using these theorems and some lemmas the authors of [4] also proved the 
following -

T h e o r e m C. If the series 

» p f » l 1 / a 

(1-7) Z-PT— \Zfl-i(A+b$\' 

converges, then almost all series of 

(1.8) 2 ±(a„cosnx+b„sinnx) 
n = l 

are summable P„, 1| almost everywhere, .and if series (1.7) diverges, then almost 
all series of (1.8) are non-summable -P„, 1| almost everywhere. 

2. In the present note we prove certain symmetrical analogues of Theorems B 
and C. 
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Theorem 1. Condition (1.5) is equivalent to 

(2.1) 
» f » il/S 

z p A Z K ' ® < 
n=0 U = n > 

By Theorem A and Theorem 1 we immediately obtain 

Coro l l a ry 1. Condition (2.1) is necessary and sufficient that series (1.3)/or any 
orthonormal system {<?„(*)} should be summable P„, 1| almost everywhere. 

Hence we get 

Coro l l a ry 2. If 

then series (1.3) for every orthonormal system {<p„0c)} is summable Pn, 1| almost 
everywhere.. 

It is well known, by the Riesz—Fischer theorem, that series (1.3) converges in 
L2 to a square-integrable function / ; and if E ^ \ f ) denotes the best approximation 
to / in the metric of L2 by means of polynomials of (p0, ..., (p„~r, then 

also implies the Pn,\\ .summability of (1.3) for every orthonormal system {<pn} • 
almost everywhere. 

If {<?„} is the trigonometric system, i.e., if we consider the following orthogonal 
series 

(2.2) 

Thus, by Corollary 2, condition 

(2.3) ¿ - j r ^ i f ) ^ -
1=0 

(2.4) " / ( * ) ~ + 2 (a* cos nx+b„ sin nx) = 2 X 
n=1 n=0 

then using Corollary 2 and the following estimation (see [2], Hilfssatz II) 

0 0 

we also have a further 
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Coro l la ry 3. If 

(2-5) ' Z j r ^ i ^ f ) — „=0 P„ \n ) 

then series (2.4) is summable P„, 1| almost everywhere. 

The next theorem is the analogue of Theorem C. 

Theorem 2. If the series 

(2.6) ¿ p J i ^ + ^ V r 2 } 1 

B = 1 U = B > 

>1/2 

converges, then all series of (1.8) are summable \R,P„, 1| almost everywhere, and 
if series (2.6) diverges, then almost all series of (1.8) are non-summable Pn, 1| 
almost everywhere. 

3. In order to prove our theorems we require the following lemmas. 

Lemma 1 ([3]). Suppose that the set of points for which the Rademacher series 

2 cnr„(x) is summable P„, 1| is of positive measure, then condition (1.5) holds. 
»=o 

Lemma 2. Let 

A„(x) = Q„ cos (nx+Qn) with Q„ = (a„2+^)1/2-

If the series 

(3.1) i / J i ^ K x ) / 5 * - 2 } 1 

B = 1 l*=n J 

>1/2 

converges on a set E0 of positive measure, then the series 

(3.2) Z p A Z e l P ; 2 ] 
H = 1 LFC=LL ' 

converges. Conversely, the convergence of (3.2) implies that of (3.1) for every x. 

The proof of Lemma 2 follows the same line as that of an analogous lemma of 
Y . OKUYAMA a n d T . TSUCHIKURA [4]. 

Proof . First we prove the implication (3.1)=>-(3.2). By the assumption there 
exists a set EczE0 of positive measure such that 

o= ( oc -,1/2 
(3.3) 1= 2 P n f \ 2 Pk~2 Qtcos*(kx+Qk)\ dx ^ Kn(E), 

n=i i U=i> J 

where K denotes a positive constant and ¡i(E) denotes the Lebesgue measure of 
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E. Using the Minkowski inequality with p=1/2, we obtain that 
\ 1/2 

I ^ n Z P n { Z { f P^Qu |cos (kx+Qk)\ dxf^ = 

= 2pn\2n2el{( Icosikx+Q^dxf]1'2. 
» = 1 lk = n Y ' J E 

Using the Riemann—Lebesgue theorem and the following estimation 

f jcos (kx+Qk)\dx S J"cos2 (kx+Qk)dx = J ( 1 + c o s 2 ( f c x + d x •• 
E E . E 

1 1 r = —H(E)+T / cos 2(kx+Qk) dx 
Z 1 E 

we obtain that for sufficiently large k ^ k 0 

(3.5) f |cos (kx+Qk)| dx s i- /i(£) = 
E 4 

Thus, by (3.4) and (3.5), we have that 
oo f oo ll/Z 

(3.6) i^AZPn\2Pk2el\ , 
n=ko U=n J 

whence 

k=i 

follows obviously, and this implies that 

( oo i 1 / 2 t 0 - l ("CO 
(3.7) 2 Pn \ZPï2eî\ 

n = 0 k=n ' 

Summing up, by (3.3), (3.6) and (3.7), the implication (3.1)=>(3.2) is proved. 
Since AI(X)^QI, the implication (3.2)=>(3.1) is trivial. Thus the proof is 

completed. 

4. Now we can start the proofs of the theorems. 

P roof of Theorem 1. First we prove that condition (1.5) implies (2.1). 
An elementary calculation shows that 

f oo I 1 ' 2 ~ VM + 1 C -|L/2 
2 " P k \ 2 P n 2 é =s 2 2 p k \ 2 P n - 2 é ^ 

k = v0 +1 ln=/t > m=0 fc=vm+l *-n=k > 
(4.1) 

~ vm +1 f ~ I 1 ' 2 ~ vm +1 ~ f v( + l I 1 ' 2 

^ 2 2 Pk\ 2 Pn2é ^ 2 2 Pk2P;th\ 2 4 =2i-
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Since 

( 4 . 2 ) Pn+1 = P(Vi+1) ^ P(A(2')) = 2 \ 

thus 

2 j f Pk i 2 - ' C , = j ? 2 - ' c , i Pk ^ 
m = 0 * = v m + l i=m ¡=0 m=0fc = v m + l 

( 4 . 3 ) S J 2 - ' C ( 2 Pk — 2 2-iCiP(A(2'+1)) ^ 2 2 Ct. 
¡=0 fc=0 ¡=0 ¡=0 

By (4.1) and (4.3) the implication (1.5)=>(2.1) is proved. 
Next we prove the converse implication. It is clear that 

(4.4) PVm == P(A (2m)) = 2m, 

thus, by (4.2) and (4.4), we have that 

( 2 * Pk) = ^ Ç2m—2m~1)2~m~1 = 1 . 
V*=vm-1+1 7 4 

Using this inequality we obtain that 

v„+l ~ ( v m + l \ 
4 2 2 Pk)Km\cm^ 

m-1 u = l Vl=im . 1+1 ' 

(4.5) S 4 2 2 Pk\ 2 = 2 „ 

f vm + l 
C » ( p ) : = j 2 

U = v m +1 J 

means zero if vm=vm + 1 . Therefore 

(4.6) 2 2 = 4 2 ' 2 + 1 P*Cm(p), 

where 2 ' denotes that the summation runs just through such indices m which 
m 

have the property v m + 1 Sv m +l . Then 

Vm + l vm + l f „ -|l/2 
2' 2 PkCm(p) s 2' 2 M ^ - r 2 ^ ^ 
m t = v m _ ! + l m lt = v m _ 1 + l <-n=): J 

f ~ I1 '2 

(4.7) ^ 2 ' 2 A ^ 

~ r ~ 11 / 2 ~ f - 1 1 / 2 

S 2 2 2 P k \ 2 P ; * 4 ^ 2 2Pk\2P;*4 . 
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By (4.5), (4.6) and (4.7) we have 

• =o f ~ -»1/2 
z c m ^ 8 2 p k \ 2 P n 2 c ú , 

m = l * = 0 U = k > 

which proves the implication (2.1)=>-(1.5), and this completes the proof of Theorem 1. 

P roo f of Theorem 2. The proof is the same as that of Theorem C, the only 
difference is that we use Theorem 1 and Lemma 2 instead of Theorem B and Lemma 2 
of [4]. 

The sketch of the proof is the following: By Lemmas 1 and 2 and Theorem 1 
we have to follow the Paley and Zygmund argument (cf. [6, p. 214]). 
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Approximation in L1 by Kantorovich polynomials 

V. TOTIK 

1. 

This paper is a continuation of two earlier ones [11, 12]. Let 

„ (*+l)/(ll+l) / x 
Kn(f-,x)= 2((»+!) J /(«)<*«)&,.*(*). &„,*(*)= 

*=0 k/(n+1) VK/ 

be the Kantorovich-variant of the Bernstein operator. A series of papers contains 
results for the approximation properties of K„(f) in integral metrics (for references 
see the survey article [3]). However, the analogue of the well-known equivalence 
theorem of BERENS and LORENTZ [5] or that of LORENTZ and SCHUMAKER [7] and 
DITZIAN [6] is not known for them. The problem is the characterization of \\Kn{f) — 
—/| | i i ( 0 1 )=O(n~ a) ( 0 < a < 1) in terms of a certain modulus of smoothness, and 
the aim of this paper is to give this characterization. 

For /€£"(0, 1), / » 1 we proved in [12] 

T h e o r e m A. / / 0 < a < l and f£Lp(0,1) then 

(0 ll*„CO-/lk* = 0(n~°) 
and 

0 0 («) \\<Y^(f->x)hnH>,i-H') = °№> 

№ ll / ( - / ( • ) ! ! f (o,i-w — OQf) 

are equivalent. 

Here 
At(f; x) =f(x-h)-2f(x)+f(x+h) 

(we deviate from the custom and write | | /(x) | | t , instead of ||/(-)IIL* if the former 
is more suggestive). 
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For the saturation case a = 1 we have (see [9, 10,4, 12]) 

T h e o r e m B. If and f^L" (0,1) then the following are equivalent: 

(i) \\Kn(f)-f\\u- = 0(n-*), 
(ii) f has an absolutely continuous derivative with x(l—x)f"(x)dLp(Q, 1) 
(iii) | | ( j c ( l -x )4 r (F ; = 0(h*), 
( w ) \x(x-x)At(j- * ) i i i> № . i - * , = o m , 

(v) (/; *) lUu-*> = 
X 

Here F(x)= J f(u)du and naturally (ii) means that "/coincides a.e. with a function 
o 

which has absolutely continuous derivative". 
Turning to L1 let us mention the saturation result (see [8,2]): 

T h e o r e m C. For fdL1 (0,1) the following conditions are equivalent: 
(i) \\Kn(f)-f\\L^0(n^), 
(ii) f is absolutely continuous and JC(1—x)f'(x) is of bounded variation, 
(iii) | | * ( 1 - * ) J Í ( í ; x)\\Bv+L~(H,i-h) = 0(h2) 

Here BV+L°° denotes the sum of the two norms: total variation and ess. supremum. 
Examples show that Theorem B does not hold for L1, i.e., the BV-norm in TheoremC 
seems to be the appropriate one and we cannot hope in replacing it by an L1-norm. 
The difference between Theorems B and C suggests also that we should exchange 
the Z/-norm in Theorem A for a BV-norm or something like that to obtain a correct 
result in L1 (see also the conjecture in [3]). Thus, it is rather surprising that Theo-
rem A holds word for word when p = 1: 

T h e o r e m 1. If 0 < a < l and f£V-(0,1) then 

0 ) l l ^ C O - y i i x . - = 
and 

m m - + h ) - A • ) i i « o . i - » = o m 

are equivalent. 

Let us mention that although (ii)=>(i) holds also for a = l , neither (ii) (a), 
nor (ii) (P) is necessary for (i) in the case a— 1. This is shown by the function f ( x ) = 
= l o g x (x€(0, 1)). 

The first result with the modulus of smootheriess sup || ( / , x) || 1(|!) 

(more precisely with its analogue) was proved in [11] for the Szász—Kantorovich 
operators: 

CO {K-t-l)/n r 

Mn{f-,x)=2[n f Xu)du)pnik(x), Pnk(x)=e-"A^I-, 
*=° k/n K: . 

J C S O . 
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T h e o r e m D. For l</><°° , 0 < a < l and f£L"(0, <=°) the following conditions 
are equivalent: 

( 0 l | M B ( / ) - / | | i , ( o > „ ) = i ? (n -« ) ) . 

(ii) (a) x)||L,№, „) = OQi2*) 
(3) ll/(- = 0(h"). 

This is true just as well for p = 1 : 

T h e o r e m 2. Theorem D holds also when p = 1. 

We shall prove only Theorem 2, but our method works also for K„ (the technical 
details are somewhat easier for M„); we refer to [12] for the necessary changes in 
the proof (observe that [12] relates to [11] about as Theorem 1 relates to Theorem 2). 
The only point in our proof which might not be obvious for Kn is the delicate for-
mula (2.5) but the analogue of this was given in [12, (4.5)]. 

Although Theorems A and 1 (D and 2) have the same form, here we have to 
use a different method since in the case p > 1 the proof rested heavily on the maximal 
inequality. Nevertheless, the roots of the proofs of the inverse parts are the same: 
the so called elementary method of inverse results developed by BERENS and LORENTZ 
[5], a n d BECKER a n d NESSEL [1]. 

2. Proof of Theorem 2 

I. P r o o f o f (ii)=>(i). First we derive from (ii) three further inequalities. 
Inequality 1. 

h h h-s h 
ff\/(x)-Ay)\dxdy = 2 f def \f(x+e)-f(x)\dx^K f e* de == Kht+1. 
0 0 0 0 

Inequality 2. 

A(fh)^L 1 T \f(x±x)-f(x)\ dz 
x o 

(h^O). 
L\hco) 

Proof . For any f£Ll(0, 

~ 1 hfx ih* 
f - f |/(X±T)|dtdx Kh~2ff \f(x+u)\dudx+ 

h1 X 0" 

+K J\f(u)\hïidu 
2h' U 
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and if / is absolutely continuous with f'£.Lx then 

A(f,h)* f \ Tdx\f\f(x+u)\du\dxs 
1_» « A A 

-1̂ T(hfc-w)\f'(x±uydudx-Kh2^Li 
h» * 0 

Let now fZL 1 be arbitrary for which (ii) (/?) holds, and let 

1 h* 
Sh(x) = j z f f(x+T)dr. 

o 
For this 

I I / - ^ ft"2 / | | / ( • + T ) - / ( • ) i k x dz ^ Kh~* f x" dx Kh*> 

and 

by which 

A t f h ) * A(f—gh, h)+A(gk, h) S /:(||/-gh||ti + /i2||g;ilti) Kb™. 

Inequality 3. 

0 0 

llgilLi = h-*\\f{. +h2)—f(• )||n ^ 

~^=fX\A*(f; *)| dz = ±f\A:rx(fix)\du 
hyx o LHh'.oo) no 

as t / IM„V;(/; *)llLitt..-) d« s K j f u" du s tffc2*. 

LMh1, 

Now the analogous inequalities for LP were the only tools used at the proof 
of (ii)=>-(i) in [11, Theorem 1], and this proof equally holds, using Inequalities 1—3, 
for p=1. For the details see [11]. 

II. P r o o f of (i)=>-(ii) 0?). Let 

v ( f ; &) = V ( f ) = s u p | | / ( . + h ) - / ( •)||£I(o,.). OShSS 

It is sufficient to prove that f o r 0 < / t s l , « s l , 

see [1, Lemma 2.1]. 
But 

v(f; h) S v ( f - M n { f ) ; h)+v(Mn(f); h) 
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and here, by (i), 

By 

we have 

v{f-Mn{f)\ h) == 2\\f-Mn(J)\\Ll =§ Kn~". 

MM; x) = n J (n f" (f(^+u)-f('~r+11)) d»\ i a W 

v{Mn(f)-h)^ J dxf \M'„ ( / ; x+u)\du ^ j \\M'n{f)'\Lldu ^ 
0 0 0 

a ¿f\f(j+u)-s{^7r+u)\duInp,.,.(-<>^ = 

- "".i/K^")-^^) I" -"" H- -*>»•> 
and the proof is complete. 

For later application let us prove also the inequality 

(2.1) / ( / ; 5) = 

In fact, for the function 

ft 
{f(x+dix)-f(x-d}^)) S K52*. 

LHi 

a» 
£a(*) = ¿2 f f(x+u)du 

we have proved above 
a» 

| | / - g J L l ^ <5~2 / | | / ( • + « ) - / ( ' - ) I I L I D U K 8 * 

and 

by which 
llgilkx =5 < 5 " 2 | | / ( - + ^ ) - / ( - ) I L i ^ 

/ ( / ; <5) 7 ( / - g 3 ; 5)+I(gs; 8) ^ 

S || (F- gs) (X + + 1 | ( / - g , ) (X - 5 /I)||Li(i,f - ) + 

a2 \x as 

^ K V + K & f || g^ll L 1 35 Ar(<52j+(52|| gillz.0 ^ 
-a 

III. P roof of (i)=*(ii) («)• First let us prove the following 
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Lemma. Let 0 < / i S l , h2^n~l^h, k=0, 1,2, .... Then thereJs an absolute 
constant K for which 

(1) / dx ffp„,k{x+u+v)dudv ^ K ^ » , 
V -h^x/2 

~ h ]/x/2 . 
(2> f d x f f < x + u + v Y P " A x + U + v ) d u d v - K h 2 ' 

ft2 
dudv^K—f. 

, „ , c , W2 ( 3 ) f d X f f (x+u+vr " —h VxlZ 

Since 

Proof . p„ik(x) increases on (0, k/n) and decreases on (k/n, hence 

/iV /̂2 

f f p„,k(x+u+v)dudv s 
-hfitZ 

h2xpn,k(x + hYx) for x£(0,kln-hfkfn), 
h2 x max p„tk(y) for x£(k/n — +2hfkjn), y 
h2xpntk(x-hfx) for x£(k/n+2hfkfh, 

OO CO fc "I • 1 
f \g(x±h dxm2f g(x) dx, xp„ik(x) = -

~—Pn.k+l (X), 
h* 0 n 

OO J 

f Pn,k(x)dx = — 
o n 

and maxp n , k (y )=p n ,k (kfn)^Kf^k + 1 (use Stirling's formula), we obtain easily 

~ hYli/2 
f dx f f pn,k(x+u+v)dudv ^ 

h* -hfc/2 

m ^ ^ l ^ f l ) „ № „ , , 2 , . . , 

For inequality (2) follows from (1), since kx~2p„>k(x)=(n2/(k—l))pntk-2(x). 
For A:=1 we have 

CO kyx/2 ~ hyx,^f— | 
f d x f f n(x+u+v)-1e-^x+tt^dudv = n f d x f M£_JII e-»(*+r) dx 

" ( h h ̂  1 
S2n f \-= f dx\dxSKh\ 
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Finally, (3) follows from (1) for k=0, and for kSi we have, 

J d x f f ( x ) } P^+u+vYdudv^ 

^ K i d X SI [ H X + U + V ) ) P ^ X + U + V ) d U d V + 

h —A fx/2 * 

~ ^ A Vx/S s \ 2 + K f f f [--(x+u + v)) p„,k(x+u+v)dudv. 

h f i l 2 

f f 

Here the first term is at most ATi2/«2 for 1 (see (2)) and 

2A» /1 /it/2 

^ / // PN,k-z(x+u+v)dudv^Kh6 ^ Kh^n2 

h* — ft /x/2 

for 
The second term can be estimated as we have done in inequality (1) (use that 

(k/n—x)2p„k(x) increases on (0, (k +1)/« — flk+l/n) and decreases on ((k+l)/n+ 
+ y i k + 1/n, co) together with the facts 

f j № - x ) p > - < { x ) d x = ^> 

a n dx (k \2 

f f f {—~(x+u + v))PnA:>c+»+v)dudvS 

h In,* n V B / vfc n'! 

Let us turn back to (ii) (a), and let 
OO 

c o ( / ; = co(<5) = s u p f \A*r(f\x)\dx. 

It is suff ic ient t o p r o v e that f o r 0 < / i 2 ^ l / n S / i S l w e h a v e 

£0 (ft) S K - + h2 n ( n - ' * + c o j , 
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see [1, Lemma 2.1]. Since (i) yields 

\\A*hrx{f-Mn(f)-, *)IU,,„) S K ||/-Mn(/)||Ll 3 Kn~\ 

an easy consideration shows that it is enough to prove 

(2.2) | № r x { M . ( f ) ; x g ^ . ^ - Kh*n (»- + » (*" S i - s *) •. 

Let 
„ / (fc + l)/n 1/n 

(2.3) Jln(f- x) = 2 [nf / ( « ) pB>Jt(*) = Mn(f; x)-ne-* f f(u) du. 

a) (ii) (/?) (which we have proved above) gives 

1/n 1/n 

Knh2n~*. 
L1 

{nf f(u)du)A:rx(e~"'; *)|| /(W)d«| 
o o 

X X 

b) Let Fx(x) = f f ( t ) dt, F2(x)= f F^t) dt and 
o o 

f t ( x ) = j i J du J f ( x + v]/x)dv = / du f ( f ( x + v fa) +f(x-v /1)) dv 

We have 
d u 

(2 .4) I I / - / 4 I L I W . , - ) = f du f I M ^ ( / ; dv s a>(<5) 

and 
o o 

2 2 
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and the key point in our theorem is that the latter is equal to 

(2 .5) 

Now 

and below we estimate the two terms on the right side separately. 
c) Since 

we obtain by (2) and (3) from the Lemma, and by (2.4) that 

co CO h YX/2 
f\A*hrx(Jtn(f-f±)-,x)\dx= J dx | f f Jt;(f-f±ix+u+v)dudv 

^ ** —ft/*/2 fk 

c= »+» /" f - „ 2 / 1 . \ 2 

'' k 1 

-J./I/2 ^ ' 

co(* + l)/» / 1 \ 

- * h 2 n £ [ ( M ) d u = m n ( i . « ) - Kh2ni0 fej • 
d) We have also 

0>n,*(*))" = «2 (ft.. * - 2 to ~ 2/>„. * -1 (*) + Vn, t to) (k = 1, 2, ..., p„^(x) = 0), 
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thus 

/ \ A ; r x { j / n ( / ± ) i x)\dx = 
h' ft 

„ /" 1/n \ hl/x/2 

= "2 f dx 2 n f f f / ± \ — + u+v + w\dudvdw\ f f pn>k(x+s + t)dsdt+ 
i>* o ftKn ' — /i y*/2 

(3/n 3/n \ fi/x/2 

—2n / / ^ ( l O d t i + n / / ! _ ( « ) d i i j / / p „ , o ( * + s + 0 < i s ^ s 

1/n il -fn - h f a l 2 

2/n 3/n 

+ i s :nf t 2 ( | / /J_(M) + 1 y /_!_(«) d« | ) ^ 

Vn ft 2A. ^ 

« l/n I \ | 

^ K n h 2 + « + p + w J | d i n f o d w - | -

°° 1 /n I ik M 

2^/ff\f±[j+u+v+w}\dudvdw, 

+Knh2 

where 
l/n 

rl 

0 ' ^ 

and where we used that 

2/n 3/n 
f±(u)du\ + \ f 

a« ^ / i 

+ 

1 / / _ !_ (« ) + | /• / ^ ( « > ¿ « 1 ^ 1 1 / - / ^ M > + 
1 In ft iJn ft ft I"'"J 

J f ^ d u - J / ( " H + l / f ( u ) d u ~ J m d u \ - K [ m [ ^ + n ~ \ 

To estimate A we apply (2.5). Taking absolute value in (2.5) term by term 
we increase | f'i (x)|. Now the first term on the right of (2.5) contributes to A at 
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most by 

i/n 2 I ^ r ( k \ I 
2 ' k f f f - m \i " f dsJ A*ifl - \ f ; -+u+v+w\dt\dudvdw ^ 

& j j o j \Jl+u+v+wJ\ Oj « » M 

1 /yit 5 „ 2 1/n , , 
S2w f ds f dt 2 - r f f l J* n, /; —+ M + 0 + W\\dudvdw 

0
J ktikJJJ ,yi+u+v+wV n )\ 

^ K n f d s f \\A*rx if - x)\h n ï dt - Kco (-L). 
o o I» / ^y 

Quite similarly the contribution of the second, third and fourth terms to A is at 

most Kco i—) 
Wn)' 

Using inequality (2.1), the fifth term contributes to A at most by 

•Un 

- k l 
k=l 
2 k f f f - n w2 \ f ( - + u+v+w+-^]/ ^+u+v+w\-

HJ (A+ M + t) + wJ ' U 1*1 n j 

(k 1 i ' k M —+w4-i> + w ——+M+u + wJ dudvdw S 

4. vnx\ y \n > \ t\ 

and a similar estimate can be given for the contribution of the sixth term : 

¿ * f f f , k
 2 r n

 r -0 I—+ M + U + WJ 0 1 

- / ( i 

+ w+v+w—f j/l+w+u+wj i/ij dudvdw ^ 

1 / ~ t \ Ufi S J - f -= \f (x+tile)-fix-tft)\dx\dt^K f t^dtsKn". o uTn yx ' o Collecting our estimates from a) to d) we obtain (2.2) by which the proof is complete. 
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On the equiconvergence of different kinds of partial sums 
of orthogonal series 

V. TOTIK 

Let Nd(ds 1) be the set of ¿/-tuples i=0'i, ..., id) with non-negative integral 
coordinates. Let (p={(pi\i€.Ni} be an orthonormal system (ONS) on [0,1]. 
Consider the «¿-multiple orthogonal series 

(1) Z«i<Pi(x)> 
i € N d i 

Fixing a sequence Q={Qk I k=0, 1, ...} of finite sets in Nd with properties 

(2) 0 = e . c e 1 c & c . . . ) 0 = 
k=0 

we can define the g-partial sums of (1) (see e.g. [1]): 

# ( * ) = 2 fl.9»«(*) № = 1 , 2 , . . . ) . 
¡eCic 

If P = {P*} is another sequence satisfying similar conditions to (2) we write Q=>P 
when the a.e. convergence of {.?*(*)Kli always implies that of If not 
Q=>P then we write shortly Q&P. 

F. MÓRICZ [1] proved among others that if 
QÍ = {iíN'\ maxijuk} 

and 

then Q'&P' and P'^>Q'. 
The aim of this note is to give necessary and sufficient conditions for Q=>P; 

Our result has several corollaries which are interesting in themselves. 
With the notation Pk-N\Pk we prove 

T h e o r e m 1. We have Q=>P if and only if there is a number K such that 
(i) each Qk+1\Qk is the union of at most K sets ( ö»+ i \ö f c )n (P m + 1 \P m ) , 

Received December 21, 1981. 
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(ii) for every ft, Pk and Pk are the (not necessarily disjoint) union of at most 
K sets of the form Qr+s\Qr 0 = 1 , 2 , . . . , - ) , P M + 1 \ P M , ( A - + I \ Ô R - ) N ( P M . + 1 \ P M . ) . 

Coro l la ry 1. The systems Q and P are equivalent (i.e. P=>Q and Q=>P) 
if and only if there is a K such that 

(i) each (Qk+1\Qk)U(Pm+1\Pm) is the union of at most K sets ( 0 , + 1 \ 0 , ) n 
n{Pr+1\Pr), 

(ii) each Qk and Pk is the union of at most K sets (Qs+i\Qs) H (Pr+i\Pr) 
and K sets of the form Pe+t\Pe and respectively. 

With the notation 

( 3 ) . (FT, Q = {FT, FC+1, .-.., / } (FT = I, FT, KN1) 

(fc,eo)= {ft,ft+l,...} 
we have 

Coro l la ry 2. Let {pk} and {qk} be two subsequences of the natural numbers. 
Then the a.e. convergence of {jrPfc(jc)}^L1 implies that of for every orthogonal 
series 

(4) ¿akcpk(x), 
*=0 k=0 

if and only if the number of the qk s in the intervals (pm,pm+1) is bounded (here 
sk is the ordinary ft-th partial sum of (4)). , 

Coro l la ry 3. With the above notations the a.e. equiconvergence of 
and {iifc(x)}~=1 for every orthogonal series (4) is equivalent to the existence of a K 
for which pk<q, implies pk+1^qi+K and qk^p, implies qk+1<p,+K: 

Corollary 1 follows easily from the proof of Theorem 1. Corollaries 2 and 3 
were also proved by H . SCHWINN [3]. 

To formulate another consequence of Theorem 1 let d= 1, N—N1 and n:N—N 
be a mapping of N onto N for which the inverse image n~l(k) of every number 
k is finite (one can see easily that the following problem becomes trivial if some of 
the n~l(k) are infinite). Our problem is the following: determine which n has 
the property : if the orthogonal series (4) converges a.e. then the same is true for 
the rearranged and bracketed series 

(5) 2 ( 2 <*i<Pi(x))-k=0 ièn-Hk) 
The answer is given by 

Theorem 2. The a.e. convergence of (4) implies that of (5) for every orthogonal 
series (4) if and only if there is a K such that for every ft, n~1(0, k) and 7t_1(ft, 
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are the (not necessarily disjoint) union of at most K sets of the form (/, m) 
(m=l, 2 , . . . , or 

For the definition of (/, m) see (3). 

Coro l l a ry 4. If n: N—N is a permutation of N then the a.e. convergence of 
(4) implies the a.e. convergence of 

OO 

*=o 

for every orthogonal series (4) if and only if there is a K such that for every k, n (0, k) 
consists of at most K chains of consecutive integers. 

Remarks . 1. Although we formulated Theorem 1 in d dimensions, the prob-
lem and the solution is essentially one-dimensional, namely Theorems 1 and 2 are 
equivalent (see the proof of Theorem 1 below). 

2. If Q=>P then our proof yields an orthogonal series (1) for which {-sfMltLi 
converges a.e. but {•y£(*)}jT=i diverges on a set of positive measure. By a 
standard modification of the proof one could achieve also the a.e. divergence of 
№ ) } R = i -

3. The ONS {(Pi} above could be defined on any non-atomic measure space 
instead of [0, 1] (compare to [2]). 

4. Our proof shows that if Q=>P and {jt(*)}r=i converges on a set E then 
hm sg(x)= hm sj?(x) a.e. on E, i.e. the P-sums and Q-sums are equal a.e. auto-
matically. 

5. Finally, let us remark that to the proof of Corollaries 2 and 3 needs only the 
consideration used in the proof of the necessity of Theorem 1 (i), by which we obtain 
a very short proof of Schwinn's results (see [3]). The same is true for a part of 
M6ricz's theorem mentioned earlier (see [1, Theorem 3]). 

After these we turn to the proofs our theorems. First we prove Theorem 2. 

Proof of Theorem 2. I. Necessity. Let us suppose on the contrary that 
e.g. for each n there is a A: such that 7i_1{0, ..., k}=n~1(0, k) (see (3)) cannot be 
represented as the union of at most n sets (/, m) and at most n sets TI—1 (/). 

We define sequences {Nn}, {M„}, {m„}, {m*}, k^ < kf < . . . < k,™ and 
{»'iW, • {yln ) ,-Jnn )} in the following way: put N0=M0=m0=mS=0 and 
if all of the above numbers are already defined up to n—1, let N„ and m* be so 
large that 

Nn > Mn_r, 7i'HO, Nn) i (0, m* > (0, m*n) i 7 ^ ( 0 , N„) 

be satisfied. By our assumption there is an M„>N„ such that 7t~1(iVB + l, M n ) \ 
(0, ml) cannot be represented as the union of at most n sets (/, m) and at most 

15 
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n sets 7t-1(/). Let 1, M„)\(0, w*)=(r1, j ^ U i ^ , J2)U... U(r„ j,) where 
and r i + 1 > j ( + l . We claim that there are n numbers A b e l o n g -

ing to (Nn + l,M„) and numbers ' ^ ^ ( / t ^ X ^ O , mn) (e = 1, •••,«) such that 
neither two of the /„ belong to the same (rt, jt). In fact, let i ^ f a , sj, n(if)=k$ 
and if /*, k* are already defined and i„€(r t , J t ) ( l S u ^ e ) , then, since 
the g intervals ( r t , j t ) and the £> sets 0 —«—£?) do not cover 
7t~1(^B+1. M„)\(0, m*), "there is an 

^ ( ^ ( A ^ - M , M „ ) \ ( 0 , m „ * ) ) \ ( ( J J ( r v i t „ ) ) U ( j J « " H * » ) ) • 

Let ftj+i=7i(i'e*+i). We can continue this up to g=n, and all what we have to do 
is to rearrange the set {k$, ..., k*} into an increasing order Ai^-cfc^ <.. .-= ft*"* 
and to carry over this rearrangement to {/*,..., /*}, by which we obtain {i£n), ..., /¿n)}. 
Let /c(n) belong to (r^, j^) and let us put y*n)=.yt^4-l (e = l, ...,«). Finally, let 
m„>m* be so large that (0, m„) contains 7t_1(0,M„) as well as the numbers 
J1 > • • '5 Jn ,• 

Our definition is complete and let us observe the following: 

(6) TT-HO, M„-]) g (0, mn_x) g 7r-1(0, Nn) i (0, o , 

(7) (0 = 1, 
(8) 

(9) iPen-W), Mn) (q = 1, ...,n), 

(10) max /'<n-1)< min i<">, 
i s e s n - 1 8 ISBSB 8 

(11) every two is separated by j™: / ' ¿ " ^ " W ^ . 
Now we shall use that there is an orthogonal series (4) with partial sums Sk(x) 

which diverges unboundedly a.e. on [0,1]. This gives that there is a sequence 
such that with gk — 2 Pi we have 

/ = i 

(12) sup max ^ ( x ) - ^ » ! ==» (a.e.). 
it IL<ISPN 

Let now » 

(13) </>„)(*) = </>„)(*) = y ? i n + e ( * ) (*eflUJ), 

(14) = 

for n = l , 2 , ... and Q — \,...,pn and let i/k(x)—0 (x€[0, 1]), bk=0 otherwise. 
i 

Since each tj/k is orthogonal to all but at most one ipt, l ^ k and since J 1/4 
o 

(k, 1=0, 1, ...), a standard argument yields that the system {ij/k}^0 can be extended 
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onto [—1, 1] in such a way that it constitutes an ONS on [—1, 1], and for every 
JC6[—1, 0) all but at most two of the numbers (*)}£. o are zero. 

By (10), (11), (13) and (14) the A>th partial sum sk(x) of 

¿ W . t o 
1=0 

is equal either to 0 or to some at(pi(x)/2 if x£[0, 1]. Here / tends to infinity 
together with k (take into account that if k>m„n then necessarily />#„), and by 

J J (alcpl(x)fdx= ¿a?<~, 
1 = 0 Q 1 = 0 

at(p,(x) tends to 0 a.e. as /— Hence, sk(x) tends to zero a.e. on [0, 1] as 
k—oo and so {•SfcMKlj is convergent a.e. on [—1,1] (for x€[—1, 0), {jt(x)}r=i 
is constant from a certain point on). 

However, by (6), (7), (13) and (14) 

2 2 btM*) = o (xe[o, i]), 
*=0 l€it" l№ 

hence by (8) and (9) 

= ¿ - j f l f c + i P f a + . i * ) = y ^ + i W - ^ W ) (1 S Q S pn) 

and thus, using (12), we obtain that 

2 2 W ,(*) 
k=o lex-Hk) 

diverges a.e. on [0,1]. 
The necessity of the assumption concerning 7t-1(fc, can be proved similarly, 

we omit the details. 
The proof of the necessity is thus complete (clearly, it is indifferent that the 

constructed system is orthonormal on [—1,1] and not on [0,1]). 

II. Sufficiency. 1. First we prove that there are no integers 

< yi < x2 < y2 yiK+2 < XiK+3 

with n(xj)=7t(x,) (O^fl^AK+3) but ic(yj)p£n(y,) (l^j,Iz~4K+2, j^l). 
Let us suppose the contrary and let n(xj)—k ( 1 S j s 4 K + 3 ) . We distinguish two 
cases. 

15* 
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(a) At least. 2K+1 of the distinct numbers n{yj) (1 ^ j^4K+2) are less than k. 
We may suppose without loss of generality that 

< yi < y2K+1 < x2k+2, ( l ^ j S 2K+1). 
For any n, n—1 (0, n) is the disjoint union of sets of consecutive integers, i.e., for 
some r„, 

(15) 7 r - H 0 , n ) = (a i"> ,M" ) )U . . :U(a i ;> ,b< n
n

) ) 

where ( l ë / < T „ ) . Let us put n=k-1 into (15) and let us determine the 
numbers ij by Since ( l s / 5 2 t f + 2 ) does 
not belong to 7 t - 1 ( 0 , k— 1), we have 

< af-1' S b?-» ^xj+1 < a?-? (1 s j < 2K+1), 

hence the numbers ilt /2 , . . . , /2K+I are all different from each other. 
By the assumption of our theorem there are numbers 1 ... 

and 1 so that 

(16) «"HO, fc-1) = ^ -"JU. - .U^- 1 ' , 6£"1))Uir-1(«i)U...Uir-1(nx). 

Now at least J^+l , say ii, i2, ..., ¡k+I> of the numbers /j, Z2, •••, hK+i a r e dif-
ferent from every lj ( l ^ j ^ K ) (i.e., we may suppose without loss of generality 
that for l^j^K+l, l ^ j ' ^ K ) and at least one, say n fa), of the K+1 
distinct numbers 7i(^), n(y2),..., n(yK+1) is different from every rij (1 ̂  j=K). 
Thus, y1 does not belong to 

• ( « Ç - 1 » , ¿ Ç - " ) t i . . . U i f l g r « " 

since ¿¡*_1)) and i ^ l j for l^j^K and also yi does not belong to 

since 7i(yi) is different from every (1 ^ j ^ K ) . By (16) this means that 
Î 7r-1(0, k—1) which contradicts the assumed inequality This contra-

diction proves our assertion in the case (a). 
(b) If at most 2K of the numbers yx, . . . ,y i K + 2 are less than k then at 

least 2K+\ of them are greater than k. Now using 7t_1(/c+1, <») instead of 
7t-1(0, k—1) we arrive at a contradiction exactly as above. 

2. Let for k—0,1,2,... 

nk = {n-l(k)n(a<,"\ bf)\n = 0,1, 2, ..., 1 s j s t„} 

(for the definition of a("] and bf see (15)). Our next claim is that for each k and 
x€7t-1(/fc) there are at most 8K+3 distinct sets A£llk with xÇA. In fact, if 
there were numbers «!<«;><...<n8 K + 4 and for each l ^ y ' ^ 8 ^ + 4 an 
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such that the sets ¿¡"j))n7r_1(fc) are all different then either for at least 
4K+2 of the j's we would have 

(17) ( a ^ Y ^ - l ) ^ " 1 ^ ) ^ 

or for at least 4K+2 of the j's 

(by+^b^nn-'ik)^®. 

We might suppose the first case and also that (17) holds for j — l, 2, ..., 4K+2, 
i.e., for 7 = 1, ..., 4K+2 there would be numbers 

Putting * x =*6(^ ) , i>^ ) )n7i- 1 ( f t ) - ' and yj=a\y~ 1 (lsjs4K+2) we would 
have y^n-^O, nJ+1) but J ' j i nj), i.e., 7t(yj)^tij+1<7i(yj+1) (Is/==4X4-1), 
and also y} $ 7c_1(/c). Thus, we would get a system of numbers 

*4K + 3 < J^K + l < x 4 K + 2 J l < x x 

with n(x})£k (Is/==4X4-3) but n (y j ) ^n (y r ) (\^j,j'^4K+2, j ^ j ' ) and this 
would contradict the fact proved in point 1 above. 

3. After these preliminary considerations we turn to the proof of the sufficiency 
part of our theorem. First of all, by point 2 above 

2 2 f(2",<Pi(x)Tdx^(ZK+3) 
it A 1=0 

and hence 
lim 2 ai<Pi(x) = 0 ( a e ) 

independently of the choice of the sets Ak£llk. 
Let us suppose that the series (4) converges a.e. and let x be any point in 

[0, 1] for which 

(18) lim 2 "i<P,(x) = 0 (Akenk) k-°°i(Ak 

(19) lim sk(x) = s(x) U ( x ) = ^ « ¡ ^ ( x ) ) 
V 1=0 ' 

exist. It is enough to show that (5) converges at this point x. 
From (19) we have also 

(20) lijn(sk+,t(x)-sk(x)) = 0 
whatever be. 

For a given p let p-c.p^p2<p3 be chosen so that n(0, p) Q (0, pY), n_1 (0, p^Q 
^(0, P2), n(0, p2)Q(0, pa) be satisfied. For n^p3 we have n_1 (0, n)3(0, p3)^ 
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¡5 (0, p2) and by the assumption of the theorem 

(21) «"HO, n) = ( « i f , b « ) U . . . U « , ¿ j M ) U n - H f c O U . . . U w - H f c , ) 

for some ix-<....*=.ia and where x + e^-K (if T=0 or £>=0 then the 
corresponding terms are missing). Since (0, p2)Q7i-1(0, n) w e m a y assume (by 
increasing K by 1 if necessary) /i = l, (0, /»i)^(fliB), ¿in)) and then, since a ) = 
g(0, p2)> w e can drop those of the k/s for which kj ^ . Thus, we may assume 
that in (21) each k j > px and so, since 7t_1(0, px)j2(0, p), 

n - \ k j ) n ( p + 1 , fo<n)) = T r - H ^ n ^ « , 6 f > ) ^ ¿ j » ( l = j s T). 

For l ^ y ^ x and 2=s/S<? let A(P=n-1(kJ)C](a^\ Then A?€Ilkj ( 1 s /=5 t , 
1 ^ / S g ) and for we have the representation 

7 i - i ( 0 , n) = (0, p ) U ( p + l , b W K " ) , ¿ > f , " > ) U . . . U « , fc<;»)U 

U U ( K - W N L M J 0 ) 
v 1 = 1 ' 

and here the terms on the right are already disjoint. According to this 

n p I 
2 2 ai<Pi(x)- 2ai<Pi(x) = 

*=0 i 6 it - »(fc) ¡=0 I 

= \{2+ 2 + 2 2 + 2 2 - 2 2 2 kW*)-i^.OO 
|Vi=0 i=p+1 ;=2 i = f l (n) j = l i€Jt-^fcp J=1 1=1 jg^C/K '=0 

°1 " j = 2 % ° i j - l j = l ¡€Jz-'(kj) 

+ 2 2 1 2 «1*1 (* ) | 
j - i 1=1 , .^ (0 

and (18) and (20) give that here the right hand side tends to zero as p—«> by 
b ^ S a f ^ b ^ p (2iSjtzg) and k j > p (notice that w ^ k ^ n ^ for l ^ j ^ x 
and take into account that q+t^K). Since sp(x)-+s(x) as and p3= 
=p3(p) was arbitrary, we get the convergence of the series (5) at x and the proof 
is complete. 

P roof of Theo rem 1. Let us arrange the non-void sets (Q t + 1 \Q f c )n 
"k 

n( .P m + i \P m ) mto a sequence A0, Alt ..., A„,... in such a way that Qk— (J A, 
1 = 0 

(A:Si) be satisfied for some sequence n^n^... . 

/. Sufficiency. Let us suppose (i), (ii) and the a.e. convergence of {¿?(x)} 
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where sj? are the g-partial sums of the series (1). Let for k=0, 1,2, . . . 

(22) <Pk(x) = 2 W.(*). h = iTJ^f 

if b k ^ 0 and 

(23) 0k(x) = , - L - r 2 <Pi(x\ h = 0 
X 2 i 

in the opposite case. Then {<£t}£°=0 is an ONS on [0, 1] and if SK denotes the 

A:-th partial sum of the ordinary orthogonal series 2 b i $ i (*) then 
1 = 0 

(24) s°(x) = Snk(x) (k = 1,2,.. .). 

(i) gives nk+1—nk^K by which 

2 2 / (Stixy-SJx))* dx^K 2H = K 2 a ? < 
l = l i i | , S I < » k t l l ) fc=0 U N " 

and so 
l i m S , ( x ) - S „ k ( x ) = 0 n k + 1 ) 

oo 

almost everywhere. This, (24) and the assumed a.e. convergence of }iT=i 

imply the a.e. convergence of 2 bi $i(x). 1 = 0 

Let now n:N*N be defined by n(I)=k iff A,QPk+1\Pk (/, k=0, 1, ...). 
Clearly, n is "onto", n~1{k) is a finite set for each k and Pk+1= U A, i e. 

= 2 2 & « * ¡ t o -
1=0 itn-Hl) 

By (ii) 7i_1(0, k) and n~l(k, are the union of at most K sets of the form 
(/, m), 7i-1(/) or {/}=(/,/), hence this n satisfies the assumptions of Theorem 2. 

Applying Theorem 2 to n and 2 bi ®i(x) and taking into account the above 
1 = 0 

proved fact that the a.e. convergence of {¿*(x)}r=i implies that of ¿ 6 , &i(x), 
1 = 0 

we obtain the sufficiency of conditions (i) and (ii). 
II. Necessity. First let us prove the necessity of (i). Let us write shortly Qk = 

= Qk+i\Qk, Pk—Pk+i\Pk- If (i) does not hold then for each n there are a k„ and 
numbers < . . . < k(

n
n) < < . . . < № such that 

0 * Q * k npkMaq* n / > c . . . c e ; f)PlM. n 1 n 2 n n 

We may suppose i l " ^ * « (n=1,2, . . . ) . Let Q* K f lP*^ , j <n)<E f l P * ^ 

(1 Using the orthogonal series 2 ak<Pk(x) and the sequences p„, q„ from 
ft = 0 
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(12), putting 

= a , = & ( * > ( * ) = -=•© + ( * ) ( ^ [ 0 , 1]) 
e e 'i ' e 'p B 

for n = l , 2, . . . , e = l, ..., n and ¿¡=0, ^¡(x)=0 (x€[0,1]) otherwise, and extending 
these to an ONS on [ — 1,1] exactly as above in the necessity proof of Theorem 2 
we get a series 2 brfi(*) f ° r which 2 b-,<pi(x)=0 and 

UN" >6Qk 

2 bM*) = ( 2 + 2 ) = 
e P„-I e 'P„-I 

= 0 + 2 b , < p j f M ( x ) = + J x ) ~ s
a (*) ) 1], i e ^ p n , n = l , 2 , . . . ) . 

5 = 1 S S ^ 'n"1"* It 

Hence {itWJj^lj converges everywhere on [—1, 1] but {i* (*)}£= i diverges a.e. 
on [0, 1] (see (12)). 

Thus, the necessity of (i) is proved and from now on we assume its validity. 
Let us now consider the sequence of the sets A„ introduced at the beginning 

of the proof and the mapping n used in the sufficiency proof. Using (i), (ii) can 
be expressed as: there is a Kx such that for every k, 7I-1(0, &) and n'^Qc, 
are the union of at most sets (/, m) and 7t-1(/). By (i) the a.e. convergence 
of is equivalent to that of 

2 2 « I 9 I ( * ) = 
1=0 ¡€¿1 1=0 

(see point I above) where we used the notations of (19) and (20). Since the a.e. 
convergence of {.^(x)}^ is the same as the a.e. convergence of 

2 2 w ( x ) = 2 2 
*=oiep l [ + 1 \p f c t = o / e * - i ( t ) 

the necessity of (ii) easily follows from Theorem 2. 
We have completed our proof. 
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Lr inequalities for Walsh series, 0<r< 1 

WILLIAM R. WADE 

1. Introduction. Let iv0, u^, ... denote the Walsh—Paley functions (see [5]). 
Thus, for each integer k^O and each point x belonging to the unit interval [0, 1], 
the identity 

(1) wk (x) = j j exp (iKXj+i kj) 
j= 0 

holds, where the numbers Xj and k} are either 0 or 1 and come from the binary 
expansions of x and k: 

x= Zxj2~J, k= ZkjV. 
j=i J=o 

(When x€[0,1) is a dyadic rational the finite binary expansion is used.) 

Given any Walsh series W = 2 akwk > denote its n-th partial sums by 
k = 1 

n — 1 
Wn = 2 akWk, fc = l 

its n-th partial Cesaro sums by 

k-l \ n) 
and its n-th layer by 

2 ak*>k, 
fc = 2 " - x 

for n=1, 2, ... . Notice that the Walsh series W has no constant term, and thus 
0 0 

that W = 2 • This has been done for convenience to avoid writing a separate 
n = l 

constant term in each of the inequalities derived below. It does not affect the 
generality of our results. 

In Section 2 a basic inequality is derived which is a Walsh series analogue for 

Received February 15,1982. 
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Lr norms, 0 < r < 1, of a trigonometric result for Lp norms, 1 < p < due to 
MARCINKIEWICZ [7]. In Section 3 we shall apply this basic inequality to estimate 
the Lr norms of the following three series: 

s-U^r^r 
(3) S . = ( ¿ ( » V - « * ) " ) , 

and 

(4) 5 3 = ( J z l „ 2 ) 1 2 . 

The results of Section 3 are summarized as follows. 

Theorem. Let 0«=r<l. There is an absolute constant a, depending only 
on r such that given any Walsh series W the following three inequalities hold: 

(5) I I S J ^ a J ^ I L x , 

(6) 115,11^ S a J S a l l t i , 
and 
(7) I I S B k r S a J S J i i . 

In the case that W is a trigonometric series and l < r < ° ° , the theorem above 
was obtained by ZYGMUND [13]. SUNOUCHI [11] used Zygmund's techniques to show 
that for Walsh series, the Lp norms of the series S2, and S3 are equivalent, 
for each 1 

In Section 4 we apply the theorem above to obtain some inequalities relating 
a Walsh series to its term by term dyadic derivative. The surprising thing is that 
under suitable hypotheses, there is a direct relationship between the Hr norm of 
a function / and the growth of the partial sums of the formal dyadic derivative 
of the Walsh series representing / . 

It should be pointed out that if the series and S s are replaced by 
appropriate maximal functions, then equivalence in Lr norms, 0<r-=l , can be 
restored. In connection with this remark see BURKHOLDER and GUNDY [2] , especially 
Section 5. We do not proceed in this manner because the maximal function form of 
the theorem above proves intractable for studying the term by term dyadic derivative. 

2. The basic inequality. Given a Walsh series W, denote its maximal func-
tion by 

W* = sup {Wrl 

BURKHOLDER and GUNDY [2] have shown that given ()</•«= °° there exist constants 
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ar and A, depending only on r such that 

(8) a, \\W*\\Lr si I J J2)' á A, \\W*\\Lr 

holds for all Walsh series W. 
Given any function / , integrable over the interval [0, 1], denote its Walsh— 

Fourier series by W[f]. Denote the partial Cesaro sums of W[f] by a„[f] and the 
и-th layer of W[f] by An[f] n — 1,2, .... It is well-known (see[5]) that if 4-
represents dyadic addition then 

(9) f / ( ' ) Í *2 ^ ( * + O) dt 

for x€[0, 1] and / 2 = 1 , 2 , . . . . 
Our main goal in this section is to sketch a proof of the following inequality. 

Lemma. Let 0 < r < 1 and suppose that plt p2, ... is a sequence of integers 
which diverges to There exists a constant depending only on r, such that 

\r /2 1/r 1 í °° ч ! ^ 

j ^ M
 dx\ ^ V U - H ^ 

holds for any sequence f i , f , ••• offunctions which belong to /ДО, 1]. 

To prove this lemma set <?(JC)—^ 2/n(x)j ' > for X£[0, 1], and assume without 

loss of generality that «pCL^O, 1]. Let r2, ..., denote the Rademacher functions, 
i.e., r„ = w2n-i for и=1 ,2 , ..., and consider the series 

F(x, y) = ¿ rn(y)f„(x), x, уф, 1]. 
n=1 

We claim that the assumption (p^L^O, 1] guarantees that for a.e. 1] some 
subsequence of the series F(x, j>) converges in the L1 (dx) norm. In fact, according 
to Khinchin's inequality there exist constants br and Br, for 0 < r < ° ° , such that 

(10) br ||cp\\rLr * f f IF{x, y)\' dx dy s Br \\<p\\r
Lr 

о 0 

In particular, for r= 1 we have that 

( " ) I f 
о 0 

By the Lebesgue dominated convergence theorem the left-hand-side of (11) converges 
to zero, as n, m — T h e r e f o r e F(x, y) converges in the L1 norm on the unit 

2>-ЛУШХ) k=a ЛЧ1/2 

2ЯШ dx k=n > 
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square [O, 1]X[0, 1]. In particular, for a.e. }>€[0, 1] there exists a subsequence 

«!<m2<... such that ¿ rn(y)fn-^-F{ •, y) in Z-^O, 1] norm, as and the 
n = l 

claim is established. It follows from (9) that 

(12) A{H-,y))= 2rn(y)Ak(fn) 
n=1 

holds for a.e. ^€[0,1] and for all fcsl. 
Next, we show that there exist constants cr and C,, depending only on r, 

such that 

(13) c,ML' ^ { / [ ¿ & l\fn, xfdx}1' ^ Cr \\cp\\L1 

holds for 0 < r < l . Toward this let I denote the middlé term of (13) and apply the 
two-dimensional version of Khinchin's inequality (see p. 84 of [7]) to I r . Follow 
up by applying Khinchin's inequality to the inner-most integral of the resulting 
triple integral. What eventuates is that there exist constants dr and Dr, depending 
only on r, such that . 

i I f » / « , \¡¡W2 

d r j f{2i{2irn(y)A[fn,x'\) J dydx ii 

f f ( J ( J rn(y)Ak [fn, *]) J dydx. 
Continuing, we apply (12) and the Burkholder—Gundy inequality (8) to conclude that 

(14) ardr f J \F*(x, y)\rdxdy s /' ^ ArDr f J \F\x,y)\< dxdy, 
. 0 0 0 0 

where F*(x,y) represents the maximal function sup \W2„[F{ •, y), x]| for each 
n>0 

x, 1]. However, since for a.e. y the function F(- ,y) is integrable, it is easy 
to see that 

/ / |F(x, y)\- dx dy =S / / \F*(x, y)\' dx dy S y, f f |F(x, y)\ dx dy 
o o 

for 1. (The constant yr either follows from known martingale inequalities 
or from a weak type (1, 1) estimate of YANO [12]. In connection with this see the 
comment on p. 734 in [1].) Consequently, inequality (13) follows from (14) and (10) 
with cr=arbrdr and Cr=yrArBrDr. 
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To complete the proof of the lemma, observe by SUNOUCHI [11] (pp. 7 — 8 ) that 
corresponding to each p„ there are numbers e$n)£{0, 1} (J, n=\, 2, ...) such that 

(15) ™PWPn[fn]= 
j=i 

It follows from (13), then, that 

/ ( J Wl [/„, x f dx = / ( J ( J s"j Aj [wp„/„, ^ f dx 

лM =O y'2 
2 „ / . > * ] d x . 

u n = l / = l > 

In particular, another application of (13) results in the following inequality: 

/ ( J n , [ / n > ^])r2 dx S c r - ' C r
+ ' ( / ( J K J * ) / „ ( x ) | 2 ) 1 / 2 r f x ) r . 

The proof of the lemma is now complete with J? r=C r/c, since |wpJ = l for all 
integers n. 

3. A proof of the theorem. To prove (5), set pk=k and 

AW = jajWj(x), 
j=o 

k-1 
for 2"-1=sA:<2", x€[0, 1], and observe that trJ^A;-1 2 jajWj. It follows 

j=o 
from the lemma proved in Section 2 that 

f } ( ~ 2"-l Y ft—i \ 2 V / 2 l i / ' } / » 

Since /¡f is dominated by 

(16) 8 • 2 - 3 " ( ̂ ¿ w l = 8 • 2-"(W2n-ff2nf, 
Vj=o / 

for 2"~1^A:<2n, it follows that (5) holds with ar=l/8" /?r. 
B - l 

To verify (6) begin by observing that W„—an=n^1 2 holds for 
j = i 

any integer k£1. It follows from the Schwarz inequality that 

Z G T r - a * 2 2 - " 2 2 1 ( W ^ - W j f . 
n = l n = 0 t = l j = 2

k

-
1 
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If we set 

G = ¿2"»2 

n=o t = i 

we have by (3) and the lemma that 
(17) llSallr- ^ Pr f[G(x)]ll2dx. 

o 

Here we have used the lemma on a connected block of terms of a Walsh series instead 
of partial sums of Walsh series. This application is justified since such blocks are 
differences of partial sums of Walsh series. 

