On a special decomposition of regular semigroups

F. MIGLIORINI and J. SZÉP

In [1] a general disjoint decomposition of semigroups was given, which can be applied for the case of regular semigroups. The aim of the present paper is to obtain a characteristic decomposition of regular semigroups based on the decomposition studied in [1]. We shall investigate the components of this decomposition and the interrelations between them. By making use of [2] we study the cases of regular semigroups with or without a left or right identity element.

Notation. For two sets A, B we write $A \subset B$ if A is a proper subset of B. By a magnifying element we mean a left magnifying element.

1. Let S be a semigroup without nonzero annihilator. This is not a proper restriction because every semigroup can be reduced to this case. Then S has the following disjoint decomposition:

$$
\begin{equation*}
S=\bigcup_{i=0}^{5} S_{i} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{0}=\{a \in S \mid a S \subset S \text { and } \exists x \in S ; x \neq 0 \text { and } a x=0\}, \\
& S_{1}=\{a \in S \mid a S=S \text { and } \exists y \in S, y \neq 0 \text { and } a y=0\}, \\
& S_{2}=\left\{a \in S \backslash\left(S_{0} \cup S_{1}\right) \mid a S \subset S \text { and } \exists x_{1}, x_{2} \in S, x_{1} \neq x_{2} \text { and } a x_{1}=a x_{2}\right\}, \\
& S_{3}=\left\{a \in S \backslash\left(S_{0} \cup S_{1}\right) \mid a S=S \text { and } \exists y_{1}, y_{2} \in S, y_{1} \neq y_{2} \text { and } a y_{1}=a y_{2}\right\}, \\
& S_{4}=\left\{a \in S \backslash\left(S_{0} \cup S_{1} \cup S_{2} \cup S_{3}\right) \mid a S \subset S\right\}, \\
& S_{5}=\left\{a \in S \backslash\left(S_{0} \cup S_{1} \cup S_{2} \cup S_{3}\right) \mid a S=S\right\} .
\end{aligned}
$$

It is easy to see that the components $S_{i}(i=0,1, \ldots, 5)$ are semigroups, $S_{i} \cap S_{j}=\emptyset(i \neq j)$ and the following relations hold:

$$
\begin{array}{lll}
S_{5} S_{i} \subseteq S_{i}, & S_{i} S_{5} \subseteq S_{i} \quad(0 \leqq i \leqq 5) \\
S_{4} S_{3} \subseteq S_{2}, & S_{4}^{\prime} S_{2} \subseteq S_{2}, \quad S_{4} S_{1} \sqsubseteq S_{0}, \quad S_{4} S_{0} \subseteq S_{0} \tag{2}\\
S_{2} S_{3} \subseteq S_{2}, & S_{0} S_{1} \subseteq S_{0} &
\end{array}
$$

It is obvious that there exists an analogous decomposition

$$
S=\bigcup_{i=0}^{5} T_{i}
$$

where $T_{i}(0 \leqq i \leqq 5)$ is the dual of S_{i}.
Remark. The above decomposition is in fact "group oriented". That is, we select consecutively the elements of S having a property that is very far from that of an element of a group. So we consecutively select the annihilators, the (left) zero divisors, the elements for which the products are not left cancellative, and what remains is a right group.

Our theorems concern the decomposition (1), but analogous results can be formulated for the decomposition (1^{\prime}).

Theorem 1.1. S_{5} is a right group.
Proof. It is easy to see that S_{5} is right simple and left cancellative, whence the assertion follows.

