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On a special decomposition of regular semigroups 
F. MIGLIORINI and J. SZÉP 

In [1] a general disjoint decomposition of semigroups was given, which can be 
applied for the case of regular semigroups. The aim of the present paper is to obtain 
a characteristic decomposition of regular semigroups based on the decomposition 
studied in [1]. We shall investigate the components of this decomposition and the 
interrelations between them. By making use of [2] we study the cases of regular 
semigroups with or without a left or right identity element. 

N o t a t i o n . For two sets A,B we write AczB if A is a proper subset of B. 
By a magnifying element we mean a left magnifying element. 

1. Let S be a semigroup without nonzero annihilator. This is not a proper 
restriction because every semigroup can be reduced to this case. Then S has the 
following disjoint decomposition: 

50 = {a£S\aSaS and 3x£S; x^O and ax = 0}, 
S1! = { a ^ l a S = S and 3j>€S', y ^ 0 and ay = 0}, 
S2 = {a€ i S \ ( S 0 U Sj)|aScz S and 3xj , x2Ç.S, x1^x2 and ax1 = ax2}, 
Ss = {a£S\(5"oUSOIaS = S and S j ^ ^ e S , # y2 and ay1 = ay2}, 
51 = {a€S\(S0\JS1\JSaD S3)\aS<zS}, 
S, = {aÇSWoUS^S^SJlaS = S}. 

It is easy to see that the components S( (i=0, 1, ..., 5) are semigroups, 
S10 Sj—0 (/Vj) and the following relations hold: 

5 

(1) ¡=o 
where 

(2) 
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It is obvious that there exists an analogous decomposition 

0 0 s=UT„ ¡=o 

where T, ( 0 S i S 5 ) is the dual of S,. 

R e m a r k . The above decomposition is in fact "group oriented". That is, we 
select consecutively the elements of S having a property that is very far from that 
of an element of a group. So we consecutively select the annihilators, the (left) 
zero divisors, the elements for which the products are not left cancellative, and 
what remains is a right group. 

Our theorems concern the decomposition (1), but analogous results can be 
formulated for the decomposition (1'). 

T h e o r e m 1.1. S5 is a right group. 

Proo f . It is easy to see that >S5 is right simple and left cancellative, whence 
the assertion follows. 

Set SoUSa = S2 and ^ U ^ = SS. 

T h e o r e m 1.2. S2 is a subsemigroup of S. 

Proo f . If s0£S0 and s2dS2, then s0s2£S2. There are elements x,y£S, x^y 
such that s2x=s2y. We have So^if S2 and s0s2$S5 because s0s2S=s0(s2S)a S. 
If sQs2?*0, then (s0s^x=(s0s^y (x^y), whence S2QS2. Similarly, 
s2s0£S2. If JQ^O then because s2£S2. Since i 0 £ S 0 , there is an element 
z=i0 such that s0z=0, hence (52io)z=0. Therefore jg^oi'S'o- Q.E.D. 

T h e o r e m 1.3. S3 contains all the magnifying elements of S and only them. 

Proof . Let aZS^S^. If a£S and aS=S, and if furthermore, there is an 
y^O such that ay=0, then S' = S\{0}<zS and aS'—S, whence a is a magnify-
ing element. If a£S3, aS=S and if, furthermore, there exist x, y£S (x^y) such 
that ax=ay, then a(S— {x}) = »S and a is a magnifying element. 

Conversely, if a£S is a magnifying element, then a C U .S2 U S4 and aM=S 
(MczS ) . Thus there exist m£M and s(iS\M such that am=as. Hence it follows 
that a^St\JSa. Q.E.D. 

R e m a r k . Theorems 1.2 and 1.3 imply 

(3) S0S2QS0US2, S2S0QS0US2, S1S3QS1US3, S3S1QS1\JS3. 

In what follows we assume that S is a regular semigroup, i.e. for every a(iS 
there is an x£ S1 such that a=axa and x=xax (x is an inverse of a). The elements 
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ax,xa are idempotent and aSQaxS^axaS=aS implies axS=aS, and similarly, 
xaS=xS. The regular semigroup S can contain a zero element hence the com-
ponents S0 and Sx can exist in the decomposition (1). 

Theorem 1.4. The inverses of the elements of Ss are in St and the inverses of 
the elements of are in S3. 