Continuing, observe that 

\Wr-W+-i\*\Ak\ + \Ak+1\ + ... + \Aa\ 

holds and write Aj=2J,i-2~J,iAj for each ji[k,n]. Hence another application of 
the Schwarz inequality followed by a routine calculation results in the inequalities: 

G s 2 2~" 2 2k i 2 2~-'/2) i 2 2m ^ 3 )[2 2 2"" 2 2"12 i 2 2;/2 • 
n=0 *=1 \j=k ' \J=k ' n=0 k=1 \j=k ' 

Reverse the two inner-most sums, and sum 2k/2 from k=l to k=j to verify that 

GS6 22-" 22JAJ-
11=0 j=1 

Now, interchange the order of summation again, and sum 2~" from n=j to n—°= 
to conclude that 

j—o 

Finally, combine this inequality with (17) to verify that (6) holds with ar=6/?P. 
To establish (7) begin with the trivial identity 

W2n-W2«-i = (W2n -c2n) + (<r 2" - o> - 0+(^2" -1 - - 0 

which holds for «=1 ,2 , ..., and apply the Schwarz inequality to conclude that 

(18) • 

Let Si represent the second term on the right hand side of (18). Correcting a 
misprint which appears on p. 9 of [11], it is known that 

l/T , | ! < 1 2 'V 1 l ^ * - 0 * ! 2 
. I c v — c t 2 I — ^ 2 i • 
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Indeed, 

K» S y \ak+1-ak\ [ k(<jk+1-<rkT . ] / 2 ^ ^ 
f Ic^Z"-1 r A=2"-1 

mfiy 
r fc^"-1 r fc=2"-i /C 

It follows that SA^ Moreover, by Jensen's inequality it is known that 
HSJ^ I ISJ i - i - In particular, 

(19) I I S Y ^ ^ H S J I X . 

2"-l 
To estimate ST, observe that 2 J~ a a n d therefore by (16) that 

J=2"-> 

\Wr-oA2 - i "l H f ¿ ^ 1 . 

A final application of the lemma proved in Section 2 yields the following inequality: 

Л~ 2» - l j |2\ 1/2 
2 2 r 3 dx = prm#- . „ n = l j = 2 " - 1 i=1 | ' 

Hence by (18) and (19), we conclude that 

||S,lit (2^+2^)11^11^. 

Inequality (7) therefore holds with ar=(2pr
r+2rl2)l/r. 

4. An application. BUTZER and WAGNER [3] introduced the following definition. 
A function / defined at points x, x+2~k (k=l, 2, ...) on the unit interval is said 
to have a dyadic derivative df at x if the following limit exists: 

df(x) = lim 2 2k-1[f(x)-fix + 2~k)]. 

It is not difficult to prove that dwk(x)=kwk(x) for every x£[0, 1] and every integer 
oo 

ftsO. Thus given a Walsh series W = 2 akwki its t e r m by term dyadic derivative 
4 = 1 

is given by 

W{x)= 2kakwk(x). 
k=1 

Notice that 

(20) WN = 2 kak wk = N(Wn- aN) 
k=1 

holds for all integers N ^ 1. 
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Let ()</•=1 and let W be a Walsh series. We shall use the following measure-
ments of how rapidly k~3l2Wk and 2~2 fV2 k decay: 

(Jp-*»wfV 
In spite of the suggestive notation, neither' of these measurements are norms; the 
triangle inequality fails to hold. Observe by Jensen's inequality that 

\W\\%r^ ZWt/k*\\Li and ¿ 1 1 2 - ^ 1 1 ^ . 
k=l k=l 

Thus \\WWy and || W are both finite when W is a Walsh—Fourier series. 
Recall that given a Walsh series W, the partial sums {W^, H^O} form a 

dyadic martingale. Hence if S3 is given by (4), then the dyadic Hr norm of W is 
given by \\W\\H = | | 1 | L r (see [6], especially the remarks on p. 193). Moreover, 
by the Burkholder—Gundy inequality (8), it follows that W belongs to dyadic 
H, if and only if W*£Lr. In particular, since 

we have that || is finite when W belongs to dyadic Hr. 
It is now easy to see that for 0 < r < l there exists an absolute constant a, 

(depending only on r) such that 

(21) . I l t f l k ^ «,11^11^, 

(22) \ \ m u r ^ « , \ \ w \ \ g i , 

and 

(23) \\W\\Br^ ol^WU,. 

Indeed, by (20) ||tf'||,r=||<S'illf and | |^IU p=| |5 2 | | t r so inequalities (21), (22), and 
(23) are restatements of inequalities (5), (6), and (7). 

Inequalities (22) and (23) are most useful. According to inequality (22), if 
W is the Walsh—Fourier series of some function / belonging to dyadic Hx, then 
Htf'll^ <oo for all 0 < r < l . In the case when df=W (see [8], [9], or [10]) we have 
that df can be represented by a convergent Walsh series whose partial sums are 
reasonably well-behaved. According to inequality (23), if the partial sums of W are 
suitably well-behaved, then the original Walsh series must belong to dyadic Hr. 

In particular, if j ? W^I^WL^00, then W belongs to dyadic H„ 0 < r < l . 

I l ^ l k - ( ¿ № l) \ W \ \ •Wr 
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Ergodic sequences of integers 
J. R . B L U M * 

1. Introduction. Let S = {klt k2, ...} be an increasing sequence of positive 
integers. We shall call S an ergodic sequence provided 

(1 .1) l im — e i k j " = 0 for 0 < a < 271. 
n — oo H 

The reason for the terminology is as follows. If U is any unitary operator on 
a Hilbert space H, then if (1.1) holds we have 

1 " 
(1.2) strong limit — 2 Ukj = p> 

n-»oo 11 j = 1 

where P is the orthogonal projection of U on {fdH \ Uf=/}. Moreover if (1.2) 
is to hold for every such U, then (1.1) is both necessary and sufficient. For details 
see e.g., [1]. 

Ergodic sequences of integers have been constructed in [1] and [2]. In [4] 
NIDERREITER gives a method of constructing ergodic sequences which have density 
zero. In this paper we use a result due to WIENER and WINTNER [5], to construct large 
classes of such sequences, both random sequences and nonrandom sequences. Here 
is what we mean by a random sequence. Let (Q, ¡F, P) be a probability space and 
let T be a measure preserving, ergodic transformation defined on Q. Let 
such that 0<P(A) . Then there exists a measurable set Q0QQ with P(£20)=l 
with the following property. Let co£i2 and define the sequence S(co, A) by 

(1.3) S(o>,A)={k\lA(xko>) = \} 

where XA is the indicator function of A. Then for each co£Q0 we shall see that 
S(co, A) is an ergodic sequence. In Section 2 we present the necessary background 
material. In Section 3 we consider nonrandom sequences and in Section 4 we construct 
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the random sequences mentioned above. Finally in Section 5 we mention some 
possible generalizations and related matters. 

2. Background material. In this section we state two results which we shall use 
subsequently. Let p be a Borel measure on the circle group T with Fourier 
coefficients (i(n), n=0, ±1, .... Then we have 

1 N 

Theorem 1. (i) Let t£T. Then /¿({T})= lim 2 fi(n)e» and 

2 N+ 1 -n 

(") 2 IMto)|2 = Jim ^ J |/Kn)|2. r JV-OO iV B = 1 

The proof may be found in KATZNELSON [3, p. 42]. 
We shall primarily consider measures for which the Fourier coefficients are real 

1 N 
so that in (i) we will have fi({r})= lim — 2 Hn)e'nz-

o j y x 
Now let {a„,n=0, ±1, ±2, ...} be a bounded sequence of numbers. Suppose 

for each k=0 , ±1, ... the limit 
1 N 

_ — y. 
2N+1 (2 .1) Hk = J im -TTrrr" 2 

exists. The following result is due to WIENER and WINTNER [5]. 

Theorem 2. (i) There exists a positive Borel measure n on T such that 
ft(lc)=p.k, k=0, ±1, ±2,... and 

1 N 
(ii) jim i 2 dne'nX=0 for every X with Q^X^ln which is a continuity 

point of p. 
Since we shall only consider real sequences {an}, we shall restrict ourselves to 

one-sided sequences {att, n = 1,2, ...} and (ii) becomes 

(2 .2) l i m i - i a „ ^ = 0 N—OO J\ x 

for A a continuity point of p. 

3. Nonrandom sequences. Let S = {k1, k2, ...} be a sequence of positive 
integers. For each n = l , 2 , . . . let Sn — {k1, kn), and for each r = l , 2 , ... let 
Sn)={ki+r> ••••> k„+r). Assume that for each r—1, ... 

(3.1) v r = l i m l | 5 n n s « | n 

exists, where \A\ is the cardinality of A. Let y_s(- ) be the indicator function of S. 
Then we have 
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Theorem 3. Suppose S has positive density, i.e., 

(3 .2) l im-J - 2 x s U ) = d > 0 . 

Let v0= 1. Then pk exists for all k=0, ±1, ... for the sequence feO)} and 
/ik=dvk, k = 0, ± 1 Let p. be the measure with Fourier coefficients fi(k)=pk. 
Then we have 

(3 .3) l i m — ¿ e ' V = 0 n J=1 

for every X which is a continuity point of p.. 

The proof follows easily from Theorem 2. We see that 

1 « a(ri\ 1 

/•= 1, 2 where a(n) is the number of ones among XsU)> j — n . Let 
pr=H-r=dvr, r=0, 1,2, ..., and let p. be the measure guaranteed by Theorem 2. 
Then we have 

lim ô Ie"v =MXsU)eijX = = 0 

for 0<A<27t and 1 a continuity point of p. But a(«)-"°° and -*d. 
n 

This result allows us to give many simple examples of ergodic sequences of 
integers. If Vi = l, and hence vfc = 1 for all k, then p is the measure which puts 
mass d at e2ni and every Borel set of T which does not include the point e2ni 

has /¿-measure zero, and we have an ergodic sequence. 
We can apply the theorem in two ways. One way is to look at simple measures 

on T, calculate their Fourier coefficients and then construct ergodic sequences 
which give rise to these coefficients. The other is to look at certain sequences and 
verify the appropriate conditions. 

Here is a simple example of the first technique. Consider the measure p. which 
puts mass 1/2 each on e"1 and e2ni. Then fl(n)—0 for n odd and fi(n)= 1 f o r « 
even. If S is the sequence of even integers then the numbers Xs(j) satisfy the con-
ditions of Theorem 2. However the sequence k„=2n is not ergodic since 

1 " 
lim— yemk'=l. Now let {rk, k=l, ...} be an increasing sequence of positive 
" n j=1 

integers such that lim (/-A+1—/-t)=oo, lim rk+1/rk=l. Modify the sequence S in n it 
the following way. When k is even leave the elements of S between rk and rk+1 

as they are. When A: is odd, add one to each k„ between rk and rk+1. The resulting 
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sequence S' = {k[, k'2, ...} will be ergodic from Theorem 3, and the fact that now 
1 » 

lim— y e m k j = 0 . Clearly we can play the same game for any measure // which 
" n j=1 

puts mass l/k on each of e2niJ,k, j=0, ...,k — 1. 
Now let x be a normal number to the base two in the unit interval and let 

{x„,n= 1 ,2, . . .} be its coordinates. The measure p corresponding to this sequence 
then has Fourier coefficients /3(0) = 1/2 and fi(k)=\/4, k^O. It then follows from 
Theorem 1 that ¿¿{eiA}=0 for 0<A<2rc and therefore the sequence {k„,n = 1, ...} 
consisting of those integers for which x„ = l is ergodic by Theorem 2. 

4. Random sequences. Let (£2, 3?, P) be a probability space and let t be 
a measure preserving transformation mapping Q onto Q. Now let with 
0 <P(A). It follows from the individual ergodic theorem that there exists £20£^ 
with P(£20)=l such that for co£i20 the following limit relations hold 

Now let co£Q0 and consider the sequence {^(t-'co), ./ = 1, 2, ...}. By Theorem 2 
there is a measure n on T with (i(k)=P{AC\zkA), k—0, ±1, ±2, .... Now 
suppose T is mixing. Then we have limP{AC\TkA}=P2{A}. Moreover from 
Theorem 1 we see that fi is continuous except at e2m. We summarize in 

T h e o r e m 4. Let r measure-preserving and mixing, and let with 0<P(A). 
Then for almost all co the sequence {k„(A, co), n = 1 ,2 , . . .} consisting of those 
integers for which XA( tj<o)= 1 is an ergodic sequence. 

Theorem 3 enables us to give a simple proof of a theorem of NIEDERREITER [4]. 
Let r be a positive integer and suppose we are given r and a with 0 < a < 1. 
Then Niederreiter exhibited an ergodic sequence with v r=a. 

We shall show that the existence of such a sequence follows from Theorem 3. 
For let {*„(<»),/1=1,2, ...} be a sequence of independent Bernoulli random variables 
with P{Z„((o)=l}=a = l—i'{Zn(co)=0}. It follows from the law of large numbers 
that there exists a set of probability one such that 

for a> in this set. If co is in this set and {fc„(a>)} is the sequence of integers for 
which Xj{CD) — \ then {£„(&>)} is ergodic and v r =a for all 0. 

This method can easily be generalized to yield for certain values of rx, r2 , a l s a2 

ergodic sequences for which v r i=a l 5 v, =a 2 . Whether this can be done in full 
generality is not clear. 

(4.1) l i m - 2XA(jJo})XA^J-k(o) = P{An^A}, k = 0 ,1 ,2 , . . . . 
n-*-oo f i i _ i 
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5. Concluding remarks. The method used in this paper does not apply when a 
sequence has density zero. For example it is easy to show that the sequence 
{nk, « = 1, ...}, k> 1 and an integer, is not ergodic. On the other hand NIEDERREITER 
[4] has shown that the sequence of integer parts of nk when 1 is not an integer 
is ergodic. In both cases we have vr=0, r= 1, 2 , . . . . 

Moreover even when a sequence has positive density and each vk exists and is 
positive, the situation is not entirely clear. For example, it is possible to construct 
for each s such that 0 < e < l a nonergodic sequence with density d> 1 —s and 
also each 1 — e. Thus we are a long way having convenient necessary and suf-
ficient conditions for ergodicity of a sequence. 

Another unresolved question concerns the individual ergodic theorem. As 
mentioned in Section 1, if S = {kly k2< ...} is an ergodic sequence then the mean 
ergodic theorem holds for every unitary operator U. Now suppose T is a measure-
preserving transformation on a probability space (Q, 2F, P). We can then ask 

1 « 
if lim — y. f(Tk>co) exists a.e. for every SF, P). When S consists of all B-~ n j=1 
positive integers, this is of course the individual ergodic theorem. However, when 
S is significantly different nothing is known. 
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Weighted translation semi-groups with operator weights 

MARY EMBRY-WARDROP* 

1. Introduction. If cp is a continuous nonzero complex-valued function on 
and (S,f)(x)—[cp(x)/cp(x-t)]f(x-t) for x^t and 0 otherwise, then S is 

a semi-group of linear transformations on £?2(<%+, S is a strongly continuous 
semi-group of bounded operators if cp satisfies certain boundedness conditions. 
These semi-groups, called weighted translation semi-groups (w.t.s.) with symbol (p, 
were introduced in [4] and the subnormal w.t.s. characterized in [5]. 

In [4] it was shown that S is quasinormal if and only if <p(x)=Max for some 
constants M and a. In this case St=dLt, where L is the forward translation 
semi-group on (€). In [6] we proved that any strongly continuous quasi-
normal semi-group S on a separable Hilbert space is unitarily equivalent to 
the direct sum of a normal semigroup and a pure quasinormal semi-group Q on 

J f ) for some Hilbert space Jf. Furthermore, Q,=h(t)Lt where L is 
the forward translation semi-group on «S?2(52+, JT), h is a strongly continuous 
self-adjoint semi-group on X , and ( h ( t ) f ) ( x ) = h ( t ) f ( x ) a.e. for each f in 
-Sf2(^+, Jf) . Thus, the pure quasinormal semi-groups behave like quasinormal 
w.t.s. 

In this paper, we shall introduce w.t.s. on &2(M+ , J f ) for which the symbol 
cp is ft-operator-valued and study a few of their properties. 

In Section 2, we specify which operator-valued functions cp will be allowed. 
This class of semi-groups gives a rich supply of easily constructed examples. In 
particular, every pure quasinormal semi-group is (unitarily equivalent to) a weighted 
translation semi-group. Section 3 is devoted to characterizing subnormal w.t.s. 
on JS?2(^+, Jf). In Theorem 3 we show that S with symbol cp is subnormal if 
and only if cp2 is the compression of a strongly continuous self-adjoint semi-group; 
equivalently, there exists an operator measure on an interval [0, o] such that cp(x)2= 
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a 
= J rxdg(r). This last condition is precisely the characterization of subnormal 

o 
w.t.s. in [5] in the numerical case X = c 6 . 

Throughout the paper, we shall assume all Hilbert spaces to be separable. 
J2?2(á2+, j f ) is the Hilbert space of (equivalence classes of) square integrable weakly 
measurable functions from the nonnegative reals á?+ to the separable Hilbert 
s p a c e d . 3${X) or , Jf)) stands for the Banach algebra of continuous 
linear operators on X or Jf), respectively. A function S: 
is a semi-group if S0=I, the identity operator, and S,Sr=St+r for all r and 
/ in Afunction q>\ + is strongly continuous if lim || q>(t)f— q> (r)/|| = 0 
for each / in X and r in In this case, we write s-lim q>(t) = (p(r). The 
forward translation semi-group L ((L,f)(x)=f(x — t) if x s / and 0 otherwise) 
on J f ) plays a special role in ideas developed in this paper. 

A semi-group S of operators is normal if S*St = S,S* for all t, quasinormal 
if S¡ (SfS,) = (S*S,) S, for all t and subnormal if S is the restriction of a normal 
semi-group to an invariant subspace. An operator measure Q on [a, b] is a function 
defined on the Borel sets of [a, b] with values in such that e(0)=O, Q(E) 
is a positive Hermitian operator for each Borel set E, Q{E)<SÍQ{F) whenever 

n 
EQF and Q(E)= s-lim Y Q(E¡) whenever E is the union of a collection of pairwise 

¡ = 1 
disjoint sets E¡. If the values of Q are projections and Q[a,b]=I, then Q is 
a spectral measure on [a, fc]. Two integral representations which reoccur frequently 
in this paper are as follows: 

1) [8, Theorem 22.3.1, p. 588]. If H is a strongly continuous self-adjoint 
semi-group of operators, there exists a spectral measure Q on an interval [0, a] 
such that 

a 

Ht= f r'dQ(r), 
o 

2) [5, Theorem 2.1]. S is a strongly continuous subnormal semi-group if and 
only if there exists an operator measure Q on an interval [0, a] such that g([0,a])=/ 
and 

S?S, = Jj*dQ(f). 
o 

We shall also say that a semi-group S on X is the compression of a semi-
group T on X if X Qjf and St=PT,P for each t where P is the orthogonal 
projection of X onto X . 

2. Weighted translation semi-groups. Let <p: 9t+ —SS^X) have properties: 
i) for each JC in <p(x) is a one-to-one positive Hermitian operator, 
ii) {(p(x): is abelian, 
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iii) (p is strongly continuous, 
iv) there exist numbers M and a such that for all x and t in 

(p{x+tf-^M2a2'(p(xf. 

Such a (p will be called a symbol. We are requiring q>(x) to be positive 
Hermitian for simplicity. We use the other requirements to prove that the mapping 
t-(p(x—t)~1(p(x)(Ltf)(x) defines a semi-group which is strongly continuous. 

Conditions i) and iv) imply that if t^x, there exists a unique element C of 
such that q>(x) = (p(t)C. In this case, we write C =q>(t)~1(p(x). Even if 

<p(x) is not one-to-one, this factorization of <p(x) can be obtained [2]; however, 
<p(x)~l<p(x) would be the projection onto the closure of the range of <p(x) and the 
semi-group that we are interested in constructing would not have Sa=I. 

Lemma 1. Let cp be a symbol on X". Then 
i) (p(x)~1cp(x)=I for all x, 

ii) <f>(r) commutes with <p{t)~l q>(x) for all r whenever t^x, 
iii) (p(t)~x<p(x) commutes with (p(a)~1<p{b) whenever tSx and a^b, 
iv) [<K0~1<P(0][<P(0-1<P(J)] — <ii'('")-1<ii)('y) whenever r^t^s, 
v) (p(t)~lcp(x) is one-to-one and positive Hermitian whenever t =x and 

satisfies || <p (t)cp0)|| ^Ma 
vi) s-lim cp(x)~1(p(x + t)=I, 
vii) [(p(x)~1(p(x+t)]2=((p(xf)-1(p(x+t)2 for all x and t. 

Proof, i) follows immediately from definition of <p(;t)_1<p(;c). ii) by definition 
<p(x)=(p(t)[q>(t)~1(p(x)]. Since {<p(j)} is abelian and <p(t) is one-to-one, cp(r) 
commutes with <p(t)~1(p(x). Therefore, <p(x) = tp(t)1/2[(p(0 <P(*)]<P(01/2 and 
v) now follows from the fact that cp(x) and <p(t)1/2 are one-to-one positive Hermitian 
operators. The inequality in v) follows from condition iv) of the definition of q>. 
iii) follows from ii) and the facts that each <p(x) is one-to-one and {<p(x)} is abelian. 
iv) <p(r)-1<pC5') is the unique operator satisfying (p{s)=(p{r)[<p{r)~1(p{s)]. But 
[<p(r)-1(^(i)][<p(0_19'(J)] also satisfies this equation, vi) Note that for each k in Jf , 

|| [<p(.x)-i<p{x+i)-I]<p{x)k\\ = \\<p{x+i)k-q>(x)k\\. 
Since (p is strongly continuous, then s-lim <p(x)_1<p(x + ? )= / on the range of 
<p{x) which is dense in Jf. Since ||(jc)—1 (jc+r)—/1| 1 for t in 

[0, 1], we see that s-lim<p(x)~1<p(x+t)=I on all of J f . vii) Since cp(x+t)2<sc 
<zM2a2t(p(x)2 and {cp (x)} is abelian, then <p(x+t )4<scM4 a*' <p (x)4 and 
(<p(x)2)-1<p(*+02 can be defined in a fashion similar to <p(x)_1(p(x+/): that is, 
(cpffl^^tpix + t)2 is the unique operator C satisfying <p(x+t)2 = <p(x)2C. Since 
[<p(x)~V('x+0]2 also satisfies this equation (using the definition of q>(x)~1<p(x+t) 
and the fact that it commutes with (p{x-\- 0), the proof of vii) is complete. 
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Now let cp be a symbol on Jf. For each / in define the operator S, on 
JS?2(<%+, J f ) by 

M i x - Q - W x M x - t ) if x * t 
(1) №/)(*) = {

0 i f 

An argument directly paralleling one in [7, p. 211] can be given to show that 

(2) ||Sf|| = ess sup ||<H*)_1<P(x+OII-xiSt* 

Theorem 2. If cp is a symbol on J f , then S is a strongly continuous semi-
group of operators on i f 2 ( 5 2 J f ) . 

Proof . Note that (S0f)(x)=(p(x)~1<p(x)f(x)=f(x) by Lemma 1 i) so that 
S0=I on . if2(5?+ , Jf). A straightforward computation, making use of Lemma 1 
iii) and iv), shows that St+r=S,Sr for all t, r^O. It remains to be shown that 
S is strongly continuous. By equation (2) and Lemma 1 v) we have 

(3) II5(|| S Ma'. 

We argue as in [4, p. 211]. Assume first that a= 1. Let / be a continuous function 
of compact support in j f ) . Then 

I I S , / - / I I 2 = / \\cp(x)-W(x+t)f(x)-f(x+t)rdx. 

Let f>=ess sup | / | , supp/Q[0, k] and g{x)~b if jc£[0, k+\] and g (x )=0 other-
wise. Then X ) and for t ^ l , 

||<K*rV(*+0/(*)-/(*+0ll (M+ l)g(x). 

By Lemma 1 vi) and the continuity of / , 

lim | | < K * ) - M * + 0 / ( * ) - / ( * + 0 l l = 0. 

Thus, by the Lebesgue dominated convergence theorem, lim IIS,/—/||2=0. S is 
strongly continuous on a dense subset of Jf ) and consequently on all of 

JT) since S is uniformly bounded by M. 
Now assume that a is arbitrary in (3) and let Tt—a~'S, and e(t)=a~'<p(t). 

Then Q is a symbol on X and defines T by (1). Hence, the preceding result im-
plies, that T is strongly continuous on Jf); the same must be true for S. 

Hereafter, if cp is a symbol on X and S is the semi-group defined by (1) 
we shall say that (S, <p) is a weighted translation semi-group (w.t.s.) on X ) . 
Note that {S*f)(x)—(p{x)~1(p(x + t)f(x+t) and, consequently, by Lemma 1 for 
/ in Se \®+, ¿f), 

(4) (S?Stf)(x) = <p{x)-2<p{x+tff(x) a.e. 
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Thus, if P, is the positive square root of S*St, then (Ptf)(x)=<p(x)~1<p(x+t)f (x) 
by Lemma 1 vii) and v). A straightforward argument shows that S,=LtP, and 
ker Z,,=ker St where L is the forward translation semi-group on X). 
That is, P, is the positive factor and L, the isometric factor in the polar decomposi-
tion of St. 

The following examples give two ways in which to construct symbols and the 
associated w.t.s. 

Example 1. Let <p\ — SS{X) and assume that (p is one-to-one positive 
Hermitian-valued, nonincreasing and strongly continuous. If {<p(x)} is abelian, 
then it follows that cp satisfies the properties of a symbol. Consequently, (S, <p) 
is a strongly continuous semi-group. 

Example 2. Let 9 be a strongly continuous self-adjoint semi-group of oper-
ators on X. It follows easily that <p satisfies properties i)—iii) of a symbol. 

a 
Moreover, there exists a spectral measure Q such that cp(x) = J rxdQ(r) [8, p. 588]. 

0 
The inequality (p(x+t )2<^a2'(p (x)2 readily follows. In this case, (S, (p) has a simpler 
form than the general w.t.s.: 

(SJ)(x) = < p ( x - / ) - > ( x ) / ( x - r ) - <p(t)f(x-t) if x^t. 

We shall see in the following section that these are the only quasinormal w.t.s. 
Indeed, every pure quasinormal semi-group is unitarily equivalent to (S, <p) where 
(p is a strongly continuous self-adjoint semi-group (Corollary 6). 

In the next section, it will be convenient to consider symbols cp for which 
q>(0)=I. There is no loss of generality in making this assumption for if cp is a symbol, 
define (px(x) = (p(0)-1<p(*)- Then <px{0)—I by Lemma 5. Furthermore, by Lemma 5 
(p^x) is a one-to-one positive Hermitian operator, {<?>i (x)} is abelian and <px is 
strongly continuous. To see that cp^x+i )2<scM2a2' (px (x)2 we argue as follows. 
By definition of (p, \\<p(x+t)k\\ «Md\\cp{x)k\\ for all k in X . Therefore, 
||[<p(0)->(x-M)]<H0)fc|| ^MdWteiOr^cpix^ipimi Consequently, ¡[(pd^kW si 
sMdWcp^x)^ for all k in the range of <p(0), a dense subset of X. Thus, the 
inequality holds for all k so that <pa satisfies condition iv) of the definition of 
a symbol. 

3. Subnormal weighted translation semi-groups. Throughout this section, we 
assume cp(0)=I when cp is a symbol. 

Example 3. Let Q be an abelian operator measure on [0, a] with g[0, a]=I. 
a 

Define <p{x)2— J rxdq(r) where tp(x)a>0 for each x. It will follow from Lemma 4 
0 
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that cp is a symbol. Indeed, we see in the following theorem that these are exactly 
the symbols which define the subnormal w.t.s. 

Theorem 3. Let (S, <p) be a w.s.t. on y2(<M+, J f ) . The following statements 
are equivalent: 

i) (S, (p) is subnormal, 
ii) <p2 is the compression of a strongly continuous self-adjoint semi-group, 

iii) there exists an operator measure Q on [0, a] with Q [0, a]—I such that 
a 

q>(x?= J r*de(r). 
o 

Before proving Theorem 3, we shall prove a lemma which includes the equi-
valence of ii) and iii). 

Lemma 4. Let X be a Hilbert space and h: ^ (¿ f ) . The following 
are equivalent: 

1. h is a compression of a strongly continuous self-adjoint semi-group, 
2. there exists an operator measure on a jinite interval [0, a] such that g[0, a]=I 

and 

h(x)= J rxdg(r), 
o 

3. h satisfies the following four conditions: 
i) h(0)=I, 

ii) h is strongly continuous, 
iii) there exists a number a such that h(x + t)<szd h(x) for all x and t in 

n 
iv) 2 (bi-Xt+x^k,, &/)=0 for all finite collections {x0) ..., xn} in 32+ and 

¡,j=o 
{k0,...,k„} in X . 

Proof. We shall show that l=>-2=>-3=>-l. 
l=>-2. Assume that h(t)—PH(t)P where P is the projection of a larger Hilbert 

space onto X and H is a strongly continuous self-adjoint semi-group on the 
larger space. There exists a spectral measure [8, p. 588] on an interval [0, a] such 

a a 
that H(t)= j r'dp(r). Consequently, h(t)= f r'dPp(r)P and PFIP is an ope-

0 0 
rator measure on Jf with (PpP)[0,a]=I on X. 

2=>3. Assume 2 holds. 3 i) and iii) are immediate. 3 ii) follows from an applica-
tion of the monotone convergence theorem. To see that 3 iv) holds, observe that 
if E is any measurable subset of [0, a], then 

2 RXI+XI{q(E')ki, kj) = (Q(E) 2 rx>kh 2 ^ K) = ° 
i.J=0 * i = 0 /=0 ' 
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and consequently, 

i,j=0 0 

3=>1. The techniques used in this part of the proof are standard and will only 
be outlined. They are patterned after proofs in [1] and [3]. Assume that h satisfies 
the properties given in 3. Let M be the set of all functions / : Jf" such that 
f(x)=0 except possibly for a finite number of real x. If / and g are in M, define 

( / , g ) = Z < * » ( « + * ) / ( « ) , ? ( & ) > • 
a,b 

(See [3, p. 1254] for details.) Since (/, / ) ^ 0 by hypothesis, it is easily checked that 
( , ) is a semi-inner product on M. Let A/0= { / : ( / , / ) = 0 } and H0=M/Ma. 
Let ( , ) also be the inner product on H0 induced by ( , ) on M and let X 
be the completion of H0. 

For each t in 52+ define H(t): M-*M by (H(t)f)(x)=f(x-t). Then 
H is a semi-group and for / and g in M 

(H(t)f, g) = 2 (h(a + b)f(a-t), g(b)) = 
a,b 

= 2 (h(a + b + t)f(a), g(b)> = ( / , H(t)g). 
a,b 

It follows from the Cauchy—Schwarz inequality that M0 is invariant under H(t); 
consequently H{t) induces a self-adjoint semi-group of linear transformations 
on H0. If we can show that H(t) is a bounded transformation, then H(t) can be 
extended continuously to X . 

To prove that H(t) is bounded, we need to show that there exists K such that 
(H(t)f, H ( t ) f ) ^ K ( f , f ) for all / in M. Equivalents, 

2 (h (a+ b+2t)f(a), f{b)) S K 2 (h (a + b)f(a), f(b)). 
a,b a,b 

The argument given by BRAM [1, p. 76] can be duplicated in this situation to show 
that this inequality holds with K=a 2 1 (we use condition iii) here). 

Thus, H is a semi-group of self-adjoint operators on X. We next show that 
H is strongly continuous. Let f£M and compute 

( H ( t ) f - f , H { t ) f - f ) = Re2([h(a + h + 2t)-2h(a + b + t) + h(a + b)]f(a), f(b)). 
a,b 

Since h is strongly continuous on Jf , the right-hand side converges to 0 as 0. 
We conclude that H is strongly continuous on 

We complete the proof by identifying Jf with a subspace of X and h with 
the compression of H to that subspace. For each k in X define (Uk)(x)=k 
if x=0 and (Uk)(x)=0 otherwise. Then Uk£M, U is linear, and (Uk, Uk)= 
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= (h(0)k, A ) = | | 2 by condition i). Therefore, we may consider Uk to be an 
element of MjM0 and consequently of \\Uk\\3e,=\\k\\^ so that U is an iso-
metry from X onto a subspace of X . UU* is the projection P of Jf onto 
that subspace. We complete the proof by showing that U*PH{t)PU=h{t), so that 
h is unitarily equivalent to this compression of the strongly continuous selfadjoint 
semi-group H. For k and j in X , 

(u* PH(t) P Uk, j) = (U* HO) Uk, j> = (H(t) Uk, Uj) = 

= 2 (h{a + b)(Uk)(a -1), (Uj)(b)) = (h (0 k, j) 
a, b 

and h{t)=U*PH{t)PU, as desired. 

Remark. If h satisfies Lemma 4.2, then h(x)=PH(x)P where P is a projec-
tion and H a self-adjoint semi-group. Therefore, if h{x)k=0, then H(x/2)Pk=0 
and h(x/2)k=0. Consequently, we can construct a sequence xn—0 for which 
h(xn)k=Q. Since h is strongly continuous and h(0)—I, then k=0 and we see that 
h{x) is one-to-one. Indeed, we see that h satisfies all of the properties of a symbol 
except possibly {h(x)} being abelian. 

Proof of Theorem 3. ii)<=>iii) by Lemma 4. 
Assume that i) holds and (S, q>) is subnormal. By [5, Theorem 2.1] there 

exists an operator measure Q in Jf)) such that a]=I and 
a 

S,*St= f r'do(r). 
o 

By equation (4) then for each / in X ) , 

<p{x)-*cp{x+tyf(x) = f r'(de(r)f)(x) 
o 

except on a set of measure zero. We conclude then that for a given finite collection 
fo, •••,/„ of elements of Jf ) and all positive rational numbers t this 
equation holds except on a set E of measure zero. In particular, if k0, ..., kn 

are elements of Jf and for i =0, ..., n,fi{x)=ki for x in [0, 1] and zero other-
wise, then 

a 
V(x)-'q>(x+t)*k,= f r'{dQ{r)f^{x) 

o 

for t rational and x in [0, ljflis. Consequently, if t0, ..., tn are rational and 
x€[0, ljn.E', then 

2 (<p(x)-*cp(x+ti+tjfki,kj)= Z f ^ ( d i e ^ / d i x ) , f j ( X ) ) . 
i,j = o i,j=»0 
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We argue as in the proof of Lemma 4 to see that the right-hand side of the last 
equation is nonnegative, Therefore, 

2 ((pix^cpix+ti+tjYki, kj> s o 
i,J= o 

for all x in E. Using arguments similar to those in Lemma 1, we can show that 
s-lim (p{x)~2(p{x+t)2=(p{t)2 for all real t. Consequently, 

2 (vitt+tjf^kj)* 0 
i,J-0 

for all finite collections k0, ..., k„ in X and t0, ..., t„ in the rationals (and hence, 
in the reals since cp2 is strongly continuous). We now apply Lemma 4 to cp2 and 
see that iii) holds. 

Conversely, assume that iii) holds: Q0 is an operator measure on [0, a] such 
that g0[0, a]~I and 

(5) cp2(x) = fr*dQo(r). 
o 

Note that for each Borel set E, (J rx dQ„ (r))2<sc<p (x)4, so by the factorization theorem 
E 

[2] (p(x)~2 frxdQ0(r) is the unique operator C on X satisfying <p(x)2C = frxdg0(r), 
E E 

ker C = ker J rxdg0(r), C(X)Q(p(x)2(X)~ and ||C|| =5 i. Thus, we can define 
E 

(6) g{E, X) — (p{x)~2 JRXDQ0(R) 
E 

for all x in Since {<p(x)} is abelian, so is g0 and it follows that Q(E,X) is 
positive Hermitian and further, that if FQE, 

<P(X)[Q{E, X)-Q(F, X)](P (x) = f RX dg0(r). 
E - F 

Since cp (x) is one-to-one, Q(E, x) is a monotone ^ (X)-valued function on the 
Borel sets of [0, a]. Further, if 

E=[jE„, Ejf)Et = 0 for (i j), then 

/
" r " 

rx dgo(r) = s- lim 2 / rx dQo0') = s - l im 2 9(x)2g {Et, x). 
» 

Thus, 2 e(Et, x) converges strongly to g(E,x) on the dense set cp (x)2 and con-
1=i 

sequently, on X since 

g([0, a], x ) = / for all x. 

ii 
2 Q{EU x) S i . Finally, observe that G(0, x ) = 0 and 
( = i 
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Define tlic set function q with values in X)) by (fi(E)f)(x)= 
= Q(E, x)f{x). From our previous remarks conccrning Q(E,X), it follows that 
g is monotone, g(0)=O and e([0, «])=/. Using an argument similar to that used 

in Theorem 2 e(£)=s-lim J Q(eI) when E=\J„EHELC\EJ=V) (for i?'-j). There-

fore, Q defines an operator measure. Finally, from (6) and (5), we have 
a a 

(pixf f s'dQ(s,x) = f Sx+'dQ0(s) = <p(x-\-tf. 
0 0 

Therefore, 
a 

(p{x)~i(p{x+TY = J sl dg(s, X). 
0 

We combine the last equation with equation (4) to conclude that 
a 

S*St= J s' CIQ(S). 
o 

Once again, we invoke [5, Theorem 2.1] and conclude that S is subnormal. 

In [8, Theorem 22.3.1], it is shown that if T is a strongly continuous semi-
group of self-adjoint operators, then T has a holomorphic extension whose maximal 
domain of analyticity is either the whole plane or the right half-plane. It follows 
immediately from Theorem 3 that the symbol <p of a subnormal w.t.s. has a holo-
morphic extension. Therefore, if two such symbols (pt and <p2 agree on an infinite 
set with cluster point in their common domain of analyticity, they must agree 
everywhere. 

Prior to characterizing quasinormal w.t.s., we restate a general characterization 
of quasinormal semi-groups [6, Theorem 6] in the w.t.s. terminology. 

Theorem 5. Let Q be a strongly continuous semi-group on a separable Hilbert 
space 2/iC. Q is quasinormal if and only if Q is unitarily equivalent to the direct 
sum of a strongly continuous normal semi-group N and a w.t.s. (S, cp) where <p is 
a strongly continuous self-adjoint semi-group. 

A quasinormal semi-group is pure if there exists no nontrivial invariant sub-
space on which it is normal. 

Corol la ry 6. Every strongly continuous pure quasinormal semi-group is unitarily 
equivalent to a w.t.s. (S, <p) where cp is a strongly continuous self-adjoint semi-group. 

Corol la ry 7. Let (S,cp) be a w.t.s. The following are equivalent: 
i) (S, <p) is quasinormal, 

ii) cp is a strongly continuous self-adjoint semi-group, 
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iii) there exists a spectral measure Q on [0, a] such that 

<P(X) = FR*DQ(R). 
o 

Proof. Observe first that if (S, cp) is any w.t.s., then (S, <p) has no normal 
part. If S*S,f =S,S*f for all t, then cp(x)~2cp(x+tff(x) =0 for O^x^t and 
for all t. But cp{x)~2cp(x+t)2 is one-to-one so that / = 0. The equivalence of 
i) and ii) now follows immediately from Theorem 5. The equivalence of ii) and iii) 
can either be derived from Theorem 5 or from [8, p. 588]. 

Example 4. Let j be a strongly continuous subnormal semi-group on a 
separable Hilbert space Jf . Let cp(x)=(s*sxf/2. By [5, Theorem 2.1], there exists 

a 

an operator measure Q on [0, a] with {?[0, a]=I and cp(x)2= J rxdg(r). We noted 
o 

in the remark after Lemma 4 that cp satisfies all properties of a symbol except 
{<?(*)} being abelian. If we assume {(p (x)} abelian, then <p is a symbol and it 
follows from Theorem 3 that (S, cp) is a subnormal w.t.s. 

During the development of the material in this paper, several questions arose 
which remain unanswered. 

1. If (p is the symbol of a subnormal w.t.s. (S, cp), does there exist a strongly 
continuous semi-group s such that <p(x)=(s^sx)1,2'l In the last example, we saw 
that if (p is of this type, it does generate a subnormal w.t.s. However, if we start 

a 

with a subnormal (S, cp), then by Theorem 3 <p(x)2 = J r'dg{r). Thus, by [5, Theorem 
o 

2.1] cp acts like the positive part of some subnormal semi-group. The trick is to 
construct a function u:0l+ — such that each u(x) is an isometry and ucp 
is a strongly continuous semi-group. 

a 

2. More generally, we can ask whether each of the functions h(x) = J rxdq(r) 
0 

in Lemma 4 is the square of the positive part of some strongly continuous subnormal 
semi-group. (Here, we do not require {/i(x)} to be abelian as we do for symbols.) 

3. When are two w.t.s. (S, cp) and (T, ip) unitarily equivalent or similar? 
In [5] it was shown in the numerical case, that similarity occurs if and only 
if there exist constants m and M such that °° for all 
x in St* and in [4], it was shown that (T, ip) is unitarily equivalent to (S, cp) 
if and only if \cp(x)/il/(x)\ is constant on Other questions were answered in 
[4] and [5] for the numerical case which may have interesting analogues in the oper-
ator case. 

17» 
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On the polar decomposition of an operator 

TAKAYUKI FURUTA 

1. Introduction 

An operator means a bounded linear operator on a Hilbert space. An opera-
tor T can be decomposed into T = UP where U is a partial isometry and 
P = \T\ = (T*T)1/i with N(U)—N(P), where N(X) denotes the kernel of an 
operator X. The kernel condition N(U)=N(P) uniquely determines U and 
P of this polar decomposition T = UP [2]. In this paper, T—UP denotes the right-
handed polar decomposition which satisfies the kernel condition N(U)—N(P). 
In order to prove our results, this kernel condition N(U)=N(P) is essential. When 
T — UP where U is partial isometry and P = \T\, but the kernel condition N(U)= 
=N(P) is not necessarily satisfied, we say that T = UP is merely "a decomposition" 
(not the polar decomposition) of T. When T commutes with S and S*, we say 
that T doubly commutes with S. 

Our two main results are as follows. When 7 ' 1 = I 7 1 P 1 and T2=U2P2 are 
polar decompositions of Tt and T2 with N(U1)=N(P1) and N(U2)=N(P2), 
respectively, then 7\ doubly commutes with T2 if and only if U*, Ui and Px 

commute with U2, U2 and P2. As an application of this result we show that 
for every normal operator T, there exists a unitary U such that T = UP=PU 
and U and P commute with V*,V and \A\ of the polar decomposition A = V\A\ 
of any operator A which commutes with T and T*. This second result yields 
a famil iar a n d w e l l - k n o w n result, see RIESZ a n d SZ.-NAGY [4]. 

An operator T is called quasinormal if T commutes with T*T and hypo-
normal if T*T^TT*. The inclusion relation of these classes of nonnormal operators 
is as follows: 

Normal c Quasinormal c Hyponormal 

and the inclusions above are all proper [2]. 

Received June 17, 1982. 
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2. A necessary and sufficient condition for T1T2^T2T1 and T1Tt=T%T1 

Theorem 1. If T=UP is the polar decomposition of an operator T, then 
U and P commute with A and A*, where A denotes any operator which commutes 
with T and T*. 

Proof. Let A be an operator such that AT=TA and AT*=T*A. Then 
(T*T)A=A(T*T), that is, P2A=AP2 where P = \T\, whence PA=AP, or 
equivalent^ PA*=A*P. The conditions AT—TA—0 and PA=AP yield AUP-
- UP A=(AU-UA)P=0, so that AU-UA annihilates R(P). If x£N(P) = 
=N(U), then Px=0 and Ux=0, so that PAx=APx=0, that is, Ax£N(P) = 
=N(U), hence UAx=0, therefore AU-UA annihilates N(P) too, and it follows 
that AU-UA=0 on H =R{P)@N(P). Similarly, the conditions AT*-T*A=0 
and PA=AP imply APU*-PU*A=P(AU*-U*A)=0. By taking adjoint of 
this equation, ( U A * - A * U ) P = 0 , so that UA*-A*U annihilates R(P). If x€ 
£N(P)=N(U), then Px=0 and Ux=0, so that PA*x=A*Px=0 (since PA* = 
=A*P holds), therefore A*x£N(P)=N(U), UA*x=0, whence UA*-A*U 
annihilates N(P), too, and it follows that UA*—A*U—0 and so the proof is 
complete. 

Our main result is the following extension of Theorem 1 which gives a necessary 
and sufficient condition under which an operator doubly commutes with another. 

Theorem 2. Let T1 = U1P1 and T2=U2P2 be the polar decompositions of 
7\ and T2, respectively. Then the following conditions are equivalent: 

(A) T1 doubly commutes with T2. 
(B) U*, Ux and Px commute with U2, U2 and P2. 
(C) The following five equations are satisfied: (1) P1P2=P2P1, (2) UxP2=P2Ux, 

(3) PJJ2=U2Px, (4) UxU2=U2Ux and (5) U*U2 = U2U*. 

Proof. (B)-~(C). (B)-(C) is trivial and (B) follows from (C) by taking adjoints 
of (2), (3), (4) and (5). 

(A)—(C). Assume (A), then by Theorem 1, we have 

By ( * ) and by Theorem 1, we have (1), (2), and also by (* *) and by Theorem 1, 
we have (3), (4), and UxUt=UtUx, or equivalently (5). 

(B)—(A). (A) easily follows from (B). Hence the proof is complete. 

Theorem 2 yields the following well-known fact. In Theorem 2, U*Ux and 
UxU* commute with U2, P2 and T2, that is, both the initial space and the final 

( * ) 
( * * ) 

T1P2 = P2T1 and T?P2 = P2Tl 

T1U2 = U2T1 and T*U2 = U2T*. 
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space of Ut reduce U2,P2 and T2. Similarly, both the initial space and the final 
space of U2 reduce Ult and 7\ . In Section 4, Theorem 2 will be extended to 
Theorem 5 in the intertwining case. 

Corollary 1. Let T'1=i71Pi and T2 = U2P2 be the polar decompositions of 
Tt and T2, respectively. If Tx doubly commutes with T2, then TXT2 = 
=(U1U2)(P1P2) is the polar decomposition of TXT2. 

Proof. By (4) and (5) in (C) of Theorem 2, we have 

ut u2{ux u2f u, u2 = u, u2 u* u; C/i U2 = U* Ux U2 Ut U2 = Ux U2 

since Ux and U2 are both partial isometries, whence U-JJ2 is a partial isometry. 
By (1) in (C) of Theorem 2, we have 

|7\r2|* = (T,
17,

2)*(r1r2) = (TtTxWtn = P\P\ = (PxPtf. 

N(U2U1)=N(U1U2)=N(P1P2) is obtained by (2) and (4) in (C) of Theorem 2 as 
follows: x£N(U%Ud~*U tU ix = 0~~U1x£N(JJA = N(Pd~~P i U i x = 0*~U1P tx = 
=0+~P2x£N(U1)=N(P1)~+P1P2x-0+~x£N(P1P2), SO the proof is complete. 

Theorem 2 easily implies the following result which is a more precise statement 
than Theorem 1 on the polar decomposition. 

Corol lary 2 (The polar decomposition). Every operator T can be expressed 
in the form U\T\ where U is a partial isometry with N(U) = N(\T\). This kernel 
condition uniquely determines U; U and ITI commute with V*, V and \A\ of the 
polar decomposition A = V\A\ of any operator A commuting with T and T*. 

Proof. The first half of the result follows by [2] and the second follows by 
Theorem 2 since we put T = T2 and A = T± in Theorem 2. 

Theorem 2 also yields the following result which is a characterization of normal 
operators. 

Corollary 3. Let T = UP be the polar decomposition of an operator T. Then 
T is normal if and only if U commutes with P and U is unitary on N(T)X. 

Proof. Put T = 7 \ = T 2 in Theorem 2, then the condition (A) in Theorem 2 is 
equivalent to the normality of T and the condition (C) is equivalent to that U com-
mutes with P and U*U = UU*. So U is unitary on the initial space of U which 
equals N(T)L. 

Theorem3. Let T be normal. Then there exists a unitary operator U such that 
T = UP=PU and both U and P commute with V*, V and \A\ of the polar de-
composition A = V\A\ of any operator commuting with T and T*. 
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Proof. Let T=U1P=PU1 be the polar decomposition of a normal operator 
Tand let A = V\A\ be the polar decomposition of A. By Corollary 3, U*U1=U1UX, 
that is, the initial space M of Ux coincides with the final space N, so that M 
reduces {/x; consequently U1PM=PMU1 where PM=U*U1 denotes the projection 
of H onto M. Put U = U1PM+l-PM by the standard technique [4], then U*Ui = 
= UXU* and U1PM=PMU1 yield the following: 

U*U=(PMUt + \-PM){UlPM+\-PM) = 1, 

uu* = (ulpM+i-pM)(pMur+i-pM) = 1. 

Hence U is unitary and we show that U is the desired unitary as follows. As 
PMP=P, that is, PPM=P, so we have 

UP = (E/1PM+l-i>M)/> = U,PMP+P-PMP =UlP = T 

and similarly we have T=PU=PUi_, therefore T = UP=PU. By Corollary 2' 
Ux and P commute with V*, V and \A\, so PM=U*UX commutes with V*, 
V and \A\, that is, PM\A\ = \A\PM, PMV=VPM and PMV*=V*PM. By Corollary 
2, P commutes with V*,V and \A\. Hence we have only to show that U commutes 
with V*, V and \A\. 

Clearly, 
VU = ViU^+l-Pv) = VU^ + Vil-P,«) = 

= U1VPM + V{\-PM) = (U1PM + l-PM)V= UV. 

Similarly we have V*U = UV* and \A\U — U\A\, so the proof is complete. 

We remark that U and P commute with A = V\A\ in Theorem 3, so that 
Theorem 3 yields the following well-known result. 

Theorem A. [4] Every normal operator T can be written in the form UP 
where P is positive and U may be taken to be unitary and such that U and P 
commute with each other and with all operators commuting with T and T*. 

Corol lary 4. Let T1=UiPl be the polar decomposition of an operator 7 \ , 
and let T2=U2P2 be the decomposition described in Theorem 3 of a normal operator T2. 
Then the following conditions are equivalent. 

(A) Tx commutes with T2. 
(B) U*, Ux and commute with U2, U2 and P2. 
(C) Uj and Pi commute with U2 and P2. 

Proof. As T2 is normal, (A) implies TxTt=TtTi by the Fuglede—Putnam 
Theorem [2], so by Theorem 3, U2 and P2 commute with U*, and Px, whence 
(B) is shown. (C) trivially follows from (B) and also (A) easily follows from (C), 
so the proof is complete. 
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3. Nonnormai operators 

Theorem 4. Suppose that N(T)cN(T*) and let T = UP be the polar de-
composition of T. Then there exists an isometry Ux such that T = U1P and both 
Uy and P commute with V*, V and \A\ of the polar decomposition A = V\A\ 
of any operator A commuting with T and T*. Incase N(T)=N(T*), Ux can be 
chosen to be unitary. 

Proof. The condition N(T)aN(T*) implies N(T)xz>N(T*)±=~R(T), so 
that U is a partial isometry from the initial space M=N(T)± into M, whence 
M reduces U; consequently UPM = PMU where PM denotes the projection of 
H onto M and PM=U*U. Put t / ^ C / P ^ + l - i V In the same way as in the 
proof of Theorem 3, U*CA = 1, UXP = UP = T, and the commutativity stated in 
Theorem 4 can be shown. If N(T)=N(T*), then U is unitary on M, so that 
Ux defined above turns out to be unitary since i/j £/* = 1 can also be shown. 

Remark 1. If T is invertible or hyponormal, then N(T)<zN(T*) holds, 
so that Theorem 4 holds for these operators. 

Corol lary 5. Let T be quasinormal. Then there exists an isometry U such 
that T = UP = PU and U and P commute with V*,V and \A\ of the polar 
decomposition A = V\A\ of any operator A commuting with T and T*. 

Proof. If T is quasinormal, then T is hyponormal, so that T satisfies 
N(T)cN(T*). T commutes with T*T by the quasinormality of T, so that P = 
=(T*T)1/2 commutes with T and T*. Put A-P in Theorem 4, so the isometry 
U chosen in Theorem 4 commutes with P and the rest follows from Theorem 4. 

We remark that Theorem 3 can be alternatively derived from Theorem 4 and 
Corollary 5. 

4. Intertwining case 

Theorem 2 yields the following result which is closely related to the Fuglede— 
Putnam theorem. 

Theorem 5. Let Tk=UkPk be the polar decompositions of Tk for k—1,2 
and 3. Then the following conditions are equivalent. 

(A) T1T2 = T2T3 and T?T2 = T2T*. 

(B) (1) PSP2 = P2PS, (2) P,U2 = U2P3, (3) U3P2 = P2U3, (4) UXU2 = 

= U2U3 and (5) U*U2 = U2Ul 
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Proof. We put A and f on H@H as follows: 

- № „ (0 T2\ 
a

- U T )
 a n d

 M o o)-

Let A = UXPX and T— U2P2 be the polar decompositions of A and ^respectively, 
where UX,PX, U2 and P2 are as follows on H@H : 

(Ux 0\ ^ (PX „ /0 U2\ ^ f0 0% 
M o J - M o M o o ) M o J -

The condition (A) assures that A f = f A and A*f=TA*, so by Theorem 2, these 
relations are equivalent to that U*, Ux and Px commute with U2 and P2. Then, 
by simple calculations, PXP2=P2PX~( 1), U2PX=PXU2~(2), UXP2=P2UX~~(3), 
UXU2=U2UX •*+ (4), and U*U2=U2U* •—• (5), whence the proof is complete. 

Combining the techniques in Corollary 4 and Theorem 5, we have 

Corollary 6. Let T1 = U1P1, T3~U3P3 be the decompositions described in 
Theorem 3 of some normal operators TX,T3, and let T2 = U2P2 be the polar 
decomposition of an operator T2. Then the following conditions are equivalent: 

(A) Tx T2=T2T3. 
(B) (1), (2), (3), (4), and (5) in Theorem 5 hold. • 
(C) (1), (2), (3), and (4) in Theorem 5 hold. 

Let {Pa} be a family of polynomials of T and T*. A property Z of T is 
said to be algebraic definite (resp. semidefinite) with {pa} provided that T has 
I if and only if px(T, T*)=0 (resp. pa(T, r*)s=0) for all a [1]. 

Next we show an application of. Theorem 5. 

Corollary 7. Let Tk = UkPk be the polar decompositions of Tk for k= 1,2 
and?, and let TXT2 = T2T3 and T*T2 = T2T3. Then 

(1) R(T2) reduces Ux, Px and 7\; N(T2) reduces U3,P3 and T3. 
(2) Ux | R(T2) {resp. Px | R(T2), TX \ R(T2)) is unitary equivalent to U3 \ N(T2)X 

(resp. P31 N(T2)\ T3 | N(T2y). 
(3) When T2 has dense range, then if U3 (resp. P3 and T3) has an algebraic 

definite property I with polynomials {pa}, then so has Ux (resp. Px and Tx). 
(4) When T2 is injective, then if Ux (resp. Px and Tx) has an algebraic definite 

property I with polynomials {/?„}, then so has U3 (resp. P3 and T3). 

Proof. (1) By (5), (4) and (2) in Theorem 5 

(U2 U*) Ux = U2 U3 U* = UX(U2 U2), (U2 U*) Px = U2P3 U* = Px (U2 U*), 



O n t h e p o l a r d e c o m p o s i t i o n o f a n o p e r a t o r 2 6 7 

whence R(T2) reduces Ult Pt and also Tx . By (4), (5) and (2) in Theorem 5, 

(U*U2)U3 = UtUJJ2 = US(U*U2), (U*U2)Pa = U*P,U2 = P3(U*U2), 

whence N(T2) reduces U3, P3 and also Ts. 
(2) By (2) and (1) in Theorem 5, 

(i) PxU2P2x = U2P3P2x = U2P2P3x for all x. 

Let P i = a n d P3=P3\N(T2)L. Let V be defined by Vy=U2y for 
all yiN(T2)L. This V maps from N(T2)±=N(P2)±=R(P2) onto R(T2), so 
V is a surjective isometry, i.e., V is unitary. As P2x and P2P3x belong to N(Ta)-1 

and U2P2x belongs to R(T2), (i) implies P[Vy=VP3y for all y£N(T2)x, so 
Pi is unitary equivalent to P3. Similarly (4) and (3) in Theorem 5 yield 

(ii) U1U2P2x = U2UsP2x = U2P2U3x for all x. 

Let U'1=U1\ R(T2) and U'3=U3\N{T2)±. As P2x and P2U3x belong to 
and U2P2x belongs to R(T2), (ii) implies U[Vy=VU'3y for all y£N(T2)L. 
The third unitary equivalence relation follows by the first and second relations 
obtained above. 

(3) When T2 has dense range, then by (2), U^ \ R{T2)—XJx is unitary equi-
valent to U'3—U3\N(JT^)-L. If U3 has an algebraic definite property, then U3 

also has it, and consequently so has Ux. The rest can be shown similarly. 
(4) When T2 is injective, then by (2), U3 | N(T2)'L — U3 is unitary equivalent 

to U'x—Ux | R(T2) and the proof goes in a similar way as above. 

We remark that the algebraic definite property can be replaced by semidefinite 
property in (3) and (4) of Corollary 7. Also we remark that in [3] only the equi-
valence relation between 7\ | R(T2) and T3 | iV(T2)x is shown, and in [1] the 
algebraic definite property relation between 7\ and T3 is shown when T2 has 
dense range, and in [5] also when T2 has dense range and injective. 

