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Abstract 20 

Volatile organic compounds (VOCs) characterize the spoilage of seafood packaged under 21 

modified atmospheres (MAs) and could thus be used for quality monitoring. However, the VOC 22 

profile typically contains numerous multicollinear compounds and depends on the product and 23 

storage conditions. Identification of potential spoilage indicators thus calls for multivariate 24 

statistics. The aim of the present study was to define suitable statistical methods for this purpose 25 

(exploratory analysis) and to consequently characterize the spoilage of brown shrimp (Crangon 26 

crangon) and Atlantic cod (Gadus morhua) stored under different conditions (selective analysis). 27 

Hierarchical cluster analysis (HCA), principal components analysis (PCA) and partial least 28 

squares regression analysis (PLS) were applied as exploratory techniques (brown shrimp, 4 °C, 29 

50%CO2/50%N2) and PLS was further selected for spoilage marker identification. Evolution of 30 

acetic acid, 2,3-butanediol, isobutyl alcohol, 3-methyl-1-butanol, dimethyl sulfide, ethyl acetate 31 

and trimethylamine was frequently in correspondence with changes in the microbiological 32 

quality or sensory rejection. Analysis of these VOCs could thus enhance the detection of seafood 33 

spoilage and the development of intelligent packaging technologies. 34 

Keywords 35 

Hierarchical cluster analysis; intelligent packaging; principal components analysis; partial least 36 

squares regression analysis; selected-ion flow-tube mass spectrometry 37 
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1. Introduction 38 

Modified atmosphere packaging (MAP) is commonly used for perishable food products such as 39 

seafood in order to inhibit or delay microbial growth and thus to extend the shelf life and quality 40 

of the packaged product. During microbiological spoilage of foodstuffs, decomposition of 41 

available nutrients by microbial activity can lead to the generation of volatile organic compounds 42 

(VOCs) associated with both primary and secondary metabolism (Wang, Li, Yang, Ruan, & Sun, 43 

2016). Growth of specific spoilage organisms (SSOs) and subsequent production of off-odors 44 

into the package headspace eventually causes consumer rejection (Gram & Dalgaard, 2002). 45 

Consequently, odor is considered as one of the most important seafood quality parameters 46 

(Olafsdottir, Jonsdottir, Lauzon, Luten, & Kristbergsson, 2005; Olafsdóttir et al., 1997).   47 

Microbial spoilage of fish may manifest itself as sweet, fruity, ammonia-like, putrid and sulfuric 48 

off-odors. VOCs contributing to the odor of fish can be divided into three groups, specifying 49 

compounds associated with freshness (C6-C9 alcohols and carbonyl compounds), lipid oxidation 50 

(aldehydes) and microbiological spoilage (Olafsdóttir et al., 1997). According to Olafsdóttir et al. 51 

(1997), microbiological spoilage odor is generally due to compounds such as ammonia, ethanol, 52 

ethyl acetate, hydrogen sulfide, 3-methyl-1-butanol, methyl mercaptan and trimethylamine. 53 

However, the composition and the development of the VOC profile are affected by several 54 

factors, including food product, headspace gas composition, temperature, initial contaminating 55 

microbiota and microbial metabolism (Wang et al., 2016).  56 

Brown shrimp (Crangon crangon) is highly susceptible to microbiological spoilage. Shrimp 57 

contains high amounts of free amino acids and other readily available nutrients for microbial 58 

growth (Zeng, Thorarinsdottir, & Olafsdottir, 2005). Unlike other crustaceans, shrimp cannot be 59 
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kept alive for extended periods before processing (Adams & Moss, 2008). Currently, the shelf 60 

life of preservative-free cooked brown shrimp is maximally 4-6 days under refrigerated 61 

conditions (Broekaert, Heyndrickx, Herman, Devlieghere, & Vlaemynck, 2013).  62 

Since microbial activity is the main cause of fish spoilage (Gram & Dalgaard, 2002), 63 

identification and quantification of VOCs produced during microbial metabolism under different 64 

packaging and storage conditions could enhance efficient quality analysis of the packaged 65 

product. Evolution of these spoilage indicators in relation to microbial growth and sensory 66 

rejection could be used for the development of intelligent packaging applications. Generally, 67 

concentrations of VOCs that indicate spoilage can be expected to increase as a function of 68 

storage time and progressing microbial growth. However, VOCs are produced and degraded as a 69 

result of several biological and chemical processes. Furthermore, certain odors may be 70 

considered as a part of natural odor in one foodstuff and rejected in another product (Gram & 71 

Dalgaard, 2002). Thus, the complexity of concentration evolution and acceptancy as well as the 72 

wide number of potential spoilage indicators calls for multivariate statistical analysis.  73 

Different statistical methods have been applied to multivariate microbiological and chemical 74 

data, including hierarchical cluster analysis (HCA), principal components analysis (PCA) and 75 

partial least squares regression analysis (PLS). Previously, PCA has been applied to the 76 

comparison of different food products (Blixt & Borch, 2002), microbiota (Hierro et al., 2005; 77 

Verginer, Leitner, & Berg, 2010), treatments (Ciesa et al., 2013) or times of storage (Duflos et 78 

al., 2010; Fik, Surówka, Maciejaszek, Macura, & Michalczyk, 2012). PLS has been used for the 79 

analysis of progressing microbial growth on the basis of VOC concentrations (Jørgensen, Huss, 80 

& Dalgaard, 2001; Marín et al., 2007; Storer, Hibbard-Melles, Davis, & Scotter, 2011) and also 81 

applied along with HCA or PCA (Argyri, Doulgeraki, Blana, Panagou, & Nychas, 2011; Argyri, 82 
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Mallouchos, Panagou, & Nychas, 2015; Blixt & Borch, 2002; Mataragas, Skandamis, Nychas, & 83 

Drosinos, 2007; Mikš-Krajnik, Yoon, Ukuku, & Yuk, 2016; Siroli et al., 2014; Vervoort et al., 84 

2012; Wibowo, Grauwet, Gedefa, Hendrickx, & Van Loey, 2015). 85 

The aims of the present study were to 1) determine suitable multivariate statistical methods for 86 

characterizing the VOC profile of seafood (exploratory analysis) and 2) consequently identify the 87 

most potential spoilage indicators of Atlantic cod (Gadus morhua) and brown shrimp stored 88 

under different modified atmosphere (MA) conditions (selective analysis). Firstly, HCA, PCA 89 

and PLS were applied as exploratory techniques to microbiological, chemical and/or sensory 90 

data. Comparison of the three techniques was carried out using a dataset collected during 91 

refrigerated storage of seafood (brown shrimp, 4 °C, 50%CO2/50%N2) where selected-ion flow-92 

tube mass spectrometry (SIFT-MS) was used for the quantification of VOCs from the package 93 

headspace. On the basis of the exploratory analysis, PLS was chosen to be used in selective 94 

analysis. Independent PLS analyses were carried out for data collected during spoilage of 95 

Atlantic cod (Kuuliala et al. submitted manuscript) and brown shrimp under different packaging 96 

and storage conditions. 97 

2. Materials and methods 98 

2.1. Data collection 99 

The datasets used in the study were collected during individual storage experiments of brown 100 

shrimp (2x) or Atlantic cod (5x) and used for exploratory (brown shrimp, 4 °C, 50%CO2/50%N2) 101 

or selective (all storage experiments) statistical analyses. 102 

2.1.1 Brown shrimp 103 
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The two individual storage experiments of brown shrimp consisted of sample preparation and 104 

packaging, real-time quantification of VOCs with SIFT-MS, microbiological analysis and 105 

sensory evaluation. 106 

2.1.1.1 Raw material 107 

Brown shrimp were caught in the North Atlantic Ocean (FAO zone 27) in October and 108 

November 2015. The shrimp were sorted according to size and washed before cooking according 109 

to normal Belgian fishing practices. No additives or preservatives such as benzoic or sorbic acid 110 

were added during processing. After cooking, the shrimp were cooled and stored overnight in 111 

plastic bags under ice. The shrimp were brought onshore the following morning and directly 112 

transported to the Laboratory of Food Microbiology and Food Preservation (LFMFP, UGent) 113 

where the batch was hand peeled. During peeling, shrimp were kept on ice in plastic bags while 114 

avoiding direct contact between shrimp and ice. Shrimp portions of 150 ± 2 g were packaged at 115 

2:1 headspace-product ratio with a tray sealer (MECA 900, DecaTechnic, Herentals, Belgium) 116 

using multilayer packaging trays (PP/EVOH/PP, oxygen transmission rate 0.03 cm3/tray*24h at 117 