Proof . Let a£S3 and let x£S be an inverse of a, that is, let axa—a and 
xax=x. First we show that xSczS. Suppose that xS= S, then there is a subset 
S'a S such that aS' = S because a is a magnifying element. Hence it follows 
that xaS'=xS= S. But we have (xa)S=xS= S and xa is idempotent, that is, 
xa is a left identity of S. Therefore, (xa) S" = S ' ^ S1, which is a contradiction. 
Thus xSczS, whence x is contained in S0, S2 or S4. If x£S2, then xsx=xs2 

(jxT^a) and (ax)s1=(ax)i2- Since (ax)S=aS—S and ax is idempotent we obtain 
that ax is a left identity of S, i.e. (ax)s1=(ax)s2 implies J i=s 2 , which is a con-
tradiction. It can be proved similarly that x^-S^. It remains the case xgSj . 

Conversely, let b£ St, that is, bS= S'cz S. Let y be an inverse of b in S. Hence 
byS=bS=S'. Suppose that .ySc S. Let yS=S" (^S). Hence bS"=byS=bS. 
Thus there are elements s a n d s"£S" such that bs"=bs.' But every element 
a of S for which axx=ax2 (x1y^x2), is contained in SoU Si or S2(JS3, which con-
tradicts the fact that b£St. Thus necessarily yS=S, that is, >>$ S 0US 2US 4 . If 
y£Sb, then ( y b ) S = y S = y ( b S ) = y S ' = S ( 5 V S ) , i.e. y6 S iUS 3 , which is a con-
tradiction. It remains the only case y£5,

1U/S3=S3. Q.E.D. 
It is easy to see that the set of inverses of the elements of S3 is equal to S4 

and the set of inverses of the elements of S4 is equal to S3. 

Coro l la ry 1.5. If a regular semigroup S does not contain a magnifying element 
(S3 — Q), then 1S4 — 0 and conversely, S 4 =0 implies S3=0. 

Coro l l a ry 1.6. If a regular semigroup S does not contain a left identity, then 
0; and hence S 4=0. 

For if a£S3 and x£S4 is an inverse of a, then ax is a left identity of S. 

Theorem 1.7. S2 is a regular semigroup and the inverses of an element of S2 

are contained in S2. 

Proof. Let a£S2 and x an inverse of a in S. Since a£ S0U S2, we have aScz S. 
Assume that xS=S. Then (xa)S=x(aS)=xS= S, whence x is a magnifying 
element, i.e., x£S3 . But every inverse of an element of S3 is (by Theorem 1.4) in 
S4, thus a£Sly which is a contradiction. Therefore xSczS. But 54 because 
a£S2. We conclude thiit xeS„US 2 =S 2 . Q.E.D. 

The above results yield: , . 
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T h e o r e m 1.8. A semigroup S is regular if and only if it has a décomposition 
(1) where 

a) S2 = S0US2 is regular; 
b) the inverses of the elements of S3=<S'1U S3 are contained in St and conversely; 
c) Ss is a right group. 

Proo f . Necessity follows from Theorems 1.1, 1.4, 1.7. Sufficiency follows 
from the fact that a right group is regular. 

2. In this section we shall deepen our kowledge concerning the decomposition 
(1) of a regular semigroup S as well as the components S2, S3 and S4. 

T h e o r e m 2.1. Let S be a regular semigroup without (left) magnifying elements. 
Using the notations S2=S\, S6 = S] we obtain the following decompositions: 

S = S2 U Sj and if S2 has no magnifying element, 
Sj = U Si and if S\ has no magnifying element, 

where every S2 is a regular semigroup, every S\ is a right group and the following 
inclusions hold: 

S£si g SI S(SI = st for k^j, 
(4) _ 

S£Si = Si, SiStQ Si for k ^ j . 

Proo f . It is enough to give a proof for the cases: 

S5S5, SgSg, S$S2, S2 Si 

because the proof for the semigroups Si, is similar. 
The proof is by induction on k and j. It is trivial that 

S£S£ = Si, s\S2 = Si, s|S| = S2 (sk£St). 

Hence, . s ^ S ^ S * , i.e., s ^ Ç S ^ for all and s2
5£S?. Since = and, 

furthermore, s \ S 2 ^ S 2 and sl(s%Sl)<zSl, that is, s ^ z ^ , we conclude that 
s\S%=S£ and ^ si S%=S%, whence S^S2=S2, SfS2

2=S2
2. Thus we have 

^ B 1 ^ 1 . SlSl=S\, S^S^S2, SlSl=S2
2, S'S^QS2 because = 

=s2S2 = S2, and thus Î ^ Î J Ç S 5
2 . The first step of the proof is complete. 

