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Université Paris-Sud

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14700423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Sunto: Questa tesi è dedicata allo studio di problemi di trasporto ottimo, alternativi al cosid-
detto problema di Monge-Kantorovich: essi appaiono in modo naturale in alcune applicazioni con-
crete, come nel disegno di reti ottimali di trasporto o nella modellizzazione di problemi di traffico
urbano. In particolare, si considerano problemi in cui il costo di trasporto ha una dipendenza non
lineare dalla massa: tipicamente in questo tipo di problemi, muovere una massa m per un tratto di
lunghezza ` costa ϕ(m) `, dove ϕ è una funzione assegnata, dando perciò luogo ad un costo totale
del tipo

∑
ϕ(m)`.

Due casi significativi vengono ampiamente trattati in questo lavoro: il caso in cui la funzione
ϕ è subadditiva (trasporto ramificato), ragion per cui le masse hanno maggiore interesse a viag-
giare insieme, in modo da diminuire il costo totale; il caso in cui ϕ è superadditiva (trasporto
congestionato), dove al contrario la massa tende a diffondersi quanto più possibile.

Nel caso del trasporto ramificato, si introducono due nuovi modelli dinamici: nel primo il
trasporto è descritto da curve di misure di probabilità che minimizzano un funzionale di tipo
geodetico (con un coefficiente penalizzante le misure non atomiche). Il secondo invece è maggior-
mente nello spirito della formulazione data da Benamou e Brenier per le distanze di Wasserstein:
in particolare, il trasporto è descritto per mezzo di coppie “curva di misure–campo di velocità”,
legate dall’equazione di continuità, che minimizzano un’opportuna energia (non convessa). Per en-
trambi i modelli, si mostra l’esistenza di configurazioni minimali e si prova l’equivalenza con altre
formulazioni esistenti in letteratura.

Per quanto riguarda il caso del trasporto congestionato, si rivedono in dettaglio due modelli
già esistenti, provandone l’equivalenza: mentre il primo di questi modelli può essere visto come
un approccio Lagrangiano al problema ed ha interessanti legami con questioni di equilibrio per il
traffico urbano, il secondo è un problema di ottimizzazione convessa con vincolo di divergenza.

La dimostrazione dell’equivalenza tra i due modelli costituisce il corpo centrale della seconda
parte del lavoro e contiene vari elementi di interesse, tra questi: la teoria dei flussi di campi
vettoriali poco regolari di DiPerna e Lions, la costruzione di Dacorogna e Moser per mappe di
trasporto e soprattutto dei risultati di regolarità (che quivi ricaviamo) per un’equazione ellittica
molto degenere, che non sembra essere stata molto studiata.

Parole chiave: Trasporto ottimo, analisi in spazi metrici, trasporto ramificato, equazioni ellit-
tiche degeneri, problemi variazionali non convessi, Di Perna-Lions, congestione di traffico, equazione
di continuità, equilibrio di Wardrop

Résumé : Cette thèse est dédiée à l’étude des problèmes de transport optimal, alternatifs au
problème de Monge-Kantorovich : ils apparaissent naturellement dans des applications pratiques,
telles que la conception des réseaux de transport optimal ou la modélisation des problèmes de
circulation urbaine. En particulier, nous considérons des problèmes où le coût du transport a une
dèpendance non linèaire de la masse : typiquement dans ce type de problèmes, le côut pour déplacer
une masse m pour une longueur ` est ϕ(m) `, où ϕ est une fonction assignée, obtenant ainsi un
coût total de type

∑
ϕ(m)`.

Deux cas importants sont abordés en détail dans ce travail : le cas où la fonction ϕ est subaddi-
tive (transport branché), de sorte que la masse a intérêt à voyager ensemble, de manière à réduire
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le coût total; le cas où ϕ est superadditive (transport congestionné), où au contraire, la masse tend
à diffuser autant que possible.

Dans le cas du transport branché, nous introduisons deux nouveaux modèles: dans le premièr, le
transport est décrit par des courbes de mesures de probabilité que minimisent une fonctionnelle de
type géodésique (avec un coefficient que pénalise le mesures qui ne sont pas atomiques). Le second
est plus dans l’esprit de la formulation de Benamou et Brenier pour les distances de Wasserstein :
en particulier, le transport est décrit par paires de “courbe de mesures–champ de vitesse”, liées par
l’équation de continuité, qui minimisent une énergie adéquate (non convexe). Pour les deux modèles,
on démontre l’existence de configurations minimales et l’équivalence avec d’autres formulations
existantes dans la littèrature.

En ce qui concerne le cas du transport congestionné, nous passons en revue deux modèles déjà
existants, afin de prouver leur équivalence: alors que le premier de ces modèles peut être considéré
comme une approche Lagrangienne du problème et il a des liens intéressants avec des questions
d’équilibre pour la circulation urbaine, le second est un problème d’optimisation convexe avec
contraintes de divergence.

La preuve de l’équivalence entre les deux modèles constitue le corps principal de la deuxième
partie de cette thèse et contient différents éléments d’intérêt, y compris: la théorie des flots des
champs de vecteurs peu réguliers (DiPerna-Lions), la construction de Dacorogna et Moser pour les
applications de transport et en particulier les résultats de régularité (que nous prouvons ici) pour
une équation elliptique très dégénérés, qui ne semble pas avoir été beaucoup étudiée.

Mots clés : Transport optimal, analyse dans les espaces métriques, transport branché, équations
elliptiques dégénérées, problèmes non convexes du calcul des variations, Di Perna-Lions, congestion
du trafic, équation de continuité, équilibre de Wardrop

Abstract: This thesis is devoted to to the study of optimal transport problems, alternative
to the so called Monge-Kantorovich one: they naturally arise in some real world applications, like
in the design of optimal transportation networks or in urban traffic modeling. More precisely, we
consider problems where the transport cost has a nonlinear dependence on the mass: typically in
this type of problems, to move a mass m for a distance ` costs ϕ(m) `, where ϕ is a given function,
thus giving rise to a total cost of the type

∑
ϕ(m) `.

Two interesting cases are widely addressed in this work: the case where ϕ is subadditive
(branched transport), so that masses have the interest to travel together in order to lower the total
cost; the case of ϕ being superadditive (congested transport), where on the contrary the mass tends
to be as widespread as possible.

In the case of branched transport, we introduce two new dynamical models: in the first one,
the transport is described through the employ of curves of probability measures minimizing a
wighted-length functional (with a weight function penalizing non atomic measures). On the other
hand, the second model is much more in the spirit of the celebrated Benamou-Brenier formulation
for the Wasserstein distances: in particular, the transport is described by means of pairs “curve
of measures–velocity vector field”, satisfying the continuity equation and minimizing a suitable
dynamical energy (which is a non convex one, actually). For both models we prove existence of
minimal configurations and equivalence with other modelizations existing in literature.
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Concerning the case of congested transport, we review in great details two already existing
models, proving their equivalence: while the first one can be viewed as a Lagrangian approach to
the problem and it has some interesting links with traffic equilibrium issues, the second one is a
divergence-constrained convex optimization problem.

The proof of this equivalence represents the central core of the second part of the work and
contains various points of interest: among them, the DiPerna-Lions theory of flows of weakly
differentiable vector fields, the Dacorogna-Moser construction for transport maps and, above all,
some regularity estimates (that we derive here) for a very degenerate elliptic equation, that seems
to be quite unexplored.

Keywords: Optimal transport, analysis in metric spaces, branched transport, degenerate
elliptic equations, nonconvex variational problems, Di Perna-Lions, traffic congestion, continuity
equation, Wardrop equilibrium
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Introduction

This thesis is devoted to the study of some models of optimal transport, alternative to the
so-called Monge-Kantorovich one: as we will try to explain, they naturally arise in some real world
applications, like in the design of optimal transportation networks or in traffic congestion modeling.
To give the possibility of having a better understanding of the studies we are going to perform in
this work, we should start briefly recalling the usual Monge-Kantorovich mass transfer problem,
a topic which has received a lot of attention in the last years, contributing to the growth of new
techniques which can be applied to various fields of mathematics (to have a clear picture, the
reader should consult Villani’s monumental book [85]). In the usual Monge-Kantorovich problem,
one has to find the optimal way to move a given amount of mass from an initial configuration
to a prescribed final one, in order to minimize a total cost of transportation. This total cost is
obtained by summing the infinitesimal costs relative to each particle: assuming that the initial
mass distribution occupies a region V and that its density is described by the function f0, so that∫
V f0(x) dx = total mass, in each point x we have a quantity of mass given by f0(x) dx which have

to be moved to a point T (x). In the case that the infinitesimal cost is of the type mass×distance
(this is the work involved, up to a constant), we then have the total cost∫

V
|x− T (x)| f0(x) dx,

to be minimized among all applications T that transport the initial configuration to the desired
one: clearly, the latter requirement has to be rigorously expressed in a mathematical framework.
For example, if the density of the final configuration is described by the function f1, then this
requirement can be expressed as∫

A
f1(x) dx =

∫
T−1(A)

f0(x) dx, for every set A ⊂ V,

and T is said to be a transport map between f0 and f1: obviously, there must result
∫
V f1(x) dx =∫

V f0(x) dx. This is basically the problem as introduced by Monge in 1781: as we will see, from
a mathematical point of view this is a very subtle problem (and thus very interesting!). It can be
extended in various way: we can consider more in general a total cost of the type∫

V
|x− T (x)|p f0(x) dx,

and we can replace f0 dx and f1 dx with general positive measures ρ0 and ρ1, having the same total
mass (conventionally, they will be probability measures). In this case, a transport map T is an
application satisfying ρ1 = (T )]ρ0, that is ρ1 is the image measure (or push-forward) of ρ0 through

ix



x INTRODUCTION

the map T , and the total cost is ∫
V
|x− T (x)|p dρ0(x).

Anyway, in this latter case, if one keeps trying to realize the transportation with a map T , there
could be some troubles (there are some evident difficulties in sending a single Dirac mass into the
sum of two, with a map T ...): in other words, the requirement that all the mass located at x must
go to the same destination T (x) could be too strong. To allow splitting of mass, new objects have
to be introduced: the so-called transport plans. They are probability measures γ on the product
space V × V , such that dγ(x, y) is the amount of mass located at x which has to be sent to y: in
this way, the total cost now becomes ∫

V×V
|x− y|p dγ(x, y).

The requirement of transporting ρ0 to ρ1 is expressed by requiring that γ(A × V ) = ρ0(A) and
γ(V × B) = ρ1(B), i.e. ρ0 and ρ1 are the marginals of γ: this whole procedure can be seen as a
relaxation (in a suitable sense) of the original Monge’s problem and it is due to Kantorovich (more
than 150 years after Monge!). The reader should not be worried by this rather sloppy and imprecise
presentation of the Monge-Kantorovich problem (we will provide more details in Chapter 1), what
is important to stress here is that in this type of problems:

(i) the cost linearly depends on the mass;
(ii) the path followed by each mass particle only depend on the initial and final position and it

is not an unknown: in other words, once an optimal transport plan γ tells you that some
particle located at x has to go to y, then this mass moves along the geodesic segment xy
(as far as the cost is linked to the Euclidean distance).

As we will see, these two facts are tightly related. In a very rough way, we could summarize the
scope of this work as that of considering models of transportation where the cost for moving a mass
m on a distance ` is no more given by m`, but a sublinear or superlinear dependence on the mass
is imposed, for example considering mα ` (0 < α < 1) or mp ` (p > 1). Let us focus on the first case
for a while: observe that with this choice of the parameter α, we get that (m1 +m2)α < mα

1 +mα
2 ,

so that the cost now keeps trace of the fact that “it is better to keep mass together, in order to
save cost”. In this way, the model considered is encoding the cost of the transportation structure
in its formulation: in particular, the paths followed by particles do not depend anymore on the
coupling initial position—final position only, but they also depend on the transportation itself and
they are an unknown of the problem. Just to clarify the situation, suppose to have a small town,
in which a power supply station has to furnish electricity to the houses of the town: you could see
this as a transport problem between a big Dirac mass Mδx0 (the station) and the sum of a certain
number of small Dirac masses

∑n
i=imi δxi , each corresponding to a house (see Figure 1). In this

example, M stands for the quantity of energy that the station can produce, while the coefficients
mi can be seen as the amount of energy that every house needs, so that we assume that they satisfy∑k

i=1mi = M (clearly, we are disregarding a lot of physical effects, but this is not the point here).
Monge-Kantorovich formulation, which looks only at the couplings (in this case, there is only one
coupling), gives as optimizer a widespread system of wires, built as follows: the station should
provide energy to every house directly, by using a wire for each of them. This would be very costly
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for the electric company; on the contrary, in a real situation the electric company should try to use
the least amount of wires possible (the maintenance of the network should have a cost, probably
proportional to its length), building an electric power supply network which minimizes a total cost
of the form ∑

mα `,

under the constraints of Kirchhoff’s law for circuits (i.e. electric charge does not disappear) and∑k
i=1mi = M . Observe that the lower the parameter α, the stronger the branching effects: in

particular, for α = 0 this is just the so-called Steiner’s problem.

Monge−Kantorovich solution Branched transport solution

Figure 1. It is better to construct an optimal network of wires (right) to save
cost: anyway, this is not possible by looking at the Monge-Kantorovich formulation,
which rather describes the situation on the left.

In the second case, that is when the infinitesimal cost is of the form mp `, with p > 1, we see
that exactly the opposite phenomenon happens: mp

1 +mp
2 < (m1 +m2)p, so it is better to spread

the mass during the transport, in order to save cost. In other words, the cost takes into account
that letting pass too much mass from a point, could cost a lot in terms of congestion. Let us
try to give another simple example: suppose to consider a city with a football stadium located
at its center x0 and having a maximum capacity of M , so that we can think of it as the measure
Mδx0 . On sunday, the whole population of the city wants to go to the stadium for the football
match: supposing that the city is made of a certain number k of houses, each of them located

at xi and containing mi inhabitants, we can think to represent the whole of them as
∑k

i=1miδxi
(and certainly M =

∑k
i=1mi). Clearly, each citizen could decide to take the shortest road to the

stadium (this is the Monge-Kantorovich solution): anyway, if everybody behaves like this, they
risk to create a lot of traffic congestion, dramatically elevating the trip time. So maybe they would
decide to distribute themselves on the whole transportation network, not only on shortest roads,
taking into account that traffic congestion could compensate the difference of length.

In both cases, that is branched and congested transport, we will present and discuss various
models (some recent, some older and others completely new), then one of the leitmotiv of the
thesis will be that of equivalences between these models: indeed, the importance of having various
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Figure 2. A lot of citizens go to stadium, traveling along the shortest paths
(left)...but sometimes it is better to take a longer path, avoiding congestion effects
(right)

equivalent formulations of the same problem is invaluable, as far as this could provide different
points of view on the problem, allowing for a great flexibility. In this way, the more the points
of view, the more the machinery you could use to attack the problem (and the more the chances
to succeed!): something that seems hard to prove in a formulation, maybe is simpler in another.
Moreover the proofs of these equivalences have their own mathematical interest, as far as a lot of
interesting mathematical tools have to be exploited in order to achieve the goal: for example, as
we will see, the equivalence between the models for congested transport here presented will require
some non-trivial regularity results for the very degenerate elliptic equation1

−div

(
(|∇u| − 1)q−1

+

∇u
|∇u|

)
= f,

which appears to be quite unexplored.

We now leave the reader to the Plan of the Work, where a detailed summary of each chapter
of the thesis is provided, as well as the principal results obtained and the main techniques used
throughout the work.

1( · )+ stands for the positive part.



Plan of the work

Chapter 1. This chapter contains standard materials on Optimal Transportation, with par-
ticular emphasis on the basic properties of Wasserstein spaces and on the dynamical formulations
for the Wasserstein distances. To make this introductory summary more readable, we briefly recall
the definition of Wasserstein space and some alternative definitions for the related Wasserstein
distance: for simplicity, let us take Ω ⊂ RN compact convex set, then the space of probability
measures P(Ω) over Ω can be turned into a metric space, introducing the p−Wasserstein distance
(p ≥ 1)

wp(ρ0, ρ1) = inf

{∫
Ω×Ω
|x− y|p dγ(x, y) : γ ∈P(Ω× Ω), (πx)]γ = ρ0, (πy)]γ = ρ1

}
.

Indicating with Wp(Ω) the space of probability measures equipped with this metric, it turns out
that Wp(Ω) is a length space and for every ρ0, ρ1 ∈ Wp(Ω), their p−Wasserstein distance can also
be written as

(1) wp(ρ0, ρ1) = inf

{∫ 1

0
|µ′t|wp dt : µ0 = ρ0, µ1 = ρ1

}
,

where the infimum is taken over the set of Wp(Ω)−valued absolutely continuous curves and |µ′t|wp
is the metric derivative (see the Appendix A for the definition) of the curve of measures t 7→ µt,
with respect to the metric wp.

This is the first dynamical formulation of the Wasserstein distance: another interesting dynam-
ical formulation, based on the continuity equation (which expresses the conservation of mass), is
due to Benamou and Brenier ([13]) and reads as

wp(ρ0, ρ1) = inf

{∫ 1

0

∫
Ω
|vt(x)|p dµt(x) dt :

∂tµt + divx(vt µt) = 0
µ0 = ρ0, µ1 = ρ1

}
.

The link between these two formulations is given by the fact that for every absolutely continuous
curve µ over Wp(Ω), we can always find an admissible vector field v such that ‖vt‖Lp(µt) = |µ′t|wp ,
for every t (we will give more details on this relation in Section 5), so that this v plays the role of
a tangent vector to the curve µ.

Clearly this chapter is far from being an exhaustive presentation of the theme, but it is intended
only as an account of the tools that we will need in the course of the work: for all the proofs, further
results, details and bibliographical notes, the reader is strongly suggested to consult the two books
of Villani [86, 85], the lecture notes [3] by Ambrosio and the book [6] as well, from which much of
the materials here presented are taken.
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xiv PLAN OF THE WORK

Chapter 2. This chapter has a general character, as far as it deals with lower semicontinuity
results for functionals of the type ∫

I
f(t, µ(t), |µ′|(t)) dt,

defined on spaces of absolutely continuous curves over a metric space X. Here µ : I → X is an
absolutely continuous curve on X, with I ⊂ R compact interval, and |µ′|(t) is again the metric
derivative of µ at the point t. We will see that under appropriate growth conditions and (mild)
regularity assumptions on the integrand f (and on the metric space X), most of the classical results
valid in a Euclidean setting still hold in this general framework (Theorem 2.3.4). Existence of curves
of minimal action for the associated variational problems (i.e. minimizing the energy, with given
endpoints) are also provided (Theorem 2.4.3), in a setting where X is a metric space not necessarily
locally compact: this latter fact prevents a straightforward application of Ascoli-Arzelá Theorem
(Theorem 2.4.5).

The results of this chapter have been derived in view of applications to spaces of measures
(as the Wasserstein ones, for example), which are particular and significant metric spaces. In
particular, this context will be the occasion for introducing the concept of evolution pairing, which
is, given a curve of measures µ, a way to distinguish between its moving part and its still one. This
description is given in an elementary way, avoiding the use of the continuity equation (with some
advantages and some drawbacks):

in particular, a couple of curves (ν, µ), with µt probability measure and νt positive measure
with total variation less than or equal to 1, is said an evolution pairing if νt ≤ µt for every t
(which expresses the fact that the moving mass is just a part of the whole) and ϑt := µt − νt is
non-decreasing, that is ϑs ≤ ϑt as measures, for s ≤ t. The latter requirement simply expresses
the fact that the mass which is already arrived (that is µt − νt) has to grow in time. The main
application of this concept will be in Chapter 4, in the context of branched transportation problems
(this was the original motivation for its definition in [B2]): anyway, in this chapter we will consider
quite general action functionals defined on evolution pairings, providing semicontinuity results for
them and existence of minimal configurations connecting two given measures ρ0 and ρ1.

The whole chapter is taken from the published work [B2], with minor changes (in particular, a
treatment of supremal functionals has been added).

Chapter 3. Here we start to focus on one of the main subjects of this work, namely branched
transportation problems, which will occupy this and the next two Chapters. The typical problem
one has to face in this context is the following: one has some mass ρ0 that has to be transported to a
destination ρ1 and wants to find the optimal way to perfom this transportation. The main difference
with the classical Monge-Kantorovich mass transportation problem is that optimality should regard
the type of structure used to move the mass: in particular, this transportation should be optimal
with respect to some energy which takes into account the fundamental principle that “the more
you transport mass together, the more efficient the transport is”. This is, for example, exactly what
happens in many natural systems: root systems in a tree, bronchial systems and blood vessels in
a human body and so on. Each of them solves the problem of transporting some “mass” (water,
oxygen, blood or generic fluids) from a source to a destination, avoiding separation of masses as
much as possible. This fundamental principle is translated into the energy by considering, for a
mass m moving on a distance `, a cost of the form mα`, with the parameter α ∈ [0, 1] modeling



PLAN OF THE WORK xv

the branching effects: indeed, thanks to the subadditivity of the function x 7→ xα, we see that
it is less expensive to put masses together during the transportation, then giving rise to optimal
tree-shaped configurations, i.e. the typical resulting structures are trees made of bifurcating vessels.
In the sequel, we will refer to an energy of this type, that is (in an informal way)

(2)
∑

massα × length,

as a Gilbert-Steiner energy.
First of all, in Chapter 3 we review some of the main models for branched transportation

existing in literature, in particular:

• the transport paths model by Xia (see [90]), in which the transportation structures are
modeled as vector measures with prescribed divergence and supported on 1−dimensional
sets;
• what we have called Lagrangian models, due to different authors (Maddalena-Morel-

Solimini, Bernot-Caselles-Morel, Bernot-Figalli), which slightly differ from one to another,
but whose common root is a Lagrangian description of the transportation, through the
employing of probability measures over the space of admissible paths;
• the path functional model introduced by Brancolini, Buttazzo and Santambrogio in [24].

A distinguished feature of the latter model, on which this and the next chapter are mainly focused,
is its simplicity and its purely dynamic approach: indeed, it is obtained by perturbing the geodesic
formulation for Wasserstein distances (1). This means that the energy to be minimized is defined
on Lipschitz curves of probability measures and it is given by a weighted-length functional in the
Wasserstein spaceWp, with the weight function encouraging aggregation of masses, so that optimal
tree-shaped configurations are expected.

More precisely, for the case to study, the choice of the weight function is given by the local and
lower semicontinuous functional (here 0 < α < 1) defined on measures (see [21])

gα(µ) =


∑
k∈N

mα
k , if µ =

∑
k∈N

mkδyk ,

+∞, otherwise,

and the energy under consideration in [24] is

Pα,p(µ) =

∫ 1

0
gα(µt) |µ′t|wp dt,

for every Lipschitz curve µ with values in Wp(Ω). Then, for every ρ0, ρ1 ∈ P(Ω), a curve µt
connecting them and minimizing Pα,p provides the optimal structure of branched transportation,
as well as the dynamical evolution in time of this transportation.

This model has several drawbacks and in particular it does not correspond, generally speaking,
to a Gilbert-Steiner energy: for example, one immediately sees that in the energy Pα,p there is
no way to distinguish between moving and still masses (the coefficient gα is a function of the
whole mass configuration at time t, i.e. µt), while the metric derivative term does not scale in the
appropriate way, that is like a length, but rather like a mass-weighted sum of lengths, so that Pα,p
is not exactly of the form (2).

To sum up, the path functional model gives rise to a different energy and to a different model
for branched transport, not comparable with the other ones: we will provide some studies on this
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energy (Section 4), explain the difference with a Gilbert-Steiner energy and suggest how to modify
it in order to achieve an equivalent path functional formulation of branched transportation (Section
5), the latter being the content of the next chapter.

Chapter 4. This is based on a joint work with Filippo Santambrogio ([25]) and it answers
a question raised in Santambrogio’s PhD Thesis (see [76, Remark 6.2.7]), about the connection
between the path functional model and the Lagrangian models. In particular, it is shown that
modifying the former

• tuning the Wasserstein exponent p in the energy Pα,p to be ∞ (this settles the unnatural
scaling of the energy, as far as the ∞−Wasserstein distance corresponds to a supremal
mass transportation problem which does not depend on the mass, but only on the maximal
displacement);
• introducing a suitable way to distinguish between moving masses and still masses, in such

a way that the path functional energy only keeps track of the moving part of the curve µt;

makes possible to recover a Gilbert-Steiner energy also via path functional model, thus giving
equivalence with the Lagrangian models (Theorem 4.5.1). In doing this, the fundamental tool is
the concept of evolution pairing introduced in Chapter 2 and the energy to be considered will be

Lα =

∫ 1

0
gα(νt) |µ′t|w∞ dt,

where now the coefficient gα takes into account only the moving masses, given by the curve νt.
However, we will see that some troubles still occur, because on the one hand the modified energy
has not enough coercivity properties and the time interval [0, 1] has to be replaced with [0,∞), in
connection with a 1−Lipschitz requirement on the curve µt, allowing for possibly infinite paths of
transportation; on the other hand, the class of evolution pairings enlarges too much the space of
admissible configurations and a narrower class is actually required (the so-called special evolution
pairings, see Definition 4.3.4). As a byproduct, this leads to some non trivial studies about Lipschitz
curves in the Wasserstein spaceW∞, a topic which has received little attention up to now and thus
it can be of its own interest.

Chapter 5. In this chapter a further model for branched transportation is introduced, again
based on an energy functional defined on curves of measures, like the path functional model was.
The main novelty of this model is that it can be seen as the natural extension of the Benamou-
Brenier approach to the branched setting, thus providing the genuine Eulerian counterpart to the
Lagrangian models presented in Chapter 3: more precisely, in this model admissible configurations
are couples (µ, φ) solving the continuity equation (in a distributional sense)

∂tµt + divx(φt) = 0,

and such that µ connects two given measures ρ0 and ρ1. Then an energy of the kind (again
0 < α < 1, with the same functional gα as before)

Gα(µ, φ) =

∫ 1

0
gα

(∣∣∣∣dφtdµt

∣∣∣∣1/α µt
)
dt
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is considered. Observe that the finiteness of the energy implies that φt � µt for L 1−a.e. t ∈ [0, 1]
and that φt (not necessarily µt) is purely atomic, so that in this case (v stands for the Radon-
Nikodym derivative of φ with respect to µ) the previous energy takes the form

Gα(µ, φ) =

∫ 1

0

[∑
i∈N
|vt,i|µαt,i

]
dt,

with |vt,i|µt,i standing for the masses of the atoms of |φt|. Again, the link with a Gilbert-Steiner
energy is quite evident, interpreting v has the velocity vector fields of the particles. For this model,
we will prove (Theorem 5.2.6) the existence of a minimal configuration (µ, φ): the method of proof
goes along the way of the Direct Methods of the Calculus of Variations, so that the main efforts
will be devoted to prove that our variational problem has enough coercivity and semicontinuity
properties, with respect to a suitably chosen topology. Moreover equivalence with Lagrangian
models (and then with Xia’s model and the modified path functional one discussed in Chapter 4)
is shown in Theorem 5.4.2, as well as some interesting (though already known) estimates between
branched distances and the Wasserstein ones, first proven by Devillanova and Solimini ([43]) and
Morel and Santambrogio ([70]): thanks to the tools developed in this chapter, we can provide
simpler proofs of these estimates.

The materials of this chapter are taken from the recent paper [B3] in collaboration with
Giuseppe Buttazzo and Filippo Santambrogio.

Chapter 6. With this chapter (which is a review one) we completely change point of view
and we start looking at transportation problems which are, roughly speaking, complementary to
the branched ones: we deal with optimal transportation in presence of congestion effects, so that
now our total cost for transporting ρ0 to ρ1 will take into account the fact that “the more the mass
travels together, the higher the cost is”, giving rise to very spread and as diffused as possible optimal
configurations. Here the role of the function x 7→ xα will be played by the function x 7→ xp, with
p > 1, which is a superadditive one, so that now mp

1 + mp
2 < (m1 + m2)p and concentrations of

mass are thus penalized.
This is for example what happens in an urban traffic situation: in this context, we introduce two

models for congested dynamics, both having interesting connections with equilibrium issues. The
first is the model introduced by Wardrop in a discrete setting ([88]) and then recently generalized
to the continuous case by Carlier, Jimenez and Santambrogio in [33]:

two probability measures ρ0 and ρ1 over Ω are given (standing, for example, for centers of
production and consumption of a given commodity or for residential and working/commercial
areas); the goal is to describe the possible way in which commuters between ρ0 and ρ1 choose
to distribute on the admissible roads. Probability measures Q over the set of Lipschitz paths
(parametrized over [0, 1], for example) are introduced, verifying (ei)]Q = ρi, for i = 0, 1, the
function et being the application that to every curve σ assigns its position at time t, i.e. et(σ) = σ(t).

In this model, each traffic assignment Q gives rise to a resulting traffic intensity iQ, which is
a positive measure over the city Ω (actually, a refinement of the concept of transport density for
Monge’s problem), representing how much each subregion is congestioned. Then, given a density
cost function H, such that H(iQ(x)) stands for the total cost (per unit of volume) of passing from
a point x where there is an amount of traffic given by iQ(x), we obtain an overall transportation
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cost simply integrating in space, i.e.

W (Q) =

∫
Ω
H(iQ(x)) dx.

In order to modelize congestion effects, H typically behaves like a strictly convex power function,
for example H(t) ' tp, with p > 1. Then one looks at existence of configurations Q minimizing
W : this is the overall optimization point of view, in which the individual welfare of the commuters
between ρ0 and ρ1 is disregarded. The main interest of the resulting optimality conditions for W
(which are both necessary and sufficient, as far as the problem is convex) is that they are connected
with a concept of equilibrium, the so-called Wardrop equilibrium: indeed, one can prove that an
optimal Q determines a new metric on Ω, which depends on the traffic (i.e. on Q) itself, given by

dQ(x, y) = inf

{∫ 1

0
H ′(iQ(σ(t))) |σ′(t)| dt : σ(0) = x, σ(1) = y

}
,

and such that Q gives full mass to the set of curves of minimal length for this congested metric.
This is exactly the mathematical translation of Wardrop’s postulate “at equilibrium, every actually
used road must be of minimal length, taking into account congestion effects”, so that no single
commuter has the interest to change his road, provided the others keep their strategy.

It is important to observe that the previous expression dQ suggests that the cost function H
should satisfy H ′(0) > 0, which rules out a cost function of the type H(t) = c tp: roughly speaking,
passing from a desert road must have a cost (just for fuel or tires consumption, for example) from
an individual point of view. This is the reason why, from Chapter 7 on, we will mainly concentrate
on the model case of a cost function of the form

H(t) =
1

p
tp + t, t ≥ 0.

We also observe that in some applications, it is interesting to consider the optimization problem
for W in which the coupling (e0, e1)]Q (i.e. a transport plan between ρ0 and ρ1) is fixed, that is we
can consider what is sometimes called the who goes where problem: in other words, for every couple
(x, y) we are prescribing the quantity of commuters between x and y, rather than optimizing over
the whole set of admissible couplings. Again, optimality conditions for this optimization problem
are equivalent to the existence of a Wardrop equilibrium.

The second model we will take into account is the so-called continuous model of transportation
introduced by Beckmann in [11], a particular case of which is the divergence-constrained optimiza-
tion of the total variation of vector measures, which is another dual formulation of Monge’s problem
(see Chapter 1, Proposition 1.1.10). This can be seen as the natural counterpart of Xia’s model,
in particular it gives a static description of the transportation: in Beckmann’s own words “the
analysis pertains to a static economy, a single transportation system and fixed production programs
for a given commodity [...] ”. In this model, transportation activities are described by vector fields
φ such that divφ = ρ0− ρ1 and satisfying a homogeneous Neumann boundary condition (these are
just balance conditions), so that |φ(x)| is the amount of mass passing from x and φ(x)/|φ(x)| is
the direction of transportation. Then a total cost is considered

B(φ) =

∫
Ω
H(φ(x)) dx,
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withH typically being a smooth, strictly convex and superlinear function, this last two requirements
encoding the congestion effects. One can write down optimality conditions for the problem of
minimizing B under the constraint on the divergence and a potential naturally appears, as a
Lagrange multiplier for the constraint divφ = ρ0 − ρ1: indeed, for an optimal φ we have

(3) φ = ∇H∗(∇u),

where H∗ is the Legendre-Fenchel conjugate of H. We call this function u a Beckmann potential:
it is easily seen that u acts like a Kantorovich potential for Monge’s problem, in the sense that
integral curves of its gradient gives the directions of optimal transportation. Also it is a 1−Lipschitz
function, but now with respect to the traffic-dependent metric given by

du(x, y) = inf

{∫
Ω
|∇u(σ(t))| |σ′(t)| dt : σ(0) = x, σ(1) = y

}
.

Moreover as a consequence of the constraints on φ, a Beckmann potential u solves the Neumann
boundary value problem {

−div∇H∗(∇u) = ρ0 − ρ1, in Ω,
〈∇H∗(∇u), ν〉 = 0, on ∂Ω.

Chapter 7. In the case of an isotropic cost function H, i.e. when H(z) = H(|z|), it is possible
to relate Beckmann’s problem to Wardrop’s one: this is the content of the present chapter. We
will see that in general there holds

minB(φ) ≤ minW (Q),

and that for every Q, it is possible to construct an admissible φ such that |φ| ≤ iQ. Then we will
obtain the equivalence showing that, on the other hand, for an optimal φ we can construct a traffic
assignment Q such that

|φ(x)| = iQ(x).

This is the difficult point in the equivalence proof: the main tool to achieve such a construction is a
deformation argument which dates back to Moser ([71]). Suppose that we are given two measures
(let us say absolutely continuous w.r.t. L N and with smooth positive densities bounded from
below) ρ0 = f0 ·L N and ρ1 = f1 ·L N and we want to find a change of variable T transforming
the first measure into the second, that is such that

f1(T (x)) det∇T (x) = f0(x).

One could think to obtain such a construction starting from ρ0 and continuously deforming it into
ρ1, according to the flow map X(t, x) of a suitable velocity vector field vt, thus obtaining a one-
parameter family of intermediate interpolating measures µt = X(t, ·)]ρ0 between ρ0 and ρ1 and
such that

∂tµt + divx(vtµt) = 0.

The flow map at time 1 has the required property, i.e. X(1, ·)]ρ0 = ρ1. In our case, if φ is optimal
in Beckmann’s problem, we see that the velocity field defined as

vt(x) =
φ

(1− t)f0 + tf1
,
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permits to achieve such a construction: then, taking Q of the form Q =
∫
δX(·,x) dρ0, we see that

iQ(x) = |φ(x)|,
as required. In order to give a proper meaning to this construction, regularity results on the
optimal φ are needed, as well as a suitable notion of flow, which could differ from the usual (let us
say Cauchy-Lipschitz) one, when vt is not regular enough.

In this sense, one of the main results we prove (Theorem 7.5.5) is the equivalence in the sense
of DiPerna-Lions of the two problems, that is we consider the flow of vt in the DiPerna-Lions sense
([46]): this requires Sobolev and L∞ regularity results on the optimal φ, that will be derived in
Chapters 8 and 9.

Observe that the fact that the two problems are equivalent permits for example to show exis-
tence of Wardrop equilibria, just by looking at Beckmann’s problem, which is a convex optimization
problem, much easier to handle than Wardrop’s one: in addition, once the equivalence is estab-
lished, a Wardrop equilibrium can be explicitly constructed as a probability measure supported on
integral curves of the vector field vt above, i.e. curves parallel to φ.

Moreover the equilibrium metric dQ can be computed in terms of a Beckmann’s potential u, as
far as using optimality conditions (3) we have

H ′(iQ(x)) = H ′(|φ(x)|) = |∇u(x)|,
so that

dQ(x, y) = inf

{∫
Ω
|∇u(σ(t))| |σ′(t)| dt : σ(0) = x, σ(1) = y

}
.

This chapter is based on the joint work [B4] with Guillaume Carlier and Filippo Santambrogio.

Chapter 8. A Sobolev regularity result for the optimizer of Beckmann’s problem is provided
in this chapter, in order to complete the proof of the equivalence given in Chapter 7. In particular
it is shown that, when the density cost function is

H(z) =
1

p
|z|p + |z|, z ∈ RN ,

then the optimal vector field φ is in a certain Sobolev space W 1,r
loc (Ω), provided that ρ0, ρ1 ∈W 1,p(Ω)

(the precise relation between r and p is given in Corollary 8.2.4). Moreover under suitable regularity
assumptions on the boundary of Ω (a, probably not optimal, C3,1 assumption is needed) and slightly
enforcing the summability of the data, i.e. ρ0, ρ1 ∈ W 1,p(Ω) ∩ LN+α(Ω), with α > 0, then the
previous Sobolev property of φ0 becomes global (Theorem 8.3.1 and Corollary 8.3.2). These results
are achieved using the optimality conditions, that is

φ = ∇H∗(∇u) = (|∇u| − 1)q−1
+

∇u
|∇u|

,

so that the Beckmann potential u is a weak solution of the very degenerate elliptic equation

(4) div

(
(|∇u| − 1)q−1

+

∇u
|∇u|

)
= ρ0 − ρ1,

where q = p/(p − 1). The proof is based on difference quotients: this is quite classical (for linear
elliptic equations, this is the so-called Nirenberg method, see also [58]), however some non trivial
monotonicity properties peculiar of the operator ∇H∗ have to be exploited in order to let the proof
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work. Moreover we observe that this Sobolev regularity result on φ0 is achieved directly, without
passing through a higher differentiability result for u (this latter property is probably false): in
other words, we are not claiming that u ∈ W 1,q(Ω) solving (4) possesses second order derivatives,
but just that some non-linear function of the gradient ∇u is in a suitable Sobolev space.

In order to prove global regularity, some care at the boundary is needed: here we follow an idea
contained in [35], up to some significant modifications (in particular, we derive the global Sobolev
regularity using the boundedness of the gradient of the solution, whose proof is in Chapter 9).
The starting point is classical: one takes a neighborhood in Ω of a boundary point and deforms
it (through a diffeomorphism) into a half-ball B+, correspondingly obtaining a degenerate elliptic
equation with variable coefficients in B+. The idea is then to extend this equation to the whole
ball B = B+ ∪ B−, just by reflection: in this way, the required boundary Sobolev estimates
immediately translate into interior Sobolev ones, for a variable coefficients equation. Clearly, one
has to guarantee that the variable coefficients operator obtained with this construction enjoys
some nice regularity properties with respect to the x variable: in order to do this, the initial
diffeomorphism has to be suitably chosen and here the somehow heavy request of ∂Ω being C3,1

comes into play.
Observe that the key point, for which it is necessary to reflect the equation extending it to the

whole ball, is that we are proving Sobolev regularity for ∇H∗(∇u) and not for ∇u: this to say that
now it is no more useful to work in the half-ball B+ (this is the classical strategy in non degenerate
cases), proving that in the N − 1 directions which are tangential to the flat part of ∂B+ the vector
field ∇H∗ is weakly differentiable and then using the equation to recover regularity in the missing
direction.

We remark that the regularity results contained in this chapter and in the next one are not
trivial and have their own interest, apart from Wardrop equilibria and traffic congestion modeling,
as regularity results for a class of very degenerate elliptic equations, whose model example is given
by (4) and which deserves more attention.

Also the contents of this chapter are based on the paper [B4]: we point out that a first version
of this work actually contained some crucial errors in the proof of the Sobolev estimate near the
boundary, as well as in the proof of the L∞ gradient estimate (see next chapter).

Chapter 9. Finally, we show in this chapter that Beckmann’s potentials, again in the case of

H(z) =
1

p
|z|p + |z|, z ∈ RN ,

are Lipschitz functions: as a byproduct, we obtain that Beckmann’s optimizer is an L∞ vector
field, which permits to give a rigorous justification to the proof of the equivalence in the DiPerna-
Lions sense. More precisely, we show (Theorem 9.2.1) that taking Ω with a C2,1 boundary and
ρ0, ρ1 ∈ LN+α(Ω), with α > 0, then every W 1,q weak solution of (4) with homogeneous Neumann
boundary conditions has a bounded gradient. The proof is based on an approximation procedure
which aims to derive a priori L∞ estimates on the gradient, not depending on the approximation.
To be more precise, we introduce the approximating equations

div∇H∗ε(∇u) = ρε0 − ρε1,
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which are uniformly elliptic, with ellipticity constants degenerating when ε goes to 0 and we ap-
proach the original problem: regularity results are well-known for these equations, in particular
they can be differentiated and a linearized equation for the gradient can be derived.

It is then sufficient to choose this approximation in such a way that outside a large (but fixed
and independent of ε) ball B, these equations have ellipticity constants independent of ε. The
main trick will then be selecting a particular test function and insert it in the weak formulations of
the differentiated approximating equations: this will cut away the ball B on which stability of the
estimates is not guaranteed. Observe that this procedure formalizes the intuitive idea that, roughly
speaking, for large values of the gradient, the equation is uniformly elliptic and so everything goes
well, while for small values of |∇u| ellipticity breaks down, but in any case the size of the gradient
is controlled.

In deriving our L∞ estimate on the gradient, we will use three different techniques: reverse
Hölder inequalities (the so-called Gehring Lemma, [54]); Moser’s iteration technique ([72]) and De
Giorgi’s truncation argument ([57, Chapter 7]); these tools permit to recursively achieve a gain of
integrability on the gradient, with estimates independent of ε. The corner-stones of the result are,
as always in Elliptic Regularity Theory, the possibility to derive Caccioppoli-type inequalities, as
well as the choice of the right test function we mentioned before. The whole proof has benefited of
a careful reading of the papers [45] and [63] by Di Benedetto and Lewis, respectively, dealing with
regularity results for the p−Laplace operator, i.e.

−∆pu := div(|∇u|p−2∇u),

which is degenerate at critical points of the solution.
The C2,1 regularity requirement on ∂Ω is probably not optimal, but it permits to simplify a

bit the proof: indeed, in order to give estimates near the boundary, we perform the same trick as
in Chapter 8, reducing ourselves to consider local L∞ gradient estimates for a variable coefficients
equation, using a suitable diffeomorphism and a reflection. If one wants to get rid of this assumption
on ∂Ω, the techniques of Lieberman in [64] seem to be adaptable also in this case: here we have
decided to take a shortcut, not to overburden the reader with unnecessary (at least for the aims of
this work) technicalities.

We finally observe that Lipschitz regularity is the best one can hope for solutions of (4), since
every 1−Lipschitz function is a solution of the associated homogeneous equation. Clearly, the fact
that ∇H∗ ≡ 0 on {z : |z| < 1} does not permit to measure the oscillations of the gradient ∇u of
the solution, but just its size: this is the big difference with the case of p−Laplacian type operators,
for which Hölder continuity of ∇u can be proven.

The proof presented in this chapter (taken from [B1]) differs from both that given in the first
version of [B4] (which was not completely correct, as said) and that contained in the actual version
of [B4]: in the latter, we followed a shorter strategy based on some regularity results by Fonseca,
Fusco and Marcellini contained in [52]. Anyway, this shorter proof asked for an unnecessary Hölder
regularity on ρ0 − ρ1: as we will see, this is not restrictive for our purposes in congested transport
(indeed, the equivalence statement of Theorem 7.5.5 requires ρ0 and ρ1 to be Lipschitz functions),
but it is quite clear that a complete proof of the L∞ gradient estimate for solutions of (4), under
sharp assumptions on the data, can be of interest.



Warnings to the reader and main notations

In the course of this work, we will frequently use the Disintegration Theorem, a fundamental
result in Measure Theory for which the reader is referred to [38, Chapter III]. From time to time
we will also use Markov’s inequality (sometimes also called Chebyshev’s inequality) which we recall
here for convenience: if µ is a measure on the space X and f : X → R is µ−measurable, then

µ({x ∈ X : |f(x)| > M}) ≤ 1

M

∫
X
|f(x)| dµ(x).

When speaking of a sequence of probability measures {µn}n∈N ⊂ P(X), we will use the term
equi-tightness2 to mean the following: for every ε > 0, there exists a compact subset Kε ⊂ X such
that

sup
n∈N

µn(X \Kε) < ε.

When X is a Polish space (i.e. complete and separable metric space), a sequence {µn}n∈N ⊂P(X)
is relatively compact if and only if it is equi-tight: this is Prokhorov’s Theorem (see [38, Chapter
III]). Here compactness refers to the topology induced by narrow convergence, that we indicate
with the symbol ⇀, so that µn ⇀ µ means

lim
n→∞

∫
X
ϕ(x) dµn(x) =

∫
X
ϕ(x) dµ(x), for every ϕ ∈ Cb(X).

In considering curves σ : I → X, we will use two distinct notations: when X is a generic metric
space or a subset of RN , the notation σ(t) is adopted, while in the case X is a space of measures,
it will be more convenient to write σt.

In Chapters 8 and 9, devoted to regularity results for an elliptic equation, we will systematically
use the convention of indicating with C or c a generic constant, which may differ from line to line,
without keeping track of its precise value, but only of its dependence from the data of the problem.
Moreover we will frequently commit the small abuse of using Young’s inequality in the (slightly
incorrect) form

a · b ≤ ε ap +
1

ε
b

p
p−1 ,

for every ε > 0, just for ease of computations and we will call this ε−Young’s inequality.

Listed below, there are some basic notations used throughout this work:

2The terminology does not seem to be standard, in many textbooks usually this is simply called tightness.
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L k k−dimensional Lebesgue measure
H k k−dimensional Hausdorff measure
(f)]µ push-forward of the measure µ through the map f , i.e.