23 °C and 50 % R.H.) and top film (PA/EVOH/PA/PP, oxygen transmission rate 6.57 118 

cm3/m2*24h*atm at 23 °C, 50 % R.H. and 1 atm). Two individual batches of shrimp were 119 

independently packaged under modified atmospheres (CO2/O2/N2 %) 50/0/50 or 30/0/70 and 120 

stored at (4.0 ± 0.7) °C prior to analyses. Analyses were carried out on days 0 (day of 121 

packaging), 3, 5, 7, 10 and 12 for three randomly chosen packages (A-C). New replicates A-C 122 

were analyzed on each day of storage due to the destructive nature of the microbiological 123 

analyses. After sampling, the remaining shrimp was packaged under vacuum using high barrier 124 

film bags (oxygen transmission rate < 2.7 cm3/m2*24h*bar at 23 °C and 0 % R.H.) and stored at 125 

-32 °C for no longer than 70 days. 126 
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2.1.1.2 Quantification of spoilage related VOCs by SIFT-MS 127 

The principles of selected-ion flow-tube mass spectrometry have been described in previous 128 

studies (Noseda et al., 2010). VOCs (Table 1) were selected on the basis of previous research and 129 

literature and quantified from the package headspace by a spectrometer (Voice 200, Syft 130 

TechnologiesTM, Christchurch, New Zealand). Package headspace was sampled through a septum 131 

inserted on the package lid with a flow rate of 25.6 ml/min for 60 seconds (preparation 10s, 132 

sample 50s) and the concentrations were averaged over eleven data points. A certain package 133 

was sampled twice. During sampling, the headspace was connected to atmospheric air with a 134 

needle inlet in order to avoid collapse and changes in the internal conditions of the package.  135 

The relative standard deviation (SD%) of each VOC concentration during an individual SIFT-MS 136 

scan was calculated as follows: 137 

SD% = SDm/xm*100 %         (1) 138 

where xm is the average and SDm the standard deviation of a single SIFT-MS scan (n=11). VOCs 139 

with concentrations exceeding 25 % average SD% during the entire storage time within a certain 140 

packaging condition were considered not to allow sufficiently accurate quantification and were 141 

thus excluded from further analyses.  142 

2.1.1.3 Microbiological analysis 143 

Each shrimp sample of  30 ± 0.1 g was aseptically weighed into a sterile stomacher bag, diluted 144 

ten times in physiological saline peptone solution (PPS; 0.85 % NaCl, 0.1 % peptone) and 145 

homogenized in Stomacher Lab Blender (LED Techno, Heusden-Zolder, Belgium) for one 146 

minute. Appropriate decimal dilutions were prepared in PPS. Total psychrotrophic count (TPC) 147 
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was determined on Marine Agar (MA; Difco Le Pont de Claix, France) spread plates after 148 

incubation at 22 °C for five days.  149 

2.1.1.4 Sensory evaluation 150 

Sensory evaluation was performed in individual booths under red light (UGent Sensolab). A panel 151 

having experience in sensory evaluation of fish was formed from the laboratory staff at LFMFP. 152 

For both independent shrimp batches, two testing sessions with eight to ten panelists were 153 

organized on consecutive days. During both sessions, four shrimp samples from different days of 154 

storage were evaluated. One out of three daily replicates (A-C) was randomly selected and used 155 

per testing session. Prior to evaluation, the frozen (-32 °C) samples were cut to 5.0 ± 0.1 g portions 156 

and stored overnight at 2 °C. The samples were presented to the assessors at 4 °C in odor-free, 157 

transparent plastic cups (diameter 67 mm; AVA, Temse, Belgium), closed with lids (AVA) and 158 

labelled with three-digit random codes, along with a fresh reference (day 0) from the same batch. 159 

A five-point scale (very good, good, satisfactory, marginal, spoiled) was used in the olfactory 160 

evaluation. Marginal or spoiled was considered as rejection. 161 

2.1.2 Atlantic cod 162 

Atlantic cod data collected during storage under modified atmospheres (% CO2/O2/N2) 60/40/0 163 

and 60/5/35 at (4.0 ± 0.7) or (8.0 ± 0.4) °C and air at (4.0 ± 0.7) (Kuuliala et al. submitted 164 

manuscript) was used in the study. The VOC data was processed correspondingly to brown shrimp 165 

(see 2.1.1.3). VOCs with concentrations exceeding 25 % average relative standard deviation 166 

during the entire storage time within a certain packaging condition were excluded from further 167 

analyses. 168 

2.2 Exploratory analysis 169 
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Exploratory analysis techniques were applied to data collected during the storage of brown 170 

shrimp under modified atmosphere 50/0/50 (% CO2/O2/N2) at 4 °C. 171 

2.2.1 Hierarchical cluster analysis (HCA) 172 

Agglomerative HCA was used for the analysis of the VOC data. The method is based on the 173 

identification of groups among objects (samples or variables) on the basis of similarity in their 174 

properties. Samples are clustered on the basis of the similarity in their variable profiles and 175 

variables on the basis of similarity between their patterns. In agglomerative clustering, each 176 

object initially represents an individual cluster. The most similar clusters are progressively joined 177 

together to larger clusters until one collective cluster is formed (Rendall et al., 2015). N objects 178 

are thus processed by N – 1 clustering steps (Almeida, Barbosa, Pais, & Formosinho, 2007). The 179 

process depends on how the similarity of objects is assessed (distance) and how new clusters are 180 

formed from subclusters (linkage). Euclidean or Manhattan distance measures are commonly 181 

used for continuous variables, whereas common linkage methods include single, complete, 182 

average, centroid and Ward (Smoliński, Walczak, & Einax, 2002). 183 

HCA was carried out using Euclidean distance and average linkage. Individual replicate 184 

packages A-C of each day were treated as samples and individual VOCs as variables. Both 185 

measured concentrations (non-transformed values) as well as logarithmic and/or standardized (z-186 

scores) concentrations (transformed values) of the VOCs were used in the analyses. R 3.3.1 (R 187 

Core Team, 2016) was used for producing heat maps (clustering of variables) with function 188 

pheatmap() from package pheatmap (Kolde, 2015) and dendrograms (clustering of samples) 189 

with function pvclust() from package pvclust (R. Suzuki & Shimodaira, 2015). Approximately 190 

unbiased (AU) p-values included in the dendrograms indicate how the clustering is supported by 191 
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the data: the greater the p-value, the greater the reliability of the clustering (Shimodaira, 2002; R. 192 

Suzuki & Shimodaira, 2006). 193 

2.2.2 Principal components analysis (PCA) 194 

PCA was used for the characterization of VOCs and their evolution during storage. The method 195 

can be used for extracting the most important information from a dataset containing several 196 

intercorrelated variables by determining a series of new variables (Abdi & Williams, 2010). 197 

These principal components (PCs) are linear combinations of the original variables and 198 

uncorrelated with each other. The first PC retains most of the total variance of the data and 199 

following PCs retain most of each residual variance, respectively (Chen, Li, Ouyang, & Zhao, 200 

2014). PCA can thus be used for simplifying the description of the dataset and for the 201 

determination of underlying variables, similarity among samples and correlation among variables 202 

(Abdi & Williams, 2010; Mataragas et al., 2007). 203 

Logarithmic and standardized VOCs were used in the analysis. R 3.3.1 was used for producing 204 

biplots describing both samples (replicate packages) and variables (VOCs) with function 205 

prcomp() from package stats (R Core Team, 2013). Suitability for data reduction was analyzed 206 

with Bartlett’s sphericity test using function bart_spher() and sampling adequacy with Kaiser-207 

Meyer-Olkin (KMO) test (Kaiser, 1970) with function KMOS() from package REdaS 208 

(Hatzinger, Hornik, Nagel, & Maier, 2014; Maier, 2015). KMO test result gives the level of 209 

sampling adequacy as marvelous (> 0.90), meritorious (> 0.80), middling (> 0.70), mediocre (> 210 

0.60), miserable (> 0.50) or unacceptable (< 0.50) (Kaiser, 1974). 211 

2.2.3 Partial least squares regression (PLS) 212 
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Partial least squares regression analysis (PLS) can be used for modeling one or more response 213 

variables (Y) with several predictor variables (X) that can be noisy and highly collinear. On the 214 

basis of the original X-variables, new orthogonal variables are defined as linear combinations 215 

where the coefficients of the original X-variables are referred to as weights. The new variables 216 

are used for modeling the X variables and predicting the Y variables. The part of the data that is 217 

not explained by the model is referred to as residuals: high Y residuals indicate insufficient 218 

model performance (Wold, Sjöström, & Eriksson, 2001). The influence of an X-variable on the 219 

