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Abstract

In this thesis we walk a historical path along the main stages of

the �integrability of demand� theory, starting with the work of G. B.

Antonelli and arriving to �Preference, Utility and Demand� by Hurwicz

and Uzawa. In doing this we examine the main results of this branch

of Microeconomics both from a theoretical and a mathematical point

of view. Furthermore we determine the relation between the utility

maximization framework and the revealed preference approach on the

one side and the links between this latter and �individual decision

making� theory on the other side.

The theory of the �Integrability of demand� deals with the problem of re-

covering a utility function from a consumer demand by assuming speci�c

properties on this latter. The idea is that, by using a process of mathe-

matical integration, it is possible to prove the existence of a function from

which the demand could be derived. This problem was �rst mathematically

handled by G. B. Antonelli in 1886 in his �Sulla Teoria Matematica della

Economia Politica� (cfr. [1]).

From that moment onwards, this theory became the object of the study of

many economists as it was revealed as a fundamental part of microeconomic

theory in a sense that we will specify hereinafter.

The classical approach to the �individual decision making� theory in Mi-

croeconomics uses the utility maximization framework. We consider an econ-

omy with n goods whose prices are given by a positive real numbers vector.

In this economy an agent is endowed with a certain income and he will choose

his demand taking into consideration all these parameters. It is possible for

the consumer to express his preference through a so-called utility function,

in a way which we will explain later on. The preferred consumptions are now

the solution of the maximization of the utility function subject to the budget

constraint.

In the lights of this result the theory of �integrability� gains importance

for two main reasons.
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First, is it possible to obtain a utility function from the demand? That

is, does it make sense to move in a opposite sense with respect to the process

described above?

Second, it is useful to answer to the critics of the utility maximization

approach. In fact �the utility maximization approach in the study of con-

sumer behavior is sometimes criticized as a lot of scholars think the notion

of utility is a psychological measurement and cannot be observed, and thus,

they think the demand function from utility maximization is meaningless�
(cfr. [8]).

In this thesis we will answer to both questions. In fact we will present

Theorem 7.2 to analyze the �rst one. What about the second? The integra-

bility result tells us that a utility function can be derived from observable

data on demand although the utility function is not directly observable.

I will follow two lines in developing this sketch on the �Integrability of

demand� theory. On the one hand I will go through an historical approach,

while on the other I will develop some mathematical-technical aspects in such

a way that the two paths complete each other.

The �rst section is a sketch of the �individual decision making� theory

mentioned above. Some familiar results are recalled, such as the de�nition of

utility function (cfr. Def. 1.1) and its properties or the �Utility Maximization

Problem� (cfr. 1.2). In Proposition 1.8 two fundamental properties of the

so called �Slutsky Matrix� are introduced (symmetry and negative semidef-

initeness). Throughout this work we will refer often to these two concepts.

We assume the notions presented in Section 1 to be familiar to the reader;

therefore we will not dwell in this sense on this subject. Anyone interested in

exploring this topic can refer to �Microeconomic Theory� by A. Mas-Colell et

al. (cfr. [14]). Using the de�nitions and the results proposed in chapter 1, it

will be better clari�ed how the problem of integrability appears. In fact the

reader can notice that the equations in (1.4) allow us to get the utility func-

tion we are looking for as the integral of the inverse demand function, where

ii



the marginal utility of wealth represents the corresponding integrating fac-

tor. By analogy we can get the indirect utility function from the equations in

(1.5) as the integral of the demand, or the expenditure function as the exact

integral of the hicksian demand as showed in (1.9). These three integration

processes are possible only when some speci�c hypoteses are satis�ed. We

will consider all the details during the discussion of this thesis.

Let me also highlight that the notation adopted in this �rst chapter will

be maintained as far as possible throughout all the work.

After this mandatory introductory chapter we will present �Sulla Teoria

Matematica dell'Economia Politica� by Giovan Battista Antonelli, which is

nowadays considered the �rst fundamental contribution to the development

of the �Integrability of demand� theory. G. B. Antonelli (San Miniato,1858-

Cassano Spinola,1944) was student of mathematics at the Scuola Normale

Superiore di Pisa and then he studied on to graduate as engineer at the

Politecnico di Milano. He left us as legacy two theoretical works: the �Nota

sulle relazioni indipendenti tra le coordinate di una forma fondamentale in

uno spazio di quante si vogliono dimensioni e sulla forma normale di una

funzione omogenea di essa� and �Sulla Teoria Matematica della Economia

Politica� (1886). It is likely to believe that his work remained unknown to

most of the economists for a long time, at least until some distinguished

scholars such as Allen, Hicks, Georgescu-Roegen, Samuelson, Houthakker

direct their studies to the �Integrability� problem. Vilfredo Pareto faced,

without much success, the topic in its �Manuel d'èconomie politique� (cfr.

[15]) in a way that is probably completely independent from the work of

Antonelli. V. Volterra took part to the discussion on integrability of demand

bringing some criticisms to the work of Pareto in his [23]. After that we have

to wait 30/40 years before the integrability conditions (cfr. 2.23) presented by

the Tuscan mathematician are recalled. In the second chapter of this thesis

we will present in detail the theoretical-mathematical description used in the

�Sulla Teoria Matematica della Economia Politica�. In this introduction we
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just want to stress how the author was ingenious in posing, more or less

consciously, the problem of the derivation of utility from visible data.

We will �ll the time gap between between Antonelli and the other �inte-

grability problem authors� by presenting two chapters in which we describe

the main results of the �Revealed Preference� theory. The idea is to build a

great circle, or even better, a large triangle through which we will be able to

link several fundamental results. The reader is welcome to analyze chapter 3

and 4 in this sense. The importance of the �Revealed Preference� theory will

emerge along the path and will be re-emphasized in the last chapter, where

the design I was talking about, will be completely clari�ed. No wonder if

the pioneer of this branch of microeconomics was the same Samuelson men-

tioned above. The American economist in his �A Note on the Pure Theory of

Consumer's Behavior� (cfr. [17]) introduced the �Weak Axiom of Revealed

Preference� (WARP) by saying that�if an individual selects batch one over

batch two, he does not at the same time select two over one� . The idea

behind this de�nition is simple. If we suppose that an agent chooses a cer-

tain consumption x over y when both bundles of goods are a�ordable, he has

somehow revealed his preference for x over y. Once again this approach could

be seen as one possible answer to the �utility maximization� framework critics

in a sense which we are going to specify further on. Let us just mention that

many negative comments has been made moving in the direction according

to which �Instead of replacing "metaphysical" terms such as "desire" and

"purpose," (embodied in the concept of utility) he used it to legitimate them

by giving them operational de�nitions�(cfr. [8]). In Proposition 3.2 we show

the equivalence between the WARP and the �compensated law of demand�

under usual hypotheses. This property cannot be extended to the di�eren-

tial case. In this sense in Proposition 3.3 we prove that WARP implies the

negative semide�niteness of the Slutsky Matrix, while through Example 3.1

the reader can immediately infer that the opposite implication is not always

valid. We notice that some further assumptions would be required. In this
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respect we cited the work of Mas-Colell et al. (cfr. [14]) where the equiv-

alence between the negative semidi�niteness of the Slutsky Matrix and the

Weak Axiom is proved under the hypothesis of the symmetry of the same ma-

trix. This assumption, with the exception of the case of a 2-goods economy

where it is super�uous (cfr. Proposition 3.5), is revealed to be crucial in the

general framework. It is important for the reader to keep this result in mind

as it will be used when we will summarize all our analysis in the last chapter

of the thesis. Meanwhile we want to highlight the economical meaning of

the hypotheses made so far. The symmetry of the Slutsky Matrix may be

seen as the equality in the change of the compensated demand of a certain

good with respect to a change in price of another good on the one hand and

the the change of the compensated demand of the latter with respect to a

change in price of the former on the other hand. Furthermore the intuition

behind the negative semide�niteness of the Matrix is the negative e�ect on

the compensated demand of one good with respect to its own price together

with the largest weight of this e�ect over the e�ect on the demand of the

same good with respect to the prices of the other goods.

At this point we will make a further jump in order to close this large

parenthesis on �revealed preference�. Our choice is to present the work by

H. Uzawa (cfr. Ch.1 of [3]) as we retain it to be complete and exhaustive

in a way we will specify hereinafter. Meanwhile we want to mention some

historical-theoretical aspects that we consider fundamental to have a clear

framework. When Samuelson introduced the Weak Axiom his idea was to

�nd a way to go through the path drawn by the utility maximization theory

along a parallel track. What immediately emerged is that assuming the

validity of the weak axiom in consumer behavior is a condition too weak to

imply utility maximization. In this respect H. S. Houthakker introduced in

[10] a generalization of WARP. The Strong Axiom (SARP), in some sense,

extends the rationality incorporated in the WARP to a broader meaning. In

fact if on the one hand through the Weak Axiom the consumer �reveals� his
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choice between two available consumption bundle x, y (xRy) on the other

hand through the SARP the agent expresses the same preference by using

a �nite sequence of relations. Indeed we can assume the existence of some

intermediate goods x0, x1...xs for which holds xRx0, x0Rx1, ..., xsRy. In

this case we will say that x is �indirectly� revealed preferred to y (xR∗y). In

chapter 4 we essentially create a �bridge between two worlds�: on the one bank

the consumer's demand, on the other one his preference. In fact Theorem

4.1 shows how the indirect revealed preference relation R∗ may be deduced

(cfr. De�nition 4.4) from a given demand function. The other way round,

given a preference relation, Theorem 4.6 guarantees the existence of a derived

demand function. The Strong Axiom plays a fundamental role, indeed it is

a requirement in Theorem 4.1 and it is implied in Theorem 4.6. In this

respect it seems inappropriate to omit a discussion on [10] by Houthakker.

Our decision is related to the fact that Lemma 4.1 is completely based on

the procedure used by the Dutch economist and we retain it super�uous to

repeat this kind of reasoning. The other hypotheses required in Theorem

4.1 are usual assumptions on the demand. Note that we provide a proof of

the theorem with weaker conditions (cfr. Note 4.2) with respect to those

used by Uzawa. In the same chapter Theorem 4.4 gives an other important

result in �Revealed Preference� theory. In fact it explains the extent to which

WARP and SARP are equivalent. Let us recall that in [4] D. Gale provides an

example where he proved that the two concepts are di�erent. The equivalence

holds only in the case of a 2-goods-economy as it is shown by Rose in [16].

We then return to the analysis of �the integrability of demand� by pre-

senting the work of N. Georgerscu-Roegen (cfr. [5]). Let us just recall that

the results we are going to present would not be possible without some fun-

damental contributions, such as those of Slutsky in [21] and Hicks & Allen

in [9]. When [5] was published in 1936 it did not gain much success. In fact

we can retain Georgescu's work a little bit �pioneristic�. Samuelson, in some

sense, revalued [5] when he mentions that he was inspired by this work in
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completing his [18]. The approach of the Roumanian statistician is original

and deeply di�erent from that of his predecessors. Chapter �ve of this thesis

is an attempt to read [5] in a familiar way maintaining as much as possi-

ble the originality of the author. Georgescu makes some hypothesis on the

demand of the consumer and starting from this point he tries to construct

some �indi�erence surfaces�, representing the agent's preferences. The idea

behind all his work is to consider the behaviour of the consumer around a

point, through what we can call a �local analysis�. We present both a graph-

ical framework (2-goods-economy) and a more mathematical-theoretical one

(for the case of 3 or more goods). Given a point M (in the plane, space,

etc.), which represents the demand of the consumer, we look for the �prefer-

ence/nonpreference/indi�erence� directions. The idea is that the consumer,

when it is possible, would move on the preference directions. These move-

ments are in some sense prevent by the constriction due to the budget plane

passing through the point we are considering. By assuming some continu-

ity/convexity hypotheses (cfr. Note 5.1, Note 5.2) it is possible to establish a

connection between this budget plane (or better the in�nitesimal-near point

to M) and the preference directions (cfr. 5.16). We will construct the �in-

di�erence surfaces� by �shaping� them on the indi�erence directions. We

can ask how this work is linked to the [1] by Antonelli. The mathematical

Appendix of [5] provides a more traditional analysis of the su�cient condi-

tions for the integrability problem. The integral of the di�erential form in

(5.2) is exactly the solution of the system of di�erential equations (cfr. 2.7)

the Tuscan mathematician was looking for. Despite this premise we must

highlight that the two authors arrive to two di�erent conclusions. Antonelli

gives his �integrability conditions�(cfr. 2.23) in term of the symmetry of the

Slutsky Matrix while Georgescu takes into consideration some assumptions

on the negative semide�niteness of the same matrix (cfr. Note 5.3). Please

note that the work, where the Slutsky equation is presented (cfr. [21]), is

posterior with respect to Antonelli's (cfr. [1]). We ask the reader to make a
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leap in time and check the connection between the equations in 2.23 and the

symmetry of the Slutsky Matrix we considered above.

We want to mention that in 1946 J. Ville published �The Existence-

Conditions of a Total Utility Function�, which is an attempt to solve the

problem of recovering a utility function from a consumer's demand. In this

work the author starts by assuming some hypoteses such as homogeneity,

budget exhaustion and continuity, and he proves that the integrability con-

ditions of an expression like (6.8) is equivalent to the absence of closed con-

tours along which this expression is constant (cfr. pp.127-128, [22]). The

interested reader can deepen this analysis by analyzing the English version

of [22] reviewed by K. J. Arrow in 1947.

Chapter 6 presents an analysis of [18] by Samuelson. Since we decide to

consider a pure-mathematical approach we want to mention the main eco-

nomic aspects behind the work in this introduction. First, let us note that

we consider [18] as the most complete and conscious introduction to the �in-

tegrability problem�, at least among those presented up to that moment.

The author begin his work by considering the problem of integrability in the

case of a 2-goods-economy (prices are �xed at pA1 , p
A
2 ). In this framework we

have a consumer, endowed with a positive income MA, choosing a certain

consumption bundle, de�ned as A. Under these hypotheses it is possible to

construct the budget line, passing through A, as a straight line with slope

equal to the price ratio −pA1
pA2

. At this point, we can repeat this construc-

tion for every point B,C, ... chosen by the consumer when the income is

given by MB,MC , ... and prices are (pB1 , p
B
2 ), (pC1 , p

C
2 ), ... Now, as Samuelson

states, �If the observed price ratio p1
p2

is given as the following continuous

and di�erentiable function of the two goods, B(x1, x2), then mathematical

analysis assures us that the di�erential equation dx2
dx1

= −B(x1, x2) gives rise

to a unique family of curves. In two dimension there is no integrability prob-

lem... the order of consumption, in the sense of the path along which the

consumer actually moves behind the scenes of the market-place, has nothing
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to do with the problem of integrability versus non-integrability�. This last

speci�cation wants to eliminate any possible misunderstandings regarding

the two di�erent concepts of order of consumptions and path-dependency

in the integrals (cfr. [18]). We want to stress that the basic idea behind

this reasoning is that we can think of the �indi�erence curves� we are looking

for as the �envelope� of a family of budget lines. Next step will be the case

of a 3 − goods − economy. The situation in this framework could become

a little bit more tricky. We proceed in a way that is analogous to the 2-

goods-economy case. In fact we will still be able to observe the preferred

consumptions once prices and income are given. Hence it will be possible

to construct the �budget planes� as the 3 − dimensions case of the �budget
lines�. Before trying to answer the question �can the indi�erence surfaces be

thought as the envelope of a family of budget planes?� we want to clarify

some speci�cation on the nature of the demand we are considering. In fact

in what we have exposed so far it is assumed that the consumer is able to

decide which is his preferred consumption. In particular he should choose,

for any situation, if a certain option A is better/indi�erent/worse than an

other possible B (complete preference). Furthermore we request that a tran-

sitivity condition is valid. As we already said the 3-dimension-case is not so

obvious. In chapter 6 we present Samuelson's integrability conditions (cfr.

6.16). It will be possible to show that an envelope of a family of budget

planes gives origin to these surfaces. At this point we just want to propose

the intuition behind the process. Given a demand triple A and the corre-

sponding budget plane, then by using Samuelson's words �We need only

indicate at A a little button, or better still a little thumbtack, whose back or

head lies in the budget plane and whose point tell us which is the preferred

direction�. At this point our integrability problem would be to �nd if it is

somehow possible to �join together� these thumbtack to construct a what we

called �indi�erence surface��. We invite the reader to re�ect on the equiva-

lence between the �integrability conditions� proposed by Antonelli (2.23) and
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those presented by Samuelson (cfr. 6.16). Despite the fact that the second

ones are the result of a more complete and thoughtful reasoning the results

obtained are the same in the two cases. Samuelson �integrability conditions�

essentially require the symmetry of the Slutsky Matrix. Chapter 7 shows

how this result is incomplete as it �bypasses� the crucial assumption of the

negative semide�niteness of the same matrix.

Chapter 6 of [3] represents the end of the dispute on the �integrabil-

ity of demand� problem, as it presented an exhaustive answer to our initial

questions. The framework of the analysis is the most general one, that is,

we consider an n-goods-economy where prices are given in the positive oc-

tant and income is a positive real number. The authors assume some usual

hypotheses on the consumer's demand function, such as single-valuedness,

budget exhaustion and di�erentiability. In Theorem 7.1 the symmetry and

the negative semide�niteness of the Slutsky Matrix is deduced starting from

constrained preference maximization, while in Theorem 7.2 the existence of a

utility function is obtained starting from the assumptions of the the symme-

try and the negative semide�niteness of the same matrix. In particular this

last theorem is the key through which we can conclude all the analysis made

so far. As the mathematical framework is completely developed in chapter

7 we want to stress the main economical-theoretical implications behind this

fundamental result. To this end let us consider one by one the hypothe-

ses required. As we mentioned above we consider the usual assumptions

on single-valuedness, budget exhaustion and di�erentiability of the demand.