Now suppose that the following conditions hold: 

SIS£ = St, StSi Q St, SiSi = Si, Si Si £ Si 
By definition, we have Hence, (s]4+1)Sk

2=slSk
2=Sk

2, whence 
Sk+1. Thus we obtain = 5 6

t + 1 = s \ S£+1, whence Si S£+1 = S8*+1. 
We have = and, furthermore, 4+V6€S*; thus s ^ ^ s ^ S ^ 1 

implies S$+1StQS*+1. We also have (slsJ
2
+1)S{czs\Si=Si, whence s\sJ

2
+1e 
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£Si+1, and_ s\Si+1=Si+1 implies S}SI+1=S{+1. Finally, we have 
and si+1slSi=si+1SiczSi, whence it follows that s{+1s\£S{+1 and SJ

2
+1S^ 

QS j
2

+1. Q.E.D. 

C o r o l l a r y 2.2. If S and S2 (fcs 1) are regular semigroups without magnifying 
elements, then S has one of the following four types of decompositions: 

a) S = ((((...) U S f ) U SI) U Sf) U S5\ with an infinite number of components; 
b) 5 = S2 U((((...) U Si) U Si) U Sf) U SI, where S2 is a semigroup of type S2 

and there are infinitely many components; 
c) S = U...) U S5

3) U Sf) U S\, where the number of components equals n; 
d) S = ((((S?US?)U...)UiSDUS|)USl, where the number of components is 

m+1. 

We shall treat some properties of the semigroups S3 and St. 

T h e o r e m 2.3. Let a, b£S3, and let x be an inverse of a, and y an inverse of b 
(x, S4). Then xy is an inverse of ba. 

Proof . Since ax and by are left identities of S, we have baxyba=b(axy)ba= 
=byba=ba, and xybaxy=xyb(axy)=xyby=xy. Q.E.D. 

T h e o r e m 2.4. If a, bdS^ and if x is an inverse of a and y is an inverse of b, 
then yx and ab are inverses of each other. 

Proof . By Theorem 2.3, (yby)(xax) is an inverse of ab. Then we get 
ab=ab (yby) (xax) ab=a (byb)yx (axa) b=abyxab, yxabyx=ybyx =yx, since xa, yb 
are left identities of S. Q.E.D. 

By Theorem 1.4, S3UiS4 is a regular subset of S, but it fails to be a subsemi-
group, because, e.g., StS3Q S2 (cf. (2)). Set 

Xx = {xC 5*41x is an inverse of some ad 5V}, 

X3 = { j C ^ I ^ is an inverse of some b £ S3j. 

Then 54=X1UA ,3. 

C o r o l l a r y 2.5. Xx and X3 are subsemigroups of St. In general, if AQS3 is 
a subsemigroup, then the inverses of the elements of A form a subsemigroup in St. 

Proof . This is an easy consequence of Theorem 2.3. 

C o r o l l a r y 2.6. S3 and St have no idempotent elements. 

Proof . Every element of S3 is magnifying, thus a^a2 (a£S3). Assume that 
e£ S4 is idempotent. Since e is an inverse of e, e£S3 (by Theorem 1.4), which is 
a contradiction. 
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T h e o r e m 2.7. Every element of S3 and S4 generates an infinite cyclic semi-
group. 

Proo f . In the opposite case, S3 or S4 contains an idempotent element which 
contradicts Corollary 2.6. 

T h e o r e m 2.8. 1) S3 has no (proper) right magnifying element. 2) S4 has no 
left magnifying element. 3) If l£S (i.e. S is a monoid), then U-S2USb has no 
left or right magnifying element. 4) Ss has no left magnifying element. 

Proof . 1) is a consequence of [4], Chap. III. 5.6 (/?). Since in the product sAS 
(s4£ S^ the representation of each element is unique, thus the same holds for s4S4, 
and 2) is true. 3) follows from [4], Chap. III. 5.6 (y), because the union S0U S a U S5 

does not contain left or right magnifying element of S. Finally, Ss is a right 
group, and hence has no left magnifying element, cf. [4], Chap. III. 5.3 (y). 

3. In this section the results of [2] will be applied to the decomposition (1) 
of regular semigroups. For a regular semigroup S we shall investigate the follow-
ing cases based on Theorem 4 in [2]: 

1) S has neither a left nor a right identity element; 
2) S has an identity element; 
3) S has either a single left or a single right identity element. 
In the case 3) we may assume that S has only a left identity element. In the 

opposite case we have to study the decomposition (1') instead of (1). As it is well 
known, an idempotent. element e is ©-primitive if it is minimal among the idem-
potents De, where De is the ©-class of e (© is one of Green's relations). 