(f)]µ(A) := µ(f−1(A))
dµ

dm
Radon-Nikodym derivative of µ w.r.t. m

µ� m the measure µ is absolutely continuous w.r.t. m
µ⊥m mutually singular measures

µ = f ·m measure absolutely continuous w.r.t. m, with
dµ

dm
= f

P(X) space of Borel probability measures over X
C(X) continuous functions on X
Cb(X) continuous and bounded functions on X
Cc(X) compactly supported continuous functions
Co(X) continuous functions vanishing at infinity, i.e.

for every ε > 0, ∃Kε ⊂ X compact set s.t. supX\Kε |ϕ| < ε

A b B A has compact closure in B
1A characteristic function of A, i.e. 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise
IA indicator function of A, i.e. IA(x) = 0 if x ∈ A and IA(x) = +∞ otherwise
SN−1 unit sphere in RN

δh,ωf incremental ratio in the direction ω ∈ SN−1, i.e. f(x+hω)−f(x)
h

Lp(X) p−summable Lebesgue measurable functions
W 1,p(X) standard Sobolev space of Lp functions, having Lp distributional gradient

W 1,p
� (X) elements of W 1,p(X) having zero mean
〈v, w〉 standard Euclidean scalar product between v and w
〈·, ·〉X duality product between the Banach space X and its dual X∗

F ∗ Legendre-Fenchel conjugate function, i.e.
F ∗(x∗) = supx∈X〈x, x∗〉X − F (x), x∗ ∈ X∗

div divergence operator, if φ : RN → RN then divφ =

N∑
i=1

∂φi
∂xi

∇ gradient operator, if u : RN → R then ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
∆ Laplace operator, if u : RN → R then ∆u =

N∑
i=1

∂2u

∂x2
i

∆p p−Laplace operator, if u : RN → R then ∆pu =

N∑
i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)



CHAPTER 1

Basic tools on Optimal Transportation

1. A brief survey on optimal transport

1.1. An old problem by Gaspard Monge. In its simplest form, Monge’s transportation
problem reads as follows: over an open subset Ω ⊂ RN (let us furtherly suppose that it is bounded,
for the moment) there are given two mass distributions, represented by the two measures ρ0 and
ρ1, such that ∫

Ω
dρ0(x) =

∫
Ω
dρ1(x).

For example, with no loss of generality we can think of these as being probability measures: then
we want to transport the amount of mass ρ0 to the location prescribed by ρ1. This is accomplished
through a transport map T , that is an application T : Ω→ Ω such that∫

A
dρ0(x) =

∫
T−1(A)

dρ1(y),

for every subset A ⊂ Ω, a condition which can also be rephrased, in a measure-theoretic framework,
by saying that ρ1 has to be the image measure of ρ0 through the map T , i.e. ρ1 = (T )#ρ0. Supposing
that the cost of moving each particle located at x to its destination T (x) is simply given by the the
distance |x− T (x)|, then integrating this infinitesimal cost with respect to ρ0 gives the total cost,
that is ∫

X
|x− T (x)| dρ0(x).

Monge’s problem can now be formulated as follows

(M) min

{∫
Ω
|x− T (x)| dρ0(x) : (T )#ρ0 = ρ1

}
,

that is find the least expensive way to transport ρ0 to ρ1. Clearly, this problem can be generalized
in various way, for example considering more general costs other than the Euclidean distance, more
general spaces other than bounded subsets of RN and so on, but before doing this, one has to
observe that Monge’s problem is severely ill-posed: this is the reason why, despite having been
formulated in 1781, it has received a first complete solution, under appropriate assumptions on
the measures ρ0 and ρ1, only in 1999 with the impressive PDE-based proof of Evans and Gangbo,
contained in [48].

To see the ill-posedness of Monge’s problem, it is enough to observe that when ρ0 = δx0 and
ρ1 is any measure which is not a single Dirac mass, then the set of transport maps is empty: on
the other hand, working only with measures having smooth densities with respect to L N does
not change too much the situation. Indeed, if ρi = fi ·L N , for i = 0, 1, with f0 and f1 smooth

1
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densities, then by means of the area formula the condition of being a transport map between ρ0

and ρ1 is equivalent to the requirement

f1(T (x))| det∇T (x)| = f0(x),

a condition which can not be easily handled, also due to its highly non-linear character. Moreover
the class of transport maps between two given measures does not enjoy closedness properties with
respect to any reasonable topology, so that it is a hard challenge to look directly at problem (M).

1.2. Kantorovich relaxed formulation. On the other hand, one could observe that to every
transport map T it is possible to associate a probability measure γT on the product space Ω× Ω,
that is γT = (Id×T )]ρ0 which is concentrated on the set graph(T ) = {(x, y) : y = T (x)} and such
that ∫

Ω×Ω
ϕ(x, y) dγT (x, y) =

∫
Ω
ϕ(x, T (x)) dρ0(x), for every ϕ.

Observe that such a γT has marginal measures given by ρ0 and ρ1, i.e. (πx)]γT = ρ0 and (πy)]γT =
ρ1, where πx, πy : Ω× Ω→ Ω are the projections on the first and second component, respectively.
In terms of γT , the total cost of the map T can be rewritten as∫

Ω×Ω
|x− y| dγT (x, y),

consequently one can think to relax (M), by looking at the problem

(K) inf

{∫
Ω×Ω
|x− y| dγ(x, y) : (πx)]γ = ρ0, (πy)]γ = ρ1

}
.

Clearly we have
(M) ≥ (K),

and we have equivalence between the two problems each time one can prove that there exists an
optimal γ ∈ Π(ρ0, ρ1) concentrated on the graph of a map.

The relaxed formulation (K), introduced by Kantorovich in [61], has several advantages: for
example, the set

Π(ρ0, ρ1) = {γ ∈P(Ω× Ω) : (πx)]γ = ρ0, (πy)]γ = ρ1} ,
of admissible measures is always not empty and this is the first big difference with Monge’s for-
mulation, indeed we have ρ0 ⊗ ρ1 ∈ Π(ρ0, ρ1). More important, (K) is just a linear programming
problem, as far as the functional

γ 7→
∫

Ω×Ω
|x− y| dγ(x, y),

is linear, as well as the constraint γ ∈ Π(ρ0, ρ1). In addition, the set Π(ρ0, ρ1) is relatively compact
(by means of Prokhorov’s Theorem) and closed with respect to weak convergence, so that existence
of a minimizer for (K) can be easily shown by means of the Direct Methods.

The same considerations apply to the case of a generic cost function c(x, y) replacing |x − y|,
provided some mild regularity assumptions are made on c. We can also allow for more general
spaces in place of Ω ⊂ RN and we can even take different source and target spaces. Then a general
result is the following.
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Theorem 1.1.1. Let X,Y be Polish spaces with c : X × Y → [0,+∞] lower semicontinuous.
Then for every ρ0 ∈P(X), ρ1 ∈P(Y ) the Monge-Kantorovich problem

inf
γ∈Π(ρ0,ρ1)

∫
X×Y

c(x, y) dγ(x, y),

admits a solution, provided there exists a γ̃ ∈ Π(ρ0, ρ1) with finite cost.

1.3. Duality. A very important tool is the so-called Kantorovich duality which gives an equiv-
alent formulation of the mass transportation problem in terms of a dual one, the latter involving
a maximization instead a minimization. In the general case it reads as follows: we will look in a
while at some interesting particular cases.

Theorem 1.1.2 (Kantorovich duality). The minimum of Kantorovich problem is equal to

(1.1.1) sup

{∫
X
ϕ(x) dρ0(x) +

∫
Y
ψ(y) dρ1(y)

}
,

where the supremum is taken over the set of ϕ ∈ L1(X, ρ0) and ψ ∈ L1(Y, ρ1) satisfying

ϕ(x) + ψ(y) ≤ c(x, y), for ρ0−a.e. x ∈ X, ρ1−a.e. y ∈ Y.

Observe that given an admissible couple (ϕ,ψ), it is straightforward to see that substituting ϕ
with ψc given by

ψc(x) := inf
y∈Y

c(x, y)− ψ(y),

we get that ϕ ≤ ψc and (ψc, ψ) is still admissible in (1.1.1). Moreover we get∫
X
ϕ(x) dρ0(x) +

∫
Y
ψ(y) dρ1(y) ≤

∫
X
ψc(x) dρ0(x) +

∫
Y
ψ(y) dρ1(y).

The function ψc so defined is called c−transform of ψ. On the other hand, we see that there still
holds ψc(x) + ψ(y) ≤ c(x, y), so that if we further substitute ψ with ψcc, which as before is given
by

ψcc(y) = inf
x∈X

c(x, y)− ψc(x),

we get that ψ ≤ ψcc and∫
X
ϕ(x) dρ0(x) +

∫
Y
ψ(y) dρ1(y) ≤

∫
X
ψc(x) dρ0(x) +

∫
Y
ψcc(y) dρ1(y),

with again ψc + ψcc ≤ c, by construction. All in all, we have shown that (1.1.1) is equivalent to

(1.1.2) sup

{∫
X
ϕ(x) dρ0(x) +

∫
Y
ϕc(y) dρ1(y)

}
,

where the supremum now is taken over the set of c−concave functions, i.e. functions ϕ such that
ϕ = ψc for some ψ.

Remark 1.1.3. The concept of c−transform is clearly a generalization of the concept of
Legendre-Fenchel conjugate function, the latter corresponding to X = Y Hilbert space and c(x, y) =
〈x, y〉X . In this case, c−concave functions are concave functions in the usual sense.
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From now on, in view of our applications, we will mainly confine ourselves to the case X = Y ,
with X being the whole RN or a proper subset of it. We now come to illustrate a particular case
of the previous construction, characterizing the dual formulation for Monge’s problem.

Proposition 1.1.4. Let us choose c(x, y) = |x−y|, then the set of c−concave functions coincides
with the set of 1−Lipschitz functions. Moreover for every ϕ ∈ Lip1(X) we have ϕc = −ϕ so that
there holds

inf
γ∈Π(ρ0,ρ1)

∫
X×X

|x− y| dγ(x, y) = sup
ϕ∈Lip1(X)

∫
X×X

ϕ(x) d(ρ0(x)− ρ1(x)).

Two optimizers γ and ϕ of the left-hand and right-hand side, respectively, are related through

ϕ(x)− ϕ(y) = |x− y|, for γ−a.e. (x, y) ∈ X ×X.

A function maximizing the right-hand side in the previous equality is called a Kantorovich
potential: observe that if ϕ is a Kantorovich potential, then the same is true for ϕ + k for any
k ∈ R. The previous result also tells that transport rays correspond to directions of maximal slope
for a Kantorovich potential.

Remark 1.1.5. The previous result contains a complete characterization of c−concave func-
tions, in the case c(x, y) = |x − y|. There is another interesting choice of c for which a complete
characterization can be derived, that is when c(x, y) = 1/2 |x− y|2 (the factor 1/2 is just for con-
venience) and X = RN . Indeed, in this case ϕ is c−concave if and only ϕ is such that 1/2 |x|2 − ϕ
is convex1. On the other hand, if X is a proper subset of RN , then one can only say that every
c−concave function ϕ is such that 1/2 |x|2 − ϕ is convex, but the converse implication does not
hold: this is a consequence of the fact that now it is no more true that every convex function on
X can be pointwisely written as the supremum of its affine minorants.

1.4. Existence of classical solutions. Up to now, we have seen that thanks to Kantorovich
formulation it is almost straightforward to obtain a weak solution, in the form of a transport plan.
Anyway, we could not be content of this weak solution and ask whether there exists at least an
optimal transport plan given by a transport map, thus giving a solution to the original problem.
Under appropriate assumptions on the first marginal, the answer is positive: we recall a result
proven by Ambrosio in [3], achieved fixing a crucial gap in the celebrated (yet not completely
correct) proof of Sudakov ([82]).

Theorem 1.1.6 (Sudakov-Ambrosio). Let Ω ⊂ RN be a compact convex set and ρ0, ρ1 ∈P(Ω)
with ρ0 � L N . Then Monge’s problem (M) admits a solution, that is there exists an optimal
transport map T .

Similar results (but with different proofs) are due to Caffarelli, Feldman and McCann ([31]),
Evans and Gangbo ([48]), Trudinger and Wang ([84]), among others, while some interesting gen-
eralizations, relative to a cost given by an arbitrary convex norm c(x, y) = ‖x − y‖ other than
the Euclidean one, can be found in [7] and in recent works of Champion and De Pascale [36] and
Caravenna [32].

1A function u such that C/2 |x|2 − u(x) is convex, for some C, is called semiconcave.
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Remark 1.1.7. As simple examples show, uniqueness of the solution for Monge’s problem can
not be expected: in other words, there could exist more than one optimal map. This is due to the
lack of strict convexity of the cost |x− y|. A basic example is the following: X = R, ρ0 = L 1x[0, 1]
and ρ1 = L 1x[1, 2] for which two optimal maps are given by

T1(t) = t+ 1 (translation) and T2(t) = 2− t (reflection).

Another important case in which existence of an optimal transport map can be proven is when
the cost c(x, y) is a strictly convex function of x−y, typical examples of this being c(x, y) = |x−y|p,
with p > 1. Moreover now also uniqueness of the solution can be guaranteed. In this case, we have
the following result (see [86]).

Theorem 1.1.8 (Gangbo-McCann). Let ρ0, ρ1 ∈P(RN ) such that ρ0 � L N and let h : RN →
R be a strictly convex and superlinear function. Suppose that there exists γ̃ ∈ Π(ρ0, ρ1) such that

(1.1.3)

∫
RN×RN

h(x− y) dγ̃(x, y) < +∞.

Then there exists a unique optimizer γ0 for the Monge-Kantorovich problem

min

{∫
R×RN

h(x− y) dγ(x, y) : γ ∈ Π(ρ0, ρ1)

}
,

and moreover γ0 is induced by a transport, that is

γ0 = (Id× T )]ρ0,

where the optimal map T is uniquely determined ρ0−a.e. by the condition (T )]ρ0 = ρ1 and it has
the following form

T (x) = x−∇h∗(∇ϕ(x)),

for some c−concave function ϕ.

Remark 1.1.9. As briefly said, the previous result applies to the case c(x, y) = 1/p |x − y|p,
with p > 1, for which the optimal transport map takes the form

T (x) = x− |∇ϕ|q−2∇ϕ,

with q = p/(p− 1) and ϕ c−concave function, i.e.

ϕ(x) = inf
y∈RN

1

p
|x− y|p − ψ(y),

for some function ψ. Moreover in this case in order to have (1.1.3) it is sufficient to assume that
ρ0 and ρ1 have finite p−moment (see Section 3), that is∫

RN
|x|p dρ0(x) < +∞ and

∫
RN
|y|p dρ1(y) < +∞.

The choice p = 2, corresponding to c(x, y) = 1/2 |x−y|2, is particularly significant, indeed in this
case T can be written as T (x) = x−∇ϕ, with ϕ semiconcave (see Remark 1.1.5) which implies that
the unique optimal map T is given by the gradient of the convex function Ψ(x) = 1/2 |x|2 − ϕ(x).
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1.5. A divergence-constrained problem and the role of transport density. Back to
Monge’s original problem, i.e. when the cost is equal to the distance, we can take advantage of one
more equivalent formulation (we could say dual of the dual) of (K), which is particularly interesting,
as far as it is expressed as a divergence-constrained optimization problem. This is a particular case
of the so-called continuous model of transportation first proposed by Beckmann in [11]: we will
come to illustrate this model in its generality in Chapter 6.

Proposition 1.1.10. For every ρ0, ρ1 ∈P(RN ) we have

(1.1.4) inf
γ∈Π(ρ0,ρ1)

∫
RN×RN

|x− y| dγ(x, y) = inf
φ∈M(RN ;RN )

{
|φ|(RN ) : div φ = ρ0 − ρ1

}
,

where M(RN ;RN ) is the set of vector-valued Radon measures on RN and |φ| is the total variation
measure. The condition on the divergence has to be intended in distributional sense, that is∫

RN
∇ϕ(x) · dφ(x) =

∫
RN

ϕ(x) d(ρ1(x)− ρ0(x)), for every ϕ ∈ C1
c (RN ).

Proof. The proof is based on a minimax argument: before giving a rigorous justification of
all the computations needed, it could be interesting to provide a formal proof (see also [79]). One
first observes that the indicator function of the set of admissible φ can be written as

sup
ϕ∈C1

c (RN )

∫
Ω
∇ϕ(x) · dφ(x) +

∫
Ω
ϕ(x) d(ρ0(x)− ρ1(x)),

so that the original problem can also be stated in an unconstrained form as

inf
φ∈M(RN ;RN )

sup
ϕ∈C1

c

(
|φ|(RN ) +

∫
RN
∇ϕ(x) · dφ(x) +

∫
RN

ϕ(x) d(ρ0(x)− ρ1(x))

)
.

We now (formally, at this level) exchange the infimum and the supremum, noticing that

inf
φ

(
|φ|(RN )−

∫
RN
∇ϕ(x) · dφ(x)

)
=

{
0, if ‖∇ϕ‖∞ ≤ 1
−∞, otherwise

so that in the end

inf
φ∈M(RN ;RN )

{
|φ|(RN ) : div φ = ρ0 − ρ1

}
= sup
‖∇ϕ‖∞≤1

∫
RN

ϕ(x) d(ρ0(x)− ρ1(x)),

the latter being exactly the dual formulation of Monge’s problem (Proposition 1.1.4).

The rigorous justification of the previous proof uses a minimax Theorem that can be found
for example in [86, Theorem 1.9], stating that each time we have a pair of convex functions
Θ,Υ : X → R ∪ {+∞} on a normed vector space X, such that for a certain x0 ∈ X we have

Θ(x0) < +∞, Υ(x0) < +∞ and Θ is continuous at x0,

then

(1.1.5) inf
x∈X

[Θ + Υ] = sup
x∗∈X∗

[−Θ∗(−x∗)−Υ(x∗)] .
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We are going to apply this fact with

Θ(ϕ,ψ) =

{ ∫
RN ϕ(x) d(ρ1(x)− ρ0(x)), if ‖ψ‖∞ ≤ 1,

+∞, otherwise,

and

Υ(ϕ,ψ) =

{
0, if ϕ ∈ C1 and ∇ϕ = ψ,

+∞, otherwise,

both being convex functions on the Banach space X = Co(RN )×Co(RN ;RN ), whose dual space is
given by X∗ =M(RN )×M(RN ;RN ). Observe that we have

inf
(ϕ,ψ)

[Θ(ϕ,ψ) + Υ(ϕ,ψ)] = − sup
‖∇ϕ‖∞≤1

∫
RN

ϕ(x) d(ρ0(x)− ρ1(x)),

while

sup
(µ,φ)

[−Θ∗(−µ,−φ)−Υ∗(µ, φ)] = sup
(µ,φ)

[
− sup

ϕ
sup
‖ψ‖∞≤1

(
−
∫
RN

ϕd(µ− ρ0 + ρ1)−
∫
RN

ψ · dφ
)

− sup
ϕ

(∫
RN

ϕdµ+

∫
RN
∇ϕ · dφ

)]
= sup

(µ,φ)

[
−|φ|(RN )− δ{0}(µ− ρ0 + ρ1)

− sup
ϕ

(∫
RN

ϕdµ+

∫
RN
∇ϕ · dφ

)]
= sup

φ

[
−|φ|(RN )− sup

ϕ

(∫
RN

ϕd(ρ0 − ρ1) +

∫
RN
∇ϕ · dφ

)]
= − inf

φ
sup
ϕ

[
|φ|(RN ) +

∫
RN

ϕd(ρ0 − ρ1) +

∫
RN
∇ϕ · dφ

]
.

It is then sufficient to use (1.1.5) to conclude. �

Remark 1.1.11. From the formal proof, it is clear that the optimizers φ0 and ϕ0 of the two
problems have to satisfy the primal-dual optimality conditions

∇ϕ0 parallel to φ0 and |∇ϕ0(x)| = 1, for φ0−a.e. x,

that is, in a very informal way, ∇ϕ0 = φ0/|φ0|, which is another way of writing the condition that
transport takes place on curves of maximal slope for the Kantorovich potential ϕ0. Note that in
this context ϕ0 can be seen as a Lagrange multiplier for the constraint on the divergence.

Remark 1.1.12. In the case of a proper subset Ω ⊂ RN , formula (1.1.4) still holds, provided
a boundary condition is imposed on the admissible vector measures and the Euclidean distance in
Monge-Kantorovich problem is substituted with the geodesic one in Ω (for example, in the case
of a convex subset, this still coincides with the Euclidean one). The right boundary condition to
impose is a homogeneous Neumann one, that is 〈φ, ν〉 = 0 on ∂Ω, which has to be intended in the
following distributional sense∫

Ω
∇ϕ(x) · dφ(x) =

∫
Ω
ϕ(x) d(ρ1(x)− ρ0(x)), for every ϕ ∈ C1(Ω).
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Strictly related to this divergence-constrained problem

(1.1.6) inf
φ∈M(Ω;RN )

{|φ|(Ω) : div φ = ρ0 − ρ1, 〈φ, ν〉 = 0} ,

is the concept of transport density: given an optimal transport plan γ ∈ Π(ρ0, ρ1) for Monge-
Kantorovich problem with cost c(x, y) = |x − y|, the relative transport density iγ is the positive
measure defined through

〈iγ , ϕ〉 =

∫
Ω×Ω

(∫
xy
ϕ(z) dH 1(z)

)
dγ(x, y), for every ϕ ∈ C(Ω),

where xy stands for the segment joining x to y. Observe that, by its very definition, for every Borel
set A ⊂ Ω we have that iγ(A) represents how much the region A is used by the transport relative
to γ. The importance of the transport density lies in the fact that

iγ(Ω) =

∫
Ω×Ω
|x− y| dγ(x, y),

that is its mass equals the value of the Monge-Kantorovich problem. Moreover defining the vector
version φγ of iγ through

〈φγ , ϕ〉 =

∫
Ω×Ω

(∫
xy
〈ϕ(z), τ〉 dH 1(z)

)
dγ(x, y), for every ϕ ∈ C(Ω;RN ),

τ standing for the tangent versor to the segment xy, we have that φγ is admissible for (1.1.6) and

|φγ | ≤ iγ ,

as measures on Ω. On the other hand, as far as transport rays do not cross, the two measures
coincides, and φγ must be an optimizer of the divergence-constrained problem. This implies that
regularity results for the transport density would immediately translates into regularity statements
for optimizers of (1.1.6).

We summarize here some regularity results on the transport density: the following is a (non ex-
haustive) collection of results due to De Pascale, Evans, Feldmann, McCann, Pratelli, Santambrogio
(see [40, 41, 42, 50, 75]).

Theorem 1.1.13. Let ρ0, ρ1 ∈ P(Ω) with ρ0 or ρ1 absolutely continuous w.r.t. L N , then iγ
does not depend on the choice of the optimal transport plan γ and iγ � L N , too. If ρ0, ρ1 ∈P(Ω)
have an Lp density w.r.t. to L N , for p ∈ [1,∞], then the same stays true for iγ. Let ρ0 have an
Lp density w.r.t. L N , for p < N/(N − 1), then iγ = f ·L N , with f ∈ Lp (nothing is required on
ρ1 for this latter result to hold).

Remark 1.1.14. For example, when µ0 = f0 · L N and µ1 = f1 · L N with f0, f1 ∈ Lp, as a
consequence of these results and of the discussion above, problem (1.1.6) can be equivalently settled
among Lp vector fields, substituting their total variation with the L1 norm, that is

(1.1.6) = inf
φ∈Lp(Ω;RN )

{
‖φ‖L1(Ω) : div φ = ρ0 − ρ1, 〈φ, ν〉 = 0

}
.
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2. The discrete case

Let X be a discrete space and take two discrete probability measures, both with a finite number
of atoms (not necessarily the same)

(1.2.1) ρ0 =
n∑
i=1

ai δxi and ρ1 =
s∑

k=1

bk δyk ,

with xi, yk ∈ X, for i = 1, . . . , n and k = 1, . . . , s. Then any transport plan γ ∈ Π(ρ0, ρ1) can be
written as

γ =

n∑
i=1

s∑
k=1

γik δxi ⊗ δyk ,

with the n×m matrix (γik)i,k belonging to the convex set π(ρ0, ρ1) given by

π(ρ0, ρ1) =

{
M = (mik) : mik ≥ 0,

n∑
i=1

mik = bk,

s∑
k=1

mik = ai

}
.

This means that in this particular context, the Kantorovich problem

inf

{∫
X×X

c(x, y) dγ(x, y) : γ ∈ Π(ρ0, ρ1)

}
,

can be reformulated as

(1.2.2) inf
M∈π(ρ0,ρ1)

n∑
i=1

s∑
k=1

c(xi, yk)mik,

that is a linear optimization problem, over a bounded closed convex set2. Then by Choquet’s
Theorem we know that minimizers for this problem do exist in the set Ext (π(ρ0, ρ1)) of extremal
points of π(ρ0, ρ1). In order to characterize this set of extremal points, we need the following
definition.

Definition 1.2.1. A matrix M = (mik)
n
i,k=1 is called acyclic if the following property holds:

j∏
r=1

mirkrmirkr+1 = 0,

for every 2 ≤ j ≤ min{n, s} and every set of indexes i1 < · · · < ij ∈ {1, . . . , n}, k1 < · · · < kj ∈
{1, . . . , s} (the convention in+1 = i1 and ks+1 = k1 is used).

Then the set Ext
(
π(ρ0, ρ1)

)
can be completely characterized as the set of acyclic matrices, that

is we have the following (for a proof see [39], for example).

Theorem 1.2.2. A matrix M = (mik)
n
i,k=1 belongs to Ext(π(ρ0, ρ1)) if and only if M ∈ π(ρ0, ρ1)

and it is acyclic.

2In this form the problem was sometimes referred to as Hitchcock’s distribution problem, after Frank Lauren
Hitchcock who introduced it in [59], exactly in the same years of Kantorovich’s work. Nowadays, the name of
Hitchcock seems to have been completely neglected by the Optimal Transportation community.
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Thanks to the previous characterization, going back to Kantorovich problem (1.2.2), we get the
following.

Proposition 1.2.3. Let ρ0, ρ1 ∈P(X) be as in (1.2.1). Then there exists an optimal transport
plan γ ∈ Π(ρ0, ρ1) such that

#{(x, y) ∈ Ω× Ω : γ({(x, y)}) 6= 0} ≤ n+ s− 1,

that is γ does not move more that n+ s− 1 atoms.

Remark 1.2.4. Observe that problem (1.2.2) has the dual formulation

(1.2.3) max

(
n∑
i=1

ui ai −
s∑

k=1

vk bk

)
,

with the unknown u1, . . . , un and v1, . . . , vs subject to the constraints

ui − vk ≤ c(xi, yk), for every i ∈ {1, . . . , n}, k ∈ {1, . . . , s}.

Then we see that M = (mik) and {u1, . . . , un, v1, . . . , vs} are solutions of (1.2.2) and (1.2.3),
respectively, if and only if they are admissible and they satisfy

mik(c(xi, yk) + vk − ui) = 0, for every i, k.

The previous clearly implies that ifmik > 0, then there must result ui−vk = c(xi, yk) and conversely,
when ui−vk < c(xi, yk), then mik = 0 (i.e. no mass is moving from xi to yk). Obviously, an optimal
{u1, . . . , un, v1, . . . , vs} is nothing but a discrete version of a Kantorovich potential (see also [51]
for more details and a computational algorithm).

3. Wasserstein spaces and their geometry

3.1. Definitions and topological properties. Given a Polish space (X, d), that is a com-
plete and separable metric space, and an exponent p ∈ [1,∞], we define the p−Wasserstein space
Wp(X) as the space of all Borel probability measures µ over X, having finite p-momentum, i.e.

‖d(·, x0)‖Lp(X,µ) < +∞.

Clearly, by means of the triangular inequality, property above does not depend on the choice of
x0 ∈ X.

Remark 1.3.1. Observe that in the case p = ∞, the space W∞(X) is built up of Borel prob-
ability measures having bounded support. For example, when X = RN with the usual Euclidean
topology, the probability measure (cN is a suitable renormalization constant)

µ = cN e
−|x|2 ·L N ,

is an element of Wp(RN ) for every p ∈ [1,∞), but µ 6∈ W∞(RN ).

The set Wp(X) can be turned into a metric space itself, equipped with the p−Wasserstein
distance wp which is defined as

wp(µ1, µ2) = min
γ∈Π(µ1,µ2)

‖d(·, ·)‖Lp(X×X,γ), µ1, µ2 ∈ Wp(X),
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where Π(µ1, µ2) is the set of transport plans between µ1 and µ2, that is

Π(µ1, µ2) = {γ ∈P(Ω× Ω) : (πx)]γ = µ1, (πy)]γ = µ2},

with πx(x, y) = x and πy(x, y) = y. The fact that wp is positive and that

wp(µ1, µ2) = 0⇐⇒ µ1 = µ2,

are almost straightforward consequences of the definition, while the triangular inequality is a little
bit more delicate and it is a consequence of the following result, whose proof can be achieved by
means of the Disintegration Theorem.

Lemma 1.3.2 (Gluing lemma). Let µ1, µ2 and µ3 be probability measures over Polish spaces
X1, X2 and X3, respectively. Let γ1,2 ∈ Π(µ1, µ2) and γ2,3 ∈ Π(µ2, µ3) be two transport plans, then
there exists γ ∈P(X1 ×X2 ×X3) such that

(π1,2)]γ = γ1,2 and (π2,3)]γ = γ2,3,

where π1,2 and π2,3 are the projections on X1 ×X2 and X2 ×X3, respectively.

The first topological properties of these metric spaces are summarized in the following state-
ment.

Theorem 1.3.3. Let p ∈ [1,∞], then if X is a Polish space, the same is true for Wp(X).

Another important fact is the ordering relations between Wasserstein distances, which is a
straightforward consequence of Hölder’s inequality: indeed, we have

(1.3.1) q ≥ p =⇒ wq ≥ wp.

In the case that the distance d is bounded, it is also possible to give reverse inequalities of the type

wq ≤ wβp , but with the power β degenerating as the greater exponent approaches ∞. Namely, we
have

(1.3.2) q ≥ p =⇒ wq ≤ wp/qp diam (X)
q−p
q .

This means that, in the case of d bounded, all distances wp with p ∈ [1,∞) define the same topology
on P(X). This is clearly the case, for example, when X = Ω ⊂ RN bounded subset, equipped
with the Euclidean topology.

Remark 1.3.4. The case p =∞ deserves a little attention more, as far as the topology defined
by w∞ is always stronger than that defined by the other Wasserstein distances. Indeed, it is
sufficient to take x0, x1 ∈ RN distinct points and to consider µ = δx0 and the sequence {µn}n∈N
given by

µn =

(
1− 1

n

)
δx0 +

1

n
δx1 .

Then for every p ∈ [1,∞) we get wp(µ, µn) = |x0− x1|n−
1
p , so that µn converges to µ in Wp, while

w∞(µ, µn) = |x0 − x1|, which shows that µn is not converging in W∞. Anyway, it is interesting to
remark that, in some very special cases, it is possible to give reverse inequalities of the type (1.3.2)
involving w∞: this is due to Bouchitté, Jimenez and Rajesh. In [22] they have shown that when
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Ω ⊂ RN is a bounded open set with Lipschitz boundary and µ0, µ1 ∈ P(Ω) with µ0 = f0 ·L N ,
then for every p > 1 we have

w∞(µ0, µ1)p+N ≤ C
∥∥∥∥ 1

f0

∥∥∥∥
L∞

wp(µ0, µ1)p,

with the constant C depending only on N, p and Ω, such that C blows up as p approaches 1.

After these introductory remarks, then a question naturally arise: are the topologies induced by
Wasserstein distances comparable to the narrow topology, which is the one induced by convergence
in duality with the space Cb(X)? The answer is given by the following fundamental result.

Theorem 1.3.5. Let p ∈ [1,∞) and {µn}n∈N ⊂ Wp(X). Let µ ∈ P(X), then the following
statements are equivalent:

(i) lim
n→∞

wp(µn, µ) = 0;

(ii) µn ⇀ µ and we have convergence of the moment of order p, i.e. for some x0 ∈ X

lim
n→∞

∫
X
d(x0, x)p dµn(x) =

∫
X
d(x0, x)p dµ(x);

(iii) µn
p
⇀ µ, that is

lim
n→∞

∫
X
ϕ(x) dµn(x) =

∫
X
ϕ(x) dµ(x),

for every continuous function ϕ such that |ϕ(x)| ≤ Ad(x, x0)p +B, for suitable constants
A,B and x0 ∈ X.

Remark 1.3.6. In particular, when d is bounded and p ∈ [1,∞), convergence in the wp metric
is equivalent to the narrow convergence.

When X is in addition locally compact, then Riesz’ Theorem identifies the spaceM(X) of finite
Radon measures with the dual of the Banach space Co(X), which is given by continuous functions
vanishing at infinity, i.e. ϕ ∈ Co(X) if ϕ is a continuous function and for every ε > 0, there exists
Kε ⊂ X compact such that

sup
x∈X\Kε

|ϕ(x)| < ε.

Then M(X) can be equipped with the ∗−weak topology, in which convergence is defined testing
against functions of Co(X): the same topology can be clearly considered on the space of probability
measures P(X). What is important to stress is that in this case, i.e. when X is furtherly assumed
to be locally compact, narrow convergence and ∗−weak convergence are equivalent, at least at the
level of P(X).

Lemma 1.3.7. Given {µn}n∈N, µ ∈P(X), we have

µn ⇀ µ⇐⇒ µn
∗
⇀ µ.

The next result summarizes the compactness properties of Wasserstein spaces.

Proposition 1.3.8. Let p ∈ [1,∞), then Wp(X) is compact if and only if X is compact. The
space W∞(X) is neither compact nor locally compact, for any X with #X > 1.
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Remark 1.3.9. When X is unbounded and p ∈ [1,∞), one may think that Wp(X) should be
locally compact, at least if so is X: this is clearly false. Taking X = RN , let us fix ε > 0 and take
a sequence of points {xn}n∈N ⊂ RN such that |xn| = n1/p, defining µ = δ0 and the sequence of
probability measures

µn =

(
1− 1

n

)
δ0 +

1

n
δxn ,

we get that µn ⇀ µ, while wp(µn, µ) = n−1/p n1/p = 1, so that {µn}n∈N can not have any subse-
quence converging to µ = δ0 in Wp(RN ).

3.2. Geodesics in Wp. Let us consider the time interval I = [0, 1]. Given σ ∈ AC(I;X), we
recall that its length is given by

`(σ) =

∫
I
|σ′|(t) dt,

where |σ′|(t) is the metric derivative at point t of the curve σ (see the Appendix A for both the
definition of the space AC(I;X) and of the metric derivative). Then X is said to be a length space
if for every x, y ∈ X there holds

d(x, y) = inf{`(σ) : σ ∈ AC(I;X), σ(0) = x, σ(1) = y}.

In the case the infimum is attained for every x, y ∈ X, the space is said to be geodesic. Moreover
σ ∈ AC(I;X) connecting two distinct points x and y is said to be a constant speed geodesic if it is
a geodesic, that is d(x, y) = `(σ) and

d(σ(t), σ(s)) = |t− s| d(x, y), s, t ∈ I.

Observe that the length functional ` is invariant under reparametrization, so that restricting the
minimization to the class of Lipschitz curves does not affect the minimal value of `, but just the
choice of minimizers. Moreover minimizing the p−energy with p > 1(∫

I

(
|σ′|(t)

)p
dt

) 1
p

,

this again does not affect the minimal value of ` and it selects particular minimizers, the latter
being precisely the constant speed geodesics (which are not unique, generally speaking).

Proposition 1.3.10. If X is a length (respectively, geodesic) space, then the same holds true
for Wp(X).

This in particular tells us that when X is a length space, the p−Wasserstein distance between
two elements ρ0, ρ1 ∈ Wp(X) has the following dynamical formulation

(1.3.3) wp(ρ0, ρ1) = inf

∫
I
|µ′t|wp dt,

where the infimum is taken among all absolutely continuous curves in Wp(X) connecting ρ0 and
ρ1. At this point, we would like to have a characterization of the constant speed geodesics in the
Wasserstein spaces: we start with a basic example.
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Example 1.3.11. Let us fix two distinct points x0, x1 ∈ RN and let us consider the constant
speed geodesic connecting these two points, that is the segment x0x1 parametrized as x0x1(t) =
(1 − t)x0 + t x1. Then it is straightforward to verify that the curve of probability measures given
by

µt = δx0x1(t), t ∈ [0, 1],

is such that for every p ∈ [1,∞] we have

wp(µt, µs) = |t− s| |x0 − x1| = |t− s|wp(µ0, µ1),

that is µ(t) is a constant speed geodesic in Wp(RN ), connecting the two Dirac masses µ0 = δx0 and
µ1 = δx1 . Observe that µ can be rewritten as µt = (et)]Q, where et is the evaluation at time t,
given by

(1.3.4)
et : C(I;RN ) → RN

σ 7→ σ(t),

and Q is the probability measure over C(I;RN ) defined by

Q = δx0x1 ,

that is a Dirac delta supported on the constant speed geodesic between x0 and x1.

The following result gives a complete characterization of the geodesics in Wp(X), in terms of
the geodesics of the base space X: the underlying idea is exactly that of the previous example. For
the proof, we refer the reader to [6, Theorem 7.2.2] when X is a separable Hilbert space and to
[65, Theorem 6] for the general case.

Theorem 1.3.12 (Constant speed geodesics in Wp). Let p ∈ (1,∞) and let X be a separable
and complete geodesic space. We set

CSG(I;X) = {σ ∈ AC(I;X) : d(σ(t), σ(s)) = |t− s| d(σ(0), σ(1)), for every t, s ∈ I},

that is CSG(I;X) is the set of constant speed geodesics on X, parametrized over I.
Then µ ∈ AC(I;Wp(X)) is a constant speed geodesic if and only if there exists Q ∈P(C(I;X))

such that:

(i) µt = (et)]Q, for every t ∈ I;
(ii) Q is concentrated on the set of constant speed geodesics CSG(I;X);

(iii) wp(µ0, µ1)p =
∫
C(I;X) d(σ(0), σ(1))p dQ(σ).

The case of a convex subset Ω ⊂ RN (which clearly comprises the case Ω = RN ) will be of
particular interest in the sequel, so we want to spend some words more on Theorem 1.3.12 in this
setting: indeed, in this situation every element of CSG([0, 1]; Ω) is a segment xy with x, y ∈ Ω,
parametrized as xy(t) = (1− t)x+ t y. Then the probability measure Q given by Theorem 1.3.12
has the following form

Q =

∫
Ω×Ω

δxy dγ(x, y),

for an optimal transport plan γ ∈ Π(µ0, µ1): in other words, Q is the probability whose disinte-
gration with respect to γ is given by the Borel family of Dirac masses {δxy}(x,y)∈Ω×Ω supported on
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the segments. Then by means of Theorem 1.3.12, µ is a constant speed geodesic in Wp(Ω) if and
only if it has the form

(1.3.5) µt = (et)]Q = ((1− t)πx + t πy)]γ, t ∈ [0, 1],

that is ∫
Ω
ϕ(x) dµt(x) =

∫
Ω×Ω

ϕ((1− t)x+ t y) dγ(x, y), for every ϕ ∈ Cb(Ω).

Formula (1.3.5) is usually referred to as displacement interpolation, see [66] where the terminology
has been introduced for the first time.

Finally, observe that if the optimal γ is given by a transport map T , then formula (1.3.5) can
be rephrased into

µt = ((1− t) Id + t T )]µ0, t ∈ [0, 1],

that is Q is given by Q =
∫
δ
xT (x)

dµ0(x) and∫
Ω
ϕ(x) dµt(x) =

∫
Ω
ϕ((1− t)x+ t T (x)) dµ0(x), for every ϕ ∈ Cb(Ω).

Remark 1.3.13. In the degenerate case p = 1, it is no more true that every constant speed
geodesics µ can be written as a displacement interpolation (while the conversely is still true).
Indeed, going back to the previous example of ρ0 = δx0 and ρ1 = δx1 , we see that the linear
interpolation µ̃t = (1− t)δx0 + tδx1 is such that

w1(µ̃t, µ̃s) = |t− s| |x0 − x1| = |t− s|w1(ρ1, ρ0), for every t, s ∈ I,

and µ̃(t) is not of the form (1.3.5). Observe that the curve µ̃ physically corresponds to a teleport
phenomenon: at every time, you see mass disappearing in x0 and instantaneously appearing in x1.

Remark 1.3.14. The same can be said for the case p = ∞, that is a constant speed geodesic
in W∞(X) is not necessarily of the form µt = (et)]Q, with Q concentrated on constant speed

geodesics. Indeed, let us consider three pairwise distinct points x0, x1, x2 ∈ RN and the curves

σ1(t) = (1− t)x0 + t x1 and σ2(t) = (1− t2)x0 + t2 x2, t ∈ [0, 1],

then define µt = 1/2 δσ1(t) + 1/2 δσ2(t), which is a Lipschitz curve in W∞(RN ) connecting ρ0 = δx0

and ρ1 = 1/2 δx1 + 1/2 δx2 . Observe that µt is of the form µt = (et)]Q, with Q supported on
geodesics, but with σ2 not having constant speed. On the other hand, supposing that

|x0 − x1| ≥ 2 |x0 − x2|,

we have w∞(ρ0, ρ1) = |x0 − x1|, and moreover we get

w∞(µt, µs) = max{|t− s| |x0 − x1|, |t2 − s2| |x0 − x2|} = |t− s| |x0 − x1|
= |t− s|w∞(ρ0, ρ1),

so that µ is a constant speed geodesic in W∞(RN ).
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4. The Benamou-Brenier formula and its variants

In the paper [13], Benamou and Brenier introduced a very interesting alternative formulation
for the 2−Wasserstein distance when X = RN , based on the continuity equation: they introduced
it for numerical purposes, but its theoretical impact has been huge since then. We recall here their
result and we will see in a while some of its variants and generalizations.

Theorem 1.4.1 (Benamou-Brenier). Given ρ0, ρ1 ∈ P(RN ) having smooth densities w.r.t. to
L N and bounded supports, let us set

A(ρ0, ρ1) = {(µ, v) : ∂tµ+ divx(vµ) = 0 in I × RN , µ0 = ρ0, µ1 = ρ1}.
Then the 2−Wasserstein distance between ρ0 and ρ1 can be characterized as follows:

(1.4.1) w2(ρ0, ρ1)2 = min
(µ,v)∈A(ρ0,ρ1)

∫ 1

0

∫
RN
|vt(x)|2 dµt(x) dt.

It is remarkable to point out that the objective functional in the Benamou-Brenier formula is
nothing but the integral in time of the kinetic energy: in this sense, formula (1.4.1) can be rephrased
by saying that the curves minimizing the integral of the kinetic energy are of minimal length in
W2(RN ), i.e. geodesics. This immediately leads to think at v as the tangent vector to the curve µ
and it suggests that somehow the space W2(RN ) has a kind of (infinite-dimensional) Riemannian
manifold structure (the interested reader should consult [6]).

Under these comfortable assumptions on ρ0 and ρ1 (which can be considerably weakened, see
next section), it is quite easy to give a proof of the Benamou-Brenier formula: indeed, to see that
the minimization of the kinetic energy∫ 1

0

∫
RN
|vt(x)|2 dµt(x) dt,

leads to a value which is greater than or equal to the squared 2−Wasserstein distance, it is enough
to consider an admissible pair (µ, v) and observe that taking the flow map X of the vector field v,
i.e. {

X ′(t, x) = vt(X(t, x))
X(0, x) = x

the curve µ can be represented as µt = (X(t, ·))#ρ0 (see Appendix B, Theorem B.0.1). Using this,
the fact that X is the flow map of v and Jensen’s inequality, we can then estimate∫ 1

0

∫
RN
|vt(x)|2 dµt(x)dt =

∫ 1

0

∫
RN
|vt(X(t, x))|2 dρ0(x)dt =

∫ 1

0

∫
RN
|X ′(t, x)|2 dρ0(x)dt

=

∫
RN

∫ 1

0
|X ′(t, x)|2 dt dρ0(x)

≥
∫
RN
|X(1, x)− x|2 dρ0(x) ≥ w2(ρ0, ρ1)2.

Moreover if T is the optimal transport map for c(x, y) = |x−y|2, which exists by means of Theorem
1.1.8, it is straightforward to see that setting Xt(x) = (1− t)x+ tT (x) and taking v of the form

vt(x) = T (X−1
t (x))−X−1

t (x),
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then Xt is the flow map of v and µt = (Xt)#ρ0 is a solution of the continuity equation, with velocity
field v and ρ0, ρ1 as initial and final data. With this choice, we can estimate the kinetic energy as
before and then observe∫

RN

∫ 1

0
|X ′t(x)|2 dt dρ0(x) =

∫
RN
|T (x)− x|2 dρ0(x) = w2(µ0, µ1)2,

thus giving (1.4.1).

It is straightforward to extend the previous computations to the case of the p−Wasserstein
distance, with p > 1, thus getting

wp(ρ0, ρ1)p = min
(µ,v)∈A(ρ0,ρ1)

∫ 1

0

∫
RN
|vt(x)|p dµt(x) dt.

We can also substitute RN with a convex bounded set Ω ⊂ RN , provided that the admissible velocity
vector fields v satisfy a Neumann condition 〈v, ν〉 = 0 at the boundary ∂Ω, with ν standing for
the outer normal versor: this has to be intended in a weak sense, that is the formulation of the
continuity equation in the sense of distributions will be now given by∫

Ω
ϕ(1, x) dρ1(x)−

∫
Ω
ϕ(0, x) dρ0(x) =

∫ 1

0

∫
Ω
∂tϕ(t, x) dµt(x) dt

+

∫ 1

0

∫
Ω
〈∇ϕ(t, x), vt(x)〉 dµt(x) dt,

for every ϕ ∈ C1([0, 1]× Ω). Note that from a physical point of view, the homogeneous Neumann
boundary condition prevents the necessity of using boundary conditions for µ and let the flow of v
stay inside Ω.

Remark 1.4.2. Observe that in the case of a non convex set Ω ⊂ RN , we still obtain a dynamical
characterization of the p−Wasserstein distance, but with the the Euclidean distance replaced by
the geodesic distance of Ω.

One of the distinguished feature of the Benamou-Brenier formula is that it can be simply seen
as a convex optimization problem under a linear constraint: to arrive at this point, one has to
properly restate it in an equivalent form. First of all, one introduces the new variable φt = vt · µt,
so that the continuity equation now simply rewrites as a linear equation in the variables (µ, φ),
that is

∂tµt + divxφt = 0.

