On a special decomposition of regular semigroups

F. MIGLIORINI and J. SZÉP

In [1] a general disjoint decomposition of semigroups was given, which can be applied for the case of regular semigroups. The aim of the present paper is to obtain a characteristic decomposition of regular semigroups based on the decomposition studied in [1]. We shall investigate the components of this decomposition and the interrelations between them. By making use of [2] we study the cases of regular semigroups with or without a left or right identity element.

Notation. For two sets A, B we write $A \subset B$ if A is a proper subset of B. By a magnifying element we mean a left magnifying element.

1. Let S be a semigroup without nonzero annihilator. This is not a proper restriction because every semigroup can be reduced to this case. Then S has the following disjoint decomposition:

$$S = \bigcup_{i=0}^{5} S_i,$$

where

(1)

 $S_{0} = \{a \in S | aS \subset S \text{ and } \exists x \in S; x \neq 0 \text{ and } ax = 0\},$ $S_{1} = \{a \in S | aS = S \text{ and } \exists y \in S, y \neq 0 \text{ and } ay = 0\},$ $S_{2} = \{a \in S \setminus (S_{0} \cup S_{1}) | aS \subset S \text{ and } \exists x_{1}, x_{2} \in S, x_{1} \neq x_{2} \text{ and } ax_{1} = ax_{2}\},$ $S_{3} = \{a \in S \setminus (S_{0} \cup S_{1}) | aS = S \text{ and } \exists y_{1}, y_{2} \in S, y_{1} \neq y_{2} \text{ and } ay_{1} = ay_{2}\},$ $S_{4} = \{a \in S \setminus (S_{0} \cup S_{1} \cup S_{2} \cup S_{3}) | aS \subset S\},$ $S_{5} = \{a \in S \setminus (S_{0} \cup S_{1} \cup S_{2} \cup S_{3}) | aS = S\}.$

It is easy to see that the components S_i (i=0, 1, ..., 5) are semigroups, $S_i \cap S_j = \emptyset$ $(i \neq j)$ and the following relations hold:

(2) $S_{5}S_{i} \subseteq S_{i}, \quad S_{i}S_{5} \subseteq S_{i} \quad (0 \leq i \leq 5),$ $S_{4}S_{3} \subseteq S_{2}, \quad S_{4}S_{2} \subseteq S_{2}, \quad S_{4}S_{1} \subseteq S_{0}, \quad S_{4}S_{0} \subseteq S_{0},$ $S_{2}S_{3} \subseteq S_{2}, \quad S_{0}S_{1} \subseteq S_{0}.$

Received May 27, 1977.

It is obvious that there exists an analogous decomposition

$$(1') S = \bigcup_{i=0}^{5} T_i,$$

where T_i $(0 \le i \le 5)$ is the dual of S_i .

Remark. The above decomposition is in fact "group oriented". That is, we select consecutively the elements of S having a property that is very far from that of an element of a group. So we consecutively select the annihilators, the (left) zero divisors, the elements for which the products are not left cancellative, and what remains is a right group.

Our theorems concern the decomposition (1), but analogous results can be formulated for the decomposition (1').

Theorem 1.1. S_5 is a right group.

Proof. It is easy to see that S_5 is right simple and left cancellative, whence the assertion follows.

Set $S_0 \cup S_2 = \overline{S}_2$ and $S_1 \cup S_3 = \overline{S}_3$.

Theorem 1.2. \overline{S}_2 is a subsemigroup of S.