These hypotheses are �usual� in the sense that, if removed, we would not be

able to present the problem in (7.16). Before analyzing the other assump-

tions we invite the reader to re�ect on what kind of problem we are facing

and on all the implications deriving from this fact. Indeed the integrability

problem is essentially an existence problem, a fact that obliges us to move

along a �constructing proof�. The assumption on di�erentiability should be

analyzed under this light. Any student familiar with calculus will recognize
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this hypothesis as crucial in showing the existence of a solution for the dif-

ferential system in 7.16. At this point the hypotheses on the symmetry of

the Slutsky Matrix and the lipschitzianity one will gain the important role of

guaranteeing the unicity of the solution (cfr. Lemma 7.1, Lemma 7.2). The

idea is that our �unique solution� will be used to de�ne the utility function we

are looking for. Next step will be to prove that what we have obtained may

really be considered as a �utility function�. Let us just note that we believe

that Samuelson in [18] left this point open and this is why his work cannot

be considered exhaustive. The hypothesis on the negative semide�niteness of

the Slutsky takes a fundamental role in this sense. In Lemma 7.4 before and

in Lemma 7.7, Lemma 7.8 after it is shown how under this assumptions it

is possible to consider the function we take as our �utility function� as well-

de�ned. In fact we show that the value of the function introduced in (7.43) is

independent from the system of prices/income considered (cfr. Lemma 7.7).

What we obtained is exactly what we were looking for: a utility function

from which the demand is derived. Our decision is to completely focus on

this result and to provide the proof of Theorem 7.2 in this respect. We limit

ourselves to provide the statement of Theorem 7.3, Theorem 7.4 and Theo-

rem 7.5. These results regard essentially the properties that are possible to

deduce for the utility function de�ned in Theorem 7.2.

As our problem can be considered as solved in the last chapter of this

thesis we will summarize all the results obtained so far and put them all

together in order to provide the reader a complete framework of analysis.

We thought this chapter as �something in its own right�, in such a way that

it could be read as separate from all the rest. We omit all the mathematical

procedures to make it �elegant�, but full of intuitions.
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1 Preliminary Results

We will brie�y recall some fundamental results in microeconomic theory. We

will give just a sketch as these themes should be familiar to any economics

student.

First, we want to specify some points in the notation we will use.

Let us note that a preference relation is, in general, a binary relation on

a set of alternatives X. We will denote by xRy the relation x is �weakly�

preferred with respect to y. The expression xPy will instead be used to

express a �strong� preference for x over y.

What about the connection between these two concepts?

Starting from R we can derive two other relations:

i) The �strong� preference relation mentioned above, by de�ning

xPy iff xRy but not yRx;

ii) the �indi�erence� relation, ∼, by de�ning

x ∼ y iff xRy and yRx.

By analogy it is possible to de�ne the �weak� preference relation using the

�strong� one. In fact it is possible to de�ne the former as:

j) xRy iff yPx (= xP
−1
y),

where yPx stands for �y is not strongly preferred to x�.

We want to specify that in all the thesis the �weak preference relation� is

considered as primitive.

We will consider a 1-agent economy with n consumption goods, whose

prices are given by a vector p ∈ Rn++, and the consumer's income is a positive

real number M. Some modi�cations will be introduced here and there when

necessary.

1



De�nition 1.1 A function u : X ⊆ Rn+ −→ R is a �utility function�

representing the preference relation R i�

xRy iff u(x) ≥ u(y), for every x, y ∈ X.

Proposition 1.1 Let u( ) be a �utility function� representing the pref-

erence relation R, then

R is rational, (1.1)

where rational means that it satis�es:

1. Completeness

2. Transitivity

Proof The previous results are immediate consequences of De�nition

1.1 and the properties of real numbers.

What can we say about the other way round? The so-called Lexicographic

Preference (cfr. chapter 3, [15]) is an example of complete preference rela-

tion for which it is not possible to have a corresponding utility function.

De�nition 1.2 The preference relation R is said to be continuous i�

for every couple of sequences (xn)n∈N, (yn)n∈N in X, withxnRyn for every n = 0, 1, 2, ...

limn→∞ x
n = x, limn→∞ y

n = y,
,

it results xRy.

Proposition 1.2 Let R be a rational, continuous preference relation on

X, then:

there exists a continuous utility function u ( ) representing the preference

relation. (cfr. [13])
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We will not provide the proof of Proposition 1.2.

Note that there are in�nitely many utility functions for R and not all

continuous. In fact it is su�cient to apply a strictly increasing (not necessarly

continuous) transformation to the function u ( ) obtained above to get a new

utility function representing R.

Viceversa it is possible to prove the continuity of the preference relation

R starting from the continuity of the utility function u ( ) .

De�nition 1.3 The preference relation R on X is said to be locally

nonsatiated if for every x ∈ X and for every positive real number ε there

exist y ∈ X such that

‖ y − x ‖≤ ε and yPx.

The usual Utility Maximization Problem is stated in these terms: we

consider an economy where prices are set at p = (p1, p2, ..., pn) ∈ Rn++ and

we assume the consumer has a rational, continuous and locally nonsatiated

preference relation with a available income M > 0. Let u ( ) represents a

utility function for preference R. Then the agent would face the problem

(UM)p,M

maxx∈Rn+ u(x)

s.t. px ≤M
. (1.2)

We will term demand correspondence the correspondence that assigns to

each couple (p,M) ∈ Rn++ × R+ the set of the solutions of (1.2) and we will

denote it as x (p,M) .

We can use Kuhn-Tucker conditions to solve the systems in (1.2). In

particular when we have an interior optimum (x∗ ∈ Rn++) it must be

∇u(x∗) = λp, (1.3)

where λ is a so-called Lagrange multiplier.
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We can restate (1.3) as:

δu(x(p,w))
δp1

p1

= ... =

δu(x(p,w))
δpn

pn
= λ = µ(p, w), (1.4)

where we named µ(p, w) the �marginal utility of wealth�.

Proposition 1.3 Let x (p,M) be the demand correspondence for sys-

tem (1.2), wher u( ) is assumed to represent a locally nonsatiated preference

relation. Then the following properties hold for every (p,M) ∈ Rn++×R+:

h) x( ) is homogeneous of degree zero with respect to (p,M) ;

hh) px = M, for every x ∈ x(p,M) .

De�nition 1.4 Under the hypotheses made so far for the de�nition

of the demand correspondence we can de�ne the indirect utility function

v : Rn++ × R+ −→ R as v(p,M) = u(x), with x ∈ x(p,M).

When we di�erentiate the indirect utility function with respect to one

price pi (i ∈ {1, 2, ..., n}), after some algebraic manipulation, we get:

δv(p, w)

δpi
= −µ(p, w)xi(p, w), for all i ∈ {1, 2, ..., n} . (1.5)

By analogy when we di�erentiate the indirect utility function with respect

to wealth we have:

δv(p, w)

δw
= µ(p, w) (1.6)

In a way completely similar to what we did for (1.2) we can de�ne the

expenditure minimization problem as

(EM)p,u

minx∈Rn+ px

s.t. u(x) ≥ ū
, (1.7)
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where u is exogenously given.

We will term hicksian correspondence he correspondence that assigns to

each couple (p, u) ∈ Rn++ × R the set of the solutions of (1.3) and we will

denote it as h (p, u) .

De�nition 1.5 We will de�ne the expenditure function e : Rn++ ×
R −→ R+ as e(p, u) = px′, with x′ ∈ h(p, u).

Proposition 1.4 Let h ( ) be the function de�ned above. Then the

following properties hold:

g) h( ) is homogeneous of degree zero in p;

gg) u(x) = u, for every x ∈ h(p, u) .

Proposition 1.5 Let e ( ) be the function de�ned above. Then the

following properties hold:

k) e ( ) is homogeneous of degree one in (p, u);

kk) e ( ) is increasing in u and nondecreasing in pi, i ∈ {1, ..., n} ;

kkk) e ( ) is concave in p;

kkkk) e ( ) is continuous in p, u.

In constrained optimization, it is often possible to convert the primal problem

(i.e. the original form of the optimization problem, as the one presented in

UM) to a dual form, which is termed the dual problem (EM). The following

theorem is a �duality theorem� in this sense.

Theorem 1.1 Suppose that u( ) is a continuous utility function repre-

senting a locally nonsatiated preference relation R de�ned on the consump-

tion set X = Rn+ and the price vector is p ∈ Rn++. We have:
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j) if x∗ is optimal in the UM when wealth is w > 0, then x∗ is opti-

mal in the EM when the required utility level is u(x∗). Moreover,

the minimized expenditure level in this EM is exactly w;

jj) if x∗ is optimal in the EM when the required utility level is u >

u(0), then x∗ is optimal in the UM when wealth is px∗. Moreover,

the maximized utility level in this UM is exactly u.

Using Theorem 1.1, we can relate the hicksian and the walrasian demand

correspondences as follows:

h(p, u) = x(p, e(p, u)) and x(p, w) = h(p, v(p, w)) (1.8)

Using the �rst equality in 1.8 and the properties of the expenditure func-

tion it is possible to get:

δe(p, u)

δpi
= h(p, u), for every i ∈ {1, 2, ..., n} . (1.9)

De�nition 1.6.I A preference relation R on X is said to be convex if

for every x, y, z ∈ X, with yPx, zPx, it is

[αy + (1− α)z]Px, for any 0 ≤ α ≤ 1.

De�nition 1.6.II A preference relation R on X is said to be strictly

convex if for every x, y, z ∈ X, with yRx, zRx, y 6= z it is

[αy + (1− α)z]Px, for any 0 < α < 1.

Note 1.1 The hypothesis of strict convexity is fundamental in the sense

that it allows us to handle single-valued functions instead of multi-valued

functions. In fact when strict convexity holds we have that the problems
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(1.2) and (1.3) have only one solution and we can consider x(p,M) and

h(p, u) as functions in the usual sense.

Proposition 1.6 Let's suppose that u ( ) is a continuous utility func-

tion representing a rational, locally nonsatiated, strictly convex preference

relation R. Let h ( , u) = (h1 ( , u) , h2 ( , u) , ..., hn ( , u)) be continuously dif-

ferentiable in (p, u). Then

i) Dph(p, u) = D2
ppe(p, u);

ii) Dph(p, u) is negative semide�nite;

iii) Dph(p, u) is symmetric;

iv) Dph(p, u)p = 0,

where Dph(p, u) =

∥∥∥∥∥∥∥∥∥∥

dh1
dp1

dh1
dp2

.... dh1
dpn

dh2
dp1

dh2
dp2

... dh2
dpn

... ...
dhn
dp1

dhn
dpn

∥∥∥∥∥∥∥∥∥∥
.

Proposition 1.7 Let us suppose that u ( ) is a continuous utility func-

tion representing a regular, locally nonsatiated, strictly convex preference

relation R. Then for all (p,M) and u = v(p,M) it is

Sij (p,M) =
dhi(p, u)

dpj
=
δxi(p,M)

δpj
+
δxi(p,M)

δM
xj(p,M),

for every i, j ∈ {1, 2, ..., n} . (Slutsky Equation) (1.10)

Proposition 1.8 Let's suppose that u ( ) is a continuous utility function

representing a regular, locally nonsatiated, strictly convex preference relation

R. Then the Slutsky Matrix S(p,M) = [Sij (p,M)]i,j=1,...,n satis�es
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j) Symmetry;

jj) Negative Semide�niteness;

jjj) S (p,M) p = 0.

It is intuitive to deduce Proposition 1.8 as a direct consequence of Proposition

1.6 and 1.7.

We will provide a Proof for a proposition equivalent to Proposition 1.8 as

presented by Uzawa and Hurwicz in [3].
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2 �Sulla Teoria Matematica della Economia Po-

litica�, G.B. Antonelli

The problem of the �Integrability of demand arguments� starts with con-

sumer demand functions having some properties that would be implied by

constrained utility maximization were they generated from that source. Us-

ing a process of mathematical integration, the arguments then proceed to

demonstrate the existence of utility functions from which those demand func-

tions could be derived. This problem concerns whether one can �recover� a

preference ordering that generates the given demand function. In 1886, G.

B. Antonelli deals with the problem from a mathematical point of view.

Antonelli opened his Sulla Teoria Matematica dell′Economia politica

(cfr. [1]) saying �Molti economisti hanno sostenuto e sostengono essere im-

possibile di trattare i problemi della Economia politica per mezzo dell'Analisi

matematica. Malgrado la loro asserzione a priori molti e svariatissimi ten-

tativi di questo genere furono pubblicati �no da molti anni;...Queste ri�es-

sioni generali mostrano che non è vano il tentare una Teoria matematica

dell'Economia Politica, anche se in un primo studio si debbono supporre

condizioni ed ipotesi in parte più semplici, o non conformi completamente

alla realtà. Nel caso particolare è poi bene ri�ettere che a questi studi si

riconnettono dei problemi per la cui risoluzione nessun metodo scienti�co si

possiede, e relativamente ai quali dei risultati anche approssimativi sarebbero

di grande vantaggio.� As sustained by J. A. Schumpeter in [19] Antonelli's

work represents �a remarkable performance that seems to anticipate later

work in some important point�.

We want to present the main contents of the Sulla Teoria Matematica

dell′Economia politica based on the commentary of G. Demaria and G. Ricci

(cfr. [1]), authors of the notes of the reprinted edition of Antonelli's work.

We will focus our attention on the particular case of a 3 goods economy

trying to generalize the main conclusions to the more complete framework
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of an n-goods-economy. When we consider 3 goods we face a market with

a triple of prices (each one referred to a single good) and a wealth level.

The two parameters we use will be the prices ratios. For each couple of

these values, given the initial agent endowment, we have a preferred triple

of consumed goods. The idea is to pass from these choices of quantities

to a map of indi�erence surface. In order to make this step the so called

integrability conditions must be satis�ed. As in the commentary of G. Ricci

we split Antonelli Postulate into two di�erent assumptions (cfr. P.1 and P.2).

The idea is that they are valid in di�erent situations and they bear di�erent

implications. When P.1 is veri�ed we can write the integrability conditions

but only when both P.1 and P.2 are valid it is possible to construct the map

of U.

THE MODEL

Let us consider a market with n = 3 commodities. The general case will

be an extension of this particular situation.

We denote with a1, a2, a3 the quantity of the 3 goods. Prices are assumed

to be positive and equal to p1, p2, p3. The consumer has an initial endowment

a1, a2, a3 implying that he is to face a budget constraint λ = p1a1+p2a2+p3a3.

Let us compute the ratio between prices q1 = p1
p1

= 1, q2 = p2
p1
, q3 = p3

p1
. The

agent will have a net demand/supply (depending on the sign) function C1,

C2, C3, each corresponding to one of the three commodities. The condition

expressed by the budget constraint will be re�ected in the demand/supply

function as

p1C1 + p2C2 + p3C3 = 0; (2.1)

the preferred consumption vector will be

A1 = a1 + C1, A2 = a2 + C2, A3 = a3 + C3. (2.2)

Hence, given λ and vector p the individual can choose between all the
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triple (a1, a2, a3) satisfying

p1a1 + p2a2 + p3a3 = λ. (2.3)

Let's introduce Antonelli's �rst Postulate

P.1 for each λ, (p1, p2, p3) the consumer chooses the three quantities

(a1, a2, a3) in a unique way in order to get the preferred triple.

We want to present a geometric interpretation of the assumptions made so

far.

We can think of the mathematical formula (2.3) as the equation of a plane

(the generalization to hyperplanes in the case of more than 3 commodities

will be straightforward) whose direction cosines are represented by the price

vector p and λ gives us a measure of the distance from the origin.

If the prices are �xed we get the optimal choice of the consumer by varying

the level of λ and using P.1 we can describe a curve Γ with equation

A1 = A1(λ, p1, p2, p3), A2 = A2(λ, p1, p2, p3), A3 = A3(λ, p1, p2, p3) (2.4)

What the author assumed is essentially that:

� consumer choices are homogeneous of degree zero with respect to (prices,

income);

� whatever initial situation (a1, a2, a3) , such that
∑n

i=1 piai = λ, given

prices, the consumer chooses the same preferred triple (A1, A2, A3).

Hence, using (2.2) and (2.3) we haveCi = −ai + Ai(λ, p1, p2, p3) i = 1, 2, 3;∑3
i=1 piAi =

∑3
i=1 piai = λ

(2.5)
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where (a1, a2, a3), as speci�ed in the second equality are chosen as �initial

points�.

