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On a special decomposition of regular semigroups

F. MIGLIORINI and J. SZEP

In [1] a general disjoint decomposition of semigroups was given, which can be
applied for the case of regular semigroups. The aim of the present paper is to obtain
a characteristic decomposition of regular semigroups based on the decomposition
studied in [1]. We shall investigate the componénts of this decomposition and the -
interrelations between them. By making use of [2] we study the cases of regular
semigroups with or without a left or right identity element.

Notation. For two sets 4, B we write AcB if A is a proper subset of B.
By a magnifying element we mean a left magnifying element.

1. Let S be a semigroup without nonzero annihilator. This is not a proper
restriction because every semigroup can be reduced to this case. Then S has the
following disjoint decomposition:

M s=Us
i=0
‘where A
= {acSlaScS and Ix€S; x20 and ax = 0},
S, = {a€S|aS =S and 3y€S, y # 0 and ay = 0},
Sy = {a€ SN\(SeU SpjaSc S and 3x,, x,€ S, x,5%x, and ax; = ax,},
= {a€ S\(SoUSY|asS = S and 3y;, y,€S, », # y, and ay, = ay,},
Sy = {a€ S\(S,U S, US,U Sy)|lasSc S}, ‘
S; = {a€ S\(SoU S US,USylas = S}.
It is easy to see that the components S; (i=0,1,...,5) are semigroupé,
8;:NS;=0 (i#j) and the following relations hold:
5SS S, S8,CS (0=is9),
@ SSC S SIS S S S 55E S,
SeS3 & Se, S651 & So- ‘

Récéived Miy 27, 1977.
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It is obvious that there exists an analogous decomposition

Cm

1) §=UT,

-
I

0

where T; (0=i=5) is the dual of S,.

Remark. The above decomposition is in fact “group oriented”’. That is, we
select consecutively the elements of S having a property that is very far from that
of an element of a group. So we consecutively select the annihilators, the (left)
zero divisors, the elements for which the products are not left cancellative, and
what remains is a right group.

Our theorems concern the decomposition (1), but analogous results can be
formulated for the decomposition (1°). -

Theorem 1.1. S; is a right group.

Pro of. It is easy to see that S; is right simple and left cancellative, whence
the assertion follows. '
Set SoUSz = §2 and S]_US3 = gS'

Theorem 1.2. 5, is a subsemigroup of S.

Proof. If 5,¢.S, and s,€S,, then sy5,€S,. There are elements x, y€ S, x=y
such that s,x=s,y. We have $55,¢ S, and s,5.¢ S5 because sy, S=s,(5,5)C S.
If 505,70, then (sp5)x=(8,5)y (x#y), whence 5,5,€8,SS,. Similarly,
535,€S,. If 5,20 then s5,5,#0 because 5,€S,. Since 5,€S,, there is an element
z+#0 such that s,z=0, hence (s,8,)z=0. Therefore s,5,€S,. Q.E.D.

Theorem 1.3. S; contains all the magnifying elements of S and only them.

Proof. Let acS,US;. If a€S and aS=S, and if furthermore, there is an
y#0 such that ay=0, then S’=S\{0}cS and aS’=S, whence a is a magnify-
ing element. If a€ S5, aS=S and if, furthermore, there exist x, y€S (x>y) such
that ax=ay, then a(S—{x})=S and a is a magnifying element.

Conversely, if a€ S is a magnifying element, then a¢ SUS,US,; and aM=S
(Mc S). Thus there exist meé M and s€ S\ M such that am=as. Hence it follows
that ac S;US;. Q.E.D.

Remark. Theorems 1.2 and 1.3 imply
() SeSe & SHUSe, 8528, S SoUSs, 5183 E 5;USs, 838, € SiUSs.

In what follows we assume that S is a regular semigroup, i.e. for every ac.S
there is an x€ S such that e=axa and x=xax (x is an inverse of a). The elements
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ax, xa are idempotent and aS=2axS2axaS=aS implies axS=asS, and similarly,
xaS=xS. The regular semigroup § can contain a zero element hence the com-
ponents S, and S, can exist in the decomposition (1).

Theorem 1.4. The inverses of the elements of S, are in S, and the inverses of
the elements of S, are in S,.