Proof. If $s_0 \in S_0$ and $s_2 \in S_2$, then $s_0 s_2 \in \overline{S}_2$. There are elements $x, y \in S, x \neq y$ such that $s_2 x = s_2 y$. We have $s_0 s_2 \notin \overline{S}_2$ and $s_0 s_2 \notin S_5$ because $s_0 s_2 S = s_0(s_2 S) \subset S$. If $s_0 s_2 \neq 0$, then $(s_0 s_2) x = (s_0 s_2) y$ $(x \neq y)$, whence $s_0 s_2 \in S_2 \subseteq \overline{S}_2$. Similarly, $s_2 s_0 \in \overline{S}_2$. If $s_0 \neq 0$ then $s_2 s_0 \neq 0$ because $s_2 \in S_2$. Since $s_0 \in S_0$, there is an element $z \neq 0$ such that $s_0 z = 0$, hence $(s_2 s_0) z = 0$. Therefore $s_2 s_0 \in S_0$. Q.E.D.

Theorem 1.3. \bar{S}_3 contains all the magnifying elements of S and only them.

Proof. Let $a \in S_1 \cup S_3$. If $a \in S$ and aS = S, and if furthermore, there is an $y \neq 0$ such that ay=0, then $S'=S \setminus \{0\} \subset S$ and aS'=S, whence a is a magnifying element. If $a \in S_3$, aS = S and if, furthermore, there exist $x, y \in S$ ($x \neq y$) such that ax=ay, then $a(S-\{x\})=S$ and a is a magnifying element.

Conversely, if $a \in S$ is a magnifying element, then $a \notin S_0 \cup S_2 \cup S_4$ and aM = S $(M \subset S)$. Thus there exist $m \in M$ and $s \in S \setminus M$ such that am = as. Hence it follows that $a \in S_1 \cup S_3$. Q.E.D.

Remark. Theorems 1.2 and 1.3 imply

 $(3) \qquad S_0 S_2 \subseteq S_0 \cup S_2, \quad S_2 S_0 \subseteq S_0 \cup S_2, \quad S_1 S_3 \subseteq S_1 \cup S_3, \quad S_3 S_1 \subseteq S_1 \cup S_3.$

In what follows we assume that S is a regular semigroup, i.e. for every $a \in S$ there is an $x \in S$ such that a = axa and x = xax (x is an inverse of a). The elements

123

ax, xa are idempotent and $aS \supseteq axS \supseteq axaS = aS$ implies axS = aS, and similarly, xaS = xS. The regular semigroup S can contain a zero element hence the components S_0 and S_1 can exist in the decomposition (1).

Theorem 1.4. The inverses of the elements of \overline{S}_3 are in S_4 and the inverses of the elements of S_4 are in \overline{S}_3 .

Proof. Let $a \in \overline{S}_3$ and let $x \in S$ be an inverse of a, that is, let axa=a and xax=x. First we show that $xS \subset S$. Suppose that xS=S, then there is a subset $S' \subset S$ such that aS'=S because a is a magnifying element. Hence it follows that xaS'=xS=S. But we have (xa)S=xS=S and xa is idempotent, that is, xa is a left identity of S. Therefore, $(xa)S'=S'\neq S$, which is a contradiction. Thus $xS \subset S$, whence x is contained in S_0 , S_2 or S_4 . If $x \in S_2$, then $xs_1=xs_2$ $(s_1\neq s_2)$ and $(ax)s_1=(ax)s_2$. Since (ax)S=aS=S and ax is idempotent we obtain that ax is a left identity of S, i.e. $(ax)s_1=(ax)s_2$ implies $s_1=s_2$, which is a contradiction. It can be proved similarly that $x \notin S_0$. It remains the case $x \in S_4$.

Conversely, let $b \in S_4$, that is, $bS = S' \subset S$. Let y be an inverse of b in S. Hence byS = bS = S'. Suppose that $yS \subset S$. Let $yS = S'' (\neq S)$. Hence bS'' = byS = bS. Thus there are elements $s \notin S''$, and $s'' \in S''$ such that bs'' = bs. But every element a of S for which $ax_1 = ax_2$ ($x_1 \neq x_2$), is contained in $S_0 \cup S_1$ or $S_2 \cup S_3$, which contradicts the fact that $b \in S_4$. Thus necessarily yS = S, that is, $y \notin S_0 \cup S_2 \cup S_4$. If $y \in S_5$, then (yb)S = yS = y(bS) = yS' = S ($S' \neq S$), i.e. $y \in S_1 \cup S_3$, which is a contradiction. It remains the only case $y \in S_1 \cup S_3 = \overline{S}_3$. Q.E.D.