By di�erentiating (2.3) and (2.4) with respect to ai (i = 1, 2, 3) we get

δλ

δai
= pi,

δAk
δai

=
δAk
δλ

δλ

δai
= pi

δAk
δλ

, k = 1, 2, 3

Hence from (2.5)

δCi
δai

= −1 +
δAi
δλ

pi,
δCi
δaj

=
δAi
δλ

pj, i, j = 1, 2, 3 i 6= j,

and solving for δAi
δλ

we get
(1+

δCi
δai

)

pi
=

δCi
δaj

pj
, i, j = 1, 2, 3 i 6= j, which is

equivalent to the following system of di�erential equations
(1+

δC1
δa1

)

p1
=

δC1
δa2

p2
=

δC1
δa3

p3
δC2
δa1

p1
=

(1+
δC2
δa2

)

p2
=

δC2
δa3

p3
δC3
δa1

p1
=

δC3
δa2

p2
=

(1+
δC3
δa3

)

p3

(2.6)

which in case of n commodity bundles is

(1+
δC1
δa1

)

p1
=

δC1
δa2

p2
= ......... =

δC1
δan

pn
δC2
δa1

p1
=

(1+
δC2
δa2

)

p2
= ......... =

δC2
δan

pn

...................................................
δCn
δa1

p1
=

δCn
δa2

p2
= ......... =

(1+
δC3
δa3

)

p3

(2.7)

The system (2.6) with the equation in (2.1) guarantees su�cient condition

which C1, , C2, C3 must satisfy.

When we make prices vary, considering P.1, we get a curve Γ(p1, p2, p3)

given by the equations in (2.4).

Without any loss of generality, we can pass from considering (p1, p2, p3)

as independent variable to (q1, q2, q3) = (1, q2, q3). Hence, from (2.4) we get
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a new system of equations

A1 = A1(λ, q2, q3), A2 = A2(λ, q2, q3), A3 = A3(λ, q2, q3). (2.8)

Let us now consider the Jacobian matrix

Jλ,q2,q3(A1, A2, A3) =

∥∥∥∥∥∥∥
δA1

δλ
δA2

δλ
δA3

δλ
δA1

δq2

δA2

δq2

δA3

δq2
δA1

δq3

δA2

δq3

δA2

δq3

∥∥∥∥∥∥∥ , (2.9)

and the partial Jacobian matrix

Jq2,q3(A1, A2, A3) =

∥∥∥∥∥ δA1

δq2

δA2

δq2

δA3

δq2
δA1

δq3

δA2

δq3

δA2

δq3

∥∥∥∥∥ . (2.10)

When we consider the case of n consumption goods we have

Jλ,q2,q3,..,qn(A1, A2, ..., An) =

∥∥∥∥∥∥∥∥∥∥

δA1

δλ
δA2

δλ
... δAn

δλ
δA1

δq2

δA2

δq2
... δAn

δq2

... ... ... ...
δA1

δqn
δA2

δqn
... δAn

δqn

∥∥∥∥∥∥∥∥∥∥
. (2.11)

When the matrix (2.10) has rank=2 or, by analogy, (2.11) is full rank it

is possible to apply the implicit function theorem to the system of equation

(2.8), so that there exist two functions Q2 ( ) and Q3( ) such that

q2 = Q2(A1, A2, A3), q3 = Q3(A1, A2, A3), (2.12)
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and in the general case

q2 = Q2(A1, A2, ..., An)

q3 = Q3(A1, A2, ..., An)

.................................

qn = Qn(A1, A2, ..., An)

. (2.13)

We now consider the second Antonelli Postulate:

P.2 There exists a function U( ) of the quantity (a1, a2, a3) that, given

the price vector p and the level λ, assumes the maximum value

on the point (A1, A2, A3) , that is the preferred triple.

We will proceed as following:

we maximize the utility function on the plane characterized by (p1, p2, p3)

and λ and then we impose that the value that maximizes the utility function

is exactly the triple (A1, A2, A3).

Let use the usual Lagrangian multipliers method.

L(µ,A1, A2, A3) = U(A1, A2, A3)− µ(p1A1 + p2A2 + p3A3 − λ)

F.O.C.s read

δL
δA1

=
δL
δA2

=
δL
δA3

=
δL
δµ

= 0,

that is

δU

δA1

− µp1 = 0,
δU

δA2

− µp2 = 0,
δU

δA3

− µp3 = 0,

equivalent to the following conditions:

δU

δA1

= µp1,
δU

δA2

= µp2,
δU

δA3

= µp3. (2.14)
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Rearranging (2.14) we have:

δU
δA1

δU
δA2

=
p1

p2

=
1

q2

,
δU
δA1

δU
δA3

=
p1

p3

=
1

q3

. (2.15)

Since we know that the maximum is realized when equations (2.12) are

satis�ed, we get

δU

δA1

=
1

Q2

δU

δA2

,
δU

δA1

=
1

Q3

δU

δA3

. (2.16)

Note 2.1 Equations (2.16) can be stated in the general case (n com-

modities) as

δU

δA1

=
1

Q2

δU

δA2

,
δU

δA1

=
1

Q3

δU

δA3

, ... ,
δU

δA1

=
1

Qn

δU

δAn
. (2.17)

Hence when the function U exists conditions (2.16) must be satis�ed.

We want to �nd some kind of integrability conditions for the equations

in (2.16). Let's assume that both Q2( ) and Q3( ) admit �rst order continuous

partial derivatives; then di�erentiating both sides of the two equations with

respect to A1we get the system:
δ2U

δA1δA2
= Q2

δ2U
δA2

1
+ δQ2

δA1

δU
δA1

δ2U
δA3δA1

= Q3
δ2U
δA2

1
+ δQ3

δA1

δU
δA1

. (2.18)

Now, taking the derivative of the �rst equation in (2.16) with respect to

A3 and of the second one with respect to A2 we have: δ2U
δA2δA3

= Q2
δ2U

δA1δA3
+ δQ2

δA3

δU
δA1

δ2U
δA3δA2

= Q3
δ2U

δA1δA2
+ δQ3

δA2

δU
δA1

. (2.19)

When we assume the utility function U ( ) have continuous mixed deriva-

tives on its domain (cfr. Schwarz Theorem, [20]) we have from (2.19):
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Q2
δ2U

δA1δA3

+
δQ2

δA3

δU

δA1

=
δ2U

δA2δA3

=

=
δ2U

δA3δA2

= Q3
δ2U

δA1δA2

+
δQ3

δA2

δU

δA1

,

implying

Q2
δ2U

δA1δA3

−Q3
δ2U

δA1δA2

+
δU

δA1

(
δQ2

δA3

− δQ3

δA2

) = 0. (2.20)

Substituting the equations in (2.18) into (2.20) we have (under Schwartz

Th. hypoteses):

Q2(Q3
δ2U

δA2
1

+
δQ3

δA1

δU

δA1

)−Q3(Q2
δ2U

δA2
1

+
δQ2

δA1

δU

δA1

) +
δU

δA1

(
δQ2

δA3

− δQ3

δA2

) = 0,

from which we get

δU

δA1

(
δQ3

δA1

Q2 −
δQ2

δA1

Q3 +
δQ2

δA3

− δQ3

δA2

) = 0. (2.21)

If we exclude the trivial case δU
δA1

= 0 equation (2.21) will give the

integrability condition

δQ3

δA1

Q2 −
δQ2

δA1

Q3 +
δQ2

δA3

− δQ3

δA2

= 0. (2.22)

Note 2.2 It is possible to generalize equation (2.22) for the case of

n commodities bundles. We have to extend the equation obtained for the

indices 2 and 3 to all pairs (k, l) ranging in (2, 3, ..., n) getting the following

system of equations:

δQl

δA1

Qk −
δQk

δA1

Ql +
δQk

δAl
− δQl

δAk
= 0, k, l = 2, 3, ..., n (2.23)

Equations (2.23) represent the

(
n− 1

2

)
integrability conditions we

were looking for.
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Note that these conditions are only necessary. The reader will have a

more complete framework when Theorem 7.2 will be presented.
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3 �Revealed Preference� theory

In studying consumer behavior we usually start from a model where we have

a preference-based-approach. The agent is assumed to have a certain mental

structure (preferences) that allows him to make choices. Preferences, in this

case, are not observable. Starting from making some assumptions on this

unknown preference structure we try to predict the consumer demand, that

is of course observable. In this context we want to present the opposite

process, that is, we will focus on the available data we have.

The main idea is that the consumer, in some sense, grants his explicit

preference to a choice inside the set of all alternatives. Through this choice

he provides critical information about his tastes. In this respect we speak of

Revealed Preferences.

Samuelson in [17] introduced the the Weak Axiom of Revealed Preference

(WARP) as follows:

De�nition 3.1 WARP holds iff for every price vector p0, p1, income

M0,M1 and single-valued demanded consumption bundles x0 6= x1 satisfying

p0x1 ≤ p0x0 it is

p1x0 > p1x1 (3.1)

This kind of assumption guarantees that the consumer is in some sense

coherent. In fact when WARP is valid the agent grants his preference to a

certain consumption bundle over an other one whenever both are available.

This property eliminates the possibility that the consumer chooses a certain

bundle x0 over x1 in one situation and then x1 over x0 in a second period.

Let us now suppose that WARP holds. We want to investigate the con-

sequences we can obtain from this assumption.

We will denote by the vector x(p,M) = (x1(p,M), x2(p,M), ..., xn(p,M))

consumer's choice of good 1, 2, ..., n, when prices are given by p = (p1, p2, ..., pn)
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and the available income is M. It is obvious to see that if we assume that

the agent use all his income and WARP is valid the function x(p,M) is

homogeneous of degree 0 in prices. In fact let us consider the following:

Proposition 3.1 Let us be given a price vector p = (p1, p2, ..., pn) and

a positive incomeM. If

i) all income is spent;

ii) (3.1) is veri�ed;

then for each i = 1, 2, ..., n xi(p,M) = xi(tp, tM), for every positive t.

Proof Let's suppose that x0 is chosen when the system of prices is p0

and income is given by M0,

x0 = x0(p0,M0), (3.2)

while x1 is chosen at p1 = tp0, M1 = tp0, where t is a positive real number,

x1 = x1(p1,M1) = x1(tp0, tM0). (3.3)

Using i)

tp0x1 = p1x1 = M1 = tM0 = tp0x0 = p1x0. (3.4)

Hence, from (4): p0x1 = p0x0

p1x1 = p1x0
. (3.5)

Ab absurdo, let's assume that x0 and x1 are di�erent consumption bun-

dles. Using ii) in the �rst equation of (3.5) we have

p1x0 > p1x1,
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that is in contradiction with the second equation in (3.5). Hence, it is x0 = x1,

that is, the function is homogenous of degree 0.

�

We want now to show a fundamental property deriving from WARP: the

substitution e�ect of own price changes cannot be positive. In this sense we

will show that the substitution matrix is negative semide�nite. We proceed

through two main steps. At �rst we work with a �nite variation of prices

and demand, then we will deal with the di�erential case. Let us recall the

following de�nitions.

De�nition 3.2 Let A ∈ Cnxn be a (symmetric) quadratic matrix, A is

said to be negative (semi)definite iff

x∗Ax <(≤) 0, for every vector x ∈ Cn, x 6= 0, (3.6)

where x∗ is the conjugate transpose of x.

Note 3.1 the de�nition of a negative (semi)definite matrix is usually

given for symmetric matrix. In our case we would not make this kind of

assumption when it is not required.

When the consumer faces a variation of prices he will generally change

his choices due to budget constraint problems.

We will de�ne a compensated price change as following

De�nition 3.3 A couple (p1,M1) is said to be a compensated price

change from (p,M) if

p1x(p,M) = M1. (3.7)

We will say (p1,M1) ∈ Φ(p,M) iff (p1,M1) is a compensated price

change from (p,M) .
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The idea is that at the new system of prices and income the consumer is

allowed to pursue (by spending all his income) the same bundle he chose at

the initial situation.

Let us show the negative semide�nitness of the substitution matrix through

the following proposition

Proposition 3.2 Given a price vector p = (p1, p2, ..., pn) and a positive

income M. Let

j) x(p,M) be homogeneous of degree 0;

jj) all income be spent;

then it is

WARP is valid iff

for any (p1,M1) ∈ Φ(p,M) it is (3.8)

(p1 − p)(x1 − x) ≤ 0, with < for x1 6= x,

where x1 = x(p1,M1), x = x(p,M)

Proof Let us prove the two implications.

� �The only if part�

When x = x1 we have (p1 − p)(x1 − x) = 0 and the result is obvious.

Hence, let us suppose x 6= x1. We can rewrite the expression in (3.8) as

p1(x1 − x) − p(x1 − x). Using jj) and the de�nition of compensated price

change it is

p1(x1 − x)− p(x1 − x) = M1 −M1 − p(x1 − x) = −p(x1 − x). (3.9)
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By de�nition (3.7) we have that the consumer can choose x at the price,

income couple (p1,M1) , so that it is possible to use WARP to obtain

px1 > M. (3.10)

From (3.9), using again jj), we have:

− p(x1 − x) = px− px1 = M − px1 < 0. (3.11)

(3.11) gives the proof of the �only if part� of the proposition.

� �The if part�

Let us �rst prove that WARP holds when it is considered the �compensated

price change�.

In order to show that WARP is valid let assume

px1 ≤ px, (3.12)

that is px1 − px ≤ 0, equivalent to p(x1 − x) ≤ 0. Using the hypothesis

in (3.8) we have (p1 − p)(x1 − x) < 0, implying

p1(x1 − x) < p(x1 − x) ≤ 0. (3.13)

Hence

p1x1 < p1x, i.e.WARP holds. (3.14)

We will proceed using an ab absurdo proof. By supposing that WARP is

violated we will construct a speci�c compensated price change which makes

(3.8) fail.

Let's consider two pairs (p1.M1) , (p2,M2) which do not satisfy WARP.

Then let us consider x1 = x (p1.M1) , x2 = x (p2,M2) . As WARP is not valid

it is p1x2 ≤ p1x1, p2x1 ≤ p2x2, or by using jj)
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p1x2 ≤M1, p2x1 ≤M2. (3.15)

When one of the inequalities in (3.15) is satis�ed as equality we fall once

again in the previous case ( the compensated price change one).

Hence it must be

p1x2 < M1, p2x1 < M2. (3.16)

Let's choose a convex combination of the prices p1, p2 p = αp1 +(1−α)p2

in such a way that it results

px1 = px2, (3.17)

and let M = px1 = px2.

Using (3.16), jj) and the de�nition of p we have

αM1 + (1− α)M2 > αp1x1 + (1− α)p2x1 = M =

= px(p,M) = αp1x(p,M) + (1− α)p2x(p,M). (3.18)

Two possible cases arise:

1. p1x(p,M) < M1 or

2. p2x(p,M) < M2.

Let's consider 1. We have that, from (3.17), px1 = M and p1x(p,M) ≤M1.

We immediately see that we fall once again in the case of the violation of

WARP for the compensated price.

When we analyze case 2. we get the same result. Hence we get the �if

part�.

�
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We can restate the expression (p1−p)(x1−x) ≤ 0, (for every compensated

price changes) by de�ning the compensated law of demand :

4p4x ≤ 0. (3.19)

What we have seen so far is the equivalence between WARP and the

compensated law of demand.

The next step will be consider the generalization of this result to the

�di�erential case�.

We want to prove

Proposition 3.3 Let assume x(p,M) to be di�erentiable. If

j) all income be spent;

jj) WARP is valid;

then the Slutsky Matrix S(p,M) is negative semide�nite, where S(p,M) =

Dpx(p,M) +DMx(p,M)x(p,M).

Proof We can restate (3.19) as

dpdx ≤ 0, (3.20)

where dp represents a di�erential change in prices and what we called a

compensated change can now be expressed as

dM = x(p,M)dp. (3.21)

Let us consider the total di�erentiation of x(p,M), that is

dx = Dpx(p,M)dp+DMx(p,M)dM. (3.22)

Substituting (3.21) in (3.22) we get
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dx = [Dpx(p,M) +DMx(p,M)x(p,M)]dp, (3.23)

and multiplying both sides of (3.23) by dp, in consideration of (3.20), it

is

dpdx = dp[Dpx(p,M) +DMx(p,M)x(p,M)]dp ≤ 0. (3.24)

�

We have substantially proved by (3.24) that WARP implies the negative

semide�nitness of the Slutsky Matrix.

The implication of Proposition 3.2 is unique, in the sense that some fur-

ther assumptions must be considered in order to deduce WARP from (3.24).

We will present this framework later (cfr. Theorem 3.1, Theorem 3.2, Theo-

rem 3.3, Theorem 3.4, Example 3.1, Example 3.2).

Let's also note that in general we do not have the symmetry of the Slutsky

Matrix by using the assumptions made so far.

What can we say in this respect?

We would like to present �rst this preliminary result:

Proposition 3.4 Let us assume x(p,M) to be di�erentiable. If

j) all income be spent;

jj) the Slutsky Matrix S(p,M) is symmetric

then x(p,M)is homogeneous of degree 0.

Proof j) is equivalent to ask px(p,M) = M, which gives by di�erenti-

ating with respect to pi, i = 1, 2, ..., n

xi(p,M) +
n∑
j=1

pj
δxj(p,M)

δpi
= 0, (3.25)
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and with respect to M

n∑
j=1

pj
δxj(p,M)

δM
= 1. (3.26)

Let's introduce, for a �xed couple (p,M) the following function

fi(t) = xi(tp, tM), for t ∈ R+, (3.27)

where i ∈ {1, 2..., n} .
If we prove that the function de�ned in (3.27) is constant in t we show

that xi(p,M) is homogeneous of degree 0 for every i ∈ {1, 2..., n} ,which is

equivalent to say that x(p,M) is homogeneous of degree 0.