Set $S_{0} \cup S_{2}=\bar{S}_{2}$ and $S_{1} \cup S_{3}=\bar{S}_{3}$.
Theorem 1.2. \bar{S}_{2} is a subsemigroup of S.
Proof. If $s_{0} \in S_{0}$ and $s_{2} \in S_{2}$, then $s_{0} s_{2} \in \bar{S}_{2}$. There are elements $x, y \in S, x \neq y$ such that $s_{2} x=s_{2} y$. We have $s_{0} s_{2} \ddagger \bar{S}_{2}$ and $s_{0} s_{2} \notin S_{5}$ because $s_{0} s_{2} S=s_{0}\left(s_{2} S\right) \subset S$. If $s_{0} s_{2} \neq 0$, then $\left(s_{0} s_{2}\right) x=\left(s_{0} s_{2}\right) y \quad(x \neq y)$, whence $s_{0} s_{2} \in S_{2} \subseteq \bar{S}_{2}$. Similarly, $s_{2} s_{0} \in \bar{S}_{2}$. If $s_{0} \neq 0$ then $s_{2} s_{0} \neq 0$ because $s_{2} \in S_{2}$. Since $s_{0} \in S_{0}$, there is an element $z \neq 0$ such that $s_{0} z=0$, hence $\left(s_{2} s_{0}\right) z=0$. Therefore $s_{2} s_{0} \in S_{0}$. Q.E.D.

Theorem 1.3. \bar{S}_{3} contains all the magnifying elements of S and only them.
Proof. Let $a \in S_{1} \cup S_{3}$. If $a \in S$ and $a S=S$, and if furthermore, there is an $y \neq 0$ such that $a y=0$, then $S^{\prime}=S \backslash\{0\} \subset S$ and $a S^{\prime}=S$, whence a is a magnifying element. If $a \in S_{3}, a S=S$ and if, furthermore, there exist $x, y \in S(x \neq y)$ such that $a x=a y$, then $a(S-\{x\})=S$ and a is a magnifying element.

Conversely, if $a \in S$ is a magnifying element, then $a \notin S_{0} \cup S_{2} \cup S_{4}$ and $a M=S$ ($M \subset S$). Thus there exist $m \in M$ and $s \in S \backslash M$ such that $a m=a s$. Hence it follows that $a \in S_{1} \cup S_{3}$. Q.E.D.

Remark. Theorems 1.2 and 1.3 imply

$$
\begin{equation*}
S_{0} S_{2} \subseteq S_{0} \cup S_{2}, \quad S_{2} S_{0} \subseteq S_{0} \cup S_{2}, \quad S_{1} S_{3} \subseteq S_{1} \cup S_{3}, \quad S_{3} S_{1} \subseteq S_{1} \cup S_{3} \tag{3}
\end{equation*}
$$

In what follows we assume that S is a regular semigroup, i.e. for every $a \in S$ there is an $x \in S$ such that $a=a x a$ and $x=x a x$ (x is an inverse of a). The elements
$a x, x a$ are idempotent and $a S \supseteqq a x S \supseteqq a x a S=a S$ implies $a x S=a S$, and similarly, $x a S=x S$. The regular semigroup S can contain a zero element hence the components S_{0} and S_{1} can exist in the decomposition (1).

Theorem 1.4. The inverses of the elements of \bar{S}_{3} are in S_{4} and the inverses of the elements of S_{4} are in \bar{S}_{3}.

Proof. Let $a \in \bar{S}_{3}$ and let $x \in S$ be an inverse of a, that is, let $a x a=a$ and $x a x=x$. First we show that $x S \subset S$. Suppose that $x S=S$, then there is a subset $S^{\prime} \subset S$ such that $a S^{\prime}=S$ because a is a magnifying element. Hence it follows that $x a S^{\prime}=x S=S$. But we have ($\left.x a\right) S=x S=S$ and $x a$ is idempotent, that is, $x a$ is a left identity of S. Therefore, ($x a$) $S^{\prime}=S^{\prime} \neq S$, which is a contradiction. Thus $x S \subset S$, whence x is contained in S_{0}, S_{2} or S_{4}. If $x \in S_{2}$, then $x s_{1}=x S_{2}$ $\left(s_{1} \neq s_{2}\right)$ and $(a x) s_{1}=(a x) s_{2}$. Since $(a x) S=a S=S$ and $a x$ is idempotent we obtain that $a x$ is a left identity of S, i.e. $(a x) s_{1}=(a x) s_{2}$ implies $s_{1}=s_{2}$, which is a contradiction. It can be proved similarly that $x \notin S_{0}$. It remains the case $x \in S_{4}$.