Moreover thanks to the Disintegration Theorem, we can identify the curves of measures t 7→ µt and
t 7→ φt with the measures on [0, 1]× RN given by

µ =

∫
µt dt and φ =

∫
φt dt,

thus enlarging the class of admissible pairs to couples (µ, φ) of measures on [0, 1]×RN , setting the
value of the energy functional to be +∞ if the requirement φ� µ is not satisfied. We then observe
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that introducing

fp(x, y) =

 |y|
p x1−p, if x > 0, y ∈ RN ,
0, if x = 0, y = 0,

+∞, otherwise ,

this is a jointly convex and positively 1−homogeneous function, so that the corresponding functional
defined on measures (Benamou-Brenier functional)

(1.4.2) Fp(µ, φ) =

∫
[0,1]×RN

fp

(
dµ

dm
,
dφ

dm

)
dm,

is local, lower semicontinuous and, thanks to the 1−homogeneity of fp, does not depend on the
choice of the reference measure m. Using this fact and the definition of fp, the previous can be
rephrased as

Fp(µ, φ) =


∫

[0,1]×RN

∣∣∣∣dφdµ(t, x)

∣∣∣∣p dµ(t, x), if φ� µ,

+∞, otherwise,

and finally, if µ =
∫
µt dt and φ � µ, then the same disintegration holds true for φ, that is

φ =
∫
φt dt =

∫
vt · µt dt, which gives

Fp(µ, φ) =

∫ 1

0

∫
RN

∣∣∣∣dφtdµt
(x)

∣∣∣∣p dµt(x) dt =

∫ 1

0

∫
RN
|vt(x)|p dµt(x) dt,

thus recovering the objective functional in the Benamou-Brenier formula.

Other variants of mass transportation problems have been studied and can be expressed in this
way by considering in (1.4.2) other convex functions of the pair (µ, φ), in particular breaking the
1−homogeneity of the functional, so that now the corresponding integral functionals also depends on
the choice of the reference measure m. For example, Dolbeault, Nazaret and Savaré have introduced
in [44] new classes of distances over P(RN ) based on the minimization of the functional

F̃p,β(µ, φ;m) =

∫ 1

0

∫
RN

f̃p,β

(
dµt
dm

(x),
dφt
dm

(x)

)
dm(x) dt

+

∫ 1

0

∫
RN

f̃∞p,β

(
dµ⊥t
dη

(x),
dφ⊥t
dη

(x)

)
dη(x) dt,

where:

• f̃p,β(x, y) = |y|p xβ(1−p) or more precisely

f̃p,β(x, y) =

 |y|
p xβ(1−p), if x > 0, y ∈ RN ,

0, if x = 0, y = 0,
+∞, otherwise ,

• f̃∞p,β is its recession function, i.e.

f̃∞p,β(x, y) = lim
t→+∞

f̃p,β(tx, ty)

t
, (x, y) ∈ R× RN ;

• p ≥ 1 and 0 ≤ β ≤ 1;
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• η is a reference measure3, such that µ⊥ � η and φ⊥ � η.

These distances are connected to the non-linear mobility continuity equation

∂tµt + divx(µβt vt) = 0,

and if β ∈ [0, 1], i.e. the function x 7→ xβ is concave, the problem of minimizing F̃p,β under the

constraint of ∂tµt + divxφt = 0, where φt = µβt vt, turns out to be convex as well: in this way,
the authors of [44] obtain a wide family of new transport distances on the space of probability
measures, interpolating between the usual Wasserstein ones, corresponding to the choice β = 1 (so

that F̃p,1 = Fp), and the dual Sobolev ones, corresponding to β = 0, for which F̃p,0 takes the form
(here we choose m = L N )

(1.4.3)

∫ 1

0

∫
RN

∣∣∣∣ dφtdL N
(x)

∣∣∣∣p dx dt,
with the convention that the value of the energy if +∞ if φt is not absolutely continuous w.r.t. L N

(this problem has been addressed by Brenier in [27]). Actually, the functionals considered in [44]
are slightly more general, as far as they treat the case of general increasing and concave functions

x 7→ h(x), not just powers, i.e. f̃p,h(x, y) = |y|p h(x)1−p.
We point out that the main interest of these distances is in the study of diffusion equations of

the type

∂tµt + divx(h(µt) |ξ|q−2ξ), ξ = −∇
(
∂F

∂µ

)
,

where ∂F/∂µ is the first variation of a given functional F and q = p/(p − 1): indeed, at least
formally, these equations can be interpreted as gradient flows of F with respect to these new family
of dynamical distances.

Remark 1.4.3. It is straightforward to see that in the variational problem for (1.4.3), the time
variable can be eliminated. Namely, we have

min

{∫ 1

0

∫
RN

∣∣∣∣ dφtdL N
(x)

∣∣∣∣pdx dt :
∂tµt + divxφt = 0,
µ0 = ρ0, µ1 = ρ1

}
= min

{∫
RN
|Φ(x)|p dx : div Φ = ρ0 − ρ1

}
,

where the problem in the right-hand side will be addressed in great details in Chapter 6 (observe
that this is nothing but the dual formulation of the q−Laplace equation, with q = p/(p − 1)).
Indeed, taking a minimizer (µt, φt) of the left-hand side and considering

Φ :=

∫ 1

0

dφt
dL N

dt,

this is an admissible vector field for the problem in the right-hand side and exchanging the order
of integration, we get by means of Jensen inequality∫ 1

0

∫
RN

∣∣∣∣ dφtdL N
(x)

∣∣∣∣pdx dt =

∫
RN

∫ 1

0

∣∣∣∣ dφtdL N
(x)

∣∣∣∣pdt dx ≥ ∫
RN

∣∣∣∣∫ 1

0

dφt
dL N

(x) dt

∣∣∣∣pdx =

∫
RN
|Φ(x)|p dx.

3As a consequence of the 1−homogeneity of the recession function, the term of F̃p,β containing f̃∞p,α does not

depend on the choice of η.
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On the other hand, if Φ minimizes the right-hand side, then we can build an admissible pair (µt, φt)
just by setting

φt ≡ Φ ·L N and µt = (1− t)ρ0 + tρ1,

and observe that thanks to the condition on the divergence of φ, this pair verifies the continuity
equation and has exactly the same energy as φ, thus giving the equivalence between the two
problems.

Remark 1.4.4. In connection with congestion effects and crowd motion, other variants of the
Benamou-Brenier functional include penalizations on high densities: in [30] the case

F̂(µ, φ) = Fp(µ, φ) + k

∫
[0,1]×Ω

∣∣∣∣ dµdm(t, x)

∣∣∣∣2 dm(t, x),

with p ≥ 1 and k > 0, has been considered as a model for crowd motion in a congested situation
(for instance in case of panic). Here the reference measure is given by m = L 1⊗L N , so that it is
understood that if µ is not absolutely continuous w.r.t. m, then the value of the energy functional
is infinite. This problem as well is convex: observe that in this model, curves of diffused measure
are favoured not only because the functional has a finite value only on them, but also thanks to
the fact that the function x 7→ x2 is super-additive, that is

m2
1 +m2

2 < (m1 +m2)2,

so that the masses have the interest to travel separately, in order to lower the value of the energy
functional (see [30] for more details and interesting numerical simulations).

5. More on Wasserstein distances and the continuity equation

5.1. The superposition principle. The next result will be useful in Chapters 4 and 7: it can
be seen as the probabilistic counterpart to the classical method of characteristics for the continuity
equation (a brief account of this is in the Appendix B, while for an excellent and self-contained
exposition the reader is referred to [6, Chapter 8]), providing the right duality between Eulerian
and Lagrangian viewpoints. Roughly speaking, it assures that a solution of the continuity equation
with velocity field v, is just a superposition of integral curves of v: this is Theorem 8.2.1 of [6].

Theorem 1.5.1 (Superposition principle). Let µ : I →P(RN ) be a narrowly continuous curve,
solving the continuity equation

∂tµt + divx(vt µt) = 0, in I × RN ,
for some Borel velocity vector field v : (x, t)→ vt(x), satisfying the integrability condition∫

I

∫
RN
|vt(x)|p dµt(x) dt < +∞,

for some p > 1. Then there exists a probability measure Q ∈P(C(I;RN )) such that

(i) Q is concentrated on curves of ACp(I;RN ) which are integral solutions of the ODE σ′(t) =
vt(σ(t)), in the sense that:∫

C(I;RN )

∣∣∣∣σ(t)− σ(0)−
∫ t

0
vs(σ(s)) ds

∣∣∣∣ dQ(σ) = 0, for every t ∈ I.
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(ii) µt = (et)]Q, for every t ∈ I.

Conversely, any Q satisfying (i) and the integrability condition∫
I

∫
C(I;RN )

|vt(σ(t))| dQ(σ) dt < +∞,

is such that µt = (et)]Q is a distributional solution of the continuity equation, with velocity vector
field v.

Definition 1.5.2. Let Q ∈ P(C([0, 1];RN ) be concentrated on the absolutely continuous
solutions of σ′(t) = vt(σ(t)), in the sense precised before. Then the curve of measures µt = (et)]Q
given by the previous Theorem is called superposition solution of the continuity equation.

Remark 1.5.3. It is not hard to see that when v is smooth, formula µt = (et)]Q is exactly
equivalent to the method of characteristics. Indeed in this case, for every x ∈ Ω, there exists a
unique curve X(·, x) solving {

X ′(t, x) = vt(X(t, x))
X(0, x) = x

so that Q admits the disintegration Q =
∫

ΩQ
x dµ0(x), where for µ0−a.e. x, Qx is a Dirac mass

concentrated on this curve, that is

Qx = δX(·,x).

This clearly implies the following representation formula for the superposition solution

µt = (et)]Q = (X(t, ·))]µ0,

thus giving the interpretation of the superposition principle as a probabilistic version of the method
of characteristics.

5.2. Characterization of absolutely continuous curves in Wp. Next, we recall the fol-
lowing important result giving a complete characterization of the space ACp(I;Wp(RN )) in the
case p > 1. It can be seen as a generalization of the Benamou-Brenier formula for the Wasserstein
distance: this is Theorem 8.3.1 of [6].

Theorem 1.5.4. Let µ ∈ ACp(I;Wp(RN )), then there exists a Borel vector field v : I × RN →
RN such that

vt ∈ Lp(RN , µt), ‖vt‖Lp(RN ,µt) ≤ |µ
′
t|wp for L 1−a.e. t ∈ I,

and the continuity equation

∂tµt + div (vtµt) = 0, in RN × I,
holds in the sense of distributions.

On the other hand, if µ : I →Wp(RN ) is a narrowly continuous curve satisfying the continuity
equation for some Borel vector field v : I × RN → RN , with∫

I
‖vt‖Lp(RN ,µt) dt < +∞,

then µt ∈ AC(I;Wp(RN )) and |µ′t|wp ≤ ‖vt‖Lp(RN ,µt) for L 1−a.e. t ∈ I.
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Remark 1.5.5. As we said, the previous statement can be seen as a generalization of the
Benamou-Brenier formula and in fact one can easily see that it implies this statement, in its
general form: indeed for every ρ0, ρ1 ∈ Wp(RN ), let us take a constant speed geodesic µt between
them, then

wp(ρ0, ρ1)p =

∫ 1

0
|µ′t|pwp dt.

On the other hand, by means of the previous Theorem we get that for every velocity vector field
vt such that (ρt, vt) verifies the continuity equation, there holds∫ 1

0
|µ′t|pwp dt ≤

∫ 1

0

∫
Ω
|vt(x)|p dµt(x) dt,

and we have equality at least for one of these vector fields, thus recovering the Benamou-Brenier
formula in the general setting (no smoothness assumptions are needed).

When X is only a Polish space with no linear or differentiable structures, the continuity equation
does not make sense anymore in this setting, so the previous characterization does not apply.
Anyway, it is still possible to give a suitable adaptation of Theorem 1.5.4, thus giving a complete
characterization of the space ACp(I;Wp(X)) in terms the elements of ACp(I;X): this extension
is due to Lisini (see [65, Theorems 4 and 5]) and it has its own interest.

Theorem 1.5.6. Let X be a Polish space and p ∈ (1,+∞). If µ ∈ ACp(I;Wp(X)), then there
exists Q ∈P(C(I;X)) such that

(i) Q(C(I;X) \ACp(I;X)) = 0, i.e. Q is concentrated on p−absolutely continuous curves;
(ii) (et)]Q = µt, for every t ∈ I;
(iii) |µ′t|

p
wp =

∫
C |σ

′|p(t) dQ(σ), for L 1−a.e. t ∈ I.

On the other hand, for every Q ∈ P(C(I;X)) which is concentrated on ACp(I;X) and satisfies
the integrability condition ∫

C(I;X)

∫
I
|σ′|p(t) dt dQ(σ) < +∞,

we get that (et)#Q := µt is an element of ACp(I;Wp(X)) and

|µ′t|pwp ≤
∫
C(I;X)

|σ′|p(t) dQ(σ), for L 1−a.e. t ∈ I.

Remark 1.5.7. Observe that as a Corollary of the previous Theorem, we recover a kind of
Benamou-Brenier formula also in this general case, provided the metric spaceX is furtherly assumed
to be geodesic. Indeed, this implies that Wp(X) is geodesic too (this is Proposition 1.3.10), so that
for every ρ0, ρ1 ∈ Wp(X) there exists a constant speed geodesic µ between them such that

wp(ρ0, ρ1)p =

∫ 1

0
|µ′t|pwp dt,

and thanks to point (iii) of Theorem 1.5.6, we get that there exists Q concentrated on the space
ACp(I;Wp(X)) such that ∫ 1

0
|µ′t|pwp dt =

∫ 1

0

∫
C(I;X)

|σ′(t)|p dQ(σ) dt,
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and µt = (et)]Q. Conversely, to every Q concentrated on ACp(I;X) and such that (ei)]Q = ρi, for
i = 0, 1, we associate the curve of measures µ̃t = (et)]Q and we have

wp(ρ0, ρ1) ≤
∫ 1

0
|µ̃ ′t|pwp dt ≤

∫ 1

0

∫
C(I;X)

|σ′(t)|p dQ(σ) dt.

All in all, we have proven the following

(1.5.1) wp(ρ0, ρ1)p = min

{∫ 1

0

∫
C(I;X)

|σ′(t)|p dQ(σ) dt :
Q concentrated on ACp(I;X)

(ei)]Q = ρi, i = 0, 1

}
.

Remark 1.5.8. Theorem 1.5.6 is still interesting also in the case X = RN , as far as it provides
a nice and explicit representation of the velocity vector field given by the first part of Theorem
1.5.4. Indeed, given µ ∈ ACp(I;Wp(RN )), let us consider the corresponding probability measure
Q constructed in Theorem 1.5.6. Using the fact that µt = (et)]Q and disintegrating Q as follows

Q =

∫
Qtx dµt(x),

where, for every t ∈ I and µt−a.e. x, Qtx is a probability measure concentrated on the set {σ ∈
ACp(I;RN ) : σ(t) = x}, we can define the vector field

(1.5.2) vt(x) =

∫
C
σ′(t) dQtx(σ),

that is vt(x) is the average of the velocities of the curves passing from x at time t, according to Q.
Then using Jensen’s inequality and the fact that Q =

∫
Qtx dµt(x), we easily get∫

RN
|vt(x)|p dµt(x) ≤

∫
C
|σ′(t)|p dQ(σ) ≤ |µ′t|pwp for L 1−a.e. t ∈ I,

and moreover it is easily seen that the pair (µ, v) solves the continuity equation, in the sense of
distributions.

5.3. The case ofW∞. Back to the Euclidean case, we have the following analogue of Theorem
1.5.4 in the extremal case p = ∞: this result will be useful in Chapter 4. For simplicity, we take
the interval I = [0, 1].

Proposition 1.5.9. Let µ ∈ AC∞(I;W∞(RN )), then there exists a Borel vector field v :
I × RN → RN such that

(1.5.3) vt ∈ L∞(RN , µt), ‖vt‖L∞(RN ,µt) ≤ |µ
′
t|w∞ for L 1−a.e. t ∈ I,

and the continuity equation
∂tµt + div (vtµt) = 0, in I × RN ,

holds in distributional sense.
On the other hand, if µ : I →W∞(RN ) is a narrowly continuous curve satisfying the continuity

equation for some Borel vector field v : I × RN → RN , with∫
I
‖vt‖L∞(RN ,µt) dt < +∞,

then µt ∈ AC(I;W∞(RN )) and |µ′t|w∞ ≤ ‖vt‖L∞(RN ,µt) for L 1−a.e. t ∈ I.
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Proof. Let us fix an exponent p > 1 and set pn = p + n, with n ∈ N. Then for every n ∈ N,
by means of Theorem 1.5.4 there exists a vector Borel field vpn such that

‖vpn,t‖Lpn (µt) = |µ′t|wpn ≤ |µ
′
t|w∞ , for L 1− a.e.t ∈ [0, 1],

and by Jensen’s inequality, we also have

‖vpn,t‖Lp(µt) ≤ ‖vpn,t‖Lpn (µt), for every n ∈ N,

thus getting a uniform bound on the Lp norm of the sequence {vpn}n∈N.

Moreover setting µ =
∫ 1

0 µt dt, i.e. the probability measure on [0, 1]× RN whose disintegration

with respect to the time variable is given by µt for L 1−a.e. t ∈ [0, 1], we introduce the sequence
of vector measures φpn = vpn · µ, which are absolutely continuous w.r.t. to µ. From the previous
considerations, we see that

|φpn |([0, 1]× RN ) ≤
∫ 1

0

(∫
RN

∣∣∣∣dφpn,tdµt
(x)

∣∣∣∣pn dµt(x)

) 1
pn

dt ≤ ess sup
t∈[0,1]

|µ′t|w∞ ,

that is {φpn}n∈N have equi-bounded total variations. In particular we have φpn ⇀ φ as measures
on [0, 1]×RN : at first, we would like to obtain that this limit measure φ can still be disintegrated
as

(1.5.4) φ =

∫
φt dt, with φt = vt · µt, for L 1−a.e. t ∈ [0, 1].

Anyway, this is a consequence of the lower semicontinuity of the Benamou-Brenier functional (1.4.2):
indeed, we get

Fp(µ, φ) ≤ lim inf
n→∞

∫ 1

0

∫
RN

∣∣∣∣dφpn,tdµt

∣∣∣∣p dµt(x) dt

= lim
n→∞

∫ 1

0
|µ′t|pwpn dt ≤

∫ 1

0
|µ′t|pw∞ dt,

and the finiteness of the Benamou-Brenier functional on (µ, φ) implies that φ � µ and then the
required disintegration (1.5.4) on φ. We can now choose t1 < t2 ∈ [0, 1] and use again the lower
semicontinuity of the Benamou-Brenier functional, now localized in time on the interval [t1, t2],
thus getting ∫ t2

t1

∫
RN

∣∣∣∣dφtdµt

∣∣∣∣p dµt(x) dt ≤
∫ t2

t1

|µ′t|pw∞ dt,

and dividing both members by (t2 − t1) and taking the limit as t2 → t1, Lebesgue Differentiation
Theorem then yields ∫

RN

∣∣∣∣dφtdµt

∣∣∣∣p dµt(x) ≤ |µ′t|pw∞ , for L 1−a.e. t ∈ [0, 1],

that is ‖vt‖Lp(RN ,µt) ≤ |µ
′
t|w∞ , for L 1−a.e. t ∈ [0, 1]. Finally, using the fact that

‖vt‖L∞(RN ,µt) = lim
p↗∞

‖vt‖Lp(RN ,µt),

we get the desired result (1.5.3).
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Let us now prove the second assertion: thanks to the assumptions on vt and µt, we have in
particular that ∫

I
‖vt‖Lp(RN ,µt) dt < +∞, for every p > 1,

so that for every p > 1 we have µt ∈ AC(I;Wp(RN )) and |µ′t|wp ≤ ‖vt‖Lp(RN ,µt) ≤ ‖vt‖L∞(RN ,µt)
for L 1−a.e. t ∈ I. We then observe that for every t ∈ I and h > 0, we have

w∞(µt+h, µt) = sup
p>1

wp(µt+h, µt) ≤ sup
p>1

∫ t+h

t
‖vs‖Lp(RN ,µs) ds

≤
∫ t+h

t
‖vs‖L∞(RN ,µs) dt,

which implies that µt ∈ AC(I;W∞(RN )) and |µ′t|w∞ ≤ ‖vt‖L∞(RN ,µt) for L 1−a.e. t ∈ I (see

Appendix A, Theorem A.2.2). �

Example 1.5.10. On the contrary, in the degenerate case p = 1, the first implication of Theorem
1.5.4 is no more true, due to the teleport phenomenon we have already encountered. For example,
for the absolutely continuous curve µt = (1−t)δx0 +tδx1 inW1(RN ) there can not exist any velocity
field vt such that

vt ∈ L1(RN , µt),
∫
RN
|vt(x)| dµt(x) ≤ |µ′t|w1 , for L 1−a.e. t ∈ I,

and ∂tµt + divx(vtµt) = 0 or, in other words, there can not exist any RN−valued measure φ on
[0, 1] × RN such that φ =

∫
φt dt with φt � µt, |φt|(RN ) ≤ |µ′t|w1 and ∂tµ + divxφ = 0: indeed, if

on the contrary this were true, then φt would be a RN−valued atomic measure whose divergence
is still an atomic measure, i.e.

divx(φt) = δx0 − δx1 ,

and this is clearly not possible.
Concerning the second statement of Theorem 1.5.4, in the case p = 1 it reads as follows: if

µ : I →W1(RN ) is a narrowly continuous curve such that ∂tµ+ divx(φ) = 0 for some RN−valued
measure φ =

∫
φt dt on I × RN having finite total variation, then µ ∈ AC(I;W1(Ω)) and |µ′t|w1 ≤

|φt|(RN ).





CHAPTER 2

Curves of minimal action over metric spaces

1. Introduction

This chapter is mostly based on the paper [B2], where semicontinuity results and minimization
problems were presented for action functionals of the form

A(µ) =

∫
I
f(t, µ(t), |µ′|(t)) dt and A(ν, µ) =

∫
I
f(t, ν(t), |µ′|(t)) dt,

where I ⊂ R is an interval, µ ∈ ACp(I;X) and ν ∈ L1(I;Y ), with X and Y Polish metric
spaces. The approach here is rather general (general metric spaces, general action functionals etc.),
although for the scope of this work, it is particularly tempting to substitute the phrase metric space
with the more appealing one Wasserstein space in every statement that will follow. By the way, the
last two sections are exactly focused on the case in which the metric spaces considered are spaces
of measures (Wasserstein spaces and spaces of finite Radon measures, equipped with the ∗−weak
topology), with an action functional depending on two variables, i.e. of the form A: this was one
of the main original motivations of [B2], in particular we were interested in the possibility to split
the curve µ : I → Wp(Ω) into, roughly speaking, its moving part ν and the part that has already

reached its final destination. Then one considers an action functionals of the form A, which takes
into account only the contribution of the moving part, given by the curve ν.

The main motivation for such a study is the following: as we said, the scope of this work is
to consider some models of dynamical transportation, in which the transport cost encourages or
discourages the aggregation of masses; in these cases, it could happen that in an optimal configu-
ration, some masses arrive at destination and then stop, while others still keep on moving. Then
we want our cost to avoid keeping into account the contribution of these stopped masses: this is
precisely the case of branched transportation (see next chapter). Indeed, for the aims of this thesis,
the main applications of the results contained in Section 5 and Section 6 will be in Chapter 4.

2. Some preliminary semicontinuity results

In this chapter we will always assume that (X, d) is a Polish space, with a given Borel measure
m. Moreover I = [0, T ] ⊂ R is a compact interval, while by L 1 we mean the 1-dimensional
Lebesgue measure. We will use several basic facts about particular spaces of curves (i.e. summable,
continuous, absolutely continuous, with bounded variation) in a metric space, together with the
definition of metric derivative of a curve: the reader is referred to the Appendix A for the main
definitions and properties.

We start with the following basic result:

27
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Lemma 2.2.1. Let p ∈ [1,+∞], for every measurable subset B ⊂ I such that L 1(B) > 0, the
functional

(2.2.1) µ 7→
∫
B
|µ′|(t) dt, µ ∈ ACp(I;X),

is sequentially l.s.c. on ACp(I;X), with respect to the weak topology (see Appendix A, Definition
A.2.6).

Proof. Let B ⊂ I be any measurable subset such that L 1(B) > 0 and take {µn}n∈N ⊂
ACp(I;X) a sequence weakly converging to µ ∈ ACp(I;X). We can assume that the sequence
{|µ′n|}n∈N ⊂ Lp(I;R) weakly (∗-weakly if p = +∞) converges to a function v ∈ Lp(I;R).

Then we have

d(µ(s), µ(t)) = lim
n→+∞

d(µn(s), µn(t)) ≤ lim
n→∞

∫ t

s
|µ′n|(r) dr

=

∫ t

s
v(r) dr, for every s, t ∈ I such that s ≤ t,

which clearly shows by Lebesgue Differentiation Theorem that

(2.2.2) |µ′|(t) ≤ v(t), for L 1-a.e. t ∈ I.

This in turn implies that ∫
B
|µ′|(t) dt ≤

∫
B
v(t) dt = lim inf

n→∞

∫
B
|µ′n|(t) dt,

which gives the lower semicontinuity of (2.2.1). �

With a little extra work, Lemma 2.2.1 can be improved as follows:

Lemma 2.2.2. Let p ∈ [1,+∞], for every measurable subset B ⊂ I such that L 1(B) > 0 and
every measurable function ϕ : B → R+, the functional

(2.2.3) µ 7→
∫
B
ϕ(t)|µ′|(t) dt, µ ∈ ACp(I;X),

is sequentially l.s.c. on ACp(I;X), with respect to the weak topology.

Proof. Take {µn}n∈N ⊂ ACp(I;X) a sequence weakly converging to µ ∈ ACp(I;X) and call
v ∈ Lp(I;R) the weak (∗-weak if p = +∞) limit of {|µ′n|}n∈N. If we assume for the moment that
ϕ ∈ L∞(B;R+), using (2.2.2) we get

(2.2.4)

∫
B
ϕ(t)|µ′|(t) dt ≤

∫
B
ϕ(t)v(t) dt = lim

n→∞

∫
B
ϕ(t)|µ′n|(t) dt.

In the general case of ϕ measurable and positive, it is enough to define the sequence

ϕk(t) = min {ϕ(t), k}, t ∈ B,
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so that ϕk ∈ L∞(B;R+) and applying (2.2.4), we get

lim inf
n→∞

∫
B
ϕ(t)|µ′n|(t) dt ≥ lim inf

n→∞

∫
B
ϕk(t)|µ′n|(t) dt

≥
∫
B
ϕk(t)|µ′|(t)dt, k ∈ N.

If we now let k goes to ∞, we can conclude the proof by a simple application of the monotone
convergence theorem. �

Finally, we get a semicontinuity result for general affine functionals. Before this, we need the
following definition.

Definition 2.2.3. A function h : I ×X → R ∪ {+∞} is said to be a Carathéodory integrand
if the following are satisfied:

(i) h is L 1 ⊗m-measurable;
(ii) h(t, ·) is finite and continuous on X, for L 1-a.e. t ∈ I.

Lemma 2.2.4. Let a : I × X → R and b : I × X → R+ be two Carathéodory integrands. If
p ∈ [1,+∞], then for every measurable subset B ⊂ I such that L 1(B) > 0, the functional

(2.2.5) µ 7→
∫
B

[
a(t, µ(t)) + b(t, µ(t))|µ′|(t)

]
dt, µ ∈ ACp(I;X),

is sequentially l.s.c on ACp(I;X), with respect to the weak topology.

Proof. The sequential semicontinuity of the term

µ 7→
∫
B
a(t, µ(t)) dt, µ ∈ ACp(I;X),

is straightforward: indeed, it is just a consequence of Fatou Lemma. For the term

µ 7→
∫
B
b(t, µ(t))|µ′|(t) dt, µ ∈ ACp(I;X),

we observe that, taking a weakly convergent sequence µn ⇀ µ, if we set

gkn(t) = min{k, b(t, µn(t))}, t ∈ B,
and

gk(t) = min{k, b(t, µ(t))}, t ∈ B,
by means of the assumptions on b, we have that gkn → gk L 1-a.e. on B. Moreover {gkn}n∈N is equi-
bounded in L∞(B;R): Lebesgue Dominated Convergence Theorem implies that gkn → gk strongly,

let’s say in L
p
p−1 (B;R), while |µ′n| weakly (∗-weakly if p = +∞) converges in Lp(B;R), so that

lim inf
n→∞

∫
B
gkn(t)|µ′n|(t) dt = lim inf

n→∞

∫
B
gk(t)|µ′n|(t) dt.

This, Lemma 2.2.2 and the positivity of b imply∫
B
gk(t)|µ′|(t) dt ≤ lim inf

n→∞

∫
B
gk(t)|µ′n|(t) dt ≤ lim inf

n→∞

∫
B
b(t, µn(t))|µ′n| dt,
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which gives the thesis, passing to the limit as k →∞. �

We recall that a metric space is said to be proper if its closed balls are compact: in particular, a
proper metric space is locally compact (the converse is not true) . As we will see when dealing with
absolutely continuous curves over a space which is not proper (Section 4 and 6), it is of interest
also the case of a metric space with different topologies defined on it. First of all, we introduce
some definitions.

Definition 2.2.5. Let (X, τ) be a topological space and d : X ×X → [0,+∞) a metric. We

say that d is lower semicontinuous on (X, τ) if the following holds: whenever xn
τ→ x and yn

τ→ y,
then

d(x, y) ≤ lim inf
n→∞

d(xn, yn).

Definition 2.2.6. Given a space X with two different metrics d1 and d2, we set X1 = (X, d1)
and X2 = (X, d2). We indicate with |µ′|d1 and |µ′|d2 the metric derivative with respect to d1 and
d2, respectively. Then a sequence {µn}n∈N ⊂ ACp(I;X1) is said to be d2-weakly convergent to µ
if:

(i) max
t∈I

d2(µn(t), µ(t))→ 0;

(ii) the sequence {|µ′n|d1}n∈N is equi-bounded in Lp(I;R) and equi-integrable.

We indicate this convergence by µn
d2⇀ µ.

Remark 2.2.7. Observer that ACp(I;X1) is closed with respect to the d2-weak convergence.

Indeed if {µn}n∈N ⊂ ACp(I;X1) is such that µn
d2⇀ µ, then by the semicontinuity of d1 we get

d1(µ(s), µ(t)) ≤ lim inf
n→∞

d1(µn(s), µn(t)) ≤ lim inf
n→∞

∫ t

s
|µ′n|d1(r) dr,

so that we can still prove property (2.2.2), that is

(2.2.6) |µ′|d1(t) ≤ v(t), for L 1-a.e. t ∈ I,

where as above v ∈ Lp(I;R) is the weak (∗-weak if p = +∞) limit of {|µ′n|d1}n∈N: this precisely
means that µ ∈ ACp(I;X1).

Then we can prove the following slight modification of Lemma 2.2.4.

Lemma 2.2.8. Let X1 = (X, d1) and X2 = (X, d2) be two Polish spaces such that d1 is lower
semicontinuous on X2.

Fix p ∈ [1,+∞]. For every pair of Carathéodory integrands a : I ×X2 → R, b : I ×X2 → R+

and every measurable subset B ⊂ I such that L 1(B) > 0, the functional defined on ACp(I;X1) by

µ 7→
∫
B

[a(t, µ(t)) + b(t, µ(t))|µ′|d1(t)] dt,

is sequentially l.s.c. with respect to the d2-weak convergence.
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Proof. Again, the key fact is to show that the functional defined on ACp(I;X1) by

µ 7→
∫
B
|µ′|d1(t) dt,

is sequentially l.s.c. with respect to the d2-weak convergence. At this end, it is sufficient to use
(2.2.6): then we can repeat the proof of Lemma 2.2.2 and Lemma 2.2.4 and get the thesis. �

3. Semicontinuous action functionals over ACp(I;X)

We now want to consider a generic action functional defined on ACp(I;X) of the form

(2.3.1) A(µ) =

∫
I
f(t, µ(t), |µ′|(t)) dt, µ ∈ ACp(I;X),

for some function f : I ×X × R→ R ∪ {+∞}, satisfying the following:

(2.3.2) f is L 1 ⊗m⊗L 1-measurable;

(2.3.3) f(t, ·, ·) is l.s.c. on X × R for every t ∈ I;

(2.3.4) f(t, x, ·) is convex and increasing on R for every t ∈ I, x ∈ X.

We provide some semicontinuity results for such functionals, with respect to the weak convergence
in ACp(I;X).

Remark 2.3.1. Let us briefly discuss the monotonicity assumption for the function f : at a
first glance, assuming (2.3.4) could seem restrictive. Anyway, if you think to the Euclidean case
X = RN , then g(z) = f(t, x, z) would be a function of the modulus |z|, that has to be (if we want
to ensure the l.s.c. of functional (2.3.1)) convex in z. Clearly, this is possible if and only if g is
convex and increasing (see Figure 1).
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Figure 1. A convex function of |z|, that is not convex in z.
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As usual, the idea is to seek affine approximations of the function f , satisfying (2.3.2), (2.3.3)
and (2.3.4): if this can be done, then semicontinuity of A will result from the application of Lemma
2.2.4.

The following is a crucial result: it is just an adaptation of a classical result, valid in an
Euclidean setting (see Lemma 2.2.4 and Remark 2.2.5 of [29]).

Lemma 2.3.2. Let f : I × X × R → R ∪ {+∞} be a function satisfying assumptions (2.3.2),
(2.3.3) and (2.3.4). Assume further that for every t ∈ I the function f(t, ·, ·) satisfies the following
condition:

there exists a function θ : R→ R such that

lim
z→+∞

θ(z)

z
= +∞ and f(t, x, z) ≥ θ(|z|), for every x ∈ X, z ∈ R.

(2.3.5)

Then, there exist two sequences of bounded Carathéodory integrands an : I × X → R and bn :
I ×X → [0,+∞), such that

f(t, x, z) = sup
n∈N
{an(t, x) + bn(t, x)z}, for every t ∈ I, x ∈ X, z ∈ R.

The next general Lemma will be useful in proving our semicontinuity result: the proof can be
found in [29] (Lemma 2.3.2).

Lemma 2.3.3. Let Ω ⊂ RN be any measurable subset and g, {gn}n∈N be measurable functions
from Ω to R ∪ {+∞}, such that g = sup {gn : n ∈ N} and gn ≥ ϕ, for a suitable ϕ ∈ L1(Ω;R).
Then ∫

Ω
g(x) dx = sup

{∑
i∈I

∫
Bi

gi(x) dx

}
,

where the supremum is taken over all finite partitions of Ω, by pairwise disjoint measurable subsets
Bi.

The semicontinuity result now reads as follows:

Theorem 2.3.4. Let p ∈ [1,+∞] and let f : I ×X × R → R ∪ {+∞} be a function satisfying
(2.3.2), (2.3.3) and (2.3.4). Assume further that there exist two positive constants α, β, a point
x ∈ X and a function ϕ ∈ L1(I;R) such that f satisfies the following estimate

(2.3.6) f(t, x, z) ≥ −α|z| − βd(x, x)r − ϕ(t),

for some r > 0. Then the functional

(2.3.7) A(µ) =

∫
I
f(t, µ(t), |µ′|(t)) dt, µ ∈ ACp(I;X),

is well-defined, takes its values in R ∪ {+∞} and is sequentially l.s.c. on ACp(I;X), with respect
to the weak topology.

Proof. The fact that the functional A is well-defined and takes its values in R∪{+∞}, follows
from (2.3.6).
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We now proceed to the proof of the sequential lower semicontinuity: let us first assume that f
verifies hypothesis (2.3.5) of Lemma 2.3.2, so that we have

f(t, x, z) = sup {an(t, x) + bn(t, x)z : n ∈ N},
for suitable sequences of bounded Carathéodory integrands {an}n∈N and {bn}n∈N, with bn ≥ 0. By
Lemma 2.3.3, to conclude the proof we can restrict ourselves to prove that for every n ∈ N and
B ⊂ I measurable, the functional

µ 7→
∫
B

[an(t, µ(t)) + bn(t, µ(t))|µ′|(t)] dt, µ ∈ ACp(I;X),

is sequentially l.s.c. on ACp(I;X), with respect to the weak topology: this is just a straightforward
consequence of Lemma 2.2.4.

We now remove assumption (2.3.5) on f and assume for the moment that f ≥ 0. Let {µn}n∈N ⊂
ACp(I;X) be a weakly convergent sequence: {|µ′n|}n∈N is equi-integrable, so there exists a function
θ : R→ R such that

lim
t→∞

θ(t)

t
= +∞ and sup

n∈N

∫
I
θ(|µ′n|(t)) dt ≤ 1.

For every ε > 0, we set
fε(t, x, z) = f(t, x, z) + εθ(|z|),

so that fε verifies hypothesis (2.3.5) of Lemma 2.3.2 and we can thus obtain∫
I
f(t, µ(t), |µ′|(t)) dt ≤

∫
fε(t, µ(t), |µ′|(t)) dt

≤ lim inf
n→∞

∫
I
fε(t, µn(t), |µ′n|(t)) dt

= ε lim inf
n→∞

∫
I
θ(|µ′n|)(t) dt+ lim inf

n→∞

∫
I
f(t, µn(t), |µ′n|(t)) dt

≤ ε+ lim inf
n→∞

∫
I
f(t, µn(t), |µ′n|(t)) dt,

proving the semicontinuity of A, by the arbitrariness of ε.

Finally, in the general case of a function f satisfying (2.3.6), we proceed as follows:
for every k ∈ N, we define

fk(t, x, z) = max{f(t, x, z),−k},
and, taken a weakly convergent sequence {µn} ⊂ ACp(I;X) such that µn ⇀ µ, we set

gn(t) = α|µ′n|(t) + βd(µn(t), x)r + ϕ(t), t ∈ I,
Ak,n = {t ∈ I : f(t, µn(t), |µ′n|(t)) < −k}.

We first observe that
Ak,n ⊂ {t ∈ I : gn(t) > k},

and that gn is equi-integrable, so we obtain

(2.3.8) lim
k→∞

∫
Ak,n

gn(t) dt = 0, for every n ∈ N.
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Being fk bounded from below and using (2.3.6), we get∫
I
f(t, µ(t), |µ′|(t)) dt ≤

∫
I
fk(t, µ(t), |µ′|(t)) dt

≤ lim inf
n→∞

∫
I
fk(t, µn(t), |µ′n|(t)) dt

= lim inf
n→∞

[∫
I
f(t, µn(t), |µ′n|(t)) dt−

∫
Ak,n

f(t, µn(t), |µ′n|(t)) dt

]

≤ lim inf
n→∞

∫
I
f(t, µn(t), |µ′n|(t)) dt+ lim sup

n→∞

∫
Ak,n

gn(t) dt,

and this, taking the limit as k →∞ and taking into account (2.3.8), implies the semicontinuity of
A. �

Remark 2.3.5. In the case p > 1, we can weaken assumption (2.3.6) of Theorem 2.3.4, by
requiring that there exist two positive constants α, β, a point x ∈ X and a function ϕ ∈ L1(I;R)
such that

f(t, x, z) ≥ −α|z|m − βd(x, x)r − ϕ(t),

for m < p and for r > 0. As in the Euclidean case, we cannot expect any semicontinuity result, if
the previous is verified with m = p > 1 (see [60]).

Note that Theorem 2.3.4 can be used to prove lower semicontinuity of geodesic functionals, that
is functionals of the type

µ 7→
∫
I
g(µ(t))|µ′|(t) dt, µ ∈ Lip(I;X) = AC∞(I;X),

with g : X → [0,+∞] lower semicontinuous, which have been studied in detail in the papers [8]
and [24].

Thanks to Theorem 2.3.4, we can also prove the lower semicontinuity of supremal functionals,
defined over the space of Lipschitz curves: the proof is just an adaptation of that in [10, Theorem
3.4].

Theorem 2.3.6. Let f : I × X × R → R ∪ +∞ be a function satisfying hypothesis (2.3.2),
(2.3.3) and (2.3.6). Suppose moreover that f is level convex with respect to the z variable, that is
the sublevel sets

Eλ(t, x) = {z ∈ R : f(t, x, z) ≤ λ}
are convex. Then the functional

A(µ) = ess sup
t∈I

f(t, µ(t), |µ′|(t)), µ ∈ AC∞(I;X),

is sequentially l.s.c. on AC∞(I;X), with respect to the weak topology.

Proof. Let us take a sequence {µn}n∈N ⊂ AC∞(I;X) weakly converging to a curve µ. Then
let us set

λ = lim inf
n→∞

ess sup
t∈I

f(t, µn(t), |µ′n|(t)),
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and we choose a subsequence {µni}i∈N such that

λ = lim
i→∞

ess sup
t∈I

f(t, µni(t), |µ′ni |(t)),

so that for every ε > 0, we can find i0 ∈ N such that for every i ≥ i0 we get

(2.3.9) f(t, µni(t), |µ′ni |(t)) ≤ λ+ ε, for L 1-a.e. t ∈ I.
We now consider the integral functional

E(µ) =

∫
I
IEλ+ε

(t, µ(t), |µ′|(t)) dt, µ ∈ AC∞(I;X),

where IEλ+ε
is the indicator function of the set

Eλ+ε = {(t, x, z) ∈ I ×X × R : f(t, x, z) ≤ λ+ ε}.
Thanks to the assumptions on f , it is easily seen that the function IEλ+ε

verifies the hypothesis of
Theorem 2.3.4, so that E is l.s.c. on AC∞(I;X), with respect to the weak topology:∫

I
IEλ+ε

(t, µ(t), |µ′|(t)) dt ≤ lim inf
n→∞

∫
I
IEλ+ε

(t, µn(t), |µ′n|(t)) dt

≤ lim
i→∞

∫
I
IEλ+ε

(t, µni(t), |µ′ni |(t)) dt = 0,

where in the last equality we have used (2.3.9). The latter yields

f(t, µ(t), |µ′|(t)) ≤ λ+ ε, for L 1-a.e. t ∈ I,
which implies, by means of the arbitrariness of ε, that

f(t, µ(t), |µ′|(t)) ≤ λ = lim inf
n→∞

ess sup
t∈I

f(t, µn(t), |µ′n|(t)), for L 1-a.e. t ∈ I,

thus concluding the proof. �

We conclude this section, giving some refinements of Theorem 2.3.4 that we will need in the
sequel.

The first is the following: (X, dX) and (Y, dY ) are two Polish spaces and we have an integral
functional of the type

(2.3.10) A(ν, µ) =

∫
I
f(t, ν(t), |µ′|X(t)) dt, (ν, µ) ∈ L1(I;Y )×ACp(I;X),

where |µ′|X stands for the metric derivative of µ, with respect to the metric dX . It is straightforward
to extend the semicontinuity result of Theorem 2.3.4 to this case.

Theorem 2.3.7. Fix p ∈ [1,+∞] and let f : I × Y × R → R ∪ {+∞} be a function satisfying
hypotheses (2.3.2), (2.3.3) and (2.3.4). Suppose moreover that there exist two positive constants
α, β, a point y ∈ Y and ϕ ∈ L1(I;R) such that f satisfies the following estimate

(2.3.11) f(t, y, z) ≥ −α|z| − βdY (y, y)− ϕ(t).

Then the functional A : L1(I;Y )×ACp(I;X)→ R∪ {+∞} defined by (2.3.10) is well defined and
sequentially lower semicontinuous on L1(I;Y )×ACp(I;X), with respect to the strong topology on
L1(I;Y ) and the weak topology on ACp(I;X).
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In the case of a metric space equipped with two different metrics, the following result will be
useful: the proof is the same of Theorem 2.3.4, with Lemma 2.2.8 in place of Lemma 2.2.4.

Theorem 2.3.8. Let X1 = (X, d1) and X2 = (X, d2) be two Polish spaces such that d1 is lower
semicontinuous on X2.

Fix p ∈ [1,+∞]. Let f : I ×X2 × R→ R ∪ {+∞} be a function satisfying (2.3.2), (2.3.3) and
(2.3.4). Assume further that there exist two positive constants α, β, a point x ∈ X and a function
ϕ ∈ L1(I;R) such that f satisfies the following estimate

(2.3.12) f(t, x, z) ≥ −α|z| − βd2(x, x)r − ϕ(t),

for some r > 0. Then the functional

(2.3.13) A(µ) =

∫
I
f(t, µ(t), |µ′|d1(t)) dt, µ ∈ ACp(I;X1),

is well-defined, takes its values in R ∪ {+∞} and is sequentially l.s.c. on ACp(I;X1), with respect
to the d2-weak convergence.

Finally, we can easily obtain a variant of Theorem 2.3.7 for spaces endowed with two metrics:
this is motivated by applications to metric spaces which are not proper, the model case being given
by the Wasserstein space W∞.

Theorem 2.3.9. Let X1 = (X, d1) and X2 = (X, d2) be two Polish spaces such that d1 is lower
semicontinuous on X2.

Fix p ∈ [1,+∞]. Let f : I × Y × R → R ∪ {+∞} be a function satisfying hypotheses (2.3.2),
(2.3.3) and (2.3.4). Suppose moreover that there exist two positive constants α, β, a point y ∈ Y
and ϕ ∈ L1(I;R) such that f satisfies the following estimate

(2.3.14) f(t, y, z) ≥ −α|z| − βdY (y, y)− ϕ(t).

Then the functional

(2.3.15) A(ν, µ) =

∫
I
f(t, ν(t), |µ′|d1(t)) dt, (ν, µ) ∈ L1(I;Y )×ACp(I;X1),

is well-defined, takes its values in R ∪ {+∞} and is sequentially l.s.c. on L1(I;Y ) × ACp(I;X1),
with respect to the strong topology on L1(I;Y ) and the d2-weak topology on ACp(I;X1).

4. Minimizing curves

We now turn to the problem of finding a curve minimizing the general cost functional

(2.4.1) A(µ) =

∫
I
f(t, µ(t), |µ′|(t)) dt,

among all curves µ ∈ ACp(I;X) with fixed endpoints. For every p ∈ [1,+∞] and x0, x1 ∈ X, we
define

(2.4.2) Cp(x0, x1) = {µ ∈ ACp(I;X) : µ(0) = x0, µ(T ) = x1}.