Proof. Let acS, and let x€.S be an inverse of a, that is, let axa=a and
xax=x. First we show that xSC S. Suppose that xS=S, then there is.a subset
S’c S such that aS’=S because a is a magnifying element. Hence it follows
that xaS’=xS=S. But we have (xa)S=xS=S and xa is idempotent, that is,
xa is a left identity of S. Therefore, (xa)S’=S’#S, which is a contradiction.
Thus xSc S, whence x is contained in S;, S, or S;. If x€S,, then xs;=xs,
(5:7#5,) and (ax)s;=(ax)s,. Since (ax)S=aS=S and ax is idempotent we obtain
that ax is a left identity of S, i.e. (ax)s,=(ax)s, implies s,=s,, which is a con-
tradiction. It can be proved similarly that x¢ S,. It remains the case x€.S,.

Conversely, let b€ S,, that is, b6S=S"'C S. Let y be an inverse of b in S. Hence
byS=bS=S". Suppose that ySc S. Let yS=8" (#.S5). Hence bS”"=byS=bS.
Thus there are elements s¢ S”, and s”€.S” such that bs”=bs.” But every element
a of § for which ax,=ax, (x;x,), is contained in S,U S, or S,U S5, which con-
tradicts the fact that b€ S,. Thus necessarily yS=S, that is, y¢ SoUS,US;. If
Y€S;, then (pb)S=ypS=y(BS)=yS'=S (§'#S), ie. y€S,US;, which is a con-
tradiction. It remains the only case y€S,US,;=S;. Q.E.D.

It is easy to see that the set of inverses of the elements of § is equal to S,
and the set of inverses of the elements of S, is equal to S;.

Corollary 1.5. If a regular semigroup S does not contain a magnifying element
(5;=0), then S;=0 and conversely, S;=0 implies S;=0.

Corollary 1.6. If a regular semigroup S does not contain a left identity, then
S.=0; and hence S;=9.

For if a€S, and x€.§, is an inverse of a, then ax is a left identity of S.

Theorem 1.7. S, is a regular semigroup and the inverses of an element of S,
are contained in S,.

Proof. Let a€S, and x an inverse of g in S. Since a€ S,U S,, we have aSc S.
Assume that xS=S§. Then (xa)S=x(aS)=xS=S, whence x is a magnifying
element, i.c., x€S;. But every inverse of an element of S, is (by Theorem 1.4) in
S, thus a€ S,, which is a contradiction. Therefore xScS. But x¢ S4 because
a€S,. We conclude that. x€S,U S,=S,. QED

The above results y;eld '
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Theorem 1.8. A semigroup S is regular if and only if it has a decomposition
(1) where

a) S, = S,US; is regular;

b) the inverses of the elements of S3=S,U S, are contained in S, and conversely;

©) S; is a right group.

Proof. Necessity follows from Theorems 1.1, 1.4, 1.7. Sufficiency follows
from the fact that a right group is regular.

2. In this section we shall deepen our kowledge concerning the decomposition
(1) of a regular semigroup S as well as the components S,, S, and S,.

Theorem 2.1. Let S be a regular semigroup without (left) magnifying elements.
Using the notations S,=S}, S;=S! we obtain the following decompositions:

S = SUSE and if St has no magnifying element,

S§3=82USZ and if S} has no magnifying element,

SE=Sk1y sk,

where every St is a regular semigroup, every S¥ is a right group and the following
inclusions hold:

@ SkSI S Sk, SiSk=St for k=]

SkS{=18§, Si{StEc 8§ for k=]
Proof. It is enough to give a proof for the cases:
S3S§, SgSi, SIS, S{S}
because the proof for the semigroups S is similar.
The proof is by induction on &k and j. It is trivial that

Sist =Sk siSi=15i, s2S}=35} (skeSh.

Hence, s53s5:5;=S}, i.e., s3s3€S: for all s;€ Sy and s2€ SZ. Since siS1=S! and,
furthermore, s3SZS S and sp(siSy S}, that is, sis2€5%, we conclude that
5;S:=52 and s5;5;=S5%, whence S!SZ=SZ, S!5:=5%. Thus we have
Sy Si= S51, S;83=S8;, S3Si=S2, Si18i=8%, Sgs;gsg because sZs) SE=
=52 S2 SZ, and thus sis;€SZ. The first step of the proof is complete.