Conversely, let $b \in S_{4}$, that is, $b S=S^{\prime} \subset S$. Let y be an inverse of b in S. Hence $b y S=b S=S^{\prime}$. Suppose that $y S \subset S$. Let $y S=S^{\prime \prime}(\neq S)$. Hence $b S^{\prime \prime}=b y S=b S$. Thus there are elements $s \notin S^{\prime \prime}$, and $s^{\prime \prime} \in S^{\prime \prime}$ such that $b s^{\prime \prime}=b s$. But every element a of S for which $a x_{1}=a x_{2}\left(x_{1} \neq x_{2}\right)$, is contained in $S_{0} \cup S_{1}$ or $S_{2} \cup S_{3}$, which contradicts the fact that $b \in S_{4}$. Thus necessarily $y S=S$, that is, $y \notin S_{0} \cup S_{2} \cup S_{4}$. If $y \in S_{5}$, then $(y b) S=y S=y(b S)=y S^{\prime}=S\left(S^{\prime} \neq S\right)$, i.e. $y \in S_{1} \cup S_{3}$, which is a contradiction. It remains the only case $y \in S_{1} \cup S_{3}=\bar{S}_{3}$. Q.E.D.

It is easy to see that the set of inverses of the elements of \bar{S}_{3} is equal to S_{4} and the set of inverses of the elements of S_{4} is equal to \bar{S}_{3}.

Corollary 1.5. If a regular semigroup S does not contain a magnifying element $\left(\bar{S}_{3}=\emptyset\right)$, then $S_{4}=\emptyset$ and conversely, $S_{4}=\emptyset$ implies $\bar{S}_{3}=\emptyset$.

Corollary 1.6. If a regular semigroup S does not contain a left identity, then $\bar{S}_{3}=\emptyset$; and hence $S_{4}=\emptyset$.

For if $a \in \bar{S}_{3}$ and $x \in S_{4}$ is an inverse of a, then $a x$ is a left identity of S.
Theorem 1.7. \bar{S}_{2} is a regular semigroup and the inverses of an element of \bar{S}_{2} are contained in \bar{S}_{2}.

Proof. Let $a \in \bar{S}_{2}$ and x an inverse of a in S. Since $a \in S_{0} \cup S_{2}$, we have $a S \subset S$. Assume that $x S=S$. Then $(x a) S=x(a S)=x S=S$, whence x is a magnifying element, i.e., $x \in \bar{S}_{3}$. But every inverse of an element of \bar{S}_{3} is (by Theorem 1.4) in S_{4}, thus $a \in S_{4}$, which is a contradiction. Therefore $x S \subset S$. But $x \notin S_{4}$ because $a \in \bar{S}_{2}$. We conclude that. $x \in S_{0} \cup S_{2}=\bar{S}_{2}$. Q.E.D.

The above results yield:

Theorem 1.8. A semigroup S is regular if and only if it has a decomposition (1) where
a) $\bar{S}_{2}=S_{0} \cup S_{2}$ is regular;
b) the inverses of the elements of $\bar{S}_{3}=S_{1} \cup S_{3}$ are contained in S_{4} and conversely;
c) S_{5} is a right group.

Proof. Necessity follows from Theorems 1.1, 1.4, 1.7. Sufficiency follows from the fact that a right group is regular.
2. In this section we shall deepen our kowledge concerning the decomposition (1) of a regular semigroup S as well as the components \bar{S}_{2}, \bar{S}_{3} and S_{4}.