4. MINIMIZING CURVES 37

Remark 2.4.1. In the particular case of f(t, µ, |µ′|) = |µ′|, as already observed the problem of
minimizing the length functional

`(µ) =

∫ T

0
|µ′| dt,

in Cp(x0, x1) admits a solution, which is given by every geodesic in X joining x0 and x1, provided
that Cp(x0, x1) 6= ∅ and that X is proper (see [9]).

In [24] the authors consider the case with f(t, µ, |µ′|) = g(µ)|µ′|: this can now be seen as the
problem of finding the geodesics in X, with the respect to some sort of Riemannian distance, whose
coefficient is given by g. They prove the following:

Theorem 2.4.2. Let X be a proper metric space. If g : X → [0,+∞] is a lower semicontinuous
function, bounded from below by a constant c > 0, we define

`g(µ) =

∫
I
g(µ(t))|µ′|(t) dt, µ ∈ AC∞(I;X).

Then for every pair of points x0, x1 ∈ X, the problem of minimizing `g in C∞(x0, x1) admits a
solution, provided that there exists µ ∈ C∞(x0, x1) such that `g(µ) is finite.

Proof. The proof is based on the Reparametrization Lemma A.2.4, the functional considered
being invariant under reparametrization. Observe that this clearly also implies that

inf
Cp(x0,x1)

∫
I
g(µ(t))|µ′|(t) dt = inf

C∞(x0,x1)

∫
I
g(µ(t))|µ′|(t) dt.

Let us take a minimizing sequence {µn}n∈N ⊂ C∞(x0, x1): we can clearly suppose that

sup
n∈N

`g(µn) ≤ `g(µ) + 1 := C,

and moreover up to a reparametrization, we can suppose that each curve is parametrized in such
a way that

|µ′n|(t) ≡ `(µn) =

∫
I
|µ′n|(t) dt, t ∈ I,

so that, using the fact that g ≥ c > 0, we get

c `(µn) ≤
∫
I
g(µn(t)) |µ′n|(t) dt ≤ C,

which implies that {µn}n∈N is equi-Lipschitz. Moreover

d(µn(t), µ0) ≤
∫ t

0
|µ′n|(t) dt ≤ `(µn) L 1(I) ≤ C, for every n ∈ N, t ∈ I,

so that using the fact that X is proper, we get that {µn}n∈N converges to µ in AC∞(I;X), up to
a subsequence, by means of Ascoli-Arzelà Theorem A.2.7. Clearly µ ∈ C∞(x0, x1) and moreover
using the semicontinuity of `g (Theorem 2.3.4), we can conclude that

`g(µ) ≤ lim inf
n→∞

`g(µn) = inf
C∞(x0,x1)

`g,

which gives the desired assertion. �
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For the case of absolutely continuous curve with finite p-energy, with the general cost functional
A given by (2.4.1), our existence result reads as follows.

Theorem 2.4.3. Fix p ∈ (1,+∞). Let X be a proper metric space and let f : I × X × R →
R ∪ {+∞} be a function satisfying (2.3.2), (2.3.3) and (2.3.4). Assume further that there exist a
point x ∈ X and a function ϕ ∈ L1(I;R) such that

(2.4.3) f(t, x, z) ≥ |z|p − β(t)d(x, x)r − ϕ(t),

where 0 < r < p and β ∈ L
p
p−r (I;R+). Then for every pair of points x0, x1 ∈ X, the problem of

minimizing A in Cp(x0, x1) admits a solution, provided that there exists µ ∈ Cp(x0, x1) with finite
A.

Proof. Let {µn}n∈N ⊂ ACp(I;X) be some minimizing sequence, we can suppose that, up to
a subsequence, there exists M such that

A(µn) ≤M, for every n ∈ N.

Thanks to the assumptions on f , we immediately obtain that the sequence {|µ′n|}n∈N is equi-
bounded in Lp(I;R). Indeed, it is enough to use Poincaré-Wirtinger inequality (A.2.3)∫

I
d(µn(t), x)p dt ≤ C

∫
I
|µ′n|(t)p dt+A,

with A depending only on x and the endpoints of µn, which are fixed. Then we observe that for
every ε > 0, applying Young’s inequality, we get∫

I
β(t)d(µn(t), x)r dt ≤

(
1− r

p

)
ε

r
r−p

∫
I
β(t)

p
p−r dt+

r

p
ε

∫
I
d(µn(t), x)p dt,

so that, if we now set

C̃(ε) =

(
1− r

p

)
ε

r
r−p

∫
I
β(t)

p
p−r dt+

∫
I
ϕ(t) dt+

r

p
A ε,

then condition (2.4.3) implies

M ≥ A(µn) ≥
(

1− r

p
Cε

)∫
I
|µ′n|p(t) dt− C̃(ε).

With a suitable choice of ε, we obtain the boundedness of {|µ′n|}n∈N.

This in turn implies that the minimizing sequence is equi-Hölder continuous: in fact by the
very definition of absolutely continuous curve and Hölder’s inequality, we get

d(µn(t), µn(s)) ≤
∫ t

s
|µ′n|(r) dr ≤ |t− s|

p−1
p

(∫
I
|µ′n|p(t) dt

) 1
p

≤ C|t− s|
p−1
p , for every n ∈ N, t, s ∈ I.

Moreover this sequence is also pointwise relatively compact, because X is proper and there holds

d(µn(t), x0) = d(µn(t), µn(0)) ≤
∫ t

0
|µ′n|(t) dt ≤ C, for every n ∈ N, t ∈ I.
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We can thus apply Ascoli-Arzelà Theorem (see Appendix A, Theorem A.2.7) to obtain that
µn ⇀ µ, up to subsequences, where µ ∈ Cp(x0, x1).

Finally, observe that condition (2.4.3) implies (2.3.6), so that by means of Theorem 2.3.4 the
functional A is l.s.c. on ACp(I;X), leading us to

A(µ) ≤ lim inf
n→∞

A(µn) = inf
µ∈Cp(x0,x1)

A(µ),

which concludes the proof. �

Remark 2.4.4. If condition (2.4.3) is verified with r = p, then Theorem 2.4.3 is still valid,
provided that the time interval [0, T ] is small enough, that is we have to guarantee that T is such
that

C(p, T ) < 1,

where C(p, T ) is the constant given by (A.2.4) in Poincaré-Wirtinger inequality.

The hypothesis that (X, d) is proper can be a very severe one and it could be relaxed somehow,
by substituting it with the request that on X there exists another topology τ , such that:

(τ1) there exists a metric dτ ≤ d which metrizes the topology τ on τ -compact sets;
(τ2) closed balls of (X, d) are τ -compact;
(τ3) d is l.s.c. with respect to τ .

This is a quite standard procedure, which can be also found in [9], for example. A typical case
in which this occurs is when X is the dual of a separable Banach space, equipped with the norm
topology: in this case, τ is just the ∗-weak topology.

The previous considerations lead us to the following result.

Theorem 2.4.5. Let p ∈ (1,+∞) and X1 = (X, d) be a Polish space. Suppose that X can
be equipped with another topology τ such that X2 = (X, τ) satisfies properties (τ1)-(τ3). Let
f : I ×X2 × R → R ∪ {+∞} be a function satisfying (2.3.2), (2.3.3) and (2.3.4). Assume further
that there exist a point x ∈ X and a function ϕ ∈ L1(I;R) such that

(2.4.4) f(t, x, z) ≥ |z|p − β(t)dτ (x, x)r − ϕ(t),

where 0 < r < p and β ∈ L
p
p−r (I;R+). Then for every pair of points x0, x1 ∈ X, the problem of

minimizing

A =

∫
I
f(t, µ(t), |µ′|d(t)) dt,

in Cp(x0, x1) admits a solution, provided that there exists µ ∈ Cp(x0, x1) with finite A.

Proof. Taking a minimizing sequence {µn}n∈N ⊂ ACp(I;X1) and arguing as in the proof
of Theorem 2.4.3 (one has to use (2.4.4) in combination with −dτ ≥ −d), we can obtain that
{|µ′n|d}n∈N is equi-bounded in Lp(I;R), which in turn implies that for every n ∈ N and every t ∈ I
we have

µn(t) ∈ {x ∈ X : d(x, x0) ≤ R} = B,

for a suitable R > 0. We now use the fact that (B, dτ ) is a compact metric space and that, due to
the fact that dτ ≤ d, we have {µn}n∈N ∈ ACp(I;B) ∩ACp(I;X1).

Then we apply Ascoli-Arzelà Theorem again: this implies that {µn}n∈N dτ -weakly converges.
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It remains to observe that by Theorem 2.3.8 the functional A is lower semicontinuous with
respect to the dτ -weak convergence, thus concluding the proof. �

Remark 2.4.6. We remark that, despite being more general than the case with X proper,
Theorem 2.4.5 does not cover some interesting and changeling cases: for example, it does not apply
to the case of a functional of the type

(2.4.5) A(µ) =

∫
I
[|µ′|p(t)− β(t)d(µ(t), x0)r] dt,

because of the fact that, when equipped with the weaker topology τ , the term

µ 7→ −
∫
I
β(t)d(µ(t), x0)r dt,

is not τ -l.s.c., due to the fact that d is only l.s.c. with respect to this topology and to the presence
of the − sign.

A remarkable particular case of (2.4.5) is the following: we choose (X, d) = (W2(RN ), w2), the
2-Wasserstein metric space and we take the action

(2.4.6) A(µ) =
1

2

∫
I

[
|µ′t|2w2

− w2(µt, ν0)2
]
dt, µ ∈ AC2(I;W2(RN )),

for a given reference probability measure ν0 ∈ W2(RN ), for example ν0 = L Nx[−1/2, 1/2]N

An action like this is considered in the recent paper [53] by Gangbo, Nguyen and Tudorascu:
the main interest of such a study is that one can write down explicitly an Euler-Lagrange equation
for the action A and discover that this coincides with the so-called Euler-Poisson system (see [53,
Theorem 3.3]), that is every minimizer µ ∈ C2(µ0, µ1) of (2.4.6) satisfies

(2.4.7)

{
∂t(µ v) + div (µ v ⊗ v) = µ (barproj(γ)− Id) , in I × RN ,

∂tµ+ div (µ v) = 0, in I × RN ,

in the sense of distributions, where for every t ∈ I the probability measure γt ∈ Π(ν0, µt) is an
optimal plan and barproj(γ) stands for the barycentric projection of γ onto its second marginal µt,
that is disintegrating γt as

γt =

∫
ξy dµt(y),

then barproj(γ) is uniquely defined µt−a.e. by

barproj(γt)(y) =

∫
RN

x dξy(x), for µt−a.e. y ∈ RN .

Observe that one can interpret barproj(γ) as a conditional expectation and the rightmost member
of the first equation of (2.4.7) as the corresponding momentum. Roughly speaking, for every point
y the barycentric projection gives the barycenter of the set where mass located at y is transported:
in particular, if the optimal transport is given by a map, then the barycentric projection coincides
with this optimal map, that is if γt = (Id× Tt)#µt, then

barproj(γ(t))(y) = Tt(y), for µt−a.e. y ∈ RN .
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This is the case for example when µt � L N and moreover, as far as the quadratic cost is concerned,
we know that Tt(y) = y−∇ψt(y) with ψt semiconcave function (see Chapter 1, Theorem 1.1.8), so
that at least formally the first equation in (2.4.7) can be rewritten as

∂t(µ v) + div (µ v ⊗ v) = −µ∇ψt.

Observe that if one has the right to use the continuity equation to simplify the expression above
and to cancel out the common term µ, then one is left with the compressible Euler equation, with
pressure term given by the Kantorovich potential ψt associated to the transportation from µt to
ν0, that is

∂tv + 〈v,∇v〉 = −∇ψt.
We point out that in the present case, in order to minimize A given by (2.4.6), neither Theorem

2.4.3 nor Theorem 2.4.5 can be applied, in fact as already observedW2(RN ) is not locally compact,
which implies that it is not proper (on the other hand, Theorem 2.4.3 applies if we consider W2(Ω)
with Ω ⊂ RN compact and we add the usual condition 〈v, ν〉 = 0 at the boundary). Then one
can think to equip W2(RN ) with the narrow topology given by the duality with Cb(RN ): the fact
that w2 is only l.s.c. with respect to this topology, as already observed, implies that the objective
functional is no more l.s.c. with respect to this weaker topology, so that this strategy does not
work. Indeed, one of the main issues solved by [53] is exactly the existence of minimizers of the
action (2.4.6), connecting two prescribed measures µ0 and µ1, at least in the 1−dimensional case
(i.e. N = 1) and provided that T < π: this last condition is clearly connected to the applicability
of Poincaré-Wirtinger inequality (see the Appendix, Theorem A.2.3).

5. The case of measures: evolution pairings

We now leave the general setting of metric spaces, particularizing the results of the previous
sections to the case of action functionals over the space of probability measures. As in Chapter 1,
we will use the notation

t 7→ µt, t ∈ I,
to indicate a curve of measures defined over I, rather than the notation µ(t), used in the previous
sections. In particular, we will consider action functionals of the following type (see Theorems 2.3.7
and 2.3.9):

A(ν, µ) =

∫
I
f(t, νt, |µ′t|X) dt, (ν, µ) ∈ L1(I;Y )×ACp(I;X),

where X and Y will be suitable spaces of measures which will be made precise in a while.
The main application we have in mind is to provide a dynamical formulation of mass transporta-

tion problems, specifically in the context of branched transport: Chapters 3 (specifically, Section 5)
and 4 will clarify some of the results contained in these last two sections. Due to this fact, we warn
the reader that this section contains some technicalities which can be avoided at a first reading:
the main fact is the definition of evolution pairing (see Definition 2.5.3).

Let (Ω, d) be a generic locally compact, complete and separable metric space, not necessarily a
subset of RN . From now on, we make the following choice for the two Polish spaces X and Y :

• given q ∈ [1,∞], X is the q-Wasserstein metric space Wq(Ω);
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• Y is the space M+
1 (Ω) of positive finite Radon measures over Ω, having total variation

less than or equal to 1 and equipped with the distance

(2.5.1) d(ν1, ν2) =
∞∑
k=1

1

2k

∣∣∣∣∫
Ω
ϕk(x) d(ν1(x)− ν2(x))

∣∣∣∣ , ν1, ν2 ∈M+
1 (Ω),

where {ϕk}k∈N is a dense subset of {ϕ ∈ Co(Ω) : ϕ ≥ 0, ‖ϕ‖∞ ≤ 1}, and as usual Co(Ω)
is the completion of the space of compactly supported continuous functions over Ω, with
respect to the sup-norm ‖ · ‖∞.

It is well known that d metrizes the ∗-weak convergence on the space M+
1 (Ω). More-

over M+
1 (Ω) is a compact metric space, so that d is bounded, which means that

(2.5.2) L0(I;M+
1 (Ω)) := {ν : I →M+

1 (Ω) : ν is Borel measurable} = L∞(I;M+
1 (Ω)).

It is clear that by means of Stone-Weierstrass Theorem, we can take the functions ϕk to be Lipschitz
in the definition (2.5.1). So, for our purposes it is better to work with the following modified distance

(2.5.3) d(ν1, ν2) =

∞∑
k=1

1

2kαk

∣∣∣∣∫
Ω
ϕk(x) d(ν1(x)− ν2(x))

∣∣∣∣ ,
where αk = 1 + Lip(ϕk). This distance still metrizes the ∗-weak convergence onM+

1 (Ω) and it can
be compared with wq. In fact, we have the following:

Lemma 2.5.1. For every µ1, µ2 ∈ Wq(Ω), there holds d(µ1, µ2) ≤ wq(µ1, µ2).

Proof. It is clearly sufficient to prove the thesis in the case q = 1. We recall the duality
formula of Monge’s problem, which reads as (see Chapter 1, Proposition 1.1.4)

min
γ∈Π(µ1,µ2)

∫
Ω×Ω

d(x, y) dγ(x, y) = sup
ϕ∈Lip1(Ω)

∫
Ω
ϕ(x) d(µ1(x)− µ2(x)),

where Lip1(Ω) is the space of 1-Lipschitz functions over Ω. Then, for every µ1, µ2 ∈ Wq(Ω) we have∣∣∣∣∫
Ω
ϕk(x) d(µ1(x)− µ2(x))

∣∣∣∣ ≤ αk sup
ϕ∈Lip1(Ω)

∫
Ω
ϕ(x) d(µ1(x)− µ2(x)) = αk w1(µ1, µ2),

being Lip(ϕk/αk) ≤ 1, so that multiplying by 2−kα−1
k and summing up, we get

d(µ1, µ2) ≤
∞∑
k=1

1

2k
w1(µ1, µ2) = w1(µ1, µ2),

proving the assertion. �

Remark 2.5.2. As a simple consequence of Lemma 2.5.1, we obtain for every p ∈ [1,+∞] the
inclusion ACp(I;Wq(Ω)) ⊂ ACp(I;M+

1 (Ω)), with

(2.5.4) |µ′t|d ≤ |µ′t|wq , L 1−a.e. t ∈ I, µ ∈ ACp(I;Wq(Ω)).

We now introduce the key concept of evolution pairing, which formalizes the idea of associating
to every curve of probability measures, a curve which describes the mass that is effectively moving.
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Definition 2.5.3. Let (ν, µ) ∈ L0(I;M+
1 (Ω)) × ACp(I;Wq(Ω)) be two curves of measures,

such that the following are satisfied:

(E1) νt ≤ µt in the sense of measures, for L 1-a.e. t ∈ I;
(E2) ϑt := µt − νt is monotone nondecreasing, that is: there exists an L 1-negligible subset

M ⊂ I such that

ϑs = µs − νs ≤ µt − νt = ϑt, for every s, t ∈ I \M, with s < t;

Then we say that (ν, µ) is an evolution pairing and we write ν � µ.

Remark 2.5.4. We can think of ν as the moving mass, while µ is the total mass: in this sense,
condition (E2) means that the mass that has reached its final destination must increase in time,
while (E1) simply states that the moving mass is always less or equal than the total mass. Actually,
this really makes sense when the starting measure µ0 is a Dirac mass1, so that at time 0 mass starts
to move as a whole: on the contrary, when the starting measure is a generic probability, following
the same line of reasoning one would have to take into account also the possibility that masses could
start to move at different times. In this case, one possibility could be that of defining an evolution
pairing as a couple (ν, µ) with the property that ϑ = µ − ν is the sum of an increasing part (the
arrived mass) and a decreasing one (the mass which is still not moving), that is a genuinely BV
curve. Anyway, in order not to complicate too much the study without a clear scientific gain for
the reader, we will not pursue this direction in what follows.

Remark 2.5.5. The increasing monotonicity of the arrived mass ϑ implies the monotonicity of
the quantity

t 7→ |νt|(Ω),

while it does not imply that ν has a monotone decreasing (in the sense of measures) behaviour. As
an easy counterexample, let us take

σ1(t) = (1− t)x0 + tx1, t ∈ [0, 1],

and

σ2(t) =

{
(1− 2t)x0 + 2tx2, t ∈ [0, 1/2],

x2, t ∈ [1/2, 1],

and consider the curve of probability measures

µt = mδσ1(t) + (1−m)δσ2(t), t ∈ [0, 1],

joining ρ0 = δx0 and ρ1 = mδx1 + (1−m)δx2 , with x0, x1, x2 ∈ RN pairwise distinct and m ∈ (0, 1).
If we take

νt =

{
µt, t ∈ [0, 1/2],

mδσ1(t), t ∈ [1/2, 1]

then it is easy to verify that ν � µ, but

νt+h⊥ νt, t ∈ I, h > 0.

This example should also clarify that in general the curve ν is not continuous.

We exploit the more relevant consequence of evolution pairings in the next Lemma.

1In Chapter 4 we will use the results of this and the next section with µ0 = δx0 .
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Lemma 2.5.6. Let (ν, µ) ∈ L0(I;M+
1 (Ω)) × ACp(I;Wq(Ω)) be an evolution pairing. Then

ν ∈ BV (I;M+
1 (Ω)) and in particular we get

(2.5.5) |Dν|d(I) ≤ |DΦ|(I) +

∫
I
|µ′t|wq dt,

where Φ : I → R+ is the monotone nondecreasing function defined by

Φ(t) = d(νt, µt).

Proof. Before proving the main assertion, we first collect some easy consequences of the
definition of evolution pairing:

if the pair (ν, µ) satisfies (E1), this means that∫
Ω
ϕk(x) dνt(x) ≤

∫
Ω
ϕk(x) dµt(x), for L 1-a.e.t ∈ I, for every k ∈ N.

If we now take ν̃ ∈M+
1 (Ω) such that ν̃ ≤ νt for L 1-a.e. t ∈ I, we obtain

0 ≤
∫

Ω
ϕk(x) d(νt(x)− ν̃(x)) ≤

∫
Ω
ϕk(x) d(µt(x)− ν̃(x)),

and so, multiplying by 2−kα−1
k and summing up, we get

(2.5.6) d(νt, ν̃) ≤ d(µt, ν̃), for L 1-a.e. t ∈ I.

By hypothesis (E2), we also get

0 ≤
∫

Ω
ϕk(x) d(µs(x)− νs(x)) ≤

∫
Ω
ϕk(x) d(µt(x)− νt(x)), for every s < t ∈ I \M,

that is Φ(t) = d(νt, µt) is a real monotone nondecreasing function of a real variable.

To obtain that ν ∈ BV (I;M+
1 (Ω)), it is sufficient to write

νt − νs = (νt − µt)− (νs − µs) + (µt − µs), s, t ∈ I \M,

and then we use again (E2), so that for every ϕk∣∣∣∣∫
Ω
ϕk(x) d(νt(x)− νs(x))

∣∣∣∣ ≤ Φ(t)− Φ(s) +

∣∣∣∣∫
Ω
ϕk(x) d(µt(x)− µs(x))

∣∣∣∣ , for every s < t ∈ I \M.

Again, multiplying by 2−kα−1
k and summing up, we get

(2.5.7) d(νt, νs) ≤ Φ(t)− Φ(s) + d(µt, µs), s < t ∈ I \M.

Finally, we observe that

|DΦ|(I) = lim
t→T−

Φ(t)− lim
t→0+

Φ(t) = Φ−(T )− Φ+(0),



5. THE CASE OF MEASURES: EVOLUTION PAIRINGS 45

then it follows from (2.5.7) and the definition of essential total variation that

k∑
i=0

d(νti , νti+1) ≤
k∑
i=0

[Φ(ti+1)− Φ(ti)] +

k∑
i=0

d(µti , µti+1)

≤ Φ−(T )− Φ+(0) +

∫
I
|µ′t|wq dt,

for every finite partitions 0 < t0 < · · · < tk+1 < 1 of I \ (M ∪ Sν), proving (2.5.5). �

Remark 2.5.7. We observe that ν+
0 and ν−T are well defined, thanks to Lemma A.3.3 of the

Appendix A. Moreover by the very definition of evolution pairings, we have that if ν � µ, then
ν+

0 ≤ µ0 and ν−T ≤ µT , in the sense of measures. Indeed, let us prove the first: suppose that there
exist ϕ ∈ Co(Ω;R+) and ε > 0 such that∫

Ω
ϕ(x) dν+

0 (x) =

∫
Ω
ϕ(x) dµ0(x) + 4ε.

We can clearly assume that ‖ϕ‖∞ ≤ 1 and we observe that t 7→
∫

Ω ϕ(x) dµt(x) is a uniformly
continuous real function of one variable: then there exists r0 < T such that∫

Ω
ϕ(x) dµt(x) <

∫
Ω
ϕ(x) dµ0(x) + ε, t ∈ (0, r0),

which implies∫
Ω
ϕ(x) dνt(x) ≤

∫
Ω
ϕ(x) dµt(x) <

∫
Ω
ϕ(x) dν+

0 (x)− 3ε, for L 1-a.e. t ∈ (0, r0).

Then

3ε <

∫
Ω
ϕ(x) dν+

0 (x)−
∫

Ω
ϕ(x) dνt(x) =

∫
Ω
ϕ(x) d(ν+

0 (x)− νt(x)), for L 1-a.e. t ∈ (0, r0),

and if ϕm is such that ‖ϕ− ϕm‖∞ < ε, the previous yields

ε(3− |ν+
0 − νt|(Ω)) ≤

∫
Ω
ϕm(x) d(ν+

0 (x)− νt(x)), for L 1-a.e. t ∈ (0, r0).

It is enough to observe that ν+
0 − νt is a signed Radon measure, with total variation less than or

equal to 2, so that we simply obtain

ε ≤
∫

Ω
ϕm(x) d(ν+

0 (x)− νt(x)), for L 1-a.e. t ∈ (0, r0),

and multiplying the terms on both sides by c = 2−mα−1
m , we have

c ε ≤ d(νt, ν
+
0 ), for L 1-a.e. t ∈ (0, r0).

So, if we denote
X+
ε (0) = {t > 0 : d(νt, ν

+
0 ) > c ε},

we have proven (up to an L 1-negligible set) the inclusion (0, r0) ⊂ X+
ε (0): this in turn contradicts

the fact that, by definition of ν+
0 , the set X+

ε (0) must have 0-density.
The fact that ν−T ≤ µT can be proven in the same way.
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As already observed (see Proposition 1.3.8), the space Wq(Ω) is not locally compact, which in
particular means that it is not proper. However, this is not a great trouble, as far as we can endow
it with the weaker topology given by d and conditions (τ1)-(τ3) of Section 4 are satisfied. This is
the content of the next Lemma.

Lemma 2.5.8. The distance wq is d-lower semicontinuous. Moreover all bounded sets in Wq(Ω)
are d-relatively compact.

Proof. The proof is the same as in [24, Lemmas 4.2 and 4.3], the only difference being
the fact that d metrizes the ∗-weak convergence, instead of the narrow convergence. Anyway,
having assumed that Ω is locally compact, we have that, at the level of probability measures, ∗-
weak and narrow convergence are actually equivalent (see Chapter 1, Lemma 1.3.7): let us take
{µ1

n}n∈N, {µ2
n}n∈N ⊂ Wq(Ω) such that

µin
∗
⇀ µi ∈ Wq(Ω), i = 1, 2.

The two sequences are equi-tight (here we use the equivalence between ∗-weak and narrow conver-
gence), so that if for every n ∈ N we take γn ∈ Π(µ1

n, µ
2
n) to be an optimal transport plan, that

is
wq(µ

1
n, µ

2
n) = ‖d(·, ·)‖(Lq(Ω×Ω);γn),

then the equi-tightness of the marginals, implies that of {γn}n∈N ⊂P(Ω×Ω). Thus by Prokhorov’s
Theorem we have that, up to a subsequence, γn narrowly converges to γ and clearly γ ∈ Π(µ1, µ2).
This yields

wq(µ
1, µ2) ≤ ‖d(·, ·)‖(Lq(Ω×Ω);γ) ≤ lim inf

n→∞
‖d(·, ·)‖(Lq(Ω×Ω);γn)

= lim inf
n→∞

wq(µ
1
n, µ

2
n),

proving the first statement.

For the second statement, let us take x0 ∈ Ω: we observe that setting

BR(δx0) = {µ ∈ Wq(Ω) : wq(µ, δx0) < R},
then every {µn}n∈N ⊂ BR(δx0) is equi-tight, thanks to Markov’s Inequality: using again Prokhorov’s

Theorem, we get that µn
∗
⇀ µ (up to subsequences). It remains to observe that µ has finite q-

momentum: this is just a consequence of the lower semicontinuity of the functional

µ 7→ wq(µ, δx0),

thus concluding the proof. �

6. Minimizing evolution pairings

Let p ∈ [1,+∞], for every pair ρ0, ρ1 ∈ Wq(Ω), we define the following subset of L0(I;M+
1 (Ω))×

ACp(I;Wq(Ω)):
EPp,q(ρ0, ρ1) = {ν � µ : µ0 = ρ0, µT = ρ1}.

We are interested in the existence of an evolution pairing (ν, µ) minimizing

(2.6.1) A(ν, µ) =

∫
I
f(t, νt, |µ′t|wq) dt,
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over the set EPp,q(µ0, µ1): to this aim, we have to prove that the latter set is closed, with respect
to some reasonable topology.

Lemma 2.6.1. Let {(νn, µn)} ⊂ EPp,q(ρ0, ρ1) be such that νn → ν L 1-a.e. and µn
d
⇀ µ, then

(ν, µ) ∈ EPp,q(ρ0, ρ1).

Proof. We first show that (ν, µ) is an evolution pairing: for every k ∈ N we have∫
Ω
ϕk(x) dνt(x) = lim

n→∞

∫
Ω
ϕk(x) dνnt (x) ≤ lim

n→∞

∫
Ω
ϕk(x) dµnt

=

∫
Ω
ϕk(x) dµt(x), for L 1-a.e. t ∈ I,

so (ν, µ) verifies (E1).

Then letMn ⊂ I be the L 1-negligible set corresponding to νn in (E2) and defineM =
⋃
n∈NMn:

this is still an L 1-negligible subset of I, on which we have∫
Ω
ϕk(x) d(µs(x)− νs(x)) = lim

n→∞

∫
Ω
ϕk(x) d(µns (x)− νns (x))

≤ lim
n→∞

∫
Ω
ϕk(x) d(µnt (x)− νnt (x))

=

∫
Ω
ϕk(x) d(µt(x)− νt(x)), for every s, t ∈ I \M, such that s < t,

proving property (E2).

It remains to show that µ ∈ ACp(I;Wq(Ω)) and that it still verifies the conditions on the
endpoints: the first is just a consequence of the fact that wq is d-l.s.c., while the second straight-
forwardly follows from the uniform convergence, together with the fact that µn0 = ρ0 and µnT = ρ1,
for every n ∈ N. �

We are in a position to obtain the existence of a minimal evolution pairing, under the usual
appropriate growth conditions on the integrand f .

Theorem 2.6.2. Fix p ∈ (1,+∞). Let f : I×M1
+(Ω)×R→ R∪{+∞} be a function satisfying

hypotheses (2.3.2), (2.3.3) and (2.3.4). Assume further that there exist a measure ν ∈M+
1 (Ω) and

a summable function h such that

(2.6.2) f(t, ν, z) ≥ |z|p − β(t)d(ν, ν)r − h(t),

where 0 < r < p and β ∈ L
p
p−r (I;R+). Then for every pair ρ0, ρ1 ∈ Wq(Ω), the minimization

problem

inf
(ν,µ)∈EPp,q(µ0,µ1)

A(ν, µ),

admits a solution, provided there exists (ν, µ) ∈ EPp,q(ρ0, ρ1) with finite A, where A is defined by
(2.6.1).
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Proof. Take a minimizing sequence {(νn, µn)}n∈N ⊂ EPp,q(ρ0, ρ1) and suppose that

A(νn, µn) ≤ L, for every n ∈ N.

We consider on Wq(Ω) the weaker topology given by d: then we can repeat the same arguments of
Theorem 2.4.5, in combination with Lemma 2.5.8, to get the d-weak convergence in ACp(I;Wq(Ω))
(up to a subsequence) of {µn}n∈N to µ̂ ∈ ACp(I;Wq(Ω)).

In order to get the convergence of {νn}n∈N, we want to use Theorem A.3.5: indeed, it is trivially
true that

sup
n∈N

∫
I
d(νnt , 0) dt < +∞.

If we want to obtain a bound on the total variations, we can simply use the fact that every (νn, µn)
is an evolution pairing: if we indicate

Φn(t) = d(νnt , µ
n
t ), t ∈ I, n ∈ N,

we have already seen that these are monotone increasing functions. Moreover they are equi-
bounded, because of the boundedness of d.

This, together with Lemma 2.5.6, implies that {νn}n∈N ∈ BV (I;M+
1 (Ω)), with a uniform

bound on the total variations. Indeed we have

sup
n∈N
|Dνn|d(I) ≤ sup

n∈N
(Φ−n (T )− Φ+

n (0)) + sup
n∈N

∫
I
|(µnt )′|wq dt < +∞,

where we have used that

sup
n∈N

∫
I
|(µnt )′|wq dt < +∞,

by the first part of the proof.
So that we can apply Theorem A.3.5, obtaining the convergence of {νn}n∈N in L1(I;M+

1 (Ω))
(up to a subsequence) to a curve ν̂ ∈ BV (I;M+

1 (Ω)).
It only remains to observe that, by Lemma 2.6.1 we have (ν̂, µ̂) ∈ EPp,q(ρ0, ρ1), while by

Theorem 2.3.9 the functional A is lower semicontinuous, so that

A(ν̂, µ̂) ≤ lim inf
n→+∞

A(νn, µn) = min
(ν,µ)∈EPp,q(ρ0,ρ1)

A(ν, µ),

concluding the proof. �

Regarding the Lipschitz case (that is p = +∞), we can prove the analogous of Theorem 2.4.2:
namely, we have the existence of an evolution pairing minimizing a geodesic functional

(2.6.3) ˜̀
g(ν, µ) =

∫
I
g(νt) |µ′t|wq dt.

Theorem 2.6.3. Suppose that g : M+
1 (Ω) → [0,+∞] is lower semicontinuous and bounded

from below by a positive constant c > 0. Then for every ρ0, ρ1 ∈ Wq(Ω), the problem

(2.6.4) inf
(ν,µ)∈EP∞,q(ρ0,ρ1)

˜̀
g(ν, µ),

admits a solution, provided that there exists an evolution pairing in EP∞,q(ρ0, ρ1), with finite energy.
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Proof. Indeed, taking a minimizing sequence {(νn, µn)}n∈N, it should be clear that it is suffi-
cient to obtain the convergence of {µn}n∈N: then one can argue as in Theorem 2.6.2.

We suppose that the value (2.6.4) is finite, otherwise the result is trivial, so that it is not
restrictive to to suppose that

˜̀
g(ν

n, µn) ≤ C.
The functional under consideration is invariant by reparametrization and moreover we observe that
if ν � µ and µ̃ = µ ◦ t is a reparametrization of µ, then ν ◦ t = ν̃ � µ̃. So up to reparametrization,
we can suppose that

|(µnt )′|wq ≡ Ln,
then

cLn = c

∫
I
|(µnt )′|wq dt ≤ ˜̀

g(ν
n, µn) ≤ C,

giving that {µn}n∈N is equi-Lipschitz (with respect to wq) and

µnt ∈ {µ ∈ Wq(Ω) : wq(µ, ρ0) ≤ R}, n ∈ N, t ∈ I,
for a suitable R > 0. This implies the d-weak convergence of the sequence, with the same line
of reasoning of Theorem 2.4.5. Then one can conclude by applying the semicontinuity result of
Theorem 2.3.9. �





CHAPTER 3

Branched transportation problems

1. Introduction

With this chapter, we begin the study of branched transportation problems, that is transporta-
tion problems in which the total cost is lowered by grouping the mass during the movement. As
already mentioned in the Plan of the Work, this energy saving requirement is usually encoded taking
into account an infinitesimal cost of the type

ϕ(m) `,

for a mass m moving on a distance `, with ϕ being a given increasing subadditive function: indeed,
thanks to the subadditivity property we have ϕ(m1 + m2) ≤ ϕ(m1) + ϕ(m2), so that it could be
less expensive to put different masses together. In this way branching effects arise and the typical
optimal configurations are tree-shaped structures. The usual choice for ϕ is given by ϕ(m) = mα,
with α ∈ [0, 1]: observe that in the case α = 1 we have a linear dependence on the mass (so it is
concentration indifferent), corresponding to the infinitesimal cost of the usual Monge-Kantorovich
problem. On the other hand, when α = 0, branching effects are so strong that one only looks at
the minimization of the total length of the transportation structure: this corresponds to a minimal
connection (or Steiner) problem.

Nature offers a wide variety of systems which can be seen as solving a branched transportation
problem, just think to root systems in a tree or to blood vessels in a human body. Human beings
as well have learnt that usually it is better to create optimal transportation networks, in order to
distribute some goods in an optimal way from a source to a destination: drainage network systems,
telephone cables, electric wires and so on are simple examples of this fact.

From this, the interest in studying variational models giving rise to branched structures of
transportation as optimizers, a topic which has been the object of an intensive investigation in
recent times. In this chapter we try to offer a presentation of some of these models:

• the transport paths one (Section 2) by Xia ([90]);
• the Lagrangian models (Section 3), which comprise the irrigation patterns model by Mad-

dalena, Morel and Solimini ([67]), the traffic plans model by Bernot, Caselles and Morel
([15]) and the synchronized traffic plans model by Bernot and Figalli ([18]);
• the path functional one (Section 4), which is the one introduced by Brancolini, Buttazzo

and Santambrogio (see [24]).

Particular emphasis will be put on the latter, the path functional model, which is the less studied:
as we will see in Section 5, this is not equivalent to the others, as far as it provides optimal structures
which are qualitatively different, indeed it describes a slightly different kind of energy. We will then
try to understand the main reasons for this failed equivalence and see how it is possible to modify
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the path functional model, in order to let it describe an energy equivalent to a Gilbert-Steiner one:
then this issue will be addressed in the next chapter, where a fundamental role will be played by
the concept of evolution pairing (see Section 5 of the previous chapter) and by action functionals
of the form ∫

I
f(t, νt, |µ′t|) dt,

which has been treated in great details in the previous chapter. In what follows, with Ω we will
always indicate a compact convex subset of RN , having non empty interior.

2. Xia’s transport paths model

The interesting feature of this model is that it falls into the class of divergence-constrained
optimization problems. To start with, let us consider the discrete case, that is the case of finitely
atomic sources and destinations: let ρ0 and ρ1 be two probability measures given by

ρ0 =
m∑
k=1

ak δxk and ρ1 =
n∑
j=1

bj δxj ,

and consider a weighted oriented graph g, consisting of:

• a set {vs}s∈V of vertices of the graph, which comprise the sources {x1, . . . , xm} and sinks
{y1, . . . , yn};
• a set {eh}h∈J of edges of the graph;
• a set {−→τh}h∈J of orientations for the edges of the graph, that is each −→τh is the orientation

of the corresponding edge eh;
• a set {mh} of weights defined on the edges of the graph, each mh standing for the mass

transiting on the edge eh (or the capacity of eh).

Observe that such a graph g encodes all the informations on the transportation structure and it is
said to be a transport path between ρ0 and ρ1 if the following balance conditions are satisfied:

(i) for each source vertex xk, with k = 1, . . . ,m, we have

ak =
∑
e−h =xk

mh,

where e−h stands for the starting point of the corresponding edge eh (remember that the
edges are oriented);

(ii) for each sinks vertex yj , with j = 1, . . . , n, we have

bj =
∑
e+h=yj

mh,

where e+
h stands for the ending point of the edge eh;

(iii) for any interior vertex vs, we have (Kirchhoff’s Law)∑
e−h =v

mh =
∑
e+h=v

mh,
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that is at every interior bifurcation point, the total incoming mass must equal the total
outcoming one (which expresses the conservation of mass).

Then given ρ0 and ρ1 as before, we define the set

T (ρ0, ρ1) = {g transport path between ρ0 and ρ1},

and associate to every g ∈ T (ρ0, ρ1) the total cost given by

(3.2.1) Mα(g) =
∑
h∈J

mα
h H 1(eh),

where H 1 is the one-dimensional Hausdorff measure and α ∈ [0, 1]: observe that this is an energy
of the form ∑

(mass)α × length,

as discussed in the Introduction, with the subadditive power α favouring the joining of masses.
The related optimization problem then reads as

min
g∈T (ρ0,ρ1)

Mα(g),

and it can be viewed as a generalization of Steiner’s problem of finding the network of minimal
length connecting a set of given points, the latter clearly corresponding to the choice α = 0. On
the other hand, in the other extremal case, namely when α = 1, the cost is linear with respect
to the mass and there is no gain in joining masses: in this case, we are simply facing the Monge-
Kantorovich problem with cost given by the distance and so

min
g∈T (ρ0,ρ1)

M1(g) = w1(ρ0, ρ1).

This discrete model, firstly introduced by Gilbert in the ’60s ([56]) in order to provide a mathemat-
ical model for the transportation of signals along telephone cables, has been suitably extended to
the case of ρ0 and ρ1 generic probability measures by Xia in [90], thanks to a relaxation procedure:
the idea is to reformulate Gilbert’s model in the language of vector measures (or currents, as in
[73]), so that every weighted oriented graph g ∈ T (ρ0, ρ1) can be viewed as the measure

φg :=
∑
h

mh
−→τh H 1xeh,

that is ∫
Ω
ϕ(x) · dφg(x) =

∑
h∈J

mh

∫
eh

〈ϕ(x),−→τh(x)〉 dH 1(x), for every ϕ ∈ C0(Ω;RN ),

and the balance conditions (i)-(iii) simply rewrite as a constraint on the divergence of this measure,
that is

div φg = ρ0 − ρ1, in Ω, 〈φg, ν〉 = 0, on ∂Ω,

in the usual sense of distributions, that is∫
Ω
∇ϕ(x) · dφg(x) =

∫
Ω
ϕ(x) d(ρ1(x)− ρ0(x)), for every ϕ ∈ C1(Ω).
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In this general case, given ρ0, ρ1 ∈P(Ω), a vector measure φ is said to be a transport path between
ρ0 and ρ1 if there exists a sequence of triples {(ρn0 , ρn1 , gn)}n∈N with ρn0 , ρ

n
1 finitely atomic probability

measures and gn ∈ T (ρn0 , ρ
n
1 ), such that

ρni ⇀ ρi, i = 0, 1 and φgn ⇀ φ.

A sequence of triples {(ρn0 , ρn1 , gn)}n∈N like this is called an approximating graph sequence (a. g. s.,
for short) for φ: observe in particular that such a vector field φ verifies divφ = ρ0 − ρ1, still in the
sense of distributions (with 〈φ, ν〉 = 0 on ∂Ω). We still denote with T (ρ0, ρ1) the set of transport
paths between ρ0 and ρ1 and we define the energy of φ ∈ T (ρ0, ρ1) as

M∗α(φ) = inf
{

lim inf
n→∞

Mα(gn) : {ρn0 , ρn1 , gn} is an a. g. s. for φ
}
.

Moreover this relaxed energy admits the following integral representation (see [89, Proposition 4.4])

(3.2.2) M∗α(φ) =

{ ∫
Σm(x)α dH 1(x), if φ = m−→τ H 1xΣ,

+∞, otherwise,

which is finite only on those vector measures concentrated on a 1−rectifiable set Σ with a vector
density m−→τ with respect to H 1, where −→τ is an orientation of Σ, which means that the measurable
vector field −→τ : Σ → SN−1 belongs to the approximate tangent space to Σ, for H 1−a.e. point.
Obviously, this energy is closely related to the original Gilbert-Steiner one (3.2.1).

In the following, for every α ∈ [0, 1] and ρ0, ρ1 ∈P(Ω) we will set

(3.2.3) dα(ρ0, ρ1) = min{M∗α(φ) : φ ∈ T (ρ0, ρ1)},

and observe that this minimum value (provided it exists) is unchanged, if we enlarge the class of
admissible vector measures to comprise directly those with prescribed divergence ρ0 − ρ1.

We collect some important results on this model in the next Theorem (see [90, Theorems 3.1,
4.2 and 5.1]).

Theorem 3.2.1 (Xia). Let α ∈ (1− 1/N, 1] and ρ0, ρ1 ∈P(Ω), then the minimization problem
defining dα(ρ0, ρ1) does admit a solution with finite energy. Moreover dα : P(Ω)×P(Ω)→ [0,∞)
defines a distance on P(Ω) which metrizes the ∗−weak convergence and such that (P(Ω), dα) is a
geodesic space.

3. Lagrangian models

With this name, we refer to various models due to different authors (Bernot, Caselles, Figalli,
Maddalena, Morel, Solimini), whose common root is a Lagrangian description of branched trans-
portation, achieved through the employing of a functional defined on probability measures over the
space of Lipschitz paths. This is not surprising, as far as probability measures over the set of paths
have shown up to be a very powerful tool in Fluid Mechanics, like in the Lagrangian formulation
of incompressible Euler equations (see [26]). Usually, in these models the energy associated to the
transportation is almost the same, apart for the definition of multiplicity (see below) which, in some
sense, is characteristic of each model.
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We start recalling that the Monge-Kantorovich problem has the following equivalent Lagrangian
formulation

min
Q∈TP (ρ0,ρ1)

∫
C([0,1];Ω)

`(σ) dQ(σ),

where

TP (ρ0, ρ1) = {Q ∈P((C[0, 1]; Ω)) : Q is concentrated on Lip([0, 1]; Ω), (ei)]Q = ρi, i = 0, 1},

any optimizer being given by Q =
∫

Ω×Ω δxy dγ(x, y), with γ ∈ Π(ρ0, ρ1) optimal transport plan for

the cost c(x, y) = |x − y| and xy a parametrization on [0, 1] of the segment joining x to y. More
generally, one can consider conformal perturbations of the Euclidean metric: defining the distance

dg(x, y) = inf
σ∈Cx,y

∫ 1

0
g(σ(t)) |σ′(t)| dt,

with Cx,y = {σ : σ(0) = x, σ(1) = y} and g : Ω → [0,+∞] lower semicontinuous and bounded
from below by c > 0, we see that the Monge-Kantorovich problem for this cost dg has the equivalent
Lagrangian description

min
TP (ρ0,ρ1)

∫
C([0,1];Ω)

(∫ 1

0
g(σ(t)) |σ′(t)| dt

)
dQ(σ),

any optimal Q now being of the form Q =
∫

Ω×ΩQ
x,y dγ(x, y), with Qx,y probability measure

concentrated on the set of geodesics (with respect to dg) joining x to y.
Anyway, in this description interaction effects between particles are not taken care of, as far

as the quantity to be minimized only involves the lengths of the paths followed by particles. In
order to keep track of these effects, the idea is to modify the latter case, the one corresponding to
dg, taking the weight function g to be a function of the mass transiting from σ(t) and not only
of the position occupied by the particle corresponding to σ at time t. This implies that now the
energy mixes masses and lengths, so that it could happen that particles act cooperatively (joining
or separating) in order to optimize the total energy. We then arrive to the concept of multiplicity
which formalizes this idea of transiting mass: for example, the multiplicity of the model introduced
in [15] by Bernot, Caselles and Morel is given by

(3.3.1) |x|Q = Q({σ : x ∈ Im(σ)}).