Now suppose that the following conditions hold:

S}Sk= sk, Sks3c sk, SMSi=35], Sistc S
By definition, we have si*'S}=S;. Hence, (s;st*")S%=s555=S;, whence
55551 € Si*1. Thus we obtain S"“—(sls"“) Sgtl=s} Sk*1, whence Sj SEt'= Sk,
We have (sitlsp) Sit!'=S¥*! and, furthermore, .s"‘“s‘ESﬁ, thus s"+1 lES"+1
implies S;*'S;S S5, We also have (s3si**)Sics;5i=S5], whencé sisi*'€
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€8/*t, and siSj*'=S8i*' implies S}Si*'=S5}*'. Finally, we have sj*'s;cS}
and sj*'s S’—s;+1 S’C sg, whence it follows that s{*'stc¢§i*! and Si*1slc
gﬂ“ Q.E.D.

Corollary 2.2. If S and 8% (k=1) are regular semigroups without magnifying
elements, then S has one of the following four types of decompositions:

a) S=((((.)USHUSHUSE)USL, with an infinite number of components;

b) S = S,U((((...)USHUSHUSZUSE, where S, is a semigroup of type S, .
and there are infinitely many components; ’

c) S =(((SPU..)USHUSE)USL, where the number of components equals n;

d) S=(((SpUSNHU.. )USHUSE)US}, where the number of components is
m+1,

We shall treat So_me properties of the semigroups S; and S,.

Theorem 2.3. Let a, be8;, and let x be an inverse of a, and y an inverse of b
(x, y€S,). Then xy is an inverse of ba.

Proof. Since ax and by are left identities of S, we have baxyba=b(axy)ba=
=byba=ba, and xybaxy=xyb(axy)=xyby=xy. Q.E.D.

Theorem 2.4. If a, b€ S, and if x is an inverse of a and y is an inverse ofb
then yx and ab are inverses of each other.

Proof. By Theorem 2.3, (yby)(xax).is an inverse of ab. Then we get
ab=ab(yby)(xax)ab=a(byb) yx(axa)b=abyxab, yxabyx=ybyx=yx, since xa, yb
are left identities of S. Q.E.D.

By Theorem 1.4, S;US, is a regular subset of S, but it fails to be a subsemi-
group, because, e.g., SgS3E S, (cf. (2)). Set

X, = {x€8,|x is an inverse of some a€ S},
X; = {y€S;|y is an inverse of some b€ S,}.
Then S4=X1UX3.

Corollary 2.5. X; and X, are subsemigroups of S,. In general, if AgS;, is
a subsemigroup, then the inverses of the elements of A form a subsemigroup in S,.

Proof. This is an easy consequence of Theorem 2.3.
Corollary 2.6. S; and S, have no idempotent elements.

Proof. Every element of S, is magnifying, thus a=a* (a€S;). Assume that
ec S, is idempotent. Since e is an inverse of e, e€S; (by Theorem 14) whxch is
a contradiction.
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Theorem 2.7. Every element of .S, and S, generates an infinite cyclic semi-
group. . o

Proof. In the opposite case, S; or S, contains an idempotent element which
contradicts Corollary 2.6.

Theorem 2.8. 1) S; has no (proper) right magnifying element. 2) S, has no
left magnifying element. 3) If 1¢S (i.e. S is a monoid), then S,U S,US; has no
left or right magnifying element. 4) S5 has no left magnifying element.

Proof. 1) is a consequence of [4], Chap. III. 5.6 (8). Since in the product s,.5
(s4€8,) the representation of each element is unique, thus the same holds for s,.S,,
and 2) is true. 3) follows from [4], Chap. IIL. 5.6 (), because the union S,U S, U S,
does not contain left or right magnifying element of S. Finally, S; is a right
group, and hence has no left magnifying element, cf. [4], Chap. III. 5.3 (y).

3. In this section the results of [2] will be applied to the decomposition (1)
of regular semigroups. For a regular semigroup S we shall mvestlgate the follow-
ing cases based on Theorem 4 in [2]:

1). S has neither a left nor a right identity element;

2) S has an identity element;

3) S has either a single left.or a single right identity element.

In the case 3) we may assume that S has only a left identity element. In the
opposite case we have to study the decomposition (1) instead of (1). As it is well
known, an idempotent element e is Z-primitive if it is minimal among the idem-
potents D,, where D, is the D-class of e (2 is one of Green’s relations).