Theorem 2.1. Let S be a regular semigroup without. (left) magnifying elements. Using the notations $\bar{S}_{2}=\bar{S}_{2}^{1}, S_{5}=S_{5}^{1}$ we obtain the following decompositions:
$S=\bar{S}_{2}^{1} \cup S_{5}^{1}$ and if \bar{S}_{2}^{1} has no magnifying element,
$\bar{S}_{2}^{1}=\bar{S}_{2}^{2} \cup S_{5}^{2}$ and if \bar{S}_{2}^{1} has no magnifying element,
$\bar{S}_{2}^{k}=\bar{S}_{2}^{k+1} \cup S_{5}^{k+1}$,
where every \bar{S}_{2}^{k} is a regular semigroup, every S_{5}^{k} is a right group and the following inclusions hold:

$$
\begin{array}{llll}
S_{5}^{k} S_{5}^{j} \subseteq S_{5}^{k}, & S_{5}^{j} S_{5}^{k}=S_{5}^{k} \quad \text { for } & k \geqq j, \\
S_{5}^{k} \bar{S}_{2}^{j}=\bar{S}_{2}^{j}, & \bar{S}_{2}^{j} S_{5}^{k} \subseteq \bar{S}_{2}^{j} \quad \text { for } & k \leqq j . \tag{4}
\end{array}
$$

Proof. It is enough to give a proof for the cases:

$$
S_{5}^{1} S_{5}^{k}, \quad S_{5}^{k} S_{5}^{1}, \quad S_{5}^{1} \bar{S}_{2}^{j}, \quad \bar{S}_{2}^{j} S_{5}^{1}
$$

because the proof for the semigroups \bar{S}_{2}^{i} is similar.
The proof is by induction on k and j. It is trivial that

$$
S_{5}^{1} S_{5}^{1}=S_{5}^{1}, \quad s_{5}^{1} \bar{S}_{2}^{1}=\bar{S}_{2}^{1}, \quad s_{5}^{2} \bar{S}_{2}^{1}=\bar{S}_{2}^{1} \quad\left(s_{5}^{k} \in S_{5}^{k}\right)
$$

Hence, $s_{5}^{1} s_{5}^{2} \bar{S}_{2}^{1}=\bar{S}_{2}^{1}$, i.e., $s_{5}^{1} s_{5}^{2} \in S_{5}^{2}$ for all $s_{5}^{1} \in S_{5}^{1}$ and $s_{5}^{2} \in S_{5}^{2}$. Since $s_{5}^{1} \bar{S}_{2}^{1}=\bar{S}_{2}^{1}$ and, furthermore, $s_{5}^{1} S_{5}^{2} \subseteq S_{5}^{2}$ and $s_{5}^{1}\left(s_{2}^{2} \bar{S}_{2}^{1}\right) \subset \bar{S}_{2}^{1}$, that is, $s_{5}^{1} s_{2}^{2} \in \bar{S}_{2}^{2}$, we conclude that $s_{5}^{1} S_{5}^{2}=S_{5}^{2}$ and $s_{5}^{1} \bar{S}_{2}^{2}=\bar{S}_{2}^{2}$, whence $S_{5}^{1} S_{5}^{2}=S_{5}^{2}, \quad S_{5}^{1} \bar{S}_{2}^{2}=\bar{S}_{2}^{2}$. Thus we have $S_{5}^{1} S_{5}^{1}=S_{5}^{1}, \quad S_{5}^{1} \bar{S}_{2}^{1}=\bar{S}_{2}^{1}, \quad S_{5}^{1} S_{5}^{2}=S_{5}^{2}, \quad S_{5}^{1} \bar{S}_{2}^{2}=\bar{S}_{2}^{2}, \quad S_{5}^{2} S_{5}^{1} \subseteq S_{5}^{2} \quad$ because $\quad s_{5}^{2} s_{5}^{1} S_{5}^{2}=$ $=s_{5}^{2} S_{5}^{2}=S_{5}^{2}$, and thus $s_{5}^{2} s_{5}^{1} \in S_{5}^{2}$. The first step of the proof is complete.