In the case 1) S has no left magnifying element (cf. Corollary 1.6), that is, 
5 ' 1 U5 g =0 and Si=0, furthermore, Ss=0, because in the opposite case S 
would have a left identity element. Hence S= S0\J S2=S2. 

In the case 2) suppose that l ^ S is the identity element. If 1 is ©-primitive 
then we have 5 ,

1U5 ,
3=0, .S4=0, while (e.g. 1 £S"5). In this subcase we 

obtain that S= S0U -S2U S5 . If 1 is not ©-primitive, then there are magnifying 
elements, that is, SiU S3 7^0, 5 ^ 0 , S5 is equal to the subsemigroup of all in-
vertable elements and thus it is nonempty. Since S 4 S a QS 2 and SiSxQSo, at 
least one of the subsemigroups S0, S2 is nonempty. Hence we obtain S = S 2 U 
US 3 US 4 US 5 , where all the components are nonvoid.. 

In the case 3) suppose that e is the only left identity element of S. If e is 
©-primitive, then 5 1 U S 3 = 0 , S4-0, while 5*5^0 (for example, e£S5). There-
fore 5'=5'0U52U5'5 . If e fails to be ©-primitive, then there are magnifying ele-
ments, that is, •S,

1lJ5'37i0, S49^0, and, similarly to the second subcase of 2), 
we have 5'oU527 i0. Hence S2 U S3 U S4 U , where all the components are 
nonempty. 

Summing up: 
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T h e o r e m 3.1. Let S be a regular semigroup. Then: 
1 ) If S has no left identity element then 1 S ' 1 U 5 3 = 0 , St=0, S 5 = 0 . 

2) If S has an identity element and 
a) if 1 is 2-primitive then S I

1U53=0, £4=0, 
b) i f \ is not 9-primitive then 5 ,

1U5 ,
3?i0, 5 ,

OU5'2^0. 
3) If e is the unique left identity of S and 

a) if e is @t-primitive then JS,
1US,

3=0, 5 4 = 0 , 
b) if e is not 2l-primitive then S ^ U ^ ^ , S^O, Ss?±0, SoUS2^0. 
4. Finally, we make some remarks concerning the decomposition (1). For 

x^Si, afS3 let Bx={b£S\b is an inverse of x}, Ca={y£S\y is an inverse 
of a}. If x£S 4 and b£Bx (b£S3), then bx is a left identity of S. Analogonsly, 
ay (a£S3, y£Ca) is also a left identity of S. 

T h e o r e m 4.1. If x£ St then Bx fails to be a subsemigroup. If a£S3, then Ca 

fails to be a subsemigroup. 

Proof . Suppose that Bx is a semigroup and a,b£Bx. Then axa=a, bxb=b 
and ba£Bx. Hence baxba=ba. Since ax is a left identity element, hence 
b(ba)=ba. On the other hand, ba€S3, thus baS= S, whence bs=s for all s£ S, 
which is a contradiction (b is a left magnifying element!). 

Let x,y£Ca. If Ca is a semigroup, then a(xy)a=(ax)ya=ya. But ya^a, 
because ya is idempotent, while the element a£S3 is not. Thus xy$Ca. Q.E.D. 

Let Ma S be a subset of S such that aM=S. Then the set M is left increas-
able by a. Such a set M is not uniquely determined by a. 

T h e o r e m 4.2. If a£S3 then a(S0\J S2{J S^ = S. 

Proof . Let a£S3 and xg ¿>4 an inverse of a. Then we have axS=aS= S and 
xSczS. On the other hand, xSQS^S, furthermore, by making use of the rela-
tions (2) we get 

SiS= Si(S0US1 US2US3US4US5) Q SoUS^USV 

Hence -xSQSa\JSaUS4 and thus a C ^ U ^ U ^ ^ S . Q.E.D. 
Theorem 4.2 implies for every a£S3 the existence of an element ya£ .S0U SgU 

such that aya—a. 
T h e o r e m 4.3. a) If a£ Ss, then b) The elements a£S3 for which ya£St 

(1aya=a), have a two-sided identity element in S. 

Proof , a) If jai'S'o. then there is an x ^ O such that yax=0. Thus ax= 
=(aya)x—a(yax)=a0—0, whence a€5 ,

0U5'1, which is a contradiction. 
b) If ya€St, then there exists b£S3, such that byab=b and yabya—ya. Then 

ay„b=ab, ayabya=aby„, that is, aya=abya, whence it follows that a—a(bya). 
On the other hand, bya is a left identity element of S, whence byaa=a=aby„. Q.E.D. 
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