Y-response can be expressed with a Variable Importance in Projection (VIP) coefficient which 220 

gives the weighed sum of squares of the PLS weights. The VIP coefficients indicate which X-221 

variables have highest importance in explaining the Y-variance (Farrés, Platikanov, Tsakovski, 222 

& Tauler, 2015). Even though high regression coefficients can also be used for determining 223 

predictor variables that have high importance on the response, the VIP coefficients summarize 224 

the importance of the variable for both Y and X matrices (Wold et al., 2001). 225 

PLS was used for the analysis of predictor and response variables with JMP v. 12 using the 226 

NIPALS algorithm and leave-one-out cross validation. Logarithmic and standardized VOCs 227 

were used as predictor variables and time, TPC or sensory rejection % as the response variable. 228 

Logarithmic transformation of predictor variables was used in order to achieve linear relationship 229 

with all response variables. The number of factors was chosen so that the root mean predicted 230 

residual sum of squares (PRESS) was at its minimum. VIP values and regression coefficients 231 

were determined for all VOCs.  232 

2.3 Selective statistics 233 

Selective statistical analyses were applied to data collected during storage of Atlantic cod and 234 

brown shrimp under all tested conditions. On the basis of the exploratory analysis, PLS was 235 
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chosen for the determination of most potential spoilage indicators. Logarithmic and standardized 236 

VOCs were used as predictor variables and TPC or rejection % as the response variable. When 237 

using TPC as the response variable, independent packaging conditions were separately analyzed 238 

and samples were excluded from the analysis if stationary or declining TPC had been reached. 239 

When using rejection % as the response variable, data from all independent packaging conditions 240 

per seafood product was used and VOCs were excluded from the analysis if over 25 % relative 241 

standard deviation was observed under any of the tested conditions. Following selection criteria 242 

were used for the spoilage indicators: 1) positive correlation with the dependent variable, 2) VIP 243 

> 1, and 3) positive regression coefficient. JMP v. 12 was used for all analyses. 244 

3. Results and discussion 245 

The majority of the VOCs had an average relative standard deviation below 25 % and were 246 

included in the analyses. Six VOCs were excluded from the analyses of brown shrimp under 50 247 

% CO2: 3-methyl-1-butanol, acetoin, 2-pentanone, dimethyl amine, dimethyl disulfide and 248 

hydrogen sulfide. Under 30 % CO2, additional excluded VOCs were acetic acid, 2,3-butanediol 249 

and isobutyl alcohol. The excluded VOCs correspond well to the compounds that were excluded 250 

from the cod data (Table 2). Fluctuation of the concentrations of these VOCs during a SIFT-MS 251 

scan did not allow sufficiently accurate quantification and thus excluded them from most 252 

potential spoilage indicators. 253 

3.1 Exploratory analysis 254 

3.1.1 Hierarchical cluster analysis (HCA) 255 

Clustering of VOCs produced during the storage of brown shrimp under (% CO2/O2/N2) 50/0/50 256 

at 4 °C is presented as heat maps (Fig. 1) and clustering of samples as dendrograms (Fig. 2). 257 
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Both Figures 1-2 indicate the similarity of the objects (variables or samples) within the studied 258 

dataset as a tree structure. In the heat maps, VOC concentrations are expressed on a color scale 259 

representing measured concentrations (Fig. 1A) or their transformed values (Fig. 1B-D). 260 

Generally, similarity of objects in the same cluster decreases as smaller clusters are merged into 261 

larger ones since objects that are clustered together sooner are more similar than those clustered 262 

at a higher distance (Rendall et al., 2015).  263 

Clustering of VOCs was affected by the applied data transformations. When non-logarithmic and 264 

non-standardized data was used (Fig. 1A), VOCs were clustered on the basis of their 265 

concentration ranges. This highlighted the high differences observed in initial concentration 266 

levels as well as in the production of different VOCs during storage time. Ethanol was the only 267 

VOC that exceeded 104 ug m-3, which is why it dominated the color scale and the analysis of 268 

VOC evolution was thus not possible. Even though logarithmic conversion of non-standardized 269 

data (Fig. 1C) allowed better separation of VOCs, the variables were still clustered on the basis 270 

of concentration ranges and resulted in subclusters containing VOCs from highest (ethanol, ethyl 271 

acetate, ethylene oxide, trimethylamine) to lowest (2,3-butanediol, isobutyl alcohol, ammonia) 272 

concentrations. An overall increase in several VOC concentrations and separation between early 273 

(0-3) and remaining (5-12) days of storage could be observed. Respective average logarithmic 274 

TPC were 6.51 ± 0.53 and 7.62 ± 0.24 CFU g-1. On the other hand, clustering of non-logarithmic 275 

and standardized data (Fig. 1B) allowed the comparison of VOC evolution since VOC 276 

concentrations were presented on the same scale. Several subclusters of VOCs were formed and 277 

three main types of VOC patterns were identified on their basis. Firstly, concentration of ten out 278 

of fourteen VOCs generally increased as a function of storage time. Secondly, three VOCs (ethyl 279 

acetate, ethylene oxide, trimethylamine) reached highest concentrations on days 5-7 and 280 
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decreased thereafter. In addition, high initial concentrations of butanone led to the formation of a 281 

separate cluster that did not show any clear pattern. Respectively, clustering of logarithmic and 282 

standardized data (Fig. 1D) emphasized the evolution of VOCs during storage time.  283 

Clustering of samples (Fig. 2) showed that replicate packages of a given day of storage 284 

commonly had a short distance and were clustered together at low heights, whereas samples 285 

from the earliest and latest days of storage were finally joined at a relatively high distance. The 286 

results thus indicate that the VOC profile was usually highly similar between samples from a 287 

given day of storage and the most different between samples from the early and late days of 288 

storage. AU values were typically high, indicating that the clustering was well supported by the 289 

data. Non-logarithmic and non-standardized data (Fig. 2A) separated days 0-7 from days 10-12. 290 

Samples from the early days of storage (0-3) were highly similar, which is in good 291 

correspondence with the VOC concentration patterns (Fig. 1). Otherwise (Fig. 2B-D), 292 

intermediate days (5-7) clustered together with late days (10-12) sooner than with the early days.  293 

The choice of distances and linkages affects the clustering results and depends on the dataset and 294 

purpose of application. Different alternatives can be compared during exploratory analysis 295 

(Rendall et al., 2015; Smoliński et al., 2002). Euclidean distance or correlation coefficient are 296 

most commonly used as distance measures together with different linkages. In the present study, 297 

preliminary comparison of different linkages resulted in slightly different dendrograms, whereas 298 

highly similar results were obtained when comparing different distances (results not shown). 299 

Since different transformations were applied to the VOC data in order to examine the similarity 300 

both in terms of values and evolution, Euclidean distance and average linkage were chosen. 301 

When clustering is based on average linkage, distance of two objects from separate clusters can 302 

be either smaller or larger than the average distance of the clusters, which might lead into under- 303 
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or overestimating the distance between two objects. Even though using single linkage might 304 

avoid this phenomenon, problems caused by outliers and cluster density differences limit the use 305 

of this linkage (Almeida et al., 2007). 306 

Concentrations of VOCs that are produced as a result of microbial metabolism can be expected 307 

to increase exponentially during the log phase of microbial growth. The three main VOC patterns 308 

identified in the present study are analogous to VOC groups observed by Küntzel et al. (2016) 309 

during the in vitro growth of Mycobacterium avium ssp. paratuberculosis. VOCs that were 310 

increasing throughout storage time were associated with microbial growth, whereas those that 311 

reached a peak during storage were suggested to be produced by microbes and decrease after a 312 

change in their metabolism (Küntzel et al., 2016). In the present study, logarithmic 313 

transformation supported the monitoring of microbiologically related changes in VOC 314 

concentrations and separated the samples below and beyond 7 log TPC, whereas non-logarithmic 315 

concentrations emphasized the differences in concentration magnitudes and thus separated the 316 

late days of storage from the rest. This indicated not only that exponential increase in VOC 317 

concentrations occurred after exceeding 7.0 log TPC, but also that the VOC concentrations were 318 

still low at this point when compared to the late days of storage. Development of food 319 

monitoring systems should thus be sensitive enough in order to detect the onset of exponential 320 

concentration increase.  321 

HCA is often applied in the beginning of exploratory analysis in order to characterize the internal 322 

structures within a dataset (Smoliński et al., 2002). In the present study, HCA provided an 323 

overview of the VOC profile both in terms of concentration range and evolution. Most of the 324 