Now suppose that the following conditions hold:

$$
S_{5}^{1} S_{5}^{k}=S_{5}^{k}, \quad S_{5}^{k} S_{5}^{1} \subseteq S_{5}^{k}, \quad S_{5}^{1} \bar{S}_{2}^{j}=\bar{S}_{2}^{j}, \quad \widetilde{S}_{2}^{j} S_{5}^{1} \subseteq \bar{S}_{2}^{j}
$$

By definition, we have $s_{5}^{k+1} \bar{S}_{2}^{k}=\bar{S}_{2}^{k}$. Hence, $\left(s_{5}^{1} S_{5}^{k+1}\right) \bar{S}_{2}^{k}=\dot{s}_{5}^{1} \bar{S}_{2}^{k}=\bar{S}_{2}^{k}$, whence $S_{5}^{1} S_{5}^{k+1} \in S_{5}^{k+1}$. Thus we obtain $S_{5}^{k+1}=\left(s_{5}^{1} s_{5}^{k+1}\right) S_{5}^{k+1}=s_{5}^{1} S_{5}^{k+1}$, whence $S_{5}^{1} S_{5}^{k+1}=S_{5}^{k+1}$.

We have $\left(s_{5}^{k+1} s_{5}^{1}\right) S_{5}^{k+1}=S_{5}^{k+1}$ and, furthermore, $s_{5}^{k+1} s_{5}^{1} \in \bar{S}_{2}^{k}$; thus $\dot{S}_{5}^{k+1} s_{5}^{1} \in S_{5}^{k+1}$ implies $S_{5}^{k+1} S_{5}^{1} \subseteq S_{5}^{k+1}$. We also have $\left(s_{5}^{1} s_{2}^{j+1}\right) \bar{S}_{2}^{j} \subset s_{5}^{1} \bar{S}_{2}^{j}=\bar{S}_{2}^{j}$, whence $s_{5}^{1} s_{2}^{j+1} \in$
$\in \bar{S}_{2}^{j+1}$, and $s_{5}^{1} \bar{S}_{2}^{j+1}=\bar{S}_{2}^{j+1}$ implies $S_{5}^{1} \bar{S}_{2}^{j+1}=\bar{S}_{2}^{j+1}$. Finally, we have $s_{2}^{j+1} s_{5}^{1} \in \bar{S}_{2}^{j}$ and $s_{2}^{j+1} s_{5}^{1} \bar{S}_{2}^{j}=s_{2}^{j+1} S_{2}^{J} \subset S_{2}^{J}$, whence it follows that $s_{2}^{j+1} s_{5}^{1} \in \bar{S}_{2}^{j+1}$ and $\bar{S}_{2}^{j+1} S_{5}^{1} \sqsubseteq$ $\subseteq \bar{S}_{2}^{j+1}$. Q.E.D.

Corollary 2.2. If S and $\bar{S}_{2}^{k}(k \geqq 1)$ are regular semigroups without magnifying elements, then S has one of the following four types of decompositions:
a) $S=\left(\left(\left((\ldots) \cup S_{5}^{4}\right) \cup S_{5}^{3}\right) \cup S_{5}^{2}\right) \cup S_{5}^{1}$, with an infinite number of components;
b) $S=\bar{S}_{2} \cup\left(\left(\left((\ldots) \cup S_{5}^{4}\right) \cup S_{5}^{3}\right) \cup S_{5}^{2}\right) \cup S_{5}^{1}$, where \bar{S}_{2} is a semigroup of type \bar{S}_{2} and there are infinitely many components;
c) $S=\left(\left(\left(S_{5}^{n} \cup \ldots\right) \cup S_{5}^{3}\right) \cup S_{5}^{2}\right) \cup S_{5}^{1}$, where the number of components equals n;
d) $S=\left(\left(\left(\left(\bar{S}_{2}^{m} \cup S_{5}^{m}\right) \cup \ldots\right) \cup S_{5}^{3}\right) \cup S_{5}^{2}\right) \cup S_{5}^{1}$, where the number of components is $m+1$.