Added in proof. Theorem 2 is also found in M. Takesaki, Theory of operator 
algebras I, Springer, 1979, however, the proof we gave here is more elementary 
in that it merely uses kernel conditions and avoids operator algebraic considera-
tions. We would express our thanks to Professor J. Tomiyama for his valuable 
comments after reading our preprint. 
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Spectral properties of elementary operators 

L. A. FIALKOW1' 

1. Introduction. Let § denote an infinite dimensional complex Hilbert space 
and let £(§) denote the algebra of all bounded linear operators on § . For an 
integer i V s l , let A=(J1, ..., AN) and B=(B1, ..., BN) denote TV-tuples of 
mutually commuting operators in £(§) . The elementary operator 9l=9i(^, B) 
acting on £ ( § ) is defined by %{X)=AlXBi + ...+ANXBN (A^ £(§)). Spectral, 
metric, and algebraic properties of elementary operators have been studied from 
a variety of viewpoints [1], [2], [5], [7], [14], [18], [20], [22]. In particular, the generalized 
derivation Z(A, B) defined by 3 ' . ( X ) = A X — X B , has been analyzed in considerable 
detail, and various characterizations have been given for the cases when a genera-
lized derivation has dense range [11], or is surjective, bounded below [6], [8], 
Fredholm [9], or semi- Fredholm [10]. Analogous results are also known for the 
restriction of a generalized derivation to a norm ideal in £(§) [8], [12]. 

In the present note we extend several results concerning generalized derivations 
to an arbitrary elementary operator 91 and its restriction to a norm ideal 3-
Descriptions of the right and left spectra of 51 were determined by R. HARTE [16] 
(cf. [5]) and in section 2 we obtain qualitative refinements of these results; we show 
that SR—X is right invertible in £ (£(§) ) (and thus surjective) if its range contains 
each rank one operator, and is left invertible (hence bounded below) if its restriction 
to the set of rank one operators is bounded below. These results allow us to relate 
spectral properties of 91 to those of SR3 (Theorem 2.3, Theorem 2.8). We also 
characterize the case when 91—X has dense range, extending the characterization 
given for Z in [11]. 

In section 3 we specialize to study the elementary multiplication operator 
<3 = <3(A,B) defined by <2(X)=AXB. The essential spectrum and index function 
of <5 was determined in [12] and here we describe the semi-Fredholm domain of 

Received October 23, 1981. 
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<3 and conditions for S—). to have index equal to or — °°. Analogous 
results are given for the semi-Fredholm domain of <53. These results complement 
(but are independent of) the characterization of the semi-Fredholm domain of 
% given in [9] and [10], and we believe they will prove helpful in studying the semi-
Fredholm domain and index function of a general elementary operator. 

We conclude this section with some preliminary results and notation. Let 
91 denote a complex Banach algebra with identity 1, and let 2l(W) denote an iV-fold 
copy of 91. For a=(alt ..., aN)63i(fV), the joint left spectrum of a in the sense 
of R . HARTE [15] is defined by a,(a)= {AS(ax , ..., aN)£C(N): there exists no TV-tuple 
(bx, •••, bf¡)£2l(,V) such that a1)+. . . +bN{aN—<xN)= 1}; the joint right 
spectrum of a, or(a), is defined analogously, and the joint spectrum of a is defined 
by <T(fl)=<T1(a)Uo,

r(a) [15]. For 1, La and Ra denote, respectively, the left 
and right multiplication operators on 91 induced by a, i.e. La(x)=ax and Ra(x)= 
=xa (jt€2I). For a=(ai,..., %)€2I(iV), we set La=(LBi, ..., LaJ and Ra= 
=CRV When 9I=fi(§), A=(Alt ..., AN)£SHm, ¿nd 3 is a norm ideal 
in £(§) , we define LA | 3=(,LA1 I 3 , •••> LAk I 3)- In this case the left joint spectrum 
of A may be described in more detail as follows. 

Lemma 1.1. [15, Theorem 2.5] The following are equivalent. 
i) a€<r,(A); 

N 
ii) 2 (A¡—a¡)* (Ai—a¡) is not invertible; 

i=i 
iii) There exists a sequence of unit vectors such that 

lim = 0 . 
IT-CO I = 1 

Let 5* (§) denote the ideal of all compact operators in £(§) and let 2I(§)= 
= £(§) / f t (§) denote the Calkin algebra; for r£f l (§) , f denotes the image of T in 
9I(§) under the canonical projection. For an iV-tuple of operators T=(7\, ..., TN), 
we set f=(T1, ..., fjy) and denote the [left] [right] joint essential spectrum of T by 
[oie(T)] [<rre(T)] oe(T), i.e. cle{T) = ol{T), a„{T) = ar(T), and at{T) = o(T). 
The following result is contained in [24, Corollary 2.5, Theorem 2.6]. 

Lemma 1.2. The following are equivalent. 
i) a6(7te(r); 

N 
ii) Z(Ti~ai)*(T¡-ai) is not Fredholm; 

>=i 
iii) There exists an orthonormal sequence {c„}J= 1c§ such that 

lim J I K ^ - a ^ J = 0. 



S p e c t r a l p r o p e r t i e s o f e l e m e n t a r y o p e r a t o r s 2 7 1 

For refi($) ( W ) , let ap(T) = {a^Cm: there exists a unit vector x<E§ such that 
(Ti—oci)x=0, l^i^N}, the joint point spectrum of T. Lemmas 1.1 and 1.2 readily 
imply that ol(T)=ale(T)\Jap(T). For r e £ ( S ) w and a€C<*\ let T*=(T*, ..., T*N) 
and a=(a l , ..., aN). Analogues of the preceding results for right spectra follow 
from the identity <7r(r)=[(7,(:r*)]* = (a€C(iV): a€o-,(r*)}; in particular, or(T)= 
= are(T) U crp(T*)*. 

Let (3, |||. HI) denote a norm ideal in £ (§ ) in the sense of [21]. Clearly 3 is 
SR-invariant and the restriction of 5R to 3 , is in £(3). If 3 = C P 

(the Schatten p-ideal [21]), we denote 5R3 by 9ip. For x, y£&,x<g>y denotes the 
rank one operator defined by (x®y)h—{h, y)x. 3 i denotes the set of all rank one 
operators in £(§); if then | | |F| |Hli1l [21]. 

Let X denote a complex Banach space and let £(£) denote the algebra of 
bounded linear operators on X. For T££(£), let ker (T) and R(T) denote 
the kernel and range of T\ we set nul (T) — dim (ker (T)) and def (T) = 
=dim (XjR(T)~) (where R(T)~ denotes the norm closure of R(T)). T is semi-
Fredholm if R(T) is closed and either nul(T)<°° or def (T)< in this case, 
the index of T is defined by ind (r)=nul (T) -de f (T) [17]. T is Fredholm if 
R(T) is closed and both nul (T) and def (T) are finite; cre(T) = {A£C: T-X is 
not Fredholm} is the essential spectrum of T. The semi-Fredholm domain of 
T is defined by QSF(T)={X£C: T—X is semi-Fredholm}; we denote the complement 
C \ Q S F ( T ) by (TSF(T). For cc=(CC1, ..., AN) and fi=(filt ..., PN) in C(N) we set 
ccoP=aipi+... +aNPN, and for a, QCC(N\ let OOQ= {ao/?: a€cr, If N = 1, 
we abbreviate OOQ by AQ. In [12] it is proved that ae(Q(A, B))=ae(<Z:i)= 
= a(A, B) = ae(A)a(B)Ua(A)ae(B)- In the sequel we will prove that aSF(<s) = 
— ffsf("Sg) — (A)ora(B)Ua/e(A)ar(B)]n[(Tr(A)aie(B)U(Tre(A)iTl(B)] (Corollary 3.12, 
Theorem 3.14). 

2. Spectral properties of elementary operators. In this section we present several 
equivalent descriptions of the left and right spectra of elementary operators and we 
describe the elementary operators with dense range. The following result will be 
used to show that an elementary operator is surjective if its range contains each rank 
one operator: the proof is motivated by that of [8, Theorem 2.1]. 

Lemma 2.1. If X£or(A)oal(B), then the range of SR—X does not contain 
every rank one operator. 

Proof. Let a£ar(A) and ¡(B) be such that A=ao/?. We consider several 
cases for the location of a and /?. 

i) a£or(A)\are(A), (]£at(B)\ale(B). In this case there exist unit vectors 
e and / in § such that ( A - a t f f = = 0 (1 == i ^ n). Let Yx = 
= (x,e)f (xeS). If * £ £ ( § ) satisfies ( S J - l ) ^ ) = Y, then 1 = (Ye,f) = 
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N N 

= 2[(Wt-*ùX*i*>f)+(*iX(*-Pde,f)] = Z(XBte, (At-a,)*f)=0, a contra-
(=1 i=i 

diction; thus the rank one operator Y is not in the range of 5R—X. 
ii) a£are(A), f}£ale(B). (Clearly, we may assume that max {||-fl,[|}>0.) The 

following argument is based on J. G. Stampfli's proof that the range of an inner 
derivation contains no nontrivial unitarily invariant subset of £(§) [23, Theorem 2]; 
we prove a similar result for 91—X. Let Y be an operator in £ (§ ) that is not 
a scalar multiple of the identity. We will construct a unitary operator U such that 
U*YU is not in the range of 9*—X. Let {hn}T=1 denote an orthonormal seqence 
such that (Yh„,hm)^0 for [19, Theorem 2]. Let Sn=(Yh3n, h3n+1) for 
n S l . Let {/.KLi and {g , , }^ denote orthonormal sequences in § such that the 

following properties are satisfied: i) 2 IIC®i—PdfmW — \&m\lm ("i = 1); ii) 
¡ = 1 

N 
2\\(Ai-ai)*gJ<\dJlm-, iii) (/„, gm )=0 for 1 Sn ,m; iv) the subspace spanned 

by all of the vectors f„ and g„ ( « S i ) has an infinite dimensional orthocomplement 
in Using iii) and iv) we may define a unitary operator U which satisfies Ufn—h3n 

and C/g„=/i3n+1 (n^l) . If X £ £ ( § ) satisfies {<Si-X){X)=U*YU, then 

Thus ||AlS«/(max {||5(||}+max {lot,!}) for every « s i , so U*YU is not in the 
range of SR—X. The proof is completed by taking Y to be a rank one operator. 

iii) a£ffr(A)\tjre(A), P£ole(B). If f)£ap(B) we may use the same proof as in 
parti). We may thus assume that fi$op(B). Let {e„}~=1 denote an orthonormal 

sequence such that 0 < 2 ¡ № - 0 X 1 1 < I/«8 (f lSl), and set 5„=n 2IIW-^KII. 
¡=i ¡=i 

Let / be a unit vector such that (At—<xi)*f=0 (l^i^ri). Since 0<<5„< 1/m, we 
may define a rank one operator Y by the relations Ye„=8„f ( « S i ) and Yx—0 
if (x, e„)=0 for each«. If X€£(§ ) satisfies (<R-A)(Z)=r, then 

N 

¡=1 

0 < \ô.\ = \(Yh3n, h3n+1)I = \(YUf„, Ugn) I = \(U*YU/n, gn) I = 

= 2 [((Ai-^XBJ», £„) + ( « , * № - & ) / „ , g„)] S 
¡=i 

— 11-^11 [max {¡I5,1}+max {|OÎ;|}] \8„\/n. 

6. = (Yen,f) = 2 K(Ai-^XBien,f) + (aiX(Bi-P,)en,f)'] = 
¡=i 

N 

= ZfaXiBt-Pde.,/) (n S 1). 
i=i 

Thus 

This contradiction shows that Y is not in the range of 9Î—X. 
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iv) a€tr„(A), p^<T,(B)\(rlt(B). Since ae<rle(A*) and pda,(B*)\are(B*), then 

iii) implies that there exists a rank one operator Y such that ^ 2 B?X*Afj— 

—aoJiX* = Y* has no solution. Then C3i—X)(X)=Y has no solution and the 
proof is complete. 

Lemma 2.2. i) <Tr(5R |3)c<rrC4)o<xi(.B); 
ii) Or(<Si)<ZGM)°°№-

Proof. Part ii) is contained in [16, Theorem 3.4]. The proof of i) is similar. 
The argument is essentially that used in the proof of [5, Lemma 3]. We first note that 
CR(LA |3,JRB |3)c<Tr(^)Xi71(5). Indeed, suppose (a, j8 )6CxC" and a<t<rr(A). 

N 
There exists an TV-tuple of operators (R1, ..., RN) such that ^ (yif—a,)i?~ 1, 

i = l 

and thus 2(LAI\Z-AI)(LR \^)=K20), so that (a, /?)$A R (L A | 3 , RB I 3) . 
¡=i ' ' 

The proof for the case when /?(£<r¡(B) is similar. For z=(z1, ...,zN) and w= 
=(w1, ...,wN) we define the 2iV-variable polynomial p by p(z, w)=p(z1, ..., zN, 

N 
Wi, ..., wN) = 2ziwi- Since (LA | 3 , RB I 3 ) is a commutative 2TV-tuple in £(3), 

¡=i 
the spectral mapping theorem for right spectra [15], [16, Theorem 1.2] implies that 

<xr(M|3) = °r(p(LA\3, RB|3)) = p{ar{LA\3, RB|3)) c p(ar(A)Xal(B)) = 

= or(A)oa,(B). 

Theorem 2.3. For A€C and 51=51(^4, B), the following are equivalent: 
i) 91—2 is surjective; 

ii) The range of 9t—A contains each rank one operator; 
iii) X^.ar(A)o(ji(B); 
iv) 91—2 is right invertible in £(£(§)); 
v) 9l3—A is right invertible for some norm ideal 3? 

vi) 9i3—X is surjective for some norm ideal 3 ; 
vii) 9i3—X is right invertible in £ (3) for every norm ideal 3 ; 

viii) 9*3—X is surjective for every norm ideal 3-

Proof. i)=>ii) is clear, ii)=>iii) follows from Lemma 2.1, iii)=>iv) follows from 
Lemma 2.2, and iv)=>i) is clear, so i)—iv) are equivalent. Lemma 2.1 implies that 
vi)=>ii)=>-iii) and Lemma 2.2 implies that iii)=>v)=>vi), so iii), v) and vi) are equi-
valent. Similarly, we have \di)=>viii)=>ii)=>-iii)=>vi). 

We next begin our consideration of elementary operators with dense range. 

18 
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Corresponding to 5R(A, B) we define an operator B) on the Calkin algebra 

5t(S) by = Z A j B t (*€£(&)). 
1=1 

Lemma 2.4. ar(^i)czare(A)oale(B). 

Proof. The proof is similar to that of Lemma 2.2 ; as before, or(LA, Rs)a 
<z<7re(A)Xa,e(B). Let p(z, w)=p{zi, ..., zN, wlf ..., wN)=z1w1 +... +zNwN. Since 
9{=p(LI,RB) and (Lz, Rs) is a commutative 2Ar-tuple of elements of £(9l(§)), 
the spectral mapping theorem for right spectra [15] implies that 

«•rO») = or(p(Lz, Rsj) = p(a,(LA, RB)) c 

<= p(crre(A)Xale(B)) = ore(A)oole(B). 

Recall that Ct, a trace class operator K corresponds to the functional 
fK£Ct defined by fK{X)=\x (KX) [21]. Under this identification <5J,A,B)* = 
= S^B, A). Indeed, for X£Cm and we have <Z„(A, B)*(fK)(X) = 
=tr (KAXB)=tr (BKAX) = fBKA (X). Recall also that C* «£(£>), where T€£(§) 
corresponds to the functional fT£C* defined by fT(K)—tr (TK). For K£C1 

and T€£(§) , S i (5 , A)*{fT){K)=tr (TBKA)=tr (ATBK) =fATB(K), and therefore 
S j (B, A)* = <3(A, B). By linearity, we see that ft^A, B)* = A) and 
fR1(B,A)* = iH(A,B). 

Theorem 2.5. The following are equivalent for A£C. 
i) 91 (A, B) — X has norm dense range; 

ii) X^are(A)oale(B) and ^(B, A) is injective; 
iii) For £ > 0 and Y ££{$>), there exists such that ( 9 l - A ) ( Z ) - y 

is a compact operator with norm less than E. 

Proof. We first prove ii)=>iii). Suppose ii) is satisfied, let e>0, and let 
Y be in £(§) . Lemma 2.4 shows that X is surjective; thus there exists X££(%>) 
and such that ( 5 R - X ) ( X ) - Y = K . Since %(B, A)-), is injective, 
'H„(A, B)-X has dense range. Thus there exists {X„}cft(S) such that ||(9i-A)(X„)-

- 0 . Now and for sufficiently 
large n, | |X-(5R-A)(Xn)H£. 

Clearly iii)=>i), so it suffices to prove that i)=>ii). If 9 \{A,B)—X has dense 
range, then duality implies that 9^(2?, A)—X is injective. Suppose X£<rre(A)o 
oa,e(B); it suffices to prove that the range of SR(A, B)—X is not dense. Let 
a£ore(A) and f}£ole(B) satisfy X=aofi. Let {e„} and {/„} denote orthonormal 

sequences, such that ^ I K ^ - a ^ e J - O ( n - ~ ) and J | | ( B , - p j f j - 0 
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Let Y denote an operator in £ (§ ) such that Yf„=e„(nS 1). For X€£(§) , 

||(M-A)(Jr)-r|| s 2(((4i-«,)XBt+atX(.Bl-Pd)fl,,e.)-(YfH,e^ = 
¡=i 

= | [ ¿ ( W - . ^ l - ^ O + i « ! ^ ! - ^ / . , « . ) ] - ! ! S 

max{115,-11} ( i | | ( ^ i - a 1 . r e j | ) - m a x { | a i | } | | ^ | | ( f № - P d f j ) , 

and thus || (5R - A) (X) - Y || g= 1. The proof is complete. 
We conclude this section with an analogue of Theorem 2.3 for left spectra of 

elementary operators. 

Lemma 2.6. If A€<r,(A)o<Tr(B), then (SR-A) | & and (SR3-A) | & are 
not bounded below. 

Proof. Let <x£a,(A) and P£<rr(B) be such that A=ao/?. There exist sequences 
of unit vectors {jcfc}, { y t } c § such that 

lim ¿ | | ( ^ - a , . ) x j = lim f 1 1 ( ^ - ^ 1 1 = 0. 
,=i ¡=1 

Now 

^ 2l\\\U,-«d{xk®+ ||K^®^)^-ft)|||] = 
i=i 

= 2 [ I I W i - c n X * * ® ^ ! ! + |ocf| l l a J * ) ( s , - f t ) | | ] . 
i=i 

For *€$, II i || = 1, we have 

K ^ i - a , . ) ^ ® ^ ) ^ / ! = 

= | ¡ ( A i - a m t , yM ^ II-#¡11 IIAII \\(Ai — 0Ci)xk\\. 
Thus 

similarly, 

2 IK^-«^**®^!! -0 (k —); 
(=i 

i l l ( ^ < 8 ) J f c ) № - A ) | | - 0 (k-co). 

Since |||**®J'tlll = ll*,c®J'J = l, it follows that neither (9t3-A) | & nor (5R-A) | & 
is bounded below. 

18* 
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Lemma 2.7. i) a,CiR)(za,(A)oar(B); 
ii) <7,(5R3)CC7 i(^)0(7r(fi). 

Proof. The proof is similar to the proof of Lemma 2.2, but using the spectral 
mapping theorem for left spectra [16]. 

Theorem 2.8. For XÇ.C the following are equivalent. 
i) 5R—X is left invertible; 

ii) SR—X is bounded below; 
iii) (5R—X) | Si is bounded below; 
iv) X ^ a ^ o o X B ) - , 
v) 5R3—X is left invertible in £ (3) for some norm ideal 3 ; 

vi) 9l3—X is bounded below for some norm ideal 3 ; 
vii) 5R3—X is left invertible for every norm ideal 3 ; 

viii): 9Î 3 — X is bounded below for every norm ideal 3 -

Proof. The implications i)=>ii)=>iii) are trivial; iii)=>iv) follows from Lemma 
2.6, and Lemma 2.7 implies that iv)=>i); thus i)—iv) are equivalent. The implica-
tions v)=>vi)=*iv)=>v) and vii)=>-viii)=>iv)=>vii) also follow by application of 
Lemmas 2.6 and 2.7. 

Corollary 2.9. For each norm ideal 3> 

<r(Jt3(A, B)) = a(R(A, B)) = ar(A)oat(B)\Ja,(A^oar(B). 

Proof. The result follows from Theorem 2.3 and Theorem 2.8. 

Remark. The identity for <x(R) given above is due to R. HARTE [16]; our 
contribution is the identity o(Rs) — o(R). A special case of the latter identity for the 
Hilbert—Schmidt ideal C 2 was obtained by R. CURTO [ 5 , Lemma 3 ] . The main 
result of [5] presents a new description of o(R) in terms of Taylor joint spectra. 

3. The semi-Fredholm domain of S 3 . In the present section we describe the 
semi-Fredholm domain and index function of S 3 and S . To this end we define 
the following sets: 

alr = rxlr(A, B) = f / (/4)<7re(5) U ole(A)ar(B); 
<jrl = crrl(A, B) = ar(A)ale(B)Ucrre(A)al(B). 

It follows from [12, Lemma 3.2] that if X£olr and S3—X is semi-Fredholm, then 
ind (S3—X)= + oo; [12, Lemma 3.3] implies that if X£arl and S3—X is semi-
Fredholm, then ind (®3—X) — — Thus crirrio'r/c:i7Sf-(S3) and in the sequel 
we prove the reverse inclusion. We begin with the following special case. 

Propos i t ion 3.1. If XdC\orl, then &3(A,B)—X is semi-Fredholm with 
ind (S3(/4, B)—X)>— «>. 
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Proof. If A£C\<7r(v4)c-,(fi), then Theorem 2.3 implies that S3—A is sur-
jective, so the result is clear in this case. We may thus assume that A £ aT (A)al (B )\ari. 
We require the following preliminary lemmas. 

Lemma 3.2. If a^cr(A), P^a^B) and aft(£arl then a is isolated in ar(A) 
or P is isolated in at(B). 

Proof. Since a[l$orl, then (A)\ore(A) and /?6<7,(.B)\c-/e(.B). Suppose 
that a is not isolated in <rr(A) and ¡S is not isolated in at(B). Since ci$are(A), 
[10, Lemma 3.6 (i)] implies that oc£U=int(a/A)) . Similarly, since P$ole(B) and 
P is not isolated in a¡(B), then [10, Lemma 3.6 (ii)] implies that 33=int (o-,(5)). 
U and 33 are nonempty, open, bounded subsets of the plane, so [12, Lemma 2.11] 
implies that there exists / > 0 such that 

i) /a<Ebdry(U) and or 
ii) /ocell and /?//€bdry (33). 

It follows from [10, Lemma 3.6] that bdry (Ц)сс7ге(Л) and bdry (33)cc7[e(5). 
In case i), /a£bdry (U)c<7re(A) and P/ttW-czo^B), so k=aP=(ta)(P/t)£ore(A) • 
• a,(5)ccr,,, which is a contradiction. In case ii), ta^U(Zor(A) and /?//£bdry(33)c 
czale(B), so ?.=(toi)(P/t)^ar(A)(rle(B)czarl, also a contradiction; the proof is 
now complete. 

Lemma 3.3. If keor(A)al(B)\arl, then A^O and X={(a, P)ear(A)X 
Xa,(B): afi=X) is finite. 

Proof. If 0£or(A)a,(B), either 0<iar(A)' or 0£(ti(B), SO 0£<т,(А)<т1е(В) 
or 0£о-ге(Л)(т((5), and so Обе,¡; thus A^0. 

Assume that X is infinite and let {(an, /?„)}~=1 be a sequence of distinct points 
of X. It follows readily that the a„'s are distinct and the p„'s are distinct. There 
exists a convergent subsequence (a„fc, P„k)~*(a, P), and clearly oc£ar(A), P£at(B), 
and aP—k. Since a is not isolated in or(B) and p is not isolated in a¡(B), we 
have a contradiction to Lemma 3.2. 

We return to the proof of Proposition 3.1 and consider к£аг(А)<т,(В)\(тг1. 
Lemma 3.2 and Lemma 3.3 imply that and that there exist integers p and 
n, р^пшО, p>-0, distinct nonzero points ..., up£or(A)\ore(A), and distinct 
nonzero points px, ..., Pp€<ji(B)\<Jie(B) such that the following properties are 
satisfied: 

1) {(a, P)iar(A)Xc>(B): a 0 = A } = {(a,., &)}f=1; 
2) if 0, then a, is isolated in ar(A), lsi^n; 
3) if p>n, then Pi is isolated in a^B), n+l^iSp. 
If each Pi isolated in a ,(B) we may take n=0 and delete {(a1? pt), ..., (<*„,/?„)}; 

likewise, if each a; is isolated in crr(A), we may take p~n and delete {(an+1, Pn+1), 
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..., (ap, ft,)}. We assume in the sequel that 1 p, for the other cases require 
only obvious modifications of the argument for this case. 

Let and $ 2 denote copies of § with and i?££(§2). We identify 
£ (§ ) with £ (§ 2 , §1) and consider <S(A,B) as an operator on £ (§ 2 , Si)- [10, 
Corollary 2.4] implies that there exists an orthogonal decomposition S i=®t 0 ©. . . 
...®2R„ and operators A i^2(M i) (O^i^n) such that: 

4) 9Jt, is finite dimensional (1 ^ i^n) ; 
5) a(Ad={at) (1 
6) ar(A0)n { « ! , . . . , « „ } = 0 ; 
7)^4 is similar to ^ ' s ^ o f f i ^ © . . . ®/i„. 

An application of [10, Corollary 2.3] implies that there is an orthogonal de-
composition §2=ft„+iffi . . .ffiftp + i a n d operators f?,€£(ft,) (m+1^z = p + l) 
such that: 

8) ft, is finite dimensional, n + l S i ' S p ; 
9) <7(5 , )={ f t } , « + 

10) a,(JBp+1)D{ft+1,...,)?J,}=0; 
11) J5 is similar to B'=B„+1® ...®Bp+1. 

[12, Proposition 2.5] implies that to complete the proof it suffices to prove that 
6 3 ( A ' , B ' ) — X is semi-Fredholm with ind (&3(A\ B')—X)> — The argument is 
formally similar to that in the proof of [12, Theorem 3.1] so we give the outline and 
refer the reader to [12] for certain details. 

Relative to the above decompositions of and § 2 , let (X i J)0s im„ jn+1^JSp+1 

denote the operator matrix of an operator A'€£(§ )=£(§ 2 , A calculation 
(using 7) and 11)) shows that the row i, column j entry of the matrix of S'(^) = 
=A'XB'~XX is equal to AtX,jBj-AX,j, O^i^n, n + lmj^.p+1. For Z<E£(§), 
let R(X) be defined by the matrix which modifies the first row and last column of 
S'(Z) as follows: 

(A0-<xn+1)X0>n+1pn+1... (A0—a.^)X0 pPp A0X0iP+1Bp+1—XX0iP+1 

[A^jBj-ajPjXij] ; 
anXn,p + l(Sp+l — Pn) 

We first prove that R \ 3 is semi-Fredholm with ind (R \ 3 ) > — Let Ru 

be the operator on £(ft7-, §,) defined by the row z, column j entry of R(X), 
O^z'^/i, n + l ^ j ^ p + l. It follows from 1), 6), 7), 10), and 11) above that 
X$ar(A0)<rl(Bp+1), so Theorem 2.3 implies that R0tP+1=S(A0, Bp+1)—X is sur-
jective; in particular, ind(i?0.P+i)sO. Let l ^ i ^ n and n + l ^ j ^ p . Since 
<r(Ai)= {a,} (1 mi^ri) and a(BJ)={pJ) (n+lrSj^p), it follows that X=a.}Pj$ 
$o(At)o(Bj), and thus Rij=S(Ai, Bj)-X is invertible for lrSz'Sn and n+ 

[4]. 
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We next consider the operators R0J (n + l ^ j S p ) defined by R0?J(X) = 
=(A0—ctj)Xpj §„)). Since «j€aJA)\a„(A), 7) implies that 
and thus A0—oCj is semi-Fredholm and ind (A0—aj)> — » . Since dim (&,)< 
[10, Lemma 3.5] implies that R0tl is semi-Fredholm with ind (R0ij) = 
=ind (A0—oij) dim — Similarly, since is finite dimensional and 
Pi$.cru(Bp+1) (1 Si'Sn), then [10, Lemma 3.5] and [12, Lemma 2.6] imply that 
R{,p+1 is semi-Fredholm with ind (Rit p + 1)=ind ((Bp+j - /?;)*) dim (§f) > — 

It now follows exactly as in the proof of [12, Theorem 3.1] that R | 3 is semi-
Fredholm with 

ind CR|3) - 2 ind (Roj) + 2 ind (i?,.,p+1) + ind (*0 .p +i) > -
J=n+1 ¡=1 

Let KjÇ2(Rj) be invertible (n+l^j^p) and let M^fiCfflî;) be invertible 
( l s / ^ n ) . For Z € 3 , X = ( X i j ) , define T(X) by the matrix 

0 ... 0 M f ' ^ - ^ M J , , , , ^ ^ , 

0 ... 0 

Since Bj—Pj (n+l^j^p) and At—<xt (1 S / S n ) are nilpotent, appropriate 
choices of the K/s and Mt's insure that Q=R \ 3 + 7 1 is semi-Fredholm with 
ind (ô)=ind (R | 3 ) > The matrix of Q(X) (A"€3) is of the form 

AoXoin + 1 - ^ 1 , + i XXotn +1 ••• A0X0.pKp
 1BPKP — XX(jtP AoX0.p+iBp + 1 — AX0,p+i 

Mi1A1M1Xi,p + iBp + i-AX1,p + i 
[AtX.jBj-XXJ 

M-1AnM„X„,p + 1Bp+1 — AX„,p+1. 

It now follows as in [12, Theorem 3.1] that B')—X is semi-Fredholm with 
ind (<S304', B')—A)=ind ( ® > — so the proof is complete. 

Corollary 3.4. <53(A, B)—A is semi-Fredholm with ind(S3—A)=—°° if 
and only if A£C\art(A, B). 

Proof. The result follows from [12, Lemma 3.3] and Proposition 3.1. 

Corollary 3.5. <33(A,B)—A is semi-Fredholm with ind (<»3 —A) = + °=> if 
and only if A£o(A, B)\arl(A, B). 

Proof. Apply [12, Theorem 3.1] and Corollary 3.4. 

We now consider the case when A£C \a , r (A , B). 

Propos i t ion 3.6. If A£C\<7/r, then <»3—A is semi-Fredholm with 
ind (<»3—A)< + 



2 8 0 L . A . F i a l k o w 

The proof is completely analogous to that of Proposition 3.1; for this reason 
we omit the details and merely mention the necessary preliminary results. 

Lemma 3.7. If a€at(A), P£ar(B) and a/?$<r/r, then a is isolated in <r,(A) 
or P is isolated in or(B). 

Proof. The proof is similar to that of Lemma 3.2. 

Using Lemma 3.7, the proof of the next result is based on that of Lemma 3.3. 

Lemma 3.8. If A£crl(A)<Tr(B)\cTir(A, B), then A^O and {(a, P)£ot(A)X 
Xor(B): aj3=X} is finite. 

Using the preceding two lemmas, the proof of Proposition 3.6 follows the 
argument in the proof of Proposition 3.1, except that instead of using Theorem 2.3, 
we now use Theorem 2.8 to show that <5(A0, Bp+1)—X is bounded below. 

Corol lary 3.9. <53(A,B)—X is semi-Fredholm with ind (®3—A)< + °° if 
and only if XeC\o,r(A, B). 

Proof. . The result follows from [12, Lemma 3.2] and Proposition 3.6. 

Corollary3.10. ®3—A is semi-Fredholm with ind (S3—A)= — if and 
only if l£<r(A, B)\olr(A, B). 

Proof. The result follows from Corollary 3.9 and [12, Theorem 3.1]. 

An immediate consequence of Corollary 3.4 and Corollary 3.9 is the following 
description of the semi-Fredholm domain of <53. 

Theorem 3.11. ®3—A is semi-Fredholm if and only if A 6 C\(orl C\alr). 

Corollary 3.12. crSf(S3) = o-(.,n<T/r. 

For the case when ®3—A is Fredholm, a formula for ind(®3—A) is given 
in [12, Theorem 3.8]. The latter result, when combined with Corollary 3.5 and 
Corollary 3.10, thus gives a complete description of ind(®3—A) for A6(?SF(©3). 

Example 3.13. Consider the case when 3 is the ideal of all Hilbert—Schmidt 
operators endowed with its (separable) Hilbert space structure [4]. In this case 
<Z3(A, B) is again a Hilbert space operator; we will show that if A and B* are 
quasitriangular, then so is S 3 . By a theorem of C. APOSTOL, C. FOIAS, and 
D. VOICULESCU [3], an operator T on a separable Hilbert space is quasitriangular 
if and only if ind (T-A)^0 for every A6feF(r). 

Suppose A and B* are quasitriangular; thus ind (A—A)^0 (X£QSF(A)) and 
ind (B—A)^0 (XDQSF(B)). It follows directly from the index formula of [12, Theorem 
3.8] that ind(S3—A)^0 for every A€C\a e (S 3 ) . To complete the proof it thus 
suffices to verify that the case ind (S3—A)= — °° cannot occur. 
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Suppose to the contrary that ind (S3—A)= — from Corollary 3.10 we have 

?.i(oe{A)a(B) U a (A) <re (5))\(cr l(A)are(B) U <rle(A)a,(B)). 

We consider the case X£ae(A)a(B) and let e(A) and /?£<j(S) satisfy a/i=X. 
If fi£or{B), then a$crle(A) and thus ind (A—<x)= — a contradiction. There-
fore fi(io(B)\ar(B), so ind (5—/?)>0, which is also a contradiction. The case 
when ?.£<j(A)ffe(B) can be handled similarly, so we omit the details. 

We note that the converse of this example is false. [12] contains an example of 
operators A and В such that A, A*, B, and B* are non-quasitriangular but 
S3(/4, B) is biquasitriangular, i.e. <53 and <S3* are both quasitriangular. 

Systematic revision of the proofs of this section (replacing the norm ideal 
3 by £(§)) yields a description of the semi-Fredholm domain of <5(A, B). 

Theorem 3.14. i) aSF((Z)=<Jir{]cxrl; 
ii) <3— X is semi-Fredholm with ind (<3 — + °° if and only if XdC\olr', 
iii) <s—X is semi-Fredholm with ind(<3— A)> — °° if and only if X^C\ar 

This result, together with [12, Theorem 3.9], completes the description of 
ind(<5— A) (>-€(?sf(<3)). More generally, the present results, together with those of 
[9], [10] and [12], completely describe the semi-Fredholm domain and index function 
of the operators X, Z s , <5, and ® 3 . Corresponding results for arbitrary elementary 
operators 91, or the operators 9i3, appear to be unknown at present. Some partial 
results are known for the general case. In [12, Theorem 3.14] it is proved that 

N 
cre(m~)c 2 (trCAiJoeCBJUaeiAJcriBi)) (and similarly for the operator 91). By 

i=l 

combining the techniques of [9], [10], [12] with the multi-variate techniques used in 
section 2, it is possible to prove the following result for the general case. The proof, 
and applications, will appear elsewhere. For и-tuples of operators A and B, let 
alr(A, B) = Gle(A)oar(B)Uai(A)oore(B) and let <Jrl(A, B) = arc(A)ool(B)(Jor(A)o 
oale(B). Let 3 be an arbitrary norm ideal. 

Theorem 3.15. i) ae{A)oo(B)\Ja(A)oae(B)cae(^-, 
ii) 7 / XZalr(A, B) and 9i3—X is semi-Fredholm, then ind (9t3—X)= + <=°; 
iii) If X£ar[(A, B) and 9i3 — X is semi-Fredholm, then ind (9l3—X)= — 
iv) a„ (А, В) П orl (A, В) с aSF (9*3). 

We note that parts ii)—iv) are valid for elementary operators with arbitrary 
(non-commutative) coefficient sequences. A similar result holds.for the operator 91. 
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Characterizations and invariant subspaces of 
composition operators 

D. K. GUPTA and B. S. KOMAL 

1. Preliminaries. Let (X , £ f , X) be a c-finite measure space and let T be a 
non-singular measurable transformation from X into itself. Then the composi-
tion transformation CT from L\jI) into the space of all complex-valued functions 
on X is defined by 

CTf=foT for every f£Lp(A). 

If CT happens to be a bounded operator on Lp{).), then we call it a composition 
operator induced by T. 

Let X=N, the set of all non-zero positive integers and £f=P(N), the power 
set of N. Then we can define the measure X on P(N) by 

H E ) = 2 w n for every E£P(N), 
n(E 

where w={w„} is a sequence of strictly positive real numbers. If p=2, then 
LP(X) is a Hilbert space with the inner product defined by 

</. s) = 2 w„f(n)g(nj 
for all / , g£Lp{X). This Hilbert space is denoted by and is called a weighted 
sequence space. By B(l%) we mean the Banach algebra of all bounded linear oper-
ators on 1%. Let {<?„} be the sequence defined by e„(p)=5np, the Kronecker 
delta. If CT is a composition operator, then C*T, the adjoint of CT, is given by 

(Ci / ) (n) = 4 " / fdX (cf. [4]). 
vv" r - 4 ) ) 

In the present note certain criteria for a bounded operator to be a composition 
operator are obtained. It is also shown that every composition operator on ¡I, 
has an invariant subspace. This generalizes a result of SINGH and KOMAL [5] to the 
weighted sequence spaces. 

Received August 10, 1981, and in revised form March 27,1982. 
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2. Criteria for a bounded operator to be a composition operator. In this section 
we obtain two different criteria for a bounded operator to be a composition operator. 

Theorem 2.1. Let AÇ.Bfâ). Then A is a composition operator if and only 
if for every n£N, there exists mÇN such that A*e'n = e'm, where e'n — e„/w„. 

Proof. The proof follows from NORDGREN [2]. Here e'„'s play the role of 
kernel functions. 

Theorem 2.2. Let AÇ.B(PW). Then A is a composition operator if and only 
if there exists a partition {£„} of N such that Ae„=XE , where XE denotes the 
characteristic function of a set E. 

Proof. Suppose A is a composition operator. Then A—CT for some mapping 
T:N—N. The choice T'\{n})—En clearly suits our requirements. 

Conversely, if A satisfies the condition of the theorem, then we may define 
a mapping T:N—N by T(m)=n for m£En. Now Ae„=CTen and so Ae„lfw„ = 
—CrenlVw~n for every n£N. Thus A and CT agree on the basis vectors of 1%. 
It is easy to show that CT is a bounded operator. Hence Af=CTf for every f£l%. 
This completes the proof. 

Theorem 2.3. Let T :N—N be a surjective mapping such that CT(zB(ll,) 
and let A£B(PW). Then CTA is a composition operator if and only if A is a compo-
sition operator. 

Proof. The proof is an immediate consequence of Theorem 2.1. Indeed if 
CTA=CS then A*Cj=C*s, i.e., A*e'Tm=A*CTe'k=C*se'k=e'sm for every k£N. 
Since T(N)=N, for every m£N there exists ndN such that A*e'm=e'„. 

Theorem 2.4, Let T : N—N be an injection and let CT, A£B(li). Then 
ACT is a composition operator if and only if A is a composition operator. 

Proof. Suppose ACT is a composition operator. Then there is a mapping 
S: N—N such that ACT=CS. Now Ae„=ACreT(n)=CseT(n)=XE , where En = 
=1S,-1({T(n)}). By Theorem 2.2, {En} is a partition of N. Hence A is a composi-
tion operator. The proof of the sufficient part of the theorem is straight forward. 

Theorem 2.5. Let AdB(ll,). Then A is a unitary composition operator if 
and only if 

{Ae'„: nZN} = {e'n: n€JV}= {A*e'n: n£N}. 

Proof. Assume A is a unitary composition operator. Then by Theorem 2.1 

{A*e'„: n£N} Ç. {e'n: n^N) = {AA*e'n: n£N) <g {Ae'n: n£N}. 
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From Theorem 3.1 of [6], A* is a composition operator and hence also the converse 
inclusions hold. 

If the conditions of the theorem are true, then by Theorem 2.1 both A and 
A* are composition operators. Hence by Theorem 3.1 of [6] A is a unitary composi-
tion operator. 

3. Invariant subspaces. Def in i t ion . Let T : N—N be a mapping. Then two 
integers m and n are said to be in the same orbit of T if each can be reached from 
the other by composing T and 7 1 - 1 (T~1 means a multivalued function) sufficiently 
many times. 

Def in i t ion . A closed subspace M of a Hilbert space is called.an invariant 
subspace of A if AMQM. 

One of the most outstanding unsolved problems of operator theory is the In-
variant Subspace Problem. The problem is simple to state: Does every operator 
on an infinite dimensional separable Hilbert space have a non-trivial invariant 
subspace? The answer is not yet known. Recently SINGH and KOMAL [5] obtained 
that every composition operator on /2 has a non-trivial invariant subspace. In the 
following theorem we generalize this result to the weighted sequence spaces. 

Theorem 3.1. Let CT£B(PW). Then CT has a non-trivial invariant subspace. 

Proof. Suppose CT is a composition operator induced by a mapping T: TV—TV-
Then either T is invertible or T is not invertible. First assume that T is invertible. 
Then take n£N. Now either the orbit of n is equal to N or it is not equal to N. 
Suppose o(ri)=N, where o(n) is the orbit of n. Then let 

If / | =span {e'm: m£E„}, then clearly / | is invariant under CT. Next, if o(n)^TV, 
then / | =span {e'm: m£o(n)} is an invariant subspace of CT. 

Further, suppose T is not invertible. Then, either T is not an injection or 
T is not a surjection. If T is not an injection, then CT has not dense range and 
hence ran CT is invariant under CT. And, if T is not a surjection, then CT has 
a non-trivial kernel and hence kerCT is invariant under CT. This completes 
the proof. 

Acknowledgement. The authors wish to thank the referee for several helpful 
comments and suggestions. They are also thankful to Dr. R. K. Singh for guidance 
and advice during the preparation of this paper. 
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Note on operators of class C0(l) 

SHLOMO ROSENOER 

1. Introduction. Let H be a separable Hilbert space and B(H) the algebra 
of all bounded linear operators on H. The ultraweak topology on B{H) is the 
weak topology relative to the family of functionals cp of the form 

(1) <P(.T)= 2(Txn,y„) n=1 

where { 4 { y j c i f and ¿ ( | | x J 2 + | | j > J 2 ) < ~ . 
n=i 

The following theorem occurs in HADWIN and NORDGREN [1]. 

Theorem 1. Let i f be an ultraweakly closed subspace of B(H) and cp an 
ultraweakly continuous linear functional on i f with Then for every e > 0 
there is an extension of <p to B(H) which is a functional of the form (1) with 

( J L L ^ P F ' F J L L ^ R F ^ N - ^ -

Let st be a unital ultraweakly closed subalgebra of B(H). We say that s4 
has property Z)„ (1) if every ultraweakly continuous linear functional cp on si can be 
represented in the form cp(T)=(Tx,y) with some x, y in H. If in addition r^l 
and, for every s=~r, x and y can be chosen so that cp(T)=(Tx, y) for all T in 
d and ||x|| ll̂ ll then we say that si has property Da(r). An operator 
T is said to have property D„ or D„(r) if si(T) has the respective property, where 
si (T) denotes the unital ultraweakly closed algebra generated by T. 

The main purpose of this note is to show that the operators of the class C0(l) 
have property Da( 1). From this we deduce that the commutant of the Volterra 

X 

operator V defined by (Vf){x)= J f ( y ) d y in Z2(0,1) is the minimal unital ultra-
o 

weakly closed algebra with linearly ordered invariant subspace lattice containing V. 

Received December 1, 1980. 
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In conclusion we prove that a contraction with sufficiently large spectra cannot be 
reductive. 

2. Main result. For any subset Sf of B(H), S/" denotes its commutant, lat if 
the collection of closed subspaces in H invariant under every operator in S f , 
and alg lat if the algebra of all operators in B(H) leaving each element of lat S? 
invariant. Sf is called reflexive if U(£?)=alg lat ^ where U(£f) is the weakly 
closed unital algebra generated by 

Let N be a positive integer. The class C0(N) of operators is defined as the 
set of completely non-unitary contractions T£B(H) for which 7"1—0, T*"—0 
(strongly) and dim (I—T*T)(H)=dim (I—TT*)(H)=N. The operators of class 
C0(l) admit the following description [2]. Let U be the canonical unilateral shift, 
that is the operator of multiplication by the independent variable A in H2, and 
let m(X) be an inner function. Denote by H(m) the subspace H2QmH2 and 
define the operator S(m) in H(m) by 

S(m) = PH(m)U. 

Then every operator of class C0(l) is unitarily equivalent to S(m) for an appropriate 
inner function m. Alternatively, one can view the operators of class C 0 ( l ) as 
restrictions of the backward shift U* to its invariant subspaces. 

Theorem 2. Every operator of the class C0( l ) has property Da( 1). 

Proof. By virtue of the preceding remark, it is enough to show that if U is 
a (cyclic) unilateral shift in H and Z-glat U*, then T = U*\L has property 
/>„(1). Suppose <p is an ultraweakly continuous functional on with ||<p|| ̂  1, 
and £>0. By Theorem 1, we may assume that for every S£s/(T), 

<p(S)= ¿(Sxn,yn). 

2 W I 2 J ( Z I I ^ P J < ! + « • Let H denote the 
infinite Hilbert sum / / © / / © . . . © / / © . . . . Then the vectors x = x 1 © x 2 © . . . © 
.. .©*„©.•. and y = Ji©^2©• • • ffiJ«©• • • are in H and the operator U = 

= { /©£/©. . .©[ /©. . . is in 5(H). Let M = V U"y. Since U | M is a cyclic 
n = l 

completely non-unitary isometry, it is unitarily equivalent to U. Hence there is 
an isometry W from H into H such that W(H)=M and 

(2) WU = U W. 

Let T„=P„W, where P„ is the projection in H onto the nth coordinate 
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subspace. Clearly T„£B(H) and for every x£H, 

(3) Wx = T-i_x®T2x®...®fnx®.... 

From (2) and (3) it follows that T„U=UT„ for every n. Let y0=W*y. Then 

Tny0=y„ and bo l l 2 - l l y l l 2 =I l l 7J 2 - Since 
n = l 

(fv*x, z) = (x, Wz) = i (*„, Tnz)= 2 ( 0 „ , z), 
n=l n=l 

for every z£H, we can assert that the series 2 T*x„ converges weakly to some 
n = l 

x0£H and 
/ „ y / 2 

||x0|| = ||PF*x|| ^ | | x | | = [ 2 MI2J • 
Moreover, since L is a hyperinvariant subspace of £/*, x0 is actually in L. Now 
for every S£si{T), 

<P(S) = 2 (Sx„, yn) = 2 (Sxn, Tny0) = 2 (t:sx„, y0) = 
n~ 1 n n 

= 2 (ST„*x„, JO) = ( 5 ( 2 T:xn), y0) = (Sx0, JO) = (SX0, PJ0), n n 

where i3 denotes the projection in ÍT onto L. Finally, 

LL*OLL \\Py0\\ ^ IKII Iboll ^ ( i l l * J 2 ) ( J I I j J 2 ) - 1 + e , 

which completes the proof. 
The proofs of the assertions of Corollary 3 below are either obvious or can be 

found in [1] (if we note that by [2, Corollary VI. 4.3.7], for every operator T of 
class C0(l) we have {T}'=si(T)). For the definitions of an attainable family and 
direct integral see also [1]. 

Corollary 3. Let (X, /x) be a measure space and {•^(Tx)}x(:X an attainable 
family of algebras, where Tx is an operator of class C0(l) for every x£X. Denote 

© 

by si the direct integral of the algebras si (Tx): si = J si (Tx) dfi(x). Let six be 
X 

a unital ultraweakly closed subalgebra of si. Then, 
(a) the weak and ultraweak topologies coincide on si, 
(b) six has property D„(\), 
(c) if si2 is a unital ultraweakly closed subalgebra of si and lat .s^glat si2, 

then si^si2, 

19 
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(d) if S&! is reflexive, then every unital ultraweakly closed subalgebra of 
is reflexive, 

(e) if Tx reflexive for almost every x£X, then is reflexive, 
(f) H alg lat ^ , 
(g) ^ ^ { S S S | Sts/i) is reflexive. 

We now give two examples to illustrate Theorem 2. 

Corollary 4. For every positive integer n, let Hn be a finite dimensional 
Hilbert space and J„ a Jordan cell in B(H„) (with respect to some orthonormal 
basis in HJ. If TnJn=JnTn and T=Tl@T2®...®T„®... is a bounded opera-
then si (T)= {T}' n alg lat T. 

Proof. It suffices to note that, by a theorem of BRICKMAN and FILLMORE [3], 
for any operator S in a finite dimensional space, (£) = {Sj'flalg lat S, and 
then we apply corollary 3 (f). 

X 

Next we consider the Volterra operator V defined by (Vf){x)= f f(y)dy 
o 

in L\0,1). It is well known that V is quasinilpotent and unicellular. FOIA§ and 
WILLIAMS [7] gave an example of a unicellular operator in {V}' whose spectrum 
contains more than one point. Here we prove that every unicellular operator 
commuting with V is an ultraweak generator of the commutant of V. 

Corollary 5. Suppose 08 is an ultraweakly closed unital algebra strictly 
contained in {V}'. Then \at3S is not a chain. In particular, if T commutes with 
V and T is unicellular, then s/(T)={V}'. 

Proof. SARASON [4] pointed out that Vcommutes with the operator S(m) 
where m(A)=exp {(A + 1)/(A-1)}. Since V£rf(S(m)). On the 
other hand, by [5], the commutant of Fis the weak closure of the polynomials 
of V, so that { V y = j ^ ( V ) ^ s / ( S ( m ) ) . Now suppose l a t ^ is a chain. Since 
lat V is a maximal chain, lat V — lat S&. By Corollary 3 (c), 88 coincides with {V}'. 
The obtained contradiction proves the assertion. 

Now we note that Theorem 2 yields the following factorization theorem. By 
Hi we denote the subspace of H 1 consisting of the functions vanishing at 0. 

Theorem 6. Let m be an inner function, f g£H(m) = H2QmHz and 
inf{ | | /g- / I | |1 | / i€/ /5}^l . Then for every £>0, there exist f , g^H{m) such that 
»/ iW*iH.<l+e and f g - f g ^ H l 

Proof. Let T=PU | H(m), where P is the projection onto H(m), and 
denote b y > the functional on s4(T) defined by <p(X)=(Xf g). Choose X£sf(T) 
with || AT|| = 1. Then, by [2, Corollary VI. 4.3.7], there exists an analytic Toeplitz 
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operator Y, ||F|| = 1, such that PY | H(m)=X. Since LlIH\ is the pre-dual 
of 

\<p(X)\ = |(Xf, g)| = | ( Y f , g)| ^ 1, 

so that I M ^ l . By Theorem 2, q> can be represented in the form cp(X)=(Xf1, gi) 
where f i , gi£H(m) and ¡ l / i lU^L^l+f i . But then, for every F<E{£/}', 

( X f , , gl) = (PYfu gl) = (PYf, g) = (Yf, g), 

so that f g - f g ^ H l 
In Proposition 7 below we shall prove that for certain operator algebras the 

possibility of such "factorization" implies property D„(r). BC(H) denotes the 
ideal of compact operators in B(H). o)x y is a functional on B(H) defined by 
mXty(T)=(Tx,y). 

Propos i t ion 7. Let si be a unital ultraweakly closed operator algebra. 
Suppose that si' has a cyclic vector and that sif]BC(H) is ultraweakly dense in si. 
Then si has property Da(r) if and only if for every £>0 and every pair x, ydH 
such that \\o}Xty\si\\Sl there are t]£H such that ||£|| IM| </•+£ and <aXjJ,=a»ii, 
on 

Proof. The "only if" part is obvious. Let us prove the "if" part. Choose an 
arbitrary £ > 0 and let (¡o be an ultraweakly continous functional on si with 

oo 

H^ll^l. By Theorem 1, q> can be represented in the form <p(T)= 2(Txn,yn) 
n = 1 

\ l /2 ( oo V/2 

2IKII21 [2iWynV\ < l + e . Choose a number N such that 

2 ( | |xJ 2 + | | jJ 2 )<£. If x0 is a cyclic vector for there exist {rf}f=1 in si' a=N +1 satisfying the inequalities 

l|7i*o-*«ll < b/2 ( J H^ll) 1 (« = 1, 2, ..., N). 

Then for every T^si with 

<P(T)-[TX0, 2 TRY]]* \2{Txi,yd-[Tx<i, ¿ r f J - i - 2 ^ ^ 
v i= i / | | i= i V ¡=i J\ |i=iv+i 

s 2 № - TiXo), J + 2 (Txi. Ji) s 

^ 2 I I * . - ^ „ 1 1 llttll + 2 ¡Ml IIJill < £ / 2 + 8 / 2 = 8. 
¡=1 i=N+1 

Hence it follows that the set of functional coXiy is norm-dense in the family 
of all ultraweakly continuous functional on si. Let a>Xn,yn be a sequence converg-

19» 
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ing to cp in the norm topology. We may assume that \ < 1 +e. Choose 
¿;n, r]„ in H such that oix^n = co^,^ on si and [|cj = b J <r1 /2(l+e)1 /2 . Passing 
to subsequences, we may suppose that rj„ rj for some rj in / / . 
If K£str\BC(H), (p{K)=Y\m(K^n,t]n). On the other hand, (1 

№„, r,n)-(Kt, r,) i s rjn-r\)\ == 

=§ r 1 / 2 ( l + e ) 1 / 2 + № , r ,„-rj ) \ - 0, 

so that (p(K)=(K£, rj). Now if and if {A"a} is a net of compact operators 
in si which converges ultraweakly to T, then <p(T)=\im <p{Ka)=Yim(Ka£„ ri)= cc et 
=(T£, t]). Finally, since the norm on any Hilbert space is lower semicontinuous, 
w e h a v e [|£ll I M l 3 > ' ( l + < D . 

3. Reductive contractions with rich spectra. The properties D„ or Da(r) might 
be very useful in applications to various problems on invariant subspaces. Let us 
introduce the following definition. If G is an open non-empty subset of the complex 
plane, we say that cQC is rich in G if for every h in H°°(G), 

sup \h(z)\ — sup \h(z)\ 
z£G zgffflG . 

where H°° (G) denotes, as usual, the algebra of bounded functions analytic in G. 
Recently, BROWN, CHEVREAU and PEARCY [8] proved that if T is contraction 

in B{H) whose spectrum a{T) is rich in the open unit disk D, then lat T is not 
trivial. Recall that an operator T is called reductive if lat T = lat T*. Here we show 
that if cr(T) is sufficiently large, then T cannot be reductive. 

Theorem 8. Let T£B(H) be a contraction. Suppose, that a{T) has the 
following property: if o(T) = o1Uo2 where ox and a2 are closed subsets of cl D, 
then either there exists a non-empty open set G such that o1 is rich in G, or a2 

is rich in D. Then T is not reductive. 

Proof. Clearly we may assume that T is completely non-unitary. Suppose 
T is reductive. Let H1 denote the subspace of H spanned by all eigenvectors 
of T. Then H^MtT, so that / / ^ i ^ e l a t T. Then T = TX®T2, where T~ 
= T\Hi. Clearly o(T)=o(T1)Da(T2). We claim that Tx is normal. Indeed, 
since T is reductive, so is Tx, and every eigenvector of is also an eigenvector 
of T*. Thus, if x1,x2, ...,xn is any finite set of eigenvectors of 7\ (and T*), 

then 7\T* .Z = TiTi 1 2 f o r all scalars a1; a 2 , . . . , a„. Since Hx is 

spanned by eigenvectors, we conclude that TiT*=T*T1, that is 7\ is normal. 
Now Tx is a normal reductive operator whose set of eigenvectors is total in Hx. 
By SARASON [6], there is no non-empty open set G such that U ( T 1 ) is rich in G. 
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By assumption o(T2) is rich in D. Now T2 is a reductive completely non-unitary 
contraction with rich spectrum in D. Then a(T2) coincides with the left essential 
spectrum of T2, for otherwise, as pointed out in [8], T2 or T2 (and therefore 
both of them) has an eigenvector, which contradicts the definition of H1. Now by 
[8], T2 has property D„ and there exist a non-zero multiplicative ultraweakly 
continuous functional q> on ¿¿(T2). Let 

Let J denote the null-space of cp. Then J is an ideal in stf{T2) such that the sub-
space M=c\ Jx=c\ {Sx, is in lat T2. On the other hand, x is not inM, 
for but <p(/)=(x, If we denote by N the subspace spanned by x 
and M, then lat T2 and dim (NQM)=1. Since T2 is reductive, NQM£latT2, 
which again contradicts the definition of H^. This contradiction leads to the 
desired conclusion. 

Corollary 9. If T is a contraction and <r(T) is an annulus {z | r^ 1}, 
O^rd, then T is not reductive. 

Proof. Suppose a(T) = a1\Ja2 with ax, ff2=cl D and a2 not rich in D. 
Then there are A^C, |A| = 1 and £, 0 < e < l — r such that {z | \z—A|<e}nc2=0-
But then G = {z | \z—1\<E)C\D<^G1, so that o-j is rich in G, which completes 
the proof. 