VOCs were increasing as a function of time and microbial growth, suggesting that these VOCs 325 

could be considered as potential spoilage indicators. However, since logarithmic transformation 326 
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and scaling may emphasize small concentration changes and natural variation in the data, 327 

significance of the observed changes should be evaluated prior to statistical analyses. 328 

3.1.2 Principal components analysis (PCA) 329 

Fig. 3 presents the PCA scores and correlation loadings as a two-dimensional biplot where the 330 

scores represent samples (independent packages) and correlation loadings indicate the 331 

relationships between the individual VOCs. The first two latent variables PC1 and PC2 were 332 

linear combinations of the original variables (VOCs) and explained 86.5 % of the total variance 333 

within the data. Result of the KMO test (0.62) indicated sufficient sampling adequacy and 334 

significance of the Bartlett’s sphericity test (p < 2.22*10-16 < 0.05) suitability for data reduction.  335 

Separation between samples from different days of storage could be observed on the biplot (Fig. 336 

3). The closer the samples are located on the biplot, the higher is the similarity between their 337 

VOC profiles (Vervoort et al., 2012). Four main groups of samples could be identified in good 338 

correspondence with the clustering results (Fig. 1D and 2D): day 0, day 3, days 5-7 and days 10-339 

12. Butanone was associated with fresh samples, whereas most of the VOCs were characteristic 340 

for late stages of storage. On the other hand, correlation loadings could be used for evaluating 341 

correlations between VOCs as well as their occurrence in different samples. Closely located 342 

VOCs are highly positively correlated, whereas projection in opposite directions indicates 343 

negative correlation. Respectively, VOCs that characterize a certain sample group are closely 344 

located to the respective scores (Vervoort et al., 2012). In the present study, the main VOC 345 

groups identified by PCA (Fig. 3) corresponded to those determined by hierarchical clustering 346 

(Fig. 1D). Most of the VOCs were highly positively correlated and characteristic to the late days 347 

of storage. Isobutyl alcohol, 2-propanol and acetone were most closely associated with late 348 

storage (days 10-12), whereas ethyl acetate, ethylene oxide and trimethylamine were 349 
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characteristic to intermediate to late storage due to the decreasing concentrations after day 7. 350 

Butanone was negatively correlated with the other VOCs and associated with fresh samples.  351 

The scores of Fig. 3 illustrated an arch-shaped trend. The “horseshoe” is formed when the second 352 

axis is distorted in relation to the first axis (Lewis & Menzies, 2015). In the present study, this 353 

phenomenon was most likely due to the effect of time. VOC concentrations increased as a 354 

function of time, which is why most of the observed variance within the data was caused by 355 

progressing time and thus VOC evolution. The first principal component was thus likely related 356 

to time, whereas the second principal component had no clear biological interpretation. 357 

3.1.3 Partial least squares regression (PLS) 358 

The PLS plots show the correlation between VOCs and time (Fig. 4A), TPC (Fig. 4B) or sensory 359 

rejection % (Fig. 4C) and describe both samples (scores) and VOCs (correlation loadings) along 360 

with the response variable. When variables are located between the 75 and 100 % circles, more 361 

than 75 % of their variance is explained by the first two latent variables. The importance of a 362 

VOC in explaining the variance in the dataset decreases towards the origin of the biplot 363 

(Vervoort et al., 2012). VOCs that are projected away from the origin and towards the response 364 

variable are highly positively correlated with the response, whereas projection in opposite 365 

direction indicates negative correlation (Vervoort et al., 2012; Wibowo et al., 2015). The 366 

respective VIP vs. regression coefficient plots (Fig. 4D-F) show the impact of each VOC on the 367 

linear models. VOCs with a high VIP coefficient have high impact on the response variable and 368 

regression coefficient indicates whether the impact is positive or negative. In the present study, 369 

the PLS biplots were analyzed according to the principles presented for PCA (see 3.1.2).  370 
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Most of the analyzed VOCs were close to the time vector (Fig. 4A), indicating that the VOC 371 

concentrations were increasing as a function of time. Respectively as observed in the heatmaps 372 

(Fig. 1) and PCA biplot (Fig. 3), butanone was negatively correlated with time and associated 373 

with day 0 samples. Furthermore, in case of nine out of fourteen VOCs, 75-100 % of variance 374 

was explained by the first two latent variables, indicating that these VOCs had a strong 375 

correlation with time. Acetone and methyl mercaptan were the most positively correlated VOCs 376 

with time. The VIP plot (Fig. 4D) identified six out of fourteen VOCs having VIP > 1 and a 377 

positive regression coefficient: acetone, ammonia, 2,3-butanediol, dimethyl sulfide, ethanol and 378 

methyl mercaptan. These VOCs also had positive correlations with time.  379 

Even though most of the studied VOCs were positively correlated with TPC (Fig. 4B), their 380 

correlations were typically less positive than between VOCs and time (Fig. 4A). Carbon 381 

disulfide, ethyl acetate and trimethylamine had strong positive correlation with TPC, whereas 382 

most of the other VOCs had slightly positive correlation with TPC. Respectively, four out of 383 

fourteen VOCs had VIP > 1 and positive regression coefficients (Fig. 4E): carbon disulfide, 384 

dimethyl sulfide, ethyl acetate and trimethylamine. However, since TPC reached stationary phase 385 

after day 5, VOCs that showed decreasing concentrations during late storage were highlighted in 386 

the respective PLS model. The observed decrease in VOC concentration is likely affected by 387 

several reasons independent of microbial growth, such as degradation into other compounds. 388 

VOC concentrations cannot thus be directly related to microbial counts after the stationary phase 389 

has been reached. 390 

Finally, three main groups of VOCs could be identified in the PLS model for rejection % (Fig. 391 

4C). These VOC groups closely coincided with those observed in the respective heatmap (Fig. 392 

1D). The concentrations of the majority of VOCs had strong positive correlations with panelist 393 
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rejection. Seven out of fourteen VOCs had VIP > 1 and positive regression coefficients: 394 

ammonia, 2,3-butanediol, dimethyl sulfide, ethanol, ethyl acetate, ethylene oxide and 395 

trimethylamine. Acetone, isobutyl alcohol and 2-propanol had less positive or weaker 396 

correlations and butanone a negative correlation with rejection %.  397 

The VIP value 1 has generally been used as a cut-off limit in variable selection: variables 398 

exceeding this limit can be considered to be highly influential (Afanador, Tran, & Buydens, 399 

2014; Zaragozá et al., 2014). However, since the VIP approach considers every studied variable, 400 

VOCs that have high importance in the model are not necessarily limited to those showing 401 

constant increase during storage. This can be observed in Fig. 4D-E where the VIP of butanone 402 

nearly exceeded 1 despite its negative correlation with time and TPC (Fig. 4A-B) and negative 403 

regression coefficients (Fig. 4D-E). Butanone concentration decreased from 170 to 100 ug m-3 404 

during storage, indicating that it is not likely relevant for spoilage analysis. Excluding butanone 405 

from the analysis could allow other VOCs to exceed the chosen VIP limit. Selection of variables 406 

on the basis of VIP thus gives the most influential VOCs, irrespectively of their impact on the 407 

value of the response variable. 408 

PLS is commonly used when numerous highly correlated predictor variables are present (Wold 409 

et al., 2001). A positive correlation between a VOC and the response indicates that increase in 410 

VOC concentration is associated with increase in the response. However, correlation does not 411 

necessarily indicate a relationship between the variables. In the present study, multicollinearity 412 

between VOCs could be expected because increase in VOC concentrations was related to 413 

microbial growth and likely to the same producer microbes (Kuuliala et al. submitted 414 

manuscript). Some VOCs might thus correlate with the response even though no direct 415 

relationship existed between them. Furthermore, since correlation does not consider the possible 416 
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dependencies between VOCs, direct relationships between the variables and the response might 417 

be hidden because of suppression. This phenomenon could be due to e.g. degradation or 418 

consumption of a VOC during storage. For example, several VOCs had a relatively strong 419 

positive correlation with consumer rejection (Fig. 4C), although their regression coefficients 420 

were negative (Fig. 4F). This could suggest that increase in their concentrations may depend on 421 

another VOCs and/or that they do not contribute to unpleasant off-odors. 422 

In the present study, storage time was extended beyond consumer rejection. After the moment of 423 

rejection (day 5), declining TPC and concentrations of certain VOCs were detected. During 424 

extended storage, evolution of VOCs produced during microbial metabolism does not necessarily 425 

correlate with TPC, which may interfere with the identification of potential spoilage indicators. 426 