It is easy to see that the set of inverses of the elements of \overline{S}_3 is equal to S_4 and the set of inverses of the elements of S_4 is equal to \overline{S}_3 .

Corollary 1.5. If a regular semigroup S does not contain a magnifying element $(\bar{S}_3=\emptyset)$, then $S_4=\emptyset$ and conversely, $S_4=\emptyset$ implies $\bar{S}_3=\emptyset$.

Corollary 1.6. If a regular semigroup S does not contain a left identity, then $\bar{S}_3 = \emptyset$; and hence $S_4 = \emptyset$.

For if $a \in \overline{S}_3$ and $x \in S_4$ is an inverse of a, then ax is a left identity of S.

Theorem 1.7. \overline{S}_2 is a regular semigroup and the inverses of an element of \overline{S}_2 are contained in \overline{S}_2 .

Proof. Let $a \in \overline{S}_2$ and x an inverse of a in S. Since $a \in S_0 \cup S_2$, we have $a \subseteq S$. Assume that xS = S. Then (xa)S = x(aS) = xS = S, whence x is a magnifying element, i.e., $x \in \overline{S}_3$. But every inverse of an element of \overline{S}_3 is (by Theorem 1.4) in S_4 , thus $a \in S_4$, which is a contradiction. Therefore $xS \subseteq S$. But $x \notin S_4$ because $a \in \overline{S}_2$. We conclude that $x \in S_0 \cup S_2 = \overline{S}_2$. Q.E.D.

The above results yield:

Theorem 1.8. A semigroup S is regular if and only if it has a decomposition (1) where

a) $\bar{S}_2 = S_0 \cup S_2$ is regular;

b) the inverses of the elements of $\overline{S}_3 = S_1 \cup S_3$ are contained in S_4 and conversely;

c) S_5 is a right group.

Proof. Necessity follows from Theorems 1.1, 1.4, 1.7. Sufficiency follows from the fact that a right group is regular.

2. In this section we shall deepen our kowledge concerning the decomposition (1) of a regular semigroup S as well as the components \bar{S}_2 , \bar{S}_3 and S_4 .

Theorem 2.1. Let S be a regular semigroup without (left) magnifying elements. Using the notations $\bar{S}_2 = \bar{S}_2^1$, $S_5 = S_5^1$ we obtain the following decompositions:

 $S = \overline{S}_2^1 \cup S_5^1$ and if \overline{S}_2^1 has no magnifying element, $\bar{S}_2^1 = \bar{S}_2^2 \cup S_5^2$ and if \bar{S}_2^1 has no magnifying element, $\bar{S}_{2}^{k} = \bar{S}_{2}^{k+1} \cup S_{5}^{k+1},$

where every \overline{S}_2^k is a regular semigroup, every S_5^k is a right group and the following inclusions hold:

 $S_5^k S_5^j \subseteq S_5^k$, $S_5^j S_5^k = S_5^k$ for $k \ge j$, (4) $S_5^k \bar{S}_2^j = \bar{S}_2^j, \quad \bar{S}_2^j S_5^k \subseteq \bar{S}_2^j \quad for \quad k \leq j.$

Proof. It is enough to give a proof for the cases:

 $S_5^1 S_5^k$, $S_5^k S_5^1$, $S_5^1 \overline{S}_2^j$, $\overline{S}_2^j S_5^1$

because the proof for the semigroups \bar{S}_2^i is similar.