Let us compute

dfi(t)

dt
=

n∑
j=1

pj
δxi(tp, tM)

δpj
+M

δxi(tp, tM)

δM
. (3.28)

Using j) we have tpx(tp, tM) = tM, that can be restated, dividing both

sides by t, as

n∑
j=1

pjxj(tp, tM) = M. (3.29)

Using (3.29) into (3.28) we have that

dfi(t)

dt
=

n∑
j=1

pj
δxi(tp, tM)

δpj
+

n∑
j=1

pjxj(tp, tM)
δxi(tp, tM)

δM
=

n∑
j=1

pj[
δxi(tp, tM)

δpj
+ xj(tp, tM)

δxi(tp, tM)

δM
], (3.30)

which gives exactly the (i, j)th term of the Slutsky Matrix.

From jj)
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dfi(t)

dt
=

n∑
j=1

pj[
δxi(tp, tM)

δpj
+ xj(tp, tM)

δxi(tp, tM)

δM
] =

=
n∑
j=1

pj[
δxj(tp, tM)

δpi
+ xi(tp, tM)

δxj(tp, tM)

δM
] =

=
n∑
j=1

pj
δxj(tp, tM)

δpi
+

n∑
j=1

pjxi(tp, tM)
δxj(tp, tM)

δM
. (3.31)

Multiplying and dividing (3.31) by t, we get

dfi(t)

dt
=

1

t
[
n∑
j=1

tpj
δxj(tp, tM)

δpi
] +

1

t
xi(tp, tM)[

n∑
j=1

tpj
δxj(tp, tM)

δM
].

Just replacing the two expressions in square brackets with (3.25) and

(3.26) we have

dfi(t)

dt
=

1

t
[−xi(tp, tM)] +

1

t
xi(tp, tM)[1] = 0. (3.32)

(3.32) says that fi is constant. Hence we have the result.

�

Let us consider what can we say about the opposite implication. That is,

what do we have to request to get the symmetry of the Slutsky Matrix?

We start from the following proposition:

Proposition 3.5 Let's consider a consumer in an economy with only

two goods (n = 2) .

Let x (p,M) be di�erentiable. If

i) x(p,M) is homogeneous of degree 0;

ii) all the budget is spent
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then the matrix S (p,M) is symmetric.

In order to prove this Proposition we will use the following

Proposition 3.6 Let x (p,M) be di�erentiable. If

i) x(p,M) is homogeneous of degree 0;

ii) all the budget is spent;

then pS(p,M) = 0

S(p,M)p = 0
(3.33)

Proof Remember that from ii) we have that (3.25) and (3.26) are veri-

�ed. Furthermore i) is equivalent to impose that the expression in (3.28) is

equal to 0, i.e.

n∑
j=1

pj
δxi
δpj

+M
δxi
δM

= 0. (3.34)

By de�nition it is

Sij(p,M) =
δxi
δpj

+ xj
δxi
δM

, Sji(p,M) =
δxj
δpi

+ xi
δxj
δM

. (3.35)

The �rst expression in (3.33) can be restated as

n∑
j=1

pjSij(p,M) =
n∑
j=1

pj[
δxi
δpj

+ xj
δxi
δM

] =
n∑
j=1

pj
δxi
δpj

+
n∑
j=1

pjxj
δxi
δM

,

which using (3.34) gives

pS(p,M) = −M δxi
δM

+
n∑
j=1

pjxj
δxi
δM

= (−M +
n∑
j=1

pjxj)
δxi
δM

= 0.
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The last equality is a direct consequence of ii).

In order to verify that the second formula is valid, let us compute S(p,M)p.

We have

S(p,M)p =
n∑
j=1

Sji(p,M)pj =
n∑
j=1

[
δxj
δpi

+ xi
δxj
δM

]pj. (3.36)

Using (3.26) in (3.36) we have
∑n

j=1[
δxj
δpi

+xi
δxj
δM

]pj =
∑n

j=1
δxj
δpi
pj+xi

∑n
j=1

δxj
δM
pj =∑n

j=1
δxj
δpi
pj + xi, and from (3.25) we immediately get S(p,M)p = 0.

Hence we have that both the expression in (3.33) are veri�ed.

�

We will now give the proof of Proposition 3.4 as a direct consequence of

Proposition 3.5:

Proof When it is n = 2 the Slutsky Matrix is given by

S(p,M) =

∥∥∥∥∥ S11(p,M) S12(p,M)

S21(p,M) S22(p,M)

∥∥∥∥∥ .
Let us observe that it is possible to apply Proposition 3.5. Hence we have:

pS(p,M) = 0, S(p,M)p = 0. (3.37)

Let's restate (37) as these two systems of equations:S11(p,M)p1 + S12(p,M)p2 = 0

S21(p,M)p1 + S22(p,M)p2 = 0
, (3.38)

p1S11(p,M) + p2S21(p,M) = 0

p1S12(p,M) + p2S22(p,M) = 0
. (3.39)

Using (38) and (39) we get the following equalities
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p2

p1

= −S11

S12

= −S21

S22

= −S11

S21

= −S12

S22

.

Hence, rearranging, we have S12(p,M) = S21(p,M), which is exactly the

symmetry of the Slutsky Matrix.

�

We want to present an exercise to show that the result obtained in Propo-

sition 3.4 is not generalizable to the case of a generic n ≥ 3.

In particular we will deal with a situation of a 3-goods economy. After

the proof of the homogeneity of the demand and of the condition of budget

exhaustion we will show that the Slutsky Matrix associated is not symmetric.

Furthermore we will prove the negative semide�niteness of the matrix in

order to link this concept with that of WARP. In particular, we want to

show that even the validity of the Weak Axiom is not su�cient to guarantee

the symmetry of the Slutsky Matrix.

Example 3.1 Let consider a prices vector (p1, p2, p3) ∈ R3
++and a level

of income M ≥ 0.

We have 
x1(p,M) = (p2−p1)

p3
;

x2(p,M) = −p2
p3

;

x3(p,M) = (p2−p1)2

p23
+ M

p3
;

It is straightforward to see that x( ) is homogenous of degree zero.

In fact

x1(tp, tM) =
t(p2 − p1)

tp3

= x1(p,M);

x2(tp, tM) = −tp2

tp3

= x2(p,M);

30



x3(tp, tM) =
t2(p2 − p1)2

t2p2
3

+
tM

tp3

; = x3(p,M);

In order to verify the budget exhaustion condition let's compute px(p,M) =
p1p2−p21−p22+(p2−p1)2+p3M

p3
, which gives exactly

px(p,M) = M.

Since x( ) is di�erentiable we can obtain the SlutskyMatrix for our ex-

ample, that is, just remembering (3.35):

S(p,M) =

∥∥∥∥∥∥∥∥
− 1
p3

1
p3

p1−p2
p23

0 − 1
p3

p2
p23

p1−p2
p23

p2−2p1
p23

(p1−p2)2

p33

∥∥∥∥∥∥∥∥ . (3.40)

It is evident that it results S12(p,M) 6= S21(p,M), which is su�cient to

say that the matrix de�ned in (3.40) is not symmetric. We will now show the

negative semide�niteness of (3.40) by using the famous result on the minor

of S(p,M) (cfr. [20]).

We have:

1. (−1) | − 1
p3
| = 1

p3
> 0;

2. (−1)2

∣∣∣∣∣ − 1
p3

1
p3

0 − 1
p3

∣∣∣∣∣ = 1
p23
> 0;

3. (−1)3

∣∣∣∣∣∣∣∣
− 1
p3

1
p3

p1−p2
p23

0 − 1
p3

p2
p23

p1−p2
p23

p2−2p1
p23

(p1−p2)2

p33

∣∣∣∣∣∣∣∣ = p2p1
p53

> 0.

�

In order to have a complete view on this framework we will make ref-

erence to the paper by A. Mas-Colell, H.F. Sonnenschein and R. Kihlstrom

31



�The demand theory of the WARP� (cfr. [14]). We will always assume the

hypotheses of

i) homogeneity of degree 0 of the demand;

ii) budget exhaustion.

We already proved in Proposition 3.2 how we can deduce the negative semid-

i�niteness of the Slutsky matrix from WARP. The authors in this paper make

a further step by introducing a new de�nition. We say that the demand sat-

is�es the weak-weak axiom (WWA) condition if

for every p0, p1, when x 6= x′, if p0x1 < p0x0 then it is p1x0 > p1x1.

We immediately get that WWA is implied by the WA (weak axiom).

Let us mention the 3 main results of the paper:

Theorem 3.1 If x( ) satis�es WWA then the Slutsky Matrix associated

is negative semidefinite (NSD).

Theorem 3.2 If the Slutsky Matrix associated to the demand function

x( ) is negative definite (ND), then x( ) satis�es WA.

Theorem 3.3 If the Slutsky Matrix associated to the demand function

x( ) is negative definite (ND), then x( ) satis�es WA.

We can summarize all these results through the following conceptual map:

WA :
⇒(β) WWA

⇑ (α) m (γ)

ND :
⇒(θ) NSD

. (3.41)
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The implication in (θ) is an immediate consequence of the de�nition of

negative de�nite/semide�nite matrix. The authors also present the following

example to show that the implication in (β) is valid only in one direction.

Example 3.2 Let us consider a vector prices (p1, p2, p3) ∈ R3
++and a

level of income M ≥ 0.

We have 
x1(p,M) = p2

p3
;

x2(p,M) = −p1
p3

;

x3(p,M) = M
p3

;

It is straightforward to see that x( ) is homogenous of degree zero and the

budget exhaustion is valid.

In order to prove that WWA holds we can show that the Slutsky Matrix

is negative semide�nite.

Let us consider

S(p,M) =

∥∥∥∥∥∥∥∥
0 1

p3
−p2
p23

− 1
p3

0 −p1
p23

p2
p23

−p1
p23

0

∥∥∥∥∥∥∥∥ . (3.42)

We can prove the negative semide�niteness of the matrix considering the

same criterion used in Example 3.1.

We want to show now that the WA is not valid. Let's consider the two

following prices vectors p0 = (1, 1, 1) p1 = (2, 1, 1), and income M0 = 1,

M1 = 2 We have x0 (p,M) = (1,−1, 1) and x1(p,M) = (1,−2, 2).

It is

p0x1 = 1 = p0x0,

and
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p1x0 = 2 = p1x1.

Hence, WARP is violated.

�

Please note that for (3.42) it results S12(p,M) 6= S21(p,M), which is

su�cient to have the non-symmetry of the Slutsky Matrix. It is shown

by Hurwicz and Uzawa that if it is taken by assumption that the Slutsky

Matrix is symmetric the WA is completely equivalent to the WWA.

Under the hypothesis of Symmetry we have:

WA ⇔ (β) WWA

⇑ (α) m (γ)

ND ⇒ (θ) NSD

. (3.43)
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4 �Utility, Demand and Preference�, Ch.1, H.

Uzawa

In this chapter we still focus on the �Revealed Preference� theory by analyzing

chapter 1 of [3] by H. Uzawa. A generalization of Theorem 1 (cfr. Chapter

1 of [3]) will be proposed (cfr. Theorem 4.1). In this preamble we will bore

the reader with an other reference to some of the concepts analyzed in the

previous chapter. We deem it necessary to better converge the reader on the

topic.

Paul A. Samuelson in [17] introduced the Weak Axiom of Revealed Pref-

erence (WARP).

Let us suppose we were in a situation 0 (price and income) where com-

modity bundle x1 could be chosen but commodity x0 actually has been chosen

(xo is revealed preferred to x1) then at the price and income situation 1 at

which commodity bundle x1 is chosen it is impossible to choose commodity

bundle x0(x1 is not revealed preferred to x0).

x0 revealed preferred to x1 means that x0 is chosen when both x0 and x1

are a�ordable. For x1 not to be revealed to x0 means that when x1 is chosen

then x0 must not to be a�ordable; that is, the cost of x0 must exceed the

cost of x1 at all prices x1 is chosen. Suppose that x0 is revealed preferred

to x1 at price system p0 and that x1 is chosen at some other price p1. Then

WARP can formally be expressed as:

p0x1 ≤ p0x0 ⇒ p1x0 > p1x1 (4.1)

What the weak axiom indicates is that if x1 is chosen at some price system

p1, then x0 will be more expensive than x1 at prices p1.

A generalization of WARP is introduced by Houthakker in �Revealed

Preference and the Utility Function� (cfr. [10]).

Houthakker's contribution was to recognize that one needs to extend the

�direct� revealed preference relation to what he called the �indirect� revealed
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preference relation. We say that x0 is �indirectly� revealed preferred to xs

if there exists a �nite sequence of commodity bundles x0, x1...xs such that

xt is �directly� revealed preferred to commodity bundle xt+1 for every t =

0, 1, ..., s− 1.

It is easy to prove that SARP implies WARP.

We will consider in this section some regularity condition for demand

function under which the converse implication is veri�ed.

Rose in [16] o�ered a formal argument that the Strong Axiom and the

Weak Axiom were equivalent in two dimensions, providing a rigorous, alge-

braic foundation for Samuelson's earlier graphic exposure.

De�nition 4.1 Given the vector price and the income the budgetset X(p,M)

is the set of all commodity bundles whose market values evaluated at p do not

exceed incomeM : X(p,M) = {x = (x1, x2, ..., xn) such that xεΩ and px ≤M} .

In this chapter we will denote the demand function as h(p,M) in place

of x(p,M). This symbolism is the one used by Uzawa in his work. Note that

no di�erences exist between the function we introduced in chapter 1 and the

one we will introduce in the following de�nition. The reader is only invited

to take into consideration the properties assumed for the demand here and

there.

Demand function A function x = h(p,M) = h1(p,M), h2(p,M)...hn(p,M)

is a demand function if the following conditions are satis�ed:

D.I x = (h(p,M)) is a commodity bundle in Ω for any given price

vector p = (p1, p2, ...pn) and income M .

D.II Any commodity bundle x is chosen for a suitable price vector

p = (p1, p2, ...pn) and income M , i.e. x = h(p,M).

D.III x = (h(p,M)) satis�es the budget equation ph(p,M) = M, for

all positive price vector and income.
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We will sometimes consider the following stringent condition in place of D.II

D.II' For any commodity bundle x = (h(p,M)) the price vector p =

(p1, p2, ...pn) at which x is chosen, exists and is uniquely deter-

mined except for the multiplication by a scalar.

We will furthermore assume some regularity condition for the demand func-

tion. In particular we will use

D.IV h(p,M) is a lipschitzian function with respect to M .

Note 4.1 The condition presented in D.IV is formally expressed as follow-

ing:

there exist two positive real numbers ε and L such that for all p satisfying

‖ p− p0 ‖< ε and all M I ,M II with | M I −M0 |< ε and | M II −M0 |< ε it

holds

‖ h(p,M II)− h(p,M I) ‖≤ L |M II −M I |; (4.2)

h(p,M) is said to be a lipschitzian function with respect toM in (p0,M0) .

De�nition 4.2 Let f(x) be de�ned on an interval I and suppose we

can �nd two positive constants L and α such that

| f(x1)=f(x2) |≤ L | x1 − x2 |α, for every x1, x2εI (4.3)

Then f is said to satisfy Holder condition of order α and we say that fεLip(α).

If fεLip(1) it is said to be Lipschitz continuous

Proposition 4.1 Let f : Θ ⊆ Rn −→ Rm with:

1. fεC1(Θ,Rm);

2. ∃M > 0 such that maxyεΘ ‖ Jf (y) ‖≤M
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then fεLip(1).

It is straightforward to prove the continuity of a Lipschitz continuous

function (cfr. [10]).

Using the de�nition we can also prove that a function satisfying Holder

condition is continuous.

Hence, when it is possible we will consider the following condition in place

of D.IV:

D.IV* h(p,M) satisfy Holder condition of order α with respect to M .

The following proposition gives a class of functions satisfying Lipschitz con-

ditions.

Proposition 4.2 Let us suppose h(p,M) represents a demand function

(satisfying D.I, D.II, D.III) and

1. there are not inferior goods at (p,M);

then f is a Lipschitz continuous function.

Proof Let's consider a variation in income 4M . Using D.III we have

ph(p,M) = M ⇔
n∑
i=1

pihi(p,M) = M (4.4)

ph(p,M +4M) = M +4M ⇔
n∑
i=1

pihi(p,M +4M) = M +4M (4.5)

subtracting (3.4) from (3.5) and dividing both sides by the nonzero quan-

tity 4M we get

n∑
i=1

pi
[hi(p,M +4M)− hi(p,M)]

4M
= 1 (4.6)
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We can observe that we have all positive terms (from the non inferior

goods condition and the positivity of the prices) summing 1.

Hence each term must be not larger than 1, i.e.

pi
[hi(p,M +4M)− hi(p,M)]

4M
≤ 1 (4.7)

Rearranging

[hi(p,M +4M)− hi(p,M)] ≤ 1

pi
4M (4.8)

that is equivalent to the Lipschitz condition for the demand function.

�

As we already said in the introduction of this thesis we will denote by

x0Rx1

the relation x0 is revealed preferred to x1.

Considering assumption D.II on the demand function we get

for any positive bundles x, yεΩ such that x ≥ y it is xRy (4.9)

We will indicate by

x0R∗x1

the relation x0 is indirectly revealed preferred to x1.

It is obvious that

xR∗y, yR∗z implies xR∗z (transitivity) (4.10)

Let us consider 2 systems of prices pa and pb, for any given positive income

Ma we de�ne the function ρb,a(M
a) as
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ρb,a(M
a) = sup

{
M such that h(pa,Ma)R∗h(pb,M)

}
(4.11)

The function ρb,a( ) associates to any income Ma at price pa the income

ρb,a(M
a) as the supremum of those income at price pb such that the com-

modity bundle h(pa,Ma) is indirectly revealed preferred to the corresponding

commodity bundle h(pb,M).