Of course, an example of a rich subset of D not satisfying the conditions of 
Theorem 8 can be easily constructed. 
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On ranges of adjoint operators in Hilbert space 

ZOLTÁN SEBESTYÉN 

Introduction 

Let A be a given densely defined operator in the (complex) Hilbert space H. 
Let further y and z be elements in H. The relation 

(1) (Ax,z) = (x,y) [xd2)(A)), 

where Si (A) stands as usual for the domain of A, is fundamental for the definition 
of A*, the adjoint of A. Namely, z is in 3>(A*) if 

sup {|(Ax, z)|: x€9(A), ||x|| S l } < = o 

holds, that is by the Riesz Representation Theorem if and only if there is an y in 
H satisfying (1). The reverse problem is the characterization of Sfc(A*), the range 
of A* : y is in M(A*) if there is an element, z in 3(A*) for which (1) holds. 
We shall show that this is the case if and only if 

sup {|(*. y)\: X€9(A), |M*|| 1} < -
holds (Theorem 1). 

As an application we obtain results concerning the factorization of a given 
densely defined operator C in H in the form CcA*B by which we mean that 
B is an operator in H defined at least on 3>(C), and for any x in @>(C), Bx£ 
€@(A*) and Cx=A*(Bx). In general, as a Zorn's argument shows, &(A*)=>&(C) 
is sufficient for such a factorization, but we produce a minimal B in the sense that 

(2) 115x11 || k|| for x£3(C), u£$(A*); Cx = A*u. 

The question of the boundedness of B is also analyzed in the hope that we shall 
be able to answer the question raised by R. G. DOUGLAS [1] concerning the factoriza-
tion of unbounded operators, especially with a bounded cofactor. 

Our constant reference is [2]. 

Received March 5, 1982, and in revised form December 14, 1982. 
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Results 

Theorem 1. Let y and A be a unit vector and a densely defined operator, 
respectively, in a Hilbert space H. The following two assertions are equivalent: 

(i) There exists a unique vector z in H such that 

(3) y = A*z and Hz|| s Hu|| for u£3)(A*), y = A*u. 

(ii) My := sup {\(x, y)\: x£®(A), \\Ax\\ S l } < » . 

lf(i) and (ii) are valid, then My=\\z\\. 

Proof, (ii) simply follows from (i) since for any x in S>(A), 

\(x, y)| = \(x, A*z)| = |(Ax, z)| ^ || z|| • \\Ax\\; 

we see also that ilij,^||z||. 
(ii) implies (i): Assuming (ii) we have \(x, y)\^MylAx\ for any x in 2!(A). 

So the map Ax>-»(x, y) is a bounded linear functional on 31(A). It has a unique 
bounded linear extension to 01(A), the norm closure of 01(A). By the Riesz Repre-
sentation Theorem there exists a unique vector, z, in ,<%(A) for which (1) holds. 
Then z is in 2>(A*) and y=A*z. 

If ujiz is from 3>(A*) and y—A*u, then (Ax, z)=(x, A*z)=(x, A*u) = 
—(Ax,u) for every x in 3(A). Since z is, while u is not in &t(A), it follows that 

Ml = sup {\(Ax, z)|: X€9(A), |M*|| ^ 1} = 

= sup {|04*, «)|: X€0(A), №'*H s l } < ll«|| 

Thus (3) holds and the z with this property is unique. The proof is complete. 

Theorem 2. Let A and C be densely defined operators in a Hilbert space H. 
The following three assertions are equivalent: 

(i) There exists an operator B in H such that 

(4) CczA*B and B fulfils (2). 
(ii) @(C)a@(A*). 

(iii) My(C):=sup {l(x,Cy)l: x£®(A), M*||=SlH~ (y€9(£)). 

Proof, (i) clearly implies (ii). Further (ii) implies (iii) since for any y in 
3>(C) there exists (by assumption) a u in S}(A*) such that Cy=A*u whence for 
any JC in @(A), 

\(x, Cy)| = \(x, A*u)\ = |(Ax, u)| S ||u|| • \\Ax||, 

and thus (iii) follows. 
Lastly assume (iii) and prove (i). For a fixed x in 3i(C) there exists, by 

Theorem 1, a unique vector z in H such that (3) holds with y-Cx. Writing 
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z=Bx we get just (2) as desired. We have to show only that Bx is a linear function 
of x if x varies on $>(C). 

Recall that, as the proof of Theorem 1 indicates, Bx is in M(A) for any x in 
©(C). Thus if x, x' are arbitrary vectors from 2(C), for any y belonging to 
S>(A) we have 

0 - (C(J<+x'), y)—(Cx, y)-(Cx' y) = (A*B(x+x'), y)-(A*Bx, y)-(A*Bx', y) = 

= (B(x+x'), Ay)~(Bx, Ay)—(Bx', Ay) = (B(x+x')-Bx+Bx', Ay), 

which shows that B(x+x')—Bx+Bx'. The proof of B(lx)=XBx for a scalar 
X is similar. The proof is complete. 

The following is analogous to [1, Theorem 2, (3)] due to Douglas. 

Corol lary 1. If C of Theorem! is closed then 

sup {115x11: xe®(C), Ml + 11 Cx|| S 1} ^ oo. 

In particular, B is bounded if C is. 

Proof. By assumption, C has a closed graph. Hence we have to show that 
the linear operator given by {x, Cx)^—Bx (x£@(C)) also has a closed graph.. In 
other words, assuming that x„—x, Cx„—Cx and Bxn—u, we must conclude 
u=Bx. Since Cx„—Cx means that A*Bxn->-Cx, by the closedness of A* we get 
A*u=Cx=A*Bx. But since Bx„ is in 1%(A), u is in 8fc(A), too. As (Ay, u)= 
= (y,A*u)=(y,A*Bx) = (Ay,Bx) for every y£@(A), it follows that 

||M|| = sup {|(Ay, u)\: yd®(A), \\Ay\\ == 1} = 
= sup {|(Ay, Bx)|: y£0(A), \\Ay\\ § 1 } ^ ||5x||, 

whence by the uniqueness of Bx we have u=Bx indeed. 

Remark 1. If in Theorem 2 the operator A is bounded and C is closed, 
further if we take S>(B)=2>(C), then B is closed. Indeed, if x and Bx„—u, 
where xne@(C) (n=l, 2, ...), then Cx„=A*Bxn—A*u so that A*u=Cx=A*Bx, 
and an argument similar to that appearing in the proof of Corollary 1 shows u=Bx. 

Theorem 3. The following four assertions are equivalent: 
(i) The operator B in Theorem 2 (i) is bounded. 

(ii) 52(,4*)=> 52(C) and 

sup {inf [||z||: z£®(A*), Cy = A*z]: y£®(C), ||j|| == 1} < 

(iii) sup {\(x, Cy)|: xi®(A), \\Ax|| =§ 1, y€®(C), s l } < » . 

(iv) ®(C*) z) ® (A) and 

sup {||C**||: x£9(A), |M*|| S 1} < «,. 
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Proof. Assume first (i). We know from Theorem 2 that for any y in 3(C), 

infillrB: ZZ9(A*), Cy = A*z] = \\By\\ =S ||2?|| ||j|| 

holds. This proves (ii). But (ii) implies (iii) since we know also from Theorem 2 that 

sup {|(x, Cy)\: x£3(A), \\Ax\\ s l } = inf [||z||: zZ3(A)*, Cy = A*z] 

for any y in 3(C). For the same reason (iii) implies (i). But (iv) also follows from 
(iii) since by (iii) 3(A)cz3(C*) and since for any x in 3(A), 

||C*x|| = sup y)|: y£3(C), ||j|| s l } = 

= sup {\(x,Cy)\: y€3(C), | | ^ 1}. 

Finally (iv) implies (iii) since for any x in 3(A), x is in 3(C*) and 

|(*> Cy)\ = |(C*x, y)\ S ||C*x|| • ||j|| 

holds for any y in 3(C). 

Remark 2. Assuming that A* is densely defined or, what is the same, that 
A** exists, assertions (i)—(iv) in Theorem 3 are equivalent to 

(iv)' sup {||C*x||: x€3(A**), |M**x||=Sl}<°°. 
Indeed, since A** ID A in this case, (iv)' implies (iv). On the other hand, (i) implies 
now that C*z>(A*B)*^>B*A** and that 

||C**|| = \\B*A**x\\ ||.B*|HM***II 

holds for any x in 3(A**), which proves (iv)'. 
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Restrictions of positive operators 

ZOLTÁN SEBESTYÉN 

The aim of this note is to give a necessary and sufficient condition for the 
existence of a positive linear operator on Hilbert space whose restriction to a subset 
of this space is given. As an application we have a result on division of Hilbert space 
operators. Krein's theorem on the extension of a bounded symmetric operator 
from a subspace to the whole space is also established. 

Theorem. Let H be a (complex) Hilbert space, H0 its subset, and b a func-
tion on HQ with values in H. There exists a positive operator B on H with restriction 
to H0 identical to b if and only if 

(i) \\2chb(h)\\* ^ M{2chb(h), Zc„h) 
h h h 

holds with some constant MsO for any finite sequence {cA}h€//o of complex numbers 
indexed by elements of H0. In this case, ||5|| ^M. 

Proof. The necessity of condition (1) is a simple consequence of a property 
of positive operators: 

\\2chb(h)\\2 = \\B(2chh)\\2 ^ \\B\\(B(2chh), 2 c„h) = 
h h h h 

= \\B\\{2chb(h), 2c„h). 
h h 

Hence (1) holds with M = ||5|| for any finite sequence €w<> of complex 
numbers. 

Conversely, assume that (1) is valid for arbitrary finite sequences {ch}H(Bo 

of complex numbers. Since the linear span of H„ in H, say X, consists of elements 
chh with such coefficients, we can introduce a semi-definite inner product on 

X by 
{2chh, 2dkk) := (2chb(h), 2dkk) 

h k h k 

Received March 5, 1982, and in revised form December 14, 1982. 
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for elements Z chh and Z d k k of X. It is well defined because 2 c„h=0 implies 
It к h 

Z chb(h)=0, in view of (1). As usual, we get a Hilbert space К from X by factorizing 
Л 

X with respect to the null space of ( • , •) and by completing with respect to the 
norm arising on the factor space. For simplicity we denote the image in К of an 
element of X by the same symbol. With this convention there is a continuous 
linear operator V from К into H given by 

V{Zchh) = Zchb(h) 
h h 

for any element 2 chh of Indeed, according to (1), V is well defined and has 
h 

norm We are going to prove that В — VV* is the desired positive operator 
on H. To see this it is enough to prove that 

(2) V*k = k for any к in # 0 , 

since then Bk=VV*k=Vk=b(k) (keH0). 
To prove (2) we see 

<2 chh, V*k) = (V(Zchh), к) = (Z cHb(h), k) = <2 chh, к> 
h h h h 

for any element Z chh in K. Since these elements are dense in K, the statement 
л 

follows. The proof of the Theorem is complete. 

Corol lary 1. Let A and С be bounded linear operators on the Hilbert space H. 
There exists a positive operator В on H such that A=ВС if and only if there exists 
a constant MsO such that 

(3) A*ASM-C*A 

Proof. For h=Ck, к in H, let b{h)=Ak. Then (1) takes the form 

\\Ak\\2 M(Ak, Ck) = M(C*Ak, к) 

for any к in Я, which is the same as (3). 

Remark. If b is a linear map of a subspace Я 0 с Я into H such that for 
some constant M s O 
(4) | | b ( h ) V ^ M ( b ( h ) , h ) (heHo), 

then b has a positive extension В defined on H. This is a consequence of the 
Theorem. On the other hand, the usual condition for positivity 

(5) 0 (b(h), h) (кн0) 

is not enough for the existence of such a positive extension: a simple example is the 
case when (b(h), h)=Q^b{h) for some element h in H0. 
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Corollary 2. Let b a function on a subset H0 of the Hilbert space H with 
values in H. There exists a self adjoint operator В on H such that m-1 SLB^M • I, 
where m^M are real constants, if and only if 

(6) \\2ck(b(h)-m.h)\\'S(M-m)(2ch(b(h)-m.h), 2chh) 
h h i ) 

holds for any finite sequence {cA} of complex numbers indexed by elements of HQ. 

Corollary 3 (M. G. Kreín, cf. [1]). Let b a symmetric and bounded linear 
operator from a subspace H0 of a Hilbert space H into H. Then there exists a self-
adjoint extension of b to the whole space H with the same bound. 

Proof. Let M be the norm of the operator b, that is, 

M — sup {IIb(fc)||: ВД, Щ Ш 1 ) . 

We have then for any h in H0 

||b(ft) + M• h\[2 = ||b(/i)||2 + 2M• (b(h), h) + M2-\\h\\2 S 

2M-(b(h), h)+2M2 • ||/г||2 = 2M(b(h)+Mh, h). 

But this is nothing else than (6) in case —m=M and b is a linear function, an oper-
ator. As a consequence, - M - I ^ B ^ M - I holds for a self-adjoint extension 
В of b to the space H. This was to be proved. 
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A note on a paper of S. Watanabe 

HR. N. BOYADZIEV 

In his paper WATANABE [1] asked (p. 38) if every closed positive linear 
map <P: A0-*B (A0 is a star subalgebra of a unital C*-algebra containing the unit, 
B is a C*-algebra and <P(x*x)^0 for x£A0) is automatically continuous. He 
proved that when <Z> is 2-positive. In the general case, too, the answer is "yes". 
The proof (similar to that of Theorem 1 in [1]) is based on the lemma of [1] on p. 
37 and on a corollary from the following theorem of Palmer. 

Theorem (T. PALMER [2]). Let A be a complex unital Banach *-algebra with 
continuous involution and H— {x: x£A, x=x*}, E — {elh: h£H}. If the set E is 
bounded, the algebra A is C*-equivalent. 

Corollary. In the above notations, if the set K = {u2: u£H, u2+v2=l for 
some v£H) is bounded, A is C*-equivalent. 

Proof. We have eih=cos (h)+i sin (h) (h£H) where cos (h)=(eih+e-ih)/2, 
sin(h)=(eih-e-"')/(2i)eH and cos(/i)2+sin (h)2=l. If ||sin (/i)2||^iV (a constant) 
for every heH, we obtain that ||cos (A)|| = | | l - 2 sin (/i/2)2|| ^2JV+1, ||sin(/i)|| = 
= \\cos(nl/2-h)\\^2N+l. Hence \\eih\\^2(2N+l) and A is C*-equivalent. 

Now following the lines of the proof of Theorem 1 in [1] we obtain the modi-
fication 

Theorem 1'. Let $ be a closed linear map of A0 into a Banach space B. 
If $ is norm bounded on the set K (defined for A0, see the corollary above and 
the lemma in [1]J, then A0 is a C*-algebra (the original C*-norm in A0 turns out to 
be equivalent to the graph norm in it) and $ is bounded. 

When B is a C*-algebra and <P is positive (we need only <P(x2)^0 when 
x=x*£A0), this is fulfilled: if u2+v2=l(u,v are hermitian in A0), it follows that 
4>(w2)+<2>(k2)=<*>(!), hence ||$(m2)|| =11^(1)11, i.e., <*> is bounded on K. 
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Conditions for hermiticity and for existence 
of an equivalent C*-norm 

ZOLTÁN MAGYAR 

The author has found a sufficient condition for a self-adjoint element in a Banach 
*-algebra to have purely real spectrum. This is contained in Theorem 1 below. 
Using this result it becomes possible to prove that a fairly weak condition provides 
for the existence of an equivalent C*-norm (see Theorem 2). 

The problem discussed here is a version of the Araki—Elliott problem. ARAKI 
and ELLIOTT [3] proved in 1973 that if the 2J*-condition 

l la*a l l = lla*ll • IMI 

holds for a linear norm and the * is continuous, then it is a C*-norm. They con-
jectured that the continuity of the involution is also a consequence of the ^-condition. 
Z. SEBESTYÉN and the author [4] verified this conjecture, and gave a condition for 
a norm to be a C*-norm which can hardly be weakened. 

We shall use [1] without further reference. 

Theorem 1. Let si be a Banach *-algebra, and let r be the spectral radius 
in it. Consider a self-adjoint element h(Zsi). Let (h) be the algebra generated 
by h. Assume there are a seminorm p on (h> and constants 0<M1^M2 such that 

(i) M\ • r(a*a)^p(a*)-p(a)^M\ • r(a*a) for all ad(h). 
Then Sp (h) a R or Sp (h) c {0, w, w} with a suitable w£C. Further, if p is a norm 
then Sp (h) c R. ("Sp" denotes the spectrum in si.) 

The proof will consist of two parts. Part I contains independent propositions 
with independent notations. Then we shall prove Theorem 1 in Part II utilizing 
the results of the previous part. 

Part I. We start with an easy lemma. 

Received November 27, 1981. 
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Lemma 1.1. Let si be a*-algebra, p,r be seminorms on it such that r (a2) = 
=r(af, r(a*)=r(a) and 

(1) Ml-r(a*a)^p(a*)-p(a)^ Ml-r{a*a) for all a£st. 

Then the following also hold: 

(2) Mx • r(h) ^ p(h) == M2 • r (h) if h = h*£s/, 

(3) p(a) si 2M2 • r(a) for all at.si. 

Proof. Writing a=h, a*=h, (2) is immediate from the properties of r. For 
an arbitrary element a consider the real and imaginary part of a, that is, h= 
=2~\a+a*), k=(2i)~\a-a*). Then r(a*)=r(a) implies r(k)^r(a), r(h)mr(a), 
and so (3) follows from (2). 

We call a set K<z C symmetric if it is stable under conjugation, i.e. z£K if 
z£K. In the remainder of this part let K be a fixed symmetric non-void compact 
subset of the complex plain. Denote by C(K) the algebra of continuous functions 
on K, and by r the customary sup-norm in C(K). Define an involution in C{K) 
setting f*(z)=f(z). This definition is correct and this involution is norm-preserving, 
since K is symmetric. 

Let AcC(K) be the polynomials without constant terms. This is a ^sub-
algebra. Consider the following condition: there are a seminorm p on A and 
constants 0 < M ! ^ M 2 such that 

(PI) Ml • r ( f * f ) == p(p) • p ( f ) ^ M | • r ( f * f ) for all f t A. 

Our goal is to prove that this condition implies that the shape of K is very special 
(see Propositions 1.2 and 1.5 below). 

First we list some immediate consequences of (PI). We see from Lemma 1.1 that 

(P2) Mx • r(h) r(h) if h = h*£A, 

(P3) p ( f ) — 2M2 • r ( f ) for all f t A. 

Let B be the norm-closure of A in C(K). Because of (P3) p has a unique 
continuous extension to B, which will also be denoted by p. Then this extended 
p will also be a seminorm and (PI), (P2), (P3) remain valid on B. 

Notat ion . We say that a set T<z C is a cross if there is a real number s such 
that T c R U {j+i'i; i£R}. 

Propos i t ion 1.2. (PI) implies that K is a cross. 

Proof. Suppose the contrary. Then we shall find f g i n B with p(f)+p(g)< 
< / > ( / + &). which is a contradiction. We need two lemmas for this. 



H e r m i t i c i t y a n d e x i s t e n c e o f a n e q u i v a l e n t C * - n o r m 3 0 7 

Denote by C (resp. ß) the maximum of [z| (resp. Im z) on K. Note that 
C,/?> 0 because K is symmetric and not a cross. Let a£R besuchthat a+iß£K. 
Write w^oc+iß, w2=w1, m=\w-¡\. 

Lemma 1.3. For any «GR there are a,b in B suchthat 
(4) r(a*a), r(b*b)^C\ (5) r(a)=r(b)>n, (6) \b(wi)\ = \b(w2)\=m, 
(7) ¡ a i w ^ m C - ^ r i a ) , (8) <=2"1m. 

Proof. Let at(z)=z-exp(—it(z—a)), bt(z)=z • exp (—it(z—a)2) where t is 
real and z£K. Then a,, b,dB for all t. Since K is not a cross, there is a u=yiö£K 
suchthat y^oí and S^O (y, ¿£R). Thus \b,(u)\ = \u\ • exp (2t(y —a)¿) and hence 
there is a t for which \b,(u)\>n. Let b=b, with such a t. 

Since \a,(w1)\=m-exp(tß), \at(w2)\=m-exp(—tß), there is a / > 0 with 
\a,(w2)\^2~1m, r(at)>r(b). With such a t let a=r(b)r(a,)~1at. It is easy to check 
that (4)—(8) hold for this a, b (for (7) use that ß is the maximum of Im z on K). 

Lemma 1.4. Assume that for an a£B the condition 

(9) r(a*a)1/2?sC ^2~1-r(a) 

holds. Then there is a constant L (e.g. L=4M\C2M^i is appropriate) such that 

(10) min(p(a),p(a*))SZ,.r(a)-1 . 

Proof. Choosing z in K with r(a)=a(z) we have by (9) 

|a*(z)| S C2 • r(a)-x =s 2- J C 4"1 • r(a), 

and thus 

r(a+a*) S \(a+a*)(z)\ s \a{z)\-\a*(z)\ ^ /•(a)-4~1 • r(a) s 2"1-r(a). 

Then we get from (PI), (P2), (9) and the subadditivity of p that 

p(a)+p{a*) ^ 2"1Af1 • r(a) and p(a) •p(a*) s= M\C2. 
Writing c=min (p(a), p(a*)), d=ma.x(p(a), p(a*)), we then have 2 d s c + d s 
Wl-xM^-r{a), c-d^M\C2, and hence cá4M2C2M"V(a)-1 . 

We turn to the proof of Proposition 1.2. Let a,b£B be such that (4)—(8) 
hold with "large enough" n. Let further / (resp. g) be the one from a and a* 
(resp. b and b*) for which p is less. Since r(g)=r(f)=r(a)>n and n is large 
(>2C), we can apply Lemma 1.4 and have 

(11) p(ß+p(h)^2Ln-\ 

On the other hand, (PI) and (5)—(8) give us 

M r ' - p { f * + g * ) - p ( f + g ) ^ K ( / * + g * ) ( / + g ) ) ^ IK/*+g*)(/+g)](wi)l ^ 
S (mC"1 • r( f l ) -m) • ( m - 2 - ' m ) S (4C)"1m2 • r(<¡) 

20» 
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if n is large (since w>2C implies m^(2C)~1m • r(a)). Further, by (P3) 

p(f*+g*) ^ 2M2 • r(J* +g*) S 4M2 • r(a) 
and thus 

p(f+g) S M*n?{\6MtC)-* S 2Ln~x 

if n is large. This and (11) show the desired contradiction. Proposition 1.2 is 
proved. 

Propos i t ion 1.5. If card (£—R)=2 and (PI) holds then ^nRc{0}. 

Proof. Suppose K—R={w, w}. Since C—K is connected now, by Runge's 
theorem there are polynomials Pk converging to w _ 1 • l{lv} in C(K), where l {w} 

denotes the characteristic function of the one point set {w}. Hence z • Pk(z) con-
verges to l{w} in C(K), consequently 

Since l*w}- 1{W}=0, thus by (PI) we infer that one of the functions 1{W} and 
lfw), say f , is such that p(J)=0. This implies 

(12) p(f+g) = p(g) for all geB. 

Applying this to g—f* we get from (P2) that 
(13) p(f*) fe Mx. 

Let h(z)=z on K and let h0=h — w • 1{W} — w-l*w); thus h^B. We will show 
that h0=0, i.e. i i l R c {0}. Write g=a-h0, where a is a real number, and let 
k=f+g. Since g is self-adjoint, further g• f~0=g• f*, therefore k*k=g2 and 
so (PI) implies 
(14) p(k*).p(k)^Mi-r(gy. 

On the other hand, we can see from (12), (13) and (P2) that p(k)^M1 • r(g), p(k*)s 
~m.M1-M2-r(g). This contradicts (14), if r(g) is a small positive number. But 
if ho^O, then r(g) runs over all of R+ when a does. Thus h0=0 and the proof 
of Proposition 1.5 is complete. 

n 
Part II. If P = 2 ak%k is a complex polynomial without constant term then we 

<i=i 

write P*= ZdkXk. It is clear that P*(h)=P(h)*, where h is the self-adjoint 

element considered in Theorem 1. 
Let K=Sp(h). Then K is symmetric, because in each *-algebra Sp (a*)= 

= Sp (a) for any a. We will show that this K satisfies (PI). Consider the following 
relation between A and (h): f~a if there is a polynomial P such that P(h)=a 
and P(z)=f(z) for all z£K. Denote by r' the sup-norm inC(K). Then r'(f)=r(a) 
if f~a, because P(Sp (/i))=Sp (P(h)). Further, f~a,g~b ensure f+Xg~a+Xb, 
/ * ~ a * , since P*(z)—P{z). Finally we see from (i) and Lemma 1.1 that p S 2 M 2 • r. 
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Hence the following definition is correct: let p'{f)=p(a) if Moreover, this 
p' shows that K satisfies (PI). Thus we know that 

(15) Sp (ih) is a cross, 

(16) if card (Sp (h) - R ) = 2 then Sp (h) D R c {0}. 

Suppose that /s:=Sp (A)cJ:R and K<t {0, w, w} for any u><EC. Then by (15) 
and (16) we can find wx, w2 in K—R such that Re Wj^Re w2, Im w^ ± I m w2. 
Thus Re (Wi+jvv^^Re (w2+iwi) for any j£R— {0}, and if |j| is small then 
wx+sw\, w2+sw\ are not real. Therefore Sp (h+sh2) is not a cross. But this is 
impossible, since g=h+sh2 is self-adjoint and (g)c(h). 

It remains to prove the last statement of the theorem. Assume the contrary, 
that is, KcpR and p is a norm. We know already that ATU {0}= {0, w, w>} where 
w£C —R. Let y=h2—wh. Then y*y=hi—wh3 — wh3+wwh2 and hence Sp (y)^ {0}, 
Sp(yV)={0}- Thus, on the one hand, r(y*y)=0; on the other hand, p(y*) • 
•p(y)^0, since y£(h)—{0} and p is a norm on (h). This contradicts (i). Theorem 1 
is proved. 

T h e o r e m 2. Let si be a *-algebra. Let p be a norm on it, and assume that 
the following hold with suitable positive constants C, D: 

(i) p(a*a) S C-p(a*)-p(a) for all a£si, 
(ii) p(b*b)^D-p(b*)-p(b) if b£(h), h = h*£si. 

Then (si, p) is an equivalentpre-C*-algebra (that is, there is a norm on the completion 
of (si,p), equivalent to p and such that the completion with this norm is a C*-
algebra). 

Proo f . This identity holds in each *-algebra: 

(1) = 

+ i (ix*+j>)* (ix*+y)- i ( - ix*+y)*(- ix*+y). 

From this and (i) we get 

(2) 4 p ( x y ) S 4C-(p(x)+p(y*)).(p(x*)+p(y)). 
Writing *=(^(»*)1/2+8)(/»(®)1/,+e)«, y = ( p ( u y 2 + E ) ( p ( u y ' 2 + s ) v in (2) (where 
e> 0) and letting £ tend to 0, we infer 

(3) p(uv) C• (p(u*)1'2p(v*)112+p(w)1/2p(u)1/2)2. 

Define a new norm on si by setting 

(4) ||a|| =4C-max(p(a*) ,p (a ) ) for all a£si. 
Then we have 

(5) ||at|| ^ ||a|| • U&ll, ||a*|| = \\a\|, p(a) S (4C)"1 W for all a, 
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Let 38 be the completion of (si, || • ||). Because of (5) the operations and p have 
unique continuous extensions to 38 and (i), (ii), (4), (5) remain valid in 3$. 

Let r be the spectral radius in 38. Since 38 is a Banach-algebra, thus 

(6) r(o) = lim ||an||1/n for all ad38. 

If h is a self-adjoint element in 3$, then D • p(h)2^p(h2), and hence p(h 
sD-^p(/i2)1'2 =sZ> ~ 1 / 4 p( / i 4 ) 1 / 4 . . . . Therefore • lim suppih")1'". 
Thus we see from (5) and (6) that • r(h). On the other hand, r(h)^ 
^\\h\\=4C-pQi) and we have 

(7) ( 4 C ) " 1 - r ( h ) s p ( f t ) ^ £ ) - 1 . r ( / i ) if h* = h£38. 

From this and (i), (ii) we can see that 

(8) (4C 2 ) - 1 • r(a*a) ^ p(a*) • p(a) ^ D~2-r(a*a) if ae(h), h* = fidsi; 

furthermore, p is a norm on (h). Thus Theorem 1 shows that Sp (h) c: R if 
h*=h£si. Then r(sin r(cos/ i—l)s2 via functional calculus. Since * is 
continuous in 38, hence sin h, cos h — 1 are self-adjoint. Therefore (7) and (4) imply 
||sin h\\ S 4 C D - 1 , ||cos /i —1||^8CD_ 1 , and so 

(9) ||exp (ITI)—1|| ^ 12CD - 1 if = 

The self-adjoint part of si is dense in that of 38, and hence (9) remains valid for 
h=h*£38, too. But this ensures that ||a||c=r(a*a)1/2 is a C*-norm on 38, which 
is equivalent to || • || (see [2]). Thus p is continuous with respect to | |- | |c; let £ > 0 
be such that 

p(a)^E-\\a\\c for all a£38. 

Comparing this with (i) and (7) we see that for any a£38 

E.\\a\\c.p(á) = E-\\a*\\c-p(á) ^p(a*).p(a) ^ (4C2)"1r(a*a) = (4C2)"1 | |a | |2 , 

that is, p(a)s(4j5'C2)_1 | |a||c. Therefore p is equivalent to | |- | |c . Theorem 2 is 
proved. 
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On zeros of analytic multivalued functions 
B E R N A R D AUPETIT* ' and JAROSLAV ZEMANEK 

It had been observed by F . V. ATKINSON [1] and B. SZ.-NAGY [13] tha t if / ( A ) = 
=/+AF1 +... +AnV„, where V1,...,V„ are compact operators on a Banach space, 
then the set of A in C for which 06 Sp /(A) is discrete and closed in the complex 
plane. For « = 1 it is exactly the classical result of F. Riesz. For 1 B. SZ.-NAGY 
[13] believed that this result is deeper than the classical one. The problem was also 
studied by Ju. L. SMUL'JAN [12]. Here we show in Theorem 1, by a completely 
different method, that it comes from Riesz's theorem using only complex function 
theory. Moreover, we give a generalization of this result when /(A) is any analytic 
function from a domain Q of C into a Banach algebra such that Sp f(A) is 
countable for every A in Q. 

It is known that A—Sp/(A) is an analytic multivalued function [3] and that 
analytic multivalued functions have properties very similar to this special case. So 
it is better to formulate all the theorems of this paper in the more general situation 
(for more details see [3], [5], [8]). However, the reader not familiar with this theory 
can adapt immediately all the proofs to the spectral case. 

T h e o r e m 1. Let A-»K(A) be an analytic multivalued function defined on a 
domain Q in C. Suppose that K(A) has at most 0 as a limit point for every A in Q. 
Let 0 be a fixed complex number. Then the set of those A in Q for which z£K(A) 
is either closed and discrete in £2 or it is all Q. 

Proo f . Suppose that z£K(A0) for some A0£Q. We shall show that the point 
A0 is either isolated or interior in the set E = {A£Q: z£K(A)}. Because z ^ O there 
exists an open disk A centred at z and not containing 0 such that A~C\K(A0)= 
-{z}. By upper semi-continuity of the function K there exists 0 such that 
|A—A0|<r implies ^(A)flbdry ¿1=0. Moreover, by Newburgh's property we can 
also suppose that K.(A)Pifor these A, and in this situation is 
an analytic multivalued function on the disk 5(A0, r), see [5], Theorem 3.14. Because 
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A does not contain 0 the set K(X)H A is finite for [A—A0|<r. We apply the scarcity 
theorem for analytic multivalued functions [3], [5] (we can also use the subharmonicity 
of A-•Log d„(K(A)), where <5„ denotes the n-th diameter; in the case when K(A)= 
=Sp/(A) we can use the scarcity theorem ([2], p. 67), or the subharmonicity of 
A—Log <5„(Sp/(A)) [11]). So there exist an integer 1, a closed discrete subset 
F of the disk B(A0, r) and n functions a1,...,a„ which are holomorphic on 
B(A0 ,r)\F such that 

K(A)C\A = {^(A), ...,a„(A)} for A€B(A0, r)\F. 

There exists s such that 0<s^r and B(X0, s)C\F(z {A0}. The functions tx1,...,an 

are holomorphic on 5(A0 , j ) except perhaps at A„. 
Moreover, by the upper semi-continuity of the function K(A) we have 

lim a f(A)=z for every z = l, 2, . . . ,«. Therefore the af's can be extended holo-
morphically to the whole disk B(X0, s). It follows that either a,o(A)=z for some i0, 
or there exists t with 0 s u c h that <Xi(A)^z for all A£B(A0, t)\{A0j and 
i = l , 2 , . . . ,«. In the first case A0 is an interior point of E, while in the second case 
A„ is isolated in E. 

To finish the proof we consider the set E' of all limit points of E in Q. 
Because of the upper semi-continuity of the function K the set E is closed in Q, 
so E'czE. Let n^E'. Since fi is not isolated in E it is an interior point of E, 
hence an interior point of E'. So E' is both closed and open in Q. Consequently 
we have either £ " = 0 or E'—Q. This completes the proof. 

C o r o l l a r y 1. Let A—/(A) be an analytic function from a domain Q into the 
compact operators on a Banach space. Suppose that z $ Sp/(0). Then the set of 
all A for which z€ Sp /(A) is closed and discrete in Q. 

R e m a r k 1. F. V. ATKINSON [1] and B. SZ.-NAGY [13] consider the situation 
when Q—C and f(A)=AV1+...+A"VP with compact operators Vlt ..., Vp. 
Ju. L. SMUL'JAN [12] studies the case when /(A) is an analytic family of compact 
operators, defined on a domain Q. 

We intend to generalize Theorem 1 to the situation when K(A) are general 
countable sets. Of course, in this situation it is impossible to conclude that the 
set {A: z£K(A)} is discrete. To see this take, for example, K(A)=Sp (A/+C) 
where C is a compact operator with infinite spectrum. In this case the preceding 
set has z as a limit point. 

The situations studied in Theorem 1 and in the last example suggest to introduce 
the notion of good isolated point. Given an analytic multivalued function A —K{A) 
on a domain £2, for A„6i2 we say that n£K(A0) is a good isolated point of A"(A0) 
if there exist a disk A centred at p. such that A~C)K(A0)={p} and an r > 0 such 
that the set K(A)C\A is finite for |A—A0|«=r. By the scarcity theorem for analytic 
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multivalued functions (see [3], Theorem 7) there exists an integer n ^ l such that 
K(X)C\A has exactly n points for all \X—X0\-=r except perhaps on a closed discrete 
subset. By definition we put DK(X) to be the set of points of K(X) which are not 
good isolated points. By transfinite induction we can define D"K(X) for every 
ordinal a by 

D"K(X) = D(Dt-'iK(X)) if a is not a limit ordinal, 

D'K(X) = f l DfiK(X) if a is a limit ordinal. 

It is a remarkable fact that if D*K(X) is not identically void then X-~DXK(X) is an 
analytic multivalued function on Q (see [8] and [5]). 

In the situation of Theorem 1 we have DK(X) constant (either empty or equal 
to {0}) while in the previous example we have DK(X) = {2}. 

T h e o r e m 2. Let X—K(X) be an analytic multivalued function defined on a 
domain Q in C. Let z be a fixed complex number. Then every point of the set 
{X£Q: zZK(X)\DK(X)} is either isolated or interior. 

Proo f . We omit the proof because it is similar to the proof of Theorem 1. 

We shall need two lemmas the proofs of which are similar to some arguments 
given in [5]. 

L e m m a 1. Let X—K(X) be an analytic multivalued function defined on a domain 
Q in C, with K(X) countable for every X in Q. Then there exists a point p in 
Q such that K(p)^DK(p). 

Proo f . Suppose that DK(X)—K(X) for every X in Q. From this we conclude 
that there exists some A06 Q for which K(X0) has an infinite number of points. 
Because K(X0) is countable and compact we can assume that there exist two isolated 
points in K(X0) (see [9], Theorem 2.43). We denote them by a0 and ax. We choose 
two open disks A0 and At centred respectively at a0 and a l 5 having disjoint closures 
and such that AqP\K{X0)= {«„} and A~D^(20)={a1}. Then we choose r>0 such 
that B~(X0, r)c:Q and such that \A—X0\<r implies X(l)Hbdry ^ ¡=0 for i—0, 1. 

Because K(X0)=DK(A0) the isolated point a,- is not a good isolated point of 
K(X0), for / = 0 , 1 . By applying the scarcity theorem for the two functions X—K(X)C\ 
TLAF we conclude that the two sets E(={X^B{Xq, r): K(X)C\AT is finite} are of 
outer capacity zero. Consequently, £'oU£'1 is of outer capacity zero, therefore 
there exists some XX in B(X0, r/2) such that the intersection of K(X1) on both 
A0 and AX is infinite. 

As before we find four distinct isolated points in K(X1), say a00, a01 in A0 

and a 1 0 , a u in Ay. We take four open disks Atj centred respectively at atj, 
having disjoint closures, such that A00 

UA01^A0, A10UA11c:A1 and Ar-HK^X^ 
= {«y}. By induction we can construct a sequence (Xn) such that: 
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(i) \Xn+1-Xn\^r/2"+1 for n=0,1,2,..., 
(ii) K(Xn) contains at least 2 n + 1 distinct isolated points a^ j + i where 

ik takes the values 0, 1, 
(iii) each a , l . . . i n + 1 is the centre of an open disk ( , all these 2 n + 1 disks 

have disjoint closures, and moreover we have ^i1 . . . i< i J t l
c^i ...t„" 

Then (A„) is a Cauchy sequence converging to some ^B~(X0, r)<zQ. To 
obtain a contradiction we shall show that K(n) is uncountable. 

Let / = { / i , i2, •••,i„, •••} be an arbitrary sequence of O'sand l's. A subsequence 
of a f i , a ^ , ofy ,• , ••• converges to an cli which is in K ( / i ) by upper semi-continuity. 
If I ¿¿J then for some index k we have ik^jk with / ,= j \ for We have 

while ik • and these two disks are disjoint by construction, 
so ocjT^otj. But the set of sequences / is uncountable so K(p) is uncountable. 

R e m a r k 2. For any analytic multivalued function K(X) on £2 it is easy 
to see that the set of X££2 for which K(X)^DK(X) is open. If in addition the set 
K(A) are countable for X^Q, then this set is dense in £2. 

L e m m a 2. Let X—K(X) be an analytic multivalued function defined on a domain 
£2, with K(X) countable for every X in £2. Then there exists a first or second class 
ordinal ft such that DpK(X) = 0 for every X in £2. 

Proo f . Let <P denote the set of ordinals in the first and second classes (see 
[10], p. 369). For every X in £2 the family of D"K(X), for a in 6, is decreasing, 
consequently it stabilizes at some ordinal a(A), i.e. we have D'K(X)=D*WK(X) 
for every y^a(X), y in <9 (see [7], p. 146). For every a in 0 we define 

Fa = {XeQ: DyK(X) = D*K(X) for y s a, y£&}. 
Obviously this family is increasing and exhausts all £2. Also the sets Fa are closed 
in Q (even if the sets K(X) are not countable). Indeed, taking X0 in £2\Fa, 
we have DyK(X0)^Dy+1K(X0) for some ySa , y€0. Since DyK(X)^0, it follows 
by the Oka—Nishino theorem (see [5], Lemma 3.16) that A— DyK(X) is an analytic 
multivalued function. By the first part of Remark 2 we have DyK(X)^Dy+1K(X) 
in a neighbourhood of X0, so £2\Fa is open. Using again the results in [7], p. 146, 
and [10], p. 370, we obtain that for some ¡3 in 0 we have Fe—Q. 

Suppose that on Q. By Oka—Nishino theorem X—DfK(X) is 
analytic multivalued on £2. By hypothesis DPK(A) is countable for every X in £2 
hence by Lemma 1 we have L>f i+1K(fi)^Bf iK(p) for some Q, that is F ^ Q , 
which is a contradiction. 

T h e o r e m 3. Let X—K(X) be an analytic multivalued function on a domain 
£2 in C. Suppose that K(X) is countable for every X in £2. Let z be a fixed complex 
number. Then the set of those X in £2 for which z£K(X) is either countable or it is 
all Q. 
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Proo f . By Lemma 2 there exists a smallest ordinal /? in the first or second 
class such that £>"A:(A)=0 for A in Q. We have E = {A£Q: z£K(X)}= | J Ey 

0Sy<fl 

where Ey = {X£Q: z£DyK{X)\Dy+iK{X)}. By Theorem 2 applied to the analytic 
multivalued function X—DyK(X) we conclude that Ey has only isolated or interior 
points. Therefore Ey is the disjoint union of an open set and a countable set. 
Because the set of ordinals less than /? is countable the set E is also the disjoint 
union of an open set and a countable set. If the interior of E is empty then E is 
countable and we have finished. If not, we shall show that E = Q. First we note that 
E is closed in Q by upper semi-continuity and so the boundary of E in Q is 
countable. Let F be the closure of the interior of E in Q. It is enough to prove 
that F = Q. Because F is closed in £2 and 0 is a domain we have only to show 
that F is open. Let a be a point of F, and let r > 0 be such that B(a,r)£Q. 
There exists b in the interior of E such that \a—b]<r. The set of half-lines F with 
origin at b such that rC\B(a, r) contains a boundary point of E is at most count-
able. So the interior of E is dense in B(a,r) and hence F^>B(a,r). 

Now we give an application of Theorem 3 concerning the problem of spectral 
classification of projections. In [6] we obtained such result for finite-dimensional 
algebras. Here we extend it to algebras with countable spectrum. 

We say that two idempotents e and / in a Banach algebra A are equivalent 
if they belong to the same connected component of the set of all idempotents in A. 
It is possible to prove that e and / are equivalent if and only if there exist elements 
a1 ; ...,a„ in A such that / = e x p (—«„)...exp (—cti)-<?• exp (aj)...exp (an), see [4]. 

C o r o l l a r y 2. Let A be a (real or complex) Banach algebra. Suppose that 
every element in A has countable spectrum. Let e and f be given idempotents 
in A. Then e is not equivalent to f if and only if l£Sp (e'+ f ) for all idempotents 
e',f in neighbourhoods of e and f respectively. 

P r o o f . As noted in [6] it is enough to prove that l € S p ( e ' + / ' ) implies e not 
equivalent to / . Suppose on the contrary that e and / are equivalent. So there 
are elements ax, ...,a„ in A such that 

/ = exp ( -a„ ) . . . exp ( - a j - e - e x p ( a J . . . exp (a„). 

Consider the analytic function 

g (A) = exp (— Xan)... exp (— XaJ • e • exp (Aax)... exp (Aa„) 

defined for all complex X and with values in the complexification of A. The values 
of this function are idempotents and for X real they belong to A. Moreover we 
have g(0)=e, g ( l ) = / . We consider the analytic multivalued function defined 
on C by 

X K(X) — Sp (g(A) + g(l—A)) 
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which has countable values for X real. (We recall that for real Banach algebras the 
spectrum is defined with respect to the complexification.) Hence by Oka—Nishino 
theorem on scarcity of elements with countable values (see [3], [5], [8]) we conclude 
that K(X) is countable for every X in C. But we know that l€^(A) if X is in 
a small real segment containing zero. So by Theorem 3 we have 1 £K(X) for every X. 
In particular, taking 1 = 1/2 we get l£Sp (2g(l/2)) which is impossible because 
g(l/2) is an idempotent. 

We thank very much the referee of this paper for his many comments 
and simplifications in the proofs. 

Added in proof. Some related new results are given in [14], [15], [16]. 
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Infinite-dimensional Jordan models and Smith McMillan 
forms. II 

ARTHUR E. FRAZHO 

1. Introduction 

This paper is a continuation of [3]. Throughout we follow the notation and 
terminology established there and in [11]. The ^-dimensional space of complex 
fc-tuples is denoted by Sk and z=e" for i£[0, 2n]. The orthogonal projection onto 
asubspace 9C is denoted by Px. The greatest common inner divisor of the functions 
a, P in H°° is a A/?. A bounded analytic function {Sm, Q} is a Lebesgue 
measurable operator valued function such that Q(z) maps <§m into <$" for all 
z, Q(z) has analytic continuation into the open unit disc and 
a.e. The Hardy //2-space of analytic functions with values in & is denoted by 
H\S). The forward shift U+ on H\S) is defined by U+f:=zf where / is in 
H2(&). Let {<Sk, <T, <P} be an inner function. Then je($):=H2(<$")Q<I>H\£k) 
and S(<f>) is the compression of U+ to Jif(<P). Recall [11] that .S'(^) is a C0 

contraction if and only if $ is inner from both sides, i.e., k—n. Finally, let 
{Sm, S", i2} be a bounded analytic function then {¿k, Sn, C(Q)} is the inner func-
tion uniquely defined by 

(1) j f ( C ( f l ) ) : = V U*+'QSm 

Note C(Q) is well defined by the Beurling—Lax theorem [11]. 
Throughout N(z) is a Lebesgue measurable function in [0, 2n] whose values 

are a.e. nonnegative self adjoint operators mapping Sm into Sm and ||iV(z)||^ 
a.e. It is also assumed that N admits a factorization of the form N(z)= 

=6*(z)6(z) a.e., where {Sm,S",6} is a bounded analytic outer function; such 
a 9 will be called an outer factor of N. In the previous paper [3] we gave a simple 
procedure to compute the Jordan model for S(C(6)) by means of 8. Here this 
is done without computing 6 or the inner function C(9) generated by 6. That is, 

Received May 3, 1982. 
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our present procedure calculates this Jordan model directly from N, by using 
a generalized Smith—McMillan procedure. Our procedure, given in Theorem 1, 
plays an important role in infinite-dimensional stochastic realization theory [4]. 
The following is needed. 

L e m m a 1. [2] Let {Sm, S", 0} be the outer factor for N. Then S(C(6)) 
is a C0 contraction if and only if there exists an inner function c in H°° such that 
cN is a bounded analytic function. 

R e m a r k 1. The above lemma allows us to determine if S(C(&j) is a C0 

contraction directly from N without obtaining 6 or C(6). Finally, if cN is 
a bounded analytic function for some c in then N always admits an outer 
spectral factor [2]. (In this situation our factorization assumption on N is redundant.) 

2. Main result 

For convenience we recall some terminology in [9], [10]. Let {<?", 8m, H} 
and {£", Sm, H±} be two bounded analytic functions. H is quasi-equivalent to 
H1 if for every scalar valued inner function c there exists two bounded analytic 
functions {SM, SM, A}, {£", S", B} such that det (A) and det (B) are prime to 
c and HB = AH1. Quasi-equivalence is an equivalence relation. It can be shown 
that {£", Sm, H) is quasi-equivalent to {£", Sm, D) where D is a diagonal analytic 
function of the form 

P I ° 1 

® M o o) 
and D ^ d i a g [dx, d2, ...,dk]. The d?s are scalar valued inner functions such that 
dt divides di+1 for / = 1, .. . , 1c—1. Furthermore, this representation is unique 
and called the normal form of H. The normal form D can be obtained from the 
invariant factors of H [9], [10]. Define 9r as the greatest common inner divisor 
of all minors in H of order r, with The invariant factors for H are 
gi{H):=9J9i-1 for / = 1, ..., min (m,n). By convention £j(H)=0 for all 1 
if 9,^=0. If &i(H) is nonzero then S ^ H ) divides ^¡{H). It can be shown that 
the normal form for H is given by (2) where Z)1=diag [S-^H),..., $k(H)\ and 
k is the number of nonzero invariant factors for H. 

A Jordan model is an operator of the form S(m1)®S(m2)®...®S(mk) where 
the wjf's are inner functions in H°°, see [1], [12], [13], [14] for further details. Finally 
we need 

L e m m a 2. [6, Ch. 3] Let {Sm, 9} be a bounded analytic function. Then 
S(C(6)) is a C0 contraction if and only if 9 admits a factorization of the form 
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9 = zG*\j/, where {8m, Sm, \p) is inner from both sides, {S",Sm,G} is a bounded 
analytic function, and the only common, inner from both sides, left factor to both 
ip and Gi is a unitary constant. (The inner part of G is denoted by G jv) Further-
more, when S(C(6)) is a C0 contraction then S(C(9)) and S(}1/) are quasi-similar. 
In particular, S(C(9)) and Sty) admit the same Jordan model. 

T h e o r e m 1. Let {Sm, Sn, 0} be the outer factor for N. Assume there exists 
a scalar inner function c such that cN—zH is a bounded analytic function. Then 

(i) S(C(9)) is a C0 contraction. 
(ii) The Jordan model for S(C(9)) is S(m1)®S(m2)®...®S(mk) where 

k is the number of nonzero invariant factors for {Sm, Sm, H} and m—cKS^H)/^) 
for z = 1, ..., k. 

Proo f . Part (i) is an obvious consequence of Lemma 1. The proof of part (ii) 
is similar to Theorem 1 in [3]. Let 

(3) D' = d i a g • • • > ^ ( f f ) , 0, 0, ..., 0] 

be the normal form for H, where 0. Choose any two bounded analytic 
functions {Sm,Sm,A} and {Sm, Sm, B} with det (^)-det (B)=a such that a is 
prime to cSk{H) and HB=AD'. Lemma 2 and N-9*9 gives t¡t*G9=Hc where 
i\i and G satisfy the conclusion of Lemma 2. Applying B yields 

(4) ip*G9B = AD'c. 

Let 

(5) M = diag [mlt m2, ..., mk 1,1, ..., 1], 

D = diag [d l s d2, ...,dk, 0,0, . . . ,0] 

where the mf's are defined in statement (ii) above and :=<f¡(//)/(<ff(//)Ac) for 
¿ = 1, ..., k. By [12, Lemma 2b] we have dt divides di+1. Using D'c=DM* in (4): 

(6) G9BM = \j/AD. 

Equation (6) and [11, Theorem 3.6, p. 258] or [8], [14] implies 5 ( ^ ) 1 =XS(M) 
where 

(7) X=P3ewG9B\3#'{M). 

To complete the proof it is sufficient to show that X is a quasiaffinity. By the results 
in [1], [12], [13], [14] this implies S(M) is the Jordan model for S(\p). Then by 
Lemma 2, .S(M) is also the Jordan model for S(C(d)). 

First it is shown that X is densely onto. By equation (6) : 

P>? w G6BMH2 (c?m) = {0}. 
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Using this in the following calculation with the fact that 6 is outer gives: 

XX(M) - PjewG8B(3^(M)yMH2(Sm)) - PjewG6BH2(Sm) i 
(8) 

i P*wG8aH*(£m) = Pjf^)GaH2(S") = PxwGaH2(£n)\li>H2{Sm) = 

The last equahty follows from Lemma 3 in [3] which shows that 

(9) GaH2(S")Vil/H2(<?m) - H2(Sm). 
Hence X is densely onto. 

Finally we verify that X is one-to-one. Our technique is similar to some of the 
arguments in [14]. Assume h£3V(M) and Xh=0. Let g£L2(£m) be such that 
h=Mg. To show that X is one-to-one we simply show that g£H\$m). Then 
h£MH\Sm) 0 3f(M)={0}. 

By using (6): 
( 1 0 ) 0 = P ^ G O B M G = P * W 4 > A D G . 

Since Mg is analytic, ij/ADg is analytic. Equation (10) implies i¡/ADg is in 
i¡/H2(Sm). Thus ADg is in H2{Sm). Using A'A=aI for the appropriate bounded 
analytic {£"", Sm, A'} yields aDg£H2(£m). This with the definition of D places 
adkg in H\Sm). (This follows because m ; = 1 if where k is defined in 
(3) or (5). Notice that h=Mg is in Thus g~0 for all j>k. Here gj is 
the yth component of the m-vector g.) Clearly h=Mg is in H2(Sm). Therefore 
eg is in H2(Sm). By [11, Proposition 1.5, p. 108] we have (cf\{adk))giH2(£m). By 
construction c and adk are prime. Hence g is in H\Sm), X is one-to-one and 
the proof is complete. 

L e m m a 3. ([5], [6]) Let {$", Sm, i2} be a bounded analytic function. 
(i) S(C((2)) is a C0 contraction if and only if S(C(Q)) is a C0 contraction. 

(ii) If S(C(Q)) is a Co contraction then S{C(Q)) and S*(C(Q)) are quasi-
similar. In particular, they have the same Jordan model. 

P r o o f . This lemma follows from Theorem 2.1 in [5]. One can also obtain 
this result by using either Theorem 14.11, p. 206 and Theorem 3.5, p. 254 in [6] 
or Theorem 1 in [3]. 

Finally we are ready for 

C o r o l l a r y 1. Assume there exists a scalar valued inner function c such that 
cN=zH is a bounded analytic function. Then 

i) N admits a *-outer factorization N(z)-Q(z)Q*(z) a.e. where {£", £m, Q} 
is *-outer. 

(ii) S(C(Q)) is a Co contraction. Furthermore, S(C(Q)) and S(C(6)). have 
the same Jordan model. (8 is the outer factor for N.) In particular, the Jordan model 
for S(C(Q)) can be obtained directly from Theorem 1. 
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Proo f , (i) cN—zft is a bounded analytic function. By Remark 1 or [2] N 
admits a *-outer factorization. 

Now for part (ii). Clearly N=Q*Q is an outer factorization of N and cN=zË. 
Lemmas 1 and 3 imply that S(C(Qj) and S(C(Ű)) are C0 contractions. By 
Theorem 1 the Jordan model for S(C(C2)) is S(m1)(B...@S(mk) where k is the 
number of nonzero invariant factors for H and 

(11) mj = [c/(cA Sj (# ) ) ] ~ = [c/(cA (#))] . 

Recall [11] that S(m) is unitarily equivalent to S*(m) for an inner function m. 
Equation (11), Theorem 1 and Lemma 3 imply that S(C(Q)) and S(C(0)) have 
the same Jordan model. 
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(0, ^-semigroups on LP(G) commuting with translations 
are (C0) 

A. OLUBUMMO 

1. Introduction. Let X be a Banach space and let B(X) denote the Banach algebra 
of all bounded linear operators on X with the operator norm. Suppose that 
{T(£)\ ¿;S0} is a family of operators in B(X) satisfying the following conditions: 

(0 m = T(QT(Q for £ l f s 0, T(0) = 7; 
(ii) T(£) is strongly measurable on £=»0. 

It is well known that (i) and (ii) imply that T(£) is strongly continuous for £ > 0 
[2, p. 305] and we shall call the family a strongly continuous semigroup of 
operators on X. In studying semigroups of operators, it is usual to assume that 
T(£) converges to an operator J in one sense or another as In particular, 
semigroups have been classified in terms of the sense in which T(£) converges to 
the identity operator. Thus a strongly continuous semigroup of operators satisfying 

(iii) lim T(g)x = x for all x£X 

is called a semigroup of class (C0) [2, 10.6]. 
A semigroup {r(ij)} satisfying l̂im T(£)x=Jx for all x£X, where / is a 

bounded linear operator on X is said to converge strongly in the sense of Cauchy 
with J as its Cauchy limit. If lim T(£) =J in the uniform operator topology then 
{T(0} is said to converge uniformly in the sense of Cauchy with J as its Cauchy 
limit. 

To define the second class of semigroups that we shall be concerned with, we 
need the notion of the type of a semigroup. For any strongly continuous semigroup 
(T(£)}, the real number 

A > 0 = I N F I I O G ¡man = I IM 1 LOG [man 
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is called the type of {T(£)}. (See [2, 10.2].) A strongly measurable semigroup of 
operators (r(^)} on X of type co0 is said to be of class (0, A) if it satisfies the 
following conditions: 

I 

(iv) f \\T(0x\\d/;<°° for each x£X; 
O 

(v) for all X with re (A)=»co0, the linear operator 
CO 

i?(A)x = / e~xtT{§xd£, 
0 

is defined and bounded for all x£X; 
(vi) lim XR(X)x=x for each x£X. 

A semigroup of class (C0) is of class (0, A) [2, Theorem 10.6.1]. There are a number 
of classes between (C0) and (0, A) which we shall not define here. For a full 
discussion of the basic classes of semigroups, the reader is referred to [2, 10.6]. 

A semigroup l r (^)} satisfying lim XR(X)x=Jx for all x£X, where J is 
a bounded linear operator on X is said to be strongly Abel-ergodic at zero with 
the operator J as its Abel limit. The condition is then written 

(A)-lim T(£)x = lim XR(X)x = Jx for all x£X. 
I—0 + A—~ 

If 
(A)-lim 7X0 = lim XR(X) = J 

in the uniform operator topology, then {r(£)} is said to be uniformly Abel-ergodic 
at zero with J as its Abel limit [2, 18.4.3]. 