In the case 1) S has no left magnifying element (cf. Corollary 1.6), that is,
S,US;=0 and S,=@, furthermore, S;=§, because in the opposite case S
would have a left identity element. Hence S=S,US,=S5,. -

In the case 2) suppose that 1€ S is the identity element. If 1 is 2-primitive
then we have S,US,;=0, S,=0, while S;=0 (e.g. 1€S5;). In this subcase we
obtain that S=S,US,US;. If 1 is not @-primitive, then there are magnifying
elements, that is, 5;US;=0, S;#0, S; is equal to the subsemigroup of all in-
vertable elements and thus it is nonempty. Since S,;S;ES, and S,S5,ES,, at
least one of the subsemigroups S,, S, is nonempty. Hence we obtam S=8,U
US,Us,U S5, where all the components are nonvoid.

In the case 3) suppose that e is the only left 1dent1ty element of S. If eis
P-primitive, then S;US;=0, S,=0, while S;=0 (for example, e€S;). There-
fore S=5,US,US;. If e fails to be Z-primitive, then there are magnifying ele-
ments, thatis, S;US;=0, S,=0, S;=0 and, similarly to the second subcase of 2),
we have  SoUS,=p. Hence S=S,US,US,US;, where all the- components are
nonempty. - :

Summing up:
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Theorem 3.1. Let S be a regular semigroup. Then:

1) If S has no left identity element then S,US;=0, S,=0, Ss—ﬂ
2)If S has an identity element and

a) if 1 is D-primitive then S,US;=0, S;=0, S;>=0,

b) if 1 is not 2-primitive then S;U S3=0, S;#=0, S50, SoUS,=0. -
3)If e is the unique left identity of S and

a) if e is D-primitive then S,US;=0, S,=0, S;=0,

b) if e is not D-primitive then S,U S370, S,#0, S;70, S,U S, =0.

4. Finally, we make some remarks concerning the decomposition (1). For
x€S,, acS; let B,={bcS|b is an inverse of x}, C,={y€S|y is an inverse
of a}. If x€S, and b€B, (b€S,), then bx is a left 1dent1ty of S. Analogonsly,
ay (ac8;, y€C,) is also a left 1dent1ty of S.

Theorem 4.1. If x€S, then B, fails to be a subsemigroup. If acS,, then C,
fails to be a subsemigroup.

Proof. Suppose that B, is a semigroup and a, b€B,. Then axa= a, bxb=b
and bacB,. Hence baxba=ba. Since ax is a left identity element, hence
b(ba)=ba. On the other hand, ba€S;, thus baS=S, whence bs=s for all s¢S,
which is a contradiction (b is a left magnifying element!).

Let x, y€C,. If C, is a semigroup, then a(xy)a=(ax)ya=ya. But ya=a,
because ya is idempotent, while the element a€S; is not. Thus xy¢ C,. Q.E.D.

Let McC S be a subset of S such that aM=S. Then the set M is left increas-

able by a. Such a set M is not uniquely determined by a.

Theorem 4.2. If acS, then a(S,US,US)=S.

Proof. Let ac§; and x€ S, an inverse of 4. Then we have axS=aS=.S and
xS S. On the other hand, xSES,S, furthermore, by making use of the rela- .
tions (2) we get

S, S = S, (SU S U S, US;US,USs) & S,U 52US4
Hence -xSSS,US,US, and thus a(S,US,US)=S. Q.E.D.

Theorem 4.2 implies for every a€ S the existence of an element y,€ S,U S,U S,

such that ay,=a.

Theorem 4.3, 8) If ac S;, then y,¢ S,. b) The elements ac S, for whzch V,€8;
(ay,=a), have a two-sided identity element in S.

Proof. a) If y,€S,, then there is an x70 such that y,x=0. Thus ax=
=(ay)x=a(y,x)=a0=0, whence a€S,US;, which is a contradiction. '

b) If y,€S,, then there exists b€S;, such that by,b=b and y,by,=y,. Then
ay,b=ab, ay,by,=aby,, that is, ay,=aby,, whence it follows that a=a(by,).
On the other hand, by, is a left identity element of S, whence by,a=a=aby,. Q.E.D.
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