By analogy we introduce

ρ
′

b,a(M
a) = inf

{
M such that h(pb,M)R∗h(pa,Ma)

}
. (4.12)

As consequence of (4.10) we can deduce that ρb,a( ) is a non decreasing

function of Ma. Furthermore we will say that ρb,a( ) satis�es the Regularity

condition (R) if:

for any given price systems pa and pb

the function ρb,a( ) is strictly increasing (4.13)

It is possible to show that if the Weak Axiom is satis�ed and D.I,...,D.IV

hold then we can restate (4.13) as:

(R') for any price vectors pa, pb the function ρb,a(M
a) is �nite and the

the function ρ
′

b,a(M
a) is continuous.

Let us also note that the Weak and Strong Axiom de�ned by Samuelson and

Houthakker respectively may be restated in terms of the preference relations

R and R∗ introduced above.

In particular WARP is equivalent to

(W) x0Rx1 implies x1Rx0,

while SARP is given by
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(S) xR∗y implies yR∗x.

These two results are immediate consequences of the de�nitions.

As we already make with the demand, we decide to follow's Uzawa ap-

proach and symbolism. In this respect some de�nitions or properties of the

preference relations may be stated in a di�erent style with respect the one

we used so far.

Preference relations A binary relation P de�ned on the set Ω is called a

preference relation when the following axioms are satis�ed:

P.I Irre�exibility: for any x ∈ Ω, we have xPx;

P.II Transitivity: for any x, y, z ∈ Ω, with xPy, yPz it is xPz;

P.III Monotonicity: for any x, y ∈ Ω, such that x ≥ y we have xPy;

P.IV (Houthakker) Convexity: for any x, y ∈ Ω, such that xPy, we

have [(1− λ)x+ λy]Px for all 0 < λ < 1;

P.V L-Continuity: for any x0 ∈ Ω the set {x such that xεΩ and x0Px}
is an open set in Ω.

We can consider the following in place of P.I

P.I' Asymmetry: for any x, y ∈ Ω, if xPy we have yPx;

The equivalence in considering P.I' instead of P.I is straightforward. In fact,

ab absurdo, suppose that there exists y such that it does not hold yPy, that

is yPy. Then for asymmetry we would have a contradiction. The other way

round let us suppose ab absurdo that asymmetry does not hold. Then there

exist x, y ∈ Ω such that xPy and yPx. Using transitivity we get xPx, which

contradicts the hypotesis of irre�exivity.

Notice that in order to have the usual de�nition of Continuity we have

to add to axiom P.V the assumption of U-continuity (where U and L stands

for Upper and Lower, respectively):
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P.VI U-continuity: for any x0εΩ the set {x such that xεΩ and xPx0} is
an open set in Ω.

P.V and P.VI may be substituted by requesting the complementary sets de-

�ned above to be closed in Ω.

We want to open a small parenthesis on Preference Relation theory in

order to make it easier for the reader to interpret some results otherwise

unfamiliar. In particular we will make some comparison between the hy-

potheses in P.I, P.II and P.III and the assumptions on the preference relation

R introduced in chapter 1 of this thesis.

De�nition 4.2.I (cfr. [2]) A (weak) preference relation R on Ω is said

to be regular if it is complete, transitive and re�exive.

A (strong) preference relation is said to be �negative transitive� iff

for every x, y, z ∈ Ω, with xPy and yPz it is xPz

De�nition 4.2.II A (strong) preference relation P on Ω is said to be

u− regular if it is asymmetric and negative transitive.

The two following propositions (cfr. [11]) explain the connection between

the two previous de�nition

Proposition 4.3 Given a u− regular strong preference relation P , the
strong relation R derived from the weak one (cfr. the Introduction of Chapter

1)

xRy iff (yPx)

is a regular preference
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Proposition 4.4 Given a regular preference R, de�ne P and ∼ to be

the asymmetric and symmetric parts of R as in chapter 1.

Then P is a u − regular preference and ∼ is an equivalence relation

(re�exive, symmetric, and transitive).

Proposition 4.5 Given a u − regular preference P , let ρ(P ) denote

the regular preference P
−1

induced by P ; and given a regular preference R,

let σ(R) denote the u− regular strong preference P induced by R. Then

P = σ(ρ(P )), while

R = ρ(σ(R)).

Note that the regular and u− regular properties are fundamental to get

the results of Proposition 4.5.

Let us come back to our initial problem

De�nition 4.3 Let us consider a price vector p and an income M , and

let P be a preference relation as de�ned above. A commodity bundle x0 is

said to be optimum with respect to the preference relation P in the budget

set X(p,M) if x0 ∈ X(p,M) and for any x∈Ω, with xPx0 it is x /∈ X(p,M).

The idea is that if I have an optimum x0 there exists no commodity bundles

in the budget set which are preferred to x0.

De�nition 4.4 A demand function h(p,M) is de�ned as derived from

a preference relations P if for every price vector p and positive income M

the commodity bundle h(p,M) is optimum with respect to P in the budget

set X(p,M).

Theorem 4.1 Let h(p,M) be a demand function satisfying D.I,...,D.IV

and the SARP. Then the indirect revealed preference relation R∗, generated
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by h(p,M), is a preference relation on the set Ω of all positive commodity

bundles (i.e. R∗ satis�es P.I,...,P.V ) and the demand function h(p,M) is

derived from R∗.

Proof In order to prove the theorem we have to show that the preference

R∗ satis�es the 5 conditions that characterize a revealed preference relation.

The �nal step is to prove that the demand function h(p,M) is derived from

the indirect revealed preference relation ordering R∗.

We can immediately derive P.II, P.III and P.I' through the properties of

the demand function. We have to prove that also P.IV and P.V are satis�ed.

In order to prove P.IV we need the following:

Lemma 4.1 Let the demand function h(p,M) satisfy D.I, D.II, D.III,

D.IV* and SARP. Then, for any price vector paand pb, we have:

h(pa,Ma)R∗h(pb,M) for allM < ρb,a(M
a), (4.14)

and

h(pb,M)R∗h(pa,Ma) for allM > ρb,a(M
a), (4.15)

where ρb,a( ) is de�ned in (4.11)

Proof We can deduce (4.14) by simply using the de�nition of ρb,a( )

introduced in (4.11).

In order to show that (4.15) is valid we want

ρb,a(M
a) = ρ′b,a(M

a) for allMa. (4.16)

In fact in this case we could restate (4.15) as

h(pb,M)R∗h(pa,Ma) for allM > ρ′b,a(M
a), (4.17)
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which can be seen as a direct consequence of the de�nition of ρ′b,a( ) in

(4.12).

Hence our proof will be focused on showing the validity of (4.16). A

process analogous to what Houthakker used in [10] will be considered.

For any S ∈ N let us consider the following two sequences de�ned recur-

sively as:

M0S = Ma, x0S = xa = h(pa,Ma)

MK+1,S = p
(K+1)
S xK,S, xKS = h(p

K
S ,MKS), (k = 0, 1, 2, ..., S − 1), (4.18)

where

pt = pa + t(pb − pa), 0 ≤ t ≤ 1. (4.19)

While it is

M0,S = M0S,

MKS = p
K
S xK+1,S, xK+1,S = h(p

(K+1)
S ,MK+1,S), (k = 0, 1, 2, ..., S − 1).

(4.20)

Using D.III in (4.20) we have that

lim
MK+1,S→0

xK+1,S = 0, lim
MK+1,S→∞

xK+1,S =∞, (4.21)

in fact the price vector always ranges between pa and pb. (4.21) implies

lim
MK+1,S→0

MK,S = 0, lim
MK+1,S→∞

MK,S =∞, (4.22)

(4.22) together with the continuity hypothesis of h( ) guarantees the ex-
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istence of a solution for (4.20).

Let us suppose, ab absurdo, that

there exists M̃a such that ρ′b,a(M̃
a) > ρb,a(M̃

a); (4.23)

then we would arrive to a chain of relation such as

h(pb,M)R∗h(pa, M̃a)R∗h(pb,M),

which obviously contradicts the SARP (S).

We can state

ρb,a(M
a) ≤ ρ′b,a(M

a) for allMa. (4.24)

Proceeding through an ab absurdo reasoning it is furthermore possible to

prove that

MSS ≤ ρb,a(M
a) and ρ′b,a(M

a) ≤MSS. (4.25)

From (4.24) and (4.25) we can write the following sequence of disequali-

ties:

MSS ≤ ρb,a(M
a) ≤ ρ′b,a(M

a) ≤MSS. (4.26)

Since the two sequences in (4.18) and (4.20) are de�ned for every S ∈ N
(4.16) is veri�ed if the disequalities in (4.26) hold as equality when S diverges,

that is if

lim
S→∞

(MSS −MSS) = 0. (4.27)

Taking into account D.III and the de�nition in (4.18), (4.20) we can

compute:
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MK+1,S −MK,S = p
(K+1)
S xK,S − p

K
S xK,S =

1

S
(pb − pa)xK,S, (4.28)

MK+1,S −MK,S = p
(K+1)
S xK+1,S − p

K
S xK+1,S =

1

S
(pb − pa)xK+1,S. (4.29)

By de�ning νK,S = MK,S −MK,S we get, subtracting (4.29) from (4.28)

νK+1,S−νK,S =
1

S
(pb−pa)(xK,S−xK+1,S), for any K = 0, 1, ..., S−1. (4.30)

For any j ∈ {0, 1, ..., S − 1} we can compute

j−1∑
K=0

νK+1,S − νK,S = ν1,S − ν0,S + ν2,S − ν1,S + ...+ νj,S − νj−1,S =

= νj,S − ν0,S = νj,S, (4.31)

where the last equality is consequence of ν0,S = 0, and the �rst one can

be restated as

νj,S =
1

S
(pb − pa)

(
(xa − xjS) +

j−1∑
K=1

xK,S − xK,S
)
. (4.32)

Since xaR∗xj,S, we have from (S)

p
j
S xa ≥ p

j
S xj,S. (4.33)

We de�ne pj = max
{
paj , p

b
j

}
, j = 1, 2, ..., n and pj = min

{
paj , p

b
j

}
, j =

1, 2, ..., n.
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From (4.33) we can deduce: pxa ≥ pxj,S.

For any j, independently from S we can say

xj,S ∈ Γ =
{
x such that x ≥ 0, pxa ≥ pxj,S

}
.

Let

A = max
xεΓ
| (pb − pa)(xa − x) |; (4.34)

by considering that h(p,M)εLip(α) with respect to M,

| xKS − xKS |=| h(pK/S,MKS)− h(pK/S,MKS) |≤ L |MKS −MKS |α,
(4.35)

where L and α are two positive real numbers.

We can use (4.31),(4.34) and (4.35) to get

vjS ≤ 1

S

{
A+B(v1S + ...+ vj−1,S)

}
j = 1, 2, ..., S; (4.36)

where Bα = L | pb − pa |α .
Hence, we can get the following recursive formula

vjS ≤ A

S
(1 +

Bα

S
)j−1 j = 1, 2, ..., S, (4.37)

and in particular,

vSS ≤ A

S
(1 +

Bα

S
)S−1. (4.38)

Since limS→∞(1+ Bα

S
)S−1 = eB

α
, we have limS→∞ v

SS = 0, that is exactly

(4.27).

�
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Note 4.2 The proof of Lemma 4.1 we have provided is based on the one

reported by Uzawa in [3]. The main di�erence is that we extend the theorem

to functions satisfying Holder condition and not only Lipschitz-continuous

functions. A large class of functions falls into the �rst category and not in

the second.

Proof (P.IV) We consider two goods xa = h(pa,Ma), xb = h(pb,M b)

satisfying the hypotheses of P.IV, that is:

xaR∗xb, xa 6= xb, (4.39)

Let xc = h(pc,M c) be a convex combination of xa and xb :

xc = (1− c)xa + cxb, c ∈ (0, 1).

Let us consider two possible case:

i) pcxb ≥ pcxa;

ii) pcxb < pcxa;

In case i) we have pcxc = (1 − c)pcxa + cpcxb ≥ pcxa, while in case ii) it is

pcxc = (1− c)pcxa + cpcxb > pcxb.

In case i) it is xcRxa, in fact paxc = (1 − c)paxa + cpaxb > paxa, where

the last inequality is consequence of (4.39). In case ii), by analogy, using the

continuity in M of h(p,M) we have the existence of a positive real number ε

small enough such that:

xcRh(pb,M b + ε). (4.40)

Considering (4.39) and Lemma 4.1 we have:

h(pb,M b + ε)R∗xa, for all positive ε. (4.41)
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Using (4.40), (4.41) and the transitivity of R we have

xcR∗xa.

�

Proof (P.V) Let us consider any positive commodity bundle xb satis-

fying x0R∗xb. Two possible cases arise:

j) x0Rxb;

jj) there exists x1 such that x0R∗x1, x1R∗xb;

We can consider case j) as part of jj) when we assume x0 = x1.

Hence we have

p1x1 ≥ p1xb, x1 6= xb, (4.42)

being p1 the price vector at which x1 is chosen.

Let

x2 =
x1

2
+
xb

2
,

and compute p1x2 = p1 x1

2
+ p1 xb

2
. It is, by using (4.42),

p1x1 ≥ p1x2, x1 6= x2. (4.43)

When we consider WARP for x1, x2, from (4.43) we immediately get

p2x1 > p2x2, (4.44)

where p2 represents the price vector at which x2 is chosen.

Using the de�nition of x2 and the disequality in (4.44) we get

p2x2 = p2x
1

2
+ p2x

b

2
> p2x

2

2
+ p2x

b

2
,
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implying:

p2x2 > p2xb. (4.45)

At this point we can say that there exists a neighborhood Ib of commodity

bundles xb such that:

p2x2 > p2x, for all x ∈ Ib;

hence

x0R∗x, for all x ∈ Ib, (4.46)

which is exactly the continuity hypothesis in P.V.

�

What we get so far is that that if the demand function satis�es axioms

D.I, D.II, D.III, D.IV* then for the preference R∗ P.I, P.II, P.III, P.IV, P.V

are all valid. In order to complete the Proof of Theorem 4.1. we left to

prove that the demand function h(p,M) is derived from R∗. The condition

according to which the demand function can be said as derived from a certain

preference relation is stated in De�nition 4.4 in this chapter.

Let x0 be the choice of the consumer when prices and income are given by

the couple (p0,M0), that is x0 = h(p0,M0). For any other commodity bundles

x 6= xo on the budget set it must result x0Rx, which obviously implies x0R∗x.

Viceversa let's consider a certain x0 in the budget set de�ned by p0 and M0

such that x0R∗x, for all x 6= xo. Then it must be x0 = h(p0,M0). In fact, if

ab absurdo we suppose the existence of x̂ 6= x0 in the budget set such that

x̂ = h(p0,M0) we would violate the SARP.

Our last step consists on showing the unicity of the preference relation

considered.

Let us consider R′ as any preference relation de�ned on the support of

R∗, from which h(p,M) is derived. When xR∗y we must have, by de�nition,
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xR′y. Using the transitivity hypothesis, it must be

xR∗y implies xR′y. (4.47)

Viceversa let us consider two consumption bundles x, y satisfying xR∗y.

By using the construction of Lemma 4.1, we can consider a sequence (yn)n∈N
with

lim
n→∞

yn = y, and ynR∗x, for any n ∈ N.

The hypothesis of continuity in P.V (sequence continuity) and (4.47) guar-

antees xR′y. Hence we have

xR∗y implies xR′y. (4.48)

The unicity of the preference relation is straightforward from (4.47) and

(4.48).

�

The two following theorems focus on the properties we can deduce for the

demand function. We will not present the proofs.

Theorem 4.2 Let a demand function h(p,M) satisfy D.I,..., D.IV. Then

the SARP implies the continuity of the demand function h(p,M) with respect

to price vector p and M.

Theorem 4.3 Let h(p,M) be a demand function satisfying D.I, D.II',

D.III, D.IV and the SARP. Then the indirect revealed preference relation R∗

satis�es Axioms P.I,...,P.VI on Ω.

Theorem 4.4 expresses a fundamental property in �Revealed Preference�

theory:
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Theorem 4.4 Let a demand function h(p,M) satisfy D.I,...,D.IV. Then

the SARP holds if and only if the WARP and the Regularity Condition (R)

are both satis�ed.

We would not report the proof as it could be easily deduced by the reader

from Lemma 4.1.

The following two theorems show how, given any preference relation on

the set Ω, it is possible to derive the corresponding demand function.

Theorem 4.5 Let P be a preference relation on the set Ω of all non-

negative commodity bundles satisfying Axioms P.I,...,P.V. Then there exists

a demand function h(p,M) which satis�es D.I, D.III and the SARP.

Theorem 4.6 Let P be a preference relation on the set Ω of all nonneg-

ative commodities satisfying Axioms P.I,..., P.VI. Then there exists a demand

function h(p,M) that is derived from the preference relation P. The demand

function h(p,M) satis�es D.I, D.II, D.III and the SARP, and it is continuous

with respect to price vector p.
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5 �The Pure Theory of Consumer's Behaviour�,

N. Georgescu-Roegen

At this point we will try to analyze �The Pure Theory of Consumer's Be-

haviour�(cfr. [5]) by N. Georgescu-Roegen. Samuelson refers to this article

by saying �Professor N. Georgescu-Roegen wrote one of the most important

clari�cations of the problem of integrability and also of the even more subtle

problems of transitivity. Until re-reading his article recently I did not realize

how it must have stimulated my own work on the subject.�

We will focus our attention on the �rst two sections of the paper as they

are in some sense more directly linked with the problem of integrability we

are interested in.