In this paper, we shall be concerned with semigroups {T^)} defined on LP(G) 
where G is an infinite compact group and Two of the results proved 
in [3] may be stated as follows: 

1.1. T h e o r e m . Let {JT(£)} be a semigroup of operators on Lp(G) each of 
which commutes with right translations and let {E(} be the associated semigroup 
of Lp(G)-multipliers. Then {JE^} converges uniformly in the sense of Cauchy to the 
identity operator if and only if {7\<!;)} converges strongly in the sense of Cauchy 
to the identity operator. 

Our first result in the present paper is in the same spirit: Let { ) } be a semi-
group of operators on LP(G) each of which commutes with right translations and 
let be the associated semigroup of Lp(G)-multipliers. Then {¿??} is uniformly 
measurable if and only if is strongly measurable. 

In our next theorem we show that if (7X£)} is strongly Abel-ergodic at zero 
with the identity operator as its Abel limit, then {.Ej} is uniformly Abel-ergodic 
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at zero with the identity operator as its Abel limit. These results and the result 
quoted from [3] suggest that the strong version of a property of {7\£)} implies the 
uniform version of the corresponding property of {isj. 

Our main result is Theorem 2.5 in which the above results are used to prove 
that if is strongly Abel-ergodic at zero with the identity operator as its Abel 
limit, then T(£) actually converges strongly to the identity operator in the sense 
ofCauchy. 

The work in this paper shows again the usefulness of studying semigroups of 
multipliers for a function space in order to obtain results about operators on the 
function space itself. In this connection, see [3], [4] and [5]. 

2. Semigroups of operators on LP(G). For G an infinite compact group with 
dual object Z, we denote by © (Z) the set PB (//„) where Ha is the representation 
space of the representation U" [1, 28.24]. If 91 and 23 are subsets of (5(1), then 
an element E£<5(Z) is said to be an (21, ^-multiplier if EA€® for all AZVI 
[1, 35.1]. An (21, 2l)-multiplier will be described simply as an 21-multiplier and 
an LP(G) "-multiplier will be called an £,p(G)-multiplier. Here £P(G)~ denotes the 
set of Fourier transforms / of f£Lp(G). 

A family ¿¡^0} of functions E^(5(Z) is called a semigroup of Lp(G)-
multipliers [3] if 

(i) for each , E^ is an Lp(G)-multiplier; 
(ii) E i i + ( = E i r E ( i for all k . f . s O . 

Condition (ii) means that for each o£Z, {E((o); ¿¡SO} is a semigroup of operators 
on the space H,, and {is,.} is called a strongly (uniformly) continuous semigroup of 
Lp(G)-muItipliers if each semigroup {^(CT)} is strongly (uniformly) continuous. 

Throughout the rest of this paper, {T(£,)} will denote a semigroup of operators 
on LP(G) each of which commutes with right translations. Such a semigroup 
defines a semigroup of Lp (G)-multipliers, the functions being defined by 

№ / ) * ( * ) = f^Lp(G\ ail 

(see [3]). The following lemma is contained in Theorem 28.39 of [1]. 

2.1. Lemma. Let o^Z and for U(a) in a with representation space Ha, 
let %a(G) denote the set of all finite complex linear combinations of functions of the 
form x-(U^,ri) as t) vary over Ha. Then {/(<r): fi%r,(G)}=B(H„). 

Following [2, 3.5.1], we shall say that T(£) is strongly measurable in (0, 
if for each /€Lp(G), there exists a sequence {«„(£)} of countably-valued functions 
(depending on / ) from (0, into LP(G) converging almost everywhere to 
T(£)f in the topology of LP(G). For o(LZ, the semigroup E((o) is said to be 
uniformly measurable in (0, °=>) if there exists a sequence of countably-valued func-
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tions {£/„(0} from (0, into B(Ha) converging almost everywhere to Et(o) 
in the uniform operator topology of B(H„). 

We can now state our first result. 

2.2. T h e o r e m . Let {7X0} be a semigroup of operators on LP(G) each of 
which commutes with right translations and let {.£,.} be the associated semigroup 
of multipliers. Then {£4} is uniformly measurable if and only if {7X0} is strongly 
measurable. 

P r o o f . Suppose that {7X0} is strongly measurable and let a be an arbitrary 
but fixed element of Z. By Lemma 2.1, there exists t£Xa(G) such that i(a)=I„, 
the identity operator on Ha. The strong measurability of {7X0} implies that there 
exist a sequence {»„} of countably-valued functions on (0, into LP(G) and 
a null set E0a(0, such that lim | | r ( O ' - " „ ( O L = 0 for all <f€(0, e>)~E0 . 
Then clearly {«„(0(f)} is a sequence of countably-valued functions on (0, <=°) 
into BiH,). Moreover we have 

= I M O T - U M R X ^ W N . - ) ^ \ \ T < £ ) T - U N ( M P - O 

as for all ¿6(0, Hence {»„(OO7)} converges almost everywhere 
on (0, •») to E((a) in the uniform norm and so Et(a) is uniformly measurable 
on (0, Since <7 was arbitrary, {E^ is uniformly measurable. 

Conversely, let {¿s?} be uniformly measurable for there exist a sequence 
{£/„} of countably-valued functions on (0, «=•) into B{Ha) and a null set £ J c ( 0 , 
such that 

lim \\E((<7)- UZ(ai|B(H<7) = o for all {6(0, ~ Eg. Ji-*- oo 

By Lemma 2.1, this means there exists a sequence {/„} of countably valued functions 
on (0, to Za(G) such that f „ ( 0 (*) = ££(€) and 

lim l l W - U a W I U f l , ) = 0 for all £6(0, - ) ~ £•*. 
IJ-»oo 

Then for any coordinate function u$, using the notation in the proof Theorem 3.3 
of [3], we have 

II no «J?-*, (0*4?% da ||(r(0 H&>) ' (cr) -(/„ (0 * up) - (<7)11^ = 

= d J E ^ u f f W - U O W u t f i a ) ^ ^ d„ IIE^ (a) - ?„ (0 (<r)|| || ufi ( f f ) | | 9l = 

= d j £ e ( f f ) - ? „ (0(^)11 atiw 1 1 ^ W l k - 0 a s « - » and for all £€(0, ~ E0. 

Hence for every coordinate function u, the sequence {/„(0*"} of countably-
valued functions on (0, converges almost everywhere to 7X0« in the LP(G)-
norra. That { /„(0*/} converges almost everywhere to 7 X 0 / for each f£Lp(G) 
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in the Lp(G)-norm now follows from the fact that the operators T(£) are linear 
and continuous and the trigonometric polynomials are dense in LP(G). This 
concludes the proof. 

2.3. T h e o r e m . Let {7X£)} be a strongly measurable semigroup of operators 
on LP(G) each of which commutes with right translations and let be the as-
sociated semigroup of Lp(G)-multipliers. Suppose that {7X0} is of type a>0 and 

oo 

that for each f£Lp(G) the integral R(X)f- f e~i(T(OM e x i s t s for all A with 
O 

CO 

re(A)>co0. Then for each the integral P(X)(o)= J e~XiEt(a)dS, exists as an 
O 

element of £(Ha) for all X with re Moreover, if {7X0} is strongly 
Abel-ergodic at zero with the identity operator as its Abel limit, then for each 
adX, {£{(CT)} is uniformly Abel-ergodic at zero with the identity operator as its Abel 
limit. 

Note . Here and throughout this paper, the integrals are in the sense of Bochner 
[2, 3.7]. 

P roo f . Since {7X0} is strongly measurable, {E((a)} is uniformly measurable 
for each <J£Z, by Theorem 2.2. If t is chosen as in the proof of Theorem 2.2, 
we have for all X with re(A)>co0, 

OO CO oo 

/ \\e-^Et(a)\\BiHa)d^ = f \\e-^(T(0ty(o)\\BiHa)d^ f \\e-«T(0t\\Pd£ 
0 0 0 

oo 

Hence by [2, Theorem 3.7.4], the Bochner integral J e~iiEi(a)d^ exists as an ele-
O 

ment of B(H„) for each A with re(A)>co0. Moreover, for all such A, we have 

||A / e - ^ E , ( a ) d ^ - E a ( a ) \ \ m a ) = \\x f e-X(nOty(o)dZ-(T(0)t)*(a)\\ = 
O O 

= f e-XinOtdZ-T(0)tY(cr)\\m^ \\xfe-«nOtdZ-t\l-0 
O O 

as A — w h i c h completes the proof of the theorem. 
The proof of our main result depends on the following very striking ergodic 

theorem which holds for a much wider class of semigroups than needed here [2,18.8.3]. 

2.4. T h e o r e m . Let {5(0} be a semigroup of class (0, A) on a Banach space 
X and suppose that {5(0} is uniformly Abel-ergodic at zero with J as its Abel 
limit. Then 5 ( 0 = / e x p (04) where J2 = J, A£B(X); AJ = JA=A and 
uniform lim+ 5 ( 0 = / , i.e., 5 ( 0 converges uniformly to J in the sense of Cauchy. 



328 A. Olubumnro: (0, A) - semigroups on LP(G) 

2.5. T h e o r e m . Let {?(£)} be a semigroup of class (0, A) on LP(G) each 
of which commutes with right translations. Then {T{£,)} is a semigroup of class (C0). 

P r o o f . Let {E^, as before, denote the associated semigroup of Lp(G)-
multipliers. Then for each {^(ff)} is, by Theorem 2.3, uniformly Abel-
ergodic with the identity operator as its Abel limit. 

Since {^(ct)} is clearly of class (0, A), it follows from Theorem 2.4 that 
lim H £ ' 4 ( < r ) - £ ,

0 ( f f ) | | B ( H a ) = 0 , E0(a)=I„, the identity operator on H„. Thus Et(a) 
is uniformly continuous for all £ = 0 and the same is true for each Now 
{T{£)\ is, in the terminology of [3], the semigroup of operators on Lp(G) 
defined by the semigroup of Z,p(G)-multipliers {^(cr); Hence by 
Theorem 1.1, £=0} is strongly continuous for all and is therefore 
of class (C0). This concludes the proof. 

As stated in the Introduction, there are a number of classes between (C0) 
and (0, A). Theorem 2.5 shows that if T(£) commutes with right translations, 
then all these classes collapse into (C„). 
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Ergodic theorems in von Neumann algebras 

D É N E S P E T Z 

0. Introduction. The classical individual ergodic theorem claims that if (X, 8 , /i) 
is a measure space, a is an invertible measure-preserving transformation of X then 
for every integrable complex function f on X the averages 

(1) = 

converge /¿-almost everywhere to an a-invariant function (where a / is defined by 
(a / ) (x)= f(u(x))). In a von Neumann algebra setting one may investigate the con-
vergence of averages of type (1), when / is an element of a von Neumann algebra 
9Í and a is an automorphism of 91. The first ergodic theorems for automorphisms 
of von Neumann algebras were established by KovÁcs and Szücs [7], [8] and give 
that the averages (1) converge strongly provided that 2t has a faithful normal 
a-invariant state <p. Later LANCE [10] proved an almost uniform ergodic theorem. 
Namely, if A£91 then there exists an element 91 such that for every £>0 
there is a projection E in 91 with the property 

(2) 'P(I-E) < £, s„(A)E - ÁE 

in norm (shortly s„(A)—Á <p-almost uniformly). A similar theorem was obtained 
by SINAI and ANSELEVIC [12] in special circumstances (for quantum lattice systems), 
for several parameters. The crucial point of Lance's proof is a maximal ergodic 
theorem; if A£$I+ and e=q>(A)1/2 then there is an operator C£91 such that 
s„(A)~C for every wéN and ||C|| rs2\\A\\, <p(C)=s4/e. This does not have an 
analogue in the commutative ergodic theory but (and because) it is a simple con-
sequence of Hopf's maximal ergodic theorem. 

Further extension of the almost uniform theory has appeared in [2], [4], [14] 
and [15]. The main objective of this paper is to replace the invariant state with an 
invariant weight and to obtain a slightly weaker almost uniform convergence. In 

Received November 27,1981, and in revised form March 17, 1982. 
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fact, instead of (2) we can prove 

(3) Esn(A)E - EÂE 

in norm. YEADON [16] proved a similar convergence under the condition that there 
exists a faithful normal semifinite trace. We treat continuous flows and the case of 
several parameters, as well. 

Let 21 be a von Neumann algebra and cp a faithful semifinite normal weight 
on 2I+. Then 2I0={,4€2I: <p(A*A)< + °° and <p(AA*)< + «>} becomes a full 
left Hilbert algebra with *-algebra structure induced by 21 and with inner-product 
(A, B)v=tp(B*A) (A, Be 2l„). Our main reference on this subject is the monograph 
[13], whose notation we shall follow. Denote by X the Hilbert space completion 
of 2I0. For .86 2I0 one defines an LBeS8(tf) by the formula LBA=BA 046 2l0). 
j§f(2I0)={LB: Be^oY is called the left von Neumann algebra of 2I0. There is 
a faithful representation jt: 2I-.S?(2I0) defined by n(A)B=AB (A£% BeVI0) 
such that for A£iI+ 

Here \\B\\l=(B, B\. (See [13], p. 276 or [1].) So we may assume that 21 is the 
left von Neumann algebra of a full (i.e., achieved) left Hilbert algebra 2I0 and cp 
is the canonical weight on i?(2I0)+. 

Suppose that 21 and cp are fixed. A linear mapping a: 21-<-21 will be called 
a kernel provided that the following conditions hold : 

(i) for OsA^I and Ae21 we have O^a(A)^/ and <p(oc(A))^<p(A), 
(ii) for every A£St the inequality <p(a(A)*a(A))^<p(A*A) is valid. 

Kernels proved to be useful in ergodic theory. Every Schwarz map satisfying con-
dition (i) is a kernel. In particular, endomorphisms and completely positive maps 
of norm one are kernels. We are going to see that kernels have some automatic 
continuity. 

1. The maximal ergodic theorem. The proofs of individual ergodic theorems 
usually need a maximal ergodic theorem. Ours involves a series of operators. 

T h e o r e m 1. Let cp be a faithful semifinite normal weight on a von Neumann 
algebra 2t and a a linear mapping 21—21 satisfying condition (i). Assume that 
v4m£2I+ and e m >0 (m£N). Then there is a projection EÇ. 21 such that 

if there exists Be2I0 such that n(A)1/2 = Z, 'B 

+ otherwise. 

(4) \\Esr(.Am)E\\^7zm (r,me N), 

(5) < ? ( / - £ ) S 2 ¿ £ - V ( ^ J . 
m—l 



Ergodic theorems in von Neumann algebras 331 

We divide the proof into lemmas. We always assume 91 to be a left von Neu-
mann algebra JSf(2l0) of a full Hilbert algebra 2l0. 

L e m m a 1. Under the hypotheses of Theorem \,for any n£N there is a projec-
tion En£% such that 

(6) \\EnsMm)En\\ s Em (r, m ^ n), 

(7) <p(I-E„)s 
M = 1 

Proo f . Let 9Io be the right Hilbert algebra associated with 9t0. So 
and for r j £ % the formula R ^ = L ( t ] (¿¡€9I0) defines a bounded operator 
It is well-known that 

{ / ? „ : r,Woy = I F ( 9 I 0 ) . 

(See [13] or [14].) Let q>' be the canonical weight on the right von Neumann algebra 
l'o)={R,:r,i%Y, that is, for 7 

2, if there is V0 such that = T1'2 

otherwise. 

For and we define h(A, T) if + or <p'(T)^ + °°. 
Namely, let 

h(A, T) = {n, 0 if A1'2 = L( for some 

h(A, T) = {Ar\, rj) if T1'2 = Rn for some if6«li. 

h is wo-continuous and additive in each variable separately, and 

(p(A) = sup {h(A, T): O^T^ /, T£.<%(W0), <p'{T) < + 

q>'(T) = sup {h(A, T ) : 0 ^ A S I , A<i<£QI0), <p(A) < + «}. 

Let r j e % . Then the formula 

(Litf)n,r,) 

defines a bounded sesquilinear form on 2I0. Since (I)(a(L#,#))SFFL(i,#,)= 

= lliill2"= + 00 there is /¿¡£5t0 such that a(L,# )1 /2=p i and we have the following 
N 

estimation. 

I < « ( £ . * . K , n)I ^ ( A { L * )TI, F / ) 1 / 2 ( A ( I - # )T], R,)1 '2 = 
( 2 S 1 N N I 2 S2 
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Consequently, there is a bounded operator a(Rnbn)e3S(X) such that 

(8) W ^ f i » Q = ( a ( \ # i 1
) 7 ? ' 

If T<i®{%)+ and + ~ then a a n d l |a ( r ) | |S | | r | | . Since 
a ( r ) commutes with Lt for every we have a(T)e@C$i'0)+. Taking A=Li#i 

and T=Rnt,n we obtain h(A, 6t(T))=h(a(A), T) from (8). We can 
use this to show that <p'(a(T))^<p'(T) for TiW(%)+. Namely, 

<p'(pm) = sup{/j(^, a ( D ) : A* I, At t0)+, <p(A) < + = 

= sup {h(a(A), T): A* I, A£J?(<}10)+, <p(A) < + «•} ss <p'(T). 

)~®Mn is the von Neumann algebra of nXn matrices with entries from 
Its elements will be denoted by (Xr>m), where Xr<miM{%) (r, m^ri). 

K = { ( X R , M ) € Xr_m ^ 0 , ZXr,m ^ I} 

is an ultraweakly compact convex set. We define a real function on K in the follow-
ing fashion: 

g((*r.J)= 2 Zr[h(Sr(Bm),XrJ-cp'(X,J] 
r = 1 m = 1 

where .8ra6JS?(2I0)+ is fixed and <p(Bm)< + °° ( m ^ n ) . The function g is ultra-
weakly upper semicontinuous and attains its finite maximum value for some choice 

. (Xr m)£K. If I—ZXr m=Z, and O^X^Z then from the inequality 

g((K.J) ^ g{(Xrtm + S(r, r0)S(m, m0)X)) 
we obtain 
(9) h(sro(BJ, X) ^ cp'{X) 
for every r0, m 0 ^n. 

Now take 
FOR R S N - 1 . 

r,m ~ t 0 for r = n. 
The properties of a give that (Yr m)f_K and hence g ( (Z r j J )^g( (y r j m ) ) . It follows 
that 

m = l r = 1 m = l r = l 

Replace Bm with e~lAm. So 

(10) 2 2 2<p'(*r.J, 
m—1r=l m=lr=l' 

and by (9) 

(11) h(sr(AJ,X)^em<p'(X) ( r . m s n ) . 
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Let E0={t)£W0\ R q R ^ k Z for some A>0}. E0 is a linear subspace of . 
If and coeWo then R a r i e % and by [13], p. 249, for Z = R r ^ we have 
T*T=R*RlR(0R^)\RjzR*Rn. So E0 is stable under the operators "R , (r]e%) 
and if E„ denotes the orthogonal projection onto the closure of Eg, then 

If q£E0 then (sr{Am)n, ri)=h(s,(Am), R*R^em<p'(R*R^=Ejt]\\2 according 
to (11). Therefore we may conclude that ||iin.s'r(,4m)ii„|| Sem . 

Let. F be a projection in JS?(2i0) such that Fsl—E„ and (p(F)< + Then 

<p{F) = sup {h (F, Zi+ZK, J : O S Z ^ Z , cp'(Zx) < + «,}=§ 

^ 0 + h ( F , 2Xr,m) ^ <p'(2*r,J S 2^KAm,Xr>m) ^ 

m m m=l 
n 

Since q> is semifinite and lower w-semicontinuous we have (p(I—E„)= 2 em1(P(Am) 
m = 1 

and the proof is complete. 

L e m m a 2. Under the conditions of Theorem 1 there is a such that 
Crsl and 

(12) Csn(Am)C^emC (n,m€N), 

(13) <P(I-C)== 2 em1<P(Am)-
m=l 

Proo f . Let En be the projection guaranteed by Lemma 1. There is a convergent 
subsequence (E„k) of (E„) and E„k C for some C€if(9I0). Evidently O s C s i 

oo 
and by the semicontinuity (p(l—C2 Em1(P(Am). From Ensr(Am)E„emEn 

m = l 
(r, m^ri) a routine argument gives that Csr(Am)C S s m C for every r, m€N. 

P r o o f of T h e o r e m 1. Take with properties (12) and (13) in Lemma 2 
I 

and let J" AdP(A) be the spectral resolution of C. For E=I—P(l/2) we have 
O 

I-E=P(l/2)^2(I-C) and (5) follows from (13). On the other hand, 

Esr(Am)E = DCsr{Am)CD S tmDCD ^ 2emE 
I 

where D~ f X~ldP(X). This completes the proof. 
1/2 

The first maximal ergodic theorem similar to Theorem 1 was obtained by 
YEADON [16] for a trace instead of a general weight and for a single operator instead 
of a sequence. A version for state and for a sequence appeared in GOLDSTEIN'S 
paper [4]. Here we utilized several of their ideas. If Am=0 for m>-1 then the 
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theorem claims the existence of a projection possessing the properties $Esr(A)E§ S2e 
and (p{I—E)^2s~1(p(A). In the commutative case this is equivalent to the inequality 

/ £ ( { * : S U P S . C / X * ) ^ A } ) S J L L / L L I , 

which frequently occurs in commutative ergodic theory (see, for example, [3], p. 705). 
As a matter of fact, Theorem 1 implies Lance's maximal ergodic theorem. 

Namely, 

SP(/4) G 2Esr(A)E+2(I-E)s,(A)(I-E) 4EE+2\\A\\ ( I - E ) = CE. 

If IMIN1 and e=<p(A)1'2 then | | C J s 2 and <p(Cc)^S(p(A)1/z. We notice that 
if (p(I)~ + then the assertion of Lance's maximal ergodic theorem is false even 
in the commutative case. 

2. An individual ergodic theorem. In this paragraph we are going to use Theorem 
1 to deduce the following 

T h e o r e m 2. Let <p be a faithful semifinite normal weight on a von Neumann 
algebra 91 and a a kernel on 91. Assume that A(.|9l and <p(A*A)< + °°, 
(p{AA*)< + Then there is A(L 91 such that for every e > 0 there exists a projection 
E in 91 satisfying the following conditions 

<p(I—E) < £ and \\E{sn(A)-A)El - 0. 

Moreover q>(A*A)< + and (p(AA*)-z + °°. 

We notice that Lance proved s„(A)—A ultrastrongly in [10]. 

Lemma 3. Suppose that 3Isa and <p(Bz)< + «>. Then there is a decomposi-
tion B=C+D-E where C W , £€21+, ||C|| rS<p(B2yi\ q>(D)^(p(B2)l/2, 
<p(E)*<p(B*?l* and | | C | | , | | D | | , | | £ | N I | 5 | | . 

oo e 

Proof . Let J XdP{X) be the spectral resolution of B. Take C = f XdP(X), 
— oo — e 

D= J XdP(X) and E=- j XdP(X) where e=cp(B2f/2. Then D,E^e~^B2 and 
£ — o o 

all the requirements are fulfilled. 

L e m m a 4. For 5691 we have | | i „ (5- j f c (5)) | J ^ x | | J | if n>k. 

Proo f . It is straightforward from the identity 

nsn(B-sk(B)) = 2 a'(B)- ^ i±I*<(B)- k~l~l an+i(B) (k > 1). 
( = 0 1 = 0 K 1=0 K 
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P r o o f of T h e o r e m 2 . For ¿;€2I0 let Vt,=y. where fie<H0 and a (L()=Lll. 
Since ^(a(i, i)*a(-L i))S(p(L{* i)=||^||2 such a pi exists and V can be extended to 
a contraction on . By the mean ergodic theorem for a contraction ([11], p. 144) 

N - I 
there is a projection such that n ' 1 2 V ' ^ - P ^ for every If 

t=o 
/ €&(%)* and f(B) = (Btll, rj2) for some ti1,t12£% then 

<2»CO = lim <5,04)171, r,2) = lim ( j ^ n " 1 " £ t ,2) = 
\ i=0 / 

= (R^PZo, 12> = (Pto, Wl) 

where A=L(g. Since | $ ( / ) | s | M | | M \\t]2\\ = \\S\\ | |/ | | there is an element 
with the property 

(Arh, r\2> = (RniPZo, ri2) 

for every t j l t ti2£W0. Similarly, 

Hence Ari=RnP£0 and (A)*t]=RvP^ for every By [13], p. 252, we may 
conclude P^o^^o—% and A=LP^. Consequently, sn(A) —^ A and a ( A ) = A . 
According to the mean ergodic theorem, 

fo-P(o = eo-k-12:1ri{„+{t (fc€N), 
i=0 

where | | £ J = 5 t and <5t—0. By the left representation L we have 

A-A = A-sk(A)+Bk 

where | ]5 j2=p№3*) 1 / 2 =II<y =<V If A=A* then Bk=B£, and by splitting 
into selfadjoint and skewadjoint parts we arrive at the decomposition 

(14) A-A = A—sk (A)+Bk+iBk 

and here B\, B2
k£&(!H0)sa and \\B\\\2, \\Bk\\2^Sk. Apply Lemma 3 for B\ and 

Bl So 

(15) A-A = A-sk (A) + Ct+Dl + Eji + i (Ck
2 

and (p(D'k)=Sk, <p(E'k)^5k (/ = 1, 2). Choose a subsequence (¿„k) of (5k) such 

that S 16 • k~12~k • e and use Theorem 1. Taking {Am}= Q {Dl, E1 D2 E2} 
JI1 X 

and putting IJk.. in the role of s corresponding to Dl, ,E„ , D% and E2 , 
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we obtain a projection E such that 

^ „ ( Z ^ U S 2fc-i (i - 1, 2, k6N, neN), 

| |£S L L(J?IJ£| | (i = 1, 2, B€N) , 

? ( / - £ ) S 4 - 2 ¿/c<5fflfc^ 6. 
k = l 

In order to prove \\E(s„(A)—A)El —0 we can estimate in the following way: 

\\ESM-A)E\\ ^ ||s„(/4 — s„t(/1))|| + 2(SM K+4k~1) == 2«-1m t |M|| + 10/c-i. 

(Lemma 4 was used to estimate the first term.) This inequality shows the required 
result. 

We notice that the proof has given a little more than what was formulated in 
the theorem. Since the mean ergodic theorem is valid even for power-bounded 
operators instead of property (ii) of kernels, the weaker condition 

(ii0) there is a C > 0 such that for every and A€$I, cp(an(A*)a"(A))^ 
^C<p(A*A) fulfils 
would have been sufficient. However, in the really interesting cases, when a is an 
automorphism or a completely positive map, condition (i) implies condition (ii). 

3. Results on several kernels. Let 91 be a von Neumann algebra and <p a 
faithful semifinite normal weight on 2l+ . If a,-: 91-«-21 is a kernel for i ^ k then 

sUA) = ± «¡(A) 
n i=o 

converges in some sense to a limit $'(A)£$l provided that <p(A*A) and <p(AA*) 
are finite. The joint behaviour of several kernels in von Neumann algebras was 
investigated by CONZE and DANG-NGOC [2]. This paragraph generalizes some 
results from [2], where <p is assumed to be a state. 

T h e o r e m 3. Let 91, (p, cch <P\ 4 (' =k) be as above. If Am€91+ and £ m >0 
(m£N) then there is a projection E in 91 such that 

( 1 6 ) | | ^ F C . . . S J 1 ( ^ M ) £ | | S C ( / C , / L M ) £ M , 

(17) q>(I-E) ^ 2*+i J 8"'*cp(Am), 
M=1 

where C( l , Am)=2 and C(k+1, AJ=2C(k, Am)+4\\AJ. 

Proo f . For k=l this is Theorem 1. By induction there is a projection Em 

such that 

I I ^ C - V - s l . O O S J S C ( k - 1 , Am)em, <p(I—Em) ^ 2k£-k+1(p(Am). 
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Apply Theorem 1 with ak, I—Em and em (m£ N). We obtain a projection E with 
the following properties: 

H £ £ ( / - £ J £ | | 3 2em, 

<p(I-E)S 2 2 r f < p { I ~ E J S ? " 2'm <P(4J. m=l m=X 
Hence E satisfies (17), and we verify (16). 

Esk
k...sk

ni(Am)Es 

S Esk
k(2Emsk;_\... sj,(AJEm+2(I-EJsk~_\...s„\(AJ(/-EJ) 3 

2C(fe —1, Am)smI+2\\Am\\ Esk
k(I-EJE S 2C(k-1, AM)EmI+4EM\\AJ I. 

C o r o l l a r y . Let 91, (p, ah s'n (iSfc) be the same as above. Suppose that 
<p{I)—\ and A£'il+. Then there exists an operator C£9l such that 

for every «i, ..., N. Moreover, 

w/iere e and 5 are constant (depending only on k). 

Proof . Assume that ||/i|| = 1 and apply Theorem 3 in the case A1=A,e1= 
=<p(A)1/k+1 a n d Am=0 f o r m > 1. T h e n 

E£k...$l(A)E*-C(k,A)<PiAyik+\ 

<p(I—E) == = 2t+1<jo(y4)1/'I+1. 

There fo re ^...sl^A^C^k, A)(p(Aflk+1+2(I-E)=C1 a n d 

||Ci|| 2C(k, A)q>(A)llk+1+2 ^ 2C(k, A)+2, 

(p(C1)^2C(,k,A)cp(Aylk+1+2k+*<p(Aylk+1. 

Now we have B C J s i and yiCJ^EcpiA)1 '"*1. 
In the general case one can obtain an operator Cx for A\\A\\as above and 

take C = || .,4 HQ. So C satisfies both requirements. 

T h e o r e m 4. Let 91, <p, a,, s'„ (i^k) be as above. Suppose that A^M 
and <p(A*A), <p(AA*) are finite. Then for every £>0 there is a projection Ei% 
such that cp(I—E)<e and 

if «!-•«»,..., nk—°° independently. 

22 
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Proo f . We follow the lines of the proof of Theorem 2 but use Theorem 3 
instead of Theorem 1. For the sake of simplicity we assume that k=2. 

Similarly to (15) we have the following decompositions on the basis of Lemma 3: 

A = (A-sj (A)) + + CI+D] - El + i (C,2+D\ - Ef), 

&{A) = (<P1(A)-sf<Pl(A)) + <P2<P1(A) + Cis+Dl + Ef + i (C,4+Z)f - E?). 

Here O^DlEhWQW^d,, <p(Di)^S„ <p(El)jSSt \\D\\\^2\\A\\, | |£/ |N2|M| | (i = 
= 1,2,3,4) and <5,-0. For every KN, 

= < s^(A - si (A)) + s2J^(A)- sf & (A)) + 

+ SN2
 SNI (CI1 + A 1 — E l + iCi + iDf — iEi) + S2

2 {Cf+Df—Ef + iCl + iDf — iEf). 

Choose a subsequence (8m() of (¿,) such that 8m<l~k2~l2~k~5e and apply 
Theorem 3 to the elements , with 1// in the role of e (/€N, 4). So we 
have a projection E such that 

q>{I-E) ^ 2*+18 ¿ lkl-k2-l2~k+5e ^ e 
i=i 

and 

WEsls^X^EW^j 

where N, and X=D, E. Use Lemma 4 and the inequalities above to 
obtain the estimate 

RLI " 2 ^ 

which concludes our proof. 
Theorem 4 is a discrete Dunford—Schwartz—Zygmund type ergodic theorem 

for non-commuting kernels (cf. [17]). A continuous version will be contained in 
the next paragraph. 

4. Continuous flows. First we establish an automatic continuity of kernels. 

L e m m a 5. If a : 21—21 is a kernel then there is a w-continuous kernel a c : 21—21 
such that a{A)—ae(A) if cp(A*A) and <p{AA*) are finite. 

Proof . Let 210={^462I: <p(A*A), <p(AA*)< + We show that a is weakly 
continuous on the unit ball of 2i0. By Remark 2.2.3 in [6] it follows that a|2I0 

extends to a w-continuous mapping of 21, which is obviously a kernel. 
First we prove that if V : X-X is defined by a(L f )^L v l . (^ ' i io) and t j € % 
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then V*(t]t]b)e%. Take 5>(Rnbn) from (8). Then 

= <6*0, v*(ttb)) = <0 
So LiV*(t]t]b)=a(Rqb=a(Rnb,)*£ for every According to [13], p. 248, 
V*(ltjb)€% and RVt(nbv)—a.(Rnb). Moreover, since <p'(a.(Rmb))< + °°, there is 
j /^Sli such that V*(r\t]b)=ri1r\b

1. 
Let (L( ) be a directed net in the unit ball of {Lf. £€2i0} converging weakly 

to 0. We have 

By polarization (a(LsJri, n)-+0 for every t], and we have obtained a (£{^)—0 

In this paragraph we deal with one-parameter semigroups of kernels. Namely, 
for z£R+ let a,: 21—21 be a kernel so that a„=identity and a t oa 5 =a t + s (/, j(;R+). 
We assume the following continuity property: 

(iii) t^(p(oct(A)*ut(A)) is continuous if (p(A*A) and tp(AA*) are finite. 
If a,'s are endomorphisms and q> is ^-invariant for every i € R + then (iii) is always 

Define by <xt(L{)=Lyt{ (£€2t0). Then (V,) is a one-parameter 
semigroup of contractions, ti—-V,Ç is continuous for every ^€2I0. We need the 
following technical lemma. 

L e m m a 6. Let (af) be a one-parameter semigroup of kernels with property (iii). 
Then for ¿;62I0 the integral 

<a(L?> r,) = <0, V*(ml')> = ( L ^ m ) - 0. 

weakly. 

fulfilled. 

O 

exists in weak* sense. In addition, p=— J V,^dtÇ.'H0 and LllaT(Lt). 
1 

O 

1 T 

Proo f . Let Ç T =— f V,£dt for ^ 2 i 0 . If t ] ^ then 

There is a unique operator aT(L ()£âiï(yf) suchthat 

(18) 
O 
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1 T 

Similarly aT(L^)r] =— J a,(L(*)t]dt and it is easy to see that oT(L^)=aT(L()*. 
T О 

Using [13], p. 252, we may conclude CT(?K9lő=9t0 and L^(I)=AT(LT). The rest 
of the assertion is given by (18). 

An important consequence of the above lemmas is that for any kernel a we have 
1 T 

(19) u(aT(A)) = - j a(a,(A))dt 
0 

if <p(A*A) and <p(AA*) are finite. 
Now we are in a position to prove the maximal ergodic theorem for a one-

parameter semigroup of kernels. 

T h e o r e m 5. Let 91, cp, (a,), aT be as above. If Ат€Ъl+ and e m >0 (m£N) 
then there is a projection E in 91 such that 

<p(I-E)^2 ie-^CO, \\ЕоТ(Ат)Е\\^гт (m€N, T£R+). 
M=1 

1 * 1 Л - 1 
P r o o f . For <5>0 we define As

m=— j a,(Am)dt and ss„(A)=— 2 «и(Л). 
¿ о n ¡=o 

Then s'(Ai)=ffn0(Am) according to (19) and q>(As
m)^(p(Am). Now apply Lemma 2 

to А*т,ет,ал. So we obtain Ca€9Í^ with the properties 

Csanl{Am)Ct = C^MDC, á £тС„ (p(I— С) ^ 2 ^J<P(AJ. 
m=l 

Choose a sequence (Sk) such that S k \ 0 and C^—C weakly for some С6 91 "̂. 
Then 

<Р(.1~С)Ш 2 ^(p(.AJ, Co„lk(AJC^ EmC (K, m,n€N). 
M=L 

By straightforward estimation, 

C<jT(Am)C^ C(ar(AJ-crn3k(AJ)C+ C<j„ik(Am)Cs 

^ 2 Г - 1 \T—n8k\ \\Am\\ C4emC. 

Since \T—nSk\ can be chosen arbitrary small we infer СоТ(Ат)СШетС (m£N). 
I 

If J MP{X) is the spectral resolution of С then take E=I—P(l/2) again 
О 

as in the proof of Theorem 1. 

T h e o r e m 6. Let 91, (p, (a,), <xT. be as above. If q>(A*A) and cp(AA*) are finite 
then there exists an operator Ф(А)£%1 with the following property. For e > 0 there is a 
projection Ее. 91 such that <р(1—Е)<г and 

\\Е{аТ(А)-Ф(А))Е\\-О + 
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Proo f . By Lemma 6, aT(A) exists as a weak* integral and V, £ is continuous 
for Since 2I0 is dense in JF, now t>—Vtx is strongly integrable over 

1 T 

every finite interval (cf. [3], p. 685). Hence i T 0 0 = — f V,xdt is defined for every 
T O 

x d ^ . Now we apply Theorem 1 from [3], p. 687, and obtain that £Tx—Px for 
every xZ^f as T— + From this point on one can follow the lines of the proof 
of Theorem 2. One can show that if ££2ro then .?<!;£ 2l0 and cT(Lf)ti—LPir] for 
every >7^210. Let $ ( L ( ) = L P i . From the equality = + defining 
(k by left representation we have 

A-<P(A) = A-<rk(A)+Ak (ke N) 

where A=L{, Ak=L^ and ]\Ak\\2=<p (A^Ak)1/2= || <y = <5fc - 0 as + Hence 
we can write 

(20) aT(A)-$(A) = [aT(A)~ and (A)] + [<rn5 ck(A)-cTck (/!)] + 

+ [JJFF,(A) - s*sf <TS(A)] + au ( - J - "Z "is(A) - and04)1+ aT(AJ 
\n 1=0 t 

1 " 
where ss

m(B)=— 2 au(B) anc* w e assume that /, n are integers, k=h5, [T+\\=nd. 
m ¡ = 1 

For the sake of notational simplicity we denote by D¡(T, k, S) the y'th term 
on the right hand side in (20) (y'=3). Then 

\\Dj(T, k, <5)|| S 2 T - ^ n ó - T ) Mil 2T~*M (J = 1, 2), 

and by Lemma 4 

||D3(r, k, 0)11 3 l l n - ^ m ^ 2kT-i\\A\\. 

On the other hand, taking 

D¿T, k, Ó) = -^"Z *iÁA)-vnd(A) 
n ¡«AI 

we have 

II£>4(T; M ) I I 2 = n ¡=o 
0 

if [ r+1]=nd is fixed and <5—0. For every integer [71] we choose ¿ > 0 such that 
\\Di(T, k, <5)||2^r_12_:R6. Splitting A into selfadjoint and skewadjoint part, taking 
a subsequence (<5mfc) of (5k) with the requirement Smk^k~12~ke, we obtain 

aT(A)-*(A) = <rr (i?1 (k)) + iaT (B2 (k)) + amk(B* ([T])) + 

+ iamk{Bim))+2 DjiT, mk). 
J = I 
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Here B\l) is selfadjoint and | |5 i ( / ) | | 2 ^/- 1 2- 'e . Now split all the BJ(l)'s into 
3 summands by Lemma 3. So BJ(l)=Cj(l)+DJ(l)-iEJ(l) and ||CJ'(/)||, []Z>-/(/)||1, 
| |£'- /(/)| |1S/-12-'e. Apply Theorem 5 to D'{1) and EJ(l) with the constant Z"1 

( /€N,y^3) and get a projection E. Then on the one hand, 

<p(I-E) 2 • 8 2 H - 1 2 _ I 8 = 16e, 
1=1 

and on the other hand, we estimate in the following fashion: 

\\E(aT(A)-^(A))E\\ == 2A;-1-2-fce + 8fe-1 + 2[r]-12-[T]-(-8[r]-1 + 

+ 4T-1\\A\\+2mkT-1\\A\\. 

Therefore \\E(crT(A) — <P(A))E\\ — 0 as + and the proof is complete. 

Finally we formulate a continuous form of Theorem 4, which is a Dunford— 
Schwartz—Zygmund type theorem (cf. [17]). Let 91 be a von Neumann algebra 
and cp a semifinite faithful normal weight on it and for i^k let (a{) be a one-
parameter semigroup of kernels possessing the continuity requirement (iii). Define 

1 T 

ci
T(A) = - f oci(A)dt 

To 
and we know that <T't(A)—<E>'(A) under the conditions and in the sense of Theorem 6, 
under the hypotheses of Theorem 6. 

T h e o r e m 7. Let 91, <p, (<xj), <£', a1 be as above and .«4691 such that <p(A*A), 
cp(AA*) are finite. Then for e > 0 there is a projection E£ 91 such that 

if Tx — + <=°, ..., Tk— + °° independently and (p(I-E)-^e. 

Since the proof is very similar to that of Theorem 4, we omit it. We only note 
that instead of Theorem 3, one has to use the continuous form of it. 
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Contractions and unilateral shifts 

MITSURU UCHIYAMA 

A contraction T on a separable Hilbert space is said to be a weak contraction 
if I—T*T(Z(T, C) which denotes the trace class, and A(T)^D, where D is the 
open unit disk. It is well known that there is a C0—CN decomposition for a weak 
contraction ([3]). Therefore we can easily show that if T is of class C10 (about 
C10, C.0, etc., see p. 72 of [3]) and if I-T*TE(r, C), then 

AP(T*) = D a n d <RP(T)C\D = 9. 

In this note, we shall investigate a contraction T such that I—T*T£(T, C) and 
<R(T)=D. 

The author wishes to express his gratitude to Prof. T. Ando. 

1. Operator valued functions 

For T£1+(T,C), Bercovici and Voiculescu defined the algebraic adjoint T", 
which satisfies 

T"T = TT* = (det T)I. 

They showed that if 0(A) is a contractive holomorphic function and if 0 (A)6 /+ 
+(T ,C) for every then <9(A)a is a contractive holomorphic function. In 
this case, if det ©(e")a.e., then 0(e") is invertible and its inverse is @(e")*/ 
det 0 (e") a.e. 

T h e o r e m ! . Let 0(A) be an inner function (that is, 0(A) is a contractive 
holomorphic function defined on D and 0(e") is isometric a.e.) with values in 
¿¡?(E, E'), where E, E' are separable Hilbert spaces. If there is an isometry V in 
££(E, E') such that for every 

(1.1) 7£-F*0(A)€(T, C), 
(1.2) detF*0(A) £ 0, 

Received September 30,1981. 
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then there is a bounded holomorphic function A (A) with values in £P(E', F) for a 
suitable Hilbert space F such that 

(1.3) 0(e")E®A(ei,)*F= E' a.e. 

P r o o f . If V is unitary, then 0(e") is invertible a.e. Hence we may assume 
that V is not unitary. Set F=E'QVE. Let E0=E®F be the direct sum of E 
and F. For A6A define 0'(A)d^C(Eo, E') by 

0'(A)|E = 0(A) and 0'(A)| f = IF. 

For simplicity, set d(A)=detF*0(A) and A(A)=(V*0(A)f. Determine A(X)d 
£ 2 ( E ' , F ) by 

(1.4) A (A) = -PF0 (A) A (A)V* + d(A)PF 

and A'(A)Z&(E',E0) by 
A'(A) = A(A)V*+A(A). 

Then we have 

A'(A)0'(A)\E = A' (A) 0(A) = A(A)V*0 (A)+A (A) © (A) = 

= d(A)IE-PF0(A)d(A)IE+d(A)PF&(A) = d(A)IE, 

A'(A)0'(A)\F = A(A)V*IF + A(A)IF = d(A)IF, 

and 

0'(A)J'(A) = 0(A)A(A)V*+A (A) = (I-PF) 0 (A) A(A)V*+d (A) PF = 

= VV* 0(A)A(A)V*+d (A)PF = Vd(A)V*+d(A)PF = d(A)lE,. 

Thus we have J'(A)0'(A) = d(l)IEo, &(A)A'(A) = d(A)IE,. 

Since the inverse of 0'(e") is A'(eu)ld(eu) a.e., the orthogonal complement of 
0(e")E = 0'(e")E is 

A'(e"Y 
-r==-(E0QE) = A(e")*F. 

d(e") 
It is clear that A (A) is a bounded holomorphic function. 

Cambern showed that the orthogonal complement of a finite dimensional 
holomorphic range function is conjugate holomorphic (c.f. p. 94 of [2]). Now, we 
can show this result as a corollary. 

C o r o l l a r y 1. Let 0(A) be an inner function with values in £P(E, E'). Suppose 
dim E=m< Then there is a bounded holomorphic function A (A) satisfying (1.3). 

P r o o f . We may assume that EaE' and 0(e") is a matrix. Since 

1 =det ( 0 ( e " ) W ) ) = Z l ^ t 0a(ei()\\ 
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a.e., where 2 taken over all mXra submatrices of 0(e"), there is at least one 
a 

a such that det 0a(eit)7iO a.e. Thus there is an isometry V such that 

det V* 0 (e") = det 0a(eu) * 0 a.e. 

(see [4]). Hence V and 0(1) satisfy (1.1), (1.2). 

2. Quasi unilateral shifts 

We begin with a short review about the canonical model theory of B. Sz.-Nagy 
and C. Foia§. Let T be a contraction of class C . 0 on a separable Hilbert space H. 
Set DT=(I-T*T)112, and let E and E' be the closures of DTH and DT,H, 
respectively. Then the characteristic function 0 (A) of T determined by 

(2.1) 0(A) = { - T + W T ^ I - A T ^ D T } ^ for A€Z> 

is an inner function with values in S£(E, E'). Therefore 

dim E s dim E'. 

Moreover T is unitary equivalent to S(0) on H(&) defined by 

(2.2) H(0) = H2(E')e0H2(E), S(0)*fc = y ( h ( A ) - M 0 ) ) for h in 7/(0). 

T is of class Q . if and only if 0(I)*H2(E') is dense in H2(E) (that is, 0 is * -outer). 
In this note, for simplicity, we call T a quasi unilateral shift if T is a contrac-

tion of class C.„ such that 

7 - R * R € ( T , C ) , X ( T ) = { 0 } a n d X ( T * ) ^ { 0 } , 

where j f ( T ) denotes the kernel of T. 

T h e o r e m 2. If T is a quasi unilateral shift on H, then there is a bounded 
operator X with dense range satisfying 

(2.3) XT = SX, 

where S is a unilateral shift satisfying 

0=> index S = index T s — 

where index T=dim J f ( T ) - dim X(T*). 

Proof . We may assume / - r * 7 V 0 . From T(J-T*T)=(I-TT*)T, it 
follows that TECE', T(HQE)=HQE\ where E and E' are the spaces de-
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fined above. Thus we have 

(2 .4) HQ TH — E' Q TE ^ {0}. 

Let {<?!, e2, ...,e„, ...} be the C.O.N.B. of E such that (I-T*T)en=n„en, n„>0. 
Then / B =( l - f t l ) - 1 / »7V? . (»= l ,2 , . . . ) is a C.O.N.B. of TE and T*fn=(l-pn)1'2en 

(see p. 324 of [3]). Setting Ve„=—f„ (n=1,2 , ...), V is an isometry from E to 
E\ and 

(2.5) F4-T | £ 6(t ,C) (see [ID. 

Setting F=E'QVE, from (2.4) it follows that 

(2.6) dim F = - index T. 

I—T*T£(t, C) implies DTD(<R, C) which denotes the Hilbert—Schmidt class. Since 
(I-TT*)\TE is unitarily equivalent to I-T*T, we have D-p* |T£€(ff, C). Thus 

XV*DTT(I-XT*)~1DT = XV*(DT*\TE)(I—XT*)~1DT (A6Z>) 

belongs to (t, C). Thus, from (2.1), (2.5), we have 

/ -F*0(A)6(T , C) for each A. 
Since 

|det (V* 9 (0))|2 = det ( 0 ( 0 ) ^ 7 * 0 ( 0 ) ) = det (T*VV*T\E) = det {T*T\E) ^ 0, 

we have det F*0(A)^O. Thus V and 0(A) satisfy the conditions of Theorem 1. 
Hence A(X) defined by (1.4) satisfies (1.3). Since A (A)0(A)=O, setting 

(2.7) X0h = Ah for h in H(0), 

we have Xo£&(H(0), H2(F)) and XoS(0)=SoXo, where S0 is the unilateral 
shift on H2(F). Since 

H2(F) => XoH(0) = AH\E') z> AH2(F) = (det V*0 (A)) H2(F), 

it follows that S=S0\x~fI(e) is unitarily equivalent to S0. Thus, from (2.6), we have 

index S = index S0 = — dim F = index T. 

Consequently an operator X from H(0) to XoH(0) defined by 

(2.8) Xh = X0h for h in 77(0) 

satisfies (2.3). 

C o r o l l a r y 1. Let T be a contraction of class C^ such that I—T*T and 
I-TT* belong to (T, C). Then, for a£D, Jfr(T-aI) = {0} if and only if 
X(T*-aI) = {0}. 
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Proo f . Set T ^ i T - a l W - a T ) - 1 and ¿ = ( l - | a | , ) 1 " ( / - a r ) - 1 . Then we 
have I-T*Ta^A*(I-T*T)A, I-TaT*=A(I-TT*)A*, and Ta is of class C00 

(see p. 240 and p. 257 of [3]). Suppose X(T-aI) = {0} and X(T*-aI)^{0}. 
Then Ta is a quasi unilateral shift. Therefore, there is an X satisfying XTa=SX, 
which implies that T is not of class C00. This is a contradiction. Thus X(T—aI) = 
= {0} implies X(T*—al)={0}. Similarly we can prove the converse assertion. 

For a contraction T on H, we have 

(2.9) |[ 7— T* Til £+dim J f (T*) = || I—7T*|| £+dim J f (T), 

where || ||p denotes the p-Schatten norm. Indeed, from T(/-T*T)=(I-TT*)T, 
(I-T*T)\JTH and ( 7 - 7 T * ) | r 5 are unitarily equivalent. (I—T*T) 
and ( I - T T * ) \XIT*)=IJR(.T*) imply that 

U-T*n> = \\(I-T*T)\Y^Rp+dimX(T), 

|| 7 - 7 T * | | 5 = | | ( 7 - TT*)\YEVP + d i m TF(T*). 

Thus we have (2.9). Similarly we have 

(2.9)' rank (I-T*T)+dim X(T*) = rank ( 7 - 7 T * ) + d i m J f ( T ) . 

P r o p o s i t i o n 1. Let T be a Fredholm quasi unilateral shift. Suppose X with 
dense range satisfies XT=SX, where S is a unilateral shift with index S = index T. 
Then T Ij,-(X) is of class C0. 

Proo f . Let T = j be a decomposition of T corresponding to 

H=X(X)®X(X)±. Then 7 \ is injective and, from (2 .3) , also T2 is injective. 
From the assumption and (2 .9) , it follows that I-T*T£(x,C) and 7 - 7 T * £ ( T , C ) , 
which implies 
(2.10) I-TFT&R, C), 

(2 .11) I - ^ T F + TNTTITII , C) , 

(2 .12) / - ( R F 2 R 1 2 + R * R 2 K ( T , C) , 

(2 .13) 7 -R 2 R 2 *Ç(T, C) . 

From X(J t ) czX(T*) , it follows that 

index T = - dim X(T*) s - dim JT(Tf) S - dim. j f (5 *)=index T, 

which implies index T=index T2. From (2.9) and (2.13), we have i-T*T2e(t,C), 
which, by (2.12), implies T12£(o,C). Therefore, from (2.10) and (2.11), 7i is 
a Fredholm operator. Since 

R TX 01 
index T = index ^ j \ = +index T2, 
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we have index 7^=0. Thus Tx is invertible. Hence 7\ is a weak contraction 
of class C. 0 . Consequently Tx is of class C0 . 

C o r o l l a r y 2. Let T be a Fredholm quasi unilateral shift of class C10. Then 
JT(A)={0} provided AT=TA and JT(A*) = {0} (cf. [6]). 

P roo f . For X defined in Theorem 2, we have (XA)T=S(XA). From Propo-
sition 1, we have JT(XA) = {0}. 

P r o p o s i t i o n 2. Let T be of class C.0. Then T is ofclass C10 if and only if 

(2.14) 0L2(E)OH2(E') = 0H2(E). 

P r o o f . Since, for h in H2(E') and / in H2(E), we have 
1 2JI 

(eWHX),f(X))EHE> = (©(«-")**(«"), f(e'%dt = 

* —2N 1 2 IT 

= - 2- / (0(?THe-*), f(e~l'))Edt = ± f (0(e»)*/i (*-"), f(e~lt))E dt = 

I 2« 

= {Gie're^'hie-"), e-"f(e-tt))Bdt = (0(X)*Xh(X), M ) W ) > 
N O 

0(l)*H2(E') is dense in H2(E) if and only if 0(X)*(H2(E'))-L is dense in (H2(E)Y, 
where J. denotes the orthogonal complement. We have always 

0L2(E)f)H2(E/) =) 0H2(E). 

At first, assume that T is of class C10. Suppose 

0g<= {0L2(E) 0 H ' 2 ( £ ' ) } 9 0H2(E). 

Then 0gCM\E') and g±_H2(E), because 0 is an isometry from L\E) to L2(E'). 
Thus g±0*(H2(E'))L and gd(H2(E))1. Since 0(A) is *-outer, we have g=0. 
Consequently (2.14) follows. 

Conversely assume (2.14). Suppose f ± 0{X)*(H2(E'))x and f£(H2(E))±. 
Then 0f£H2(E') and 0f±0H2(E). Thus from (2.14), we have 0 / = O and hence 
/ = 0 . Consequently 0(A) is *-outer. 

T h e o r e m 3. Let T be a quasi unilateral shift. Then T-<S (that is, there is 
an X such that Jir(X)=Jf(X*)={0}, XT=SX), where S is a unilateral shift 
with index S=index T, if and only if T is of class C10. 

P roo f . Assume that T is of class C10. From Theorem 2, there is an X 
with dense range satisfying (2.3). If Xh-0 for h in H(0), then, from (2.7) and 
(2.8), A(i*)h{fP) = 0 a.e. Thus, from (1.3), h£0L2(E), so that, from (2.14), 
h£0H\E). Consequently h=0. Thus we have T<.S. 
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Conversely, assume XT=SX and X(X)=X(X*) = {0}. From XTn=SnX 
(«=1, 2, ...) it follows that T is of class C10. 

R e m a r k l . If T is a Fredholm operator, then, from Theorem 2 and Proposi-
tion 1, it is clear that T<S if T is of class C10. 

R e m a r k 2. Theorem 3 implies that the Jordan model of a quasi unilateral 
shift of class C10 is a unilateral shift. 

C o r o l l a r y 3. Let T be a quasi unilateral shift of class C10. Then T* has 
a cyclic vector. 

Proof . T-<S implies that S*<T*. Since S* has a cyclic vector, also T* 
does. 

P r o p o s i t i o n 3. Let T be a quasi unilateral shift. Then there is an injection 
Y such that 
(2.15) YS = TY, 

where S is a unilateral shift with index S=index T. 

Proof . Consider S(0) defined by (2.2) instead of T. Let V be an isometry 
defined in the proof of Theorem 2. Then 

E' = VE@F and detV*0(eir) * 0 a.e.. 

Define an operator Y from H2(F) to H(0) by 

Yh = PH(e)h for h in H2(F). 
Then we have 

YSh = PH(e)Sh = PH(e)SPH(g)h = S (0) Yh, 

which implies (2.15). Suppose Yh=0. Then h = 0f for some f£H2(E). Thus 
Q=V*h(e")—V*0(e")f(e'') a.e. Since V*0(e") is invertible a.e., f(e")=0 a.e. 
Consequently Y is injective. 

P r o p o s i t i o n 4. Let T be a quasi unilateral shift of class C10. Then, if T-<.S', 
where S' is a unilateral shift, then index S'=index T. 

Proof . From S'*<T*, dim J f (5 '* )Sd im X(T*). The proposition above 
implies that there is an injection Y' such that 

Y'S = S' Y', index S = index T, 

which implies that 0 > index S S index S" (cf. [4]). Thus we have 

index T = index S S index 5" ^ index T, 

from which index T—index S' follows. 
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R e m a r k 3. P. Y. Wu [6] showed that if I-T*T is a finite rank operator, 
and if T<S', then 

rank (/—7T*) —rank ( I - T * T ) = - index S'. 

From (2.9)', our proposition is an extension of this result. 

3. Cyclic vector 

In this section, we consider a quasi unilateral shift of class C10 which has 
a cyclic vector. The next proposition is a partial extension of Proposition 2 of [4] 
and Theorem 3.1 of [5]. 

P r o p o s i t i o n 5. Let T be a quasi unilateral shift of class C10. Then next 
conditions are equivalent: 

(a) T has a cyclic vector; 
(b) there is a bounded operator Y satisfying 

(3.1) Y ^ = TY, X(Y*) = {0}, 

where is a unilateral shift with index S^ = — 1 ; 
(c) S,<T; 
(d) Si-CT and 7 X ; 
(e) | | / - 7 T * | | 1 - | | / - r * 7 , | | 1 = l , and there is a bounded holomorphic function 

T with values in ££(C, £') satisfying 

(3.2) l № ' ) | | ë l a.e., 

(3.3) TH2( C)V 0H2(E) = H 2(£"), 

where 0 is the characteristic function of T defined by (2.1). 

P r o o f , (a)—(e). From Theorem 3, for a unilateral shift S with index 5 = 
=index T,. we have T-<S. That T has a cyclic vector implies that also S does. 
Thus index S = — 1. Consequently, from (2.9), we have 

| | / - R R L 1 - | | / - R * R | | 1 = L. 