Analysis of VOC evolution should thus focus on the log phase of microbial growth. 427 

3.2 Selective statistics 428 

The results of the exploratory analyses indicate that an overview of the evolution and relevance 429 

of VOCs can be obtained with all the analytical methods applied in the present study. However, 430 

especially HCA was also associated with demanding results interpretation. Systematic and 431 

facilitated determination of spoilage indicators calls for cut-off values and correlation between 432 

VOCs and a dependent response variable. PLS regression was thus identified as the most 433 

systematic approach for selective analysis. Table 2 presents the most potential spoilage 434 

indicators of Atlantic cod and brown shrimp identified by PLS and the selection criteria: positive 435 

correlation with the response, VIP > 1 and positive regression coefficient. The number of factors 436 

resulting in minimal root mean PRESS was in most cases between 2-7. In case of sensory 437 

rejection of Atlantic cod, the minimizing number was 1; two factors were selected on the basis of 438 
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van der Voet test (van der Voet, 1994) indicating that the residuals of the model with two factors 439 

were not significantly larger than with one factor. 440 

When considering TPC as a dependent variable, several VOCs could be identified for cod. Under 441 

at least three out of five storage conditions, 2,3-butanediol, dimethyl sulfide, ethyl acetate, 3-442 

methyl-1-butanol, isobutyl alcohol and trimethylamine fulfilled the selection criteria. These 443 

VOCs could thus indicate spoilage under different storage conditions and could be related to the 444 

metabolism of representatives from the Photobacterium genus (Kuuliala et al. submitted 445 

manuscript). Dimethyl sulfide was associated with low oxygen MAP or air, whereas acetic acid 446 

was associated with MAP at lower storage temperature (4 °C). When rejection % was used as a 447 

dependent variable, the selected VOCs were well in correspondence with the TPC model.  448 

Under the two atmospheres tested for brown shrimp, different VOC profiles were identified. 449 

Under 50 % CO2, most of the VOCs corresponded to the compounds identified for cod under 450 

low oxygen concentrations. In addition, carbon disulfide and methyl mercaptan fulfilled the 451 

selection criteria. Under 30 % CO2, only dimethyl sulfide, ethyl acetate and trimethylamine were 452 

identified. Respectively, few compounds were identified when rejection % was used as a 453 

dependent variable. The results are in good correspondence with VOCs detected in previous 454 

studies concerning crustaceans. Noseda et al. (2012) observed a significant increase in acetic 455 

acid, ammonia, dimethyl sulfide, dimethyl amine, ethanol, ethyl acetate and trimethylamine in 456 

brown shrimp stored under 50 % CO2 and 50 % N2. Production of hydrogen sulfide, carbon 457 

disulfide and methyl mercaptan was inhibited in the presence of carbon dioxide. Broekaert et al. 458 

(2013) observed the production of several respective VOCs in aerobically stored brown shrimp 459 

inoculated with Pseudoalteromonas. Respectively, increasing concentrations of several 460 

compounds including alcohols, aldehydes, ketones and trimethylamine have been observed with 461 
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other crustaceans (Fall et al., 2012; Laursen, Leisner, & Dalgaard, 2006; Olafsdottir et al., 2005). 462 

The wet dog odor of Nordic shrimp has been attributed to the co-culture of Carnobacterium 463 

maltaromaticum and Brochothrix thermosphacta (Mejlholm, Bøknæs, & Dalgaard, 2005), 464 

particularly to the interaction of their metabolic products (Malcolm Love, 1979). 465 

The potential spoilage indicators observed in the present study are produced during microbial 466 

metabolism (Casaburi, Piombino, Nychas, Villani, & Ercolini, 2015; Olafsdóttir et al., 1997). 3-467 

methyl-1-butanol has frequently been observed during seafood spoilage (Duflos et al., 2010; 468 

Mikš-Krajnik et al., 2016; Parlapani, Mallouchos, Haroutounian, & Boziaris, 2014) and has been 469 

associated with cheesy or fruity off-odors (Montel, Masson, & Talon, 1998). In addition, both 3-470 

methyl-1-butanol and 2,3-butanediol have been associated with fermented odor under vacuum 471 

(Casaburi et al., 2015). Ethyl esters such as ethyl acetate have been associated with fruity off-472 

odors in meat (Ercolini et al., 2010). Production of dimethyl sulfide results in sulfurous and 473 

cabbage-like odors (Ercolini et al., 2010), whereas trimethylamine contributes to the 474 

characteristic smell of spoiled marine fish (Gram & Dalgaard, 2002).  475 

The results of the present study indicate that several VOCs are produced during refrigerated 476 

storage of seafood. Even though some VOCs were identified as potential spoilage indicators 477 

under various conditions, single compounds have limited potential in quality analysis because 478 

their evolution is dependent on the storage conditions and subject to natural variation. The results 479 

are thus in line with previous studies suggesting that the use of multiple compound indices could 480 

enhance seafood quality analysis (Jørgensen et al., 2001; Leroi, Joffraud, Chevalier, & Cardinal, 481 

2001; Ólafsdóttir, Högnadóttir, Martinsdóttir, & Jónsdóttir, 2000).  482 

4. Conclusions 483 
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The identification of volatile organic compounds (VOCs) related to spoilage allows the analysis 484 

of seafood spoilage by following the concentrations of these compounds over storage time. 485 

Multivariate statistics provides analytical methods for the characterization and selection of 486 

relevant spoilage indicators. In the present study, acetic acid, 2,3-butanediol, isobutyl alcohol, 3-487 

methyl-1-butanol, dimethyl sulfide, ethyl acetate and trimethylamine were most frequently 488 

identified as potential spoilage indicators of Atlantic cod and/or brown shrimp under different 489 

atmospheres. Due to the complex nature of microbiological spoilage and VOC evolution as well 490 

as the wide range of available packaging and storage conditions, seafood quality analysis could 491 

thus benefit from the analysis of multiple VOCs instead of single compounds over storage time. 492 

Acknowledgment 493 

This research paper was realized in the framework of a project supported by Flanders Innovation 494 

& Entrepreneurship (VLAIO, formerly known as the Institute for the Promotion of Innovation by 495 

Science and Technology in Flanders (IWT)) and by a diverse group of industrial stakeholders 496 

within the packaging industry. The authors wish to thank professor Bernard De Baets for 497 

constructive comments regarding the statistical analysis. Lotta Kuuliala acknowledges support 498 

from the Doctoral Programme of the President of TUT. This research has benefitted from a 499 

statistical consult with Ghent University FIRE (Fostering Innovative Research based on 500 

Evidence). 501 

References  502 

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary 503 

Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101 504 



24 
 

Adams, K. R., & Moss, M. O. (2008). Food microbiology (Third Edition ed.). Cambridge: Royal 505 

Society of Chemistry. 506 

Afanador, N. L., Tran, T. N., & Buydens, L. M. C. (2014). An assessment of the jackknife and 507 

bootstrap procedures on uncertainty estimation in the variable importance in the projection 508 

metric. Chemometrics and Intelligent Laboratory Systems, 137, 162-172. 509 

doi:http://dx.doi.org/10.1016/j.chemolab.2014.05.016 510 

Almeida, J. A. S., Barbosa, L. M. S., Pais, A. A. C. C., & Formosinho, S. J. (2007). Improving 511 

hierarchical cluster analysis: A new method with outlier detection and automatic clustering. 512 

Chemometrics and Intelligent Laboratory Systems, 87(2), 208-217. 513 

doi:http://dx.doi.org/10.1016/j.chemolab.2007.01.005 514 

Argyri, A. A., Doulgeraki, A. I., Blana, V. A., Panagou, E. Z., & Nychas, G. E. (2011). Potential 515 

of a simple HPLC-based approach for the identification of the spoilage status of minced beef 516 

stored at various temperatures and packaging systems. International Journal of Food 517 

Microbiology, 150(1), 25-33. doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.010 518 

Argyri, A. A., Mallouchos, A., Panagou, E. Z., & Nychas, G. E. (2015). The dynamics of the 519 