Georgescu develops a theory for the construction of �indi�erence surfaces�

starting from four su�cient hypotheses. As a statistician he builds his work

with several probabilistic/statistic references in a way that can be considered

interesting and for sure original.

We will try to follow his presentation.

THE MODEL

In developing his model Georgescu says �Let S be an ordinal and contin-

uous set of combinations, i.e., a set such that any combination Cr belonging

to the set may be completely characterized by its rank r....”

Let us just recall that in mathematics a �combination� on a given set X

can be thought as a particular way in selecting the elements of X, where the

order of choice is not important.

Hence suppose that S is a set of combinations on a given set X, and the

elements of S are denoted as Cr. Then we should be able to order the com-

binations through the indices r. We will consider the combination (Ca) as

�always preferred� to combination (Cb) if a > b. (Ca) will be said �preferen-

tial�. Let us consider the case where the individual faces a third combination

(T ) . Let's assume (T ) is preferred to (Cb) if b < r while (Ca) is preferred to
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(T ) if R < a. Hence we are assuming the possibility of de�ning two classes

of combinations: those preferred to (T ) and those to which (T ) is preferred.

Georgescu, in this respect, considers the following Postulate:

A. There is a unique combination (Ct) that will separate the non-

preferred combinations from the preferred ones.

Ct will coincide with Cr and CR.

What we say so far may look a little bit � like an end in itself� and not

relevant for our �Integrability Problem�. When we deal with the following

construction the assumption in A. will be clari�ed. Meanwhile the reader

can thought the Hypothesis in A. as a continuity assumption.

Note 5.1 We want to provide a possible explanation for the ambiguity

the reader will face in using this �rst Postulate. The author is requesting

that our set of combinations is a total order, in such a way that we are able

to construct a �ranking� for the considered elements. Since the hypothesis in

A. will be used on a continuous set (not countable) our idea is that a more

�traditional continuity hypothesis� would �t better in this context. Further-

more it is not completely clear the idea behind the choice of considering the

two indices r and R. Our opinion is the author looked for the existence of a

non-singular set dividing the preferred and non-preferred combinations.

We will now face with the more familiar geometrical approach. Let us con-

sider for simplicity a two dimension consumption space, and de�neM(x1, x2)

as the initial position of our agent, where (x1, x2) represent the coordinates

of M .
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FIGURE 5.1

At this point the author introduces his second Postulate:

B. There is no saturation point.

Once again this hypothesis is stated in a �natural science� way more than as

an economical fact. Postulate B. means for that �the individual will prefer

to M any other position within the right angle AM̂D, and that he will take

the trouble to move from M(x1, x2) to M(x1 +4x1, x2 +4x2) if he can do

so without any further conditions. On the contrary, M will be preferred to

any combination within the angle CM̂B�

Note 5.2 The hypothesis made in B., as the one presented in A., looks

in some sense not appropriate. Without any convexity assumption on the

demand many results would not be achieved in what follows. The reader

should assume convexity when necessary in the rest of this chapter.
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Let us start by considering a positive straight line ωω′ and all the points

lying on this set. These combinations form a preferential set. All the points

on the north-west of O′ such as V ′ are preferred to M , while those on the

south-east of O such as V are non-preferred to M. Postulate A. guarantees

the existence of a unique point µ representing an indi�erence combination to

M. Now let us consider the family of lines parallel to ωω′ intersecting the CD

from O to M. For each line we can de�ne a point µ indi�erent to M. Hence

it is possible to de�ne the locus of µ. We can construct the two tangent lines

to the locus of µ in M, which are
−−→
Mw and

−−−→
Mw1, respectively.

Through this construction we �nd the prefence and nonpreference di-

rections. The �rst will be all the directions from w1 up to w obtained through

an anticlockwise rotation (e.g. v). All the others will be nonproference direc-

tions (e.g. v′). What we mean by preference direction is that the consumer

will move in that sense when possible.

At this point the third postulate is presented:

C. The limiting directions
−−→
Mw and

−−−→
Mw1 are vertically opposite.

The hypotesis in C. is essentially a smoothness assumption. What the author

wants to state by postulating C. is that the direction identi�ed by ww1 is

somehow the �indi�erence direction�. What does this mean? The idea is

that the locus of µ will be the indi�erence curve we were looking for and

the straight line ww1 is the tangent to the curve. Notice that we are not

yet �authorized� to speak about indi�erence curves as we have not de�ned

them. What we can say is that �the assumption expresses the fact that

the individual will exchange either x1 for x2 or x2 for x1 at any given rate

of exchange, with the exception of that rate which equals the slope of the

corresponding indi�erence elements�. Roughly speaking, C. guarantees the

absence of points of non-di�erentiability and this assumption guarantees the

possibility of proceeding in our construction.

The last assumption refers to the behaviour of the indi�erence curve when

the direction of ωω′ changes:
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D. The indi�erence direction at any point is uniquely determined.

Let us now suppose that Postulate A, B, C and D are simultaneously valid,

then a construction such as that in FIGURE 5.1 can be considered. Con-

sumer's preference will be described through a di�erential equation as follows:

ϕ1(x1, x2)dx1 + ϕ2(x1, x2)dx2 = 0, withϕ1( ), ϕ2( ) ≥ 0, (5.1)

where the inequality is satis�ed strictly at least for one of the two func-

tions.

The construction made so far may be traced in the case of three or more

goods. When, for example, we have the case of a 3-goods-economy we should

think of �the case where the choice of the individual is limited to the combi-

nations represented by a plane which passes through a preference direction

positive inclined with respect to all coordinate axes, we reach the result that

the indi�erence element is represented by the total di�erential equation

ϕ1(x1, x2, x3)dx1 + ϕ2(x1, x2, x3)dx2 + ϕ3(x1, x2, x3)dx3 = 0, (5.2)

which in the n− goods case becomes

n∑
i=1

ϕi(x1, x2, ..., xn)dxi = 0. (5.3)

The main idea is that a direction de�ned by an increment (4x1,4x2, ...,

4xn) is an indi�erent direction if
∑n

i=1 ϕi(x1, x2, ..., xn)4xi = 0. At this

point the author speci�es that some other conditions on the function ϕi( )

should be added in (5.3) to obtain the result we are looking for. If for the case

expressed by (5.1) we have not �integrability problem� or at least we solved

this problem (cfr. [18]), when we consider a more-than-2-goods-economy the

situation could become a little bit �tricky�. In this regard Professor Georgescu

introduced a �stability equilibrium concept�. Let us be given the point M
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de�ned above and consider an indi�erent direction de�ned by
−−−→
MM ′. That

is, M ′ is chosen is such a way that
−−−→
MM ′ is an indi�erence direction for M.

Now we will face an equilibrium stability situation if the direction de�ned by
−−−→
MM ′ is a non-preference direction for M ′. The condition of stability of an

equilibrium in mechanics can be satis�ed, roughly speaking, if when we move

a body �slightly� from one point of equilibrium to an other it will naturally

go back to the �rst one. Let us analyze in more detail this condition.

As we already did in previous situations (cfr. chapter 1) we will choose

the function ϕ1( ) as numeraire and we will de�ne n− 1 new functions given

by B2 = ϕ2( )
ϕ1( )

, B3 = ϕ3( )
ϕ1( )

, ... , Bn = ϕn( )
ϕ1( )

.

Dividing (5.3) by ϕ1( ) and considering that
−−−→
MM ′ is an indi�erence di-

rection, we get

n∑
i=1

ϕi
ϕ1

4xi = 4x1 +
n∑
i=2

Bi4xi = L = 0, (5.4)

with 4xi su�ciently small.

Let us consider the �rst-order Taylor approximation of B1, B2, ..., Bn in

x+4x = (x1 +4x1, ..., x+4xn) de�ned in such a way that it results exactly

M ′ = M ′(x +4x). If we do not consider the terms from the second order

on, we get

Bi(x+4x) ∼= Bi(x) +
n∑
j=1

δBi(x)

δxj
4xj, for every i ∈ {2, ..., n} . (5.5)

When we introduced (5.3) we speci�ed how the sign of equality in the

equation is equivalent to say that the direction de�ned by an increment

(4x1,4x2, ...,4xn) is an indi�erent direction. The condition of the stable

equilibrium would be given by analogy requiring that (5.3) holds with strict

inequality (<) for M ′ when the direction is given by
−−−→
MM ′ = (4x1,4x2, ...,

4xn). I am sure that no ambiguity arises in using the same symbolism in
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denoting the general increment (4x1,4x2, ...,4xn) and the speci�c one for
−−−→
MM ′.

Hence in our case it must result:

4x1 +
n∑
i=2

Bi(x+4x)4xi < 0. (5.6)

(5.6) can be restated, in the light of (5.4) and (5.5), as:

n∑
i=2

n∑
j=1

δBi(x)

δxj
4xj4xi < 0. (5.7)

I want to stress that condition (5.7) really looks like a condition of nega-

tive de�niteness for a certain unspeci�ed matrix S.

We just con�ne ourselves to the intuition. Starting from this consideration

we analyze how (5.7) can be considered as satis�ed when subject to (5.4).

In fact rearranging (5.7) we have:

n∑
i=2

(
δBi(x)

δx1

4x1 +
n∑
j=2

δBi(x)

δxj
4xj)4xi =

4x1

n∑
i=2

δBi(x)

δx1

4xi +
n∑
i=2

(
n∑
j=2

δBi(x)

δxj
4xj)4xi < 0. (5.8)

We can obtain, from (5.4), 4x1 = −
∑n

j=2Bj4xj, in such a way that

(5.8) is equivalent to

F = −
n∑
i=2

(
n∑
j=2

Bj
δBi(x)

δx1

4xj)4xi +
n∑
i=2

(
n∑
j=2

δBi(x)

δxj
4xj)4xi =

n∑
i=2

n∑
j=2

(
δBi(x)

δxj
−Bj

δBi(x)

δx1

)4xj4xi < 0. (5.9)

Now the intuition we grasped becomes exploitable. Indeed condition (5.9)
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is now equivalent to the negative semide�niteness of the (n− 1) × (n − 1)

square matrix S =‖ δBi(x)
δxj
− Bj

δBi(x)
δx1

‖i,j=2,...,n . It is possible to rewrite the

inequality in (5.9) as

F =
1

2

n∑
i=2

n∑
j=2

fij4xj4xi < 0, (5.10)

where it is assumed

fij = fji =
δBi(x)

δxj
−Bj

δBi(x)

δx1

+
δBj(x)

δxi
−Bi

δBj(x)

δx1

, i, j = 2, 3, ..., n. (5.11)

Note 5.3 The author seems to come, or at least to get very close to the

fundamental condition of negative semide�niteness of the Slutsky Matrix,

while he completely �bypasses� any symmetry condition.

Hence Matrix S will be de�ned as

S =

∥∥∥∥∥∥∥∥∥∥
f22 f23 ... f2n

f32 ...

...

fn2 ... fnn

∥∥∥∥∥∥∥∥∥∥
,

and using a familiar criterion ( ) we can say that matrix S is negative semidef-

inite iff

|f22| < 0;

∣∣∣∣∣ f22 f23

f32 f33

∣∣∣∣∣ > 0; ... (5.12)

By some tedious algebraic operations that I will not dwell on we arrive to

say that �the system in (5.7) subject to (5.4) is satis�ed when the principal

minors, including always the elements of the �rst row and column, of the

determinant
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D =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 B2 B3 ... Bn

1 0 B2,1 B3,1 ... Bn,1

B2 B2,1 2B2,2 B2,3 +B3,2 ... B2,n +Bn,2

B3 B3,1 B3,2 +B2,3 2B3,3 ... B3,n +Bn,3

... ... ... ... ...

Bn Bn,1 Bn,2 +B2,n Bn,3 +B3,n ... 2Bn,n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(5.13)

are, starting with the third order, alternatively positive and negative�;

i.e,

∣∣∣∣∣∣∣
0 1 B2

1 0 B2,1

B2 B2,1 2B2,2

∣∣∣∣∣∣∣ > 0;

∣∣∣∣∣∣∣∣∣∣
0 1 B2 B3

1 0 B2,1 B3,1

B2 B2,1 2B2,2 B2,3 +B3,2

B3 B3,1 B3,2 +B2,3 2B3,3

∣∣∣∣∣∣∣∣∣∣
< 0, ....

(5.14)

Now let us denote by Φ the expression in (5.6), and take its second-order

Taylor expansion:

Φ = 4x1 +
n∑
i=2

Bi(x+4x)4xi u

u L+ a2L2 − L2
1 − L2

2 − ...− L2
n−1, (5.15)

where L1, L2, ..., Ln−1 are linear functions of 4x1,4x2, ...,4xn, L is de-

�ned in (5.4) and the second equality in (5.15) is a consequence of (5.14).

We will not dwell with the mathematical details of what follows but it is

important to grasp the intuition.

Φ = 0 represents a quadratic and L = 0 is its tangent plane. Let us

consider a small movement from the origin, then it results:
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Φ < 0, if L ≤ 0.

Hence we can restate (5.6) as:

4x1 +
n∑
i=2

Bi(x+4x)4xi < 0, if 4x1 +
n∑
i=2

Bi(x)4xi ≤ 0. (5.16)

(5.16) becomes our necessary and su�cient stability condition and can

be interpreted as �any direction (4x1,4x2, ...,4xn) which constitutes for

M(x1, x2, ..., xn) either an indi�erence or a non-preference direction, will be

a non-preference direction for the in�nitesimally-near pointM(x1+4x1, x2+

4x2, ..., xn +4xn)�.
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6 �The Problem of Integrability in Utility The-

ory�, P.A. Samuelson

We want to present the main results reached in �The Problem of Integrability

in Utility Theory� by P. A. Samuelson (cfr. [18]). As usual let us consider an

economy with n consumption goods. Let's consider the same hypotheses we

made so far on the demand function x(p,M) = (x1(p,M), x2(p,M), ..., xn(p,M)),

i.e.

i) x( ) is di�erentiable;

ii) x( ) is homogeneous of degree zero;

iii) budget exhaustion.

At this point the author introduces a further hypothesis:

iv) the demand function is invertible.

We want to �nd a mathematical criterion equivalent to assumption iv).

Using i), ii) and iii) from Proposition 3.6 we get

S(p,M)p =

∥∥∥∥∥∥∥
dh1
dp1

... dh1
dpn

... ... ...
dhn
dp1

... dhn
dpn

∥∥∥∥∥∥∥
 p1

...

pn

 = (6.1)

=

∥∥∥∥∥∥∥
δx1
δp1

+ δx1
δM
x1 ... δx1

δpn
+ δx1

δM
x1

... ... ...
δxn
δp1

+ δx1
δM
xn ... δxn

δpn
+ δxn

δM
xn

∥∥∥∥∥∥∥
 p1

...

pn

 = 0

Since we assumed positive prices and positive income (6.1) implies S(p,M)

to be singular. In fact, ab absurdo, detS(p,M) 6= 0 the nul vector price would

be the only solution of the system Sp = 0.

Let us consider the implicit function theorem (cfr. [20]) for our frame-

work.
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We have F : Rn+n+1 → Rn, where

F (x1, x2, ..., xn, p1, p2, ...., pn,M) =


x1 − x1(p1, p2, ..., pn,M)

...

xn − xn(p1, p2, ..., pn,M)

M −M


and if it results that the matrix∥∥∥∥∥∥∥

δx1
δp1

... δx1
δpn

... ... ...
δxn
δp1

... δxn
δpn

∥∥∥∥∥∥∥ is non singular, (6.2)

(from det

∥∥∥∥∥∥∥∥∥∥

δx1
δp1

... δx1
δpn

δx1
δM

... ... ... ...
δxn
δp1

... δxn
δpn

δxn
δM

0 ... 0 1

∥∥∥∥∥∥∥∥∥∥
6= 0), then it is possible to get



p1 = p1(x1, x2, ..., xn)

...

pn = pn(x1, x2, ..., xn)

M = M(x1, x2, ..., xn)

.

Hence condition iv) is completely equivalent to (6.2).

Let's consider, for convenience, a new set of variables. By �xing the n−th
price as the numeraire we have:

(B1, B2, ..., Bn−1, Bn) = (
p1

pn
,
pn
pn
, ...,

pn−1

pn
,
M

pn
).

In this case when hypothesis iv) holds it is possible to invert the demand

function to get
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B1 = B1(x1, x2, ..., xn)

...

Bn−1 = Bn−1(x1, x2, ..., xn)

; (6.3)

and since iii) is valid we get Bn = M
pn

= B1x1+B2x2+...+Bn−1xn−1+ pn
pn
xn.

We can note that the implicit function theorem is valid in this new frame-

work if the determinant of the jacobian of F ∗ with respect to B1,B2,...,Bn is

non-zero, where

F ∗ =

 x1 − x1( p1
pn
, ..., pn−1

pn
, M
pn

)

...

xn − xn( p1
pn
, ..., pn−1

pn
, M
pn

)

 =

 x1 − x1(B1, ..., Bn)

...

xn − xn(B1, ..., Bn)

 .

The implicit function theorem states that

Bx1,x2,...,xn = −J−1
B1,...,Bn

(F )Jx1,x2,...,xn(F ).