We can construct a function T in the same way as in [4]. 
(e)-(b). The contraction Y defined by Yh=PHmTh for h in H\C) 

satisfies (3.1). 
(b)-(c) . Suppose 0}. Since S1Jir(Y)<zX(Y), there is a scalar 

inner function \j/ such that JiT(Y)=\l/H2(C). Thus 

(= H2(C)Qij/H2(C)), Y\HmSW) = TY\BW, 
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where S(\I/)=PHWS Since S(\p) is of class C0, T must be of class C0. 
This is a contradiction. Consequently JF(Y)= {0}. 

(c)-(d) . S i < T implies T * < S i , from which it follows that dim J f ( r * ) S 
S d i m J f ( S i ) = l . That T is a quasi unilateral shift, implies index7<0 . Thus 
index T=-l. By Theorem 3, we have T X S j . 

(d)—(a). This is obvious. 

(3.3) implies that [J\ 0] is an outer function from H2(Cj®H2(E) to H2(E'). 
Generally [r,0] is not contractive. Therefore c?(A)=det [F(A), 0(Z)]£H~ and 
d(X)^ 1 are not obvious. We shall show these results. 

Let A€£C(E,E') be a contraction and V££?(E, E') an isometry with index V = 
= - 1 . Let {e1,e2, ...,en, ...} be a C.O.N.B. in E. Then, setting d„ = Ven 

(«=1,2 , . . . ) , {d0 ,d! , ...,d„, ...} is a C.O.N.B. in E', where d0 is a unit vector 
in JT(V*). For i = l , 2 , ..., define an isometry V£&(E, E') by 

Vi^i = d0,..., Vte, = </(_!, Vtei+1 = dl+1, Viel+2 = dl+2,.... 

Let atj = (Aej,dd ( iSO.y'Sl) . Then, in the base {el5 e2,...}, we have 

«01 <*0j 

A I - 1 15 » A I ~ L ' 
ai + l 1, ••• , ai+l j> • 

(¿ = 1 , 2 , . . . ) . 

Let E0=C®E be a direct sum of C and E, and e0 a unit vector in C. Let 

x„ (n=0,1,2, ...) be a scalar number such that 2 Let B£&(E0,E') 
n=0 

be an operator defined by 

Determine a unitary U£££{E0,E') by Ue,=di (i SO). Then in the base {e0, e1; ..., 
..., et, ...} of E0 we have 

*o, floi, •••> a0 J , 
xi> fln, •••» aij> 

U*B = 
xii ail> •••, a i j i 

Let IE-V*A£(T,C). Then, since (VfAej, eK)=(V*Aej, ek) for y s l and 
JTS/+L, IE-V?A£(T,C) f o r every i. 

PE{IE-U*B)\E = IE-V*A 
implies IE - £ / * 5 6 ( T , C ) . 

23 
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and 

Lemma. Let IE-V*A£(T,C). Set V0=V. Then 

d e t U*B = 2 * i ( - O ' d e t (VT*A), 
i = 0 

( = I 

Proof . For simplicity, let [A]N denote the first nXn submatrix of A, and 
write A„ for A\E , where E„=(elf ..., e„). For any k and n as nsfc , we have 

(3.4) 2 |det [Vi*A]„[2 s det (A*An) = det [A*A]n S 1, 
i=0 

because A is a contraction. Since for each i 

det [V*A]„ — det (V*A) (n 
k 

we have 2 |det(K*y4)|2Sl, which implies 
1 = 0 

(3.5) ¿ | d e t ( F ^ ) | 2 s l . 

Consequently 2 l*j(—l) 'det For any e>0, take an m such that 
i=0 

(3.6). 2 i=m+l 

Since det [C/*5]n—det (U*B), and det[V*A]n-det(V*A) as ?i-c°, w e can take 
an N such that 

(3.7) 

and 

(3.8) 

n N-\det[U*B]„-det(U*B)\ < e, 

n ^ N - 2 |det [V?A]n—det (V*A)\2 < e2. 
I = 0 

Fix a k as k^N+l and I S M + l . Then it follows that 

det (U*B)~ 2 xt(-1)' det(V*A) 

^ |det(E/*.B)—det[(/*B]t| + 
+ 

det [£/*£]*- 2*i(-l)'det [V*A]^ 
I = 0 

+ 

2 x < ( - 1 )•' {det [ViA]k _!—det (F*,4)} 2 *i(— l) 'det (V*A) 
i=m+l 
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From (3.7) |det (t/*.B)—det [U*B]k\*=.e, and from (3.8) 

2 * , ( -1 ) ' {det [V*A]k _ !—det (V*A)} S 
I I=O 

— ( 2 M 2 ) ( ¿ J D E T ^ ^ - D E T ^ ) ] « ) 

(3.5) and (3.6) implies that 

\l/2 

2 x,(— l) Jdet (V*A) i=m+1 

By finite matrix theory 

det[C/*^] t- 2 Xi(- l)'det[K*/l]fc_1 k2 x,(— 1)' de t [VfAh-! 
i = m + 1 

because the last inequality follows from (3.4), (3.6). Consequently, for any e > 0 
we have 

det ( U*B)- 2 xt ( - 1 ) ' det (V*A) 
¡=O 

4e. 

(3.9) 

In (e) of Proposition 5, set (r(X)e0,d,)=hi(X) for /feO. Then we have: 

P r o p o s i t i o n 6. |det(£/*[r(A), 0(A)])|^1, and 

det (U*[r(X), 0(A)]) = 2 hi (A) (— 1)' det (V*0 (A)) 
¡=O 

is holomorphic on D. 
oo 

P r o o f . From (3.2), we have Since F,*0(A) is a contractive 
1=0 

holomorphic function, det (K*0(A))Ç//~. Since 0(A) is a contraction for every 
Ai A it follows that 

2 |fc|(A)(-l)'det(F,*©(A))| s 1, i=l 
oe 

which implies that 2 ¿¡(A)(-1)'det (K*0(A)) is holomorphic. Equality (3.9) follows 
i = 0 

from Lemma. 

P rob l em. Is det (C/*[r(A), 0(A)]) outer? 
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On the equiconvergence of expansions by Riesz bases formed by 
eigenfunctions of the Schrodinger operator 

I. J 0 6 and V. KOMORNIK 

The equiconvergence theorems play an important role in the theory of expansions. 
One of the first results of this type was proved by A. HAAR [1] in 1910—11. Later 
on general equiconvergence theorems were proved for the self-adjoint Schrodinger 
operator. However, many problems of practical interest require the investigation 
of the non-selfadjoint case. Under general conditions there do not exist complete 
orthonormal systems of eigenfunctions. However, introducing the eigenfunctions 
of higher order (a notion similar to what is known from the Jordan theorem in linear 
algebra), the existence of a Riesz basis consisting of eigenfunctions of higher order 
was proved for such cases, too [4], [5], [6]. During the investigation of a non-classical 
heat transfer problem a concrete Riesz basis consisting of eigenfunctions of higher 
order with infinitely many eigenfunctions of order s 1 was found by A. A. SAMARSKII 
a n d N . I. IONKIN [12]. 

The aim of the present paper is to prove a general equiconvergence theorem 
with respect to Riesz bases, which extends the previous results for the case of discrete 
spectrum in several directions. Namely we consider a complex potential function 
from the class Ll

loe(G) where G is an arbitrary interval and the eigenvalues may be 
arbitrary complex numbers. This theorem was first obtained by the authors in-
dependently. The present proof is a synthesis which is based on a fruitful method 
of V. A. Il'in [11] and uses also some new ideas of the papers [7]—[10]. 

1. Bessel-systems of eigenfunctions 

Let G be an arbitrary open interval on the real line, q£L\0C(G) an arbitrary 
complex function and consider the formal Schrodinger operator Lu= —u"+qu. 
Given a complex number A, the function u:G-*C,u=0 is called an eigenfunction 

Received September 10,1982, 
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of order — 1 of the operator L with the eigenvalue X. Furthermore, a function 
u: G—C, u&O is called an eigenfunction of order m (m=0 ,1 , . . . ) of the operator 
L with the eigenvalue X if u and its derivative u' are locally absolutely continuous 
on G and Lu=Xu—u* almost everywhere on G, where u* is an eigenfunction 
of order m—1 of the operator L with the same eigenvalue X. 

Let us introduce for any / > 0 the functions 

, . . sin at 
/1 (/*> 0 : = t — - j— , 

r* 

/¡(ji, t) := f m r t - ' - J " f . . . t ^ d H . - . d t ^ 0 = 2 ,3 , . . . ) 
0 P o o f 1 P 

and for any udL^G), p£C, x±t£G, / > 0 the functions 

g0(w, ¡i, x, t) := J — —q{0u{?>)dZ, 

0 ^ 0 0 P 

X f , , ^ ~ J X - ^ g ( 0 u ( 0 d ^ d i l . . . d t i (i = 1,2, . . . ) . » u 

L e m m a 1. Lei wm be an eigenfunction of order Sm of the operator L with 
the eigenvalue X=p? and put Uj_1:=XuJ—LuJ, j=0, 1, ...,m. Then 

m m 

(1) um(x+t)+um(x-t)-2um(x)coslit = 2fi<ji, t)um_i{x)+ 2Si(um-i,P,x, t) ¡=1 i=0 

whenever x±t£G, t>0. Moreover, putting v :=Imj t , the following estimates are 
valid: 

' t 
l / i f o 0"m-i(*)l = 

(2) 

^ „ - ¡ W c h v i l , 

sup | W m _ , . ( a c h v ( / - | x - i | ) | . 
M 

P roo f . We recall the generalized Titchmarsh formula of J06 [7]: 

• um(x+t)+um(x-t)-2um(x)cospt = 

= p ^ ^ t o r o ^ W + ^ W ] ^ 
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One can easily see that 

Combining (3) and (4) we obtain 

um(x+t)+um(x-t)-2um(x)cos fit = 

x-, V V 

+ f ^ [um-1(x+z)-hum^1(x-T)-2um_1(x)cos¡¿z]dz. 
<r 0 

Now the formula (1) can be proved by an easy induction on m. Indeed, for m = 0 
both formulas (3) and (5) coincide with (1). Assume (1) is true for m—1 instead 
of in. Then applying this formula in the last integral of (5), we obtain (1) for m. 

The estimates (2) follow immediately from the definition of ft and gt. The 
lemma is proved. 

Let us now given a system (K,)CL!(6) of eigenfunctions of the operator L. 
Let Xk (resp. ok) denote the eigenvalue (resp., the order) of uk and assume that the 
following conditions are satisfied: 

(6) SUpOfc 

(7) in case ok 0, lkuk—Luk = uk_t, 

(8) (uk) is a Bessel system, i.e., for any w£L2(G), 2\(uk, w) | 2SC 0Mf,, ( G ) where 
k 

C0 is a constant independent of w. 

The purpose of this section is to prove the following 

P r o p o s i t i o n 1. Given any compact interval KczG, there exists an R>0 with 

s u p 2 (II k J L - W ch (R I m VX))2 < 

We need some preliminary lemmas. For brevity, let us denote by pk a square root 
of Ak for which Re and put Qk:—Rep.k, vk:=lmpk. We shall repeatedly 
deal with compact intervals K=[a, b] having the property 

(9) KR := [a-R, b+R] c G for R:=(b-a)/4, 
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We introduce in this case the functions d, vk: KR—C defined by 

¿ t f ) : = m i n ( 6 + * ) - £ } , vk(0:= uk(0ch(vkd(0). 

L e m m a 2. Given any compact interval K=[a, b] having property (9), 

(10) lklk-<K„) s [3 + o(1)] R~0-81|i>Jr,t(K)+0(1) J l k - M i O (Kl 

uniformly in k. 

P r o o f . Using the inequalities |sh(Imz)|=s|cosz| (z£C), R^d(x)^3R (x€K), 
and applying Lemma 1 for any x£K with t:—d(x), we get 

K(x) | =5 |0.5cthv4/ | |2H t(*)cos/i ti | S 

S[0 .5+o( l ) ]{ |« i 4 (*-0 | + k ( * + O I + 

+ ^ Iftkl"'"1 B?IILHKn)IIft-illL~<K«) + ¿ k l - ^ k - i t o l H i=0 i=l 

[ 0 . 5 + 0 ( 1 ) ] { 2 1 | u j ¿ - ( k ^ x k ) + ( c h v f c i ? ) 1 | u f c | | L " ( g ) + 0 ( 1 ) 2 l k _ , | | z . - ( K H ) } S 
1 = 0 

s [1+0(1)] 1 1 ^ 1 1 ^ ^ + 0 ( 1 ) 2ll^-i lU~ ( K R) . 
1 = 0 

This is obviously true for all x£KR\K, too, therefore 

(11) KIIl-<Kji) 3 [l + o(l)] K | k - ( K H \ K ) + o ( l ) 2 K - i l U - v , ) . ¡=0 

Now for any a—RSx^a and R^t^lR, we apply Lemma 1 with x+t instead 
of x, and multiply by ch vkd(x), to derive 

K(x) | S | r , ( x + 2 0 | + 2 1 ^ ( ^ + 0 1 + 0 ( 1 ) Jll^-illL-dr«). 
i=0 

2R 
Applying the transformation R-1 J • dt and using in the first two integrals of the 

R 
right side the Holder inequality, we have 

i ^ t o i 3*-° - 6 ikn t , ( K ) +o( i ) ¿ k K_ ; i i L - ( K H ) . ¡=0 

This is true analogously for all b ^ x s b + R , too, therefore 

KIIL-(KR\JO - 3R-^\\vk\\LKK)+o(l) ¿IK-ILL *.-<*„)• i=0 



The equiconvergence of expansions by Riesz bases 361 

Substituting this into the right side of (11), we obtain 

w ™ . ) ^ [3+o( i ) ] i ? - 0 - 5 | kU L S ( K ) + o ( i ) Z l k - i l l z . - ^ ) , ¡ =0 
whence 

(12) M l L - d , ) ^ [3 + 0 ( 1 ) ] H o i t l l № , + o(l) 2 H - i \ \ L ~ ( K R ) . 
1 = 1 

Now we prove (10) by induction on ok. For ok= — 1 (10) is trivial because vk=0. 
Suppose (10) is true for ok~zm (msO). Then it is true also for ok=m. Indeed, 
us'nq (12) and the induction hypothesis, 

ML~(K«) S [3 + o(l)]i? -0-5 || »J !»(£) + 

+0(1) ¿ { P + o a w ^ - ^ i k - i i i L - m + o i D 
i=i 7=1 

= [3 + o(1)]R~051|ujL!(K>+o(1) ZH-iWviK) 
i=l 

(in the last step we used that ok-~ok—i). The lemma is proved. 

L e m m a 3. Each point of G has a neighbourhood K having property (9) 
such that 

(13) sup 2 (\\uk\\L-(K)ch0.5vkR)"^0(l) (*--)• 
/«=»0 |(i-e>c|Sl 

KlsB 

Proof . Putting for brevity 

(14) /„ = I^B) := {k: \p-Qk\ s i , Qk s B\vk\, |vt| s B}, 

it suffices to show in view of (6) that to any m£{—1,0, 1, ...}, each point y€G 
has a neighbourhood Xy: m with property (9) such that 

(15) s u p 2 (II«»IIl-(k, M )C H 0 - 5 VFC^,m) 2 = OQ) ( 5 — ) . 

<RKSM 

This is obvious for m = — 1: each point of G has a neighbourhood having property 
(9). Let now mSO and assume (15) is true for m—1. Let now K=Kym b e a n 
arbitrary compact subinterval of ATy>m_j which is 6 times shorter than Ky>m-1 

and contains y. It follows then from the inductive hypothesis that 

(16) sup 2 K I I W ) = 0(1) ( 5 — ) . 
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Indeed, for any k, 

II ^IIL'(K) (II UJ| L-(Jt) ch 3v* R) (4R)™ = 

= (4/?)°-s||h*||L-"(K)ch(P.5vkRs,m_1) (4R)° s | | u k m _ 0 ch(0 .5 v t R y ^ ) . 

Let us now fix /¿>0 and x£K arbitrarily and introduce the function u>: G—R: 

(cos fit if \t\^d(x), 
otherwise. 

w {C O S ) 

0 

In the sequel we shall consider always and the estimates o, O (B—°°) will be 
uniform in /¿>0 , x£K and k^I^. Obviously, 

(17) ||w||i,(G) = O(l). 

For any multiplying (1) by cos fit and integrating by t from 0 to d(x), 
we obtain 

d(x) 
(18) J 2 cos fit cos fikt dt • uk(x) = (uk, w)— 

o 

~ 2 f cos fitfl(jik,t)dt-uk-i(x)~ 2 cos fitgi(uk-l,nk,x,t)dt. 

Here 
i=i0 

d(x) 
J 2 cos fit cos fiktdt = sin ifi - fik) d (x) + sin (fi+fik) d (x) 

V+Vk 

using 6k=0, d(x)^R, the definition (14) of /„ and the inequalities | s h l m z | s 
^ |sin z |Sch Im z (z£ C), we get that 

sm (ji-fik)d(x) 
H-Vk 

ch vkd(x) 
N 

I t h ^ i W l J ^ - u - o d M ^ W . 

whence 

(19) 

sin (ii+fik)d(x) 
H+h 

d(x) 

ch vkd(x) 1 / vg _ chvkd(x) 
' V D2..2 I „2 I.. I B^l+vl 

ch vkd(x) | J 2 cos fit cos fik t dt\ s [1 ~ o (1)] p| 

(18), (19), (2) and (14) imply 

[1 -0 (1 ) ]K | -* |!fc(x)| s |<u*, w)| + 

+ IMi»<*JI>rf(*) 

vk(x) 

Uk 
+o(D 211^-íIIl-^), 

L-(KH) ¡=1 

VJFC 
— 0(1) w) |+o( l ) +0(1) Z K - i l U - V , ) . L-(Jf„) £=1 
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Applying (10), we obtain 

Vk(x) 
v* 

^0(l)\(uk,w)\ + o(l) "k +0(1) ZK-illwo-
L'(.K) 1=1 

Summing up the square of this inequality for an arbitrary finite index set /c= 
a {&€/,,: then applying (17) and the Bessel inequality (8) to the first sum on 
the right side, we obtain 

kil 
vk(x) S 0 ( 1 ) + 0 ( 1 ) 2 

ka 
+0(1) 2 ^ K - i i l i ' o o = 

MK) KIL 1=1 

i O ( D + 0 ( D 2 
k£I 

+0(1) 2 iKIIi'uo — o(i)+o(i) 2 
LHK) KS.I„ KIL 

Vk 
2 

LHK) 

(we used (16) in the last step), whence, integrating by x on K, we get 

0 ( l ) + o(l) 2 2 km 

2 

L>(K) 
»k 

2 k£I 

Since I was chosen arbitrarily, 

2 

LHK) 

LHK) 

k£I 

^ 0( 1). 

= O(i). 

LHK) 

Using (10) and (16) again, we see that 

2 
k€/ M 

^ o ( i ) 2 Vk 
+0(1) 2 IMW> -

LHK) fft-<m 
o ( i ) + o ( i ) 2 № ( j o = 0 ( i ) , 

and hence (15) follows with K=Ky m because for any k, 

II "jklli-iK)ch (0-5 vkR) S H ^ I I ^ - ^ M - S R-i 

The lemma is proved. 
L-(KR) 

L e m m a 4. Each point of G has a neighbourhood K having property (9) such 
that for any fixed J3>0, 

(27) 2 ( I l « i k l l r w c h 0 . 5 v 4 * ) » = 0 ( l ) ( C - ~ ) . eitSB|vk| 
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Proof . Setting 

(21) J = J(C) := {k: gk ^ B \vk\, |v4| s C}, 

it suffices to show in view of (6) that for any m€ {—1, 0, ...} and j>£G, there exists 
a neighbourhood Kym of y having property (9) such that 

(22) 2 ( I I " t i l m ) 0 . 5 v t R m)2 = 0( 1) (C — ) . 
kiJ 

"fcSm 
This is obvious for m=— 1. Assume m^O and (22) is true for m—1. Let K=Kym 

be an arbitrary compact subinterval of m-1 containing y which is at least 
6 times shorter than K y m _ 1 and which satisfies the following condition: 

(23) 81(m + 2) JR2 |^ | | i1 ( J C R )<8-1 . 

As in the preceding lemma, we have 

(24) 2 I k l l W ) = 0(1) (C — ex.). 

W (x+t) := 

Let us fix x£K arbitrarily and define w:G—R by 

[1 if \t\^d(x), 
otherwise. 

In the following considerations the estimates o, O will be uniform in x£K and 
k£J (C-°° ) . Obviously, 
(25) Mlia<o = O(l). 

For any k£J,okSm, integrating (1) by t from 0 to d(x), we get 

. d(x) 
f 2 cos nkt dt uk(x) = (uk, w ) -

(26) 
d(x) 

~ 2 f fi(Vk> 0 dt «*- , (*)- 2 gi(uk-i, Uk, X, t) dt. s i ^ : a 

Here, by the inequality d(x)^R, 
d(x) 

|J 2cos¡iktdt\ = 
o 

and therefore (26), (2), and (21) imply 

vk(x) 

sin fik d (x) shv td(x) 
= [ l - o ( l ) ] chv trf(x) 

k l ' 

[1-0(1)1 
Uk I<W*. W>| + 3/8II gBiHKji 

¡=i 

+ 
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(we used that d(x)^3R), whence in view of (10), 

Hk 
g 0(1)1(1/*, w>|+[9+0(1)1 li0-«II?«!**„) 

+ 0(1) ZI I^ - i l lLW, ¡=1 

LHK) 
+ 

and 

f t 
— 0(1) w>|2 + 

+(2+0*) [81+o (1)] J? || # || fr(KR) + 0 ( i ) 2 1 1 ^ - f c ) -
LHK) 1=1 

+0(i)2lk-«IIW> LHK) ¡=1 

(we used (23) and o k^m). Summing up this inequality for an arbitrary finite index 
set Ic{k,£J; ok^m}, then applying (8) and (25) on the right side, and finally in-
tegrating by x on K (the length of which is 4R), we obtain 

2 S 0 ( l ) + [ 0 . 5 + o ( l ) ] 2 + o ( i ) 2 W W 
LHK) kiJ 

Hence, using (24) and the choice of /, we have 

= 0(1), 2 kiJ Pk LHK) 

and taking into account the estimate |/it| S ( 1 + B ) |vfc|, we get 

2 
FC£J 

Vk 
LHK) = 0(1). 

Now the proof can be finished exactly as in the preceeding lemma, using (24) instead 
of (16). The lemma is proved. 

L e m m a 5. Given any compact interval K=[a,b]c:G and any number £>=-0, 
we have 

(27) sup 2 Klli-(K) 
H>0 |/x-ik|Sl 

KlsD 
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Proo f . Putting 7M:= {k: \ n ~ w e will show by induction 
on m that 

(28) sup 2 IM£«(K> < ~ (m = - 1 , 0, ...). 
iî O *€/„ ak — m 

Hence (27) will follow in view of (6) because by a result of Joô [7] there exists 
a constant Cm>D such that 

(29) IMz.-(K) — Cm<D\\uk\\LriK) whenewer o* m and \vk\ 7). 

(28) is true for m = — 1. Let now mgO and assume (28) is true for m—1, i.e., 

(30) sup 2 
/»=>0 *€/„ 

In the following arguments the estimates O, o (J?—0) will be uniform in /¿>0, 
ke/„, and xCK 

For any / i>0 and define w: G—R by 

2cos/i(y—x)—0.5 if x ^ ^ x+R, 
- 0 . 5 if x+R^ y^x+2R, 
0 otherwise. 

Obviously, 

(31) INi.(G) = 0(1) (R — 0). 

Applying (1) for any k^Ip, ok^m with 0 ^ / a ) and with x+t 
instead of x, we obtain that 

uk(x) = 2uk(x+t)cos fit—uk(x+2t)+2uk(x+t)[cos nkt—cos (it] + 

+ Zf i iVk, 0 " * - i ( * + 0 + 2 gi(uk-i,Hk,x+t, t); i=l ¡=o 

integrating by t from 0 to R, we see that 
R 

Ruk (x) = (uk,w)+ J 2uk(x+1) [cos nk t - cos fit] dt+ 
o 

+ 2 f fi(Vk,t)uk-i(.x+t)dt+ 2 f g,(uk^,nk,x+t,t)dt. 
i=lo i=00 

Taking into account that ¿¿£R and \fi—fik\^D+l, we get 

| cos f i k t -cos /i/| = 0 ( 0 (f — 0). 
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Furthermore using instead of (2) the estimates 

«*-«(*)! = 0 ( i " ) k - i ( * ) l ( ' - 0), 

lfc(«*-i. A , 01 = (t - 0), 

which follow from |v t|sZ> and from the definition of ft, g{, we obtain that 

R k(x)| S \(uk, w)\+0(R2) || wt||L-(X)+ 

+ 20(R2,+1) II ZO(R^) II«jk-^i-tJC) S 
<=i ¡=i 

s |<«4, w ) | + o ( R 2 ) | | w j L - ( K ) + o ( l ) ZW^-iL-m (R - 0), 
£ = 1 

yielding 

* 2 M * ) I 2 s 0(1) \(uk, w)\*+o(R*) ||«t||£-(K) + 0 ( l ) Z l K - i l l i - w (R - 0) ¡=1 

and in view of (29), 

^ | U i W | ! ! S 0 ( l ) K « t , w ) | 2 + o(i i2) | |« J | | |S ( K )+O(l) 2 llu*-illl«(K) 
¡=1 

Summing up this inequality for any finite set l a {kdl^: ok^m), and applying 
(8), (31) and (30), we have 

By a similar argument, this inequality is true for all 2~1(a+b)^x^b, too. Thus, 
integrating by x on K we get that 

2 * 2 K l l i w ^ 0 ( i ) + o ( * 2 ) ZIM!«<K)> kil k£I 

2Wuk\\lHK) = 0(R~2) ktl 

and / c {k£I„: o k ^m} being arbitrary, 

Z K l l i w = 0 ( * " 2 ) 
kit» ffk —m 

Hence (28) follows and the lemma is proved. 
Now we can prove the proposition formulated after Lemma 1. Given a point 

y£G arbitrarily, there exists by Lemma 3 a neighbourhood Kx of y and two 
numbers Rt, B>-0 with 

(33) sup 2 ( K l l r w c h v ^ ) 2 ^ . 
M=»o |ix-eJsi 

eksB|vk| • - ' ¡VJsb 
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Fixing B, there exists by Lemma 4 another neighbourhood Кг of у and two 
numbers i ? 2 , C > 0 such that 

(34) 2 ( . Ы ь - ^ с Ь У М * ^ - . 
BkSB |»k| 

| v t | s c 
Finally, for 

(35) К := R:= min {Rx, Л2} and D := max {В, C), 

it follows from Lemma 5 that 

(36) sup 2 (KIU-<iochv t*)*<«>. 
n>0 l/i-ejsi |vk|SB • 

(33)—(36) imply 

sup 2 (llu*IU"Wch < °°> 

i.e., each point y£G has a neighbourhood Ky such that for some Ry>0, 

(37) sup 2 (KI!L~(Kjl)Ch v k ^ ) 2 < » . 
о | ( l—e k |S l 

Hence the proposition follows by an elementary compactness argument. Indeed, 
given any compact interval KaG, it can be covered by a finite system {Ky~. 
i = 1,2, . . . , N} of intervals having property (37) with some ^ ¡>0 , i = 1, ..., N. 
Setting R:= min {R^, ..., RN}, we have obviously 

sup 2 (II "*IUw ch vkR)°- «», 

completing the proof of Proposition 1. 

2. An equiconvergence theorem 

Let G be an arbitrary open interval on the real line, q, q£L[0C(G) arbitrary 
complex functions. Let (uk) (resp. (ukj) be a Riesz basis in L2(G) consisting of 
eigenfunctions of the operator Lu = —u"+qu (resp. Lu = —u"+qu) and having 
the following properties: 

(38) sup ok < sup ok < oo, 

f39) in case ok > 0 (resp. ok > 0) 

Xkuk-Luk = uk_! (resp. lkuk-luk = uk_J. 

where ).k and ok (resp. lk and ok) are the eigenvalue and the order of uk (resp. uk). 
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Now let us introduce some notations: 

(40) 
W,x):= 2 </. i>k)Uk(x) (fZL*{G), x€G, 0> 

where (vk) (resp. (0t)) is the dual system of (uk) (resp. (wk)), i.e., (vk), (tik)aL2(G) 
and (vk,Uj)=(Qk,Uj)=dk]. The following result holds: 

Theorem. Given any compact interval KaG, for all f£L2(G) 

(41) lim sup |<x„ ( f , x) - &M (/ , *)| = 0. 

For f£L2(G),p>0 and x±R£G, define 

(42) S^f x) = S,(f x, R) /* f(y)dy. 

The theorem will follow obviously from the following assertion: 

P r o p o s i t i o n 2. Given any compact interval KaG, for any sufficiently 
small R> 0, and for all f€L2(G), we have 

(43) lim sup | S„ ( / , x) - <r„ (/, x) | = 0. 
fl — 

Indeed, an analogous result holds for £„(/ , x), too, and it remains only to 
apply the triangle inequality. 

For the sake of brevity, from now on we shall denote by pk a square root of 
A* with Re / 4 ^ 0 andweset gk:=Re pk, vk:=Im pk. For the proof of Proposition 2 
we shall need two preliminary lemmas. 

L e m m a 6. Given any R>-0, there exists a constant C=C(R) such that with 
the notation 

1 if 
1/2 if p = 
0 if 

(44) S(p,Qk):= 

(45) 
2 r smptcospkt r r n dt~S(n, gk) 71 y t 

for any /¿>0 and k, we have 

2 * sin pt cos pk t 
' J o 

Proof . We recall that 

(46) f ^ ± d t = 2 - K o 

24 

ch vkR 
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and 

(47) f ^ l d t 6(1 +X)- 1 for all Х Ё О 

((47) can be seen by integrating by parts). Setting for brevity ek=6 and 
we can write 

R s i n f i tcos f i k t 
w«) f * " dt = 

о t 

= (2/л) f (cos Qt ch v/—¿ sin Qt sh vt) dt = 
о 1 

..„. ... . smutcosot , s r sin fit cos Qt . 
(48) =(2/тг) f - ¿ / - ( 2 / T t ) / — -dt+ 

О 1 R 

ч r • ch (vi) — 1 . ч Л . . sh (vt) . + (2/я) J sm fit cos gt dt — (2ijn) J sin fit sm Qt——dt = 
о . * о * 

= h + It + h + h. 
Here, by (46), 

j _ я _ ! r sin(fi+Q)t+sm(fi-Q)t d t = 

J 1 

(49) = n - 1 ( s g n 0 i + e ) + s g n 0 i - e ) ) / ^ - d t = S(fi,\e\) 
о 

and 
_ Г sm(jj. + e)t+sm(n-g)t = 

i * 

= + f dt + sgn(fi-Q) f - ^ - л ) , 
V |д+в|к Ы-elR 1 ' 

whence, in view of (47), 

(50) |/2 | 3= Л-1 ( 1 + | Д е | Л + 1 + | Д в | Л ) ^ 1 + | Д е | R -

Considering now the quantities /3 , /4 , we obviously have 

(51) |/ , | ^ (2/л) / f i i M z l d t ^ (2/я) (ch v i? -1) 
о7 ' 

and 

(52) |/4 | =1 (2/я) f s h ( m d t g.(2ft t)shv* 
У t 
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On the other hand, in case f i ^ g we can write 

I3 = n - 1 / (sin (ji + g) t + sin (ji - Q) t) chv* 1 di= 
o ' 

- cos (jt+ e) t — cos (p.—e) iY ch vt—11* Ï ch v/—11 
)—r~J0 

- + — " " - — : + fi + Q H-Q 

cos( / i+e) i cos(/x—g)t \ ( ch.v/— 1. 
H + Q 

, sh vt 
and 

h = 07^) / (cos(jx + Q)t-cos(n-e)t)—j—dt = 

/ch vt — 1V ( sh vt y 
Hence, taking into account that the functions —: — , do not change 
sign, we obtain that t t ' 

2 (chviî—1 I c h v i - l V , I) 4chvtf 
- ^ { - n - + \ f i — r - } dt\l = 

, T , • 2 ( sh viî I I r (shvt\ IV 4 |sh vl?| 
. w - ï l F ï î l — / 1 — J i J 

(53) 

and 

(54) 

Now the lemma follows from the relations (48)—(54). 

L e m m a 7. Given any 0, there exist constants C—C^K) such that for 
the functions f , gt of Lemma 1, 

R 
(55) / f t f a t) •dfSClch(RImn)(l + \n\)-'- (/i€C, i = 1,2, . . . ) ; 

furthermore, for any u€Z.(~c(G), /î£C and x±R£G, 

(56) 

(57) 

/ o 

R 
f 

gi(u, fi,'x, t) 
dt S Q || * + * ) l l « I U ~ ( x - J { . x + « ) X 

Xch(RIm/ i ) ( r+ | i i | )_ , _ 1 = 2, ...), 

gQ(u, fi, x, t) 
di S C0 ||9llL»(*-R.*+«)l|flU~(x-«,x+R) x 

Xch (R Im n) ( r+ In (1 + M)) (1 + H) _ 1 -

24* 
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Proo f . Using the inequalities 

sin z =§2ch(Imz), |sin z\ ch (Im z) (z€ C), 

chach j?=5ch(a+0) , min {a, 0} ^ 1 + a ( a , / J > 0 ) , 
1 + 1//? 

and the notations. 

v:= Im/i, Af:= ||9||I.,(x_Jt,x+J,)||Mi|L«(x_J!,x+j0 

we see from the definition of / , , g, that 

L/i{ft, 01 S f 'chvimin {2/, |l//i|}' si / ' ( 1+20 ' ch v/(1 +|jt |) 

|g i(u, n, x, 01 r' ch v/min {2t, \l/fi\}i+1M s= 

S i ' ( l + 2 0 ' + 1 ch vt (1 + l/zD-'-W. 

Hence (55), (56) and the case R^\l/(i\ of (57) follows at once: 

f i f a 0 / 
/ gt(u, n, x, Q 

t 

dt sS /5/2'-1 (1+2^)*' ch (1 + | ~ 

dt =S +2i?) i + 1 ch vi?(l + |/i|)""i_1M (i = 1, 2, . . .) , 

/ g0(i/, fi, x, 0 dig J t~1chvt2tMdt^ 

=§ 2f lMch vi? S 2M(tf+1) ch vR (1 + l/il)"1. 

In view of this last estimate, for the case /?> |l//x| it remains to remark that 
R 

f g0(u,n,x,t) dts f /-1(l + 20chv/(l + |/i|)_1Mi//^ 
M 

^ (In jR-ln \\ln\)(1+2R)ch vtf (1 + l/il)"1 M = 

. = (1 +2/?) Mch vR (In .K+ln |/i|) (1 + l/il)"1, 

and the lemma is proved. 
Let us now turn to the proof of Proposition 2. Since (uk)cL2(G) is a Riesz 

basis and (vk)czL?(G) is the dual system of (uk), there exists a constant C0 such 
that for all / , w£L2(G), 
(58) 2 KM*> w)]2 's C0 | |w|| | , (C), 

(59) 

(60) 

2\{f,vk)\*^c0\\f\\iHG), 
k 

( f ^ ) = 2 ( J , Vk)(uk,w). 
k 
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Given a compact interval K=[a,b]<zG arbitrarily, we can fix by Proposition 1 
an i ?>0 such that KR:=[a-R, b+R]czG and 

(61) sup 2 (II "til L°°(Kr) ch vkR)2 < A 
/is-o l/i-e^si 

Applying Lemmas 6, 7 and using ||^||z.i(/t ) < 0 ° and (38), we can fix a constant 
C=C(R) such that 

(62) 

( 6 3 ) 

( 6 4 ) 

2 £ siantcos/ikt 
-J t dt — S(ji, gk) 

/
sinlit - , 

Tit 

f smut . . , 
J -rr-Si{uk-i,iik,x,t)dt 

sCchvkR(2+\p-Qk\)-\ 

S . C c h v j J l d + lAiJ)-1, , 

S C || «k_i|lz.—(KR> ch vfci?(l +|/^|)_3/1 

for all k, ;ti=»0 and i = l, 2 , . . . , ok in (63), i = 0 , 1 , ..., ok in (64). 
Fixing x£K and /¿>0 arbitrarily, define w:G—R by 

w ( x + 0 := 
sin Lit . . . . 

- S T , f 1/1 

0 otherwise. 

Then, for any feLs(G), (42) and (60) imply that 

(65) W > * ) = 2 </>»*><"*>»>• 
it 

Applying Lemma 1 with w : = s u p o t ( < » ) and using (40), (62)—(65), we obtain 
the inequality 

I W> x)-(T„(f, *)| S 2-1 2 \<f> °k) «4(*)| + 
. « » = / « 

+ 2\<f."*)«t(x)\C<bvkR{2+\il-ek\)-*+ 
k 

+ 2 2 U «*> «4-1 (*)l Cch vkR (1 + + 
k ¡=1 

+2 2U«01II"k-ih-(KR)cchv»J?(i+fei)-8^. 
k ¡=0 
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Using for each sum the Cauchy—Schwarz inequality, (50) and o k ^m, we get that 

IS„( f , x)-a,(/, x)\ S / Q | | / | | t , ( C ) { 2 - i ( 2 KWI 2 ) 1 / 2 + 

+ C ( 2 c h vkR)* ( 2 + \ ^ 6 k \ y y i * + 
k 

. +mC(Z{uk(x)chvkRf(\ + \fik\)-J'2 + 
k 

+ m C ( 2 II "J !.-(*«) ch vkRY (1 +1^|)-3/2)1/2}. 
k 

Applying to these expressions the estimate (52), we have 

2 k ( * ) l 2 < A, 
ek=n 

Z(uk (*) ch vkR)2 (2+j// — Qk I) - 2 ^ 
k 

S + 2 (uk(x)chvkR)*s2A Zj-*, ¡=0 ¡SCfc î+l ]= 1 

2 ( « * ( * ) c h v t « ) 2 (1 + Ifttl)-2 £ 
k 

^ 2 (1 + 0 - 2 2 («*(*) ch v t * ) 2 ^ A z r \ 

and similarly 

Z (II «*lli-№0 V,/?)2 (1 + k | ) - 3 / 2 S ^ ¿ r 3 / a . 
* J=i....... 

Therefore there exists a constant Z)>0 such that 

(66) sup sup | S , ( f , x ) - e , ( f , *)| ^D.\\f\\LHGi for all f£L\G). 
xiK 

Given now /£L2(G) and s > 0 arbitrarily, let us choose a finite linear combina-
n 

tion P:= 2 ckuk with 
*=i 

(67) | | / - P | | t S ( G ) < e / 2 Z ) . 

P being continuously dififerentiablei it is well known [3] that 

lim sup ^„(P, x ) - P ( x ) | = 0. 

Thus we can fix iV> 0 so that 

(68) sup |SM(P, x ) - P ( x ) | < e/2 ; whenever /t > JV. 
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Let now ¿¿>max {N, Q1, ..., <?„} be arbitrary; then a^P, x) = P(x) and therefore 
(66)—(68) imply that 

sup |S„(/, x)-<?„(/, x)\ 3 sup | $„ ( / - /> , x)-all(f-P, x)| + 
xiK x£K 

+ sup\Sll(P,x)-P(x)\^D^- + 8/2 = e; 
xiK ¿V 

this finishes the proof of Proposition 2 and also that of the Theorem. 
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Two remarks on pointwise periodic topological mappings 

I. J 0 6 and L. L. STACHO 

In his investigations [2] concerning the fixed points of biholomorphic auto-
morphisms of the closed unit ball in C (fi) spaces, the second author proved, that 
a pointwise periodic automorphism T.Q—Q of a topological F-space Q is 
necessarily periodic. (I.e., if for every x£Q there exists a natural number «=«(*)> 1 
for which T"x=x, then there exists 1 such that T"°x=x for every x££2.) His 
proof made essential use of the abstract properties of the function space C(£2) and a 
lemma stating that the linear operator f : f<->-foT on C(Q) is periodic whenever it is 
pointwise periodic. 

In this note we present a simple elementary generalization of the mentioned 
theorem about i2-automorphisms. This may have interest even in itself since so 
far we have very lacunary information about the structure of automorphisms in 
abstract topological spaces. Furthermore, we also investigate some extensions of 
the lemma concerning f . 

1. Quasi F-spaces 

D e f i n i t i o n . Let £2 be a topological space. We say that £2 is a quasi F-space 
if for every pair of sequences xlt x2,...; ylt y2, • •• in such that {xn: n£N}(~} 
H {y„: n^N}=& there exists an infinite index set IczN with {x„: n£l}~C\ 
fl {y„: « € / } " = 0 (here _ stands for the closure operation in Q). 

R e m a r k . If Q is a totally regular F-space (for the definition see [1]) then, 
by a theorem of Henricksen (see [1]), every countable subset is C*-imbedded in £2. 
Hence totally regular F-spaces are all quasi F-spaces. On the other hand, the real 
line equipped with the topology where the family x of open sets is given by T= 
= {G\S: where G is open in the usual sense, S is countable) is obviously a quasi 
F-space but not an F-space. 
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378 I. Joo and L. L. Stacho 

The definition of the quasi-F property can be stated equivalently in the following 
slightly sharper form. 

Lemma. If Q is a quasi F-space then for every family of pairwise disjoint 
sequences [x®: n£N] (k— 1 ,2 , . . . ) there exists an infinite index set IczN such that 

n£l}~ = & whenever k^l. 

Proo f . By hypothesis, given any J infinite czN and k^l, we may fix 
Hkyl(J) infinite c / such that {x®: n£Hkil(J)}-f\ {x<°: n 6 / / M ( / ) } - = 0. Now we 
can define / p / p ^ D . . . recursively by / i = N , I„+1=Hn+11 Hn+lti... Hn+1„(In). 

Clearly we have {xf*: n£JN}~C\{xf: n£JN}~ = ® whenever 0 < i : < / s M 
Therefore the choice 

7={min{/c€ / M : / c S M } : M£iV} 

suits the requirements of the lemma. 
T h e o r e m . Let Q be a countably compact quasi F-space and let T denote 

a pointwise periodic continuous mapping of i2 onto itself. Then T is necessarily 
periodic. 

P r o o f . Suppose T is not periodic. Then there exists a sequence x l 5 x2 , ...£i2 
such that the sequence p t = m i n {w>0: T"xk=xk) strictly monotonically tends 
to (as k-*<*>). Observe that T"xk^Tmx, if k^l and 0^n<pk, 0^m<p,. 
Hence, applying the lemma to the sequence [ x n £ N ] with 

x W = ( T * x n if 0 
" lx„ otherwise 

we can find I infinite (zN such that {Tkx„: nel}~C\{Tlx„: n£I}~=0 for all k^l. 
By the countably compactness of Q there exists an accumulation point x£Q of 
the sequence {x„: nil}. But then we have Tkx^Tlx whenever k^l, contra-
dicting the pointwise periodicity of T. 

C o r o l l a r y . T is a topological automorphism of Q. 

2. Baire group homomorphisms 

In [2] it is shown that a pointwise periodic bounded linear operator on a Banach 
space is necessarily periodic. The proof of this fact is straightforward if we make 
full use of the vector structure of the underlying space. However, one can raise the 
question, what the deeper role of the algebraic considerations here is. The answer 
is contained in the following substantially sharper result whose proof is, however, 
also very short. 
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Theorem. Let G be a connected topological group endowed with a Baire topology 
and let U be a pointwise periodic group homomorphism of G into itself Then 
U is necessarily periodic. 

Proo f . Set G„ = {;t(EG: U"x=x) (w=l, 2, ...). Since U" is also a continuous 
group endomorphism of G, G„ is a closed subgroup of G for each n. From the 
pointwise periodicity of U we obtain G = IJ G„. Thus, by the Baire category 

n>0 

theorem there exists w„> 0 such that the interior of G is not empty. Since G is 
a subgroup of G, this means that G„o is also open in G. Therefore, by the con-
nectedness of G, we have G„ =G. That is, U"°x=x for all x£G. 
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A general ordering and fixed-point principle in complete 
metric space 

S. DANCS, M. HEGEDŰS and P. MEDVEGYEV 

1. In the proof of the celebrated theorem of BISHOP and PHELPS [1] on the 
density of the set of support points of a bounded closed convex set in a Banach 
space, a lemma [1, Lemma 1], which can be considered as an ordering principle 
using essentially the completeness of the space [3], played a central role. The lemma 
has many generalizations, a maximal one being perhaps the one which is due to 
EKELAND [6]. The generalizations of the lemma have surprisingly many applications 
in various branches of mathematics as a .survey paper of EKELAND [7] and, without 
any completness, the papers of BRONDSTED [3], KIRK [8] a n d SULLIVAN [9] show. 

The purpose of this paper is to show that the different generalizations of the 
lemma can be considered fundamentally as different forms of a general ordering, 
fixed point or inductive principle based on the completeness of the metric space. 
The importance of the different forms are essential from a very pragmatic (and, 
of course, very significant) point of view: which form fits better the considered 
problem (see other principles of analysis like e.g. the Hahn—Banach theorem which 
has many equivalent forms, too). 

In the second section of this paper we deal with the equivalence of some well-
known forms of the principle, in the third one we give two other forms and a very 
simple new proof of the principle. In section 4 we show that our new forms seem 
to fit better the proof of Menger's Theorem than the form of Caristi's fixed point 
theorem. In section 5 we give an application in measure theory which illustrates the 
fact that the principle could be a central tool in the theory of measure spaces. 

2. Four equivalent forms of the principle. Throughout this section ( X , d) will 
denote a complete metric space, and (p:X—1?U{+<*>} a l.s.c. function, 
bounded from below. Firstly we recall four theorems. 
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T h e o r e m 2.1. If f : X-*X is a map satisfying the inequality^ 

(2.1) d(x,f(x))m<p(x)-<p(f(x)) for all xiX, 

then f has a fixed point in X. 

T h e o r e m 2.2. There is a point x in the space X, for which the inequality 

(2.2) d(x, x) > (p(x)-q>{x) 

holds for all xe^Xi*}-

T h e o r e m 2.3. If x is an arbitrary point of the space X, then there exists 
a point x in X, such that the inequalities 

(2.3) d{x,x)^(p{x)-q>(x), 

(2.4) d{x,x) xp(x)-(p(x) for all 

hold. 

T h e o r e m 2.4. Let e be an arbitrary positive number and u a point in X 
such that 
(2.5) <p{u) ^ inf <p(x) + e. 

Then for arbitrary there exists a point v in X such that the following in-
equalities hold: 
(2.6) q>(v)^ cp(u), 

(2.7) d(u, 

(2.8) <p(x) > q> (v) -(e/A) d(v, x) for all 

T h e o r e m s 2 .3 a n d 2 . 4 a r e d u e t o EKELAND [6, 7]. 

Theorem 2.1 appeared firstly in the paper of CARISTI and KIRK [8] as a theorem 
of Caristi. A slightly different form of Theorem 2.2 is a corollary of Theorem 2.4 
in the paper of EKELAND [7], and is called a weak statement contrary to the strong 
statement of his Theorem 2.4. The weakness of Theorem 2.2 is, of course, illusory 
according to the equivalence of the statements. The equivalence (or one or another 
part of the implications) of the above mentioned theorems are contained, explicitly 
o r impl ic i t ly , in EKELAND [7], SULLIVAN [9], BRONDSTED [3], a n d s o o u r v e r y s i m p l e 
proofs can be found partly in these papers. 

Next we turn to the proof of the equivalences of the above theorems. The 
logical scheme of our proof is as follows: 

Theorem 2 . 1 « Theorem 2.2 => Theorem 2.3 
ft H 
Theorem 2.4. 
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Theorem 2.1 => Theorem 2.2. If there would not exist an x satisfying (2.2), 
then for all x£X there would be a point f(x)^x in the space X such that 
d(x,f(x)) S q>(x) - cp (f(x)), contrary to Theorem 2.1. 

Theorem 2.2 => Theorem 2.1. If a point x satisfies (2.2), then x is a fixed 
point of each self-map / satisfying (2.1) since otherwise the inequality d(x,fQc))> 
xp{x)—(p{f(x)) would hold, contradicting (2.1). 

Theorem 2.2 =• Theorem 2.3. The lower semicontinuity of cp implies that the 
set S = {x£X | d(x, x)S<p(x)—(p(x)} is closed, hence the metric space (S, d) is 
complete. Applying Theorem 2.2 for the space S we get a point x with d(x, 
^(p(x)-(p(x) and d(x, x)=~<p(x)—<p(x), for all x€5\{3c}. For Theorem 2.3 
we have to show that the last inequality holds in X\S, as well. If for x£X\S 
the inequality d(x, x)^(p(x)—<p(x) would be true, then adding it to the inequality 
d(x, x)^(p(x)—(p(x) we would get d(x,x)^cp(x) — (p(x), contrary to x$S. 

Theorem 2.3 => Theorem 2.4. Applying Theorem 2.3 with the metric (e/X)d 
and Jc=u, we have a point v=x such that (s/X)d(v, x)xp{v)—(p{x) for all 

and (s/X)d(u, v)^q>(u)—(p(v). Hence we immediately get (2.6) and 
(2.8). The inequality q>(u)sinf<p(x)+£ implies (p(u)-<p(v)^e; thus (e/X)d(u, 
which gives (2.7), too. 

Theorem 2.4 =• Theorem 2.2. Taking e=X the implication is evident from (2.8). 

R e m a r k s . From the proof of the first equivalence one may observe, that the 
set of the fixed points of the selfmaps satisfying the assumption of Theorem 2.1 
coincides with the set of points x satisfying (2.2) in Theorem 2.2. This obvious 
observation shows that all / in Theorem 2.1 have common fixed points. 

It is interesting, that the fixed points in Theorem 2.1 can be localized similarly 
like in Theorem 2.3 or 2.4. 

3. Two new forms of the principle. Firstly we will state two equivalent theorems 
which can be considered as new versions of the principle. We shall prove the first 
proposition directly, and this proof of the principle seems to be the simplest we 
have learned till now. 

T h e o r e m 3.1. Let (X, d) be a complete metric space and $ be a map X^-2x, 
which satisfies the following conditions: 

(3.1) <P(x) is a closed set for all x£X. 
(3.2) x€<P(x) for all x€X. 
(3.3) ) for all x^x^X. 
(3.4) For all sequences x1,x2, ..., xn, ... in X, that are generalized Picard-

iterations, i.e. fulfil 
*2€i>(xi), x3e<P(xJ <2>(*„_!), ••• 

the distances d(xn, x„ + 1) tend to zero as n-*- + <=°. 
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Then the map <P has a fixed point x in X in the sense <P(x)= {x}. (In localized 
version: For arbitrary x£X there is a fixed point in <P(x).J 

Theorem3 .2 . Let (X,d) be a complete metric space with a continuous partial 
ordering If for each increasing sequence in X the distances 
d(xn,xn+1) tend to zero, then there is a maximal element in X. (In localized version: 
For all x^X there is a maximal element in the set {x£X\x^x}.) 

D i r e c t p r o o f of T h e o r e m 3.1. If the distance d satisfies condition (3.4) 
then the equivalent distance d'=d/(l +d) also does, so we can suppose d is bounded 
on X. Let us denote the diameter of a subset AaX by 5(A). Because of (3.2) 
<P(x)?±0 for all x€X, and we can construct a generalized Picard-iteration such 
that x t = x , x„£ <P(x„-1) and 

d(xn, xn.x) ^ S(0(xn.1))/2-l/2'-K 

Hence from conditions (3.3) and (3.4) we have 

&(Xn-i)=?4>(Xn) and S(<P(x„)) - 0 as 

Using the completeness of the space, the non-empty, closed sets <P(x„) («=1 ,2 , ...) 
oo 

have a unique common point x, i.e. Q <£(*„)= {3c}. The point x is fixed, since 
n = l 

oo 

on the one hand x£4>(x„) and (3.3) imply <P(x)Q $(x„)={x}, and on the other 
n = l 

hand from (3.2) we have {x}g$(x) . The localization is trivial from xx=x. 
Theorem 3.1 => Theorem 3.2. Let <P(x) = {y | x^y}. The relation y£<t>(x) 

is equivalent to x ^ y , hence the reflexivity and the transitivity of the ordering 
imply (3.2) and (3.3), respectively. From the continuity of the ordering we can 
conclude that the set $(x) is closed. If ... . . . , then x l s x2 , ..., x„, ... 
is a generalized Picard-iteration, hence all the conditions of Theorem 3.1 are ful-
filled, therefore there is a fixed point x of which is obviously maximal in X. 

Theorem 3.2 => Theorem 3.1. Define now an ordering =£ by, x ^ y , iff 
j€<P(x). From this step on the proof is entirely analogous to the previous one. 

Theorem 3.1 => Theorem 2.3. Let <P(x) = {y \ d(x, y)^q>(x)-<p(y)}. Since 
q> is l.s.c., <P(x) is closed. Condition (3.2) is satisfied evidently. The summing up 
of the inequalities d{x1,x^^q>(x^)—(p{x^ and d(x2, x3) ̂  <p(x2)—(p(xx) gives 
(3.3) at once. Similarly, taking the inequalities i/(x„_l5 xn)^cp(xn_1)—<p(x„) 

oo 

(n=2,3, ...) and summing them up we have -0"= + °°> using the 
n = 2 

boundedness of <p from below. Applying Theorem 3.1 we have a fixed point x, 
and by the definition of $ the point x satisfies (2.2). 

The localized version of Theorem 3.1 implies that of Theorem 2.3 in a similar way. 
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KIRK [8] and SZILAGYI [10] observed, that forms 2.1 and 2.4 of the principle 
(Theorems 2.1, 2.4) characterize the completeness of the metric space in some sense. 
Similarly, we shall prove an analogous result for our forms of the principle. 

T h e o r e m 3.3. If the metric space (X,d) is noncompete, then there is a <& 
which satisfies conditions ( 3 .1 )—(3 .4 ) but has no fixed point. 

Proof . From the assumption there is a sequence 
oo 

of non-empty closed sets in X so that 5(Nn)-+ 0, but f ) N„=9. Define the map 
iP in the following way: 

&(x) = JV,+1U{x}, if x£N{ and x$Nl+1. 

The map 4> satisfies the assumptions of Theorem 3.1, but has no fixed point, since 
if x were a fixed point of <P, we would have $ (x) = {x}=N^ U {x}, implying 
]V,o=0, contrary to the assumption. 

4. Application in metric convexity. KIRK [8] observed that using the fixed point 
theorem of Caristi (Theorem 2.1.) it is possible to give a simple proof for Menger's 
Theorem, a famous theorem on metric convexity. Here we show, that other versions, 
namely Theorems 3.1 and 3.2 seem to fit even better to prove Menger's Theorem. 

Firstly we introduce some notions and notations from distance geometry [2]. 
Let (Y, d) be a metric space. If for some point a,b,c£Y we have d(a,b) = 
=d(a,c)+d(c,b), then we say the point c is between the points a and b and 
use the notation acb. Similarly the symbol a1a2...as means that d(a1,as)= 
=d(a1, a2)+...+d(as-1, as). It is evident, that the set {x: ax b} is closed and 
it easy to see that the betweenness relation is transitive: acb and adc imply 
adb (or adcb), more generally at b ai+1 and a1a2...as imply 

... a; b ai+1... as and obviously a1a2... as implies at at ... at (1 S ^ 

The metric space (Y , d) is called convex if for any two points a, b£Y there is 
a point c different from a and b such that acb. The space is called a metric 
segment space if for any two points a,b£Y there is an isometric map 

q>: [0, d(a, 6)] — {x: axb} for which cp(p)=a and (p{d(a, b))—b. 

It is obvious that if the space Y is a metric segment space then it is convex. 
The converse statement is not generally true but it is true if the space is complete, 
as it is stated by the following theorem. 

T h e o r e m (Menger). If the metric space (Y,d) is complete and convex then 
it is a metric segment space. 

25 
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F i r s t p r o o f . It is sufficient to show, that for all A6(0, d(a, b)) there exists an 
xx such that a x} b and d(a,xx)—X, since the map A — i s isometric in 
this case. 

Let A€(0, d(a, b)) be a fixed number and put 

Y,. = {y£Y\d(a, y) ^ A} and Y2 = {y£Y\d(b, y) S d(a, b)-X}. 

We shall apply Theorem 3.1 for the complete metric space (YXXY2, G), where 

w2). («1, Va)) = d(u2, v^ + d(ux, vx). 

Define the map <P in the following way: 

^(Ji, yd = {Oi, u^YiXY^ay^ ux u2 y2 b}. 

The map satisfies the conditions of Theorem 3.1. The assumptions (3.1) and 
(3.2) are obviously fulfilled, while (3.3) follows from the transitivity of betweenness: 
(«!, u2) e $ ((yx, y2)) and (vx, v2)e<P ((«i, u2)) mean that a yx ux u2 y2b and 
a uy vt v2 u2 b, thus from transitivity a yx ux vx v2 u2 y2, hence a yx v± v2y2b, 
i.e. 0>i,»2)€<i»(0>i, j>2)). 