The proof is by induction on k and j. It is trivial that

$$S_5^1 S_5^1 = S_5^1, \quad s_5^1 \overline{S}_2^1 = \overline{S}_2^1, \quad s_5^2 \overline{S}_2^1 = \overline{S}_2^1 \quad (s_5^k \in S_5^k).$$

Hence, $s_5^1 s_5^2 \bar{S}_2^1 = \bar{S}_2^1$, i.e., $s_5^1 s_5^2 \in S_5^2$ for all $s_5^1 \in S_5^1$ and $s_5^2 \in S_5^2$. Since $s_5^1 \bar{S}_2^1 = \bar{S}_2^1$ and, furthermore, $s_5^1 S_5^2 \subseteq S_5^2$ and $s_5^1 (s_2^2 \overline{S}_2^1) \subset \overline{S}_2^1$, that is, $s_5^1 s_2^2 \in \overline{S}_2^2$, we conclude that $s_5^1 S_5^2 = S_5^2$ and $s_5^1 \overline{S}_2^2 = \overline{S}_2^2$, whence $S_5^1 S_5^2 = S_5^2$, $S_5^1 \overline{S}_2^2 = \overline{S}_2^2$. Thus we have $S_5^1 S_5^1 = S_5^1$, $S_5^1 \overline{S}_2^1 = \overline{S}_2^1$, $S_5^1 S_5^2 = S_5^2$, $S_5^1 \overline{S}_2^2 = \overline{S}_2^2$. Thus we have $s_5^1 S_5^1 = S_5^1$, $S_5^1 \overline{S}_2^1 = \overline{S}_2^1$, $S_5^1 S_5^2 = S_5^2$, $S_5^1 \overline{S}_2^2 = \overline{S}_2^2$, $S_5^2 S_5^1 \subseteq S_5^2$ because $s_5^2 s_5^1 S_5^2 = s_5^2 = s_5^2 S_5^2 = s_5^2 S_5^2 = s_5^$

Now suppose that the following conditions hold:

$$S_5^1 S_5^k = S_5^k, \quad S_5^k S_5^1 \subseteq S_5^k, \quad S_5^1 \overline{S}_2^j = \overline{S}_2^j, \quad \overline{S}_2^j S_5^1 \subseteq \overline{S}_2^j.$$

By definition, we have $s_5^{k+1}\bar{S}_2^k = \bar{S}_2^k$. Hence, $(s_5^1s_5^{k+1})\bar{S}_2^k = \bar{s}_5^1\bar{S}_2^k = \bar{S}_2^k$, whence $s_5^1s_5^{k+1} \in S_5^{k+1}$. Thus we obtain $S_5^{k+1} = (s_5^1s_5^{k+1})S_5^{k+1} = s_5^1S_5^{k+1}$, whence $S_5^1S_5^{k+1} = S_5^{k+1}$. We have $(s_5^{k+1}s_5^1)S_5^{k+1} = S_5^{k+1}$ and, furthermore, $s_5^{k+1}s_5^1 \in \bar{S}_2^k$; thus $s_5^{k+1}s_5^1 \in S_5^{k+1}$ implies $S_5^{k+1}S_5^1 \subseteq S_5^{k+1}$. We also have $(s_5^1s_2^{j+1})\bar{S}_2^j \subset s_5^1\bar{S}_2^j = \bar{S}_2^j$, whence $s_5^1s_2^{j+1} \in S_5^{k+1}$.

 $\in \bar{S}_{2}^{j+1}$, and $s_{5}^{1}\bar{S}_{2}^{j+1} = \bar{S}_{2}^{j+1}$ implies $S_{5}^{1}\bar{S}_{2}^{j+1} = \bar{S}_{2}^{j+1}$. Finally, we have $s_{2}^{j+1}s_{5}^{1}\in \bar{S}_{2}^{j}$ and $s_{2}^{j+1}s_{5}^{1}\bar{S}_{2}^{j} = s_{2}^{j+1}S_{2}^{j}\subset S_{2}^{j}$, whence it follows that $s_{2}^{j+1}s_{5}^{1}\in \bar{S}_{2}^{j+1}$ and $\bar{S}_{2}^{j+1}S_{5}^{1}\subseteq \subseteq \bar{S}_{2}^{j+1}$. Q.E.D.