Since Jx1,x2,...,xn(F ∗) is the n× n identity matrix we have that

J−1
B1,...,Bn

(F ∗) =


δB1

δx1
... δB1

δxn

... ... ...
δBn
δx1

... δBn
δxn

 =

(
( δBi
δxj

)i,j=1,...,n−1 ( δBi
δxn

)i=1,...n−1

( δBn
δxj

)j=1,...n−1
δBn
δxn

)
,

where we use a block-matrix representation in the last equality.

By using some algebraic manipulation we have

J−1
B1,...,Bn

(F ∗) =

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 ... 0

0 1

... ... 0

0 ... 0 1

0

(xj)j=1,...,n−1 1

∥∥∥∥∥∥∥∥∥∥∥∥
∗

∥∥∥∥∥ ( δBi
δxj
−Bj

δBi
δxn

)i,j=1,...,n−1 ( δBi
δxn

)i=1,...n−1

0 1

∥∥∥∥∥ ∗
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∗

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 ... 0

0 1

... ... 0

0 ... 0 1

0

(Bj)j=1,...,n−1 1

∥∥∥∥∥∥∥∥∥∥∥∥
. (6.4)

It has been shown that if an integrable utility function U( ) exists then

the Slutsky Matrix S = ( δxi
δpj

+ δxi
δM
xj)i,j=1,...,n is symmetric, as the equality

δ2U
δpiδpj

= δ2U
δpjδpi

must hold. We can rewrite

S =

∥∥∥∥∥ ( δxi
δpj

+ δxi
δM
xj)i,j=1,...,n−1 ( δxi

δpn
+ δxi

δM
xn)i=1,...,n−1

( δxn
δpj

+ δxn
δM
xj)j=1,...,n−1

δxn
δpn

+ δxn
δM
xn

∥∥∥∥∥ =

∥∥∥∥∥ Sn sin

snj snn

∥∥∥∥∥ .
(6.5)

From (6.1) we have that S is a singular matrix. Hence it would be su�-

cient to prove the symmetry of Sn. That is we have
(n−1)(n−2)

2
conditions to

verify.

It is possible to show that

JB1,...,Bn(F ) = J =

∥∥∥∥∥ ( δxi
δpj

)i,j=1,...,n−1 ( δxi
δpn

)i=1,...,n−1

( δxn
δpj

)j=1,...,n−1
δxn
δpn

∥∥∥∥∥ .
Hence we can rewrite

∥∥∥∥∥ Sn ( δxi
δpn

)i=1,...,n−1

snj
δxn
δpn

∥∥∥∥∥ = J

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 ... 0

0 1

... ... 0

0 ... 0 1

0

(xj)j=1,...,n−1 1

∥∥∥∥∥∥∥∥∥∥∥∥
,

and by using (6.4) we get
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∥∥∥∥∥ Sn ( δxi
δpn

)i=1,...,n−1

snj
δxn
δpn

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 ... 0

0 1

... ... 0

0 ... 0 1

0

(Bj)j=1,...,n−1 1

∥∥∥∥∥∥∥∥∥∥∥∥

−1

∗

∗

∥∥∥∥∥ ( δBi
δxj
−Bj

δBi
δxn

)i,j=1,...,n−1 ( δBi
δxn

)i=1,...n−1

0 1

∥∥∥∥∥
−1

=

=

∥∥∥∥∥ [( δBi
δxj
−Bj

δBi
δxn

)i,j=1,...,n−1]−1 ( )i=1,...n−1

( )j=1,...,n−1 ( )

∥∥∥∥∥ .
In order to prove the symmetry of (6.4) we just have to show that

[( δBi
δxj
− Bj

δBi
δxn

)i,j=1,...,n−1] is symmetric. What we found is exactly the condi-

tion presented by Antonelli (cfr. 2.23).

Using (6.3) we de�ne the following system of di�erential equations
− δxn
δx1

= B1(x1, x2, ..., xn)

...

− δxn
δxn−1

= Bn−1(x1, x2, ..., xn)

; (6.6)

and the total di�erential equation

B1dx1 +B2dx2 + ...+Bn−1dxn−1 + dxn = 0. (6.7)

We term an �indi�erence path� a path satisfying (6.7). We can consider

Q1dx1 +Q2dx2 + ...+Qn−1dxn−1 +Qndxn = 0, (6.8)

in place of (6.7), where Qn( ) is a non-zero function and Qi = QnBi.

Let us recall some fundamental results on the theory of total di�erential

equation.
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De�nition 6.1 (cfr. [7]) Let V be a real linear space and let V ∗ be

the space Hom (V,R) . Then the map < ·, · >: V ∗ × V −→ R associating

to each couple (f, v) in V ∗ × V the value f (v) is said to be the �duality�

between V ∗ and V.

De�nition 6.2.I Let Ψ be an open set of Rn then ω : Ψ → (Rn)∗ is

said to be a linear di�erential form in Ψ.

We can restate De�nition 6.2.I as

De�nition 6.2.II Let Ψ be an open set of Rn; then the map ω de�ned

on Ψ is said to be a di�erential form if for every x ∈ Ψ it is associated a

linear form ω(x) : Rn −→ R, that is for every vector x ∈ Ψ we have a vector

g (x) = (g1(x), ...., gn(x)) ∈ Rn such that

ω(x)(v) = g(x) · v for every v ∈ Rn, (6.9)

where g ( ) is said to be the coe�cients vector of the di�erential form ω.

We will say that ω is continuous if g( ) is continuous and by analogy ω is said

to be of class Ck when g( ) is of class Ck.

Let us note that, when we denote by dxi the i− th linear form associating

with every vector v its i − th component, we can rewrite (6.9) in the more

usual aspect as:

ω(x1, ...., xn) =
n∑
i=1

gi(x1, ..., xn)dxi. (6.10)

De�nition 6.3 Let ω be continuous, then we can de�ne the �line inte-

gral� on the curve γ ∈ C1(x0, x1,Ψ) as

ˆ

γ

ω =

bˆ

a

g(γ(t)) · γ′(t)dt, (6.11)
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where a, b are the extremes of the interval along which the curve γ is

de�ned.

De�nition 6.4 Let ω be a di�erential form as above and g : Ψ −→ Rn

the coe�cients vector of ω. ω is said to be an �exact di�erential� if there

exists a function f : Ψ −→ R such that g = ∇f or equivalently ω = df.

Proposition 6.1 (cfr. [6]) Let ω be a continuous di�erential form.

Then it is equivalent:

d.i) ω is an exact di�erential;

d.ii)
´
γ
ω = 0, for every x ∈ Ψ and for every γ ∈ C1(x, x,Ψ);

d.iii)
´
γ
ω =
´
µ
ω, for every x0, x1 ∈ Ψ and for every γ, µ ∈ C1(x0, x1,Ψ).

d.ii) means that the integral over a closed path is 0 independently from

the path, while d.iii) is equivalent to say that any curves de�ned between

the two integration points on which the integral is computed guarantees the

same value for the integration.

De�nition 6.5 Under the hypotheses made so far a C1 di�erential form

is said to be �closed� i�:

δgi
δxj

=
δgj
δxi

, for every i, j = 1, ..., n.

Lemma 6.1 (Poincaré) Let ω be a di�erential form of class C1. If ω

is closed and de�ned on an open star domain then ω is an exact di�erential.

Let us go back to our �integrability problem�.

Referring to expression in (6.8) Samuelson says �Only if
∑
Qkdxk = dQ,

is an exact differential with Qk = δQ
δxk

= Qk and Qkj = Qjk, will such

an integral be always the same for different paths between two speci�ed
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end-points; and only in this case we can be sure that if we go from point A

to point B by one path and return back to A by an other path, the value of

the integral will none the less be zero over the round trip, indicating that A

is exactly as good as itself and no better.�

The link with the Poincaré's Lemma is straightforward.

Instead of asking (6.8) to be an exact di�erential, we will look for the

existence of an integrating factor. That is, we are asking whether there

exists a function I (x1, ..., xn) such that

I
∑

Qkdxk = dV is an exact integral. (6.12)

(6.12) is equivalent to ask for the existence of a set of variable proportional

to B1, B2, ..., Bn−1guaranteeing the di�erential form in (6.7) to be integrable.

In order to have the hypotheses of the Poincaré's Lemma we should ask

for

δ2V

δxjδxi
=

δI

δxi
Qj + I

δQj

δxi
=

δI

δxj
Qi + I

δQi

δxj
=

δ2V

δxiδxj
,

for every i, j = 1, ..., n, i 6= j. (6.13)

or, equivalently,

δI

δxi
Qj − δI

δxj
Qi + I(

δQj

δxi
− δQi

δxj
) = 0. (6.14)

After some simple algebraic manipulation (6.14) can be restated as

Qi(
δQj

δxn
− δQn

δxj
) +Qj(

δQn

δxi
− δQi

δxn
) +Qn(

δQi

δxj
− δQj

δxi
) = 0,

for every i, j = 1, ..., n− 1, i 6= j. (6.15)

Let us now recall that we have previously de�ned Qk = BkQn, k ∈
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{1, 2, ..., n} . Hence after some algebraic manipulation (cfr. [24]) we can re-

state (6.15) as

δBi

δxj
−Bj δB

i

δxn
=
δBj

δxi
−Bi δB

j

δxn
,

for every i, j = 1, ..., n− 1, i 6= j, (6.16)

which are exactly Antonelli's integrability conditions (cfr. 2.23).

As we already mentioned in the introduction we want to stress that the

conditions in 6.16 are not su�cient to solve our integrability problem. Next

chapter will clarify this point.
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7 �Utility, Demand and Preference�, Ch. 6, L.

Hurwicz & H. Uzawa

Chapter 6 of [3] by L. Hurwicz and H. Uzawa can be considered as �the �nal

solution� of the �integrability problem�. In this section we will focus on this

work. Some additional considerations will complete our analysis.

As usual let us consider an economy where an n − dimension vector of

consumption goods is represented by x = (x1, x2, ..., xn) ∈ Rn+ and prices

are given by the n-tuple (p1, p2, ..., pn) ∈ Rn++ = Π. We will denote by x =

x(p,M) the demand function associating to the couple (p,M) (where M

measure the income) the consumption bundle x. Let's assume price system

p and income M range in the set Ω =
{

(p,M) : p ∈ Rn++, M ∈ Rn+
}
.

We will consider the following assumptions when necessary:

(A) x(p,M) is a semipositive single-valued function de�ned for each

(p,M)∈ Ω;

(B) the budget constraint is satis�ed with equality, i.e px(p,M) = M,

for each (p,M)∈ Ω;

(D) xi(p,M) is di�erentiable on Ω for every i = 1, 2, ..., n;

(E) For any positive α′, α′′ there exists a positive Kα′,α′′ such that, for

each i = 1, 2, ..., n, it is | δxi(p,M)
δM

|≤ Kα′,α′′ for (p,M)εΩ and pj ∈
[α′, α′′], for any j = 1, 2, ..., n.

Let us denote by X the image set of the function x(p,M). Using the demand

function and assuming (D) it is possible to de�ne the Slutsky matrix as

S(p,M) = ‖Si,j(p,M)‖i,j=1,..,n
, (7.1)

where Si,j(p,M) =
δxi(p,M)

δpj
+
δxi(p,M)

δM
xj(p,M).

(7.1) is said to be
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(S) symmetric if Si,j(p,M) = Sj,i(p,M) for every i, j = 1, 2, ..., n and for

each (p,M)∈ Ω;

(N)negative semindefinite if vTS(p,M)v ≤ 0 for all vεRn and for all (p,M)∈
Ω.

We will now present a theorem guaranteeing property (S) and (N) to be ver-

i�ed starting from assuming some regularity conditions for the utility maxi-

mization.

Theorem 7.1 Let us consider a preference relation R de�ned on the

set of all conceivable commodity bundles with nonnegative vector with the

following properties:

P.I* Re�exivity;

P.II* Completeness;

P.III* Transitivity

and let x( ), satisfying (A), (B) and (D), be the unique maximizer of the

preference relation subject to the budget inequality px ≤M .

Then the Slutsky matrix S(p,M) satis�es properties (S) and (N).

Proof Let (p0,M0) be a point in Ω with x0 = x(p0,M0). We can de�ne

the set

K =
{
x ∈ Rn+ such that xRx0

}
. (7.2)

Let us introduce the so called �expenditure function� as

µ(p) = inf
xεK

px (7.3)

We �rst prove the concavity of µ( ).
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Let's consider two couples (p, x) , (p1, x1) satisfying µ(p) = px and µ(p1) =

p1x1 respectively.

Then let's de�ne p2 = tp+ (1− t)p1, t ∈ [0, 1] as the convex combination

of the two prices systems p, p1 and let p2x2 = µ(p2).

We have p2x2 = tpx2+(1−t)p1x2, where, in general, it is

px2 ≥ µ(p)

p1x2 ≥ µ(p1)
.

Hence, using p2x2 = µ(p2) it is µ(p2) = p2x2 ≥ tµ(p) + (1− t)µ(p1).

From the concavity we can immediately obtain the continuity of µ( ).

Now let us de�ne

X(p) = x(p, µ(p)) for all p ∈ Π. (7.4)

X( ) is continuous as combination of continuous functions. Now, using

(B) we get

pX(p) = µ(p) for all p ∈ Π. (7.5)

We want to prove that for any p′ ∈ Π it is

pX(p) ≤ pX(p′) (7.6)

Let's consider a sequence (xn)nεN such that xnPx, for every nεN and

limn→∞ p
′xn = µ(p′) = infxεK p

′x.

By the de�nition of inf, for every positive real numberε, there exists an

index nε such that p′xn < µ(p′) + ε for every n > nε.

Let xε = x(p′, µ(p′) + ε). Using the de�nition of demand function, xε is

the unique maximizer subject to the constraint p′x ≤ µ(p′) + ε. Therefore,

p′xn < µ(p′) + ε implies xεPxn which means xε ∈ K.

Using the continuity of the demand function x( ) we have limε→0 x
ε =

X(p′).

Let us consider the two case:

1) X(p) ∈ K;
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2) X(p) /∈ K.

In 1), X (p) minimizes over K the function px. And since xε ∈ K, it is

pX (p) ≤ pxε for all ε. Taking the limit we get pX (p) ≤ pX(p′).

In 2) x0PX (p) . Since xnPx0, xεPxn, for the transitivity, xεPX(p). Ab

absurdo suppose pX (p) > pX(p′). Using the continuity assumption, for small

ε, it is pX (p) > pxε. Thus xε is more desirable than X (p) and cheaper at

price p. We found a contradiction as X (p) does not maximize satisfaction

subject to the budget constraint. It must be pX(p) ≤ pX(p′). Hence we have

(7.6).

We want to prove that we can de�ne the δµ
δpj

for every j = 1, 2, ..., n. We

have:

δµ

δpj
= Xj(p) for each j = 1, 2, ..., n. (7.7)

Take two system of prices p, (p+4p), consider X(p), X(p+4p) respec-
tively.

We have pX (p) ≤ pX (p+4p) , that is

p4X(p) ≥ 0, (7.8)

where 4X(p) = X(p+4p)−X(p).

Furthermore, considering (7.8), it is

4µ(p) = µ(p+4p)− µ(p) = (p+4p)(X(p) +4X(p))− pX(p) =

= p4X(p) +4pX(p) +4p4X(p) ≥ 4pX(p) +4p4X(p).

Hence
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4µ(p) ≥ 4pX(p) +4p4X(p). (7.9)

Let 's consider a particular vector4p = (0, ..., 0,4pj, 0, ..., 0), with4pj >
0, using (7.9):

4µ(p)

4pj
≥ Xj(p) +4Xj(p).

If we take the limit we have

lim
4pj→0+

4µ(p)

4pj
≥ Xj(p). (7.10)

In fact from the continuity of X( ), lim4pj→04Xj(p) = 0, where the

existence of the limit is guaranteed by the concavity of µ.

When we consider 4pj < 0, we have, by analogy,

lim
4pj→0−

4µ(p)

4pj
≤ Xj(p). (7.11)

Combining (7.10) and (7.11) we get

lim
4pj→0−≤0

4µ(p)

4pj
≤ Xj(p) ≤ lim

4pj→0+

4µ(p)

4pj
. (7.12)

Note that since µ(p) is concave in p it is

lim
4pj→0−

4µ(p)

4pj
≥ lim
4pj→0+

4µ(p)

4pj
. (7.13)

Hence, considering (7.12) we prove the existence of δµ
δpj

and the validity

of (7.7). The continuity of δµ
δpj

is a direct consequence of the continuity of

Xj(p).

Now let us take the partial derivative of Xj( ) with respect to pi:

δXj

δpi
=
δxj(p, µ(p))

δpi
+
δxj(p, µ(p))

δµ(p)

δµ(p)

δpi
=
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=
δxj(p, µ(p))

δpi
+
δxj(p, µ(p))

δM
xi(p, µ(p)); (7.14)

this expression is exactly δ2µ
δpjδpi

. We want to show that M0 = µ(p0). By de�-

nition we have M0 ≥ µ(p0) and in order to prove the equality it is su�cient

to have M0 ≯ µ(p0). Let us suppose that, ab absurdo, M0 > µ(p0), then

there exists x′ such that x′Px0 and p0x0 > p0x′, that is a contradiction as we

would have x′ ∈ x(p0,M0).