We shall treat some properties of the semigroups \bar{S}_{3} and S_{4}.
Theorem 2.3. Let $a, b \in \bar{S}_{3}$, and let x be an inverse of a, and y an inverse of b $\left(x, y \in S_{4}\right)$. Then $x y$ is an inverse of ba.

Proof. Since $a x$ and $b y$ are left identities of S, we have $b a x y b a=b(a x y) b a=$ $=b y b a=b a$, and $x y b a x y=x y b(a x y)=x y b y=x y$. Q.E.D.

Theorem 2.4. If $a, b \in S_{4}$ and if x is an inverse of a and y is an inverse of b, then $y x$ and $a b$ are inverses of each other.

Proof. By Theorem 2.3, $(y b y)(x a x)$ is an inverse of $a b$. Then we get $a b=a b(y b y)(x a x) a b=a(b y b) y x(a x a) b=a b y x a b, y x a b y x=y b y x=y x$, since $x a, y b$ are left identities of S. Q.E.D.

By Theorem 1.4, $\bar{S}_{3} \cup S_{4}$ is a regular subset of S, but it fails to be a subsemigroup, because, e.g., $S_{4} S_{3} \subseteq S_{2}$ (cf. (2)). Set

$$
\begin{aligned}
& X_{1}=\left\{x \in S_{4} \mid x \text { is an inverse of some } a \in S_{1}\right\}, \\
& X_{3}=\left\{y \in S_{4} \mid y \text { is an inverse of some } b \in S_{3}\right\} .
\end{aligned}
$$

Then $S_{4}=X_{1} \cup X_{3}$.
Corollary 2.5. X_{1} and X_{3} are subsemigroups of S_{4}. In general, if $A \subseteq \bar{S}_{3}$ is a subsemigroup, then the inverses of the elements of A form a subsemigroup in S_{4}.

Proof. This is an easy consequence of Theorem 2.3.
Corollary 2.6. \bar{S}_{3} and S_{4} have no idempotent elements.
Proof. Every element of \bar{S}_{3} is magnifying, thus $a \neq a^{2}\left(a \in \bar{S}_{3}\right)$. Assume that $e \in S_{4}$ is idempotent. Since e is an inverse of $e, e \in \bar{S}_{3}$ (by Theorem 1.4), which is a contradiction.

Theorem 2.7. Every element of. \bar{S}_{3} and S_{4} generates an infinite cyclic semigroup.

Proof. In the opposite case, \bar{S}_{3} or S_{4} contains an idempotent element which contradicts Corollary 2.6.

Theorem 2.8. 1) \bar{S}_{3} has no (proper) right magnifying element. 2) S_{4} has no left magnifying element. 3) If $1 \in S$ (i.e. S is a monoid), then $S_{0} \cup S_{2} \cup S_{5}$ has no left or right magnifying element. 4) S_{5} has no left magnifying element.

Proof. 1) is a consequence of [4], Chap. III. $5.6(\beta)$. Since in the product $s_{4} S$ ($s_{4} \in S_{4}$) the representation of each element is unique, thus the same holds for $s_{4} S_{4}$, and 2) is true. 3) follows from [4], Chap. III. 5.6 (γ), because the union $S_{0} \cup S_{2} \cup S_{5}$ does not contain left or right magnifying element of S. Finally, S_{5} is a right group, and hence has no left magnifying element, cf. [4], Chap. III. 5.3 (γ).
3. In this section the results of [2] will be applied to the decomposition (1) of regular semigroups. For a regular semigroup S we shall investigate the following cases based on Theorem 4 in [2]:

1) S has neither a left nor a right identity element;
2) S has an identity element;
3) S has either a single left or a single right identity element.

In the case 3) we may assume that S has only a left identity element. In the opposite case we have to study the decomposition (1^{\prime}) instead of (1). As it is well known, an idempotent element e is \mathscr{D}-primitive if it is minimal among the idempotents D_{e}, where D_{e} is the \mathscr{D}-class of $e(\mathscr{D}$ is one of Green's relations).