Corollary 2.2. If S and \overline{S}_2^k ($k \ge 1$) are regular semigroups without magnifying elements, then S has one of the following four types of decompositions:

a) S = ((((...) ∪ S₅⁴) ∪ S₅³) ∪ S₅²) ∪ S₅¹, with an infinite number of components;
b) S = S₂ ∪ ((((...) ∪ S₅⁴) ∪ S₅³) ∪ S₅²) ∪ S₅¹, where S₂ is a semigroup of type S₂ and there are infinitely many components;

c) S = (((S₅^m∪...)∪S₅³)∪S₅²)∪S₅¹, where the number of components equals n;
 d) S = ((((S₂^m∪S₅^m)∪...)∪S₅³)∪S₅²)∪S₅¹, where the number of components is m+1.

We shall treat some properties of the semigroups \bar{S}_3 and S_4 .

Theorem 2.3. Let $a, b \in \overline{S}_3$, and let x be an inverse of a, and y an inverse of b $(x, y \in S_4)$. Then xy is an inverse of ba.

Proof. Since ax and by are left identities of S, we have baxyba=b(axy)ba==byba=ba, and xybaxy=xyb(axy)=xyby=xy. Q.E.D.

Theorem 2.4. If $a, b \in S_4$ and if x is an inverse of a and y is an inverse of b, then yx and ab are inverses of each other.

Proof. By Theorem 2.3, (yby)(xax) is an inverse of *ab*. Then we get ab=ab(yby)(xax)ab=a(byb)yx(axa)b=abyxab, yxabyx=ybyx=yx, since xa, yb are left identities of S. Q.E.D.

By Theorem 1.4, $\overline{S}_3 \cup S_4$ is a regular subset of S, but it fails to be a subsemigroup, because, e.g., $S_4 S_3 \subseteq S_2$ (cf. (2)). Set

 $X_1 = \{x \in S_4 | x \text{ is an inverse of some } a \in S_1\},\$

 $X_3 = \{y \in S_4 | y \text{ is an inverse of some } b \in S_3\}.$

Then $S_4 = X_1 \cup X_3$.

Corollary 2.5. X_1 and X_3 are subsemigroups of S_4 . In general, if $A \subseteq \overline{S}_3$ is a subsemigroup, then the inverses of the elements of A form a subsemigroup in S_4 .

Proof. This is an easy consequence of Theorem 2.3.

Corollary 2.6. \overline{S}_3 and S_4 have no idempotent elements.

Proof. Every element of \overline{S}_3 is magnifying, thus $a \neq a^2$ $(a \in \overline{S}_3)$. Assume that $e \in S_4$ is idempotent. Since e is an inverse of e, $e \in \overline{S}_3$ (by Theorem 1.4), which is a contradiction.

Theorem 2.7. Every element of \overline{S}_3 and S_4 generates an infinite cyclic semigroup.

Proof. In the opposite case, \bar{S}_3 or S_4 contains an idempotent element which contradicts Corollary 2.6.

Theorem 2.8. 1) \overline{S}_3 has no (proper) right magnifying element. 2) S_4 has no left magnifying element. 3) If $1 \in S$ (i.e. S is a monoid), then $S_0 \cup S_2 \cup S_5$ has no left or right magnifying element. 4) S_5 has no left magnifying element.

Proof. 1) is a consequence of [4], Chap. III. 5.6 (β). Since in the product $s_4 S$ ($s_4 \in S_4$) the representation of each element is unique, thus the same holds for $s_4 S_4$, and 2) is true. 3) follows from [4], Chap. III. 5.6 (γ), because the union $S_0 \cup S_2 \cup S_5$ does not contain left or right magnifying element of S. Finally, S_5 is a right group, and hence has no left magnifying element, cf. [4], Chap. III. 5.3 (γ).