Then one looks at the minimization of the functional

Eg(Q) =

∫
C

∫ 1

0
g(|σ(t)|Q) |σ′(t)| dt dQ(σ),

over the set TP (ρ0, ρ1). A straightforward scaling argument shows that the right choice for g, in
order to obtain an energy which reproduces the Gilbert-Steiner one (3.2.1) (i.e. sums of massα ×
length), is

g(t) = tα−1,

with the convention 0α−1 =∞, so that the energy one wants to consider is given by

Eα(Q) =

∫
C

∫ 1

0
|σ(t)|α−1

Q |σ′(t)| dt dQ(σ), Q ∈ TP (ρ0, ρ1).
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Observe in particular that if Eα(Q) < +∞, then Q can not give positive mass to a set of paths
with zero multiplicity.

Remark 3.3.1. Using the one-dimensional area formula, it is not difficult to see that for every
Q concentrated on injective curves and having finite Eα, we have

Eα(Q) =

∫
Ω
|x|αQ dH 1(x),

where it is understood that in the right-hand side we have that the set {x ∈ Ω : |x|Q 6= 0} has
σ−finite H 1 measure (see [17, Proposition 4.8]).

So far, this is a heuristic presentation of the Lagrangian models: as briefly mentioned, the
choice (3.3.1) for the multiplicity is not the unique that can be made, another possible choice being

(3.3.2) |(x, t)|Q = Q({σ : x = σ(t)}),

which describes the mass transiting from a point x at a certain time instant t. This is the multiplicity
used in the Lagrangian model of Bernot and Figalli (the synchronized traffic plans model, see [18]):
compared with (3.3.1), it has the advantage of being local both in time and space, so that the
model presented in [18] gives a description of branched transportation problems, which is more
dynamical in spirit. Moreover if µt = (et)]Q, then

|(x, t)|Q = µt({x}),

so that this is the multiplicity which can be naturally compared with the path functional one (we will
give the details of this comparison in the next chapter). Another possible definition of multiplicity,
and actually the first one which has been introduced, is the multiplicity of the irrigation pattern
model of Maddalena, Morel and Solimini, which is only suitable for the case where ρ0 is a Dirac
mass, i.e. ρ0 = δx0 . Using the language of probability measures over C([0, 1]; Ω), it is defined by

(3.3.3) [σ]t,Q = Q({ψ : ψ(s) = σ(s), for every s ∈ [0, t]}),

which gives, for every curve σ, the quantity of mass which has traveled together with it up to time
t.

We now proceed to give a more systematic presentation of these models. We introduce the time
interval I = [0,∞) and instead of the space C([0, 1]; Ω), it is considered the space Lip1(I; Ω) of
all 1−Lipschitz curves over Ω, equipped with the topology of the uniform convergence on compact
sets, the latter being metrizable.

This space has the advantage of being a compact metric space, so that for example ev-
ery sequence of probability measures on Lip1(I; Ω) is automatically equi-tight (and thus weakly
converging). By the term traffic plan we mean every element of P(Lip1(I; Ω)). The function
T : Lip1(I; Ω)→ [0,∞] is the stopping time of a curve σ, defined as

(3.3.4) T (σ) = inf{t ∈ [0,∞) : σ is constant on [t,∞)},

and we recall that T is a lower semicontinuous function (see [15, Lemma 4.2]). We then define the
set of traffic plans with prescribed initial and final measures

TP (ρ0, ρ1) = {Q ∈P(Lip1(I; Ω)) : Q({T = +∞}) = 0, (e0)]Q = ρ0, (e∞)]Q = ρ1},



3. LAGRANGIAN MODELS 57

where for every t ∈ I, the function et is the usual evaluation at time t map and the application e∞
is defined on the set {σ : T (σ) < +∞} through e∞(σ) = σ(T (σ)).

Given a traffic plan Q ∈P(Lip1(I; Ω)), for every α ∈ (0, 1) we then define its energy as

Eα(Q) =

∫
Lip1(I;Ω)

∫ ∞
0
|σ(t)|α−1

Q |σ′(t)| dt dQ(σ),

then we have the following.

Theorem 3.3.2. The minimization problem

min
TP (ρ0,ρ1)

Eα(Q),

admits a solution, provided there exists an admissible traffic plan with finite energy.

Alternatively, one can replace the multiplicity defined in (3.3.1) with that given by (3.3.2), thus
considering for every traffic plan Q its synchronized energy ([18])

Sα(Q) =

∫
Lip1(I;Ω)

∫ ∞
0
|(σ(t), t)|α−1

Q |σ′(t)| dt dQ(σ),

or, in the case that ρ0 = δx0 , its irrigation energy ([67])

Iα(Q) =

∫
Lip1(I;Ω)

∫ ∞
0

[σ]α−1
t,Q |σ

′(t)| dt dQ(σ),

and consider the relative minimization problems. In the following Theorem, we summarize the
main results about comparison between Xia’s and Lagrangian models: for the proofs one can see
[17, Chapter 9] and [18, Section 6].

Theorem 3.3.3. Let ρ0 = δx0, then the three Lagrangian models are all equivalent. More
generally, if ρ0 is finitely atomic, i.e.

ρ0 =

s∑
i=1

ai δxi ,

then the synchronized traffic plan model, corresponding to Sα, is equivalent to the model of Bernot,
Caselles and Morel. In any case, the Lagrangian model corresponding to Eα is equivalent to Xia’s
model. In particular, for every ρ0, ρ1 ∈P(Ω) we have

(3.3.5) min
Q∈TP (ρ0,ρ1)

Eα(Q) = dα(ρ0, ρ1),

where dα is defined in (3.2.3).

Remark 3.3.4. It is worth stressing that by equivalent we mean not only equality of the minima
(which is the less interesting part), but more important that the energies of the models are the same
(actually, a Gilbert-Steiner one) and that the optimal structures described do coincide. Moreover
a natural way to pass from the minimizers of a problem to another is given.

A nice consequence of the equivalence (3.3.5) is exploited in the next result: it will be useful in
the next two Chapters.



58 3. BRANCHED TRANSPORTATION PROBLEMS

Proposition 3.3.5. For every ρ0, ρ1 ∈P(Ω), there exist two sequences {ρn0}n∈N and {ρn1}n∈N
of finitely atomic probability measures, weakly converging to ρ0 and ρ1 respectively, and such that

(3.3.6) lim
n→∞

min
Q∈TP (ρn0 ,ρ

n
1 )
Eα(Q) = min

Q∈TP (ρ0,ρ1)
Eα(Q).

Proof. Clearly, the proof is just a straightforward consequence of the relaxed formulation of
the energy M∗α in Xia’s model and of equivalence (3.3.5). �

Remark 3.3.6. Observe that the energy Eα has the great advantage of being invariant under
time reparametrization (the definition of the multiplicity plays a crucial role in this). This in
particular implies that defining the map r(σ) = σ̃, with σ̃ arc-length reparametrization of σ, and

setting Q̃ = (r)]Q, we have

Eα(Q) = Eα(Q̃).

In particular, we get that if one withdraws the derivative term and still works with curves which
are 1−Lipschitz, considering the modified energy

Ẽα(Q) =

∫
Lip1(I;Ω)

∫ T (σ)

0
|σ(t)|α−1

Q dt dQ(σ), Q ∈ TP (ρ0, ρ1),

then the minimization will give the same result, that is

min
Q∈TP (ρ0,ρ1)

Eα(Q) = min
Q∈TP (ρ0,ρ1)

Ẽα(Q),

with the difference that now we are selecting a class of precise minimizers Q, the ones concentrated
on curves which move at maximal speed.

Notice that on the contrary the energy Iα is not reparametrization invariant, but anyway we
still have that

min
Q∈TP (δx0 ,ρ1)

Iα(Q) = min
Q∈TP (δx0 ,ρ1)

Ĩα(Q),

where

Ĩα(Q) =

∫
Lip1(I;Ω)

∫ T (σ)

0
[σ(t)]α−1

t,Q dt dQ(σ),

once we observe that there holds

Iα(Q) ≥ Iα(Q̃),

each time we take Q̃ = (r)]Q, that is Iα decrease under arc-length reparametrization.

The previous observations about time reparametrizations do not straightforwardly apply to the
case of Sα: anyway, we need to stress the following clarifying result (see for instance [77, Section
2.3]) and see in a while some of its consequences.

Theorem 3.3.7. If Q0 is an optimal traffic plan minimizing Ẽα on TP (δx0 , ρ1), then Q0 is
concentrated on curves σ which are parametrized by arc length (i.e. |σ′(t)| = 1 a.e. on [0, T (σ)])
and such that, for all times t < T (σ), the equality

|σ(t)|Q0 = [σ]t,Q0 = |(σ(t), t)|Q0 ,

holds.
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Then if one considers the problem of minimizing

S̃α(Q) =

∫
Lip1(I;Ω)

∫ T (σ)

0
|(σ(t), t)|α−1

Q dt dQ(σ),

thanks to the fact that Ẽα(Q) ≤ S̃α(Q) for every traffic plan Q and that, by means of Theorem

3.3.7, we have equality on Q0 optimizer of Ẽα (and thus of Eα), we obtain

min
TP (ρ0,ρ1)

Sα = min
TP (ρ0,ρ1)

Eα = min
TP (ρ0,ρ1)

Ẽα = min
TP (ρ0,ρ1)

S̃α,

in the case that ρ0 = δx0 , having used Theorem 3.3.3. This in particular tells that minimizing the
synchronized energy with or without the derivative term does not affect the problem and it selects
a traffic plan concentrated on curves parametrized by arc-length: this will be particularly useful in
the next chapter.

For traffic plans minimizing Eα, Bernot, Caselles and Morel have also shown some regularity
properties, asserting that, under suitable conditions, they have the structure of a finite graph (this
is not at all obvious when ρ0 and ρ1 are general probability measures): just to give a flavour of the
kind of results one can expect for, we give the following, which is an interior (that is, away from
the support of the irrigating and irrigated measure) regularity statement (see [16, Theorem 4.7]).

Theorem 3.3.8. Let α ∈ (1 − 1/N, 1) and let Q ∈ TP (ρ0, ρ1) be optimal for Eα. Assume
that the supports of ρ0 and ρ1 are at positive distance. In any closed ball Br(x0) not meeting the
supports of ρ0 and ρ1, the set

SQ = {x ∈ Ω : |x|Q > 0},
has the structure of a finite graph.

4. The path functional model

As one can figure it out, the concave power α will play a prominent role in this model, too.
The point of view introduced in [24] is that of studying weighted-length functionals of the type

(3.4.1)

∫ 1

0
g(µt) |µ′t|wp dt,

defined on the space of Wp(Ω)−valued Lipschitz curves.
Minimizers of functionals (3.4.1), under the constraints µ0 = ρ0 and µ1 = ρ1, can be seen as

geodesics, with respect to a metric which is a conformal perturbation of the Wasserstein one, in the
space of probability measures, joining ρ0 and ρ1. Indeed, recall that by Chapter 1, formula (1.3.3),
we know that Wp(Ω) is a geodesic space and moreover the p−Wasserstein distance between ρ0 and
ρ1 can be characterized as

wp(ρ0, ρ1) = min
C∞,p(ρ0,ρ1)

∫ 1

0
|µ′t|wp dt,

where, with the notation of the previous chapter, C∞,p(ρ0, ρ1) is the space of wp−Lipschitz curve,
connecting ρ0 to ρ1.

With suitable choices of the conformal factor g in (3.4.1), one can either treat the case of
diffusion, where masses spread all over Ω, or that of concentration, where on the contrary masses
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travel together as much as possible, giving rise to three-shaped optimal structures. For the purposes
of this chapter, we will confine ourselves only to this second case.

In order to modelize branched phenomena through (3.4.1), in [24] it is considered the lower-
semicontinuous weight-function defined over P(Ω) by

(3.4.2) gα(µ) =


∑
k∈N

mα
k , if µ =

∑
k∈N

mkδyk ,

+∞, otherwise,

with α ∈ (0, 1), which is a local functional defined on measures, of the kind studied by Bouchitté
and Buttazzo in [21]. We define the (α, p)−path functional energy by

(3.4.3) Pα,p(µ) =

∫ 1

0
gα(µt) |µ′t|wp dt, µ ∈ Lip([0, 1];Wp(Ω)),

then observing that, due to the sub-additivity of x 7→ xα, we have

gα(µ) ≥ 1, µ ∈P(Ω),

and applying Theorem 2.4.2 of Chapter 2 with I = [0, 1], X =Wp(Ω) and g = gα, it is straightfor-
ward to obtain the following existence result.

Theorem 3.4.1. For every ρ0, ρ1 ∈P(Ω), the minimization problem

inf
µ∈C∞,p(ρ0,ρ1)

Pα,p(µ),

admits a solution, provided there exists an element of C∞,p(ρ0, ρ1) having finite energy.

Remark 3.4.2. Observe that the term gα is finite only on atomic measures and reproduces the
energy with the masses to the power of α, which is typical of all the other models. Moreover this
is a purely dynamical model, as far as any optimal curve provides the evolution of the branched
transportation and not just the branched structure underlying the movement: also notice that the
term gα(µt) is local both in space and time.

In the sequel, we will denote by Dα,p : P(Ω) ×P(Ω) → [0,+∞] the function defined by the
minimization problem of Theorem 3.4.1, that is

Dα,p(ρ0, ρ1) = min
µ∈C∞,p(ρ0,ρ1)

Pα,p(µ).

We aim to show that for suitable choices of α, these functions are actually always finite and
moreover they define a family of distances on the space of probability measure over Ω: then it will
be interesting to compare these distances with the usual Wasserstein ones.

In order to do this, we first need to fix some notations: we set K = [0, 1]N and KL = [0, L]N ,
then for every j ∈ N we consider the set of multi-indexes

Bj = {z ∈ NN : ‖z‖∞ ≤ 2j − 1},
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and observe that ](Bj) = 2jN . We partition the cube KL with dyadic cubes having edge length
L/2j , i.e.

KL =
2jN⋃
i=1

Ki
j :=

⋃
z∈Bj

LK + Lz

2j
,

and we call {Ki
j}2

jN

i=1 the j−th generation of cubes. For every µ ∈ P(Ω) such that Ω ⊂ KL, its
dyadic approximation is given by

aj(µ) =
2jN∑
i=1

mi
j δxij

,

where mi
j = µ(Ki

j) and xij is the center of Ki
j . From now on, we shall always assume that Ω ⊂ KL

for a suitable L.

We start giving an estimate for the minimal value of (3.4.1) when ρ1 is a generic probability
measure and ρ0 is one of its dyadic approximations: this is the main tool is order to guarantee that
the function Dα,p is always finite, at least for well chosen values of α.

Proposition 3.4.3. Let α ∈ (1− 1/N, 1] and p ∈ [1,∞], then for every µ ∈P(Ω) we have

(3.4.4) Dα,p(aj(µ), µ) ≤ 2(N(1−α)−1)j

21−N(1−α) − 1

L
√
N

2
.

Proof. The idea is simple and nowadays very standard in this context: we have to transport
aj(µ) on aj+1(µ), then aj+1(µ) on aj+2(µ) and so on; then the ∗−weak convergence of {ak(µ)}k≥j
to µ will lead to the desired conclusion. In order to do this, it suffices to use a constant speed
Wasserstein geodesic at every step, which in this particular case has a very simple structure, due
to the fact that the measures are atomic and their supports satisfy a rigid geometrical condition
(i.e. they are the centers of dyadic cubes). At every step, we start from the centers {xik} of the

k−generation and we split each mass mi
k in 2N parts, sending each of these pieces to the centers of

the cubes of the (k+1)−generation: the distance covered by each particle is given by 2−(k+2)L
√
N ,

so that the Wasserstein distance between two successive dyadic approximations is given by

wp(ak(µ), ak+1(µ)) =
L
√
N

4 · 2k
.

We now define recursively the time steps tj = 0,

tk+1 = tk +
L
√
N

4 · 2j+k
, for every k ≥ j,

and we consider the geodesic curves µk : [tk, tk+1] → Wp(Ω) connecting ak(µ) and ak+1(µ),
parametrized in such a way that

|(µkt )′|wp ≡ 1, t ∈ [tk, tk+1],
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then interpolating all these curves, we can estimate the energy as follows

Dα,p(aj(µ), µ) ≤
∞∑
k=j

∫ tk+1

tk

2(k+1)N∑
i=1

(mi
k+1)α dt


=
L
√
N

2

∞∑
k=j

 1

2k+1

2(k+1)N∑
i=1

(mi
k+1)α


≤ L

√
N

2

∞∑
k=j

(
1

2k+1
2(k+1)N 1

2(k+1)Nα

)
=
L
√
N

2

∞∑
s=j+1

(
2N(1−α)−1

)s
,

where we have used the fact that the function f(x1, . . . , xn) =
∑n

i=1 x
α
i achieves its maximum for

xi = 1/n, i = 1, . . . , n, under the constraint
∑n

i=1 xi = 1.
We now observe that thanks to the assumptions on α, the exponent N(1− α)− 1 is negative,

so that simple calculations yields
∞∑

s=j+1

(
2N(1−α)−1

)s
=

1

1− 2N(1−α)−1
− 1− 2(N(1−α)−1)(j+1)

1− 2N(1−α)−1

=
21−N(1−α)

21−N(1−α) − 1
− 21−N(1−α) − 2(N(1−α)−1)j

21−N(1−α) − 1

=
2(N(1−α)−1)j

21−N(1−α) − 1
,

thus giving the desired estimate. �

Theorem 3.4.4. Let α ∈ (1−1/N, 1) and p ∈ [1,∞], then for every ρ0, ρ1 ∈P(Ω) the quantity
Dα,p(ρ0, ρ1) is finite. Moreover we have the following estimate

(3.4.5) Dα,p(ρ0, ρ1) ≤ L
√
N

1

21−N(1−α) − 1
.

Proof. This now follows straightforwardly from Proposition 3.4.3. Indeed, let x0 denote the
center of QL, it is sufficient to observe that

Dα,p(ρ0, ρ1) ≤ Dα,p(ρ0, δx0) +Dα,p(δx0 , ρ1)

and then use estimate (3.4.4) with i = 0. �

Remark 3.4.5. Observe in particular that we obtain finiteness of the minimum for the same
values of α as in Xia’s model. In the case α ∈ [0, 1 − 1/N ] on the contrary, counter-examples
to the finiteness of Dα,p can be constructed (see [24, Theorem 3.5]). The interesting problem of
characterizing, given a probability measure ρ0, the values of (α, p) for which there results

Dα,p(ρ0, δx0) < +∞,
has been addressed in the recent paper [19] by Bianchini and Brancolini.

We are now ready to prove that through the path functional model, we can naturally define a
new metric on the space of probability measures.
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Proposition 3.4.6. Let α ∈ (1 − 1/N, 1) and p ∈ [1,∞], then Dα,p(·, ·) defines a distance on
P(Ω).

Proof. We first observe that thanks to Theorem 3.4.4, with this choice of α we get that Dα,p

is always finite. Moreover
Dα,p(ρ0, ρ1) = 0⇐⇒ ρ0 = ρ1,

one implication being obvious, while the other is just a consequence of the fact that

(3.4.6) Dα,p(ρ0, ρ1) ≥ min
µ∈C∞(ρ0,ρ1)

∫ 1

0
|µ′t|wp dt = wp(ρ0, ρ1).

Finally, it is straightforward to see that Dα,p verifies the triangular inequality. �

Remark 3.4.7. Thanks to the monotonicity property of Wasserstein distances, the path func-
tionals metrics are ordered, that is

p ≤ q =⇒ Dα,p(ρ0, ρ1) ≤ Dα,q(ρ0, ρ1).

As one can imagine by means of its very definition, the metric Dα,p turns P(Ω) into a geodesic
space: this is exactly the content of the next simple result.

Proposition 3.4.8. Let α ∈ (1 − 1/N, 1) and p ∈ [1,∞]. Then (P(Ω), Dα,p) is a geodesic
space.

Proof. The proof is almost straightforward, using the definition of Dα,p: it is sufficient to take
ρ0, ρ1 ∈P(Ω) and a curve µ ∈ C∞(ρ0, ρ1) such that

Dα,p(ρ0, ρ1) =

∫ 1

0
gα(µt) |µ′t|wp dt,

and show that there results

(3.4.7) |µ′t|Dα,p ≤ gα(µt) |µ′t|wp , for L 1−a.e. t ∈ [0, 1].

Indeed, if this is true, then we get ∫ 1

0
|µ′t|Dα,p dt ≤ Dα,p(ρ0, ρ1),

so that µ is a geodesic in (P(Ω), Dα,p) between µ0 and µ1. To show (3.4.7), we consider µ̃ ∈
C∞(µt, µt+h) given by

µ̃s = µt+sh, s ∈ [0, 1],

then using the definition of Dα,p, we get

Dα,p(µt, µt+h) ≤
∫ 1

0
gα(µ̃s) |µ̃′s|wp ds =

∫ t+h

t
gα(µτ ) |µ′τ |wp dτ,

and dividing by h > 0 and taking the limit as h goes to 0, we obtain (3.4.7). �

We have seen that, thanks to (3.4.6), the topology induced by the distance Dα,p is comparable
to the p−Wasserstein one: it is not difficult to see that actually the two topologies are equivalent,
as the next result, which comes from some conversations with Filippo Santambrogio, shows in a
quantitative form.



64 3. BRANCHED TRANSPORTATION PROBLEMS

Theorem 3.4.9. Let α ∈ (1− 1/N, 1) and p ∈ [1,∞], then

(3.4.8) Dα,p(ρ0, ρ1) ≤ C wp(ρ0, ρ1)1−N(1−α),

for a constant C depending on N , α and the diameter of Ω.

Proof. Using the triangular inequality we get

Dα,p(ρ0, ρ1) ≤ Dα,p(µ0, aj(ρ0)) +Dα,p(aj(ρ0), aj(ρ1)) +Dα,p(aj(ρ1), ρ1),

where as before aj(·) stands for the dyadic approximation of a measure. We then observe that

Dα,p(ρi, aj(ρi)) < C 2(N(1−α)−1)j , i = 0, 1,

as a consequence of Proposition 3.4.3, where N(1 − α) − 1 < 0 thanks to the assumptions on α.
Let us then estimate the term Dα,p(aj(ρ0), aj(ρ1)) as follows: first of all, we observe that to give an
estimate from above of this term, it is sufficient to exhibit a Lipschitz curve in Wp(Ω) connecting
the two atomic measures aj(ρ0) and aj(ρ1) and then to compute its path functional energy. The

most simple choice is clearly that of taking µjt = ((1 − t)πx + t πy)#γ, with γ ∈ Π(aj(µ0), aj(µ1))
optimal transport plan (see Chapter 1, Theorem 1.3.12), that is a p−Wasserstein constant speed

geodesic curve µjt between these two atomic measures (which is a finitely atomic measure, for every
t), parametrized by arc-length on the time interval [0, 1], so that

Dα,p(aj(ρ0), aj(ρ1)) ≤
∫ 1

0
gα(µjt ) |(µ

j
t )
′|wp dt = wp(aj(ρ0), aj(ρ1))

∫ 1

0
gα(µjt ) dt,

then it is left to estimate the integral term on the right-hand side. For this, we notice that,

indicating with nj(t) = #spt(µjt ), i.e. nj(t) is the number of atoms of µjt , we get that

gα(µjt ) ≤ nj(t)1−α.

Moreover thanks to Proposition 1.2.3 of Chapter 1, we can suppose that this optimal transport
plan does not move more than 2 · 2jN atoms (actually we can do slightly better, but this is not the
point here). This implies that we can can give a nice estimation on the number nj(t), that is

nj(t) ≤ #spt(aj(ρ0)) + #spt(aj(ρ1)) = 2 · 2jN ,

so that in the end we get

Dα,p(aj(ρ0), aj(ρ1)) ≤ wp(aj(ρ0), aj(ρ1))

∫ 1

0
nj(t)

1−α dt = C wp(aj(ρ0), aj(ρ1)) 2jN(1−α).

Summarizing, up to now we have obtained

(3.4.9) Dα,p(ρ0, ρ1) ≤ C 2(N(1−α)−1)j + wp(aj(ρ0), aj(ρ1)) 2jN(1−α).

To let appear on the right-hand side the p−Wasserstein distance between the original measures,
we simply use again triangular inequality, that is

wp(aj(ρ0), aj(ρ1)) ≤ wp(aj(ρ0), ρ0) + wp(ρ0, ρ1) + wp(ρ1, aj(ρ1)),

and observe that

wp(aj(ρi), ρi) ≤ C 2−j , i = 0, 1,
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with C depending only on the diameter of Ω and N , so that plugging these into (3.4.9), we get

Dα,p(ρ0, ρ1) ≤ C 2(N(1−α)−1)j + wp(ρ0, ρ1) 2jN(1−α).

To conclude, it is now sufficient to choose the index j in such a way that 2−j ' wp(ρ0, ρ1): more
precisely, taking j ∈ N such that

diam (Ω)

2j
≤ wp(ρ0, ρ1) ≤ diam (Ω)

2j−1
,

a choice which is always possible, as far as wp(ρ0, ρ1) ≤ diam (Ω), we get

Dα,p(ρ0, ρ1) ≤ C wp(ρ0, ρ1)1−N(1−α),

with the constant C depending only on N , α and the diameter of Ω, which is exactly what we
wanted to prove. �

Remark 3.4.10. We remark that the results of Theorems 3.4.4 and 3.4.9, Proposition 3.4.8 are
the natural counter parts of the results recalled in Section 2 for the transport path model (Theorem
3.2.1).

5. Some remarks on the path functional model: towards an equivalent formulation

We start this final section with a very simple but instructive example, in which we try to
compare the path functional model to the other ones: we will see that equivalence is not guaranteed,
generally speaking.

Example 3.5.1. Given three pairwise distinct points x0, x1, x2 ∈ RN such that |xi − x0| >>
|x1 − x2|, with i = 1, 2, we fix two probability measures

ρ0 = δx0 , ρ1 =
1

2
δx1 +

1

2
δx2 ,

and we try to compare the quantities Dα,p(ρ0, ρ1), corresponding to the path functional model, and
dα(ρ0, ρ1) given by Xia’s model. We easily see that we have

dα(ρ0, ρ1) = |x0 − x|+
1

2α
|x− x1|+

1

2α
|x− x2|,

where the bifurcation point x is determined by the relation

(3.5.1) − x− x0

|x− x0|
=

1

2α
x− x1

|x− x1|
+

1

2α
x− x2

|x− x2|
,

which is precisely the balance formula for the optimal path in Xia’s model (see [90, Example 2.1]).
Observe that from (3.5.1) we can easily derive the optimal bifurcation angles θ1 and θ2 (see Figure
1), which are given by

cos θ1 = cos θ2 = 2α−1,

and

cos(θ1 + θ2) =
1− 21−2α

21−2α
.



66 3. BRANCHED TRANSPORTATION PROBLEMS
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Figure 1. Optimal path going from ρ0 to ρ1

For the path functional model we see that the optimal curve is given by (observe that this is
just the gluing of two Wasserstein geodesics)

µt =


δ(1−2t)x0+2tx, t ∈ [0, 1/2],

1
2 δ2(1−t)x+(2t−1)x1

+ 1
2 δ2(1−t)x+(2t−1)x2

, t ∈ [1/2, 1],

so that

Dα,p(ρ0, ρ1) =

∫ 1

0
gα(µt) |µ′t|wp dt = |x0 − x|+ 2

1−α− 1
p (|x1 − x|p + |x2 − x|p)

1
p ,

where the bifurcation point should now satisfy the rather involved relation

(3.5.2) − x− x0

|x− x0|
= 2

1−α− 1
p
|x− x1|p−2(x− x1) + |x− x2|p−2(x− x2)

(|x− x1|p + |x− x2|p)
p−1
p

,

which differs from (3.5.1), also for very special choices of α and p, for example p = 1/α = 2.
In particular we get that the path functional model is not equivalent to Xia’s one, as far as they
provide different optimal structures. Anyway, observe that in the special case of x0 belonging to
the axis bisecting the segment x1x2, due to the symmetries of the configuration we would have
|x− x1| = |x− x2|, so that (3.5.2) simplifies into

− x− x0

|x− x0|
= 2−α

x− x1

|x− x1|
+ 2−α

x− x2

|x− x2|
,

which are precisely the same optimality conditions as in (3.5.1), so that in this particular case we
have

Dα,p(ρ0, ρ1) = dα(ρ0, ρ1),

and the two models give rise to the same optimal structures at least in this special symmetric case.

Then, the fact that the path functional model, despite its simple description, has not received
much attention, can be seen as a consequence of the fact that it turns out not to be equivalent
with the others, in the sense that the optimal structures they describe are not the same, as we have
seen. Moreover it shows some unnatural behaviours from a modelization point of view. These are
mainly two and we try to explain them in some details, in order to provide a better understanding
of the scopes of the next chapter:
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(i) energetic behaviour: the term gα is a function of the whole µ, which means that if some
masses arrive at their destination and then stop, we continue to pay a cost for them until
all the process is over.

Just to clarify, we write down a basic example: suppose you want to transport ρ0 = δx0

to ρ1 = mδx1 +(1−m)δx2 , where |x0−x1| = 2|x0−x2|. A possible connecting curve could
be

µt =


mδ(1−t)x0+tx1

+ (1−m)δ(1−2t)x0+2t x2
, t ∈ [0, 1/2],

mδ(1−t)x0+tx1
+ (1−m)δx2 , t ∈ [1/2, 1],

but it is easily seen that for a path like this, the path functional energy Pα,p will let you
pay a cost for the mass (1−m) also after it is stopped.

On the contrary, it would be desirable to have an energy which takes into account only
the moving mass, which in this case is simply given by

νt =

{
µt, t ∈ [0, 1/2],

mδ(1−t)x0+tx1
, t ∈ [1/2, 1],

the latter being no more a curve of probability measures. This is the reason why, at a first
stage, the energy (3.4.3) should be modified as follows

P̃α,p(ν, µ) =

∫ 1

0
gα(νt) |µ′t|wp dt,

where now ν is a curve of sub-probability measures, which should represent the moving
mass. The curves ν and µ are linked by the condition of being an evolution pairing, which
is precisely the concept already encountered in Section 5 of Chapter 2: this means that
the moving part ν is always less than the total mass µ and that the mass reaching its final
destination, given by the difference µ− ν, has to grow in time (see Section 2). As already
discussed (see Chapter 2, Remark 2.5.4), this makes sense when the starting measure
ρ0 = δx0 (which is anyway a relevant case, and it was the one studied by Maddalena,
Morel and Solimini in [67], as we said), so that at time 0 mass starts to move as a whole:
for the sake of brevity, our investigation will be strictly confined to these choices of ρ0, as
in [67];

(ii) scaling behaviour: another problem is the choice of the exponent p, which influences the
energy Pα,p(µ) through the term |µ′|wp . It seems that the right choice should be p = +∞,
for two reasons mainly: the first is that when rescaling a curve µ to be a curve of measures
with mass m, we get

Pα,p(mµ) = m
α+ 1

pPα,p(µ),

so that the energy rescales as the power α+1/p, with respect to the mass. Taking p = +∞
clearly settles this behaviour, giving the same scaling as a Gilbert-Steiner energy. The
second reason is that the term |µ′|wp should play the role of the velocity of the particles,
so that it is expected to be mass-independent: on the contrary, in the case p < +∞ in
general you would have

|µ′|wp '
(∑

m`p
) 1
p
,
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which roughly speaking means that metric velocity is a mass-weighted sum of the velocities
of the particles, which strengthen the feeling that p = +∞ should be the right exponent,
in order to be able to compare the path functional energy with a Gilbert-Steiner one.

It is the scope of the next chapter to show that, once we correct these unnatural behaviours, it is
possible to define a path functional formulation of branched transportation problems, equivalent
with the other models. All in all, after this preliminary discussion one is lead to the study of the
modified energy given by

P̃α,∞(ν, µ) =

∫ 1

0
gα(νt) |µ′t|w∞ dt,

but then we have to pay attention to another detail: observe that thanks to the subadditivy of gα,
in the standard path functional model we have

gα(µt) ≥ 1,

because gα is evaluated on probability measures: then the existence of a Lipschitz curve minimizing
(3.4.3) under a constraint on the endpoints, is almost straightforward as we have seen, thanks to
the fact that every minimizing sequence with bounded energy has equi-bounded lengths.

On the contrary, in the modified path functional energy P̃α,∞ one only has

gα(νt) ≥ |νt|(Ω)α,

and the last quantity can go to zero (the moving mass could decrease until it disappears). This fact
completely destroys the coercivity of the energy on the space of Lipschitz curves: this means that
it could be the case that the transportation process requires an infinite speed (then breaking the
Lipschitz constraint), in order to bring all the mass from x0 to ρ1 in a finite time, or equivalently,
that if you want your curves to stay Lipschitz (i.e. you have an upper bound on the velocities),
then you could need an infinite amount of time to complete the transportation. In other words, it
may happen that you do not have an upper bound on the length of the paths that particles have
to run, because of branching. Curiously enough, this fact is not a drawback, as it is in perfect
accordance with the other models, where the existence of an upper bound on the lengths covered
by the particles (also for optimal structures) is not known! Indeed, this is still an open problem up
to some special cases (see in particular [16, Problem 15.13]). We stress the fact that the only case
where the answer is known - and it is yes - is when the irrigated measure ρ1 satisfies an Ahlfors
regularity property, i.e. when its density w.r.t. H s is bounded from below for a certain s ∈ [0, N ]:
in this case, this result is just a consequence of the Hölder continuity of the so-called landscape
function proven in [77] for s = N and then considerably extended in a recent paper by Brancolini
and Solimini (see [25, Theorem 6.2]).

So in the end, one has to relax the requirement on the finiteness of the time interval and to take
advantage of the reparametrization invariance of these weighted length functionals: to keep some
compactness one can introduce a bound on the velocities (which does not affect the functional, due
to reparametrization), as in the Lagrangian models. It turns out that the kind of energy we are
really interested in, as a good candidate to be equivalent to a Gilbert-Steiner energy, is of the form

(3.5.3) Lα(ν, µ) :=

∫ ∞
0

gα(νt) |µ′t|w∞ dt,
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defined for all curves µ which are W∞(Ω)−valued and Lipschitz, with a given Lipschitz constant
(let us say 1, for example). It is also clear that keeping the velocity term |µ′|w∞ will not be crucial,
since if one withdraws it, but keeps the bound |µ′|w∞ ≤ 1, the only effect will be that of selecting
those minimizers which move at maximal speed.





CHAPTER 4

An equivalent path functional formulation of branched
transportation problems

1. Introduction

This chapter is taken from the joint work [B5] with Filippo Santambrogio, where we show
equivalence between the Lagrangian models and the path functional model, modified according to
the remarks of Section 5 of the previous chapter: for the sake of simplicity, we confine ourselves to
the irrigation case, i.e. the case in which the starting measure is a Dirac mass ρ0 = δx0 , which is
anyway a relevant case and it is the one treated in the model of Maddalena, Morel and Solimini
([67]).

Before starting, just some words on the plan of this chapter: in Section 2 we briefly recall the
concept of evolution pairing (already encountered in Chapter 2), its main features and we give an
existence result for the minimization of functional (3.5.3) over the set of evolution pairings with
prescribed endpoints. Section 3 is devoted to a deeper insight into evolution pairings, providing
properties and examples that lead us to isolate a good subset (built up of what we call special
evolution pairings) for which a complete characterization (Section 4) can be given, in terms of the
Lipschitz curves of the base space. This characterization is one of the corner-stones of the chapter,
which finally permits us to compare, in Section 5, our energy with a Gilbert-Steiner or Bernot-
Caselles-Morel one and to show equivalence between our modified path functional model and the
other models in the irrigation case.

2. A modified path functional model

Let Ω ⊂ RN be a compact convex set and let us indicate I = [0,∞). Moreover since we are
interested in studying the branched transport problem with a single Dirac mass as starting measure,
in the sequel we will always refer to this configuration and in particular with ρ0 we will indicate a
Dirac mass located at some point of Ω, that is we set ρ0 = δx0 , for some x0 ∈ Ω.

In this chapter, we will work with the spaces W∞(Ω) and M+
1 (Ω), the latter (see Chapter 2,

Section 5) being the space of all positive Radon measures over Ω, with mass smaller than or equal
to 1, metrized according to a distance inducing the ∗−weak topology, for instance

d(ν1, ν2) =
∑
k∈N

1

2kαk

∣∣∣∣∫
Ω
ϕk(x) d(ν1(x)− ν2(x))

∣∣∣∣ , ν1, ν2 ∈M+
1 (Ω),

where every function ϕk is αk-Lipschitz and the sequence {ϕk}k∈N is dense in

{ϕ ∈ C(Ω) : ϕ ≥ 0, ||ϕ||L∞(Ω) ≤ 1}.
71
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Let us then define the space Lip1,d(I;W∞(Ω)) of all 1-Lipschitz curves in the ∞-Wasserstein
spaceW∞(Ω), equipped with the d−weak convergence on compact subsets, i.e., indicating with the

symbol
d
⇀ this convergence, we have

µn
d
⇀ µ⇐⇒ max

t∈[0,k]
d(µnt , µt)→ 0, for every k ∈ N.

Remark 4.2.1. We remark that the use of this convergence is due to the lack of any kind of
compactness of the space W∞(Ω). Moreover we recall that the topology induced by w∞ is strictly
stronger than the ∗−weak topology and we have d ≤ w∞. What is worthwhile to point out here
and crucial for our discussion is that w∞ is lower semicontinuous with respect to d (see Chapter 2,
Lemma 2.5.8).

We also recall the definition

L0(I;M+
1 (Ω)) := {ν : I →M+

1 (Ω) : ν is Borel measurable},

and on this space we will always consider the pointwise L 1−a.e. convergence. Then in the sequel,
when referring to the convergence on the product space L0(I;M+

1 (Ω))×Lip1,d(I;W∞(Ω)), we will

always mean pointwise L 1−a.e. convergence in the first variable and d−weak in the second.

We want to consider the following energy defined on L0(I;M+
1 (Ω))× Lip1,d(I;W∞(Ω))

(4.2.1) Lα(ν, µ) =

∫ ∞
0

gα(νt)|µ′t|w∞ dt,

where gα :M+
1 (Ω)→ R ∪ {+∞} is the lower semicontinuous function defined in (3.4.2).

Lemma 4.2.2. The functional Lα defined by (4.2.1) is lower semicontinuous on the product
space L0(I;M+

1 (Ω))× Lip1,d(I;W∞(Ω)).

Proof. The functional under consideration can be written as

Lα(ν, µ) = sup
k∈N

Lkα(ν, µ) := sup
k∈N

∫ k

0
gα(νt)|µ′t|w∞ dt,

and, thanks to the semicontinuity of gα and of w∞ with respect to d, we get that each Lkα is lower
semicontinuous with respect to the desired convergence, by means of Theorem 2.3.9 in Chapter 2.
It is only left to observe that the supremum of a sequence of lower semicontinuous functions is still
a lower semicontinuous function. �

In order to formalize the idea that the curves ν that we aim to consider should represent the
moving mass, we give the following slight modification of the concept of evolution pairing, already
encountered in Chapter 2: the definition is exactly the same, apart for the fact that for technical
reasons, here we prefer to work with left-continuous representative (remember that ν in Definition
2.5.3 of Chapter 2 was a BV curve, hence possessing left- and right-continuous representatives).

Definition 4.2.3. Let (ν, µ) ∈ L0(I;M+
1 (Ω)) × Lip1,d(I;W∞(Ω)) be two curves of measures,

such that the following are satisfied:

(E1) νt ≤ µt, for every t ∈ I;
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(E2) ϑt := µt − νt is monotone non-decreasing and d−left continuous, that is:

ϑs ≤ ϑt, for every s, t ∈ I, with s < t and lim
s↗t

d(ϑs, ϑt) = 0;

Then we say that (ν, µ) is an evolution pairing and we write ν � µ.

Notice however that, ϑ being non-decreasing, the condition of left continuity is non-crucial, since
one can always modify ϑt for t in a L 1−negligible set of times and get a left-continuous curve. It
is mainly imposed to give a precise and unambiguous pointwise meaning to ϑt for every t, and also
to get more easily some of our proofs. Moreover as far as µ is Lipschitz and ϑ is left-continuous,
we also get that ν is left-continuous.

Remark 4.2.4. As already observed in Chapter 2, property (E2) implies that the quantity
t 7→ |νt|(Ω) is non-increasing.

Given a Borel probability measure ρ1 over Ω, we define the set of admissible evolution pairings

EP (ρ0, ρ1) = {ν � µ : µ0 = ρ0, µ∞ = ρ1},
where the condition µ∞ = ρ1 has to be intended in the sense limt→+∞ d(µt, ρ1) = 0, or equivalently,
µt ⇀ ρ1 as t goes to +∞.

Recalling the concept of stopping time (3.3.4) for a curve, we introduce the following definition.

Definition 4.2.5. An evolution pairing (ν, µ) ∈ EP (ρ0, ρ1) is said to be normal if the following
conditions hold:

(i) |µ′t|w∞ = 1, for a.e. t ∈ [0, T (µ)];
(ii) νt = 0, for t ∈ (T (µ),+∞), where if T (µ) = +∞ this condition must intended in the

strong sense that lim
t→+∞

|νt|(Ω) = 0.

In the sequel, with the term cutting at time T , we will simply mean the operation that to every
ν assigns the product ν · 1[0,T ] of ν for the characteristic function of some time interval [0, T ].

We have the following basic result:

Lemma 4.2.6. Every (ν, µ) ∈ EP (ρ0, ρ1) with Lα(ν, µ) < +∞ is normal, up to a reparametriza-
tion of µ and a cutting of ν at the stopping time of µ.

Proof. Let us take an evolution pairing (ν, µ) ∈ EP (ρ0, ρ1) and reparametrize the 1−Lipschitz
curve µ by arc-length, that is we take ϕ : [0,+∞)→ [0,+∞) given by

(4.2.2) t(s) = inf

{
τ ∈ I : s =

∫ τ

0
|µ′%|w∞ d%

}
, s ∈ I,

and we set µ̃ = µ ◦ t, then this is a reparametrization of µ (see [9, Theorem 4.2.1]) and

|µ̃ ′t|w∞ = 1, t ∈ I.
Moreover setting ν̃ = ν ◦ t, we clearly get that (ν̃, µ̃) is still an evolution pairing contained in
EP (ρ0, ρ1), for which

Lα(ν̃, µ̃) =

∫ ∞
0

gα(ν̃t) dt =

∫ ∞
0

gα(νt) |µ′t|w∞ dt < +∞.



74 4. AN EQUIVALENT PATH FUNCTIONAL FORMULATION

Using the subadditivity of gα, the previous in turn implies that the integral∫ ∞
0

(|ν̃t|(Ω))α dt,

must be finite: as far as we are integrating a positive non-increasing function over [0,∞), we obtain
that the integrand must tend to 0, as t tends to ∞.

If T (µ̃) = +∞ we have already obtained a normal evolution pairing, otherwise it is sufficient
to cut ν̃ at the time t = T (µ̃). �

The following Lemma is useful for proving the closedness of the set EP (ρ0, ρ1) of evolution
pairings joining two given measures, but we will state it in the case where the second measure is
not fixed, so as to use it later on in its generality.

Lemma 4.2.7. Let {(νn, µn)} ⊂ EP (ρ0, ρ
n
1 ) be a sequence of normal evolution pairings such

that (νn, µn) → (ν, µ) in L0(I;M+
1 (Ω)) × Lip1,d(I;W∞(Ω)). Suppose moreover that ρn1 ⇀ ρ1 and

that
sup
n∈N

Lα(νn, µn) < +∞.

Then, up to changing the representative of ν on a negligible set of times t ∈ I, (ν, µ) ∈ EP (ρ0, ρ1).

Proof. We first show that (ν, µ) is an evolution pairing and that µ ∈ Lip1,d(I;W∞(Ω)): this
can be done as in Lemma 2.6.1 of Chapter 2, since (E1) and (E2) easily pass to limit. Moreover
observe that if {νn}n∈N converges to ν L 1−a.e., the same is true for ϑn to ϑ := µ − ν. In
particular, the nondecreasing behaviour of ϑn easily passes to the limit, up to the negligible set
of non-convergence. Up to replacing ϑ with its left-continuous representative (which means that
we only change ϑt on a negligible set of times), we get a function which is both monotone and
left-continuous.

It remains to show that (ν, µ) still verifies the conditions on the endpoints: the fact that µ0 = ρ0

is trivial, so that the only thing to verify is the condition on the final point, that is µ∞ = ρ1 in the
sense precised before.

In the case that

(4.2.3) sup
n∈N

T (µn) = T < +∞,

then we have also T (µ) ≤ T , using the lower semicontinuity of T . It is now sufficient to use the
uniform converge of {µn}n∈N on the interval [0, T ] to obtain that

µT = ρ1,

which proves the thesis, under the additional hypothesis (4.2.3), by means of the fact that T (µ) ≤ T .

We now remove assumption (4.2.3), exploiting the concept of evolution pairing. First observe
that using property (E2) we have that

ϑnt ≤ ϑns ≤ µns , for every t, s ∈ I, with t < s,

and using the fact that µn∞ = ρn1 we obtain

(4.2.4) ϑnt ≤ ρn1 ,
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and, at the limit as n → ∞, we easily deduce from (4.2.4) that we have ϑt ≤ ρ1. Moreover the
curve ϑ is non-decreasing and

|ϑt|(Ω) = 1− |νt|(Ω), for t ∈ I,

so that, if we are able to prove that |νt|(Ω)→ 0 as t→∞, we can conclude

lim
t→∞
|ϑt − ρ1|(Ω) = 0 and hence µ∞ = ϑ∞ + ν∞ = ρ1,

giving the thesis. At this end we observe that∫ ∞
0

gα(νt) dt ≤ lim inf
n→∞

∫ ∞
0

gα(νnt ) dt = lim inf
n→∞

Lα(νn, µn) < +∞,

where the first inequality is just a consequence of Fatou Lemma, while the equality right after is
a consequence of the normality of each (νn, µn), so that

∫∞
0 gα(νnt ) dt =

∫∞
0 gα(νnt ) |µ′t|w∞ dt =

Lα(νn, µn). Using again gα(νt) ≥ |νt|(Ω)α and the monotone behaviour of |νt|(Ω) as in Lemma
4.2.6, the latter implies that

lim
t→∞
|νt|(Ω) = 0,

which concludes the proof. �

We are now ready to state and prove a result, about the existence of a minimal evolution pairing
connecting two given measures.