If (j£n)j '2, ))€^(0 ;i '_1)> yz"^)) is a generalized Picard-iteration then from the 
transitivity we have a y^ ... y[n) y(

2
n) j (

2
n_1) . . . y^ b as before. Hence 

d(a, yP) + ... + d(y{"\ yp) +... + d(y£\ b) = d(a, b), 

e{(fl,b),(y?\yP)) + ...+ 

+ e((yln~1\ yi"-»), (yln\ yln))) + d(yi"\ yP) = d(a, b), 

which yields at once that J(
2"-1)), (j>in)>j4n))] as n — i . e . the assumption 

(3.4) is also satisfied. 
According to the theorem we have a fixed point (yi,y2), i.e. ^(J ' i , — 

= {(j^, y2)}. Now we use the convexity of the space Y to prove that y1=y2. 
Assume y ^ y ^ , then there is a w such that w ^ y 2 and y x wy 2 , hence 
from transitivity we have ayxwy2b and since d(a, w)^A or d(w, b)^d(a, b)—A 
holds, (w, y2) or (y1, vv) is an element of y2), contradicting the fixed point 
property. Finally, we get yx—y2=y. Since y£ Yx, y£ Y2 and ay b, we have 
d{a, y)=X. 

Second p r o o f (Sketch). Let J f be the set of isometric maps / to { x \ a x b } 
having closed domains in [0, d(a, 6)] and with f(0)=a,f(d(a,b))—b. The set JC 
is not empty, since it contains the map / 0 , for which dom (/0) = {0, d(a, ¿)} and 
fo(0)=a,f(,(d(a, b))=b. Each element of ffl can be identified with its domain or 
range. Let us denote by J f the set of closed subsets of the interval [0, d(a, 6)], 
and introduce the Hausdorff-metric h on X. It is well known that the space 
( X , h) is complete. From the properties of the Hausdorff-metric one can prove 



Fixed-point principle in complete metric space 387 

that is a closed subset of J f . Let us order the elements of J f (or equivalently, 
the adequate elements of J f ) according to the set inclusion of the domain of maps. 
It is easy to see that this ordering is continuous for the metric h in j f and also that 
it satisfies the last assumption of Theorem 3.2, since if dom (f„) (n—1,2,...) is 

an increasing sequence, then ¿ / i ( d o m (/ ,) , dom (f„+1))^d(a, b). The theorem 

gives a maximal element / in (with maximal domain in X). If dom ( / ) = 
=[0, d{a, fc)], then Menger's Theorem is proved, otherwise [0, d(a, ¿>)]\dom ( / ) 
is an open set and contains an open interval (zlt z2), zlt z2€dom (/) . Now using 
the convexity we have a point w with w^zx,w^z2 and zxwz2, and so the map 
/ : / = / on d o m ( / ) and f(w)=d(a,w) is isometric, contrary to the maximality 

5. Application in measure theory. In the theory of measure and integral there are 
a lot of ordered complete metric spaces, which satisfy the assumptions of Theorem 
3.2. So it is easy to show applications, and therefore our application can only be 
considered as an illustrative example, but it is worth noting that our proof is easier 
than the proof of [5] (p. I. 335.). 

Firstly we mention some well-known facts from measure theory. Let ( X , JI, ¡i) 
be a measure space and let M ^ , Ji, fi) be the space of classes of /¿-equivalent 
real functions on X. Ordering the space M(X, Ji, ¡i) by 

one may ask whether the lattice (M , S ) is complete, i.e. whether all subsets BQM 
having an upper bound in the ordering have a least upper bound fa — sup B£ 
£M(X, J{, n). The following famous theorem answers the question affirmatively. 
We shall deal with a finite measure, and the cr-finite case can be derived from this 
by standard arguments. 

T h e o r e m . If (X, Ji, fi) is a finite measure space, then M(X, Ji, p) is a 
complete lattice. 

Proo f . The set M is Frechet-space with the quasi-norm 

A crucial property of this space is, that whenever f„ converges to / 0 then it has 
a subsequence fn (k=l, ...), which converges /x-a.e. to f0, and the ordering is 
continuous. 

Let B^M be an order-bounded set, and let g be an upper bound of B. 
If C is the set of the least upper bounds of the finite subsets of B, then sup 5 = s u p C 
obviously, so we can assume that whenever f , f z £ B then / 3 = s u p ( / i , / 2 ) is also 

n = l 

o f / . 

/= g iff f(x)^g(x)p-a.e. 

25* 
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in B. Let B denote the closure of B in the Frechet-space M. We shall prove, 
that B has a maximal element / 0 , and f0 is the least upper bound of B. The 
metric space (B, || • ||) is complete and the ordering introduced before is continuous. 

If fn (n-l, 2 , . . . ) is an increasing sequence in the order bounded set S, then 
fn is convergent a.e., consequently it converges in the quasi-norm, too. According 
to the above, Theorem 3.2 is applicable and we have a maximal element / 0 . Now 
we shall prove that f0 is an upper bound for B. Since f0£B, we have a sequence 
fn(LB such that f„—f0 both in the quasi-norm and a.e. Hence if f£B, we have 
sup ( / 0 , / ) = s u p ( l im/„ , / )=l im[sup ( / „ , / ) ] € £ . As f0 is maximal in E, /=§ 

n n 
^ s u p ( / o , / ) = / o holds. Finally let / be an upper bound for B, i.e. / s / for all 

f£B. Since / 0 =l im/„( /„€-B) , /S l im/„ = / 0 , i.e. /„ is the least upper bound of B. 
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Joseph Bak and Donald J. Newman, Complex Analysis. Undergraduate Texts in Mathematics, 
X+244 pages with 69 illustrations, Springer-Verlag, New York—Heidelberg—Berlin, 1982 

This is a fascinating little book. It provides an efficient and clear introduction into the theory 
of complex functions. The arrangement of the material is unusual, the reader need not be familiar 
even with the definition of complex numbers or of convergence and yet, starting at the very beginning, 
the authors were able to achieve a level in complex function theory where the proof of the prime 
number theorem is possible. Of course the book contains the standard topics such as the Cauchy— 
Riemann equations, line integrals, entire and meromorphic functions, singularities, Laurent series, 
residues, conformal mappings etc., but besides them some other less elementary results are incor-
porated, as well, e.g. the Phragmen—Lindelof-method, natural boundaries, open mapping theorem 
etc. The last, 19th chapter illustrates the wide range of applicability of complex methods. The first 
question here is if the set of the positive integers can be partitioned into a finite number of artihmetic 
progressions such that these have no common differences (try it!). The second problem asserts 
the unicity of the solution to the system of equations 

a„, ¿„SO. In section 3 it is shown that the total variation of sin2 JC/JC2 over ( - is e2—5; 
in section 4 the Fourier unequeness theorem and, finally, in section 5 the prime number theorem is 
treated. 

The book contains a lot of exercises together with hints for the hardest ones. Sometimes, 
e.g. at the Riemann-mapping-theorem, physical analogues illustrate the main ideas. Index and 
69 illustrations help reading the book. We recommend Bak and Newman's "Complex Analysis" to 
lecturers and to every student with or without any skill in complex methods. 

H. J. Baues, Commutator Calculus and Groups of Homotopy Classes (London Mathematical 
Society Lecture Note Series 50), 226 pages, Cambridge University Press, Cambridge—London, 
New York—New Rochelle—Melbourne—Sidney, 1981. 

This book is divided into two parts consisting of four and three chapters, respectively. Part A 
is devoted to homotopy operations, nilpotent group theory and nilpotent Lie algebra theory. Start-
ing with commutator calculus, the text contains a study of distributivity laws in homotopy theory, 
homotopy operations on spheres and concludes in an investigation into higher order Hopf invariants 
on spheres. Part B deals with homotopy theory over a subring of rationals. In this part the theory 
of the homotopy Lie algebra and spherical cohomotopy algebra, theory of groups of homotopy 
classes and finally the Hilton—Milnor theorem and its dual can be found. 

V. Totik (Szeged) 

László Gehér (Szeged) 



390 Bibliographie 

Aldo Bressan, Relativistic Theories of Materials, (Springer Tracts in Natural Philosophy, Vol. 
29), XTV+290 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1978. 

After Einstein's fundamental work in 1905 on special relativity the reletivistic developments 
of thermodynamics and elasticity were created as early as in 1911. When trying to include gravita-
tion in relativity Einstein was forced to develop radical changes in his earlier spacetime concept in 
1916. These new ideas of general relativity had given a new aspect for the study of the material. 
In spite of this fact the first general relativistic theory of thermodynamics and fluids and of finitely 
deformed materials were published only after 1955. Even more recently relativistic theories in-
corporating finite deformations for polarizable and magnetizable materials and those in which 
couple stresses are considered have been formulated. 

The present book describes the foundation of this theory of general relativistic material. 
Furthermore it containes some applications of this theory, mainly to elastic waves. 

After an introductory chapter the book is divided into two parts. The first part deals with the 
basis equation of gravitation, thermodinamics and electromagnetism, and constitutive equations 
from the Eulerian point of view. The second part contains the theory of material from the Lagrangian 
point of view. In this part the reader can find chapters on subjects such as kinematics and stresses, 
elasticity, accelaration waves, pieso-elasticity and magnetoelastic waves, couple stresses and more 
general stresses. 

The book is not of an introductory character. It is assumed that the reader is familiar with 
the classical continuum mechanics and with the general relativity. The main definitions and theorems 
of these subjects are collected — without proofs — in Appendix A. 

Z. I. Szabó (Szeged) 

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics (Universitext), 
V+205 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1979. 

A good introduction to fluid mechanics is given in this book. The reader can get acquainted 
with the principal ideas, the equations of fluid motion under several hypotheses (e.g. the fluid is 
ideal, homogeneous, isentropic, stationary, viscous, compressible), the discussion of potential 
flows, vortex motions, boundary layers, one-dimensional gas flows. The starting principles of 
equations, demonstrations are the physical laws. The material in the book can be read easily, the 
proofs are written with mathematical exaction. The results derived from the models mathematically 
are always interpreted. There are many illustrations in the book making the material clear. 

The book gives a good base to continue the study of fluid mechanics. We recommend it to 
mathematicians, engineers and students who want to know the basic ideas of this subject in a mathe-
matically attractive manner. 

J. Terjéki (Szeged) 

Shui-Nee Chow—Jack K. Hale, Methods of Bifurcation Theory (Grundlehren der matema-
tischen Wissenschaften, 251), XV+515 pages, Springer-Verlag, New York—Heidelberg—Berlin, 
1982. 

As experience shows, many physical phenomena, biological processes etc. can be modelled 
by differential equations containing parameters. As we change these parameters, the behaviour 
of the flow changes. This change is essential when the structure of the phase portrait is modified. 
This happens when the topology of the non-wandering set changes. Each time this occurs, we say 
there is a bifurcation. 
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The readers following the current papers and monographs in the field of the theory and applica-
tions of differential equations with attention can experience that nowadays the bifurcation is one 
of the fastest developing central topics in the field. There are a great number of difficult problems and, 
accordingly, a great number of publications in this topic with respect to several types of differential 
equations such as finite and infinite dimensional systems, ordinary and partial differential equations, 
functional differential equations etc. Now we get an excellent comprehensive handbook which 
helps us to inquire in several branches of this theory of wide range. 

In the first chapter the authors give a flavour of the problems that occur in bifurcation theory 
by presenting some examples from the applications. Chapter 2 meets a long felt need in the litera-
ture: it gives a systematic, self-contained introduction to Nonlinear Analysis. One can find here 
in detail much of the relevant background material to the modern theory of bifurcation and stability 
frcm nonlinear functional analysis and the qualitative theory of differential equations (e.g. local 
and global implicit function theorem, Malgrange preparation theorem, manifolds and transvers-
ality, Sard's theorem, topological degree, Ljusternik—Schnirelman theory). The third chapter 
contains some applications of the implicit function theorem. 

The authors distinguish two aspects of bifurcation theory: static and dynamic. The first one 
investigates the change of the structure of the set of zeros of a function as parameters in the function 
are varied. Dynamic bifurcation theory is concerned with the changes that occur in the qualitative 
behaviour of solutions of differential equations as parameters of the vector field are varied. 

Chapter 4—8 (entitled "Variational Method"; "The Linear Approximation and Bifurcation"; 
"Bifurcation with One Dimensional Null Space"; "Bifurcation with Higher Dimensional Null 
Spaces"; "Some Applications") deal with static bifurcation theory. The results of the fourth 
chapter are applied to Hamiltonian systems, elliptic an hyperbolic problems. 

Chapters 9—13 (entitled "Bifurcation Near Equilibrium"; "Bifurcation of Autonomous 
Planar Equations"; Bifurcation of Periodic Planar Equations"; "Normal Forms and Invariant 
Manifolds"; "Higher Order Bifurcation Near Equilibrium") are devoted to dynamic bifurcation 
theory. 

The chapters are followed by bibliographical notes with informations and references for the 
history of the problems and the further study. 

This well-written excellent book will be undoubtedly the standard reference in nonlinea* 
analysis and bifurcation theory. It can serve also as a text-book (the authors give suggestions for 
adapting the material to several types of one semester courses). We recommend it for every mathe-
matician, user and student interested in differential equations and their application. 

L. Hatvani (Szeged) 

James A. Cohran, Applied Mathematics: Principles, Techniques, and Applications, X+399 
pages, Wadsworth International Group, Belmont, California, 1982. 

The book is designated to be used as a second course in applied mathematics. The pre-
requisite knowledge includes a thorough grounding in the calculus through ordinary differential 
equations. A certain acquaintance with vector analysis, elementary complex variables, Fourier 
series, Laplace/Fourier transforms and partial differential equations is also taken for granted. 
(The most important definitions and theorems are collected in appendices at the end of the book.) 

The topics presented are selected for their relevance to nonroutine applications encountered 
in today's and hopefully tomorrow's world. For this reason, advanced topics such as stability 
theory, conformal mapping, generalized functions (distributions) and integral equations are included 
as are seemingly more elementary topics such as linear algebra, differential equations and special 
functions. 
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The discussion of each major mathematical topic in this book is preceded by consideration of 
a relevant practical application. Indeed, the modelling of difficult "real-world" problems serves to 
motivate the mathematics that follows. Occasionally the book contains rather detailed analysis of 
various computational procedures and techniques of obtaining the "results". 

The book consists of eleven chapters, six appendices and a long (author and subject) index. 
There are references and problems at the end of each chapter. Many of the proofs of theorems 
can be skipped in the text at first reading, solving an appropriate number of the problems, however, 
is a must. These problems are carefully chosen to illustrate or amplify various portions of the text 
and constitute an extremely important component of the learning process. 

The table of contents (in the parentheses we pick up a theoretical result and/or a practical 
application characteristic to the chapter in question): 1. Linear algebra and computation (Ill-
conditioning, LR and QR), 2. Eigenvalue problems for differential equation (Sturm—Liouville 
problems), 3. The special functions of applied mathematics (More on Bessel functions), 4. Optimiza-
tion and the calculus of variations (Least action and Hamilton's principle in mechanics), 5. Analytic 
function theory and system stability (A satellite attitude-control system, The Cauchy—Goursat 
theorem), 6. Conformal mapping (Cavity and jet flows), 7. Integral transforms (The Mellin 
transform), 8. Green's functions (and partial differential equations, The Dirichlet problem for 
the /i-ball), 9. Generalized functions (Delta functions in optics and electrostatics), 10. Linear integral 
equations (The Fredholm alternative, The Rayleigh—Ritz procedure), 11. Asymptotics (Order 
relations O and o, The method of steepest descent.) 

The book is warmly recommended to engineering and applied mathematics students who will 
pursue industrial or business careers. But it will be undoubtedly useful to those who are interested 
in solving diverse physical problems at research laboratories. 

F. Móricz (Szeged) 

Combinatorial Mathematics IX, Proceedings of the Ninth Australian Conference on Combina-
torial Mathematics Held at the University of Queensland, Brisbane, Australia, August 24—28, 
1981. Edited by Elizabeth J. Billington, Sheila Oates-Williams, and Anne Penfold Street (Lecture 
Notes in Mathematics, Vol. 952), XI+443 pages, Springer-Verlag, Berlin—Heidelberg—New 
York, 1982. 

This volume contains seven invited papers and twenty contributed papers. A number of them 
is concerned with symmetric combinatorial structures (finite projective and affine planes, block 
design, perfect covering). The reader can find papers close to applied mathematics in the following 
topics; economic let scheduling, matroid algorithms, heuristics for determining a maximum weight 
planar subgraph of a given edge weighted graph, mathematical description of woven structures. 

The titles of invited papers are: D. R . Breach, Star gazing in affine planes; P. J. Cameron, 
Orbits, enumeration and colouring; A. Gardiner, Classifying distance-transitive graphs; W. L. 
Kocay, Some new methods in reconstruction theory; V. Pless, On the uses of contracted codes; 
Ch. E. Praeger, When are symmetric graphs characterised by their local properties? and R . G. 
Stanton, Old and new results on perfect coverings. 

L.A. Szikely(Szeged) 

Combinatorics, Prooceedings of the Eighth British Combinatorial Conference, University 
College, Swansea 1981. Edited by H.N.V. Temperley (London Mathematical Society Lecture Note 
Series, Vol. 52) 190 pages, Cambridge University Press, 1981. 

This book contains the texts of nine invited lectures held at the Eighth British Combinatorial 
Conference. The list of these papers is as follows. 
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L. Babai, On the abstract group of automorphisms. Babai surveys results about the existence 
and non-existence of graphs with prescribed properties having a prescribed abstract group of auto-
morphisms. Similar results and problems concerning other algebraic and combinatorial structures 
instead of graphs are mentioned. 

L. W. Beineke, A tour through tournaments or bipartite and ordinary tournaments: a compa-
rative survey. A bipartite tournament is an oriented complete bipartite graph. This paper seems 
to be a germ of the theory of bipartite tournaments. All results are is comparison with similar 
results concerning ordinary tournaments. 

H. Baker and F. Piper, Shift register sequences. Linear and non-linear feedback shift registers 
are treated. Shift registers can be applied in cryptography so as to mix the statistics of letter 
frequencies (what may obstruct to discover the 1—1 function between letters and their codes). 

B. Bollobas, Random graphs. The chapters of this paper are: the automorphism group, sparse 
graphs, threshold functions, graphs with many edges, and random regular graphs. The last one 
contains new results of great importance and includes sketches of the proofs. 

F. R. K. Chung and R. L. Graham, Recent results in graph decompositions. This report 
gives a brief overall view of decomposition problems and treats some topics in which significant 
progress has been made recently, e.g. decomposition into complete bipartite graphs. 

B. Griinbaum and G. C. Shephard, The geometry of planar graphs. This paper surveys the 
theory of infinite planar graphs. These graphs may occur as edge-graphs of tilings. Euler's Theorem 
and Kotzig's Theorem are generalized by the authors. 

F. J. MacWilliams, Some connections between designs and codes. Author's introduction is: 
"This paper describes how to get designs from codes". 

R. W. Robinson, Counting graphs with a duality property. Robinson surveys the enumera-
tion of graphs and other structures satisfying a duality condition. The main tool is a modification 
of the Burnside lemma due to de Bruijn. The notion of duality used here includes self-comple-
mentarity. 

. J. G. Thompson, Ovals in a projective plane of order 10. The author investigates the following 
problem: "does there exist a set S of 99 fixed point free involution on 12 points such that for each 
involution (ab)(cd) which moves just 4 points, there is a unique J in S which has {a, b) and 
{c, d) as orbits?" 

L. A. Szekely (Szeged) 

Constructive Mathematics, Proceedings, New Mexico, 1980, edited by F. Richman, Lecture 
Notes in Mathematics, 873, VIII+347 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

In the last decade or so one could observe increased interest in constructive mathematics. 
Surely this has to do with the developing computation/computer science but Bishop's book 
"Foundations of constructive analysis" also influenced a number of mathematicians, probably 
because it was able to take off the "dogmatism" of the earlier theories. Several branches (or degrees?) 
of constructivism can be found in current mathematics from Markov's school admitting only finite 
strings of symbols to those who accept classical mathematics, only they are interested in effective 
algorithms rather than just computation in principle. In 1980 at Las Cruces a conference was 
organized with the intention that the representatives of the several schools should exchange their 
ideas and thoughts concerning constructive mathematics. These proceedings contain all but five 
lectures delivered at this conference. 

Since the main treads and ideas of constructive mathematics are unknown for many mathema-
ticians even today, let us present here the table of contents: F. Richman: Seidenberg's condition P ; 
W. Ruitenburg: Field extensions; R. Milnes and F. Richman: Dedekind domains; J. H. Davenport: 
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Effective mathematics — the computer algebra viewpoint; Y. K. Chan: On some open problems in 
constructive probability theory; A. Scedrov: Consistency and independence results in intuitionistic 
set theory; W. A. Howard: Computability of ordinal recursion of type level two; J. P. Seldin: 
A constructive approach to classical mathematics; D. Isles: On the notion of standard non-iso-
morphic natural number series; N. D. Goodman: Reflections on Bishop's philosophy of mathe-
matics; M. Beeson: Formalizing constructive mathematics: why and how? J. Lambek and P. J. 
Scott: Independence of premisses and the free topos; R. Vesley: An intuitionistic infinitesimal 
calculus; N. Greenleaf: Liberal constructive set theory; D. S. Bridges, A. Calder, W. Julian, R. Mines 
and F. Richman: Locating metric complements in Euclidean space; J. R. Moschovakis: A disjunctive 
decomposition theorem for classical theories; D. S. Bridges: Towards a constructive foundation 
for quantum mechanics; A. S. Yessenin—Volpin: About infinity, finiteness and finitization; 
M. Gelfond: A class of theorems with valid constructive counterparts; J. R. Geiser: Rational 
constructive analysis. 

Anynone who feels inclined to get acquainted with this "new world" (where it may happen 
e.g. that every real function is uniformly continuous) is recommended to consult these proceedings 
since several of their papers are expository or contain the philosophy of the subject. 

V. Totik (Szeged) 

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory. Grundlehren der mathematischen 
Wissenschaften 245, X+482, Springer-Verlag, New York—Heidelberg—Berlin. 

At the beginning ergodic theory dealt mainly with averaging problems but now, due to the 
readical changes in it during the last two decades, "it is a powerful amalgam of methods used for 
the analysis of statistical properties of dynamical systems". This book is an up-to-date development 
of the theory written by three outstanding scholars of the discipline. Since the authors' aim was 
to create a monograph focusing on applications, "Ergodic Theory" deserves the attention of research 
workers in other sciences as well, such as physics, biology, chemistry etc. 

The book consists of four parts. Part I contains the description of several classes of dynamical 
systems. It begins with the basic definitions: ergodicity, mixing, operators adjoint to dynamical 
systems etc. and proceeds on to many classical constructions: dynamical systems on smooth mani-
folds, on torus, on homogeneous spaces; billiard type systems, systems in number theory and proba-
bility theory etc. In Part II the authors construct the direct and skew product of DS-s, introduce 
the important concept of entropy and give a detailed proof for the celebrated theorem of Ornstein 
on the existence of a stationary code. Part III is devoted to the spectral theory of DS-s. This is the 
shortest part of the book. Nevertheless, it contains von Neumann's theory of dynamical systems 
with discrete spectrum and the spectral analysis of DS-s associated to Gaussian stationary random 
processes. Finally, in Part IV the authors consider the possibility of approximation of dynamical 
systems by periodic DS-s and give some applications of the theory such as an example of an ergodic 
automorphism with a spectrum without the group property. 

The authors pay much attention to illustrating the general concepts and theorems through 
concrete examples and these examples help very much in understanding the main ideas perhaps 
because they arise in very natural context. The bibliography contains more than 150 items. The 
publisher also did his best, the text is arranged in an especially legible form. 

V. Totik (Szeged) 
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H . S. M . Coxeter, P . Du Val, H. T. Flather, J . F. Petrie, The Fifty-Nine Icosahedra, X X + 2 6 
pages with 20 plates and 9 figures, Springer-Verlag, New York—Heidelberg—Berlin, 1982. 

An exciting problem of classical geometry was to enumerate and to describe the polyhedra that 
can be derived from the five Platonic solids by stellation, i.e., by extending or producing the faces 
until they meet again, always preserving the rotational symmetry of the original solid. The complete 
enumeration was first published by the above authors in 1938 by the University of Toronto Press. 
The present booklet is the reprint of this first edition with a new preface by P. Du Val. The text 
is a classical work of geometry which containes the mathematical explanation of the stellations and 
plates with pictures of all 59 variations descibing also the transformations between these stellations. 

Z. I. Szabó (Szeged) 

A. J . Dodd, The Core Model (London Mathematical Society Lecture Note Series 61), 
XXXVHI+229 pages, Cambridge University Press, Cambridge—London—New York—New 
Rochelle—Melbourne—Sydney, 1982. 

This book is the first systematic study of the simplest core model K of set theory. 
An arbitrary model M of ZFC is called an inner model iff M is transitive and On€M 

(where On is the class of ordinals). An inner model M is said to have the covering principle, 
CP (A/), for short, if for any uncountable X g O n , there exists YZM, such that XZ Y ^ O n and 
X=Y (for a set A, A denotes the cardinality of A). M is rigid if no elementary embedding of 
M into M other than identity exists. 

The main aim of developing the core models is to obtain a generalization of the covering lemma 
due to Jensen: if L (the constructive universe of Godel) is rigid, then CP (L). Core models are 
such models of set theory which subsumes the GCH is true in them and have the covering 
property under some inner model assumption. It is known, that if M N GCH and C P (M), then 
M\= SCH, where SCH stands for the singular cardinal hypothesis, i.e., SCH denotes the 
assumption: 

"for all singular cardinals a, 2° / <"><a implies a c / < " ) = a + " ; hence in any core model SCH 
is true. 

K is the simplest core model which is constructed by using two basic set theoretical tools: 
the fine structural investigations of the constructive universe developed mostly by Jensen, and the 
method of iterated ultrapowers due to Kunen, used in the theory of measurable cardinals. 

The text is devided into six main parts followed by two appendices and a collection of histo-
rical notes (and, of course, a list of references). 

The second part treats normal measures and iterated ultrapowers. The concept of a normal 
measure is used in the following form: U is a normal measure on x, if there are M and j: V-+M 
such that M is an inner model, j is an elementary embedding with j\x=id and 
M is the smallest model with XQM, where X is an elementary submodel of M such that 
range 0 ' ) U x £ J f and XdU iff x f j f f l . I f suchamode l M exists, then it is unique, and is called the 
ultrapower of V by the normal measure U. Albeit quantifiers range over proper classes, this 
definition can be formulated in the language of set theory: let L[U] denote the universe of sets 
constructive from the normal measure U. and suppose HU]t= "U is a normal measure", more-
over, let M be the ultrapower of L[U] by U; then M\=LW], where "V = j(U). By a result 
due to Scott, L\f~\ is a proper subclass of L[U]. It was shown by Kunen, that ' f is the only 
normal measure in The iteration of this construction, also, defined by Kunen, taking the 
ultrapower of L { I R \ by. "V and using direct limits to get through limit stages yields to the re-
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currence: 
M0 = M, U0= U; 

M , + 1 = t h e ultrapower of M, by U, with j; M,—M,+i and jn.i=j-jt; 
l / , + l = / , + 1 ( i / ) for successors and 
Ш л , Л ) is the direct limit of the sequence (M„/ , ) ( < A for limit X, 
and Ux=jAU). 

Then, for all a£On, M . = L [ i / J . 
Part II is a detailed exposition of this ultrapower construction. 
The first part of the volume is devoted to developing the fine structural apparatus needed 

in constructing K. This is based mostly on the J hierarchy due to Jensen. The J hierarchy, 
as a whole is the same as the constructible universe L, the levels, however, are rearranged in the 
following way. Rudimentary functions, generalizing primitive recursive functions to arbitrary 
sets, are finitely generated by the initial functions consisting exhaustively of all projections, comple-
mentations, pairings, compositions and recursions of the form 

/0».*) = U *(*,*) 
Z€J> 

where x stands for a list of arguments. Let A" be a set and put 

R(X) = { / ( * ) | / is rudimentary and x£X). 

Then let Л = 0 , = {/,}) for successor i and У д = (J Л for limit Л. Clearly, U 
• a e On 

is the constructible universe of Godel. Let U be a normal measure in an inner model M and 
suppose that for some a, M = J % . The basic fine structural tool, the projectum вм of M is the 
least у such that there exists AQy such that A is Indefinable over M and A&M. The main 
fine structural result, central for the construction of К states that if вм—х, then M can be 
"coded" by a subset AM of x; more precisely, if qm^x, where U is a normal measure on x, 
then there is a surjective function from a subset AM of a onto such that AM is In -
definable over . If L\ir\ is the ultrapower of L[U] by U and j is an elementary embedding 
of L{U] in Д У ] such that j f * = i d f x , then j{AM)C\x=AM,so AMiLYV\ andhenc еМ£Ь[У]. 

Let T—{M\ M=Jz' for some normal measure U{ on x, and Then the core 
model К is defined by К = U T. By a mouse, an element of T is meant. Mice are studied in details 
in Part III. It is shown for example, that the dependence of the definition of T on the normal 
measures U, can be eliminated by allowing any normal measure instead of Ut. This process 
yields to the concept of a premouse: M is a premouse at x if M=J^ for some U and M ( = 
"U is a normal measure on x". A premouse M is iterable iff the model (M, € M ) defined just as 
in the definition of a normal measure (ultrapower), with the only difference: "elementary" is replaced 
by "Ij-definable", is well-founded. Indeed, the well-foundedness property of M, is inherited by 
the iteration of ultrapowers. Let 7" = {M| M is an iterable premouse at some x and oMSx}. 

Then X = U T ' U L . Part IV is devoted to the investigation of K. In particular, an important 
internal characterization of К is proved. If there exists an inner model L[U] with L[U] N 
"U is a normal measure", then K= П L[Ut]. It is also shown, that K\= ZFC and K\= GCH. More-
over, in Part V, a generalization of the covering lemma is obtained: if there is no inner model 
with a measurable cardinal, then C P (K). As an application, one has: if there is no inner model 
with a measurable cardinal, then ЛГ|= SCH. It is alse shown that several combinatorial principles 
such as ( ) and • hold in K. Part VI collects some recent results on core models larger than K. 
In particular, a few properties of supercompact and superstrong cardinals are established. Appen-
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dices relate core models to the forcing construction and to some absoluteness results for models 
of ZFC. 

The volume is selfcontained, clearly written and gives a full exposition of the state of the art 
concerning core models. It is sure that this book will become a basic reference for researchers in 
the fields of large cardinals as well as for graduate students. 

P. Ecsedi-Tóth (Szeged) 

Burton Dreben and Warren D. Goldfarb, the Decison Problem, Solvable Classes of Quantifica-
tional Formulas, XII+271 pages, Addison-Wesley Publ. Comp. Inc., Advanced Book Program, 
Reading, Mass., 1979. 

The classical decision problem (called "the fundamental problem of mathematical logic" • 
by Hilbert) asked for an algorithm to decide for any formula if it is satisfiable. Since the work of 
Gödel and Church it is well known that there can be no such algorithm. Special eases with restricted 
classes of formulae having a decision procedure have been investigated intensively during the past 
decades. These classes are defined by syntactic restrictions e.g. on the form of quantifiers, a basic 
decidable case being the so-called Gödel—Kalmár—Schütte class of formulae with quantifiers 
3 . . . 3 V V 3 . . . 3 . 

This book gives a comprehensive description of the known solvable classes including the 
complete list of solvable prefix classes. A unified treatment is given to the subject by the use of the 
Herbrand expansion method. 

The book is written in a very clear style and gives a good picture of the current state of this 
side of the decision problem, providing a deep knowledge of the important Herbrand expansion 
method and indicating some interesting open problems as well. It can be recommended to logicians 
and computer scientists. (A good complementary reading is given by the book Unsolvable Classes 
of Quantificational Formulas of H. R. Lewis [Addison—Wesley Publ. Comp. Inc. Adwanced Book 
Program, Reading, Mass., 1979, 214 pages], and a recent branch of the topic is described in the 
paper Complexity Results for Classes of Quantificational Formulas by H. R. Lewis [J. of Computer 
and System Sciences 21, No. 3. Dec. 1980, pp. 317—353].) 

György Túráit (Szeged) 

C. H. Edwards, Jr., The Historical Development of the Calculus, XH+351 pages, Springer-
Verlag, New York—Heidelberg—Berlin, 1979. 

A scientific concept cannot be understood completely without knowing its development. 
Calculus has become the language of Western science for three centuries, so all the students in 
science have to know something about its history. Lecturers are to take a general view of this subject 
and they need a handbook in this topic. 

Edwards' book is suitable for the above mentioned purpose. It begins calculus with Eudoxus' 
definition on proportionality of ratios and the method of exhaustion based on that definition. 
The method culminates in Archimedes' works to whom a chapter is devoted in the book. He used 
a double reductio ad absurdum rather than limits and his "geometric calculus" could not have been 
continued. 

Edwards emphasizes the influence of medieval speculations on motion, variability and infinity 
to medieval mathematics to break up the Greek horror of infinity. A number of early tangent 
constructions are shown and the difference between them and the calculus according to Newton 
and Leibniz is elucidated. 

The classicals of the calculus are treated circumstantially until Weierstrass. 
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A short postcript is devoted to two results of the twentieth century: the Lebesgue integral 
and the non-standard analysis. Edwards does not think non-standard analysis to be a correct re-
formulation of infinitesimals, he states "Leibniz seems not to have committed himself on the question 
of actual existence of infinitesimals, and he certainly expressed doubts on occasion". 

The author does prove the importance of adequate concepts and notations in mathematics. 
It is clear all over the book that calculus is for calculations. 

The reader can take part in the work of the classicals: there are exercises interspersed 
throughout the text and the reader is invited to solve them using the tools of that time. 

The book is offered to lecturers, students and to the wide mathematical community. 

L. A. Székely (Szeged) 

Functional Differential Equations and Bifurcation, Proceedings of a Conference Held at Sáo 
Carlos, Brazil, July 2—7,1979, edited by A. F. Izé (Lecture Notes in Mathematics, 799), XXII+409 
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

This book contains contributions presented at the conference by authors from Brasil, Iceland, 
Italy, Japan, U.S.A. and South Africa. It gives a good survey on some present topics of the theory 
of differential equations and some related fields. The reader can find papers on subjects such as 
control theory, boundary value problems, periodic solutions, stability theory, structural stability, 
bifurcation theory, dissipative processes, existence type results, asymptotic equivalence of solutions, 
linear difference equations, Volterra—Stieltjes-integral equations, Hartree type equation, Levin— 
Nohel equation on the torus, almost periodic functional differential equations. 

J. Terjéki (Szeged) 

A. Gardiner, Infinite Processes (Background to Analysis), IX+306 pages with 182 illustrations, 
Springer-Verlag, New York—Heidelberg—Berlin, 1982. 

The book provides a well-rounded picture of the basic material of Analysis. Its main goal is 
to show why the concepts such as infinite decimals, length, area, volume, functions are handled as 
they are in mathematics. 

The text is divided into four parts. Part I is short and largely descriptive. It indicates how, 
around 1800, mathematicians began to realize that the lack of precision in their manipulation of the 
infinite processes involved in the naive calculus was a source of error and confusion. 

Part II is the longest one of the book. It examines in detail infinite processes arising in arith-
metic of the real numbers. Most of the text is devoted to the analysis of specific examples. 

Part III explores that any attempt to invest the familiar geometric notions of length, area 
and volume with precision involves the fundamental properties of real numbers. It also points 
out to the fact that modern mathematics is not so much the study of numbers and space as the 
study of functions. 

In Part IV the author outlines some of the basic questions which result from the differential 
and integral calculus. In particular, the following crucial question is considered: What exactly is 
a function? 

A lot of exercises are included, which constitute an integral part of the text. They arise directly 
out of the text and need to be understood in context. 

The book is described as a stimulus for thinking about the role of infinite processes in mathema-
tics. The presentation is clear and precise, the ideas are illuminated by consideration of historical 
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developments. The better understanding is helped by 182 figures. The book ends with an (author 
and subject) index. 

This good overview is especially suited to mathematical history and review courses, as well 
as for math teachers and for nonspecialists who have mastered the calculus. 

F. Máricz (Szeged) 

Bernard Gelbaum, Problems in Analysis. Problem Books in Mathematics, V I I + 2 2 8 pages 
with 9 illustrations, Springer-Verlag, New York—Heidelberg—Berlin, 1982. 

"The major part of every meaningful life is the solution of problems; a considerable part of 
the professional life of technicians, engineers, scientists etc. is the solution of mathematical problems. 
It is the duty of all techers, and of teachers of mathematics in particular, to expose their students 
to problems much more than to facts ." These are the words of Paul Halmos about mathematical 
problems and he adds that we have to " . . . t rain our students to be better problem — posers and 
problem — solvers than we are". Surely it is not accidental that P. R. Halmos is the series 
editor of the new Springer-series "Problem Books in Mathematics". Anyone agreeing with Halmos 
on the role of problems will greet this fascinating idea: supply the students, teachers and mathe-
maticians with books focusing on problems which may range f rom elementary exercises to unsolved 
research problems. As prototypes Pólya and Szegó's "Problems and Theorems in Analysis" and 
Hilbert's famous 23 problems are marked. However, it is an almost impossible task to give such 
a comprehensive selection as Pólya and Szego's in any branch of mathematics, therefore the author 's 
taste and "intelligence" play enormous role in writing these problem books. For a newly launched 
series the succesful start is vital and "Problem Books in Mathematics" accomplished this task 
excellently: the first two exemplares: Gelbaum's book and Kirillov and Gvishiani's "Theorems 
and Problems in Functional Analysis" are really worth for beginning the series with them. 

Gelbaum's book contains 518 problems and their solutions. The topic is real analysis and the 
elements of functional analysis. The standard exercises of this theme are mostly left out, almost 
every problem requires some thinking — some of them may be very puzzling for a beginner. The 
proofs are short but sometimes incaccurate or lenghty, e.g. the solution of problem 

00 
248: "Z kk(Gk)=£„X(An) where Gk={x\x€A„ for exactly k distinct values of n) (An^Am)" 

1 
presented in the book is not complete and at the same time the problem itself is easy if we use 
characteristic functions. Unfortunately there are false problems and solutions (!). For example 
for problem 126: "Let / be in C(R, R) and assume lim sup (f(x+li)-f (x))¡h s 0 a.e. Show 

/ is monotone increasing" any descreasing continuous singular function provides a counter-
example. Problem 175" Give an example of a measure space ( X , S, ft), a sequence {£„} of measur-
able sets of finite measure, and a sequence {/„} of functions such that /„ and 1 - / „ are integrable, 
0 s / „ 3 > l , /„ = 1 on E„, lim fn(x)=\ a.e. and f(l-f)d(i+- as « — =» "asks for a non-existing 

construction. In some cases the formulation of the problem is clumsy since by the same method 
x 

a much nicer problem could be solved, e.g. in problem 57 i f / 0 €C([0 ,1] , R) a n d / „ ( * ) = f f„-i(t)dt 
o 

then /O=0 provided for every JC€[0, 1] there is an n with f„(x)=Q. Nevertheless these faults must 
not be exaggerated since the majority of the problems and solutions are indeed very nice. 

An undergraduate or graduate student should have enough knowledge to solve most of the 
problems although the author freely uses harder results f rom real analysis. For example, to solving 

problem 316 "If f£.LT(R,X) and / e x p (~(x-yY)f(y)dy=0 for all x£R then / = 0 a .e ." one 
k 



400 Bibliographie 

has to know Wiener's tauberian theorem. A special merit of the book is that besides general 
abstract results and theorems it contains several "concrete" problems. For instance problem 473 

! 00 ! states that if v(n)=2 ( n s 2 ) and v(l) = l — Z1 2""' then there are no nonconstant functions 
1 

/ and g independent with respect to v. 
Gelbaum's book may be recommended to students, teachers and research workers, as well, 

who may get fun and make progress while reading and solving these non-trivial excellent problems. 

V. Totik (Szeged) 

G. Gierz, K. H . Hoffmann, K. Keimel, J . D. Lawson, M. Mislove, D. S. Scott, A Compendium 
on Continuous Lattices, XX+371 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

In lattice theory, the seventies brought a considerable development of (and interest in) the 
study of continuous lattices. Historically, the most important stimulation was Dana Scott's research 
on the problems of syntax and semantics of computer languages and his interpretation of computer 
programs (including cyclic ones) by means of continuous lattices, which led, among other things, 
to Scott's model in set theory of the type free A-calculus. These results became at once well-known 
also outside algebra, among specialists of computer science and logic. But, at about the same 
time, important contributions were made by others, most of them on the list of authors of the 
book under review. Especially, the results of Hoffmann, Lawson, Mislove and Stralka on compact 
semilattices and those of Keimel and Gierz on the topological representation theory and spectral 
theory of non-distributive lattices are to be mentioned. This led to a collaboration of the authors 
of the book, resulting in what now may be called the theory of continuous lattices. The present 
book is the first monograph on the subject addressed to the general mathematical public. 

To describe the subject, one first has to define the "way-below" relation, which is basic for the 
entire theory. We say that, for elements x, y of the complete lattice L, x is way below y, in 
symbols, x<*y iff for directed subsets Z>££ the relation y S s u p D always implies the existence 
of a d£D with xSd. (Elements satisfying x«x are exactly the compact elements.) A lattice 
L is called a continuous lattice if L is complete and satisfies the axiom of approximation: x= 
= s u p {u€L: for all x£L. (In particular, all algebraic lattices are continuous.) Intuitively, 
thinking of the realization in computability theory, x way below y can be interpreted as x is 
a "(finite) approximation" of y. Then the axiom of approximation says that each element is the 
limit of its finite approximations. The motivation for the study of continuous lattices comes not 
only from computer science and logic. Other fields where such lattices appear quite naturally (some-
times in disguised forms) are, for example, general topology, functional analysis, category theory, 
and, of course, algebra. 

Chapter I introduces continuous lattices from an order theoretic point of view. In Section 1 
the way-below relation is discussed. Section 2 gives an equational chracterization of continuous 
lattices. Section 3 deals with irreducible and prime elements. Section 4 considers the important 
special case of algebraic lattices. Chapter II defines the Scott topology and develops its applications 
to continuous lattices. The second important topology for continuous lattices, the Lawson topology, 
is discussed in Chapter III. Chapter IV considers various important categories of continuous lattices 
together with certain categorical constructions. Section 1 presents important duality theorems for 
the study of continuous lattices. The last two sections give general categorical constructions for 
obtaining continuous lattices which are fixed points with respect to some self-functor of the category. 
This process is needed for the construction of set-theoretic models of the A-calculus. Chapter V 
deals with spectral theory. The most important result of Chapter VI is the Fundamental Theorem 
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of Compact Semilattices, establishing the equivalence between the category of compact semilattices 
with small semilattices and the category of continuous lattices. Chapter VII completes the study of 
connections between topological algebra and continuous lattice theory with methods coming from 
topological algebra rather than from lattice theory. 

This book is warmly recommended to anyone wishing to become acquainted with the subject. 

A. P. Huhn (Szeged) 

Franklin A. Graybill, Matrices with Applications in Statistics, Second edition (Wadsworth 
Statistics/Pribability Series), XII+461 pages, Wadsworth International Group, Belmont, California, 
1983. 

Matrices are used so extensively in the theory and applications of statistics that a firm know-
ledge of matrix and linear algebra is required from a student who wants to study the theory of linear 
statistical models. A number of topics in matrix algebra that are useful in a study of multivariate 
analysis is generally not available in an elementary course or in textbooks in linear algebra. On the 
other hand, the most part of monographs and advanced textbooks in matrix algebra has a too hard 
algebraical emphasis and some topics that are important for a statistician are mentioned only briefly. 
Graybill wanted to write a book which is "useful for any-one who takes courses in regression and 
correlation, analysis of variance, least squares, linear statistical models, multivariate analysis, or 
econometrics; and it could serve as a resource book for many other subjects". As the second 
edition of his book shows, the author achieved his purpose. 

The book assumes that the reader has had a course that includes the most important and funda-
mental theorems in linear algebra. An introduction and summary are given in the first three chapters, 
the theorems are stated without proofs. Some geometric interpretations of vectors and the elemen-
tary theory of analytic geometry are discussed briefly in Chapters 4 and 5. Chapter 6 is devoted 
to the general inverse and conditional inverse. The author states some additional theorems on the 
inverses of special matrices and proves some theorems that can be used to compute the generalized 
inverse of a matrix. Chapter 7 deals with the existence and number of solutions of systems of linear 
equations. Approximate solutions of inconsistent systems including least squares are in the focus 
of this chapter. Chapter 8 contains theorems on the patterned and other special matrices (parti-
tioned, triangular, dominant diagonal, Vandermonde, Fourier, permutation and Toeplietz matrices). 
The following chapter treats the many applications in which the sum of diagonal elements (trace) 
of a matrix plays an important role. Chapter 10 demonstrates how matrices and vectors can be used 
in transforming random variables, in evaluating multiple integrals and in differentation. These 
methods are useful in the study of multivariate normal distributions. The author briefly discusses 
some important general types of matrices (positive, non-negative, idempotent, tripotent matrices) 
in the last two chapters. Each chapter contains a lot of examples and exercises that can help the 
reader in understanding the presented material. 

The book is very elegently and clearly written, it can be recommended to all students and sta-
tisticians interested in linear algebra from a statistical point of view. 

Lajos Horváth (Szeged) 

Richard K. Guy, Unsolved Problems in Number Theory (Unsolved Problems in Intuitive 
Mathematics, Vol. I), XVIII+161 pages with 17 figures, Springer-Verlag, New York—Heidelberg— 
Berlin, 1981. 

This book lists 178 challenging open problems (or group of problems) to stimulate beginning 
researchers. N o matter how easily one can understand them, none of us lives as long as to see the 

26 
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proof or counterexample for all the listed problems. The touched topics are prime numbers, divisi-
bility, additive number theory, diophantine equations, sequences of integers, and others. 

This volume is dedicated to Erdős Pál, whose influence to number theory can be observed 
everywhere in the book, as follows: "Among his several greatnesses are an ability to ask the right 
questions and to ask it of the right person." The reader is supplied with plentiful references. Many 
prizes are set by Erdős and some by Graham. 

L. A. Székely (Szeged) 

Frank C. Hoppensteadt, Mathematical Methods of Population Biology (Cambridge Studies in 
Mathematical Biology, 4), VHQ+149 pages, Cambridge University Press, Cambridge—London— 
New York—New Rochelle—Melbourne—Sydney, 1982. 

According to the publisher, "this introduction to mathematical methods that are useful for 
studying population phenomena is intended for advanced undergraduate and graduate students, 
and will be accessible to scientists who do not have a strong mathematics background." The first 
two chapters introduce the usual deterministic models of total population and population age struc-
ture (Malthus, Verhulst, the predator pit, chaos, synchronisation, fisheries, Fibonacci's reproduc-
tion, McKendrick's model etc.), the third chapter deals with random models of bacterial and human 
genetics (urn, Fisher—Wright, and branching process models) and of epidemics (Reed—Frost 
model) based on Markov chains, and the last two chapters describe very shortly perturbation methods 
and diffusion approximations. 

Matheatical notions are used without definitions. It is not that the reviewer would like to 
seee mention of the Radon—Nikodym theorem on p. 63, for example, where conditional expecta-
tions are used (and an embarrassing misprint is left in line 6 from bottom), but he feels that students 
and scientists "who do nothave a strong mathematical background" will not learn the "mathematical 
methods" from this book. The reviewer agrees that "mathematical details" should not "obscure 
biological relevance" but such non-technical and non-sensical descriptions of the central limit 
theorem as the one on p. 97, that "(it) states that any random variable, discrete or continuous (?!), 
is in a definite sense approximated by a normally distributed random variable", will not help any-
body to understand neither population biology, nor mathematics. 

It is not a contradiction in terms, however, that this is a good book. Good for those who do 
have a stronger mathematics background and are interested in applications. These people will 
enjoy the numerous interesting examples and exercises from population biology. 

Sándor Csörgő (Szeged) 

B. Huppert—N. Blackburn, Finite Groups I I—in (Grundlehren der mathematischen Wissen-
schaften, Band 242—243), XIII+531 and IX+454 pages, Springer-Verlag, Berlin—Heidelberg-
New York, 1982. 

This is the continuation, awaited for 15 years, of the classic book on finite groups: 
B. Huppert, Endliche Gruppén I (Grundlehren der mathematischen Wissenschaften, Band 134), 
XI I+796 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1967; reprinted 1979. 

While Volume I presents a large part of what was known about the structure of finite groups 
at the time of its writing (started in 1958), the same goal is evidently not attainable now. During the 
past two decades the subject has made a tremendeous progress, with a lot of new branches and 
powerful methods coming into existence which, combined together, produced a number of extremely 
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deep results. Few accomplishments ever reached in mathematics are comparable with the recent 
completion of the classification of finite simple groups. In view of this great development it is no 
surprise that the authors of Volumes II and III had to be contended with selecting several important 
topics and even within those topics no attempt on completeness was made. 

All three chapters of Volume II are devoted to discussing the role of linear methods in finite 
group theory. Representation theory is presented first (Chapter VII: Elements of General Repre-
sentation Theory), the emphasis being put on the modular case, as the classical one is studied in 
Volume I, Chapter V. Next (Chapter VIII: Linear Methods in Nilpotent Groups) some ways of 
"translating" commutator calculations into calculations with linear structures are shown along 
with several theorems illustrating the power of these methods. For example, bilinear forms are 
used to determine the Suzuki 2-groups, and the Lie-ring method is applied to prove that for prime 
exponent the answer to the restricted Burnside problem is affirmative. The last chapter (IX: Linear 
Methods in Soluble Groups) gives an introduction to the Hall—Highman methods and numerous 
applications to obtain upper bounds for the /»-length of a p-soluble group in terms of various invariants 
of its Sylow p-subgroups. 

Volume III also consists of three chapters. The first one (Chapter X: Local Finite Group 
Theory) is concerned with deriving properties of the whole group from hypotheses involving only 
its p-subgroups and their normalizers (which are regarded as local properties of the group). Such 
results turned out to be important for example in proving the solubility of groups of odd order. 
The book ends with two chapters on permutation groups, including also several important charac-
terization theorems, i.e., descriptions of specific groups solely in terms of group-theoretical pro-
perties. One of the earliest instances of such results was given for Zassenhaus groups, which is 
presented in full detail (Chapter XI: Zassenhaus Groups). The last chapter (XII: Multiply Transitive 
Permutation Groups) is a collection of some of the most interesting investigations on multiply 
transitive and sharply multiply transitive permutation groups. 

No doubt, these volumes will soon become as indispensable reference books for group theorists, 
as Volume I. Besides, by giving a systematic treatment of a number of results which, up to now, were 
available in research papers only, they will be an immense help for those wishing to specialize in 
the subject. 

Agnes Szendrei (Szeged) 

Ching-Lai Hwang, Abu Syed Md. Masud in collaboration with Sudhakar R. Paidy and Kuangsun 
Yoon, Multiple Objective Decision Making—Methods and Applications, A State-of-the-Art Survey, 
(Lecture Notes in Economics and Mathematical Systems, 164) XII+351 pages, Springer-Verlag, 
Berlin—Heidelberg—New York, 1979. 

This is a good guide through the literature of the Multiple Objective Decision Making (MODM) 
methods. The authors present the existing methods, their characteristics, and their applicability to 
analysis of MODM problems. The book contains a good classification of about two dozen MODM 
methods. The first level of the classification is the information available for the decision maker. 
The second level is the type of information, and the lowest level contains the major classes of methods. 
Most of these methods have been proposed by various researchers in the last few years, and the main 
usefulness of this work is the unified discussion. This is the first time they are presented together. 
The literature of these methods is identified and classified systematically. All procedures of each 
method have been illustrated by a simple numerical example in detail. This helps the reader under-
stand the basic concept and the characteristic of each method. 

27* 
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Since most methods have not been tested by real-world problems yet, the authors cannot 
discuss in depth the advantages, disadvantages, computational complexity and difficulty of each 
method. The appendix contains a bibliography of more than 400 books, journal articles, technical 
reports and theses on this field of mathematics. 

G. Galambos (Szeged) 

D. L. Iglehart and G. S. Shedler, Regenerative Simulation of Response Times in Networks of 
Queues (Lecture Notes in Control and Information Sciences 26). XI I+204 pages. Springer—Verlag. 
New York—Heidelberg—Berlin. 1980. 

Discrete event digital simulation of stochastic models is one of the most important practical 
tools of systems analysis. The real systems are so complex that we are unable to study them ana-
lytically and we must, therefore, use computer simulation. This monograph deals with proba-
bilistic and statistical methods for discrete event simulation of networks of queues. 

The initial section provides some motivation for study of simulation methods for passage 
times in networks of queues. Section 2 gives a review of the regenerative method. The authors 
deal with a specification of the class of closed networks of queues in Section 3 and describe the marked 
job method in Section 4. Applications of the marked job method can be found in the next section 
and an extension of this method is the subject of Section 6. Further estimations for the first passage 
times are described in Sections 7 and 8. The statistical efficiency of the marked job and decomposi-
tion methods are studied in the next section. The estimation of passage times in closed networks 
of queues is the focus of Section 10. The last section is devoted to the algorithms for random number 
generation. 

The presentation is selfcontained, some knowledge of elementary probability theory and sto-
chastic processes is the only requirement from the reader. 

Lajos Horváth (Szeged) 

Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory» 
Graduate Texts in Mathematics Vol. 84, XIII+341 pages, Springer-Verlag, New York—Heidelberg— 
Berlin, 1982. 

This book is a revised and greatly expanded version of the authors' Elements of Number 
Theory published in 1972 by Bogden and Quigley. The well selected topics and treatments bridge 
the gap between elementary number theory and the systematic study of advanced topics. The reader 
must be familiar with the material in a standard undergraduate course in abstract algebra, but a 
large portion of the first eleven chapters is understandable with a small amount of suplementary 
reading. The later chapters assume some knowledge of Galois theory and in the last ones an acqua-
intance with the theory of complex variables is necessary. 

The authors' focus is on topics which point in the direction of algebraic number theory and 
arithmetic algebraic geometry, without requiring very much technical background. The major 
themes are the following: Unique factorizations and its applications; reciprocity laws which lead 
from the quadratic reciprocity to the Artin reciprocity law, one of the major achievements of al-
gebraic number theory; the theory of Gauss and Jacobi sums and its generalizations; diophantic 
equations over finite fields and over the rational numbers; the Riemann zeta function. 

There are also several hundreds of exercises, some routine, some challenging. Some of them 
supplement the text. In the last chapters a number of exercises is adopted from the recent research 
literature. Throughout the book there are considerable emphasis on the history of the subject. 
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This book with its particulary extensive bibliography is highly recommended to research stu-
dents and to anyone who wants to be familiar with some of the themes and subjects currently under 
investigations in algebraic number theory and arithmetic algebraic geometry. 

Lajos Klukovits (Szeged) 

Thierry Jeulin, Semi-Martingales et Groississcmcnt d'une Filtration (Lecture Notes in Mathe-
matics, 833), IX+142 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

As the author writes, "probabilists have now fully accepted Doob's idea that the adequate 
structure for the study of a stochastic process is that of a probability space (Í2, sé, P ) filtered by 
an increasing family 3F-= {J^, i s O } of cr-fields. While sé represents the whole universe, SFt 

consists of events whose outcome is known to the observer at time t, and predictions at time t are 
conditional expectations E( • \ However, the description of a partially observable random 
system requires a pair gF= {SFt, /3=0}, {(St, / £ 0 } of filiations such that The 
purpose of this monograph is to construct 2? from SF "by forcing information into S 7 " and 
then to measure "how much the prediction processes relative to 3F have been distorted by the new 
information". Thus the two basic problems dealt with are: 1) Does an ^-mart ingale X remain 
a ^-semi-martingale? 2) If yes then give an explicit decomposition of X into a ^-local martingale 
and a process of bounded variation. After giving the necessary preliminaries in the short first chapter, 
Chapter 2 is devoted to the discussion of the most general results concerning the first problem. The 
next three chapters deal, respectively, with initial enlargement of OF (at time 0), with progressive 
enlargement (when additional random variables are added to the set of stopping times as the time 
goes on), and with enlargement by adding a single "honest" random variable to 3F as an extra 
stopping time. The sixth chapter deals with concrete applications to' Markov processes in general 
and to the Brownian notion, Brownian excursions and Bessel processes in particular. The book 
can be recommended to martingale theorists and perhaps also to experts in advanced engineering 
applications of filtration theory. 

Sándor Csörgő (Szeged) 

Ole G. J^rsboe and Leif Mejlbro: The Carleson-Hunt Theorem on Fourier Series, Lecture Notes 
in Mathematics 911, IV+123, pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. 

The Carleson—Hunt theorem: The Fourier series of every function f£Lp[—n, n], 1 -<p^ 
converges almost everywhere. 