HS/SPME–GC/MS as a tool to assess the spoilage of minced beef stored under different 520 

packaging and temperature conditions. International Journal of Food Microbiology, 193, 521 

51-58. doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2014.09.020 522 

Blixt, Y., & Borch, E. (2002). Comparison of shelf life of vacuum-packed pork and beef. Meat 523 

Science, 60(4), 371-378. doi:http://dx.doi.org/10.1016/S0309-1740(01)00145-0 524 

Broekaert, K., Heyndrickx, M., Herman, L., Devlieghere, F., & Vlaemynck, G. (2013). 525 

Molecular identification of the microbiota of peeled and unpeeled brown shrimp (crangon 526 

http://dx.doi.org/10.1016/j.chemolab.2014.05.016
http://dx.doi.org/10.1016/j.chemolab.2007.01.005
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.010
http://dx.doi.org/10.1016/j.ijfoodmicro.2014.09.020
http://dx.doi.org/10.1016/S0309-1740(01)00145-0


25 
 

crangon) during storage on ice and at 7.5 °C. Food Microbiology, 36(2), 123-134. 527 

doi:http://dx.doi.org/10.1016/j.fm.2013.04.009 528 

Casaburi, A., Piombino, P., Nychas, G., Villani, F., & Ercolini, D. (2015). Bacterial populations 529 

and the volatilome associated to meat spoilage. Food Microbiology, 45, Part A, 83-102. 530 

doi:http://dx.doi.org/10.1016/j.fm.2014.02.002 531 

Chen, Q., Li, H., Ouyang, Q., & Zhao, J. (2014). Identification of spoilage bacteria using a 532 

simple colorimetric sensor array. Sensors and Actuators B: Chemical, 205, 1-8. 533 

doi:http://dx.doi.org/10.1016/j.snb.2014.08.025 534 

Ciesa, F., Dalla Via, J., Wisthaler, A., Zanella, A., Guerra, W., Mikoviny, T., . . . Oberhuber, M. 535 

(2013). Discrimination of four different postharvest treatments of ‘Red delicious’ apples 536 

based on their volatile organic compound (VOC) emissions during shelf-life measured by 537 

proton transfer reaction mass spectrometry (PTR-MS). Postharvest Biology and Technology, 538 

86, 329-336. doi:http://dx.doi.org/10.1016/j.postharvbio.2013.06.036 539 

Duflos, G., Leduc, F., N'Guessan, A., Krzewinski, F., Kol, O., & Malle, P. (2010). Freshness 540 

characterisation of whiting (merlangius merlangus) using an SPME/GC/MS method and a 541 

statistical multivariate approach. Journal of the Science of Food and Agriculture, 90(15), 542 

2568-2575. doi:10.1002/jsfa.4122 543 

Ercolini, D., Casaburi, A., Nasi, A., Ferrocino, I., Di Monaco, R., Ferranti, P., . . . Villani, F. 544 

(2010). Different molecular types of pseudomonas fragi have the same overall behaviour as 545 

meat spoilers. International Journal of Food Microbiology, 142(1–2), 120-131. 546 

doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.012 547 

Fall, P. A., Pilet, M. F., Leduc, F., Cardinal, M., Duflos, G., Guérin, C., . . . Leroi, F. (2012). 548 

Sensory and physicochemical evolution of tropical cooked peeled shrimp inoculated by 549 

http://dx.doi.org/10.1016/j.fm.2013.04.009
http://dx.doi.org/10.1016/j.fm.2014.02.002
http://dx.doi.org/10.1016/j.snb.2014.08.025
http://dx.doi.org/10.1016/j.postharvbio.2013.06.036
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.012


26 
 

brochothrix thermosphacta and lactococcus piscium CNCM I-4031 during storage at 8 °C. 550 

International Journal of Food Microbiology, 152(3), 82-90. 551 

doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.015 552 

Farrés, M., Platikanov, S., Tsakovski, S., & Tauler, R. (2015). Comparison of the variable 553 

importance in projection (VIP) and of the selectivity ratio (SR) methods for variable 554 

selection and interpretation. Journal of Chemometrics, 29(10), 528-536. 555 

doi:10.1002/cem.2736 556 

Fik, M., Surówka, K., Maciejaszek, I., Macura, M., & Michalczyk, M. (2012). Quality and shelf 557 

life of calcium-enriched wholemeal bread stored in a modified atmosphere. Journal of 558 

Cereal Science, 56(2), 418-424. doi:http://dx.doi.org/10.1016/j.jcs.2012.06.006 559 

Gram, L., & Dalgaard, P. (2002). Fish spoilage bacteria – problems and solutions. Current 560 

Opinion in Biotechnology, 13(3), 262-266. doi:http://dx.doi.org/10.1016/S0958-561 

1669(02)00309-9 562 

Hatzinger, R., Hornik, K., Nagel, H., & Maier, M. J. (2014). R: Einführung durch angewandte 563 

statistik (2nd Edition ed.). München: Pearson Studium. 564 

Hierro, E., Ordóñez, J. A., Bruna, J. M., Pin, C., Fernández, M., & de la Hoz, L. (2005). Volatile 565 

compound generation in dry fermented sausages by the surface inoculation of selected 566 

mould species. European Food Research and Technology, 220(5), 494-501. 567 

doi:10.1007/s00217-004-1083-2 568 

Jørgensen, L. V., Huss, H. H., & Dalgaard, P. (2001). Significance of volatile compounds 569 

produced by spoilage bacteria in vacuum-packed cold-smoked salmon (salmo salar) 570 

analyzed by GC-MS and multivariate regression. Journal of Agricultural and Food 571 

Chemistry, 49(5), 2376-2381. doi:10.1021/jf0009908 572 

http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.015
http://dx.doi.org/10.1016/j.jcs.2012.06.006
http://dx.doi.org/10.1016/S0958-1669(02)00309-9
http://dx.doi.org/10.1016/S0958-1669(02)00309-9


27 
 

Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415. 573 

doi:10.1007/BF02291817 574 

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. 575 

doi:10.1007/BF02291575 576 

Kolde, R. (2015). Pheatmap: Pretty heatmaps (R package version 1.0.8 ed.) 577 

Küntzel, A., Fischer, S., Bergmann, A., Oertel, P., Steffens, M., Trefz, P., . . . Köhler, H. (2016). 578 

Effects of biological and methodological factors on volatile organic compound patterns 579 

during cultural growth of mycobacterium avium ssp . paratuberculosis. Journal of Breath 580 

Research, 10(3), 037103.  581 

Kuuliala, L., Al Hage, Y., Ioannidis, A.-G., Sader, M., Kerckhof, F.-M., Vanderroost, M., Boon, 582 

N., De Baets, B., De Meulenaer, B., Ragaert, P., & Devlieghere, F. Microbiological, 583 

chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under 584 

modified atmospheres for the development of intelligent packaging technologies. Submitted 585 

05/05/2017 in Food Microbiology. 586 

Laursen, B. G., Leisner, J., & Dalgaard, P. (2006). Carnobacterium species: Effect of metabolic 587 

activity and interaction with brochothrix thermosphacta on sensory characteristics of 588 

modified atmosphere packed shrimp. Journal of Agricultural and Food Chemistry, 54(10), 589 

3604-3611. doi:10.1021/jf053017f 590 

Leroi, F., Joffraud, J. J., Chevalier, F., & Cardinal, M. (2001). Research of quality indices for 591 

cold-smoked salmon using a stepwise multiple regression of microbiological counts and 592 

physico-chemical parameters. Journal of Applied Microbiology, 90(4), 578-587. 593 

doi:10.1046/j.1365-2672.2001.01283.x 594 



28 
 

Lewis, P. D., & Menzies, G. E. (2015). Vibrational spectra, principal components analysis and 595 

the horseshoe effect. Vibrational Spectroscopy, 81, 62-67. 596 

doi:http://dx.doi.org/10.1016/j.vibspec.2015.10.002 597 

Maier, M. J. (2015). Companion package to the book “R: Einführung durch angewandte 598 

statistik” (R package version 0.9.3 ed.) 599 

Malcolm Love, R. (1979). The post-mortem ph of cod and haddock muscle and its seasonal 600 

variation. Journal of the Science of Food and Agriculture, 30(4), 433-438. 601 

doi:10.1002/jsfa.2740300414 602 

Marín, S., Vinaixa, M., Brezmes, J., Llobet, E., Vilanova, X., Correig, X., . . . Sanchis, V. 603 