Proposition 4.2.8. The minimization problem

(4.2.5) inf
(ν,µ)∈EP (ρ0,ρ1)

Lα(ν, µ),

admits a solution, provided that there exists an admissible evolution pairing (ν, µ) having finite Lα.

Proof. Let Lα(ν, µ) = L and let us take a minimizing sequence {(νn, µn)}n∈N ⊂ EP (ρ0, ρ1),
we can assume that

sup
n∈N

Lα(νn, µn) ≤ L+ 1.

Observe that thanks to Lemma 4.2.6, we can think of every (νn, µn) as being normal. It is straight-
forward to see that (up to a subsequence) this minimizing sequence converges in L0(I;M+

1 (Ω))×
Lip1,d(I;W∞(Ω)) to an evolution pairing (ν, µ): the convergence of {µn}n∈N is just a consequence
of the compactness of the space Lip1,d(I;W∞(Ω)), while the convergence of {νn}n∈N follows with
a slight modification of the argument in Chapter 2, Theorem 2.6.2.

Moreover (ν, µ) is still admissible, thanks to Lemma 4.2.7, and the thesis follows straightfor-
wardly using the semicontinuity of Lα (Lemma 4.2.2). �

3. Further properties of evolution pairings

We start this section with a counter-example, which shows that the class EP (ρ0, ρ1) is not
the right one in which problem (4.2.5) has to be posed, in order to obtain equivalence with Xia,
Bernot-Caselles-Morel and Maddalena-Morel-Solimini models.
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Example 4.3.1. Let ρ0 = δ0 and ρ1 = L 1x[−1/2, 1/2], we define an evolution pairing (ν, µ) as
follows:

µt =

{
L 1x[−t, t] + (1− 2t)δt, t ∈ [0, 1/2],

L 1x
[
−1

2 ,
1
2

]
, t ∈ (1/2,+∞)

νt =

{
(1− 2t)δt, t ∈ [0, 1/2],

0, t ∈ (1/2,+∞).

Observe that (ν, µ) is normal and it connects ρ0 to ρ1. Computing its energy, we have that

Lα(ν, µ) =

∫ 1
2

0
gα(νt)|µ′t|w∞ dt =

∫ 1
2

0
(1− 2t)α dt =

1

2(α+ 1)
,

while the minimal Eα energy is given by

2

∫ 1
2

0

(
1

2
− t
)α

dt =
1

2α(α+ 1)
,

which is strictly greater than the previous one. We observe that the latter is realized by the traffic
plan given by the image measure

Q = (Ψ)]ρ1,

of ρ1 through the application Ψ that sends every x ∈ [−1/2, 1/2] to the 1−Lipschitz curve Ψx

defined by (if x ≥ 0)

Ψx(t) =

{
t, t ∈ [0, x],
x, t ∈ (x,∞),

and by (if x < 0)

Ψx(t) =

{
−t, t ∈ [0,−x],
x, t ∈ (−x,∞).

Observe that the movement induced by Q is the following: the mass starts to move from the center
of the segment, instanteously splitting in two branches, one going on the right, the other going on
the left and continuously disseminating particles on the segment, in an uniform way. This is better
visualized by looking at the corresponding evolution pairing, given by

µ̃t = (et)]Q =

{
L 1x[−t, t] + 1−2t

2 δ−t + 1−2t
2 δt, t ∈ [0, 1/2],

L 1x
[
−1

2 ,
1
2

]
, t ∈ (1/2,+∞),

ν̃t =

{
1−2t

2 δ−t + 1−2t
2 δt, t ∈ [0, 1/2],

0, t ∈ (1/2,+∞),

for which Eα(Q) = Lα(ν̃, µ̃) > Lα(ν, µ).

The previous example tells us that in general the elements of EP (ρ0, ρ1) (even the minimizers
of Lα, actually) can have strange properties, which has little to do with real physical phenomena
of transportation: in fact, in Example 4.3.1 what seems to go wrong is the fact that ν, which
is supposed to represent the moving mass, operates a sort of teleport from and endpoint of the
segment [−t, t] to the opposite one.
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Then we have to restrict the class of admissible evolution pairings, isolating those with some
good traveling properties. In order to do this, we start investigating a property which holds true for
a curve having a fixed atomic part. This is a sort of Lipschitz-invariance under mass subtraction,
which tells us that once some mass is stopped, then this is no more involved in the transportation
process.

Lemma 4.3.2. Let µ ∈ Lip(I;W∞(Ω)) be given and suppose that there exists an atomic measure
m =

∑∞
i=1miδxi and t0 ∈ I such that

m ≤ µt, for every t ∈ [t0,∞).

Then the curve [t0,∞) 3 t 7→ µt −m has the same metric derivative of the curve µ and hence
satisfies the following Lipschitz estimate

(4.3.1) w∞(µt −m, µt+h −m) ≤
∫ t+h

t
|µ′s|w∞ ds, for every h ≥ 0.

Proof. The proof may be achieved if one thinks at the characterization of absolutely contin-
uous curves in Wasserstein spaces given in Chapter 1, Section 5. Indeed, as we have already seen
in Theorem 1.5.4, if µ is a Lipschitz curve defined on a time interval [0, T ] and valued in the space
Wp(Ω), then there exists a Borel vector field v : (x, t) 7→ vt(x) such that

(4.3.2) vt ∈ Lp(µt), ‖vt‖Lp(µt) = |µ′t|wp , for L 1−a.e. t ∈ I,

and such that the continuity equation holds

(4.3.3) ∂tµt + divx(vtµt) = 0.

Moreover this result stays true also for p = ∞, as we have proven (see Chapter 1, Proposition
1.5.9).

Another important point is the superposition principle (see Chapter 1, Theorem 1.5.1), which
assures that any absolutely continuous curve t 7→ µt solving (4.3.3) may be obtained as (et)]Q, for
a probability measure Q on the space of absolutely continuous curves which is concentrated on the
solutions of the equation σ′(t) = vt(σ(t)). As we have seen, for this representation to hold, some
integrability conditions on v are needed, but (4.3.2) is widely sufficient.

In our case, since µ is Lipschitz in the w∞−distance, one knows the existence of a vector field
v such that for almost any t the inequality |vt(x)| ≤ 1 is satisfied (actually, it would be satisfied
µt−a.e. but one can choose a representative which is everywhere smaller than 1). This implies that
the solutions σ of the ODE are Lipschitz continuous curves: as a consequence, they are regular
enough to say that, thanks to the one-dimensional area formula, if S is a countable set, then σ′

vanishes almost everywhere on the set σ−1(S). This implies

Q⊗L 1
(
{(σ, t) : σ(t) ∈ S, σ′(t) exists and σ′(t) 6= 0}

)
= 0,

and since the curves are solutions of σ′(t) = vt(σ(t)), using the fact that µt = (et)#Q, this means∫ T

0
µt(S ∩ {vt 6= 0})dt = Q⊗L 1

(
{(σ, t) : σ(t) ∈ S, vt(σ(t)) 6= 0}

)
= 0.
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If one chooses as S the set of atoms of m, the previous implies that m−a.e. we have vt = 0, at
least for almost any time. Now observe that the continuity equation may obviously be rewritten as

∂t(µt −m) + divx(vt (µt −m)) + divx(vt m) = 0.

and the last term vanishes as a consequence of vtm = 0: hence one gets that µ −m is a solution
of the continuity equation with the same velocity field vt. In particular, since |vt| ≤ |µ′t|w∞ , one
gets that µ − m is Lipschitz according to the w∞−distance (the latter being easily adapted to
the framework of measures with the same mass, instead of probability measures) and its metric
derivative with respect to the distance w∞ does not exceed that of µ. Since it is a straightforward
fact to see that there holds

w∞(µt −m, µt+h −m) ≥ w∞(µt, µt+h),

one can also see the opposite inequality and conclude

|(µt −m)′|w∞ = |µ′t|w∞ , for L 1−a. e. t ∈ I,
which gives the thesis. �

Remark 4.3.3. It is not difficult to see that the same conclusions of the previous Lemma hold,
if we take m to be a positive Borel measure concentrated on some H 1−negligible Borel set S.

The properties proven in the previous Lemma roughly says that, in certain cases, the speed
of a curve µ coincides with the speed of its moving part. This seems a general fact, but we will
check that the evolution pairing in Example 4.3.1 is far from satisfying this property. We want
hence to introduce a new class of evolution pairings. Thanks to the reparametrization invariance
of the functional Lα, we are more interested in the case where the evolution pairings are normal,
i.e. when |µ′|w∞ = 1 and we give the following definition.

Definition 4.3.4. Let (ν, µ) ∈ EP (ρ0, ρ1) be an evolution pairing. If there holds

(4.3.4) w∞(µt − ϑt, µt+h − ϑt) ≤ h, for t ∈ I, h > 0,

then we say that (ν, µ) is a special evolution pairing and we denote by SEP (ρ0, ρ1) the set of all
special evolution pairings contained in EP (ρ0, ρ1).

The intuitive idea behind evolution pairings is that, in going from µt to µt+h, the mass which is
moving is (or should be) essentially that given by νt, which distributes over the difference between
the total mass at the time t+h and the mass which was already arrived at time t: property (4.3.4)
expresses exactly the requirement that it is this mass that must move at most with unitary speed.
Roughly speaking, this means that we can think of the quantity

lim
h→0+

w∞(µt − ϑt, µt+h − ϑt)
h

, t ∈ I,

as a kind of velocity of the moving mass ν: the elements of SEP (ρ0, ρ1) are exactly those for which
ν is 1−Lipschitz, in this sense.

What is remarkable is that, thanks to Lemma 4.3.2, we can assure that the class SEP (ρ0, ρ1) is
large enough: for example, it contains all the finitely atomic curves. Even more, it is sufficient that
ρ1 is atomic, then every evolution pairing connecting ρ0 and ρ1 is actually a special one. Indeed,
we have the following:
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Proposition 4.3.5. Let us take (ν, µ) ∈ EP (ρ0, ρ1), with ρ1 being the sum of (countably many)
Dirac masses. Then (ν, µ) ∈ SEP (ρ0, ρ1).

Proof. It is enough to apply, for any given t, the estimate (4.3.1) with m = ϑt. Since ϑt ≤ ρ1

and ρ1 is atomic, the same is true for ϑt and hence we get

w∞(µt − ϑt, µt+h − ϑt) ≤
∫ t+h

t
|µ′s|w∞ ds ≤ h, for every h ≥ 0. �

Example 4.3.6. Let us go back to the evolution pairing (ν, µ) given by Example 4.3.1. It is
easily seen that this is not an element of SEP (ρ0, ρ1): indeed, taking t < 1/2 we have for every
0 < h < 1/2− t

µt+h − ϑt = L 1x[−t+ h,−t] + L 1x[t, t+ h] + (1− 2t− 2h)δt+h,

so it is not difficult to see that Π(µt − ϑt, µt+h − ϑt) contains only one element and

w∞(µt − ϑt, µt+h − ϑt)
h

=
2t+ h

h
,

which goes to +∞ as h approaches to 0, while |µ′|w∞ ≡ 1.

If we see Example 4.3.1 from the point of view of the continuity equation, we may observe that
the problem is that the velocity field vt associated to this curve does not vanish on the part of
µt which is supposed to be at rest, i.e. on ϑt. This is what allows for the teleport phenomenon
and this is why the moving measure ν does not satisfy the same Lipschitz estimate as µ. We can
also provide another example, that we will not develop in details, where the vector field vt actually
vanishes outside the support of νt, but its L∞ norm is not the same if we consider µ or µ−ϑ in the
continuity equation, so that the Lipschitz constant increases (without blowing-up) while passing
from µ to ν.

Example 4.3.7. Consider the measures ϑ0 = 9
10L 1x[0, 1] and νt = 9

10L 1x[t, t + 1/9] for t ∈
[0, 8/9]. Set µt = ϑ0 + νt and then consider the vector field

vt(x) = −→e1 · 1[t,t+ 9
10

](x),

which at every time t moves rightwards the particles of the interval [t, t+ 9/10]. We have

∂tνt + divx(vtνt) = 0,

and it is quite easy to see that ‖vt‖L∞(νt) = 1 = |ν ′t|w∞ . On the other hand one can see that µ is a
solution of the continuity equation with velocity field given by 1/2 vt(x), that is we have

∂tµt + divx

(
1

2
vtµt

)
= 0,

as a consequence of vt νt = 1/2 vt µt. This shows that |µ′t|w∞ ≤ ‖1/2 vt‖L∞(µt) = 1/2, i.e. the speed
of the two curves µ and ν is finite in both cases but different.

We then turn our attention to the functional

Lα(ν, µ) =

∫ ∞
0

gα(νt) dt, (ν, µ) ∈ SEP (ρ0, ρ1),
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for which the following existence result is almost straightforward. As we said, to give a cleaner
definition of the class SEP and of the functional, we decided to stick to the case where the velocity
|µ′|w∞ (nor, in any sense, |ν ′|) does not appear explicitly in the criterion to be minimized, but only
in the constraints.

Theorem 4.3.8. The minimization problem

(4.3.5) inf
(ν,µ)∈SEP (ρ0,ρ1)

Lα(ν, µ),

admits a solution, provided that there exists an admissible special evolution pairing (ν, µ) having
finite Lα.

Proof. It should be clear that it is enough to show that SEP (ρ0, ρ1) is closed: then one has
to simply reproduce step by step the proof of Proposition 4.2.8, taking into account the fact that
every special evolution pairing (ν, µ) having finite Lα, has to satisfy

lim
t→∞
|νt|(Ω) = 0.

Concerning the closedness of SEP (ρ0, ρ1), it is enough to use the fact that the distance w∞ is lower
semicontinuous with respect to the ∗−weak convergence of measures, as already pointed out, so
that property (4.3.4) easily pass to the limit. �

Remark 4.3.9. If one wants Theorem 4.3.8 to be interesting, one has to provide conditions for
the existence of special evolution pairings with finite energy. The idea is the following: suppose
that ρ1 is a probability measure which is irrigable in the sense of Xia, Solimini et al. This means

dα(ρ0, ρ1) = min{M∗α(Φ) : div Φ = ρ0 − ρ1} < +∞,
and thanks to the relaxed definition by Xia, there exists a sequence of finite graphs gn, corresponding
to traffic plans Qn, such that supnEα(Qn) < +∞ and (e∞)]Qn = ρn1 ⇀ ρ1, with the measures
ρn1 atomic (see Chapter 3, Proposition 3.3.5). Then one uses the results of Section 5 to see that
these traffic plans give rise to some evolution pairings (νn, µn) which are actually special evolution
pairings in SEP (ρ0, ρ

n
1 ) and whose energy is the same as Eα(Qn). Up to subsequences, thanks to

the semicontinuity of Lα and to the closedness result of Lemma 2.6.1, one can get (νn, µn)→ (ν, µ)
with (ν, µ) ∈ SEP (ρ0, ρ1) and Lα(ν, µ) < +∞.

4. Characterization of SEP (ρ0, ρ1)

The main tool in order to compare Lα with a Gilbert-Steiner energy, will be a complete char-
acterization of the special evolution pairings, in terms of the Lipschitz curves of the base space. So
our aim now is to give a refinement to the case of SEP of the result by Lisini given by Theorem
1.5.6 of Chapter 1, characterizing p−absolutely continuous curves in the Wasserstein space Wp(Ω)
in terms of the p−absolutely continuous curves of the ambient space Ω: the main difference (apart
from the fact that we explicitly refer to the case p = +∞) is the characterization of the moving
part ν in terms of the 1−Lipschitz curves in Ω which at every fixed time t are still moving.

In order to achieve our scope, we have to start with a couple of technical Lemmas: they are
nothing but ad hoc adaptations of the gluing Lemma (see Chapter 1, Lemma 1.3.2). First of all
we prove the existence of the composition of two transport plans, that takes into account the fact
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that the mass which arrives at destination must stay in place: at this level, this sentence could
sound mysterious, but in the proof of Theorem 4.4.4 it should become clearer. We point out that in
the following, given two positive Borel measures ν1, ν2 ∈M+(Ω) with the same mass, by Π(ν1, ν2)
we will denote the set of all positive Borel measures over the product space Ω × Ω, having fixed
marginals ν1 and ν2.

Lemma 4.4.1 (Modified gluing lemma). Let (µ1, µ2, µ3) ∈P(Ω) and (ν1, ν2, ν3) ∈M+
1 (Ω) such

that
νi ≤ µi, i = 1, 2, 3,

and suppose that, setting ϑi = µi − νi, we have ϑ1 ≤ ϑ2 ≤ ϑ3. For every γ1,2 ∈ Π(µ1 − ϑ1, µ2 − ϑ1)
and γ2,3 ∈ Π(µ2 − ϑ2, µ3 − ϑ2), there exists γ ∈P(Ω× Ω× Ω) with the following properties:

(i) (πi,i+1)]γ = γi,i+1 + (Id× Id)](ϑi), for i = 1, 2;
(ii) (πi)](γ1Si) ≥ ϑi, for i = 1, 2, where the set Si is given by

Si = {(x1, x2, x3) ∈ Ω× Ω× Ω : xj = xi, for j ≥ i}.

Proof. We will make use of the Disintegration Theorem (see [38, Chapter III]). First of all,
we define

γ̃1,2 = γ1,2 + γ0
1,2 = γ1,2 + (Id× Id)](ϑ1),

and
γ̃2,3 = γ2,3 + γ0

2,3 = γ2,3 + (Id× Id)](ϑ2),

which are actually elements of Π(µ1, µ2) and Π(µ2, µ3), respectively. Then we disintegrate γ1,2 with
respect to the x2 variable, that is

γ1,2 =

∫
ξ1
x2
d(µ2 − ϑ1)(x2) =

∫
ξ1
x2
d(µ2 − ϑ2)(x2) +

∫
ξ1
x2
d(ϑ2 − ϑ1)(x2),

where for (µ2−ϑ1)−a.e. x2 ∈ Ω, ξ1
x2

is a Borel probability measure on Ω and equally for γ0
1,2, thus

obtaining

γ0
1,2 =

∫
η1
x2
dϑ1(x2).

On the other hand, we disintegrate γ2,3 and γ0
2,3 with respect to the x1 variable, that is

γ2,3 =

∫
ξ3
x2
d(µ2 − ϑ2)(x2),

γ0
2,3 =

∫
η3
x2
dϑ2(x2) =

∫
η3
x2
d(ϑ2 − ϑ1)(x2) +

∫
η3
x2
ϑ1(x2).

Observe that actually, by construction we have

(4.4.1) η1
x2

= δx2 , for ϑ1−a.e. x2 ∈ Ω,

and

(4.4.2) η3
x2

= δx2 , for ϑ2−a.e. x2 ∈ Ω,

We can rewrite everything as follows

γ̃1,2 =

∫
ξ1
x2
d(µ2 − ϑ2)(x2) +

∫
ξ1
x2
d(ϑ2 − ϑ1)(x2) +

∫
η1
x2
dϑ1(x2),
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γ̃2,3 =

∫
ξ3
x2
d(µ2 − ϑ2)(x2) +

∫
η3
x2
d(ϑ2 − ϑ1)(x2) +

∫
η3
x2
dϑ1(x2),

that is we have “piecewise” disintegrated with respect to their common marginals our transport
plans. Then it is natural to glue this two decompositions as follows

(4.4.3) γ =

∫
ξ1
x2
⊗ ξ3

x2
d(µ2 − ϑ2)(x2) +

∫
ξ1
x2
⊗ η3

x2
(ϑ2 − ϑ1)(x2) +

∫
η1
x2
⊗ η3

x2
dϑ1(x2),

and it is straightforward to verify that γ has the desired properties: (i) is trivially satisfied, while
concerning (ii) let us observe that for every Borel set A ⊂ Ω, we have

(π1)#(γ1S1)(A) = γ ({(a, a, a) : a ∈ A}) ≥
∫
A
η1
x2

({x2})η3
x2

({x2}) dϑ1(x2)

=

∫
A
dϑ1(x2) = ϑ1(A),

where we have used (4.4.1) and (4.4.2) and the fact that ϑ1 ≤ ϑ2. In the end, we have proven
property (ii) for i = 1, while for i = 2 the proof is straightforward. �

Remark 4.4.2. Observe that the probability measure γ given by (4.4.3) can also be written
(with the convention ϑ0 = 0) as

(4.4.4) γ =

∫
ξx3 d(µ3 − ϑ3)(x3) +

3∑
i=1

∫
ηix3

d(ϑi − ϑi−1)(x3),

for suitable Borel families of probability measures {ξx3}x3∈Ω and {ηix3
}x3∈Ω on Ω × Ω such that

η3
x3

= ξx3 for ϑ3−a.e. x ∈ Ω and

η1
x3

= δ(x3, x3), for ϑ1−a.e. x3 ∈ Ω,

and
(π2)]η

2
x3

= δx3 , for ϑ2−a.e. x3 ∈ Ω.

Indeed, it is sufficient to observe that by construction

(π3)]

(∫
ξ1
x2
⊗ ξ3

x2
d(µ2 − ϑ2)(x2)

)
= (µ3 − ϑ3) + (ϑ3 − ϑ2),

then we can disintegrate this measure with respect to the x3 variable, thus obtaining the existence
of a Borel family of probability measures {ξx3}x3∈Ω on the product space Ω× Ω such that∫

Ω
ξ1
x2
⊗ ξ3

x2
d(µ2 − ϑ2)(x2) =

∫
Ω
ξx3 d(µ3 − ϑ3)(x3) +

∫
Ω
ξx3 d(ϑ3 − ϑ2)(x3).

Equally, taking into account

(π3)]

(∫
ξ1
x2
⊗ η3

x2
d(ϑ2 − ϑ1)(x2)

)
= ϑ2 − ϑ1,

(π3)]

(∫
η1
x2
⊗ η3

x2
dϑ1(x2)

)
= ϑ1,

and disintegrating with respect to the x3 variable, we obtain the desired representation (4.4.4),
keeping in mind (4.4.1) and (4.4.2).
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The previous result can be easily generalized to every n-uple of probability measures. More
precisely, we have the following:

Lemma 4.4.3. For n ≥ 3, let {µi}ni=1 ⊂P(Ω) and {νi}ni=1 ⊂M
+
1 (Ω) be such that

νi ≤ µi, for every i = 1, . . . , n,

and suppose that, setting ϑi = µi − νi, we have ϑi ≤ ϑi+1. For every γi,i+1 ∈ Π(νi, µi+1 − ϑi), with
i = 1, . . . , n− 1, there exists γ ∈P(Ωn) with the following properties:

(i) (πi,i+1)]γ = γi,i+1 + (Id× Id)](ϑi), for i = 1, . . . , n− 1;
(ii) (πi)](γ1Si) ≥ ϑi, for i = 1, . . . , n− 1, where the set Si is given by

Si = {(x1, . . . , xn) ∈ Ωn : xj = xi, for j ≥ i}.

Moreover γ can be written as

(4.4.5) γ =

∫
ξxn d(µn − ϑn)(xn) +

n∑
i=1

∫
ηixn d(ϑi − ϑi−1)(xn),

where ξxn , η
i
xn ∈P(Ωn−1) and every ηixn is such that

(4.4.6) (πi,...,n−1)]η
i
xn = δ(xn,...,xn), for ϑi-a.e. xn ∈ Ω,

the function πi,...,n−1 being the projection on the (xi, . . . , xn−1) coordinates.

Proof. We proceed by induction on n, the thesis being true for n = 3 thanks to Lemma 4.4.1
and Remark 4.4.2.

Suppose now that the assertion is true for n, that is there exists a probability measure γ ∈
P(Ωn) with the required properties and consider the case n+ 1. As in the proof of Lemma 4.4.1,
we can define

γ̃n,n+1 = γn,n+1 + γ0
n,n+1 = γn,n+1 + (Id× Id)]ϑn,

and then we disintegrate γn,n+1 and γ0
n,n+1 with respect to xn, thus getting

γ̃n,n+1 =

∫
ξn+1
xn d(µn − ϑn)(xn) +

∫
ηn+1
xn dϑn(xn)

=

∫
ξn+1
xn d(µn − ϑn)(xn) +

n∑
i=1

∫
ηn+1
xn d(ϑi − ϑi−1)(xn)

where ηn+1
xn = δxn for ϑn−a.e. xn ∈ Ω. Then using the decomposition (4.4.5) for γ, we can define

γ̂ =

∫
ξxn ⊗ ξn+1

xn d(µn − ϑn)(xn) +
n∑
i=1

∫
ηixn ⊗ η

n+1
xn d(ϑi − ϑi−1)(xn),
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which is an element of P(Ωn+1). It is straightforward to see that γ̂ satisfies property (i), so let us
show that also (ii) holds true: for every Borel subset A ⊂ Ω we get

(πj)](γ̂1Sj )(A) = γ̂({(x1, . . . , xj−1, a . . . , a) : x1, . . . , xj−1 ∈ Ω, a ∈ A})

≥
j∑
i=1

∫
A

(πj,...,n−1)#η
i
xn({(xn, . . . , xn)}) ηn+1

xn ({xn}) d(ϑi − ϑi−1)(xn)

=

j∑
i=1

(ϑi − ϑi−1)(A) = ϑj(A), for every j = 1, . . . , n,

where we have used property (4.4.6). To conclude the proof, it remains to show that γ̂ can be
decomposed as in (4.4.5): observe that by construction we have

(πn+1)]

(∫
ξxn ⊗ ξn+1

xn d(µn − ϑn)(xn)

)
= µn+1 − ϑn = (µn+1 − ϑn+1) + (ϑn+1 − ϑn),

so that as in Remark 4.4.2 we can disintegrate
∫
ξxN ⊗ ξN+1

xn d(µn − ϑn) with respect to the xn+1

variable, thus obtaining∫
ξxn ⊗ ξn+1

xn d(µn − ϑn)(xn) =

∫
ξxn+1 d(µn+1 − ϑn+1)(xn+1) +

∫
ξxn+1 d(ϑn+1 − ϑn)(xn+1),

where for (µn+1−ϑn)−a.e. xn+1 ∈ Ω, ξxn+1 is a Borel probability measure over the space Ωn. The
same can be done for each term ∫

ηixn ⊗ η
n+1
xn d(ϑi − ϑi−1)(xn),

then taking into account that ηn+1
xn = δxn for ϑn−a.e. x ∈ Ω and that ηixn satisfies (4.4.6) by

hypothesis, we can conclude. �

We now have all the elements in order to prove the first main result of this section.

Theorem 4.4.4. Let (ν, µ) ∈ SEP (ρ0, ρ1). Then there exists Q ∈P(Lip1(I; Ω)) such that

(et)]Q = µt and (et)]Q
t ≤ νt, t ∈ I,

where Qt = Qx{σ ∈ Lip1(I; Ω) : T (σ) ≥ t}.

Proof. We fix M ∈ N and then for every n ∈ N we take a dyadic partition

ti,n =
M

2n
i, i = 0, 1, . . . , 2n,

of the interval [0,M ]. Indicating as always

ϑt := µt − νt,
we take γ̃i,i+1 ∈ Π(νti,n , µti+1,n − ϑti,n) to be optimal for w∞, that is

w∞(νti,n , µti+1,n − ϑti,n) = sup{|x− y| : (x, y) ∈ spt(γ̃i,i+1)} ≤ M

2n
,

where we used that (ν, µ) ∈ SEP (ρ0, ρ1). Then we define γi,i+1 ∈ Π(µti,n , µti+1,n) by

γi,i+1 = γ̃i,i+1 + (Id× Id)]ϑti,n .
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Let γnM ∈P(Ω2n+1) be the multi-transport plan given by Lemma 4.4.3 such that:

(i) (πi,i+1)]γ
n
M = γi,i+1;

(ii) (πi)](γ
n
M1Si) ≥ ϑti,n , where Si = {x = (x0, . . . , x2n) ∈ Ωn : xj = xi, for j ≥ i}.

We now define the application

Θn : Ω2n+1 → Lip([0,M ]; Ω)
x 7→ Θn

x,

where for every x = (x0, . . . , x2n) ∈ Ω2n+1, the curve Θn
x is piecewise affine and given by

Θn
x(t) =

ti+1,n − t
ti+1,n − ti,n

xi +
t− ti,n

ti+1,n − ti,n
xi+1, t ∈ [ti,n, ti+1,n], i ∈ {0, . . . , 2n − 1},

and we further set
QnM = (Θn)]γ

n
M ∈P(C([0,M ]; Ω)).

By construction, it is straightforward to see that every QnM is concentrated on Lip1([0,M ]; Ω), the
latter being a compact space. This in turn implies that the sequence {QnM}n∈N narrowly converges
(up to subsequences) to an element QM of P(Lip1([0,M ]; Ω)), by means of Prokhorov’s Theorem.

We now show that (et)#QM = µt for every t ∈ [0,M ]: first observe that by its very definition,
the sequence {QnM}n∈N satisfies

µti,n = (eti,n)#Q
n
M , i = 0, 1, . . . , 2n.

On the other hand, thanks to the fact that we are considering dyadic partitions of [0,M ], we have
for every k < n

{tj,k}2
k

j=0 ⊂ {ti,n}2
n

i=0,

so that for every k < n

µti,k = (eti,k)]Q
n
M , i = 0, 1, . . . , 2k.

Letting n go to ∞, we then obtain, for every k, the following equalities

µti,k = (eti,k)]QM , i = 0, 1, . . . , 2k.

We have proven that the two uniformly continuous functions µ and (e(·))#QM coincide on the

points {tj,k}2
k

j=0, for every k ∈ N, thus giving the equality on [0,M ] of these functions.

Before going on, we define the following subset of [0,M ]

N :=
{
t ∈ [0,M ] : either QM (T−1({t})) > 0 or there exists n such that QnM (T−1({t})) > 0

}
,

that is N is the set of times such that {σ ∈ Lip1([0,M ]; Ω) : T (σ) = t} is charged by at least one
of the measures QM or QnM . Due to the fact that as t varies in [0,M ] these sets T−1({t}) constitute
a partition of the whole space, we observe that N must be at most countable. We now set

QtM = QMx{σ : T (σ) ≥ t}, Qn,tM = QnMx{σ : T (σ) ≥ t}, n ∈ N,

and we first notice that if t 6∈ N , we have lim infn→∞Q
n,t
M ≥ QtM , in the sense that for every

continuous and positive test function ϕ there holds

lim inf
n→∞

∫
ϕdQn,tM ≥

∫
ϕdQtM .
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This is the same as saying that any possible limit measure Q̃ of a subsequence of Qn,tM must be

larger than QtM . To prove such a property, it is sufficient to notice that this is true if Qn,tM and QtM
are replaced with 1{T>t} ·QnM and 1{T>t} ·QM , respectively, since the function 1{T>t} is l.s.c. and

this modification may be performed for free if the set T−1(t) is negligible for all these measures.
In order to prove that (et)]Q

t
M ≤ νt, we first observe that using property (ii) of {γnM} we get

that

(4.4.7) (eti,n)]Q
n,ti,n
M ≤ ν(ti,n).

Let us give a brief justification of (4.4.7): indeed, we have∫
C([0,M ];Ω)

ϕ(σ(ti,n)) dQ
n,ti,n
M (σ) ≥

∫
C([0,M ];Ω)

ϕ(σ(ti,n)) dQnM (σ)

−
∫
{σ :T (σ)≤ti,n}

ϕ(σ(ti,n)) dQnM (σ),

and the first integral in the right-hand side is just the integral of ϕ with respect to the measure
µti,n , while for the second we observe that∫

{σ :T (σ)≤ti,n}
ϕ(σ(ti,n)) dQnM (σ) =

∫
{x :xj=xi, for j≥i}

ϕ(Θn
x(ti,n)) dγnM (x)

≥
∫

Ω
ϕ(x) dϑti,n(x),

having used the definition of Θn and property (ii) in the last inequality.
In conclusion, using νti,n = µti,n−ϑti,n we have shown the validity of (4.4.7). Observe moreover

that we have Qn,tM ≤ Q
n,ti,n
M for every t ≥ ti,n, and using again the fact that the partition under

consideration is dyadic, in the end we get

(eti,k)]Q
n,t
M ≤ νti,k , for every t ≥ ti,k,

for every k < n. Taking the limit as n goes to ∞, and using the “semicontinuity” we addressed
before, i.e. the fact lim infn→∞Q

n,t
M ≥ QtM , which is true for t /∈ N , we get for every i and k

(eti,k)]Q
t
M ≤ νti,k , for every t /∈ N , t ≥ ti,k.

The condition t /∈ N may be withdrawn, if for t > ti,k one takes s ∈ (ti,k, t) \ N and uses the
inequality QtM ≤ QsM , which gives

(eti,k)]Q
t
M ≤ (eti,k)#Q

s
M ≤ νti,k , for every t > ti,k.

It is then sufficient to consider a sequence of dyadic numbers ti,k converging to t from the left: we
then have νti,k → νt because of the assumption of left continuity of ν and (eti,k)]Q

t
M → (et)]Q

t
M

because QtM is a fixed measure on Lip1([0,M ]; Ω) and the maps eti,k converge uniformly to et on
this set. Actually, we can also say

w∞((eti,k)]Q
t
M , (et)]Q

t
M ) ≤ |ti,k − t|,

thanks to the Lipschitz property of the curves in Lip1([0,M ]; Ω). This gives

(4.4.8) (et)]Q
t
M ≤ νt, for every t ∈ [0,M ].
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Finally, we have to take the limit as M → +∞: defining the continuous mapping

ΦM : Lip1([0,M ]; Ω)→ Lip1(I; Ω),

such that for every σ ∈ Lip1([0,M ]; Ω), the curve ΦM (σ) is given by

ΦM (σ)(t) =

{
σ(t), if t ≤M,
σ(M), if t > M,

we set Q̃M = (ΦM )]QM ∈ Lip1(I; Ω); then the sequence {QM}M∈N is narrowly converging (up to
subsequences), again thanks to the compactness of the space Lip1(I; Ω). If we call Q its limit, it is

not difficult to see that we have (et)]Q̃M = µt on [0,M ] and passing to the limit, we obtain that

the same holds true for Q on I. Moreover if Q̃tM = Q̃Mx{σ : T (σ) ≥ t}, then using the fact

(et)]Q̃
t
M ≤ νt, for t ∈ [0,M ],

which is actually equivalent to (4.4.8), and taking again the limit as M goes to +∞, we can show
that

(et)]Q
t ≤ νt, for t ∈ I \ Ñ ,

where the negligible set Ñ where the inequality could not hold is, as before, the countable set of

times such that T−1({t}) is charged by at least one of the measures Q̃M or Q. After that, we

consider a general t and s < t with s /∈ Ñ : we have

(es)]Q
t ≤ (es)]Q

s ≤ νs.

Taking the limit s↗ t we get, as before, (et)]Q
t ≤ νs, which concludes the proof. �

The next result of this section states that the previous Theorem can be reverted, thus giving a
nice correspondence between SEP (ρ0, ρ1) and the 1−Lipschitz curves of Ω.

Theorem 4.4.5. Let Q ∈ TP (ρ0, ρ1) be a traffic plan. For every t ∈ I, we set Qt = Qx{T (σ) ≥
t} and we define

µt = (et)]Q, νt = (et)]Q
t,

then (ν, µ) ∈ SEP (ρ0, ρ1).

Proof. The fact that µ ∈ Lip1(I;W∞(Ω)) is straightforward, since for every (t, s) the measure
(et, es)]Q is a transport plan between µt and µs, providing a cost smaller than |t− s|.

We then observe that the set

{σ ∈ Lip1(I; Ω) : T (σ) ≥ t},

is Borel measurable for every t ∈ I, thanks to the lower semicontinuity of T , so that ν is well-defined.
We have to show that ϑt = µt − νt = (et)] (Qx{σ ∈ Lip1(I; Ω) : T (σ) < t}) is nondecreasing and
left continuous. To see the monotonicity property, consider a positive test function ϕ ∈ C(Ω) and
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s ≤ t: ∫
Ω
ϕ(x) dϑs(x) =

∫
{σ : T (σ)<s}

ϕ(σ(s)) dQ(σ)

=

∫
{σ :T (σ)<s}

ϕ(σ(t)) dQ(σ)

≤
∫
{σ :T (σ)<t}

ϕ(σ(t)) dQ(σ) =

∫
Ω
ϕ(x) dϑt(x).

Once one has the monotonicity, weak continuity is the same as strong continuity and we can turn to
prove that lims↗t |ϑs − ϑs|(Ω) = lims↗t (|ϑt|(Ω)− |ϑs|(Ω)) = 0. It is hence sufficient to prove that
the mass of ϑ is left continuous, which is the same as looking at the mass of Qx{σ ∈ Lip1(I; Ω) :
T (σ) < t}. This corresponds to saying that

{σ ∈ Lip1(I; Ω) : T (σ) < t} =
⋃
s<t

{σ ∈ Lip1(I; Ω) : T (σ) < s},

which is evident.

In order to check that ν � µ we notice that property (E1) is evidently verified, since Qt ≤ Q,
while property (E2) has already been verified when we proved that ϑ is increasing. Hence (ν, µ)
is an evolution pairing, which clearly connects ρ0 and ρ1. We have to verify that actually it is a
special evolution pairing: fixed h > 0, let us call

γ = (et, et+h)]Q
t.

It is easy to check that this is a transport plan between µt − ϑt and µt+h − ϑt (just check that
(π2)]γ = µt+h − µt + νt). Using the definition of w∞ and the fact that Qt is a measure over
Lip1(I; Ω), we get

w∞(νt, µt+h − µt + νt) ≤ γ-ess sup
(x,y)∈Ω×Ω

|x− y| = Q t -ess sup
σ

|σ(t)− σ(t+ h)| ≤ h,

which finally gives (ν, µ) ∈ SEP (ρ0, ρ1). �

5. Equivalence between the models

Up to now, we have collected enough elements to compare our energy Lα with a Gilbert-Steiner
one. We point out that, in view of the results recalled in the previous chapter (Section 3), we are
allowed to work with the energy

S̃α(Q) =

∫
Lip1(I;Ω)

∫ T (σ)

0
|(σ(t), t)|α−1

Q dt dQ(σ),

for which the minimum problem on TP (ρ0, ρ1), with ρ0 = δx0 , is equivalent to all the other
Lagrangian models and to Xia’s model. Then the main result of the chapter is the following:

Theorem 4.5.1. Given ρ0 = δx0 and ρ1 ∈P(Ω), we get

min
SEP (ρ0,ρ1)

Lα = min
TP (ρ0,ρ1)

S̃α.



5. EQUIVALENCE BETWEEN THE MODELS 89

Moreover, given any optimal traffic plan Q ∈ TP (ρ0, ρ1), the special evolution pairing provided
by Theorem 4.4.5 is optimal, and conversely, given an optimal special evolution pairing (ν, µ) ∈
SEP (ρ0, ρ1), the construction of Theorem 4.4.4 provides an optimal traffic plan.

Proof. Let us take Q ∈ TP (ρ0, ρ1) optimal for S̃α and suppose that it has finite energy. We
will use the following fact, as a consequence of Theorem 3.3.7 of Chapter 3: for every t, the following
equality is satisfied Qt−a.e.

(4.5.1) |(σ(t), t)|Q = Qt ({η : η(t) = σ(t)}) .
This is true since we know |(σ(t), t)|Q = [σ]t,Q, which means that we can restrict our attention to
those curves η who stayed together with σ for all the times between 0 and t. Moreover we can
assume that σ is parametrized by arc length on [0, T (σ)]: this implies that, if σ is still moving,
i.e. T (σ) ≥ t, this is the case for all the curves η such that η = σ on [0, t] and proves that we can
furtherly restrict our attention to those curves η with T (η) ≥ t, i.e. switching from Q to Qt, thus
proving assertion (4.5.1).

Exchanging the order of integration, we can write

S̃α(Q) =

∫
Lip1(I;Ω)

∫ T (σ)

0
|(σ(t), t)|α−1

Q dt dQ(σ) =

∫ ∞
0

∫
Lip1(I;Ω)

|(σ(t), t)|α−1
Q dQt(σ) dt.

Then define the equivalence classes Σt,x = {σ ∈ Lip1(I; Ω) : σ(t) = x} and notice that, by finiteness
of the energy, for L 1−a.e. t the measure Qt must be concentrated on those classes Σt,x such that
Q(Σt,x) > 0. Since they have all positive mass, these classes are no more than a countable number
and one can restrict the integral over them:∫

Lip1(I;Ω)
|(σ(t), t)|α−1

Q dQt(σ) =
∑
i

∫
Σt,xi

|(σ(t), t)|α−1
Q dQt(σ).

Yet, for all the curves σ ∈ Σt,xi we have |(σ(t), t)|Q = Q(Σt,xi) = Qt(Σt,xi), thanks to the fact that
the class is non negligible and to the condition (4.5.1). Hence we may go on with∫

Lip1(I;Ω)
|(σ(t), t)|α−1

Q dQt(σ) =
∑
i

∫
Σt,xi

Qt(Σt,xi)
α−1dQt(σ) =

∑
i

Qt(Σt,xi)
α.

Moreover if one constructs the measures µ and ν associated to Q thanks to Theorem 4.4.5, νt must
be atomic and equal to

∑
iQ

t(Σt,xi)δxi , which gives in the end∫
Lip1(I;Ω)

|(σ(t), t)|α−1
Q dQt(σ) = gα(νt).

Hence, if we compare the energy of the special evolution pairing given by Theorem 4.4.5 with the
energy of Q, we get

Lα(ν, µ) =

∫ ∞
0

gα(νt) dt = S̃α(Q),

which shows that

min
SEP (ρ0,ρ1)

Lα ≤ min
TP (ρ0,ρ1)

S̃α,

using the minimality of Q.
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Conversely, let us take (ν, µ) ∈ SEP (ρ0, ρ1) optimal and construct the traffic plan Q ∈
TP (ρ0, ρ1) given by Theorem 4.4.4. As before, we revert the order of the integration in the definition

of S̃α. Let us set ν̂t = (et)#Q
t, and consider∫

Lip1(I;Ω)
|(σ(t), t)|α−1

Q dQt(σ) =

∫
Ω
|(x, t)|α−1

Q dν̂t(x).

Moreover

|(x, t)|Q = Q({σ ∈ Lip1(I; Ω) : σ(t) = x}) ≥ Qt({σ ∈ Lip1(I; Ω) : σ(t) = x})
= Qt({e−1

t (x)}) = ν̂t({x}),
which in turn implies ∫

Lip1(I;Ω)
|(σ(t), t)|α−1

Q dQt(σ) ≤
∫

Ω
ν̂t({x})α−1 dν̂t.

It is only left to observe that∫
Ω
ν̂t({x})α−1 dν̂t = gα(ν̂t), for L 1−a.e. t ∈ I,

thanks to the fact that ν̂ is atomic: indeed, νt is atomic for L 1−a.e. t and we have ν̂t ≤ νt.
Therefore collecting all these estimates, we end up with

S̃α(Q) ≤
∫ ∞

0

(∫
Ω
ν̂t({x})α−1 dν̂t(x)

)
dt =

∫ ∞
0

gα(ν̂t) dt ≤ Lα(ν, µ),

thus concluding the proof. �

The case of ρ1 atomic is interesting and deserves some words more: indeed, in this case thanks
to Proposition 4.3.5 we obtain SEP (ρ0, ρ1) = EP (ρ0, ρ1), so that

min
SEP (ρ0,ρ1)

Lα = min
EP (ρ0,ρ1)

Lα.

It is then sufficient to note that by means of Theorem 4.5.1, the left-hand side is equal to the

minimum of S̃α over the set TP (ρ0, ρ1): summarizing, we have shown the following important fact.

Corollary 4.5.2. Suppose that ρ1 is a purely atomic probability measure and ρ0 = δx0. Then

min
EP (ρ0,ρ1)

Lα = min
TP (ρ0,ρ1)

S̃α.

This last connection with atomic measures suggests the following question, somehow in the spirit
of Xia’s relaxation procedure (see Chapter 3, Section 2): if one considers the functional defined as
Lα on those evolution pairings (ν, µ) where ρ1 is finitely atomic and +∞ on the other evolution
pairings, what is its relaxation L∗α? Is the relaxed functional related to Lα on SEP (ρ0, ρ1)?



CHAPTER 5

A Benamou-Brenier approach to branched transport

1. Introduction

In the previous two Chapters, we have seen various points of view on branched transportation,
each of them having its advantages. Anyway, in all of them the branched transportation is studied
avoiding the Benamou-Brenier approach consisting in the minimization of a suitable cost G(µ, φ)
under the constraint of the continuity equation

∂tµ+ divxφ = 0,

that we believe is the most natural for this kind of problems. The only approach to dynamical
branched transportation using the continuity equation is, as far as we know, the one of [23]. Yet,
to prove semicontinuity and hence existence, even in this model, the problem is reduced to the
minimization of a functional of the form ∫

θα dH 1(x, t),

which is the energy of Xia, and the dynamical features are not completely exploited.
In the present chapter, based on a paper with Giuseppe Buttazzo and Filippo Santambrogio

([B3]), we present a more direct approach: for all pairs (µ, φ) verifying the continuity equation,
with µ0 = ρ0 and µ1 = ρ1, we define a functional G(µ, φ) and we show this to be both lower
semicontinuous and coercive with respect to a suitable convergence on (µ, φ): this will provide
directly the existence of an optimal dynamical path.

The chapter is organized as follows: in Section 2 we give the precise setting and state the
main results, leaving all the proofs (giving the existence of an optimal path µt) for Section 3. As
always, we would like to know if our model is in accordance with the other descriptions for branched
transportation phenomena: this is done in Section 4, where equivalence with the traffic plan model
is shown. Finally, in the last section we deal with some inequalities involving Wasserstein distances
and branched ones, i.e. distances over the space of probabilities given by the minima of some
branched transportation problems. These inequalities have already been studied in [70] and [43],
but some very precise issues concerning dα and w1/α are very close to the topics of this chapter
and deserve being treated here: new and simpler proofs are provided.