This is the book that should have been published many years ago. Besides the importance 
of the Carleson—Hunt theorem there are at least two reasons for publishing a book that contains 
nothing else but the proof of the above theorem. First of all the recent books on Fourier series only 
quote the theorem but leave out its proof. Since the original articles of Carleson and Hunt were 
written for specialists, it is necessary to have a treatment available also for mathematicians and 
students without much knowledge in harmonic analysis. According to this J0rsboe and Mejlbro's 
book assumes only some rudiments of measure theory and every other concept such as maximal 
function, Hilbert transform, interpolation of operators etc. and their properties needed in the proof 
is given in full detail. The second reason is connected with the first one, namely the Carleson— 
Hunt theorem can hardly be the topic of a regural or special course because of the fine and often 
very technical details of its proof, therefore it is desirable to have a work which may substitute 
these courses. 
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These lecture notes realize the above aims in a perfect way. The presentation is extraordinarily 
clear, the proof is built up f rom small steps each of which is proved very carefully. These small 
steps are united into four main chapters each preceded by a short but very useful description of the 
chapter 's content. At almost every delicate step one can find a remark enlightening the necessity 
of the given concept or consideration. Nevertheless a warning is in order at this point: the Carleson— 
Hunt theorem is far f rom being trivial, so its proof is very hard, especially the material in Chapter 4 
is very difficult to read. 

In Chapter 1 the authors introduce the Hardy—Littlewood maximal operator and prove 
a special form of the Marcinkiewicz interpolation theorem. Finally, they prove the Carleson— 
Hunt theorem under the assumption 

(* ) | |(sup |S„(/) | ) | | i .P S tf,ll/lli.» ( l < / > - = : ~ , / € £ ' [ - * , * ] ) 
N 

(S„( / ) denotes the n th partial sum of the Fourier series of / ) . The rest one hundred pages is 
devoted to the proof of ( * ). Chapter 2 contains some basic facts about the Hilbert t ransform. 
In Chapter 3 the necessary technique is introduced: dyadic intervals, modified Hilbert t ransform, 
generalized Fourier coefficients. The proof is completed in Chapter 4 by constructing in several 
steps a set of measure zero such that on the complement the Fourier series is "no t very large" 

We recommend the book to everybody working in related fields of mathematics as well as to 
students interested in the subject. 

V. Totik (Szeged) 

Hua Loo Keng, Introduction to Number Theory, X V I I + 5 7 2 pages with 14 figures, Springer-
Verlag, Berlin—Heidelberg—New York, 1982. 

This is the English edition of the famous Chinese original first published in 1957. The book is 
an excellent and broad introduction to the subject and will soon prove itself a very good successor 
of the classical introductory texbook "An Introduction to the Theory of Numbers" by G. M. Hardy 
and E. M. Wright. Several recent results in number theory appear in such a form as to make this 
textbook suitable for teaching purposes. This English edition contains additional notes compiled 
by Wang Yuan and Peter Shiu (the translator) at the end of nearly all chapters. These enable the 
reader to acquint himself with the current research literature. In the running text there are several 
examples and exercises to help the deeper understanding. 

A great value of this book is that the author tries to highlight certain connections of elemantary 
number theory to other branches of mathematics. For example: the relationship between the prime 
number theorem and Fourier series; the partition problem, the four squares problem and their 
relationship to modular functions; the theory of quadratic forms, modular transformations and 
their connections to Lobachevskian geometry, etc. 

The book, which serve not only as a textbook but a fundamental reference work, contains 
the following main topics: The elementary proof of the prime number theorem due to Erdos and 
Selberg; Roth ' s theorem; Gelfond's solution to Hilbert's seventh problem; Siegel's theorem on the 
class number of binary quadratic forms; Linnik's proof of the Hilbert—Waring theorem; Selberg's 
sieve method and Schnirelman's theorem on the Goldbach problem; Vinogradov's result concerning 
least quadratic non-residues. In addition, some of the author ' s own work is represented, too. 

Lajos Klukovits (Szeged) 
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S. M. Khaleelulla, Counterexamples in Topological Vector Spaces, Lecture Notes in Mathema-
tics 936, XXI+179 pp, Springer-Verlag, Berlin—Heidelberg—New York, 1982 

"During the last three decades much progress has been made in the field of topological vector 
spaces. Many generalizations have been introduced... To justify that a class Cx of topological 
vector spaces is a proper generalization of another class C2 . . . , it is necessary to construct an example 
of a topological vector space belonging to Cx but not to C s ; such an example is called a counter-
example". The book contains more than two hundred examples of this kind. Very often the same 
one (e.g. Lp (0-= /?< 1 or 1), C[0,1], P , Z1, C0 etc.) works in different situations by which 
several interesting properties are displayed for the most frequently used Banach spaces and topolo-
gical linear spaces. The examples treated in the book range from perfectly trivial ones (e.g. "A boun-
ded sequence in a topological vector space which is not convergent") to more sophisticated construc-
tions. The hardest counterexamples are only recorded (with a reference) without proof or construc-
tion (e.g. Enflo's separable Banach space without basis). 

The material is arranged in a clear way. It was a good idea to name the examples fully in the 
"Contents"; this helps in finding the needed constructions. The book is divided into eight chapters. 
Each chapter begins with definitions and some basic theorems, there is always a reference pointing 
to the source of the quoted results. The examples themselves are presented in a legible form, although 
the author very often leaves out the verification that they do work, and in many cases this constitutes 
the hardest part of the job. Detailed index and bibliography help the reader in remembering the 
concepts and in further study. The content of the chapters are as follows: 

1) Topological vector spaces (general properties), 2) Locally convex spaces, 3) Special classes 
of locally convex spaces, 4) Special classes of topological vector spaces, 5) Ordered topological 
vector spaces, 6) Hereditary properties, 7) Topological bases, 8) Topological algebras. 

These lecture notes should be used as a reference book but it may also be useful for anyone 
who is searching for the definition of a concept or even for a beginner who, while reading it, may 
get a quick glance of the most important facts of the topic. 

V. Totik (Szeged) 

A. A. Kirillov and A. D. Gvishiani, Theorems and Problems in Functional Analysis. Problem 
Books in Mathematics, IX+347 pages with 6 illustrations, Springer-Verlag, New York—Heidel-
berg—Berlin, 1982. 

This is a translation of a Russian edition (1979). Its aim is to give a self-contained introduc-
tion to modern branches of functional analysis. It is a combination of a textbook and a problem 
book with detailed hints for solving the problems. 

The book is divided into three parts: Theory, Problems and Hints. The chapters are sub-
divided into sections and the sections into subsections each containing 23 exercieses, so altogether 
828 problems are posed. Many of these require only minimal skill but there are a lot of harder 
problems that may be nontrivial even for an expert in the field. A rough table of contents: Set 
theory and topology, measures and integrals, linear topological spaces and linear operaors, elements 
of harmonic analysis and the spectral theory of operators. In the first part — on more than 130 
pages — a brief account of the most important aspects of the theory is given with complete proofs. 
This part may be used in a one year course, although the presentation is very concise and brief. 
The problem part begins with a simple exercise about equivalence relations and ends with the spectral 
decomposition of the selfadjoint extension of the operator A = — (d2jdx2)+x2 with initial domain 
D(A)=S(R). Many standard results are incorporated as exercises such as Lebesgue's density 
theorem, Holder's inequality, the Stone—Weierstrass theorem etc. The problems concerning up-
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to-date topics such as category theory, generalized functions, characters on Abelian groups etc. 
provide a smooth path to these advanced matters. The hints are sufficient for working out complete 
solutions. 

List of notation and detailed index increase the utility of the book which should be on the 
bookshelf of every lecturer on functional analysis and surely will enjoy great success among students, 
as well. 

V. Totik (Szeged) 

Anders Kock, Synthetic Differential Geometry (London Mathematical Society Lecture Note 
Series, 51), VI+311 pages, Cambridge University Press, 1981. 

Synthetic differential geometry, in the sense of the book, is the theory of general differential 
manifolds based on the assumption of sufficiently many nilpotent elements on the "real line". The 
first part of the book containes a detailed exposition of the differential and integral calculus on 
these manifolds such as directional derivatives, Lie derivation, forms and currents, Stokes' theorem 
etc. In the following part categorial logic is introduced into the exposition, and in the last part 
several models are presented in order to compare the synthetic theory with the analytic one. 

The book assumes some knowledge on abstract algebra and category theory. It is recommended 
to graduate students and professionals who are interested in algebraic or differential geometry or 
category theory. 

Z. I. Szabó (Szeged) 

A. I. Kostrikin, Introduction to Algebra, Universitext, XDI+575 pages, Springer-Verlag, New 
York—Heidelberg—Berlin, 1982. 

This is the translation of a textbook of the present undergraduate algebra course at Moscow 
State University. The book reflects the Soviet approach to teaching mathematics with its emphasis 
on applications and problem-solving. In the first place, Kostrikin's textbook motivates many of 
the algebraic concepts by practical examples. For instance, the heated plate problem, coding 
information and the states of a molecule are used to introduce linear equations and finite fields, 
systems of equations over finite fields and groups and group representations, respectively. 
In the second place, there are a large number of exercises so that the reader can convert a vague 
passive understanding to active mastery of the new ideas. The harder problems have hints at the 
end of the book. This helps those who learn algebra outside of the framework of an organized 
course. In the third place, there are topics in it which are usually not part of an elementary course 
but which are fundamental in applications. 

The book consists of two parts (Sources of algebra and Groups, Rings, Modules) and nine 
chapters. The first three chapters constitute an introduction to elementary linear algebra: sets, 
mappings, integer arithmetic, vector spaces and matrices over the field of real numbers, linear maps, 
systems of linear equations, determinants. The later three chapters of part one deal with groups, 
rings and fields, complex numbers and polynomials and roots of polynomials. In part two the reader 
can find more about groups (classical groups of low dimensions, group theoretical constructions, 
the Sylow theorems and the fundamental theorem for finite abelian groups), the elements of the 
group representation theory (unitary, reducible, linear and irreducible representations) as well as 
more about fields, rings and modules, including a section on algebras over a field. 

This valuable textbook is warmly recomended to undergraduate students, as well as to anyone 
who wants to be familiar with basic abstract algebra and certain applications of it. 

Lajos Klukovits (Szeged) 
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Logic Year 1979—80. The University of Connecticut, Proceedings, edited by M. Lerman, 
J. H. Schmerl and R. I. Soare, Lecture Notes in Mathematics 859, VH[+ 326 pages, Springer-Verlag, 
Berlin—Heidelberg—New York, 1981. 

In 1979—80 the Mathematics Department of the University of Connecticut spensored a special 
year devoted to Mathematical Logic with emphasis on recursion theory and model theory. During 
this year a conference took place, November 11—13, 1979, with 80 participants. The papers in 
this volume have been based on talks presented at the conference or on seminar presentations held 
during the course of the year. 

The majority of the 21 papers in this volume is devoted to various problems of degrees and 
hierarchy of recursivity which seems to be one of the blossoming branches of mathematical logic. 
Authors and titles from this topic: R. L. Epstein, R. Haas and R. L. Kramer: Hierarchies of sets 
of degrees below 0'; P. A. Fejer and R. I. Soare: The plus-cupping theorem for the recursively 
enumerable degrees; S. D. Friedman: Natural a-RE degrees; C. G. Jockush: Three easy construc-
tions of recursively enumerable sets; P. G. Kolaitis: Model theoretical characterizations in gene-
ralized recursion theory; M. Lerman: On recursive linear orderings; A. Macintyre: The complexity 
of types in field theory; D. P. Miller: High recursively enumerable degrees and the anti-cupping 
property; Y. N. Moschovakis: On the Grilliot—-Harrington—MacQueen theorem; R. A. Shore: 
The degrees of unsolvability: global results. Without striving for completeness let us mention two 
further authors. M. Makkai writes about a construction that associates a certain new topos, the 
prime completion, with any coherent topos. T. Millar gives a necessary and sufficient condition for 
a universal theory to have a complete, decidable model completion and applies this result to an 
example concerning recursively saturated models. 

V. Totik (Szeged) 

Robert Lutz and Michel Goze, Nonstandard Analysis. A Practical Guide with Applications, 
Lecture Notes in Mathematics 881, XTV+261, Springer-Verlag, Berlin—Heidelberg—New York, 
1981. 

"This book is intended to enable the reader to use Non Standard Analysis by himself without 
fear, at any level of mathematical practice, from undergraduate analysis to important research areas." 
The necessity of an introductory work with this scope is obvious: if Nonstandard Analysis wants 
to be a useful tool in proving theorems or in applications then it must not assume the user to be 
familiar with all the model theory necessary for its rigorous foundation. As a matter of fact engi-
neers, physicists etc. have been constantly using infinitesimals even before — remember e.g. the 
tricks which were applied during many university lectures on theoretical physics — nevertheless 
an "easy" "how to do" treatment would attract many mathematicians, since for most of them Non-
standard Analysis is rather mistery than part of mathematics. Unfortunately this book seems to 
have failed to accomphish its goals. While reading these notes a beginner would probably feel 
having got lost in the "swindles" (Lutz—Goze's terminology) of NSA. Instead of keeping a strict 
distinction between "real" and "extension" the authors quickly drop the stars of the transferred 
objects and after 10—15 pages the reader is completely ignorant of what may and may not be done 
in NSA. Detailed proofs and simple remarks concerning them would have helped much in under-
standing the material. Nevertheless Lutz and Goze's book may be a great help for those who are 
familiar with the elements of the nonstandard method but are unaware of the many possibilities it 
can grant in applications. 

The lecture notes consist of four chapters. In chapter one the "elementary practice of Non-
standard Analysis" is introduced, many classical results are reviewed in the nonstandard frame-
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work. The second chapter is devoted to the logical foundations of NSA, however this introduction 
is far from being complete and hardly enlightens the mind of the conf used inexperienced novice. The 
last two chapters have already the flavor of genuine applications. In Chapter III some classical 
topics such as integral curves of vector fields, compactness, holomorphic functions etc. are treated 
from a nonstandard point of view, while in the fourth chapter NSA methods are applied to 
perturbation problems in algebra and differential equations. Author index, glossary and the 
authors' good sense of humor help in reading the book. 

V. Totik (Szeged) 

George E. Martin, The Foundations of Geometry and the Non-Euclidean Plane, (Undergraduate 
Texts in Mathematics) XVI+509 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1982. 

The book is the second edition [originally published: New York: Intext Educational Publishers, 
1975] of a text written for junioui, senior, and first-year graduate courses. After four introductory 
chapters the book starts with an axiomatic development of absolute geometry, which is a common 
ground between non-Euclidean and Euclidean geometries as it is independent of any assumption 
about parallel lines. Many models, including the Cartesian plane, are used to illustrate this system 
of axioms, and it is shown that this system together with one of the equivalents of Euclid's parallel 
postulate forms a categorical system. Part two is a very elegant development of the Bolyai-
Lobachevsky geometry using many results of this theory for the study of euclidean geometry. 

The text is self-contained and it is written in a very clear, enjoyable style. Beside historical 
materials it containes over 650 exercises, 30 of which are true-or-false questions. 

Z. I. Szabó (Szeged) 

J . Martinet, Singularities of Smooth Functions and Maps, (London Mathematical Society Lec-
ture Note Series 58), XTV+256 pages, Cambridge University Press, Cambridge—London—New 
York—New Rochelle—Melbourne—Sidney, 1982. 

The book consist of seventeen chapters which are ordered into four parts. The material of the 
book is based on a seminar held at the University of Michigan and a course at the Pontificia Uni-
versidade Catolica (Rio de Janeiro). The text gives a very good and significant choice from the 
rich subject covering the most important results and problems of the singularity theory of dif-
ferentiablefunctions. Part one introduces the main idea by means of detailed exposition of numerous 
examples. Part two is devoted to the differentiable preparation theorem. In part three the prepara-
tion theorem is applied to the theory of universal deformations of function germs, by the aid of 
which the classification of Thorn's "elementary catastrophes" is presented. Part four deals with 
singularities of differentiable mappings. In this part most of Mather's results are stated in then-
local version. For understanding the text familiarity in the basic ideas about Lie groups, modules 
over commutative rings and existence and uniqueness theorems for solutions of differential equations 
are needed. 

László Gehér (Szeged) 

Martingale Theory in Harmonic Analysis and Banach Spaces (Proceedings, Cleveland, Ohio, 
1981), Edited by J.-A. Chao and W. A. Woyczynski (Lecture Notes in Mathematics, 939), V m + 2 2 5 
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. 

The conference indicated in the title was held at Cleveland State University between July 
13—17, 1981. Professor D. L. Burkholder was the principal speaker at the meeting and delivered 
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a series of ten lectures. His lecture notes will appear separately in the NSF—CBMS Conference 
Series of the American Mathematical Society. The present volume contains papers submitted by 
other conference participants. 

The table of contents: 1. D. Allinger: A note on strong, non-anticipating solutions for stochastic 
differential equations: when is path-wise uniqueness necessary? 2. K. Bichteler and D. Fonken: 
A simple version of the Malliavin calculus in dimension one. — Both papers are devoted to the 
study of stochastic differential equations. 3. H. Byczkowska and A. Hulanicki: On the support 
of the measures in a semigroup of probability measures on a locally compact group. 4. J.-A. Chao: 
Hardy spaces on regular martingales. — This paper mainly treats the generalized Walsh—Fourier 
series. 5. B. Davis and J. L. Lewis: The harmonic measure of porous membranes in R3. 6. G. A. 
Edgar, A. Millet and L. Sucheston: On compactness and optimality of stopping lines. — This is 
a survey type paper containing results both to discrete and continuous parameter processes. 7. N. A. 
Ghoussoub: Martingales of increasing functions. 8. J. A. Guttierez and H. E. Lacey: On the Hilbert 
transform for Banach space valued functions. — The authors extend some results of C. Fefferman 
and E. M. Stein, and G. Pisier. 9. A. T. Lawniczak: Gaussian measures on Orlicz spaces and 
abstract Wiener spaces. 10. C. Mueller: Exit times of diffusions. 11. C.W. Onneweer: Generalized 
Lipschitz spaces and Herz spaces on certain totally disconnected groups. — The absolute conver-
gence of Fourier series of functions belonging to a generalized Lipschitz ( = Besov) space and em-
bedding theorems for Herz — and Lorentz spaces are studied. 12. C. Park: Stochastic barriers for 
the Wiener process and a mathematical model. 13. G. Pisier: On the duality between type and 
cotype. — Those X Banach spaces are studied, for which X is of type p iff X* is of cotype p 
with l/p+llp' = l. 14. L. H. Riddle and J. J. Uhl : Martingales and the fine line between Asplund 
spaces and spaces not containing a copy of I,. — The following theorem of Rosenthal is the 
starting point: A Banach space X contains no copy of iff every bounded sequence in X has 
a weakly Cauchy subsequence. 15. J. Rosinski: Central limit theorems for dependent random 
vectors in Banach spaces. — This is a relatively large survey paper. 16. J. Rosinski and J. Szulga: 
Product random measures and double stochastic integrals. 17. W. H. Ruckle: Absolutely divergent 
series and Banach operator ideals. 18. G. Schechtman: Levy type inequality for a class of finite 
metric spaces. — This short note is a variation on the theme of B. Maurey, but the proof is some-
what simpler and more general. 19. W. A. Woyczynski: Asymptotic behavior of martingales in 
Banach spaces II. — The pesent note is a continuation of a work by the same author, 
and concentrates on the Marczinkiewicz—Zygmund and Brunk's type strong laws of large numbers 
for martingales. 

The book gives a good account of the present stage of the subject. It will certainly stimulate 
some of the readers to make research in this interesting field. We warmly recommend it to every-
body who works either in Martingale Theory and/or in Abstract Harmonic Analysis. 

F. Móricz (Szeged) 

William S. Massey, Singular Homology Theory (Graduate Texts in Mathematics, Vol. 70) 
XI I+265 pages, Springer-Verlag New York—Heidelberg—Berlin, 1980. 

This book gives a systematic treatment of singular homology and cohomology theory. The 
author has tried to show all the standard results without unnecessary technical details and diffi-
culties as long as it is possible. His program has been crowned with success. 

Clear geometric motivation is given in and out of the first chapter devoted to the background 
for homology theory. Singular cubes are used rather than singular simplexes. It simplifies the 
proof of the invariance of the induced homomorphisms under homotopies since the product of 
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a cube with the unit interval is a cube. Furthermore, the subdivision of a cube is simpler than the 
barycentric subdivision of a simplex. An appendix contains De Rham's theorem. 

Massey considers his book as a sequel to his previous book in this Springer-Verlag series 
(Vol. 56) entitled "Algebraic Topology: An Introduction". Although the book does not really 
require any knowledge given in the previous one, it seems to be a textbook for a second course in 
algebraic topology rather than a first course since many technical details are left to the reader. 

Prerequisite mathematical knowledge is as follows: minima of general topolgy and the theory 
of abelian groups, something about manifolds and fundamental groups, tensor product, Tor 
and Ext functors. 

A last argument to prove that the author is right in his program is that his book is essentially 
shorter than other ones treating the same subject. 

L. A. Székely (Szeged) 

Richard S. Millman and George D. Parker, Geometry. A metric Approach with Models 
(Undergraduate Texts in Mathematics) VIII+355 pages, Springer-Verlag, New York—Heidel-
berg—Berlin 1981. 

Birkhoff's metric approach to classical geometries means the use of real numbers at the 
building of several theories. The book develops the theory of neutral (absolute) geometry, hyper-
bolic geometry and of Euclidean geometry by this method. The various axioms are introduced 
slowly and the definitions and theorems with models, ranging from the Cartesian plane to the 
Poincaré upper half plane, the Taxicab plane and theMoulton plane, illustrate further these axioms. 
The last two chapters develop the concept of area resp. the theory of isometries in neutral geometry. 
Bolyai's beautiful theorem, asserting that if two poligonal regions have the same area then one can 
be cut up into a finite number of pieces and reassembled to form the other, is also proved here. 

The book contains more than 700 problems in the exercise sets. It is an excellent introduction. 
It is addressed to undergraduate students and is warmly recommended to everyone who wants to 
make a quick acquaintance with classical geometries. 

Z. I. Szabó (Szeged) 

P. G. Moore, Principles of Statistical Techniques. Second Edition, VIII+288 pages, Cambridge, 
University Press, Cambridge—London—New York—Melbourne, 1979. 

The first edition of this book was published in 1958, and it was reprinted in 1964. The second 
edition appeared in 1969, it was reprinted in 1974, and the nice pocket-size version under review 
is the first paperback edition. Such a story reflects a considerable success, and the book appears 
deserving it. Its longer subtitle describes it rather completely: "A first course, from the beginnings, 
for schools and universities, with many examples and solutions". It does not really require any 
mathematical prerequisites. Anybody graduating from a secondary school could, or should under-
stand it. Nevertheless, the author provides a rather wide selection of effective tools of statistics 
so the the reader can tackle a whole variaty of concrete situations. The basic techniques of collection, 
tabulation and pictorial representation of data, of sampling and averaging; dispersion measures, 
fests of significance and time series are all explained through numerical examples. 

The style is very nice. It sometimes represents an old world. The reviewer, for example, would 
find it difficult to ask his students to "catch a large number of specimens of a common species of 
butterfly and measure the length of the right wing of the butterflies. Do this on a number of occasions 
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over the season...". However, not all the data is required to collect f rom the reader. The author 
has many interesting data sets of his own to work with. An earlier reviewer, cited on the cover, 
was right to write that "the book should prove useful to all who read it". 

Sándor Csörgő (Szeged) 

Jacob Palis, Jr. and Welington de Melo, Geometric Theory of Dynamical Systems. An Intro-
duction, XI I+198 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1982. 

This book is concerned with differential equations on manifolds from a global or topological 
point of view. Its purpose is to aquaint the reader with two central topics of the modern period of 
the geometric theory of dynamical systems: structural stability and genericity. 

If a differential equation describes the evolution of a system, then, obviously, it cannot be 
supposed to be an absolutely correct model, e.g. the parameters of the system appearing in the 
differential equation cannot be given exactly. However, the user wishes to ensure the qualitative 
conclusion he draws from the equation at hand to be valid for the equation really describing his 
world. Probably this inspired Andronov and Pontrjagin (first of them was an engineer!) to introduce 
the concept of structural stability in 1937. Roughly speaking, they called a differential equation 
structurally stable if the differential equations near to it in a suitable metric on the space of ali 
differential equations have the same phase portrait. 20 years later M. Peixoto proved that structurally 
stable differential equations form an open and dense set in the space of differential equations whose 
right-hand sides are defined on a compact 2-dimensional manifold, i.e. here almost all differential 
equations are structurally stable. 

A property is said to be generic if it is satisfied by almost all differential equations. As it was 
defined by S. Smale, the main objective in the geometric theory of differential equations is the search 
for generic and stable properties. 

The book gives the reader the flavour of this theory on an introductory level. The first chapter 
establishes the concepts and basic facts on differentiable manifolds and vector fields needed for 
understanding later chapters. The second chapter gives a systematic proof of the Hartman— 
Grobman Theorem, which says that local stability is a generic property. The same problem for 
periodic orbits is considered by the Kupka—Smale Theorem in Chapter 3. The last chapter is 
devoted to the proof of Peixoto's Theorem. There are a great number of interesting exercises of 
various difficulty. 

We recommend this excellent book for mathematicians and students who want to get aquainted 
with this modern and fast developing branch of mathematics. 

L. Hatvani (Szeged) 

Steve Smale, The Mathematics of Time (Essyas on Dynamical Systems, Economic Processes, 
and Related Topics), VI+151 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1980. 

In the preceding review on Palis and Melo's book we tried to sketch what is geometrical 
theory and global analysis of dynamical systems. Undoubtedly, one of the most important people 
of this theory is Stephen Smale. For his outstanding research in differential topology and in global 
analysis he was awarded the Fields Medal of the International Mathematical Union in 1966. 

The first piece in this collection of his earlier papers and addresses is his celebrated paper on 
"Differentiable dynamical systems" published originally in Bulletin of the American Mathematical 
Society in 1967. The Notes following the body of its new edition are of the greatest interest, where 
the author completes his "classical" work with up-to-date results and gives a riport on the history 
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of the problems and conjectures he proposed in his original paper. In the second half of the book 
one can find some expository essays and addresses: What is global analysis?; Stability and gene-
ricity in dynamical systems; Personal perspectives on mathematics and mechanics; Dynamics 
in general equilibrium; Some dynamical questions in mathematical economics; On the problem 
of reviving the ergodic hypotheses of Boltzmann and Birkhoff. The book is concluded by personal 
confessions: "On how I got started in dynamical systems". The reader can get acquainted with 
such "intimacies" from the author's life as how he, as a topologist, entered into the mathematical 
world of ordinary differential equations; how "extraordinarily" he was impressed to meet the 
"powerful group of four young mathematicians: Anosov, Arnold, Novikov and Sinai in Moscow". 

This nice book is of interest not only to topologist and global analysists, but also to those 
whose primary fields are applied mathematics, differential equations, physics, or mathematical 
economics. 

L. Hatvani (Szeged) 

Sudhakar G. Pandit—Sadashiv G. Deo, Differential Systems Involving Impulses (Lecture Notes 
in Mathematics, 954), VH+102 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. 

In the classical analysis of differential systems the right-hand side is assumed to be continuous 
or integrable, so the solutions are continuous functions. However, in many physical problems the 
right-hand side of the modelling differential equation involves some perturbations of discontinuous 
behaviour. For example, the bang-bang principle in the optimal control theory shows that the 
parameters often have to change in an impulsive manner. Biological systems (heart beats, models 
for biological neural nets) exhibit an impulsive behaviour, too. These systems are described by 
so called "measure differential equations". The derivative involved in these equations is the distri-
butional derivative, the solutions are functions of bounded variations. Consequently, the methods 
of classical analysis are not sufficient to describe the impulsive behaviour of systems. 

These notes give a good unified survey on the results from several research papers published 
during the last fifteen years dealing with the basic problems such as existence, uniqueness, stability, 
boundedness and asymptotic equivalence associated with measure differential equations. 

L. Hatvani (Szeged) 

Probability Measures on Groups.. Proceedings, Oberwolfach, Germany, 1981. Edited by H. 
Heyer (Lecture Notes in Mathematics, 928), X+477 pages, Springer-Verlag, Berlin—Heidelberg— 
New York, 1982. 

This collection contains the text of 22 lectures presented at the Sixth Conference in the series 
"Probability Measures on Groups" held at the Mathematisches Forschunginstitut, Oberwolfach, 
Germany, June 28—July 4, 1981. The subjects of this meeting cover various areas of stochastics 
and analysis including probability theory and potential theory on algebraic-topological structures 
as well as their interrelations with the structure theory of locally compact groups, Banach spaces 
and Banach lattices. The Editor of this volume classified the papers into four groups: (i) Proba-
bility measures on groups, semigroups and hypergroups, (ii) Stochastic processes with values in 
groups, (iii) Connections between probability theory on groups and abstract harmonic analysis, 
(iv) Applications of probability theory on algebraic-topological structures to quantum physics. 

Lajos Horváth (Szeged) 
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Processes Aléatoires à Deux Indices (Colloque E. N. S. T. et C. N. E. T., Paris 1980), Edité 
par H. Korezlioglu, G. Mazziotto et J. Szpirglas (Lecture Notes in Mathematics, 863), IV+274 
pages, Springer-Verlag, Berlin—Heidelberg—New York, 1981. 

This volume contains the texts of the talks made at the Conference "Two-parameter Stochastic 
Processes" held in Paris on June 30 and July 1, 1980, under the support of "l'École Nationale 
Supérieure des Télécommunications" (E.N.S.T.) and "Centre National d'Études des Télécommunica-
tions" (C.N.E.T.). 

The table of contents: 1. P. A. Meyer; Théorie élémentaire des processus à deux indices. 
— This is a nice introduction into the subject, embracing the main notions and results up to the 
decomposition theorems of martingales with indices in R + x R + (continuous case) and N X N (discrete 
case) and the stochastic integrals. 2. D. Bakry : Limites "quadrantales" des martingales. — This talk 
closely attaches to the previous one by Meyer. 3. A. Millet: Convergence and regularity of stong 
submartingales. 4. G. Mazziotto, E. Merzbach et J. Szpirglas: Discontinuités des processus croissants 
et martingales à variation intégrable. 5. G. Mazziotto et J. Szpirglas : Sur les discontinuités d'un pro-
cessus cad-lag à deux indices. 6. J. Brossard : Régularité des martingales à deux indices et inégalités de 
normes. — This is a good summarization of the methods how to obtain moment inequalities foi the 
maximum partial sum and the martingale square function. 7. M. Ledoux: Inégalités de Burkholder 
pour martingales indexées par N x N . 8. D. Nualart : Martingales à variation indépendante du chemin. 
9. M. Zakai: Some remarks on integration with respect to weak martingales. — This gives interesting 
contributions to stochastic integration in the plane. 10. M. Dozzi: On the decomposition and 
integration of two-parameter stochastic processes. — While the previous talk treats weak martin-
gales, this one does strong martingales. 11. J. B. Walsh: Optimal increasing paths. — Among 
other things, the author proves some Fatou type theorems concerning fine and nontangential limits 
of biharmonic functions at the distinguished boundary of a bicylinder. 12. D. Nualart and M. Sanz: 
The conditional independence property in filtrations associated to stopping lines. 13. X. Guyon 
et B. Prum: Identification et estimation de semi-martingales représentables par rapport à un 
Brownien à un indice double. 14. A. Al-Hussaini and R. J. Elliott : Stochastic calculus for a two 
parameter jump process. — The authors obtain some new formulae, which cannot be written 
as special cases of those for the two parameter Wiener or Poisson processes. 15. H. Korezlioglu, 
P. Lefort et G. Mazziotto: Une propriété markovienne et diffusions associées. 

The book collects together materials that have been widely scattered in the literature, and is 
likely to be of special interest to those who work on the field of Stochastic Processes endowed 
with a partially ordered index set. 

F. Móricz (Szeged) 

Elmer G. Rees, Notes on Geometry (Universitext), VIQ+109 pages with 99 figures, Springer-
Verlgag, New York—Heidelberg—Berlin 1983. 

There are several ways to introduce the classical geometries into university syllabuses. The 
most general method is the so-called axiomatic method which is in some cases rather cumbersome 
and not very informative. The present book shows how to give an introduction to geometries 
that is short and nevertheless is of rich content, taking a concrete viewpoint rather than an 
axiomatic one. 

In the first part the Euclidean geometry is considered with a detailed examination of iso-
metries and crystals. Projective geometry (Part II) and hyperbolic geometry (Part III) are treated 
from the point of view of Felix Klein's Erlanger Programme, supplemented with some topological 
aspects. 
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There is a large number of exercises throughout the notes, many of these are staightforward 
and are meant to test the reader's understanding. 

The book is recommended to undergraduate studens and to teachers of elementary geometry. 

/ . I. Szabó (Szeged) 

G. F. Roach, Green's Functions, XIV+325 pages, Cambridge University Press, Cambridge— 
London—New York—New Rochelle—Melbourne—Sidney, 1982. 

The first edition of this book was published in 1970. The author's aim was to give a self-
contained and systematic introduction to the theory of Green's functions. The success of the book 
is shown by this new edition. 

In my opinion the advantage of this work is that it gives for scientists a mathematically 
thoroughly developed tool to the investigation of boundary value problems associated with either 
ordinary or partial differential equations, and, at the same time, for postgraduate students a clear 
and well-motivated exposition of the problem showing also the necessity of the generalization of 
some notions (e.g. Riemann integral-Lebesgue integral). 

Two new chapters (Calculations of particular Green's functions and approximate Green's 
functions) and four appendices (Summary of the Green's function method, Operators and expressions, 
The Lebesgue integral, Distributions) have been added in this edition. Especially the new appendices 
are very useful for those readers who lack the necessary mathematical background to understand 
more advanced accounts. (The other chapters are: The concept of a Green's function, Vector 
spaces and linear transformations, Systems of finite dimension, Continuous functions, Integral 
operators, Generalized Fourier series and complete vector spaces, Differential operators, Integral 
equations, Green's functions in higher-dimensional spaces.) 

Summarizing, this is a well-written text giving the reader a picture how notions, proofs, and 
applications arise in this field. 

L. Pintér (Szeged) 

Derek J . S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics 80, 
XVIII+481 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1982. 

This book is an excellent up-to-date introduction to the theory of groups. It is general yet 
comprehensive, covering various branches of group theory. The fifteen chapters contain the follow-
ing main topics: free groups and presentations, free products, decompositions, Abelian groups, 
finite permutation groups (including the Mathieu groups), representations of groups, finite and 
infinite soluble groups, group extensions, generalizations of nilpotent and soluble groups, finiteness 
properties. 

The reader is expected to have at least the knowledge and maturity of a graduate student 
who has completed the first year of study at a North American university or of a first year research 
student in the U.K. He or she should be familiar with the more elementary facts about rings, fields 
and modules, possess a sound knowledge of linear algebra and be able to use Zorn's Lemma and 
transfinite induction. However, no knowledge of homological algebra is assumed. There are some 
650 exercises, found at the end of each section. They must be regarded as an integral part of the text. 

This book is highly recommended everybody who wants to read research texts in more spe-
cialized areas of groups theory. 

Lajos Klukovits (Szeged) 
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Klaus Sehittkowski, Nonlinear Programming Codes, (Lecture Notes in Economics and Mathe-
matical Systems, 183) VIII+242 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

In recent years a lot of effort has been made to implement efficient and reliable optimization 
programs for the solution of complex nonlinear systems. The author undertook collect many 
programs developed by various researchers, and so gives a designer the possibility to decide which 
optimization program could solve his problem in the most desirable way. 

A reader who is interested in selecting a program for the numerical solution of his problem 
should start with Chapter I where the problem is formulated. Chapter II gives the mathematical 
background of the different methods. Chapter III is divided into two sections. The first one contains 
a table with different technical details (program length, the original precision of the program etc.). 
More detailed information is contained in the second section where all the programs are described 
individually. Chapter IV shows how test problems with predetermined solutions are generated. 
In Chapter V the reader finds different performance criteria (efficiency, global convergence, and the 
performance examinations). Final conclusions and some technical remarks are gathered in 
Chapter VI. 

The two appendices contain the numerical data for constructing test problems and a sensitivity 
analysis. 

G. Galambos (Szeged) 

Laurent Schwartz, Geometry and Probability in Banach Spaces, Notes by Paul R. Chernoff 
(Lecture Notes in Mathematics, 852,) X + 1 0 1 pages, Spinger Verlag, Berlin—Heidelberg—New 
York, 1981. 

These Notes correspond to a course of lectures which was given by Prof. Laurent Schwartz 
at the University of California, Berkeley, in April-May 1978. It is Prof. Paul Chernoff who gives 
here a good account of these lectures. 

The book summarizes a great number of new results, many of them found by mathematicians 
of the French school, in particular by Laurent Schwartz, Bernard Maurey, and Gilles Pisier. These 
results cover relationships between geometrical properties, properties of functional analysis, and 
probabilistic properties in Banach spaces. The present subject turns around the U spaces, 
1 + 

The book contains 19 lectures arranged into four chapters and a new result of Pisier. 
Ch. 1 gives a rapid account of the main ideas of the book, presents the Pietsch factorization 

theorem with applications, etc. 
Ch. 2 is devoted to the study of cylindrical probabilities and radonifying maps, in particular, 

to P. Levy's p-stable laws, /»-Pietsch spaces, the continuity and Holder properties of the Brownian 
motion. 

Ch. 3 is entitled by "Types and Cotypes". Let {s„: w€N} be independent random variables, 
with values ± 1 with probability 1/2. A Banach space E is said to be of type p, \SpSl, it 
2 , |x„|p-= °° implies that I e„x„ is almost surely convergent; of cotype q, 2-^qS. + if the almost 
n 1 
sure convergence of Ee„xn implies E\xn\ -= + ~ ; where x„€E, n£N. It is remarkable that, 

R n 
for U is of type r and cotype 2, and nothing better; for 2 s r < + type 2 and 
cotype r, and nothing better; while LT is very bad, it is of only type 1 and cotype + 

Ch. 4 is the longest part of the book, mainly dealing with the questions in connection with 
ultrapowers and superproperties. Given a property P of Banach spaces, P is said to be a super-
property if two Banach spaces E and F are such that E has P and F is finitely representable 

26 
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in E, then F also has P. A number of interesting results are treated in this chapter: the Maurey 
and the Grothendieck factorization theorems, the nonexistence of (2+s)-Pietsch spaces, the results 
of Pisier on martingale type and cotype, etc. 

The presentation is rather tight. Some proofs are omitted, some are merely outlined. Prac-
tically there is no bibliography in the text. The "Séminaires de l'École Polytechnique" are indicated 
as general references. 

This thin book is the first attempt to collect the main ideas of the new branch of mathematics 
which deals with the functional-analytic, geometric and probabilistic properties of Banach spaces. 
We warmly recommend it firstly to those who have some acquaintance with this heavy but fascinating 
subject. 

F. Móricz (Szeged) 

Zbigniew Scmadeni, Schauder Bases in Banach Spaces of Continuous Functions, Lecture Notes 
in Mathematics 918, IV+136 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1982. 

Zbigniew Semadeni is the author of a successful monograph "Banach Spaces of Continuous 
Functions". This fact and the booming interest in bases of Banach spaces guarantee the success 
of these lecture notes. To tell the truth, the author might have written a more complete, more attractive 
monograph by including the proofs of the most important "hard theorems" on bases in C(X) 
(e.g. Karlin's theorem about the non-existence of unconditional bases in C(0,1] or Pelczynski's 
related theorem; Olveskii's result that a uniformly bounded orthonormal system cannot be a basis 
in C[0,1] etc.), but the book, as it stands, is a good introduction into the topic (concerning bases 
in more general Banach spaces we mention the books "Bases in Banach spaces I—II" by I. Singer 
(Springer) and "An Introduction to Nonharmonic Fourier Sieres" by R. M. Young (Academic 
Press)). Many references and a detailed bibliography help the interested reader to proceed on to 
finer topics. The style is that of a text-book and the book is more or less self-contained (it is a bit 
embrassing that the definition of "uniform cross-norm" and "tensor product" is not given). It 
contains several exercises, although these require mostly standard manipulations. The proofs 
are clearly presented but the nature of the material does not allow quick reading: it is not at all an 
easy task to catch up with a consideration about or construction of a pyramidal basis in higher 
dimension. 

The lecture notes are divided into four chapters. The first one is a general introduction into the 
properties of bases in Banach spaces. Only the most important topics are treated: duality, stability 
and some properties of unconditional bases. 

Chapter 2 contains the "classical part" of the book: the broken-line construction in one 
variable. The most frequently investigated systems of Haar, Faber—Schauder, Walsh and Franklin 
are introduced here. The definition of the Haar—system is somewhat misleading since the values 
at jump points are indifferent only if we consider the Haar functions as the elements of LT and the 
author mentiones also the uniform convergence of the Haar expansion to a continuous function. 

Chapter 3 is devoted to the multidimensional case. Everybody reading the previous chapter 
will feel that the same might be done in higher dimension but to write the construction down is 
another thing. Although this chapter is not very attractive, the author has good reasons for dealing 
with the higher dimensional case so lengthy: "For two (or perhaps even four) decades it has been 
known how to construct... bases, consisting of certain spline functions... In spite of the regularity 
of the construction of these bases and their nice properties, they have not yet attracted people 
working in numerical methods. A reason... may be that in the existing literature the descriptions... 
are geometrical,..., without explicit formulas...". In Chapter 3 pictures help to follow the con-



Bibliographie 419 

struction, and formulas are given for the coefficients etc. In the last paragraph the celebrated results 
ofCiesielski—Shoenfield and Bockariev concerning bases in Cfc[0, l]d and A are sketched. 

The material in Chapter 4 is quite new. A detailed proof is given for the existence of monotone 
bases in separable spaces C(X) (the solution of the basis problem in these spaces) and several 
interesting extensions of the mentioned Olevskii result are listed. It is a pity that the proofs of these 
last theorems are left out. 

V. Totik (Szeged) 

Set Theory and Model Theory, Proceedings, Bonn 1979, edited by R. B. Jensen and A. Prestel, 
Lecture Notes in Mathematics 872, IV+174 pages, Springer-Verlag, Berlin—Heidelberg—New 

"York, 1981. 

On the occasion of Gisbert Hasenjaeger's 60-th birthday a symposium on set theory and 
model theory was held at Bonn, 1979 June 1—3. All of the contributors to these proceedings 
are former students and co-workers of Professor Hasen.jaeger, and the papers are all dedicated 
to him. K. J. Devlin presents a new morass construction which leads to Souslin and Kurepa K%-
trees as limits of directed systems of countable trees. H. D. Donder shows how coarse morasses 
in L can be used to answer combinatorial questions in L, e.g. how Kurepa trees with additional 
properties can be obtained using the "natural" global coarse morass in L. S. Koppelberg reveals 
several properties of the partially ordered set of isomorphism type structures of complete Boolean 
algebras, such as their being distributive lattices with Stone and Heyting algebras as duals. A. Prestel 
introduces a suitable definition of pseudo real closed (prc)-fields and shows, among others, that 
with this definition every algebraic extension of a prc-field is again a prc-field. Finally, T. von der 
Twer simplifies Paris and Harrington' famous proof concerning the incompleteness of Peano's 
arithmetic by avoiding probabilities in PA. 

V. Totik (Szeged) 

Statistique non Paramétrique Asymptotique, Proceedings, Rouen, France 1979. Edité par J. P. 
Raoult (Lecture Notes in Mathematics, 821), VIII+175 pages, Springer-Verlag, Berlin—Heidelberg— 
New York, 1980. 

This volume contains seven papers presented at the meeting "Journées Statistiques" Rouen, 
June 13—14, 1979. Three papers by Balascheff and Dupont, Harel, and Rüschendorf deal with the 
asymptotic behaviour of multivariate empirical processes. Using the weak convergence of the multi-
variate emprical process, Deheuvels presents nonparametric tests of independence. Adaptive rank 
tests and midrank statistics are considered in the papers of Albers and Ruymgaart. Collomb gives 
results on convergence in probability, with probability one, and in Lq, l-=<7-=~, of the k—NN 
estimator of a multivariate regression function. 

Lajos Horváth (Szeged) 

Ottó Steinfeld, Quasi-ideals in Rings and Semigroups, Disquisitiones Mathematicae Hungaricae 
10., Akadémiai Kiadó, Budapest, 1978. 

Quasi-ideals were introduced by the author of the book in 1956. This is the first monograph 
in the field, and it gives a fairly complete discussion of the results attained in these two decades. 
The book is completely self-contained — perhaps even too much so, as it gives definitions of literally 
all notions and rather meticulous proofs. It is very clearly written and well readable. 

27* 
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The first four chapters contain basic notions, examples and bits of general ring and semi-
group theory used throughout the book. In §§ 5—7 the basic facts concerning minimal quasi-
ideals of rings and minimal and 0-minimal ideals of semigroups are given, with a particular stress 
(in § 7) for semiprime rings and semigroups. § 8 deals with decomposition theorems for some 
classes of semiprime rings. An interesting result here is Theorem 8.1 which provides different 
decompositions for semiprime rings satisfying the minimum condition for principal left ideals. 
The next paragraph throws light on the behaviour of quasi-ideals in regular rings and semigroups, 
and § 10 contains analoga of the results of § 8 for regular semigroups (as for semiprime semigroups 
they don't hold in general). The last two chapters of the main part deal with the characterization of 
regular duo elements, rings and semigroups, and with different ways of generalization. 

There is an Appendix on quasi-absorbents in so-called groupoid-lattices. This notion, too, was 
introduced by the author in 1970. It seems to be a good tool for finding the common roots of some 
properties of rings, groups and semigroups, and is far from being completely exhausted. Its possi-
bilities are shown in this Appendix by an abstract version of Theorem 8.1 and its analoga. 

There are over 20 problems in the text, collected also in a list at the end of the book. An 
important role in the book is played by examples, in particular counter-examples showing the limits 
of parallelism between rings and semigroups. 

G. Polldk (Szeged) 

Stochastic Integrals, Proceedings, LMS Durham Symposium, 1980. Edited by D. Williams 
(Lecture Notes in Mathematics, 851), IX+540 pages, Springer-Verlag, Berlin—Heidelberg—New 
York, 1981. 

The volume is devided into three parts. The first part contains three introductory articles to 
help make some of the later material accessible to a wider audience. Williams gives a self-contained 
introduction to some important concepts such as continuous martingales and the associated mar-
tingale representation, the Stroock—Varadhan theorem and its consequences for martingale repre-
sentation, the Girsanov theorem. The main theme of this survey is the modern theory of the Kolmo-
gorov forward (or Fokker—Planck) equation. Roger's paper provides a brief summary of the 
construction and the fundamental properties of stochastic integrals. Various kinds of integration 
are described by Elliott. 

Longer research and survey papers are in the second part of the book. These 13 surveys, 
written by excellent probabilists, cover a wide part of stochastics. We mention only the following 
topics: Markov processes in quantum theory, Malliavin calculus, set-parametered martingales, 
Bessel processes and infinitely divisible laws, probability func t iona l of diffusion processes. The book 
ends with five shorter papers presented at the London Mathematical Society Durham Symposium. 

Lajos Horváth (Szeged) 

Árpád Szabó, The Beginings of Greek Mathematics, 358 pages, Akadémiai Kiadó Budapest, 
1978. 

This is the English edition of the German original, published by the same publishing house 
in 1969. The carefully written book is not intended to be an introduction to Greek mathematics 
(for this purpose the reader can consult the book of van der Waerden, Science Awakening). Its 
aim is to bring the problems associated with the early history of deductive science to the attention 
of classical scholars, and historians and philosophers of science. . 
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The method used undoubtedly distinguishes this book from most of its predecessors. It is 
based on a very careful investigation of original texts (the author is a classical philologist). Using 
this the author reconstructs the history of the early Greek mathematics, the origin of the axiomatic 
method. . 

The axiomatic method must have been existed before Euclid, but previous historians credited 
it to Aristotle or Plato. The author's idea is that the founders of this method were the Pythagoreans 
under the influence of the Eleatic philosophy. 

In the first two parts of the book we can read the early history of the theory of irrationals and 
the pre-Euklidean theory of proportions. Part 3, the main part of the book, deals with the construc-
tion of mathematics within a deductive framework. The appendix "How the Pythagoreans 
discovered Proposition II. 5 of the Elements" serves to illustrate the kind of research which needs 
to be undertaken if we are to acquire a new understanding of the historical development of Greek 
mathematics. 

Lajos Klukovits (Szeged) 

' Allen Tannenbaum, Invariance and System Theory: Algebric and Geometric Aspects (Lecture 
Notes in Mathematics, 845), X+161 pages, Springer-Verlag, Berlin-Heidelberg—New York, 1981. 

These lecture notes are based on a series of lectures given by the author at the Mathematical 
System Theory Institute of the ETH, Zürich in 1980. The autor's purpose is to draw the attention 
of theoretical mathematicians and convince them that there are, in system theory, some interesting 
and deep problems from pure mathematics to be solved, and to introduce people working in system 
theory to the ideas of algebraic geometry, differential geometry, algebraic topology and invariant 
theory. 

In the first three parts the author gives a good survey on some topics of algebraic geometry, 
system theory and invariant theory. Parts IV and V are devoted to the global and local moduli 
of linear time-invariant dynamical systems, respectively. 

In Part VI the "system realization problem" is discussed which concerns the construction of 
a state space model of a system from its input/output behaviour. Part VII is concerned with the 
geometry of rational transfer functions. Finally, in Part VIII the stabilization through feedback 
is treated. 

We can recommend these lecture notes to both theoretical mathematicians and system theory 
people interested in theoretical approaches in system theory. 

L. Hatvani (Szeged) 

The Correspondence Between A. A. Markov and A. A. Chuprov on the Theory of Probability 
and Mathematical Statistics. Edited by Kh. O. Ondar, Translated from the Russian by Charles and 
Margaret Stein, XVII+181 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1981. 

" I note with astonishment that in the book of A. A. Chuprov, Essays on the Theory of Sta-
tistics, on page 195, P. A. Nekrasov, whose work in recent years represents an abouse of mathematics, 
is mentioned next to Chebyshev. A. Markov". The story begins with this postcard, of 2 November 
1910, from Markov (1856—1922) to Chuprov (1874—1926), and this of course settles the tone of 
the lively correspondence that followed in the next seven years between the two of them. We all 
know that Markov is an outstanding figure in the history of mathematics in general, and of the theory 
of probability and mathematical statistics in particular. Chuprov, not to be measured to Markov, 
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was a fairly good statistician of his time under the influence of Lexis, Bortkiewicz, Quetelet and the 
emerging school of Pearson from one side, and of the inheritance of the Russian school of proba-
bility from the other. The latter, owing especially to Chebishev, Liapunov and Markov, was way 
ahead of the West at the time. The topics of the exchanges range wide: Lexis's coefficient of dis-
persion, the notorious "law of small numbers" of Bortkiewicz, the law of large numbers (including, 
at the time, what is nowadays the central limit theorem), Slutsky's work, Pearson's curves, the 
expectation of a ratio of dependent variables, Markov's linguistic statistics, etc. 

Markov, known as "Neistovyi Andrei" to his contemporaries, throws himself vehemently 
into all the issues raised. In a firm consciousness of his authority he is not afaid to go into rather 
technical computations feverishly (on the three days 18—20 November 1910 he mailed not less 
then ten letters and postcards to Chuprov; they both lived in Petersburg), and to comment quite 
coarsely on what he feels a poor work. This is in accord with the contemporary discription above, 
which, in Jerzy Neyman's translation, is "Andrew the irrepressible, who does not pull any punches". 
Chuprov's role is seen, by the reviewer, as that of a prudent stimulator. We must be grateful to 
him that he was able to bring this out of Markov. Many of Chuprov's letters have not been found. 
The book contains 25 letters from him and 80 letters or postcards from Markov. 

The idea of the translation has been put forward by the late Jerzy Neyman who wrote a charm-
ing introduction to the book. This is followed by the editor's preface outlining the life and work 
of Markov and Chuprov. Following the letters we find the editor's explanatory review of the cor-
respondence. The first two of the four appendices are Markov's (negative) review of Chuprov's 
book and Chuprov's (positive) review of a posthumus edition of Markov's book on probability. 
The book is ended by Markov's and Ch uprov's addresses at the bicentenary celebration of Bernoulli's 
law of large numbers in 1913, held by the Russian Academy upon the initiative of Markov. (This 
celebration must have been unique in the whole world.) The correspondence is really very exciting, 
one can hardly put the book down before finishing. The translation is excellent. I recommend 
reading it to every probabilist and statistician. It is a pity that I can probably never learn Neistovyi 
Andrei's limerick, mentioned in Professor Neyman's introduction, "not suited for the ears of ladies". 

Sándor Csörgő (Szeged) 

The Geometric Vein. The Coxeter Festschrift, edited by Chandler Davis, Branko Grünbaum and 
F. A. Sherk, VIII+598 pages with 5 color plates, 6 halftones and 211 line illustrations, Springer-
Verlag, New York—Heidelberg—Berlin 1981. 

H . S. M. Coxeter is one of the most inspiring geometers in the present century. Close to a 
hundred mathematicians from eight countries gathered on the Coxeter Symposium (held at the 
University of Toronto, 21—25 May 1979) testifying the deep influence of Coxeter's works in several 
fields of geometry such as the theory of polytopes and honeycombs, geometric transformations, 
groups and presentations of groups, extremal problems and combinatorial geometry. 

The Geometric Vein is the collection of the lectures given at this Symposium, containing 
altogether 41 papers. Thus it would be impossible to give a detailed survey in this review. The 
reader can read papers among others by J. H. Conway, E. Ellers, G. Ewald, L. Fejes Tóth, B. Grün-
baum, W. Kantor, P. McMullen, C. A. Rogers, B. A. Rosenfeld, J. J. Seidel, G. C. Shephard, 
J. Tits, W. T. Tutte, I. M. Yaglom. 

The book is arranged very carefully and the papers are written in a brilliant style. Most of the 
papers are understandable also for the undergraduate studens. So they are warmly recommended 
to everyone who wants an insight into a very geometric geometry. 

Z. I. Szabó (Szeged) 
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Arthur T. Winfree, The Geometry of Biological Time (Biomathematics, Volume 8), XIV+530 
pages, 290 illustrations, Springer-Verlag, New York—Heidelberg—Berlin, 1980. 

From opening and closing of flowers to heartbeat, from cell division to pupal eclosion of in-
sects, from pattern formation of mashrooms to the migration of fishes, from bird navigation to the 
female cycle, from spatial wave organisation of catalytic oxidation to sleeping, from pacemaker 
neurons in the optic nerve of crayfish and in the brain of various flies to mating habits, and in fact 
in the whole life outside and inside us, we encounter all kinds of periodic patterns with circadian, 
seasonal and various other rythmicities, exhibited collectively or individually, and with various 
organising phase singularities. The encyclopaedic masterpiece under review visualizes Nature for 
us as mutually synchronized communities of chemical, physical and, as a main topic, biological 
clocks. The first ten chapters [Circular logic — Phase singularities (Screwy results of circular logic) — 
The rules of the ring— Ring popolations — Getting off the ring — Attracting cycles and isochrons 
— Measuring trajectories of a circadian clock — Populations of attractor cycle oscillators — Ex-
citable kinetics and excitable media — The varieties of phaseless experience; in which the geometrical 
orderliness of rhythmic organization breaks down in diverse ways] constitute the more theoretical 
first part of the book, with elementary topological facts and little catastrophe theory, and a few 
differential equations here and there. Fortunately, Life is not raped by mathematics at all. Only 
the flavour is mathematical and the reviewer, being very far from what he thinks to be a biologist, 
has the feeling that this is modern biology of the highest quality. The second half of the book, the 
author calls it the Bestiary, with 13 chapters [The firefly machine — Energy metabolism in cells — 
The malonic acid reagent ("Sodium Geometrate") — Electrical rhythmicity and excitability in cell 
membranes — The aggregation of slime mould amoebae — Growth and regeneration — Arthropod 
cuticle •— Pattern formation in the fungi — Circadian rythms in general — The circadian clooks 
of insect eclosion — The flower of Kalanchoe — The cell mitotic cycle — The female cycle], is 
a collection of extraordinary wealth of particular experimental systems of living organisms about 
which the first part theorises. 

It is almost unbelievable that such a book could have been written. N o doubt, its intrinsic 
theoretical value, its wealth, the fantastically easy-flowing style, and its flexible, broad and open 
view will make it a classic. The bibliography contains more than 1300 items, only the author index 
fills 14 pages. Some 290 illustrations, sometimes really beautiful, invite the attention of the reader, 
but the book is also very cheap (US $ 33). Biologists, physiologists, physicists, chemists and perhaps 
also applied mathematicians will find it a good and rewarding reading. Why then advertising it in 
these Acta, for readers almost exclusively in pure mathematics? The point is the recreational. 
Many of us, exhausted by daily abstraction or sophisticated calculation, would still like to have 
something slightly mathemtical but "real" around in the evening. This book is an ideal choice for 
such a purpose. It is partly dedicated "to those readers who, expecting wonders to follow so grand 
a title as it flaunts, may feel cheated by its actual content". I expected nothing to follow so grand 
a title as it flaunts, and I found wonders. 

Sándor Csörgő (Szeged) 
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