3. In this section the results of [2] will be applied to the decomposition (1) of regular semigroups. For a regular semigroup S we shall investigate the following cases based on Theorem 4 in [2]:

1) S has neither a left nor a right identity element;

2) S has an identity element;

3) S has either a single left or a single right identity element.

In the case 3) we may assume that S has only a left identity element. In the opposite case we have to study the decomposition (1') instead of (1). As it is well known, an idempotent element e is \mathcal{D} -primitive if it is minimal among the idempotents D_e , where D_e is the \mathcal{D} -class of e (\mathcal{D} is one of Green's relations).

In the case 1) S has no left magnifying element (cf. Corollary 1.6), that is, $S_1 \cup S_3 = \emptyset$ and $S_4 = \emptyset$, furthermore, $S_5 = \emptyset$, because in the opposite case S would have a left identity element. Hence $S = S_0 \cup S_2 = \overline{S}_2$.

In the case 2) suppose that $1 \in S$ is the identity element. If 1 is \mathscr{D} -primitive then we have $S_1 \cup S_3 = \emptyset$, $S_4 = \emptyset$, while $S_5 \neq \emptyset$ (e.g. $1 \in S_5$). In this subcase we obtain that $S = S_0 \cup S_2 \cup S_5$. If 1 is not \mathscr{D} -primitive, then there are magnifying elements, that is, $S_1 \cup S_3 \neq \emptyset$, $S_4 \neq \emptyset$, S_5 is equal to the subsemigroup of all invertable elements and thus it is nonempty. Since $S_4 S_3 \subseteq S_2$ and $S_4 S_1 \subseteq S_0$, at least one of the subsemigroups S_0 , S_2 is nonempty. Hence we obtain $S = \overline{S}_2 \cup$ $\cup \overline{S}_3 \cup S_4 \cup S_5$, where all the components are nonvoid.

In the case 3) suppose that e is the only left identity element of S. If e is \mathscr{D} -primitive, then $S_1 \cup S_3 = \emptyset$, $S_4 = \emptyset$, while $S_5 \neq \emptyset$ (for example, $e \in S_5$). Therefore $S = S_0 \cup S_2 \cup S_5$. If e fails to be \mathscr{D} -primitive, then there are magnifying elements, that is, $S_1 \cup S_3 \neq \emptyset$, $S_4 \neq \emptyset$, $S_5 \neq \emptyset$ and, similarly to the second subcase of 2), we have $S_0 \cup S_2 \neq \emptyset$. Hence $S = \overline{S}_2 \cup \overline{S}_3 \cup S_4 \cup S_5$, where all the components are nonempty.

Summing up:

On a special decomposition of regular semigroups

Theorem 3.1. Let S be a regular semigroup. Then:

1) If S has no left identity element then $S_1 \cup S_3 = \emptyset$, $S_4 = \emptyset$, $S_5 = \emptyset$.

2) If S has an identity element and

a) if 1 is \mathcal{D} -primitive then $S_1 \cup S_3 = \emptyset$, $S_4 = \emptyset$, $S_5 \neq \emptyset$,

b) if 1 is not \mathcal{D} -primitive then $S_1 \cup S_3 \neq \emptyset$, $S_4 \neq \emptyset$, $S_5 \neq \emptyset$, $S_0 \cup S_2 \neq \emptyset$.

3) If e is the unique left identity of S and

a) if e is \mathcal{D} -primitive then $S_1 \cup S_3 = \emptyset$, $S_4 = \emptyset$, $S_5 \neq \emptyset$,

b) if e is not \mathcal{D} -primitive then $S_1 \cup S_3 \neq \emptyset$, $S_4 \neq \emptyset$, $S_5 \neq \emptyset$, $S_0 \cup S_2 \neq \emptyset$.

4. Finally, we make some remarks concerning the decomposition (1). For $x \in S_4$, $a \in \overline{S}_3$ let $B_x = \{b \in S | b \text{ is an inverse of } x\}$, $C_a = \{y \in S | y \text{ is an inverse of } a\}$. If $x \in S_4$ and $b \in B_x$ $(b \in \overline{S}_3)$, then bx is a left identity of S. Analogonsly, $ay \ (a \in \overline{S}_3, y \in C_a)$ is also a left identity of S.