2. Problem setting and main results

In this section we fix the notation and state the main results of the chapter. In the following
Ω will denote a given subset of RN , where all the mass dynamics will take place; for the sake of
simplicity we assume that Ω is convex and compact. In the following, we will also use the notation

91
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M(Ω;RN ) to indicate the space of RN−valued Radon measures over Ω. The main objects to be
considered will be pairs (µ, φ) with

(5.2.1) µ ∈ C ([0, 1]; P(Ω)) , φ ∈ L1
(
[0, 1];M(Ω;RN )

)
satisfying the continuity equation formally written as (here ν stands for the outer normal versor to
∂Ω)

(5.2.2)

{
∂tµ+ divxφ = 0, in [0, 1]× Ω,
〈φ, ν〉 = 0, on [0, 1]× ∂Ω,

whose precise meaning, as always, is given in the sense of distributions, that is

(5.2.3)

∫ 1

0

[ ∫
Ω
∂tϕ(t, x) dµt(x) +

∫
Ω
∇xϕ(x, t) · dφt(x)

]
dt = 0,

for every smooth function ϕ with ϕ(0, x) = ϕ(1, x) = 0.

Definition 5.2.1. We denote with D the set of these pairs (µ, φ) satisfying (5.2.1) and (5.2.3).
Moreover given µ0, µ1 ∈P(Ω), we define the set D(ρ0, ρ1) of admissible configurations connecting
ρ0 to ρ1 in the following way

D(ρ0, ρ1) = {(µ, φ) ∈ D : µ0 = ρ0, µ1 = ρ1}.

The velocity vector v can be defined as the Radon-Nikodym derivative of the vector measure φ
with respect to µ:

v =
dφ

dµ
.

Among all pairs (µ, φ) satisfying the continuity equation above, we consider a cost function of the
form

(5.2.4) Gα(µ, φ) =

∫ 1

0
Gα(µt, φt) dt, (µ, φ) ∈ D,

where Gα is defined through

Gα(µ, φ) :=

{
gα(|v|1/αµ), if φ = v · µ,

+∞, if φ 6� µ,

and gα (0 < α < 1) is the same lower semicontinuous functional as in Chapters 3 and 4: gα(λ) = +∞
if λ is not purely atomic, while (# stands for the counting measure)

gα(λ) =

∫
Ω
|λ({x})|α d#(x) =

∑
i∈N

λαi , if λ =
∑
i∈N

λiδxi .

In this way our functional Gα becomes

Gα(µ, φ) =

∫ 1

0

[∫
Ω
|vt(x)|µt({x})α d#(x)

]
dt =

∫ 1

0

[∑
i∈N
|vt,i|µαt,i

]
dt,

and the dynamical model for branched transportation we consider is

(5.2.5) Bα(ρ0, ρ1) := min
(µ,φ)∈D(ρ0,ρ1)

Gα(µ, φ).
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Our main goal is to show that the minimization problem (5.2.5) above admits a solution. This
will be obtained through the Direct Methods of the calculus of variations, consisting in proving
lower semicontinuity and coercivity of the problem under consideration, with respect to a suitable
convergence.

Remark 5.2.2. We point out that the ∗−weak convergence of the pairs (µ, φ) as measures on
[0, 1] × Ω does not directly imply the lower semicontinuity in (5.2.5), since the functional is not
jointly convex. On the other hand, if (µn, φn) satisfy the continuity equation (5.2.2) and we assume

(µnt , φ
n
t ) ⇀ (µt, φt), for L 1−a.e. t ∈ [0, 1],

then a simple application of Fatou’s Lemma would lead to the desired semicontinuity property of
Gα, as far as the integrand Gα is a lower semicontinuous functional on measures. To see this, it is
enough to observe that considering (as in Chapter 1)

f1/α(x, y) =

 |y|
1/α x(α−1)/α, if x > 0, y ∈ RN ,

0, if x = 0, y = 0,
+∞, otherwise

this is a convex and 1−homogeneous, and hence also subadditive, function on R × RN . Then Gα
can be equivalently rewritten as

Gα(µ, φ) =


∫

Ω
f1/α(µ({x}), φ({x}))α d#(x), if φ is atomic,

+∞, otherwise

which falls into the class of local and lower semicontinuous functionals defined on measures studied
by Bouchitté and Buttazzo (see [21, Theorem 3.3]), thanks to the fact that

(x, y) 7→ f1/α(x, y)α,

is lower semicontinuous, subadditive, f(0, 0) = 0 and moreover

lim
t→0+

f1/α(tx, ty)α

t
= +∞, for x 6= 0.

In order to prove in the easiest possible way a semicontinuity result, we will introduce a conver-
gence which is stronger than the weak convergence of measures on [0, 1]×Ω, but weaker than weak
convergence for every fixed time t. This convergence will be compatible with the compactness we
can infer from our variational problem.

Definition 5.2.3. We say that a sequence {(µn, φn)}n∈N τ -converges to (µ, φ) if (µn, φn) ⇀
(µ, φ) in the sense of measures and

sup
n∈N, t∈[0,1]

Gα(µnt , φ
n
t ) < +∞.

Proposition 5.2.4. Let {(µn, φn)}n∈N ⊂ D be a sequence such that Gα(µn, φn) ≤ C, then up
to a time reparametrization, {(µn, φn)}n∈N is τ -compact.

Proposition 5.2.5. Let {(µn, φn)}n∈N ⊂ D be a sequence τ -converging to (µ, φ). Then

Gα(µ, φ) ≤ lim inf
n→∞

Gα(µn, φn).
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As a consequence we obtain the following existence result, which represents the main result of
this chapter.

Theorem 5.2.6. For every ρ0, ρ1 ∈P(Ω), the minimization problem (5.2.5) admits a solution.

Remark 5.2.7. We remark that, for some choices of the data ρ0, ρ1 and of the exponent α, the
statement of Theorem 5.2.6 could be empty, because the functional Gα could be constantly +∞
on every admissible path (µ, φ) joining ρ0 to ρ1. This issue will be solved in Section 4, where the
equivalence with Lagrangian models (see Chapter 3) will be proven. Since for these models finiteness
of the minima has been widely investigated, we can infer for instance that if α > 1 − 1/N then
every pair ρ0 and ρ1 can be joined by a path of finite energy. On the other hand, if α ≤ 1− 1/N ,
ρ0 = δx0 and ρ1 is absolutely continuous w.r.t. L N , then we have Gα(µ, φ) = +∞ for every
(µ, φ) ∈ D(ρ0, ρ1).

3. Proofs

A preliminary inequality to all the proofs is the following: if φ� µ, then φt = vt · µt and

Gα(µt, φt) =
∑
i

µt({xi})α|vt(xi)| =
∑
i

(
µt({xi})|vt(xi)|1/α

)α
≥

(∑
i

µt({xi})|vt(xi)|1/α
)α

= ‖vt‖L1/α(µt)
,

(5.3.1)

where as always we have used the sub-additivity of the function x 7→ xα. In particular it also
follows

(5.3.2) Gα(µt, φt) ≥ ‖vt‖L1(µt) = |φt|(Ω).

The next simple result will be quite useful.

Lemma 5.3.1. Let {(µn, φn)}n∈N ⊂ D such that (µn, φn)
τ
⇀ (µ, φ). Then (µ, φ) ∈ D and φ� µ.

Proof. Observe that with the set D we a priori restricted our attention to those pairs (µ, φ),
where µ ∈ C

(
[0, 1]; P(Ω)

)
and φ ∈ L1

(
[0, 1];M(Ω;RN )

)
, so that first of all we need to prove that

µ is continuous and that φ admits a disintegration of the form

φ =

∫
φt dt,

with respect to the time variable. Yet, using the fact that

sup
n∈N, t∈[0,1]

Gα(µnt , φ
n
t ) < +∞,

the inequality (5.3.1) applied to the pairs (µn, φn) yields a uniform bound on the L1/α norm of the
velocities, which implies that the curves µ̃n are uniformly Lipschitz continuous according to the
distance w1/α (thanks to Theorem 1.5.4), and this property is inherited by the limit measure µ.

For the decomposition of φ, just use again the inequality (5.3.1), thus obtaining a uniform
bound on ‖vnt ‖L1/α(µnt ), which a fortiori gives a uniform bound on the Benamou-Brenier functional

F1/α(µn, φn) =

∫ 1

0
‖vnt ‖

1/α

L1/α(µnt )
dt ≤ C.
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This functional being lower semicontinuous w.r.t.to the weak convergence, we can deduce the same
bound at the limit: this in particular implies that φ is absolutely continuous w.r.t. µ, with an L1/α

density (we have already used this argument in the proof of Proposition 1.5.9 of Chapter 1). Since
µ is a measure on [0, 1]×Ω which is of the form

∫
µt dt, the same disintegration will be true for φ.

Finally, it is immediate to check that (µ, φ) still solves the continuity equation (5.2.3). �

3.1. Proof of Proposition 5.2.4. Due to the fact the the functional Gα is 1−homogeneous
in the velocity, it is clear that reparametrizations in time do not change the values of Gα. By
reparametrization, we mean replacing a pair (µ, φ) with a new pair (µ̃, φ̃) of the form µ̃t = µs(t),

φ̃t = s′(t)φs(t) (which equivalently means that φ̃ is the image measure of φ through the inverse of
the map (t, x) 7→ (s(t), x)), where s : [0, 1]→ [0, 1] is absolutely continuous and increasing. Observe

that we still have (µ̃, φ̃) ⊂ D, i.e. this new pair still solves the continuity equation (see [6, Lemma
8.1.3]).

Thanks to this invariance, if {(µn, φn)}n∈N ⊂ D is such that Gα(µn, φn) ≤ C, then one can

define a new sequence of pairs {(µ̃n, φ̃n)}n∈N ⊂ D, with

Gα(µ̃nt , φ̃
n
t ) ≡ Gα(µ̃n, φ̃n) = Gα(µn, φn) ≤ C.

After that, we only need to prove compactness for the weak convergence of measures on [0, 1]×Ω,

a fact which only requires bounds on the mass of µ̃n and φ̃n. The bound on µ̃n is straightforward,
since for every t the measure µ̃nt is a probability, while for φ̃n, which is absolutely continuous w.r.t.
µ̃n, it is enough to use (5.3.2) in order to bound the mass of φ by C.

This allows to extract a subsequence {(µ̃nk , φ̃nk)}k∈N which converges weakly to a pair (µ, φ).

This and the uniform bound on Gα(µ̃nkt , φ̃
nk
t ) conclude the proof.

3.2. Proof of Proposition 5.2.5. We consider a sequence {(µn, φn)}n∈N ⊂ D which is
τ−converging to (µ, φ): observe in particular that, thanks to the uniform bound

(5.3.3) sup
n∈N, t∈[0,1]

Gα(µnt , φ
n
t ) ≤ C,

we have Gα(µn, φn) ≤ C and φn = vn · µn. First of all we define a sequence of measures {mn}n∈N
on [0, 1]× Ω through

mn =

∫ (∑
i

µnt ({xi,t})α|vnt (xi,t)|δxi,t

)
dt,

where the points xi,t are the atoms of φnt (i.e. the atoms of µnt where the velocity vnt does not
vanish). We notice that Gα(µn, φn) = mn([0, 1] × Ω), then the bound on Gα(µn, φn) implies the
convergence mn ⇀ m, up to the extraction of a subsequence (not relabeled). It is clear that, on
this subsequence, we have

lim
n→∞

Gα(µn, φn) = lim
n→∞

mn([0, 1]× Ω) = m([0, 1]× Ω),

then in order to prove the desired semicontinuity property, it is enough to get some proper lower
bounds on m. Observe that, since we have∫

[0,1]×Ω
ξ(t) dmn(t, x) =

∫ 1

0
ξ(t)Gα(µnt , φ

n
t ) dt, for every ξ ∈ C([0, 1]),
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we obtain that the marginal of mn on the time variable is the measure Gα(µnt , φ
n
t )L 1x[0, 1], which

has an L∞ density uniformly bounded by the constant C on [0, 1], again thanks to (5.3.3). This
bound is uniform and will be preserved by the limit measure m: in particular, this implies that we
can write m =

∫
mt dt. Then, in order to prove our semicontinuity result, it will be enough to show

the following

(5.3.4) mt(Ω) ≥ Gα(µt, φt), for L 1−a.e. t ∈ I.

Before going on, observe that thanks to Lemma 5.3.1, we have that (µ, φ) ∈ D (so that in particular
φ =

∫
φt dt) and φ� µ.

Let us fix a closed set E, as well as a time interval [a, b], and take the function

χM (x) := (1−M dist(x,E))+, x ∈ Ω,

where ( · )+ stands for the positive part: observe that χM is positive, takes the value 1 on E, is
M−Lipschitz and identically vanishes outside a 1/M−neighborhood of E. We then take ϕ(t, x) =
χM (x)α1[a,b](t), which is upper semicontinuous on [0, 1]× Ω, then we have∫

ϕ(t, x) dm(t, x) ≥ lim sup
n→∞

∫
ϕ(t, x) dmn(t, x)

= lim sup
n→∞

∫ b

a

(∑
i

µnt ({xi})α|vnt (xi)|χM (xi)
α

)
dt,

where the points xi are, as before, the atoms of φn (and we omitted the dependence on n and t).
We then write

µnt ({xi})αχM (xi)
α =

(
µnt ({xi})χM (xi)

)α−1 (
µnt ({xi})χM (xi)

)
,

(where µnt χM > 0) and we notice that µnt ({xi})χM (xi) ≤
∫
χM dµnt . Then we can estimate the

right-hand side in the previous inequality as∫ b

a

(∑
i

µnt ({xi})α|vnt (xi)|χM (xi)
α

)
dt ≥

∫ b

a

(∫
χMdµ

n
t

)α−1
(∑

i

µnt ({xi})|vnt (xi)|χM (xi)

)
dt

=

∫ b

a

(∫
χM dµnt

)α−1(∫
χM d|φnt |

)
dt.

We go on by estimating from above
∫
χM dµnt : we have∫

Ω
χM (x) dµnt (x) ≤

∫
Ω
χM (x) dµns (x) +M w1(µnt , µ

n
s ),

which is a consequence of the definition of w1 by duality with 1−Lipschitz functions (see Chapter
1, Proposition 1.1.4). To estimate the w1 distance we use w1 ≤ w1/α (see Chapter 1, equation
(1.3.1)) and the following fact

w1/α(µnt , µ
n
s ) ≤

∫ t

s
|(µnz )′|w1/α

dz ≤
∫ t

s
‖vnz ‖L1/α(µz) dz,
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then applying inequality (5.3.1) we have in the end∫
Ω
χM (x) dµnt (x) ≤

∫
Ω
χM (x) dµna(x) + CM(b− a), for every t ∈ [a, b].

In this way we have∫ b

a

(∫
χM dµnt

)α−1(∫
χM d|φnt | dt

)
dt ≥

(∫
χM dµna+CM(b− a)

)α−1∫ b

a

(∫
χM d|φnt |

)
dt

=

(∫
χM dµna + CM(b− a)

)α−1 ∫
ϕ1/αd|φn|.

Hence, we may go on with∫
ϕdm ≥ lim sup

n→∞

[(∫
χM dµna + CM(b− a)

)α−1 ∫
ϕ1/αd|φn|

]

≥
(∫

χMdµa+CM(b− a)

)α−1 ∫
ϕ1/αd|φ|.

In the last inequality the second factor has been dealt with in the following way: suppose |φn|⇀ η,
then we have η ≥ |φ|; moreover ϕ ≥ ϕ̃ where ϕ̃(t, x) := χM (x)1(a,b)(t), and this last function is
l.s.c. and positive, so that

lim inf
n→∞

∫
ϕ1/αd|φn| ≥ lim inf

n→∞

∫
ϕ̃1/αd|φn| ≥

∫
ϕ̃1/αdη ≥

∫
ϕ̃1/αd|φ| =

∫
ϕ1/αd|φ|,

where in the last equality we have used that the boundaries t = a and t = b are negligible for |φ|,
thanks to the fact that φ ∈ L1([0, 1];M(Ω;RN )).

After that, we can divide by (b − a) (keeping for a while M fixed) and pass to the limit as
b→ a. We have, for L 1−a.e. a ∈ [0, 1],∫

χM (x)α dma(x) ≥
(∫

χM (x) dµa(x)

)α−1 ∫
χM (x) d|φa|(x).

We let now M →∞, so that χM monotonically converges to the characteristic function of the set
E, and we have, by dominated convergence w.r.t. ma, µa and |φa|,

(5.3.5) ma(E) ≥ µa(E)α−1|φa|(E).

In the last term the convention 0·∞ = 0 is used (if |φa|(E) = 0). This inequality is proven for closed
sets, but by regularity of the measures it is not difficult to prove it for arbitrary sets. Actually, if
S ⊂ Ω is an arbitrary Borel set, we can write

ma(S) ≥ ma(E) ≥ µa(E)α−1|φa|(E) ≥ µa(S)α−1|φa|(E),

for every E ⊂ S closed and take a sequence of closed sets Ek such that |φa|(Ek) → |φa|(S), since
|φa| is, for L 1−a.e. a ∈ [0, 1], a finite (and hence regular) measure on the compact set Ω. We want
now to prove that:

• φa = va · µa is atomic for L 1−a.e. a ∈ [0, 1] (i.e. µa is atomic on {va 6= 0})
• ma(Ω) ≥ Gα(µa, φa), for L 1−a.e. a ∈ [0, 1].
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This would conclude the proof.

For the first statement, take the inequality ma(S) ≥ µa(S)α−1|φa|(S) which is valid for any set,
and apply it to sets which are contained in the Borel set Vε := {x ∈ Ω : |va(x)| > ε}. For those

sets, we have easily ma(S) ≥ εµa(S)α. This means that the measure λ := ε1/αµaxVε satisfies the
inequality λ(S)α ≤ ma(S) for every Borel set S ⊂ Ω, where ma is a finite measure: this implies
that λ is atomic (see Lemma 5.3.2 below). If the same is performed for every ε = 1/k, this proves
that µa is purely atomic on the set {x : |va(x)| 6= 0}, that is φa = va · µa is purely atomic.

Once we know that φa is atomic we infer that Gα(µa, φa) =
∑

i µa({xi})α−1|φa|({xi}) and we
only need to consider E = {xi} in (5.3.5) and add up:

ma(Ω) ≥
∑
i

ma({xi}) ≥ Gα(µa, φa),

which finally gives (5.3.4). As we said, this concludes the proof.

Lemma 5.3.2. Take two finite positive measures λ and µ on a domain Ω, and α ∈ (0, 1).
Suppose that the inequality λ(S)α ≤ µ(S) is satisfied for every Borel set S ⊂ Ω. Then λ is purely
atomic.

Proof. Consider a regular grid on Ω of size 1/k, for k ∈ N, and build a measure λk by putting,
in every cell of the grid, all the mass of λ in a single point of the cell. This measure λk is atomic
and we have

gα(λk) =
∑
i

λ(Si)
α ≤

∑
i

µ(Si) = µ(Ω) < +∞,

where the Si are the cells of the grid. If we let k goes to ∞, the step of the grid goes to zero
and we obviously have λk ⇀ λ. On the other hand, the functional gα is lower semicontinuous and
this implies gα(λ) ≤ lim infk→∞ gα(λk) ≤ µ(Ω) < +∞. In particular, λ is atomic, thus proving the
assertion. �

3.3. Proof of Theorem 5.2.6. In order to prove existence, one only needs to take a mini-
mizing sequence in D(ρ0, ρ1) and apply Proposition 5.2.4 to get a new minimizing sequence which
is τ−converging: this new sequence is obtained through reparametrization (which does not change
the value of Gα) and by extracting a subsequence. Since the constraints in the problem are linear,
i.e. µi = ρi for i = 0, 1 and the continuity equation, the limit (µ, φ) still belongs to D(ρ0, ρ1).
Finally, the semicontinuity proven in Proposition 5.2.5 allows to conclude.

4. Equivalence with Lagrangian models

In this section we prove the equivalence of problem (5.2.5) with the other previous formulations
of branched transport models. In particular, as a reference model we will take the one by Bernot,
Caselles and Morel, in which the energy is defined as

Eα(Q) =

∫
C([0,1];Ω)

∫ 1

0
|σ(t)|α−1

Q |σ′(t)| dt dQ(σ),
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where Q is a probability measure over C([0, 1]; Ω) which gives full mass to the set Lip([0, 1]; Ω)
(a traffic plan) and for every x ∈ Ω, the quantity |x|Q is the multiplicity of x with respect to Q,
defined by

|x|Q = Q ({σ : x ∈ σ([0, 1])}) .
Given ρ0, ρ1 ∈P(Ω), the corresponding minimum problem is then given by

min
Q∈TP (ρ0,ρ1)

Eα(Q),

where TP (ρ0, ρ1) is the set of traffic plans with prescribed time marginals at t = 0, 1

TP (ρ0, ρ1) = {Q : (ei)]Q = µi, i = 0, 1},
and et : C([0, 1]; Ω)→ Ω is as always the evaluation at time t map.

Remark 5.4.1. Observe that we are making a small abuse in the definition of the energy Eα,
which apparently differs from that introduced in Chapter 3: indeed, we are considering the space
of Lipschitz curves on the compact time interval [0, 1], instead of 1−Lipschitz curves parametrized
over [0,∞). Clearly this further definition is equivalent to the usual one (as already suggested by
the informal presentation in Chapter 3), thanks to the invariance, w.r.t. to reparametrizations in
time, of Eα and to the fact that the finiteness of the energy gives the finiteness of the average-length
functional. Indeed, if Q satisfies∫

C([0,1];Ω)

∫ 1

0
|σ(t)|α−1

Q |σ′(t)| dt dQ(σ) ≤ C,

thanks to the fact that |x|α−1
Q ≥ 1, we obtain that∫

C([0,1];Ω)
`(σ) dQ(σ) ≤ C,

so that, using Markov inequality and the reparametrization invariance of the functional, it is easily
seen that the minimization of this modified energy in TP (ρ0, ρ1) admits a solution, provided a Q
having finite Eα exists. Moreover to every Q concentrated on Lip([0, 1]; Ω) it is possible to associate

a Q̃ ∈ P(Lip1([0,∞); Ω)) (just by arc-length reparametrization of the curves) and the respective

energies coincide; on the other hand, as we saw above every Q̃ ∈ P(Lip1([0,∞); Ω)) with finite
energy is concentrated on curves with finite length and thus we can revert the previous reasoning,
obtaining a Q concentrated in Lipschitz curves on [0, 1], without altering the value of the energy.

In this way, we see that the minimization problem considered in this section is equivalent to
that for Eα encountered in Section 3 of Chapter 3 and the same results and remarks there stated,
apply to this case as well.

As in Chapter 4, we also need to consider the slight modification of Eα above, given by the
synchronized energy (the notation is the same as in Chapter 3)

Sα(Q) =

∫
C([0,1];Ω)

∫ 1

0
|(σ(t), t)|α−1

Q |σ′(t)| dt dQ(σ),

where, we recall that the synchronized multiplicity |(x, t)|Q is given by

|(x, t)|Q = Q({σ : σ(t) = x}).
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As a straightforward consequence of the definition of these two multiplicities, we have already
observed that

(5.4.1) |σ(t)|Q ≥ |(σ(t), t)|Q,
so that Eα(Q) ≤ Sα(Q). Concerning the comparison between the minimization of Eα and Sα, we
recall that they coincide when ρ0 is finitely atomic (see Chapter 3, Theorem 3.3.3). We are now
in a position to state and prove a result giving the equivalence between our model and the one
relative to the energy Eα: we will use the notation

dα(ρ0, ρ1) = min
TP (ρ0,ρ1)

Eα,

thanks to the equivalence between Xia’s model and Lagrangian ones (Chapter 3, Theorem 3.3.3).

Theorem 5.4.2. For every α ∈ (0, 1) and ρ0, ρ1 ∈P(Ω) we get

(5.4.2) Bα(ρ0, ρ1) = dα(ρ0, ρ1).

Proof. We first want to prove Bα(ρ0, ρ1) ≥ dα(ρ0, ρ1). If Bα(ρ0, ρ1) = +∞ there is nothing
to prove. Otherwise, take (µ, φ) optimal, which implies, by the way, that φ = v · µ and that φ is
atomic. Thanks to the superposition principle (see Chapter 1, Theorem 1.5.1) we can construct a
probability measure Q ∈ C such that µt = (et)]Q and Q is concentrated on absolutely continuous
integral curves of v. Using this information, together with the fact that Eα ≤ Sα and exchanging
the order of integration, we get

Eα(Q) ≤ Sα(Q) =

∫
C([0,1];Ω)

∫ 1

0
|(σ(t), t)|α−1

Q |σ′(t)| dt dQ(σ)

=

∫ 1

0

∫
C([0,1];Ω)

|(σ(t), t)|α−1
Q |σ′(t)| dQ(σ) dt

=

∫ 1

0

∫
C([0,1];Ω)

|(σ(t), t)|α−1
Q |vt(σ(t))| dQ(σ) dt

=

∫ 1

0

∫
Ω
|(x, t)|α−1

Q |vt(x)| dµt(x) dt,

then we observe that, by virtue of the fact that µt = (et)]Q, there holds (we have already used this
observation in the proof of Theorem 4.5.1 of Chapter 4)

|(x, t)|Q = Q({σ ∈ C : σ(t) = x}) = µt({x}),
so that we can rephrase the last integral as follows∫ 1

0

∫
Ω
µt({x})α−1 |vt(x)| dµt(x) dt =

∫ 1

0

∫
Ω
µt({x})α−1 d|φt|(x) dt =

∫ 1

0

∑
i∈N
|vt,i|µαt,i dt,

which then gives
dα(ρ0, ρ1) ≤ Gα(µ, φ) = Bα(ρ0, ρ1).

In order to prove the reverse inequality, we proceed as follows: first of all we prove that

(5.4.3) Bα(ρ0, ρ1) ≤ min
Q∈TP (ρ0,ρ1)

Sα(Q).
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Let us take Q ∈ TP (ρ0, ρ1) optimal for Sα, then we know that there exists a pair (µ, φ) which is a
solution of the continuity equation, with µt = (et)]Q and φt = vt · µt. Recalling Remark 1.5.8 of
Chapter 1, the velocity v may be chosen as

vt(x) =

∫
σ′(t) dQtx(σ),

where Qtx is the disintegration of Q with respect to the evaluation function et. This means that
for µt−a.e. x ∈ Ω, each Qtx is a probability measure concentrated on the set {σ : σ(t) = x} and
Q =

∫
Qtx dµt(x). Therefore, arguing as before

Sα(Q) =

∫ 1

0

∫
C
|(σ(t), t)|α−1

Q |σ′(t)| dQ(σ) dt

=

∫ 1

0

∫
Ω
|(x, t)|α−1

Q

(∫
|σ′(t)| dQtx(σ)

)
dµt(x) dt

≥
∫ 1

0

∫
Ω
|(x, t)|α−1

Q |vt(x)| dµt(x) dt

=

∫ 1

0

∫
Ω
µt({x})α−1 |vt(x)| dµt(x) dt,

that gives the desired inequality (5.4.3) since, even if we do not know that φt or µt are atomic we
can restrict the last integral to the set of atoms of µ.

Summarizing, up to now we have shown

dα(ρ0, ρ1) ≤ Bα(ρ0, ρ1) ≤ min
Q∈TP (ρ0,ρ1)

Sα(Q),

and equality holds whenever ρ0 is a finite sum of Dirac masses. In order to conclude, it is enough
to notice that thanks to Proposition 3.3.5 of Chapter 3, we may take two sequences {ρn0}n∈N and
{ρn1}n∈N of finitely atomic probability measures such that ρn0 ⇀ ρ0, ρn1 ⇀ ρ1 and

lim
n→∞

dα(ρn0 , ρ
n
1 ) = dα(ρ0, ρ1),

thus getting

dα(ρ0, ρ1) ≤ Bα(ρ0, ρ1) ≤ lim inf
n→∞

Bα(ρn0 , ρ
n
1 ) ≤ lim

n→∞
dα(ρn0 , ρ

n
1 )

= dα(ρ0, ρ1),

and hence concluding the proof. �

Remark 5.4.3. Observe that in the previous Theorem, we did not only prove the equality of
the minima, but we also provided a natural way to pass from a minimizer of our formulation à la
Benamou-Brenier to a minimizer of the traffic plans model and back. The two problems are thus
equivalent in the sense that they describe the same kind of energy and the same optimal structures
of branched transportation: the simple equality of the minima (5.4.2) is just a part of this more
important fact.
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5. A simple comparison between the distances dα and w1/α

This last section is devoted to estimates between the distance dα induced by the branched
transport and the Wasserstein distances wp. In particular, in [70] the following estimates are
proven1 for α > 1− 1/N :

dα ≤ C wN(α−1)+1
p .

As far as lower bounds on dα are concerned, the most trivial one is dα ≥ w1, but in [43, Theorem
8.1] this is improved up to prove dα ≥ w1/α, which is slightly better. Moreover for scaling reasons
(with respect to the mass) it is not possible to go beyond p = 1/α in this last inequality.

Observe that in this chapter we already needed to estimate some branched transport cost in
terms of Wasserstein distances and metric derivatives: this is why this section will be devoted to
prove the inequalities

w1/α ≤ dα ≤ C w
N(α−1)+1
1/α .

Despite being essentially already known, the proof we will provide will be different.

In particular, the formulation of branched transport we gave in this chapter provides an almost
straightforward proof of the lower bound: anyway, the main tool (i.e. Inequality (5.3.1)) is essen-
tially in common with [43] and [68]. What is different is the way to extend this idea to generic
measures, i.e. non-atomic ones.

Theorem 5.5.1. For every ρ0, ρ1 ∈P(Ω) we get

(5.5.1) w1/α(ρ0, ρ1) ≤ dα(ρ0, ρ1).

Proof. We first observe that thanks to the results of the previous section, for every ρ0, ρ1 ∈
P(Ω) we get

dα(ρ0, ρ1) = Bα(ρ0, ρ1) =

∫ 1

0

[∫
Ω
|vt(x)|µt({x})α d#(x)

]
dt.

for a suitable (µ, φ) admissible in the formulation (5.2.5), with φ = v ·µ. Moreover using once more
the inequality (5.3.1) the right-hand side in the previous expression can be estimated as follows∫ 1

0

[∫
Ω
|vt(x)|µt({x})α d#(x)

]
dt ≥

∫ 1

0
‖vt‖L1/α(µt)

dt

and finally, using the fact that (µ, φ) is solution of the continuity equation, we can infer (see Chapter
1, Theorem 1.5.4)

|µ′t|w1/α
≤ ‖vt‖L1/α(µt)

, for L 1-a.e. t ∈ [0, 1],

so that

dα(ρ0, ρ1) ≥
∫ 1

0
|µ′t|w1/α

dt ≥ w1/α(ρ0, ρ1),

where in the last inequality we just estimated the length of a curve with the distance between its
endpoints. Thus we have obtained (5.5.1), concluding the proof. �

1As already observed, for α ∈ [0, 1 − 1/N ] one can always find probability measures ρ0 and ρ1 such that
dα(ρ0, ρ1) = +∞. Then an inequality of the type dα ≤ C wβp is not possible for α belonging to [0, 1− 1/N ].
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In order to prove the other inequality, we will use the same notations about dyadic cubes and
approximations as in Chapter 3, Section 4. We shall always assume that Ω ⊂ KL for a suitable L,
then the following estimate is well-known ([17, Proposition 6.6]) and it is exactly the same as in
Proposition 3.4.3 (properly speaking, it is exactly the contrary).

Proposition 5.5.2. Let α ∈ (1− 1/N, 1], then for every µ ∈P(Ω) we have

(5.5.2) dα(aj(µ), µ) ≤ 2(N(1−α)−1)j

21−N(1−α) − 1

L
√
N

2
.

The fundamental tool in proving the estimate from above

dα(ρ0, ρ1) ≤ CN wN(α−1)+1
1/α (ρ0, ρ1),

is to show that the distance dα between two dyadic approximations can be estimated in terms of
their 1/α−Wasserstein distance: this is the content of the next result.

Lemma 5.5.3. Let α ∈ (1− 1/N, 1], then for every ρ0, ρ1 ∈P(Ω) we get

(5.5.3) dα(aj(ρ0), aj(ρ1)) ≤ C w1/α(aj(ρ0), aj(ρ1)) 2jN(1−α),

with C depending only on N and α.

Proof. Let us consider a γj ∈ Π(aj(ρ0), aj(ρ1)) optimal for the cost c(x, y) = |x− y|1/α, that
is γj ∈P(Ω× Ω) is of the form

γj =

n∑
i=1

s∑
k=1

mj(i, k)δxij
⊗ δxkj .

with
∑n

i=1mj(i, k) = ρ1(Kk
j ) and

∑s
k=1mj(i, k) = ρ0(Ki

j), for every k, i.
Observe that by means of Proposition 1.2.3 of Chapter 1, γj can be taken in such a way that

(5.5.4) #{(i, k) : mj(i, k) 6= 0} ≤ 2 · 2jN ,

that is γj does not move more than 2 · 2jN atoms. Setting |xij − xkj | = `i,k, we then get

w1/α(aj(ρ0), aj(ρ1)) =

(
n∑
i=1

s∑
k=1

mj(i, k) `
1/α
i,k

)α
,

and using (5.5.4) and Jensen’s inequality

dα(aj(ρ0), aj(ρ1)) ≤
n∑
i=1

s∑
k=1

mj(i, k)α`i,k =

n∑
i=1

s∑
k=1

(
mj(i, k) `

1/α
i,k

)α
≤

(
n∑
i=1

s∑
k=1

mj(i, k) `
1/α
i,k

)α
(#{(i, k) : mj(i, k) 6= 0})1−α

≤ C w1/α(aj(ρ0), aj(ρ1)) 2jN(1−α),

concluding the proof. �
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Theorem 5.5.4. Let α ∈ (1− 1/N, 1], then for every p ≥ 1/α, we get

(5.5.5) dα(ρ0, ρ1) ≤ C wp(ρ0, ρ1)N(α−1)+1,

with a constant C depending only on N , α and the diameter of Ω.

Proof. It is enough to show the validity of (5.5.5) for p = 1/α, then the general case will be
just a consequence of the monotonicity property of the Wasserstein distances, i.e.

w1/α ≤ wp, for every p ≥ 1/α.

Using triangular inequality, (5.5.2) and (5.5.3), we get for every j ∈ N
dα(ρ0, ρ1) ≤ dα(ρ0, aj(ρ0)) + dα(aj(ρ0), aj(ρ1)) + dα(aj(ρ1), ρ1)

≤ C 2(N(1−α)−1)j + dα(aj(ρ0), aj(ρ1))

≤ C 2(N(1−α)−1)j + C w1/α(aj(ρ0), aj(ρ1)) 2jN(1−α),

and

w1/α(aj(ρ0), aj(ρ1)) ≤ w1/α(aj(ρ0), ρ0) + w1/α(ρ0, ρ1) + w1/α(aj(ρ0), ρ1)

≤ C 2−j + w1/α(ρ0, ρ1),

which finally gives

dα(ρ0, ρ1) ≤ C 2(N(1−α)−1)j + C w1/α(ρ0, ρ1) 2jN(1−α)

= C 2(N(1−α)−1)j
(
1 + w1/α(ρ0, ρ1) 2j

)
It is now sufficient to choose the index j in such a way that

diam (Ω)

2j
≤ w1/α(ρ0, ρ1) ≤ diam (Ω)

2j−1
,

which in turn yields

2(N(1−α)−1)j(1 + w1/α(ρ0, ρ1)2j) ≤ C w1/α(ρ0, ρ1)N(α−1)+1,

thus giving the thesis. �

Remark 5.5.5. As we briefly mentioned, the comparison between dα and w1/α is the most
natural one, as far as

dα(ρ0, ρ1) '
∑

mα ` and w1/α(ρ0, ρ1) '
(∑

m`
1
α

)α
,

and they have the same kind of homogeneity.

Remark 5.5.6. One may wonder if the exponent N(α − 1) + 1 in inequality (5.5.5) can be
improved: actually, the answer is no. To see this, it is enough to adapt Example 0.1 of [70].



CHAPTER 6

Transportation models for congested dynamics

1. Introduction

With this chapter, we leave the setting of branched transportation, turning out attention to
problems in which the cost has to satisfy exactly the opposite requirement: during the transporta-
tion, masses have to stay separate from each others, in order to avoid as much as possible congestion
effects. From a mathematical point of view, this is usually translated into a cost with an increasing,
convex and superlinear dependence on the mass, so that moving an amount of mass m on a distance
` costs ψ(m) `, with ψ convex and superlinear: typical choices are power-like functions, for example
ψ(t) = tp with p > 1, or combinations of them. Observe that in economical terms ψ′ corresponds
to the marginal cost, so that requiring ψ′ > 0 and ψ′ strictly increasing, that is ψ strictly convex,
is very natural from a modelization point of view. In this way, provided ψ(0) = 0, one also gets
that ψ(m1) + ψ(m2) ≤ ψ(m1 +m2), so that it is more convenient to separate the mass in order to
save cost.

A daily life situation in which this type of problems occur is certainly well-known to the reader:
urban traffic. Anyway, the models that we will introduce in this chapter does not really deal with
dynamical situations of traffic (a topic which goes beyond the scopes of this work), but they are
more pertinent to model steady-state situations, averaged over a day or a period.

The chapter is organized as follows: in Section 2 we describe a discrete traffic problem (intro-
duced by Wardrop in [88]) which has some interesting issues on equilibria and some interesting
connections with optimal transport. The main points of this section are the definition of Wardrop
equilibrium and the fact that existence for such equilibria can be proven through a variational prin-
ciple, that is minimizing a total cost for traffic congestion. The next section contains an attempt
to extend this model to a continuous setting, by means of employing traffic plans, i.e. probability
measures over the set of admissible paths: we briefly review the work [33] by Carlier, Jimenez
and Santambrogio, where this extension has been proposed. As we will see, it is possible to trace
a nice parallel with the discrete case, in particular it is still possible to give a suitable definition
of Wardrop equilibrium and to show existence of such equilibria by means of the optimization of
an overall congested transportation cost. Finally, in Section 4 the Beckmann’s continuous model
of transportation is discussed (we have already encountered a particular case of it in Chapter 1,
Section 1): this is expressed as a divergence-constrained convex optimization problem, in which
the transportation activities are described through vector fields satisfying the balance conditions

divφ = ρ0 − ρ1, 〈φ, ν〉 = 0,

we have a total cost of integral type
∫

ΩH(φ) dx for the whole transportation process and we look
for a minimizer. This model is much more in the spirit of a global optimization problem, as far as
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the individual welfare of the commuters between ρ0 and ρ1 is disregarded: we are minimizing the
total cost of transportation, in the presence of congestion, for a social planner. Anyway, we will see
in the next chapter that there is a tight connection between these two models and that Beckmann’s
problem is directly linked to Wardrop equilibrium issues.

2. Wardrop’s model in a discrete setting

We start with the discrete case: this means that sources and destinations are given by a finite
number of points, while possible routes connecting them are to be chosen among the edges of a
fixed network. We will see in the next section that it is possible to give a suitable extension of this
model to a continuous setting.

Specifically, in a discrete setting one considers:

• a finite graph G consisting of a set of edges E and a set of vertices V , the latter containing
S = {x1, . . . , xn} sources and D = {y1, . . . , ym} destinations;
• the set Cxi,yj = {σ : [0, 1]→ G : σ(0) = xi, σ(1) = yj} of admissible paths (on the graph

G ) from xi to yj ;
• a demand input γ = (γ(xi, yj))i,j denoting the quantity of mass from each xi ∈ S that

has to be sent to each yj ∈ D: it is also possible to consider a set Π of admissible γ’s (in
a modern language, this is nothing but an admissible set of transport plans);
• an unknown repartition strategy Q = (Qσ)σ, such that∑

σ∈Cxi,yj
Qσ = γ(xi, yj),

which represents the possible way in which mass can split on the graph in going from xi
to yj , in order to satisfy the demand input relative to these points;
• a resulting traffic intensity iQ = (iQ(e))e∈E , which clearly depends on the strategy Q,

given by

iQ(e) =
∑

{σ :σ([0,1])⊃e}

Qσ,

that is for every edge e ∈ E of the graph, iQ(e) is the total mass transiting from there,
according to the repartition strategy;
• finally, an increasing function h : [0,∞) → [0,∞), such that h(iQ(e)) represents the

congestioned cost of the edge e.

Then one defines the total cost of each admissible path σ ∈ Cxi,yj , given by

w(σ) =
∑

{e∈G : e⊂σ([0,1])}

h(iQ(e)) H 1(e),

and observe that it increasingly depends on the traffic intensity, that is on how much this σ is
used by the transportation. The global strategy Q represents the overall traffic distribution on
the network Σ, that is it represents the choices of the commuters from S to D. Imposing a Nash
equilibrium (see [87]), which roughly speaking means that no single commuter wants to change his
choice, provided all the other players keep the same strategy, gives the following condition:
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if on an admissible σ ∈ Cxi,yj we have Qσ > 0 (which means that somebody is using this path
σ), then

w(σ) = min{w(σ̃) : σ̃ ∈ Cxi,yj},
that is at equilibrium every used path must be minimal, according to the congestioned cost induced
by the traffic itself. This is the well-known concept of Wardrop equilibrium, which can also be
rephrased as “every actually used (i.e. where the flow is positive) road connecting a source to a
destination should be a shortest path (taking into account the congestion effects)”.

For our purposes, it is useful to recall the fundamental fact that existence of such an equilibrium
can be proven by means of a variational principle: the convexity assumptions in the next statement
guarantee that necessary optimality conditions are also sufficient.

Proposition 6.2.1. Let H : [0,∞) → [0,∞) be a convex function such that H ′(t) = h(t), for

every t ≥ 0. Also suppose that the set Π of admissible demand inputs is convex. Then Q̃ minimizes
the overall congestion cost

J (Q) =
∑
e∈G

H(iQ(e)) H 1(e),

among all possible strategies if and only if Q̃ is a Wardrop equilibrium for the congestion function
h.

Proof. Let us give a brief justification of this important fact. Using the convexity of H, it is

easy to see that Q̃ minimizes J if and only if∑
e∈G

H ′(i
Q̃(e)

) (iQ(e)− i
Q̃

(e)) H 1(e) ≥ 0, for every admissible Q.

Set ξ(e) := H ′(i
Q̃

(e)) and use the definition of traffic intensity, so that the left-hand side can be

rewritten as∑
e∈G

H ′(i
Q̃

(e)) (iQ(e)− i
Q̃

(e)) H 1(e) =
∑
e∈G

∑
{σ :σ([0,1])⊃e}

ξ(e) H 1(e)
(
Qσ − Q̃σ

)

=
∑
σ

 ∑
{e∈G : e⊂σ([0,1])}

ξ(e) H 1(e)

(Qσ − Q̃σ) ,
and setting `ξ(σ) =

∑
{e⊂σ([0,1])} ξ(e) H 1(e) (observe that this can be seen as a weighted length of

the curve σ), the previous implies ∑
σ

`ξ(σ)Qσ ≥
∑
σ

`ξ(σ) Q̃σ,

so that Q̃ minimizes J if and only if∑
σ

`ξ(σ) Q̃σ = inf
Q

∑
σ

`ξ(σ)Qσ

= inf
Q

∑
xi∈S, yj∈D

∑
σ∈Cxi,yj

`ξ(σ)Qσ.
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We then observe that the total quantity of commuters between xi and yj is fixed, being given by∑
σ∈Cxi,yj Qσ = γ(xi, yj), then setting

(6.2.1) dξ(xi, yj) = min{`ξ(σ) : σ ∈ Cxi,yj}, for every xi ∈ S, yj ∈ D.

we easily see that the previous infimum is given by∑
σ

`ξ(σ) Q̃σ = inf
γ∈Π

∑
xi∈S, yj∈D

dξ(xi, yj) γ(xi, yj).

This means that Q̃ minimizes J if and only if for every σ ∈ Cxi,yj such that Q̃σ > 0, then σ must
be of minimal length according to `ξ: thus recalling the definition of `ξ and w above and taking
into account that H ′ = h, we conclude the proof. �

Remark 6.2.2. Observe that in the case Π consists of the whole set of transport plans (i.e. we
prescribe only the total amount of traffic exiting xi ∈ S and the total amount of traffic entering

yj ∈ D and we look at all possible couplings), the previous computations show that a minimizer Q̃ =

(Q̃σ)σ of the functional J solves the accessory Monge-Kantorovich problem for the congestioned

metric dξ, more precisely the element γ̃ defined by γ̃(xi, yj) = (
∑

xi∈S, yj∈D Q̃σ)i,j minimizes the

quantity ∑
xi∈S, yj∈D

dξ(xi, yj) γ(xi, yj),

with ξ = H ′(i
Q̃

) and dξ given by (6.2.1).

Remark 6.2.3. It is worth observing that in general the overall congestion cost

J =
∑
e∈G

H(iQ(e)) H 1(e),

is different from the total cost paid by vehicles, the latter being given by∑
e∈G

h(iQ(e))H 1(e) iQ(e).

Clearly if one takes H ′(t) = h(t), the two functions H(t) and h(t)t are the same up to a multiplica-
tive constant in the case of power functions; but otherwise they give rise to different optimization
problems.

3. Wardrop’s model in a continuous setting

Recently, in [33] Carlier, Jimenez and Santambrogio have extended Wardrop’s model to a
continuous setting, i.e. when S and D are replaced by generic probability measures ρ0 and ρ1,
while the set of admissible paths is no more constrained to live on a given graph, but it is the whole
space of continuous curves (see also [14] for some numerical simulations based on their model).