(2007). Use of a MS-electronic nose for prediction of early fungal spoilage of bakery 604 

products. International Journal of Food Microbiology, 114(1), 10-16. 605 

doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2006.11.003 606 

Mataragas, M., Skandamis, P., Nychas, G. E., & Drosinos, E. H. (2007). Modeling and 607 

predicting spoilage of cooked, cured meat products by multivariate analysis. Meat Science, 608 

77(3), 348-356. doi:http://dx.doi.org/10.1016/j.meatsci.2007.03.023 609 

Mejlholm, O., Bøknæs, N., & Dalgaard, P. (2005). Shelf life and safety aspects of chilled cooked 610 

and peeled shrimps (pandalus borealis) in modified atmosphere packaging. Journal of 611 

Applied Microbiology, 99(1), 66-76. doi:10.1111/j.1365-2672.2005.02582.x 612 

Mikš-Krajnik, M., Yoon, Y., Ukuku, D. O., & Yuk, H. (2016). Volatile chemical spoilage 613 

indexes of raw atlantic salmon (salmo salar) stored under aerobic condition in relation to 614 

microbiological and sensory shelf lives. Food Microbiology, 53, Part B, 182-191. 615 

doi:http://dx.doi.org/10.1016/j.fm.2015.10.001 616 

http://dx.doi.org/10.1016/j.vibspec.2015.10.002
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.11.003
http://dx.doi.org/10.1016/j.meatsci.2007.03.023
http://dx.doi.org/10.1016/j.fm.2015.10.001


29 
 

Montel, M. C., Masson, F., & Talon, R. (1998). Bacterial role in flavour development. Meat 617 

Science, 49, S111-S123. doi:http://dx.doi.org/10.1016/S0309-1740(98)90042-0 618 

Noseda, B., Ragaert, P., Pauwels, D., Anthierens, T., Van Langenhove, H., Dewulf, J., & 619 

Devlieghere, F. (2010). Validation of selective ion flow tube mass spectrometry for fast 620 

quantification of volatile bases produced on atlantic cod (gadus morhua). Journal of 621 

Agricultural and Food Chemistry, 58(9), 5213-5219. doi:10.1021/jf904129j 622 

Ólafsdóttir, G., Högnadóttir, Ã., Martinsdóttir, E., & Jónsdóttir, H. (2000). Application of an 623 

electronic nose to predict total volatile bases in capelin (mallotus villosus) for fishmeal 624 

production. Journal of Agricultural and Food Chemistry, 48(6), 2353-2359. 625 

doi:10.1021/jf990322q 626 

Olafsdóttir, G., Martinsdóttir, E., Oehlenschläger, J., Dalgaard, P., Jensen, B., Undeland, I., . . . 627 

Nilsen, H. (1997). Methods to evaluate fish freshness in research and industry. Trends in 628 

Food Science & Technology, 8(8), 258-265. doi:http://dx.doi.org/10.1016/S0924-629 

2244(97)01049-2 630 

Olafsdottir, G., Jonsdottir, R., Lauzon, H. L., Luten, J., & Kristbergsson, K. (2005). 631 

Characterization of volatile compounds in chilled cod (gadus morhua) fillets by gas 632 

chromatography and detection of quality indicators by an electronic nose. Journal of 633 

Agricultural and Food Chemistry, 53(26), 10140-10147. doi:10.1021/jf0517804 634 

Parlapani, F. F., Mallouchos, A., Haroutounian, S. A., & Boziaris, I. S. (2014). Microbiological 635 

spoilage and investigation of volatile profile during storage of sea bream fillets under 636 

various conditions. International Journal of Food Microbiology, 189, 153-163. 637 

doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2014.08.006 638 

http://dx.doi.org/10.1016/S0309-1740(98)90042-0
http://dx.doi.org/10.1016/S0924-2244(97)01049-2
http://dx.doi.org/10.1016/S0924-2244(97)01049-2
http://dx.doi.org/10.1016/j.ijfoodmicro.2014.08.006


30 
 

R Core Team. (2013). R: A language and environment for statistical computing. Vienna, 639 

Austria.: R Foundation for Statistical Computing. doi:URL: http://www.R-project.org/ 640 

R Core Team. (2016). The comprehensive R archive network. Retrieved from https://cran.r-641 

project.org/index.html 642 

Rendall, R., Reis, M. S., Pereira, A. C., Pestana, C., Pereira, V., & Marques, J. C. (2015). 643 

Chemometric analysis of the volatile fraction evolution of portuguese beer under shelf 644 

storage conditions. Chemometrics and Intelligent Laboratory Systems, 142, 131-142. 645 

doi:http://dx.doi.org/10.1016/j.chemolab.2015.01.015 646 

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. 647 

Systematic Biology, 51(3), 492-508. doi:10.1080/10635150290069913 648 

Siroli, L., Patrignani, F., Serrazanetti, D. I., Tabanelli, G., Montanari, C., Tappi, S., . . . Lanciotti, 649 

R. (2014). Efficacy of natural antimicrobials to prolong the shelf-life of minimally processed 650 

apples packaged in modified atmosphere. Food Control, 46, 403-411. 651 

doi:http://dx.doi.org/10.1016/j.foodcont.2014.05.049 652 

Smoliński, A., Walczak, B., & Einax, J. W. (2002). Hierarchical clustering extended with visual 653 

complements of environmental data set. Chemometrics and Intelligent Laboratory Systems, 654 

64(1), 45-54. doi:http://dx.doi.org/10.1016/S0169-7439(02)00049-7 655 

Storer, M. K., Hibbard-Melles, K., Davis, B., & Scotter, J. (2011). Detection of volatile 656 

compounds produced by microbial growth in urine by selected ion flow tube mass 657 

spectrometry (SIFT-MS). Journal of Microbiological Methods, 87(1), 111-113. 658 

doi:http://dx.doi.org/10.1016/j.mimet.2011.06.012 659 

Suzuki, R., & Shimodaira, H. (2015). Pvclust: Hierarchical clustering with P-values via 660 

multiscale bootstrap resampling (R package version 2.0-0 ed.) 661 

http://dx.doi.org/10.1016/j.chemolab.2015.01.015
http://dx.doi.org/10.1016/j.foodcont.2014.05.049
http://dx.doi.org/10.1016/S0169-7439(02)00049-7
http://dx.doi.org/10.1016/j.mimet.2011.06.012


31 
 

Suzuki, R., & Shimodaira, H. (2006). Pvclust: An R package for assessing the uncertainty in 662 

hierarchical clustering. Bioinformatics, 22(12), 1540-1542. 663 

doi:10.1093/bioinformatics/btl117 664 

van der Voet, H. (1994). Comparing the predictive accuracy of models using a simple 665 

randomization test. Chemometrics and Intelligent Laboratory Systems, 25(2), 313-323. 666 

doi:http://dx.doi.org/10.1016/0169-7439(94)85050-X 667 

Verginer, M., Leitner, E., & Berg, G. (2010). Production of volatile metabolites by grape-668 

associated microorganisms. Journal of Agricultural and Food Chemistry, 58(14), 8344-669 

8350. doi:10.1021/jf100393w 670 

Vervoort, L., Grauwet, T., Kebede, B. T., Van der Plancken, I., Timmermans, R., Hendrickx, M., 671 

& Van Loey, A. (2012). Headspace fingerprinting as an untargeted approach to compare 672 

novel and traditional processing technologies: A case-study on orange juice pasteurisation. 673 

Food Chemistry, 134(4), 2303-2312. doi:http://dx.doi.org/10.1016/j.foodchem.2012.03.096 674 

Wang, Y., Li, Y., Yang, J., Ruan, J., & Sun, C. (2016). Microbial volatile organic compounds 675 

and their application in microorganism identification in foodstuff. TrAC Trends in 676 

Analytical Chemistry, 78, 1-16. doi:http://dx.doi.org/10.1016/j.trac.2015.08.010 677 

Wibowo, S., Grauwet, T., Gedefa, G. B., Hendrickx, M., & Van Loey, A. (2015). Quality 678 

changes of pasteurised mango juice during storage. part I: Selecting shelf-life markers by 679 

integration of a targeted and untargeted multivariate approach. Food Research International, 680 

78, 396-409. doi:http://dx.doi.org/10.1016/j.foodres.2015.09.002 681 

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. 682 

Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. 683 

doi:http://dx.doi.org/10.1016/S0169-7439(01)00155-1 684 

http://dx.doi.org/10.1016/0169-7439%2894%2985050-X
http://dx.doi.org/10.1016/j.foodchem.2012.03.096
http://dx.doi.org/10.1016/j.trac.2015.08.010
http://dx.doi.org/10.1016/j.foodres.2015.09.002
http://dx.doi.org/10.1016/S0169-7439(01)00155-1