Theorem 4.1. If $x \in S_4$ then B_x fails to be a subsemigroup. If $a \in \overline{S}_3$, then C_a fails to be a subsemigroup.

Proof. Suppose that B_x is a semigroup and $a, b \in B_x$. Then axa=a, bxb=band $ba \in B_x$. Hence baxba=ba. Since ax is a left identity element, hence b(ba)=ba. On the other hand, $ba \in \overline{S}_3$, thus baS=S, whence bs=s for all $s \in S$, which is a contradiction (b is a left magnifying element!).

Let $x, y \in C_a$. If C_a is a semigroup, then a(xy)a = (ax)ya = ya. But $ya \neq a$, because ya is idempotent, while the element $a \in \overline{S}_a$ is not. Thus $xy \notin C_a$. Q.E.D.

Let $M \subset S$ be a subset of S such that aM = S. Then the set M is left increasable by a. Such a set M is not uniquely determined by a.

Theorem 4.2. If $a \in \overline{S}_3$ then $a(S_0 \cup S_2 \cup S_4) = S$.

Proof. Let $a \in \overline{S}_3$ and $x \in S_4$ an inverse of a. Then we have axS = aS = S and $xS \subseteq S$. On the other hand, $xS \subseteq S_4S$, furthermore, by making use of the relations (2) we get

$$S_4 S = S_4 (S_0 \cup S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5) \subseteq S_0 \cup S_2 \cup S_4.$$

Hence $xS \subseteq S_0 \cup S_2 \cup S_4$ and thus $a(S_0 \cup S_2 \cup S_4) = S$. Q.E.D.

Theorem 4.2 implies for every $a \in \overline{S}_3$ the existence of an element $y_a \in S_0 \cup S_2 \cup S_4$ such that $ay_a = a$.

Theorem 4.3. a) If $a \in S_3$, then $y_a \notin S_0$. b) The elements $a \in \overline{S}_3$ for which $y_a \in S_4$ $(ay_a=a)$, have a two-sided identity element in S.

Proof. a) If $y_a \in S_0$, then there is an $x \neq 0$ such that $y_a x = 0$. Thus $ax = =(ay_a)x = a(y_ax) = a0 = 0$, whence $a \in S_0 \cup S_1$, which is a contradiction.

b) If $y_a \in S_4$, then there exists $b \in \overline{S}_3$, such that $by_a b = b$ and $y_a by_a = y_a$. Then $ay_a b = ab$, $ay_a by_a = aby_a$, that is, $ay_a = aby_a$, whence it follows that $a = a(by_a)$. On the other hand, by_a is a left identity element of S, whence $by_a a = a = aby_a$. Q.E.D.

References

- [1] J. SZÉP, On the structure of finite semigroups, 69-4, Dept. Math. Karl Marx Univ. Budapest (1969).
- [2] A. GERENTE, Eléments inversibles et croissants dans un demi-groupe, C. R. Acad. Sc. Paris, Série A, 274 (1972), 1775–1778.
- [3] M. PETRICH, Introduction to Semigroups, Charles E. Merrill Publishing Co. (Columbus, Ohio, 1973).
- [4] E. S. LJAPIN, Semigroups, Amer. Math. Soc. (Providence, Rhode Island, 1963).
- [5] A. H. CLIFFORD-G. B. PRESTON, *The algebraic theory of semigroups*, Vol. I, Amer. Math. Soc. (Providence, Rhode Island, 1961).

F. MIGLIORINI VIA BURCHIELLO 38 50 124 FIRENZE ITALY J. SZÉP DEPARTMENT OF MATHEMATICS KARL MARX UNIV. OF ECONOMICS 1828 BUDAPEST, P. O. BOX 489 HUNGARY