Hence for every (p0,M0) it is

δ2µ

δpjδpi
(p0) = Sji(p

0,M0). (7.15)

From (7.15), using Young Theorem on the symmetry of second derivatives

(cfr. [12]) and the property of concave function we have that the Slutsky

matrix just de�ned is symmetric and negative semide�nite, i.e. property (S)

and (N) hold.

�

At this point, we would like to present some theorems guaranteeing the

existence of a utility function generating the demand function, starting by

assuming some regularity conditions such as the symmetry and the semidef-

initeness of the Slutsky matrix.

Theorem 7.2 Let the demand function x(p,M) satisfy conditions (A),

(B), (D) and (E). If the Slutsky matrix satis�es (S) and (N), then there exists

a utility function u( ) de�ned on the range X of the demand function x(p,M)

such that the value of x(p,M) of the demand at (p,M) uniquely maximizes

u(x) over the usual budget set.

In order to prove Theorem 7.2 we would present some preliminary results.

Theorem 7.2.I (cfr. existence Theorem III, Mathematical Ap-

pendix, [3] ) For each i ∈ {1, ..., n} let fi : Ω = Π × Θ ⊆ Rn × R −→ R,
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with

2.1.i) Π = {x = (x1, x2, ..., xn) such that xi > 0, i = 1, 2, ..., n};

2.1.ii) Θ = {z such that 0 ≤ z <∞},

satisfying

(D) for each i ∈ {1, ..., n}fi ( , ) is di�erentiable in Ω;

(S) δfi(x,z)
δxj

+ δfi(x,z)
δz

fj(x, z) =
δfj(x,z)

δxi
+

δfj(x,z)

δz
fi(x, z), for each i, j ∈

{1, ..., n} ;

(O) for each i ∈ {1, ..., n}fi (x, 0) = 0,for any x ∈ Π;

(E) for any positive α′, α′′ there exists a positive Kα′,α′′ such that,

for each i = 1, 2, ..., n, it is | δfi(x,z)
δz

|≤ Kα′,α′′ for all (x, z) ∈
Ω and xj ∈ [α′, α′′], j = 1, 2, ..., n.

Then for every (x0, z0) there exists a unique continuous solution ω(x0,z0)(x)

of the following system:

(P )(x0,z0)



δz
δx1

= f1(x1, x2, ..., xn, z)

δz
δx2

= f2(x1, x2, ..., xn, z)

....

δz
δxn

= fn(x1, x2, ..., xn, z)

. (7.16)

Note 7.1 Let us consider the following system of di�erential equation:

δM
δp1

= x1(p1, p2, ..., pn,M)

δM
δp2

= x1(p1, p2, ..., pn,M)

....

δM
δpn

= xn(p1, p2, ..., pn,M)

. (7.17)

We can observe that (7.17) is equivalent to (7.16) and since all the hy-

potheses of Theorem 7.2.I are satis�ed we can state the following:
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Lemma 7.1 Let the demand function x (p,M) satisfy the conditions

(A), (D), (E) and (S). Then the system (7.17) has a unique solution for any

�initial condition� (p∗,M∗) ∈ Ω. That is, there exists a unique continuous

function µp∗M∗( ) such that:µp∗M∗(p∗) = M∗

δµp∗M∗(p)

δpi
= xi(p, µp∗M∗(p)) i = 1, 2, ..., n

, for all p ∈ Π.

Since in Lemma 7.1 the uniqueness of the solution is deduced we have:

Lemma 7.2 Let (p′,M ′) , (p′′,M ′′) ∈ Ω be two �initial conditions� guar-

anteeing

i) there exists p0 ∈ Π such that µp′M ′(p
0) = µp′′M ′′(p

0);

then it is

ii) µp′M ′(p) = µp′′M ′′(p), for all p ∈ Π.

Lemma 7.3 Let (p′,M ′) , (p′′,M ′′) ∈ Ω be two �initial conditions� guar-

anteeing

j) there exists p0 ∈ Π such that µp′M ′(p
0) < µp′′M ′′(p

0);

then it is

jj) µp′M ′(p) < µp′′M ′′(p), for all p ∈ Π.

Proof Let us suppose, ab absurdo, that there exists p0, p∗ ∈ Π such

that µp′M ′(p
0) < µp′′M ′′(p

0) and µp′M ′(p
∗) ≥ µp′′M ′′(p

∗), that is j) is valid and

jj) is violated for some value p∗ ∈ Π.

Let's consider the convex combination of p0 and p∗ given by

pt = tp∗ + (1− t)p0, t ∈ [0, 1],
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and de�ne the function ϕ : [0, 1]→ R as

ϕ(t) = µp′M ′(p
t)− µp′′M ′′(pt). (7.18)

It results that the function in (7.18) is continuous as combination of

continuous functions and it is:

ϕ(0) = µp′M ′(p
0)− µp′′M ′′(p0) < 0,

ϕ(1) = µp′M ′(p
∗)− µp′′M ′′(p∗) ≥ 0,

where the two inequalities hold as immediate consequence of the hypothe-

ses on p0, p∗ ∈ Π. As a consequence of the Intermediate Existence Theorem

we can state: there exists t̃ ∈ (0, 1] such that ϕ(t̃) = 0, i.e there is a vector

pt̃ = t̃p∗ + (1− t̃)p0 with µp′M ′(p
t̃) = µp′′M ′′(p

t̃). From Lemma 7.2 we would

deduce

µp′M ′(p) = µp′′M ′′(p), for all p ∈ Π,

which is clearly a contradiction of j).

�

The idea is that the function µpM(p∗) will be used to construct the utility

function u(x) on the domain given by the image of x(p,M), denoted by X.

In fact given an arbitrary �xed p∗ we will de�ne for any x ∈ X

u(x) = Up∗(x) = µpM(p∗),

where (p,M) represents any couple satisfying x = x(p,M).

We will proceed as follows: �rst we will prove that the value of Up∗(x),

for any given p∗, is independent from the choice on (p,M) given the validity

of the relation x = x(p,M) (cfr. Lemma 7.7). Afterward we will show that

Up∗ ( ) is a utility function (cfr. Lemma 7.8).
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Lemma 7.4, Lemma 7.5 and Lemma 7.6 will be used to prove these two

results.

Lemma 7.4 Let us consider two couples (p0,M0) , (p1,M1) satisfying:

k) x0 = x(p0,M0) 6= x1 = x(p1,M1);

kk) M1 ≥ µp0M0(p1).

Then

p0x1 > p0x0. (7.19)

Proof Let us assume:

Case 1) kk) holds with equality, i.e. M1 = µp0M0(p1).

Let's consider the convex combination of p0, p1 as

pt = tp1 + (1− t)p0, t ∈ [0, 1] (7.20)

and de�ne

M t = µp0M0(pt), xt = x(pt,M t). (7.21)

We will denote by ψ : [0, 1] −→ R the function

ψ(t) = p0xt = p0x(tp1 + (1− t)p0, µp0M0(tp1 + (1− t)p0)) (7.22)

The expression in (7.22) is di�erentiable for the hypotheses assumed in

Theorem 7.2. Hence we have:

dψ(t)

dt
= p0 δx

δpt
(p1 − p0) + p0 δx

δµ

δµ

δpt
(p1 − p0) =
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= p0[
δx

δpt
+
δx

δµ

δµ

δpt
](p1 − p0) = p0S(pt,M t)(p1 − p0), (7.23)

where S(pt,M t) is the Slutsky Matrix.

By di�erentiating the budget equation ptxt = M t in t we have:

dpt

dt
xt + pt

dxt

dt
=
dM t

dt
,

that is

ptS(pt,M t)(p1 − p0) = 0. (7.24)

When we subtract (7.24) from (7.23) we have

dψ(t)

dt
= p0S(pt,M t)(p1 − p0)− ptS(pt,M t)(p1 − p0) =

= −t(p1 − p0)S(pt,M t)(p1 − p0). (7.25)

Using the negative semide�niteness of the Slutsky Matrix we have that

(p1 − p0)S(pt,M t)(p1 − p0) ≤ 0. Hence

dψ(t)

dt
≥ 0, for every t ∈ [0, 1].

It is straightforward to deduce

ψ(0) = p0x0 ≤ p0x1 = ψ(1), (7.26)

and if we prove that ψ(0) 6= ψ(1) we have (7.19).

Let's suppose, ab absurdo, ψ(0) = ψ(1), then it is dψ(t)
dt

= 0, for every t ∈
[0, 1] which gives

(p1 − p0)S(pt,M t)(p1 − p0) = 0 = (p1 − p0)
dxt

dt
, (7.27)

where the second equality is given using the de�nition of xt.
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We get dxt

dt
= 0, which implies

x1 = x0, (7.28)

in contradiction with k).

Case 2) kk) holds with strict inequality, i.e. M1 > µp0M0(p1).

We have M1 = µp1M1(p1), hence we can restate kk) as

µp1M1(p1) > µp0M0(p1), (7.29)

and applying Lemma 7.3 µp1M1(p) > µp0M0(p), for all p ∈ Π, and in

particular it results

µp1M1(p0) > µp0M0(p0) = M0. (7.30)

If we prove

µp1M1(p0) ≤ p0x1, (7.31)

from (7.30) we get p0x1 ≥ µp1M1(p0) > µp0M0(p0) = M0 = p0x0, which is

exactly kk).

It is possible to prove (7.31) following a line of argument which is analo-

gous to the one we used in Case 1).

�

Through the next Lemma we prove how WARP holds under the assump-

tions made so far.

Lemma 7.5 Let's consider two demand consumptions bundles x0 =

x(p0,M0) and x1 = x(p1,M1), satisfying p0x0 ≥ p0x1, with x0 6= x1.Then it

is

p1x0 > p1x1. (7.32)
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Proof The Proof of Lemma 7.5 is an immediate consequence of Lemma

7.3 and Lemma 7.4.

The two following Lemmas guarantee that the utility function we are

going to construct is �well de�ned�, in the sense that it will give the same

result independently from the �initial conditions� we will ask to be respected.

Lemma 7.6 Let x ∈ X. Then the set

Ξ(x) = {(p,M) ∈ Ω such that x(p,M) = x}

is convex.

Proof Let's consider two pairs (p0,M0), (p1,M1) ∈ Ξ(x), or equiva-

lently x(p0,M0) = x(p1,M1) = x. From the hypothesis on budget exhaustion

we have:

p0x = M0, p1x = M1. (7.33)

We can de�ne the convex combination of p0, p1 and M0,M1respectively

as

p(t) = tp1 + (1− t)p0, (7.34)

M(t) = tM1 + (1− t)M0. (7.35)

If we take

x(t) = x(p(t),M(t)), (7.36)

we can observe, as consequence of (7.33), (7.34), (7.35), that
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p(t)x = tp1x+ (1− t)p0x = tM1 + (1− t)M0 = M(t) = p(t)x(t). (7.37)

Now, if we get that x (t) = x, for every t ∈ [0, 1] we immediately get the

convexity of Ξ(x).

Let us suppose ab absurdo there exists t̃ ∈ (0, 1) such that x
(
t̃
)
6= x,

then by the equality in (7.37) and Lemma 7.5 we would have

p0x < p0x(t̃), p1x < p1x(t̃). (7.38)

Let's �rst multiply the two equations in (7.38) by (1−t̃) and t̃, respectively
and then sum the two new expression:

(1− t̃)p0x+ t̃p1x < (1− t̃)p0x(t̃) + t̃p1x(t̃). (7.39)

(7.39) can be restate as p(t̃)x < p(t̃)x(t̃), contradicting (7.37).

�

Lemma 7.7 Let x(p0,M0) = x(p1,M1), then

µp1M1(p) = µp0M0(p), for all p ∈ Π.

Proof Let p(t) = tp1 + (1 − t)p0, M(t) = tM1 + (1 − t)M0 be de�ned

as in Lemma 7.6. We immediately have

x(p(t),M(t)) = x(p0,M0), t ∈ [0, 1], (7.40)

which guarantees dx(t)
dt

= 0. When we di�erentiate with respect to t the

budget exhaustion condition we get;

dM(t)

dt
= x(p(t),M(t))

dp(t)

dt
, t ∈ [0, 1]. (7.41)
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(7.41) satis�es the system of equations in (7.17) .

By applying Lemma 7.2 we have:

µp0M0(p(t)) = M(t), t ∈ [0, 1];

which gives µp0M0(p1) = M(1) = M1, that can be used to apply Lemma 7.2

once again and get:

µp0M0(p) = µp1M1(p), for all p ∈ Π. (7.42)

�

In the following Lemma we will de�ne the utility function we were looking

for. Theorem 7.2 is a direct consequence of Lemma 7.8.

Lemma 7.8 Let the demand function satisfy the hypotheses of Theorem

7.2. Then for any price p∗, the function

Up∗(x) = µpM(p∗), x ∈ x(p,M) (7.43)

is single-valued on X, and for any couple (p,M) it is

Up∗(x(p,M)) > Up∗(x), for any x ∈ X, such that

px ≤M, x 6= x(p,M). (7.44)

Proof Using Lemma 7.7 we can deduce the single-valuedness of the

function in (7.43).

Now, let's consider two couples (p0,M0), (p1,M1), and de�ne x0 = x(p0,M0), x1 =

x(p1,M1). Let's assume

p0x1 ≤M0, x1 6= x0.
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Using Lemma 7.4 we immediately deduce:

µp1M1(p1) = M1 < µp0M0(p1),

which by Lemma 7.3 implies

µp1M1(p) < µp0M0(p), for all p ∈ Π. (7.45)

When we set p = p∗ (7.45) becomes µp1M1(p∗) < µp0M0(p∗), which is, by

de�nition, equivalent to

Up∗(x
0) > Up∗(x

1). (7.46)

�

Theorem 7.3 shows that the utility indicators presented in Theorem 7.2

de�ne the same ordering for the considered commodities bundles.

Theorem 7.3 For any two positive price vectors, p∗ and p∗∗ the function

Up∗(x) = µ(p∗; p,m) and Up∗∗ (de�ned by analogy from Up∗( )) induce the

same ordering on the range X of the demand function x(p,M).

We say that two real-valued functions, f (a) and g (a) , de�ned on a set A

induce the same ordering on A if: for all a′, a′′ ∈ A, f (a′) > f(a′′) iff g(a′) >

g(a′′).

The two following theorems guarantee some regularity conditions for the

utility function introduced in Theorem 7.2.

Theorem 7.4 For any price vector p∗, Up∗(x) is monotone increasing

with respect to the vectorial ordering of X, and the inde�erence sets of the

function Up∗are strictly convex toward to the origin.

Theorem 7.5 Up∗(x) is upper − semicontinuous in x, for every choice

p∗.
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We will not provide the Proof of Theorem 7.3, Theorem 7.4 and Theorem

7.5.
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8 Conclusions

In this �nal chapter we will summarize the main results we obtained so far

in order for the reader to have a complete framework on this work.

Let us �rst consider the utility maximization problem as presented in

1.2. When the utility function u ( ) is a continuous function representing a

regular, locally nonsatiated, strictly convex preference relation the associ-

ated (derived from the demand function) Slutsky Matrix is symmetric and

negative semide�nite (Proposition 1.8). We obtained an equivalent result in

Theorem 7.1. In fact when we consider a preference relation R de�ned on the

set of all conceivable commodity bundles satisfying re�exivity, completeness,

transitivity under the hypotheses (A), (B) and (D) (cfr. Chapter 7) on the

demand function we get the symmetry (S) and negative semide�nitness (N)

of the Slutsky Matrix. The other way round, as we show in Theorem 7.2,

if the demand function satis�es conditions (A), (B), (D) and (E) and the

Slutsky matrix satis�es (S) and (N) then there exists a utility function u( )

such that the value of the demand maximizes u( ) over the usual budget set.

We note that the hypotheses on the demand (Theorem 7.2) in one direc-

tion are stronger then those used in the other (Theorem 7.1). Indeed we are

obliged to assume (A), (B), (D) and (E) to get the following:

∃ a continuous, locally nonsatiated, convex utility function

generating the demand function.

m (8.1)

SlutskyMatrix satisfies (S) and (N).

This equivalence is a consequence of the premise above and of Theorem
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7.3, Theorem 7.4 and Theorem 7.5.

We mentioned that in [14] Mas-Colell et al. showed that under the hy-

pothesis of the symmetry of the Slutsky Matrix the Weak Axiom and the

Strong Axiom are equivalent. Hence we can extend the equivalence in (8.1)

as follows:

∃ a continuous, locally nonsatiated, convex utiliy function

generating the demand function.

m (8.2)

SlutskyMatrix satisfies (S) and (N).

m (8.3)

SARP holds

m (8.4)

WARP and (R) are satisfied

where the equivalence in 8.4 is the result of Theorem 4.4 which guarantees

that the SARP holds if and only if the WARP and the Regularity Condition

(R) are both satised for the demand function subject to condition (A), (B),

(D) and (E). At this point the link between the �integrability� theory and

the �revealed preference� one should be clear when we take into consideration

what we remind hereinafter.
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In fact in Chapter 4 we show that, when (A), (B), (D), (E) and SARP

are satis�ed the indirect revealed preference relation R∗ generated by the

demand function is a preference relation on the set of all positive commodity

bundles (i.e. R∗ satises P.I,...,P.V ) and the demand function is derived

from R∗(cfr. Theorem 4.1). We can move in the opposite direction through

Theorem 4.6 where, given a preference relation P on the set of all nonnegative

commodities (satisfying Axioms P.I,..., P.VI), it is proved the existence of a

demand function that is derived from the preference relation P, for which

(A), (B), (D) and SARP hold.
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