32 
 

Zaragozá, P., Fernández-Segovia, I., Fuentes, A., Vivancos, J., Ros-Lis, J. V., Barat, J. M., & 685 

Martínez-Máñez, R. (2014). Monitorization of atlantic salmon (salmo salar) spoilage using 686 

an optoelectronic nose. Sensors and Actuators B: Chemical, 195, 478-485. 687 

doi:http://dx.doi.org/10.1016/j.snb.2014.01.017 688 

Zeng, Q. Z., Thorarinsdottir, K. A., & Olafsdottir, G. (2005). Quality changes of shrimp 689 

(pandalus borealis) stored under different cooling conditions. Journal of Food Science, 690 

70(7), s459-s466. doi:10.1111/j.1365-2621.2005.tb11493.x691 

http://dx.doi.org/10.1016/j.snb.2014.01.017


33 
 

Figure captions 692 

Fig. 1. Hierarchical cluster analysis (HCA) of volatile organic compounds (VOCs) produced 693 

during storage of brown shrimp under modified atmosphere (% CO2/O2/N2) 50/0/50 at 4 °C. 694 

Euclidean distance and average linkage were used for building the heat maps. The columns 695 

represent individual VOCs (Table 1) and rows represent shrimp samples labelled with day of 696 

storage and replicate A-C. VOCs were analyzed as (A) non-logarithmic and non-standardized, 697 

(B) non-logarithmic and standardized, (C) logarithmic and non-standardized and (D) logarithmic 698 

and standardized data. 699 

Fig. 2. Hierarchical cluster analysis (HCA) of brown shrimp samples stored under modified 700 

atmosphere (% CO2/O2/N2) 50/0/50 at 4 °C. Euclidean distance and average linkage were used 701 

for building the dendrograms. Approximate unbiased (AU) and bootstrap probability (BP) values 702 

are given above the corresponding clusters. The shrimp samples are labelled with day of storage 703 

and replicate A-C.  704 

Fig. 3. Principal components analysis (PCA) biplot of brown shrimp stored under modified 705 

atmosphere (% CO2/O2/N2) 50/0/50 at 4 °C. The shrimp samples (scores) are labelled with day 706 

of storage and replicate A-C. The correlation loadings represent individual VOCs. 707 

Fig. 4. Partial least squares (PLS) biplots (A-C) and VIP vs. regression coefficient plots (D-F) of 708 

brown shrimp stored under modified atmosphere (% CO2/O2/N2) 50/0/50 at 4 °C. VOCs are 709 

treated as predictor variables and time (A and D), TPC (B and E) or rejection % (C-F) as 710 

response variables. The biplots present samples as scores (day 0: +; day 3: ◊; day 5: Δ; day 7:*; 711 

day 10: x; day 12: □) and VOCs as correlation loadings.712 
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Table 1. Product ions of volatile organic compounds (VOCs) quantified with SIFT-MS from the 

headspace of brown shrimp samples, respective mass to charge ratios (m/z), branching ratios (b) and 

reaction rate coefficients (k). 

VOC Code Precursor ion m/z b (%) k Product ion 

Acids       
Acetic acid C1 NO+ 90 100 9.0 E -10 NO+.CH3COOH 

  NO+ 108  9.0 E -10 NO+.CH3COOH.H2O 

Alcohols       

2,3-butanediol C2 H3O+ 91 100 3.0 E -09 C4H10O2
+.H+ 

  NO+ 89 100 2.3 E -09 C4H9O2
+ 

2-propanol C3 H3O+ 43 80 2.7 E -09 C3H7
+ 

3-methyl-1-butanol C4 H3O+ 71 100 2.8 E -09 C5H11
+ 

  NO+ 87 85 2.3 E -09 C5H11O+ 

Ethanol C5 H3O+ 47 100 2.7 E -09 C2H7O+ 

  H3O+ 65   C2H7O+.H2O 
  H3O+ 83   C2H7O+.(H2O)2 

Isobutyl alcohol C6 H3O+ 57 100 2.7 E -09 C4H9
+ 

  NO+ 73 95 2.4 E -09 C4H9O+ 

  O2
+ 33 50 2.5 E -09 CH5O+ 

Ketones       

Acetone C7 H3O+ 59 100 3.9 E -09 C3H7O+ 

  NO+ 88 100 1.2 E -09 NO+.C3H6O 
Acetoin C8 O2

+ 88 20 2.5 E -09 C4H8O2
+ 

Butanone C9 NO+ 102 100 2.8 E -09 NO+.C4H8O 
2-pentanone C10 H3O+ 87 100 3.9 E -09 C5H11O+ 

  H3O+ 105  3.9 E -09 C5H11O+.H2O 

  NO+ 116 100 3.1 E -09 NO+.C5H10O+ 

Sulfur compounds       

Hydrogen sulfide C11 H3O+ 35 100 1.6 E -09 H3S+ 

  H3O+ 53  1.6 E -09 H3S+.H2O 

  O2
+ 34 100 1.4 E -09 H2S+ 

Carbon disulfide C12 O2
+ 76 100 7.0 E -10 CS2

+ 

Dimethyl sulfide C13 NO+ 62 100 2.2 E -09 (CH3)2S+ 

Dimethyl disulfide C14 H3O+ 95 100 2.6 E -09 (CH3)2S2.H+ 
  NO+ 94 100 2.4 E -09 (CH3)2S2

+ 

Methyl mercaptan C15 H3O+ 49 100 1.8 E -09 CH4S.H+ 

  H3O+ 67  1.8 E -09 CH4S.H+.H2O 

Esters       

Ethyl acetate C16 NO+ 118 90 2.1 E -09 NO+.CH3COOC2H5 

  O2
+ 31 20 2.4 E -09 CH3O+ 

Amines       
Ammonia C17 H3O+ 18 100 2.6 E -09 NH4

+ 

  H3O+ 36  2.6 E -09 NH4
+.H2O 

  O2
+ 17 100 2.4 E -09 NH3

+ 

Dimethylamine C18 H3O+ 46 100 2.1 E -09 (CH3)2N.H+ 

Trimethylamine C19 H3O+ 58 10 2.0 E -09 C3H8N+ 

  H3O+ 60 90 2.0 E -09 (CH3)3N.H+ 

Others       
Ethylene oxide C20 NO+ 74 100 1.0 E -10 C2H4O.NO+ 

 

 



 
 

Table 2. Most potential spoilage indicators of Atlantic cod (C) and brown shrimp (S) stored under 

different atmospheres (% CO2/O2/N2), determined by PLS regression analysis. TPC or rejection % 

were used as the dependent variable and VOCs as independent variables.  

 TPC Rejection % 

 C 4 °C 

60/40/0 

C 8 °C 

60/40/0 

C 4 °C 

60/5/35 

C 8 °C 

60/5/35 

C 4 °C 

Air 

S 4 °C 

50/0/50 

S 4 °C 

30/0/70 

C S 

2,3-butanediol x x x x x x 0 x 0 

2-methylpropanal      - -  - 

2-pentanone 0 x 0 0 0 0 0 0 0 

2-propanol - - - - -   -  

3-methyl-1-butanol x x x x x 0 0 x 0 

3-methylbutanal      - -  - 

Acetic acid x  x  0 x 0 0 0 

Acetoin 0 0 0 0 0 0 0 0 0 

Acetone x    x     

Ammonia      x    

Butanone - - - - -   -  

Carbon disulfide - - - - - x  -  

Dimethyl amine 0 0 0 0 0 0 0 0 0 

Dimethyl disulfide 0 0 0 0 0 0 0 0 0 

Dimethyl sulfide   x x x x x  x 

Dimethyl trisulfide      - -  - 

Ethanol  x       x 

Ethyl acetate x x x x x x x x x 

Ethyl propanoate 0 0 0 0 0 - - 0 - 

Ethylene oxide - - - - -   -  

Hydrogen sulfide 0 0 0 0 0 0 0 0 0 

Isobutyl alcohol x x  x   0 x 0 

Methyl mercaptan 0 0 0  0 x  0  

Trimethyl amine x x x x x x x x x 

x: selection criteria (VIP > 1, regression coefficient > 0, positive correlation with dependent variable) were met 

-:VOC was not included in the SIFT-MS analysis 

0: relative standard deviation > 25 % 

 

 

 

 

 

 

 

 

 