In the case 1) S has no left magnifying element (cf. Corollary 1.6), that is, $S_{1} \cup S_{3}=\emptyset$ and $S_{4}=\emptyset$, furthermore, $S_{5}=\emptyset$, because in the opposite case S would have a left identity element. Hence $S=S_{0} \cup S_{2}=\bar{S}_{2}$.

In the case 2) suppose that $1 \in S$ is the identity element. If 1 is \mathscr{D}-primitive then we have $S_{1} \cup S_{3}=\emptyset, S_{4}=\emptyset$, while $S_{5} \neq \emptyset$ (e.g. $1 \in S_{5}$). In this subcase we obtain that $S=S_{0} \cup S_{2} \cup S_{5}$. If 1 is not \mathscr{D}-primitive, then there are magnifying elements, that is, $S_{1} \cup S_{3} \neq \emptyset, S_{4} \neq \emptyset, S_{5}$ is equal to the subsemigroup of all invertable elements and thus it is nonempty. Since $S_{4} S_{3} \subseteq S_{2}$ and $S_{4} S_{1} \subseteq S_{0}$, at least one of the subsemigroups S_{0}, S_{2} is nonempty. Hence we obtain $S=\bar{S}_{2} \cup$ $\cup \bar{S}_{3} \cup S_{4} \cup S_{5}$, where all the components are nonvoid.

In the case 3) suppose that e is the only left identity element of S. If e is \mathscr{D}-primitive, then $S_{1} \cup S_{3}=\emptyset, S_{4}=\emptyset$, while $S_{5} \neq \emptyset$ (for example, $e \in S_{5}$). Therefore $S=S_{0} \cup S_{2} \cup S_{5}$. If e fails to be \mathscr{D}-primitive, then there are magnifying elements, that is, $S_{1} \cup S_{3} \neq \emptyset, S_{4} \neq \emptyset, S_{5} \neq \emptyset$ and, similarly to the second subcase of 2), we have $S_{0} \cup S_{2} \neq 0$. Hence $S=\bar{S}_{2} \cup \bar{S}_{3} \cup S_{4} \cup S_{5}$, where all the components are nonempty.

Summing up:

Theorem 3.1. Let S be a regular semigroup. Then:

1) If S has no left identity element then $S_{1} \cup S_{3}=\emptyset, S_{4}=\emptyset, S_{5}=\emptyset$.
2) If S has an identity element and
a) if 1 is \mathscr{D}-primitive then $S_{1} \cup S_{3}=\emptyset, S_{4}=\emptyset, S_{5} \neq \emptyset$,
b) if 1 is not \mathscr{D}-primitive then $S_{1} \cup S_{3} \neq \emptyset, S_{4} \neq \emptyset, S_{5} \neq \emptyset, S_{0} \cup S_{2} \neq \emptyset$.
3) If e is the unique left identity of S and
a) if e is \mathscr{D}-primitive then $S_{1} \cup S_{3}=\emptyset, S_{4}=\emptyset, S_{5} \neq \emptyset$,
b) if e is not \mathscr{D}-primitive then $S_{1} \cup S_{3} \neq \emptyset, S_{4} \neq \emptyset, S_{5} \neq \emptyset, S_{0} \cup S_{2} \neq \emptyset$.
4. Finally, we make some remarks concerning the decomposition (1). For $x \in S_{4}, a \in \bar{S}_{3}$ let $B_{x}=\{b \in S \mid b$ is an inverse of $x\}, C_{a}=\{y \in S \mid y$ is an inverse of $a\}$. If $x \in S_{4}$ and $b \in B_{x}\left(b \in \bar{S}_{3}\right)$, then $b x$ is a left identity of S. Analogonsly, $a y\left(a \in \bar{S}_{3}, y \in C_{a}\right)$ is also a left identity of S.

Theorem 4.1. If $x \in S_{4}$ then B_{x} fails to be a subsemigroup. If $a \in \bar{S}_{3}$, then C_{a} fails to be a subsemigroup.

Proof. Suppose that B_{x} is a semigroup and $a, b \in B_{x}$. Then $a x a=a, b x b=b$ and $b a \in B_{x}$. Hence $b a x b a=b a$. Since $a x$ is a left identity element, hence $b(b a)=b a$. On the other hand, $b a \in \bar{S}_{3}$, thus $b a S=S$, whence $b s=s$ for all $s \in S$, which is a contradiction (b is a left magnifying element!).

Let $x, y \in C_{a}$. If C_{a} is a semigroup, then $a(x y) a=(a x) y a=y a$. But $y a \neq a$, because $y a$ is idempotent, while the element $a \in \bar{S}_{3}$ is not. Thus $x y \notin C_{a}$. Q.E.D.

Let $M \subset S$ be a subset of S such that $a M=S$. Then the set M is left increasable by a. Such a set M is not uniquely determined by a.

Theorem 4.2. If $a \in \bar{S}_{3}$ then $a\left(S_{0} \cup S_{2} \cup S_{4}\right)=S$.
Proof. Let $a \in \bar{S}_{3}$ and $x \in S_{4}$ an inverse of a. Then we have $a x S=a S=S$ and $x S \subset S$. On the other hand, $x S \subseteq S_{4} S$, furthermore, by making use of the relations (2) we get

$$
S_{4} S=S_{4}\left(S_{0} \cup S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}\right) \subseteq S_{0} \cup S_{2} \cup S_{4} .
$$

Hence $\cdot x S \subseteq S_{0} \cup S_{2} \cup S_{4}$ and thus $a\left(S_{0} \cup S_{2} \cup S_{4}\right)=S$. Q.E.D.
Theorem 4.2 implies for every $a \in \bar{S}_{3}$ the existence of an element $y_{a} \in S_{0} \cup S_{2} \cup S_{4}$ such that $a y_{a}=a$.

Theorem 4.3. a) If $a \in S_{3}$, then $y_{a} \nsubseteq S_{0}$. b) The elements $a \in \bar{S}_{3}$ for which $y_{a} \in S_{4}$ $\left(a y_{a}=a\right)$, have a two-sided identity element in S.

Proof. a) If $y_{a} \in S_{0}$, then there is an $x \neq 0$ such that $y_{a} x=0$. Thus $a x=$ $=\left(a y_{a}\right) x=a\left(y_{a} x\right)=a 0=0$, whence $a \in S_{0} \cup S_{1}$, which is a contradiction.
b) If $y_{a} \in S_{4}$, then there exists $b \in \bar{S}_{3}$, such that $b y_{a} b=b$ and $y_{a} b y_{a}=y_{a}$. Then $a y_{a} b=a b, a y_{a} b y_{a}=a b y_{a}$, that is, $a y_{a}=a b y_{a}$, whence it follows that $a=a\left(b y_{a}\right)$. On the other hand, $b y_{a}$ is a left identity element of S, whence $b y_{a} a=a=a b y_{a}$. Q.E.D.

References

[1] J. Szép, On the structure of finite semigroups, 69-4, Dept. Math. Karl Marx Univ. Budapest (1969).
[2] A. Gerente, Eléments inversibles et croissants dans un demi-groupe, C. R. Acad. Sc. Paris, Série A, 274 (1972), 1775-1778.
[3] M. Petrich, Introduction to Semigroups, Charles E. Merrill Publishing Co. (Columbus, Ohio, 1973).
[4] E. S. Luapin, Semigroups, Amer. Math. Soc. (Providence, Rhode Island, 1963).
[5] A. H. Clifford-G. B. Preston, The algebraic theory of semigroups, Vol. I, Amer. Math. Soc. (Providence, Rhode Island, 1961).

J. SZÉP

DEPARTMENT OF MATHEMATICS
KARL MARX UNIV. OF ECONOMICS
1828 BUDAPEST, P. O. BOX 489
HUNGARY