For the sake of completeness and to motivate the studies of the next chapter, where we will try
to relate Wardrop’s and Beckmann’s models (the latter will be presented in the next section), we
will briefly explain the model and some of the results of [33].
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In the framework of [33], let Ω ⊂ RN be a bounded open set with smooth boundary and
let ρ0, ρ1 ∈ P(Ω) be two given probability measures over its closure, representing the spatial
distribution of centers of production and consumption of a given commodity (or residential and
working/commercial areas), over the geographical area Ω. The network G is replaced by the whole
space C([0, 1]; Ω), thought as a separable Banach space equipped with the topology of uniform
convergence. In order to describe how commuters between ρ0 and ρ1 choose their paths, one intro-
duces probability measures Q on C([0, 1]; Ω), concentrated on the set Lip([0, 1]; Ω) and satisfying
the compatibility conditions of connecting ρ0 to ρ1, in the sense

(ei)]Q = ρi, i = 0, 1,

where et is the evaluation-at-time-t map: this Q is the natural counterpart of the repartition
strategy in the discrete model. We set Q(ρ0, ρ1) to denote these admissible probability measures
and we can still keep the terminology traffic plans for them, as in the previous Chapters. Then the
traffic intensity, i.e. the transiting mass associated to Q, is represented by a positive Borel measure
iQ on Ω, defined through∫

Ω
ϕ(x) diQ(x) :=

∫
C([0,1];Ω)

(∫ 1

0
ϕ(σ(t)) |σ′(t))|dt

)
dQ(σ), for every ϕ ∈ C(Ω).

Remark 6.3.1. It is straightforward to see that iQ is a generalized transport density: indeed, it
could be seen as representing a path-dependent version of the usual transport density for Monge’s
problem. Taking γ ∈ Π(ρ0, ρ1) an optimal transport plan for

min

{∫
Ω×Ω
|x− y| dγ(x, y) : γ ∈ Π(ρ0, ρ1)

}
,

and choosing Q =
∫
δxy dγ(x, y), where xy is a parametrization of the segment joining x to y, we

easily get

〈ϕ, iQ〉 =

∫
Ω×Ω

∫
xy
ϕ(z) dH1(z) dγ(x, y), for every ϕ ∈ C(Ω),

that is iQ coincides with the usual notion of transport density (see Chapter 1, Section 1).

Then the concept of Wardrop equilibrium can be extended in a natural way to this setting as
follows: a Q ∈ Q(ρ0, ρ1) is said to be a Wardrop equilibrium for the congestion function h if it gives
full mass to the set of geodesics for the metric dQ (formally) defined as

(6.3.1) dQ(x, y) = inf
σ∈Cx,y

∫ 1

0
h(iQ(σ(t))) |σ′(t)| dt.

Observe that this is in fact a metric which depends on the traffic itself, as one should expect, and
this is the exact translation in a continuous setting of the principle “every actually used (i.e. where
the flow is positive) road connecting a source and a destination must be a shortest path (taking
into account the congestion effects)”, characterizing Wardrop equilibria in a discrete case.

Remark 6.3.2. The quantity h(iQ(x)) can be seen as the cost to pay for passing from x, where
there is an amount of traffic given by iQ(x). If iQ(x) is interpreted as the number (per unit of
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volume) of vehicles transiting from x, then (formally)

(6.3.2)

∫
Ω
h(iQ(x)) iQ(x) dx,

represents the total cost paid by vehicles in commuting between ρ0 and ρ1, corresponding to the
traffic assignment Q.

Anyway, this is just an informal presentation of what a Wardrop equilibrium should be in the
continuous setting: indeed, from a mathematical point of view the definition of the metric dQ
does make little sense, at this level. Observe that for those Q such that iQ � L N , the previous
definition could be interpreted as

dQ(x, y) = inf
σ∈Cx,y

∫ 1

0
h

(
diQ
dL N

(σ(t))

)
|σ′(t)| dt.

In this case one can prove that when the term

h

(
diQ
dL N

)
,

is an Lq function, with q > N , this metric dQ can be rigorously defined (see [33, Section 3.2]
for more details), through an approximation procedure and the definition of Wardrop equilibrium
consequently does make sense.

Regarding the existence of such equilibria, one may wonder if this can be achieved again through
a variational principle, exactly as in the discrete case: the answer is yes, so let us now turn the
attention to the optimization problem. One introduces a total cost functional

W (Q) =

{ ∫
ΩH(iQ(x)) dx, if iQ � L N ,

+∞, otherwise,

where we are confusing the measure iQ with its density w.r.t. L N : in particular, by the definition
of W we see that the congestion effects in this model will be quite strong. Indeed, with a cost like
this only very diffused (i.e. absolutely continuous w.r.t L N ) traffic intensity are allowed and every
low-dimensional concentration of the traffic gives rise to an infinite total cost.

The density-cost function H : [0,∞)→ [0,∞) is assumed to be increasing and strictly convex,
with a p−growth (p > 1), that is

a tp ≤ H(t) ≤ b (tp + 1), for every t ≥ 0,

and H(0) = 0: then the following optimization problem is taken into account

(6.3.3) inf
Q∈Qp(ρ0,ρ1)

∫
Ω
H(iQ(x)) dx,

where the set of admissible traffic plans is given by

Qp(ρ0, ρ1) = {Q ∈ Q(ρ0, ρ1) : iQ ∈ Lp(Ω)}.
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Remark 6.3.3. It is important to observe that W (Q) =
∫

ΩH(iQ(x)) dx can be seen as the total
cost of congestion for a social planner and in general it differs from the total cost payed by vehicles,
the latter being given by (6.3.2). From a modelistic viewpoint, it is also clear that minimizing W
with the constraint (ei)]Q = ρi, i = 0, 1, we are mimicking a situation in which the social planner
has the right to impose who goes where, in order to optimize the total cost: in mathematical terms,
this corresponds to say that the set of admissible couplings (e0, e1)]Q coincides with the whole set
of transport plans Π(ρ0, ρ1). In a real urban traffic situation, on the other hand, it is more realistic
to optimize the total cost under the constraint of (e0, e1)]Q ∈ Π, with Π ⊂ Π(ρ0, ρ1) being a set
of admissible transport plans: as a particular case, we have Π = {γ}, that is the coupling is given
and, roughly speaking, every commuter starting from ρ0 have decided its destination (this is the
situation usually considered by transport analysts, see [12]). The definition of Wardrop equilibrium
still applies to this situation.

Remark 6.3.4. At a first sight, it could seem difficult to check that given ρ0, ρ1 ∈P(Ω), then
there exists Q such that iQ is admissible, that is iQ ∈ Lp(Ω). Anyway, by means of Theorem 1.1.13
in Chapter 1 about summability results on the transport density, we have for example that ρ0 and
ρ1 having Lp densities surely implies that Qp(ρ0, ρ1) 6= ∅.

Anyway, we can have Qp(ρ0, ρ1) 6= ∅ also in the case that neither ρ0 nor ρ1 are absolutely
continuous w.r.t. L N , as the next Example shows.

Example 6.3.5. Let us take ρ0 = (ωN−1)−1H N−1x∂B1(0) and ρ1 = δ0, with ∂B1(0) = {x ∈
RN : |x| = 1} and ωN−1 = H N−1(∂B1(0)). Let us consider the transport density relative to ρ0

and ρ1 for the cost |x− y|, that is

〈iγ , ϕ〉 =
1

ωN−1

∫
∂B1(0)

∫ 1

0
ϕ((1− t)x) |x| dt dH N−1(x)

=
1

ωN−1

∫ 1

0

∫
∂Bs(0)

ϕ(y)
1

sN−1
dH N−1(y) ds

=
1

ωN−1

∫
B1(0)

ϕ(x)
1

|x|N−1
dx, for every ϕ ∈ C,

that is iγ = ωN−1|x|1−N ·L N , whose density belongs to every Lp with 1 ≤ p < N/(N − 1).

Example 6.3.6. For some choices of ρ0 and ρ1 singular w.r.t. L N , we could also obtain a
traffic intensity with an L∞ density w.r.t. L N . For example, with N = 2 it is enough to consider

ρ0 = H 1x({0} × [0, 1]) and ρ1 = H 1x({1} × [0, 1]),

then taking as iQ the corresponding transport density, this is the uniform 2−dimensional Lebsegue
measure on the square [0, 1]× [0, 1].

About existence of solutions for problem (6.3.3), it is proven in [33] the following result.

Theorem 6.3.7. The minimization problem (6.3.3) admits a solution, provided Qp(ρ0, ρ1) is
not empty.

Proof. We just give a sketch of the proof, highlighting the main ideas and referring the
interested reader to [33] for further details. The proof goes along the lines of the Direct Methods:
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indeed, taking a minimizing sequence {Qn}n∈N, the main issue is to show that this is equi-tight
(which implies ∗−weak convergence to a probability Q, by means of Prokhorov’s Theorem) and
that, if every Qn is concentrated on Lipschitz curves, then the same holds true for the limit measure
Q. To obtain the equi-tightness property, one observes that, assuming∫

Ω
H(iQn(x)) dx ≤ C for every n ∈ N,

then {iQn}n∈N is equi-bounded in Lp(Ω), which in turn implies equi-boundedness in L1(Ω), so that∫
C

∫ 1

0
|σ′(t)| dt dQn(σ) =

∫
Ω
iQn(x) dx ≤ C,

and the required property on the sequence {Qn}n∈N is now an easy consequence of Markov inequal-

ity: to be more precise, we obtain the equi-tightness of the sequence {Q̃n}n∈N, where Q̃n = (r)]Qn
and r is the map that associates to every σ ∈ Lip([0, 1]; Ω) its constant speed reparametrization

σ̃ := r(σ), that is σ̃ : [0, 1] → Ω is such that |σ̃′(t)| ≡
∫ 1

0 |σ
′(t)| dt and σ̃([0, 1]) = σ([0, 1]). The

important fact is that iQn = i
Q̃n

.

We also observe that the fact that {iQn}n∈N is equi-bounded in Lp(Ω) implies weak convergence
(up to subsequences, as always) to an Lp function i.

Clearly, this would not be enough, as far as we do not know that this limit function i is itself

a traffic intensity: anyway, one can show that Q̃n
∗
⇀ Q and iQn ⇀ i, implies that iQ ≤ i (observe

that this is a sort of lower semicontinuity result). Observing that the set Q(ρ0, ρ1) is closed with
respect to the ∗−weak convergence and using the monotonicity and convexity properties of H, then
one can conclude ∫

Ω
H(iQ(x)) dx ≤

∫
Ω
H(i(x)) dx ≤ lim inf

n→∞

∫
Ω
H(iQn(x)) dx,

giving the optimality of Q. �

We then write optimality conditions in the continuous setting, which are strictly related to the
concept of Wardrop equilibrium and read as follows: as it will be clear in a while, this is the natural
counterpart of Proposition 6.2.1 of the previous section.

Proposition 6.3.8. Q0 ∈ Qp(ρ0, ρ1) is a solution of (6.3.3) if and only if

(6.3.4)

∫
Ω
H ′(iQ0(x)) iQ0(x) dx = inf

Q∈Qp(ρ0,ρ1)

{∫
Ω
H ′(iQ0(x)) iQ(x) dx

}
It is interesting to manipulate a bit (at least at a formal level) the previous optimality condition:

as we see, this is nothing but the fact that the optimal transportation strategies are concentrated
on geodesics for the congested metric.

Indeed, using the definition of iQ, setting ξ = H ′(iQ0), γ0 = (e0, e1)#Q0 ∈ Π(ρ0, ρ1) and
disintegrating Q0 as

Q0 =

∫
Ω×Ω

Qx,y dγ0(x, y),
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where for γ0−a.e. (x, y) ∈ Ω × Ω, the probability measure Qx,y is concentrated on the set Cx,y =
{σ : σ(0) = x, σ(1) = y}, then the optimality condition (6.3.4) can be formally rewritten as∫

Ω
ξ(x) iQ0(x) dx = inf

Q

∫
Ω
ξ(x) iQ(x) dx

= inf
Q

∫
C([0,1];Ω)

∫ 1

0
ξ((σ(t))) |σ′(t)| dt dQ(σ)

= inf
Q

∫
Ω×Ω

∫
Cx,y

(∫ 1

0
ξ(σ(t)) |σ′(t)| dt

)
dQx,y(σ) dγ(x, y)

= inf
γ∈Π(ρ0,ρ1)

inf
η∈P(Cx,y)

∫
Cx,y

(∫ 1

0
ξ(σ(t)) |σ′(t)| dt

)
dη(σ) dγ(x, y)

= inf
γ∈Π(ρ0,ρ1)

∫
Ω×Ω

dξ(x, y) dγ(x, y),

where we have set

dξ(x, y) = inf
σ∈Cx,y

∫ 1

0
ξ(σ(t)) |σ′(t)| dt.

So, at least formally, exactly as in the discrete case we have that if Q0 is a solution of (6.3.3), then
it must be concentrated on the set of geodesics for the metric dξ, so that if H ′ = h then Q0 is a
Wardrop equilibrium for the given congestion function h. Moreover in this case, where only the
marginals ρ0 and ρ1 are fixed, but not the coupling (i.e. the transport plan), we further obtain
that the corresponding γ0 = (e0, e1)]Q0 ∈ Π(ρ0, ρ1) has to solve the Monge-Kantorovich problem
associated with the metric dξ. Conversely, both conditions are also sufficient for optimality in
(6.3.3).

Under appropriate assumptions, the whole previous discussion can be made rigorous: we sum-
marize the main result about existence and characterization of Wardrop equilibria via optimization
of a total cost in the following statement (see [33, Theorem 3.10]).

Theorem 6.3.9. Let us assume that 1 < p < N/(N − 1) and that H is strictly convex. A
transportation strategy Q0 ∈ Qp(ρ0, ρ1) is optimal for (6.3.3) if and only if one has:

(i) γ0 = (e0, e1)#Q0 ∈ Π(ρ0, ρ1) solves the Monge-Kantorovich problem

inf
γ∈Π(ρ0,ρ1)

∫
Ω×Ω

dQ0(x, y) dγ(x, y),

where the cost dQ0 is defined by

dQ0(x, y) = inf
σ∈Cx,y

∫ 1

0
H ′(iQ0(σ(t))) |σ′(t)| dt

(ii) Q0 gives full mass to the set of curves such that∫ 1

0
H ′(iQ0(σ(t))) |σ′(t)| dt = dQ0(σ(0), σ(1)),

that is Q0 defines a metric through the coefficient H ′(iQ0) and it is indeed concentrated on
geodesics for this metric.
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It is part of the assertion that, with the previous hypothesis on the exponent p, the equilibrium
metric dQ0 is well-defined (see [33, Section 3.2]): indeed, this implies that for the conjugate exponent
q = p/(p− 1) we have q > N and H ′(iQ0) ∈ Lq, which is exactly the condition for the metric dQ0

to be defined, as briefly said.
Thus summarizing, when a congestion function h is given, applying the previous Theorem with

H such that H ′ = h, we obtain the existence of a Wardrop equilibrium relative to h. Moreover
exactly as in the discrete case, the existence of such an equilibrium is obtained by means of the
minimization of a total transportation cost.

Remark 6.3.10. The conclusions of Theorem 6.3.7 and Theorem 6.3.9 (in the sense that Q is
optimal if and only if is a Wardrop equilibrium), still hold in the case of the minimization problem
for W under the constraint Q ∈ Π, with Π convex subset of Π(ρ0, ρ1), in particular for the case
Π = {γ}. On the other hand, condition (i) of Theorem 6.3.9 is peculiar of the optimization problem
for W over Qp(ρ0, ρ1), with no constraints on the coupling (e0, e1)]Q.

4. Beckmann’s continuous model of transportation

We now turn our attention to the model introduced by Beckmann in [11], in which the starting
point is the optimization point of view: we have already encountered a particular case of this model
in Chapter 1, Section 1.

We can think of modelizing the transportation activities in the city Ω through a vector field
φ : Ω→ RN , which in every point x describes the direction of transportation, given by φ(x)/|φ(x)|,
and the total amount of transiting mass, given by |φ(x)|: observe that for every φ, the quantity
|φ| somehow plays the role of the traffic intensity iQ in Wardrop’s model. At every point, φ
should satisfy some balance conditions, assuring that locally the total outcoming/incoming flow
of commodity depends on the difference between production and consumption, i.e. ρ0 − ρ1: that
is to say, if in small region U around x we have more production than consumption, we expect a
compensating flow exiting from U and vice versa.

Mathematically this can be expressed by saying∫
∂U
〈φ(x), ν(x)〉 dH N−1(x) = ρ0(U)− ρ1(U),

which can also be written as a constraint on the divergence of the vector field φ

(6.4.1) div φ = ρ0 − ρ1.

Having assumed that ρ0 and ρ1 have the same mass, we also have a homogeneous Neumann bound-
ary condition

(6.4.2) 〈φ, ν〉 = 0, on ∂Ω,

stating that the geographical area Ω is self-sufficient with respect to the commodity considered
(i.e. we have no import/export of the given commodity). One can also consider situations in which
ρ0 and ρ1 are positive measures with different masses: in this case, the previous homogeneous
boundary condition should be replaced by a non-homogeneous one, meaning that the city Ω needs
an outcoming/incoming flow of commodity, in order to be in equilibrium.
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Clearly, one can also think of ρ0 and ρ1 as the distribution of residents and services (shops,
offices etc.) in the city Ω: again, if they have the same mass, then roughly speaking every citizen
can satisfy his needs without going outside Ω.

We then introduce some density cost function H : Ω × RN → R+, depending on the space
variable x and on the transiting mass: more precisely, the quantity H(x, φ(x)) gives the total cost
(per unit volume) to let an amount of mass |φ(x)| transit with direction φ(x)/|φ(x)| in the point x,
so that in the end the transportation process associated to a certain vector field φ satisfying (6.4.1)
and (6.4.2) will have a total cost given by

(6.4.3)

∫
Ω
H(x, φ(x)) dx.

Then one is is interested in looking for a φ minimizing (6.4.3), under the constraints (6.4.1) and
(6.4.2). So far, this problem is clearly too general and not well-posed, unless some specific and
reasonable assumptions are made on the cost function H and on the space of admissible vector
fields. In the sequel, for simplicity we will only consider x−independent cost H, satisfying the
following assumptions:

(i) H(z) = H(|z|), with H : [0,∞) → [0,∞) strictly convex superlinear function and with
H(0) = 0 (we will think of the function H as the same as in Wardrop’s model);

(ii) H has p−growth, i.e.

a|z|p ≤ H(z) ≤ b(|z|p + 1), z ∈ RN ,

for some p ∈ (1,∞) and a, b positive constants;
(iii) H is differentiable in RN \ {0} and there exists a positive constant c such that

|∇H(z)| ≤ c(|z|p−1 + 1), z ∈ RN \ {0},

then we turn to consider the following optimization problem (Beckmann’s problem)

(6.4.4) inf
φ∈Lp(Ω;RN )

{∫
Ω
H(φ(x)) dx : div φ = ρ0 − ρ1, 〈φ, ν〉 = 0 on ∂Ω

}
.

Example 6.4.1. An interesting case is given by the choice H(z) = |z|2, for which the minimal
value (6.4.4) is given by (see [34] for the details)

A(ρ0, ρ1) =

{
‖ρ0 − ρ1‖2X∗ , if ρ0 − ρ1 ∈ X∗

+∞, otherwise.

where X∗ indicates the dual of the Hilbert space X = W 1,2
� (Ω) = {ϕ ∈ W 1,2(Ω) :

∫
Ω ϕ = 0},

equipped with the scalar product

〈ϕ,ψ〉X =

∫
Ω
〈∇ϕ(x),∇ψ(x)〉 dx,

so that in this case the minimal value of Beckmann’s problem is just a dual Sobolev norm. We will
come back later to this problem in the next chapter.

Optimization problem (6.4.4) enjoys nice optimality conditions that we will exploit extensively
in the next chapters: they read as follows.
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Theorem 6.4.2. Suppose that the infimum in (6.4.4) is finite and let φ0 be its unique optimizer,
then there exists ϕ0 ∈W 1,q(Ω) such that

(6.4.5) φ0 = ∇H∗(∇ϕ0),

and ϕ0 is a weak solution of

(6.4.6)

{
div∇H∗(∇u) = ρ0 − ρ1, in Ω,
〈∇H∗(∇u), ν〉 = 0, on ∂Ω,

where H∗ is the Legendre transform of H and q = p/(p− 1).

Proof. We first observe that problem (6.4.4) consists in minimizing a strictly convex and
coercive functional on Lp subject to a convex and closed constraint: then an optimizer φ0 exists
and must be unique.

It is well known that problem (6.4.4) has a dual formulation, given by the convex analysis
formula (see for instance [47])

sup
ϕ∈W 1,q

� (Ω)

{
〈ρ1 − ρ0, ϕ〉 −

∫
Ω
H∗(∇ϕ)

}
= inf

φ∈Lp(Ω)

{∫
Ω
H(φ) : div φ = ρ0 − ρ1, 〈φ, ν〉 = 0

}
,

where W 1,p
� (Ω) is the subspace of W 1,p(Ω) consisting of functions with zero mean on Ω and the

brackets 〈·, ·〉 denote the duality product between W 1,q
� (Ω) and its dual

(
W 1,q
� (Ω)

)∗
. Due to the

superlinear growth and the strict convexity of H, we get that H∗ ∈ C1 and it verifies the following
growth conditions

B(|z|q − 1) ≤ H∗(z) ≤ A|z|q,

where q = p/(p− 1), then using the Direct Methods of the Calculus of Variations it is not difficult

to show that the dual problem admits at least a solution ϕ0 on W 1,q
� (Ω). Indeed the functional

F(ϕ) =

∫
Ω
H∗(∇ϕ(x)) dx− 〈ρ1 − ρ0, ϕ〉,

is lower semicontinuous with respect to the weak topology of W 1,q
� (due to the convexity of H∗)

and is coercive, thanks to the growth conditions of H∗ and to Poincarè and Young inequalities

F(ϕ) ≥ B
∫

Ω
|∇ϕ(x)|q dx−B|Ω| − ‖ρ0 − ρ1‖

(∫
Ω
|ϕ(x)|q dx

) 1
q

≥ B
∫

Ω
|∇ϕ(x)|q dx−B|Ω| − C ‖ρ0 − ρ1‖

(∫
Ω
|∇ϕ(x)|q dx

) 1
q

≥ (B − C ε)
∫

Ω
|∇ϕ(x)|q dx−B|Ω| − C

ε
‖ρ0 − ρ1‖p.

It is clear that, from a variational point of view, minimizing F or maximizing −F is exactly the
same. We observe further that the Euler-Lagrange equation of F is given by (6.4.6), so that ϕ0
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solves it in distributional sense. Moreover ϕ0 and φ0 verify∫
Ω
H(φ0(x)) dx = 〈ρ1 − ρ0, ϕ〉 −

∫
Ω
H∗(∇ϕ0(x)) dx

=

∫
Ω
〈∇ϕ0(x), φ0(x)〉 dx−

∫
Ω
H∗(∇ϕ0(x)) dx,

where we have used the fact that div φ0 = ρ0− ρ1 and 〈φ0, ν〉 = 0. The previous can be recast into∫
Ω
H(φ0(x)) dx+

∫
Ω
H∗(∇ϕ0(x)) dx =

∫
Ω
〈∇ϕ0(x), φ0(x)〉 dx,

which, by means of the so called Legendre reciprocity formula, implies that

φ0(x) ∈ ∂H∗(∇ϕ0(x)), for L N -a.e. x ∈ Ω.

Using the fact that H∗ ∈ C1, we obtain that actually the subgradient set ∂H∗ is made of just an
element, namely the gradient ∇H∗, concluding the proof. �

Definition 6.4.3. In the sequel, we will refer to a function ϕ0 verifying (6.4.5) as a Beckmann
potential: observe that this can be simply seen as a Lagrange multiplier for the divergence constraint
on φ0.

Remark 6.4.4. We can (formally, at this stage) define a cost function given by the Riemannian
distance associated to |∇ϕ0|, that is

dϕ0(x, y) = inf
σ∈Cx,y

∫ 1

0
|∇ϕ0(σ(t))||σ′(t)| dt,

where Cx,y = {σ : σ(0) = x, σ(1) = y}, then we see∫ 1

0
|∇ϕ0(σ(t))||σ′(t)| dt ≥

∫ 1

0
〈∇ϕ0(σ(t)), σ′(t)〉 dt = ϕ0(σ(1))− ϕ0(σ(0))

that is
dϕ0(x, y) ≥ inf

σ∈Cx,y
ϕ0(σ(1))− ϕ0(σ(0)) = ϕ0(y)− ϕ0(x),

and we have equality if and only if σ is an integral curve of ∇ϕ0 connecting x to y: in this case,
there holds

dϕ0(x, y) = ϕ0(y)− ϕ0(x).

This means that a Beckmann potential ϕ0 acts like a Kantorovich potential for the metric given
by dϕ0 , which is induced by ϕ0 itself. More precisely (with a little abuse of notation, as far as
H(z) = H(|z|) is not differentiable at 0) notice that dϕ0 is induced by |∇ϕ0| = H ′(|φ0|), in the
same way in which the equilibrium metric in Wardrop’s model was induced by H ′(iQ0): this gives an
evident link between the two models, which in particular could suggest that existence of Wardrop
equilbria for a congestion function h = H ′ can be proven by looking at problem (6.4.4). The
investigation of such a connection between the two problems is exactly the content of the next
chapter.





CHAPTER 7

Equivalence between Wardrop’s and Beckmann’s models

1. Introduction

In this chapter we discuss how to connect the Wardrop’s problem on measures on paths (Chapter
6, Section 3) to the Beckmann’s problem on vector fields with prescribed divergence (Chapter
6, Section 4): in which sense and when are they equivalent and, more important, how to pass
from a minimizer of the first problem to a minimizer of the second one and back. Throughout
this chapter, Wardrop’s problem will always be considered in the case that no constraints on the
couplings (e0, e1)]Q are imposed: on the other hand, if you fix an admissible proper subset of
transport plans Π ⊂ Π(ρ0, ρ1) (the typical choice is (e0, e1)]Q = γ ∈ Π(ρ0, ρ1)), the two problems
would rather describe different situations (see also Remark 7.2.2 below). Then the main result is
that of Theorem 7.5.5 where equivalence is proven using the concept of flow à la DiPerna-Lions and
using some regularity results for the solution of Beckmann problem, whose proof are postponed
to Chapters 8 and 9, in order not to bury the central ideas of this result in technical (though
interesting) regularity details.

We point out that one of the main features of this equivalence is that, once established, one
can prove the existence of Wardrop equilibria for a given congestion function, by solving the more
familiar (and more tractable, also from a numerical point of view) convex optimization problem
presented in Section 4 of Chapter 6. Moreover one can, roughly speaking, investigate the regularity
properties of these Wardrop equilibria, in terms of the regularity of the data ρ0 and ρ1, through a
detailed analysis of the corresponding Beckmann potentials. In what follows, for convenience we
will use the notation

(W) = min
Q∈Qp(ρ0,ρ1)

∫
Ω
H(iQ(x)) dx,

and

(B) = min
φ∈Lp(Ω;RN )

{∫
Ω
H(φ) dx : div φ = ρ0 − ρ1, 〈φ, ν〉 = 0 on ∂Ω

}
,

to denote Wardrop and Beckmann problems, respectively, where we recall that we are considering
the isotropic case H(z) = H(|z|) for every z ∈ RN . The model case that we will have in mind for
the cost function H is the following

(7.1.1) H(z) =
1

p
|z|p + |z|, z ∈ RN ,

with p > 1, that is (B) amounts in minimizing a combination of the Lp and L1 norms, under a
divergence constraint. The reason for such a choice is readily said: let us recall that H ′ = h, where
h is the congestion function relating the metric to the traffic intensity. It is therefore natural to have
h(0) > 0: the metric is positive even if there is no traffic, which implies that the cost function H

119
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should not be differentiable at 0 and then its subdifferential at 0 contains a ball. In more economic
terms, you could rephrase this by saying that we are considering a model where the marginal cost
for congestion (represented by H ′) is strictly increasing and always greater than a threshold c > 0.

2. Moser’s deformation argument

First of all, we start with the following simple result, stating that actually (W) and (B) can be
compared: here the particular choice (7.1.1) does not play any role and the result is valid under
the hypothesis that H(z) has p−growth, with p > 1.

Proposition 7.2.1. Let ρ0, ρ1 ∈P(Ω) such that Qp(ρ0, ρ1) 6= ∅. Then

(7.2.1) (B) ≤ (W).

Proof. It is sufficient to consider an admissibleQ ∈ Qp(ρ0, ρ1) and to construct a vector-valued
version of the traffic intensity iQ, namely we define a vector measure φQ on Ω through

〈φQ, ϕ〉 :=

∫
C([0,1];Ω)

(∫ 1

0
〈ϕ(σ(t)), σ′(t)〉 dt

)
dQ(γ), for every ϕ ∈ C(Ω,RN ),

then it is not difficult to see that φQ satisfies the divergence constraint of Beckmann’s problem (just
taking test functions of the form ϕ = ∇ψ). Moreover by means of Cauchy-Schwarz inequality we
easily get |φQ| ≤ iQ, so that φQ ∈ Lp and it is indeed admissible for (B). Using the monotonicity
properties of the cost function H, one can say that∫

Ω
H(φQ(x)) dx =

∫
Ω
H(|φQ(x)|) dx ≤

∫
Ω
H(iQ(x)) dx,

thus giving (7.2.1). �

Thanks to Proposition 7.2.1, we see that to prove the full equivalence (B) = (W), we have to
show that given φ solving (B), it is possible to construct Q ∈ Qp(ρ0, ρ1) such that iQ = |φ|: this
will automatically imply that Q is a solution to (W), with∫

Ω
H(iQ(x)) dx =

∫
Ω
H(φ(x)) dx,

thus giving the desired equivalence. Anyway, before to explain how to achieve such a construction,
something has to be precised about the difference between the two models.

Remark 7.2.2. The construction in the proof of Proposition 7.2.1 should clarify that the main
difference between the two formulations is that Beckmann’s one, roughly speaking, does not take
into account the fact that a huge mass transiting in opposite directions on the same path creates a
lot of congestion effects: on the contrary, in Beckmann’s construction, this two opposite flows would
be added in a vectorial way, thus giving rise to a lot of cancellations. To give a precise flavour of this
phenomenon, we give a basic but important example: suppose to have ρ0 = ρ1 = 1/2 δx0 + 1/2 δx1 ,
with x0 6= x1, then we consider the traffic plan

Q =
1

2
δσ1 +

1

2
δσ2 ,
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with σ1(t) = (1 − t)x0 + tx1 and σ2(t) = (1 − t)x1 + tx0, that is the initial and final destinations
are the same (two Dirac masses), but we want to exchange the mass in x0 with that in x1 and vice
versa. Computing the traffic intensity, gives

iQ = H 1 xx0x1,

which takes into account the intuitive fact that on the segment x0x1, globally there is a non
negligible amount of transiting mass. On the other hand, the construction of Proposition 7.2.1
gives the vector measure

φQ = 0,

because of the fact that the definition of φQ takes into account the orientation of the curves. In any
case, it is evident that in Beckmann model, there is no possibility to modelize a situation like this,
which is anyway very natural. A posteriori we could say that, the equivalence (B) = (W) should
tell us that at the optimum no such cancellations occur and that transport rays do not intersect,
whatever this means in the present context. Observe that this is clearly strongly linked to the
fact that in (W), we are not prescribing the coupling (e0, e1)]Q (see Remark 6.3.3 of the previous
chapter), but we are optimizing among all possible transport plans.

We now come to illustrate how to construct Wardrop equilibria, starting from an optimal vector
field φ: disregarding for a moment regularity issues, we will see that a natural candidate Qφ is given
by

Qφ :=

∫
δX(.,x) dρ0(x),

that is ∫
C([0,1];Ω)

F (σ) dQφ(σ) =

∫
Ω
F (X(·, x)) dρ0(x), for every F ∈ C(C([0, 1]; Ω);R),

where X(., x) is the flow of the non-autonomous ODE

(7.2.2)

{
∂tX(t, x) = φ̂t(X(t, x)),
X(0, x) = x,

φ̂t(x) :=
φ(x)

(1− t)ρ0(x) + tρ1(x)
.

Indeed, suppose that ρ0 = f0 ·L N and ρ1 = f1 ·L n, then by its very construction the flow map
X satisfies

d

dt

[
det∇xX(t, x) ((1− t)f0(X(t, x)) + tf1(X(t, x)))

]
= 0,

so that the quantity inside the square brackets is actually constant in time: then using the fact
that the flow at the initial time is the identity map, one obtains

f0(x) = f1(X(1, x)) det∇xX(1, x),

which by means of the area formula implies ρ1 = (X(1, ·))]ρ0. This guarantees that (ei)]Q = ρi,
for i = 0, 1, and moreover the natural concept of transport density associated to this system, which
is precisely the traffic intensity iQ, is such that (we will provide the details below)

iQφ = |φ|,
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thus giving the desired equivalence. This is clearly a Lagrangian point of view: on the other hand,
one observes that considering the linear interpolating curve ρt(x) = (1− t)ρ0(x) + tρ1(x), then

∂tρt + divx(φ̂t ρt) = ρ1 − ρ0 + divx

[
φ

(1− t)ρ0 + tρ1
((1− t)ρ0 + tρ1)

]
= ρ1 − ρ0 + divxφ = 0,

by means of the divergence constraint on φ, that is φ̂ is a velocity field for the measure-valued curve
ρ. Moreover provided we have well-posedness of the Cauchy problem for the continuity equation,
with initial datum ρ0, then we have that ρt must coincide with the curve µt = (X(t, ·))]ρ0, so that
in particular

ρ1 = X(1, ·)#ρ0,

and the same calculations as before apply, thus giving again iQ = |φ|: this is the Eulerian point of
view.

This deformation argument has been essentially introduced by Moser in [71], in order to solve
the problem of constructing smooth maps with prescribed Jacobian: further refinements and im-
provements of this method have then been given by Dacorogna and Moser himself ([37]) and by
Rivière and Ye ([74]), among others. The application of this argument to Optimal Transport prob-
lems is not completely new: indeed, we recall that in this context the first striking application has
been given by Evans and Gangbo ([48]), in their celebrated paper about the existence of a solution
for Monge’s original problem.

So far, this is the heuristic argument in order to obtain the desired equivalence: we now have
to take into account regularity issues and to see if, and eventually in what sense, the previous
construction does make sense. This said, the rest of the chapter is devoted to give an answer to
the following question:

when and in what sense does the flow of (7.2.2) exist?

3. Cauchy-Lipschitz flow

If the vector field φ̂ defined in (7.2.2) is Lipschitz with respect to the space variable, this flow can
be defined in a classical sense (see Appendix B) and the situation is relatively easy to understand:
in particular, the computations performed in the previous section are admissible and we obtain the

desired equality. Anyway, the regularity properties of φ̂ strongly depend on two facts:

- the regularity of the data, that is ρ0, ρ1 and ∂Ω;
- the regularity of φ, which in turns depends not only on the data, but also on the kind of

cost function H we are considering.

Indeed, recall that by Chapter 6, Theorem 6.4.2, we already know that the solution of (B) satisfies

φ = ∇H∗(∇u),

where H∗ is the Legendre-Fenchel conjugate of H and u is a Beckmann potential, solving the
following Neumann value boundary problem

(7.3.1)

{
−div∇H∗(∇u) = ρ1 − ρ0, in Ω,
〈∇H∗(∇u), ν〉 = 0, on ∂Ω.
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So it quite clear that, though we could impose all the needed assumptions on the data (let’s say
C∞), the gain of regularity on φ depends on the regularity of the solutions of (7.3.1) and thus has
some limits, intrinsic in the elliptic operator, beyond which is not possible to go. Let us make some
examples.

Example 7.3.1. In the case H(z) = 1/2 |z|2 (which is the one considered in [34]), then the
primal-dual optimality condition reads as

φ = ∇u,
and (7.3.1) is a Neumann problem for the Poisson equation −∆u = ρ1 − ρ0. Then to obtain
φ ∈ C0,1 it is widely sufficient to assume that ρ0 and ρ1 have densities given by C0,β functions:
indeed, under these hypotheses, the classical Schauder estimates (see [55]) give φ = ∇u ∈ C1,β,
up to the boundary if ∂Ω is smooth enough. In this case, furtherly assuming that ρ0 and ρ1 have

Lipschitz densities bounded from below by c > 0, we see that φ̂ defined by (7.2.2) is Lipschitz in
the space variable and Moser’s argument does apply to this situation.

Example 7.3.2. More generally, with the choice H(z) = 1/p |z|p for p 6= 2, condition (6.4.5)
leads to (q is the conjugate exponent of p)

φ = |∇u|q−2∇u,
and a Beckmann potential solves the homogeneous Neumann problem for the Poisson-like equation

−∆qu = ρ1 − ρ0,

where ∆q is the q−Laplacian operator. Already in this case, it is not clear if Lipschitz regularity on

φ (and consequently on φ̂) can be achieved: indeed, the by now classical regularity results for the
q−Laplace equation (see for example [45] and [64]) assures that in general solutions are no more
that C1,β, no matter how regular the data are, which means Hölder regularity for φ. A possible
higher regularity on the solution should involve a discussion on the critical points of the solution
itself, which is quite a delicate matter.

Yet, the situations which are motivated by traffic congestion is even worse: recall our choice
(7.1.1) for the cost H. Its Fenchel transform is given by

H∗(ξ) =
1

q
(|ξ| − 1)q+, ξ ∈ RN ,

which turns (7.3.1) into a very degenerate elliptic problem: for its solutions no more than Lipschitz
regularity (on the potential u!) can be achieved (see the discussion at the end of the chapter), thus
giving just an L∞ result on φ. In the end, for the case to study this Cauchy-Lipschitz interpretation
of Moser’s argument does not apply.

4. Superposition of flows

For a general vector field v under very mild regularity assumptions, the most general meaning
that we can give to the flow of v is in terms of the superposition principle, that we have introduced
in Chapter 1, Section 5. As we have seen, this provides a very weak concept of flow (actually, it is a
sort of probabilistic one), which anyway is strong enough to still give sense to Moser’s deformation
argument.
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Figure 1. The functionH (left) given by (7.1.1) and its Legendre-Fenchel conjugate
H∗ (right).

First of all, in this case we need the following slight variation of the superposition principle,
dealing with the degenerate case p = 1. For the proof, the reader can consult [5, Theorem 12],
where the integrability condition (7.4.1) is slightly different: this is due to the fact that we are
working on a bounded set Ω, which allows to simplify a bit the assumptions.

Theorem 7.4.1 (Superposition principle, case p = 1). Let µt be a positive measure-valued
solution of the continuity equation

∂tµt + div (vt µt) = 0,

with the vector field v satisfying the following integrability condition

(7.4.1)

∫ 1

0

∫
Ω
|vt(x)| dµt(x) dt < +∞,

then µt is a superposition solution, that is µt = (et)#Q, with Q concentrated on absolutely contin-
uous integral curves of v (see Chapter 1, Definition 1.5.2).

Using the concept of superposition solution, it is now a straightforward fact to provide a rigorous
proof of the equivalence between the two problems (B) and (W).

Theorem 7.4.2. Let ρ0, ρ1 ∈ P(Ω) having Lp density w.r.t. to L N , given by f0 and f1,
respectively. Then the equality

(B) = (W),

holds true.

Proof. As already illustrated, we take the minimizer φ of (B) and we consider the non-
autonomous vector field defined by (7.2.2). We point out that the Lp assumption on the densities
has been chosen in order to guarantee finiteness of the infima of both problems. With this choice

of φ̂, the linear interpolating curve µt = (1− t)ρ0 + tρ1 is a positive measure-valued distributional
solution of the continuity equation

∂tµt + div (φ̂t µt) = 0,
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with initial datum ρ0. Moreover φ̂ satisfies hypothesis (7.4.1), as far as∫ 1

0

∫
Ω
|φ̂t(x)| dµt(x) dt =

∫ 1

0

∫
Ω
|φ̂t(x)|[(1− t)f0(x) + tf1(x)] dx dt =

∫
Ω
|φ(x)| dx < +∞,

so that µt is a superposition solution by means of Theorem 7.4.1: this means that there exists

a probability measure Q ∈ P(C([0, 1]; Ω)) concentrated on integral curves of φ̂ and such that
µt = (et)]Q: observe that in the Cauchy-Lipschitz case, this amounted to say that

(1− t)ρ0 + tρ1 = (X(t, ·))#ρ0,

thanks to the well-posedness of Cauchy problem. This Q is admissible, that is Q ∈ Q(ρ0, ρ1) and
moreover using Fubini Theorem and the disintegration Q =

∫
Qx dρ0(x), we get∫

Ω
ϕ(x) diQ(x) =

∫
C

∫ 1

0
ϕ(σ(t))|σ′(t)| dt dQ(σ)

=

∫ 1

0

∫
C
ϕ(σ(t))|σ′(t)| dQ(σ) dt

=

∫ 1

0

∫
Ω

∫
C
ϕ(σ(t))|φ̂t(σ(t))| dQx(σ) dρ0(x) dt

=

∫ 1

0

∫
Ω
ϕ(x)|φ̂(t, x)| dµt(x) dt =

∫ 1

0

∫
Ω
ϕ(x)|φ(x)| dx dt,

so that ∫
Ω
ϕ(x) diQ(x) =

∫
Ω
ϕ(x)|φ(x)| dx, for every ϕ ∈ C(Ω).

This clearly implies that iQ = |φ| and thus Q ∈ Qp(ρ0, ρ1) and it solves Wardrop’s problem, thus
concluding the proof. �

Notice that the regularity of the curves which are charged by the measure Q corresponding to

a superposition solution is very poor. On the contrary, if φ̂ is known to be continuous, these curves
are C1 and they solve their ODE in a classical sense. In a recent paper ([78]), Santambrogio and
Vespri have proven a (local) C0 result for the vector field we are interested in, that is

φ = ∇H∗(∇u),

with H given by (7.1.1), when N = 2. Obviously, continuity without Lipschitz continuity or similar
conditions (log-Lipschitz or more generally an Osgood condition, for example) is not sufficient for
ensuring any kind of uniqueness result for the flow. We will see in a while that some kind of
uniqueness may be recovered by an intermediate concept of solution.

5. Wardrop equilibria in the Di Perna-Lions sense

Up to now, we have seen that everything goes well if we face a Lipschitz vector field v and
that we can at least prove equality of the minima if, instead, v is merely integrable. In the latter
case, it is not evident to add anything else to this equality and in particular one has no real clue to
construct a minimizer for Wardrop’s problem from a minimizer for Beckmann’s one. The problem
is mainly linked to the lack of uniqueness of solutions of the ODE. We will see in this section
an intermediate concept, for vector fields which are not Lipschitz but much better than merely
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integrable: this is the flow of a weakly differentiable vector field, in the sense of DiPerna and Lions
([46]). In this case we can enforce the conclusion of Theorem 7.4.2 and guarantee that the optimal
Qφ associated to the optimizer φ is actually concentrated on a uniquely defined flow X (possibly in
a.e. sense), transporting ρ0 to ρ1.

First of all, we need to recall some important facts from the theory of Di Perna and Lions: we
start with the concept of renormalized solution.

Definition 7.5.1. We say that µ ∈ L∞([0, 1];L∞(Ω)) is a renormalized solution of the conti-
nuity equation with vector field v if there holds

(7.5.1) ∂tβ(µ) + 〈v,∇xβ(µ)〉+ (divxv)µβ′(µ) = 0, in (0, 1)× Ω,

in the sense of distributions, for every β ∈ C1(R).

Observe that clearly every renormalized solution is a distributional solution (just take β ≡ 1 in
(7.5.1)), while in general the converse does not hold true. It is a remarkable fact of the DiPerna-
Lions theory that when v has a Sobolev regularity in x, then v has the renormalization property,
that is every distributional solution is actually a renormalized one. Moreover renormalized solutions
are the right class in which well-posedness for the continuity equation can be proven: this is crucial
for our construction. We summarize these fundamental results in the following statement (see [46,
Theorem II.3]): the hypotheses are slightly enforced to be easily adapted to the cases which are of
interest for us.

Theorem 7.5.2. Let Ω ⊂ RN be a bounded open set having a smooth boundary. Let us assume
that v satisfies

(7.5.2) v ∈ L1([0, 1];W 1,1(Ω)) ∩ L1([0, 1];L∞(Ω)),

and

(7.5.3) divxv ∈ L1([0, 1];L∞(Ω)),

with 〈v, ν〉 = 0 at the boundary ∂Ω. Then µ ∈ L∞([0, 1];L∞(RN )) is a renormalized solution of
the continuity equation if and only if it is a distributional solution. Moreover given ρ0 ∈ L∞(RN ),
then there exists a unique renormalized solution µ of the continuity equation in L∞([0, 1];L∞(RN ))
corresponding to the initial datum ρ0.

Remark 7.5.3. We point out that the renormalization property can be proven also for vector
fields with BV regularity (with respect to the space variable), as shown by Ambrosio in [2].

Theorem 7.5.4. Let Ω be a bounded open set with smooth boundary. Let us assume that v
satisfies the hypothesis of Theorem 7.5.2, with 〈v, ν〉 = 0 at the boundary ∂Ω. Then there exists a
unique flow map X ∈ C0([0, 1]× [0, 1];L1(Ω;RN )) which leaves Ω invariant and such that:

(i) if we set A(t) =
∫ t

0 ‖divxvr(·)‖∞ dr, then

e−|A(t)−A(s)|L N ≤ (X(t, s, ·))]L N ≤ e|A(t)−A(s)|L N , for every t, s ∈ [0, 1];

(ii) X satisfies the group property

X(t3, t1, x) = X(t3, t2, X(t2, t1, x)), for L N -a.e. x ∈ Ω, for every t1 < t2 < t3 ∈ [0, 1];
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(iii) for every s ≥ 0 and for L N -a.e. x ∈ Ω, X is an absolutely continuous integral solution
of σ′(t) = vt(σ(t)) with σ(0) = x, that is

X(t, s, x) = x+

∫ t

s
vr(X(r, s, x)) dr, for L N -a.e. x ∈ Ω, t ≥ s.

Moreover if ρ0 = f0 ·L N with f0 ∈ L∞(Ω), then for every s ∈ [0, 1)

µt(x) = (X(t, s, ·))]ρ0(x), s ≤ t ∈ [0, 1],

is a (actually the unique, thanks to Theorem 7.5.2) renormalized solution in L∞([s, 1];L∞(Ω)) of
the continuity equation, with initial datum µs(x) = ρ0(x).

We are now ready to state the main result obtained in [B4] about the equivalence between
Wardrop and Beckmann models and the consequent characterization of Wardrop equilibria, as
measures supported on DiPerna-Lions flows. The proof will require quite involved regularity results
that we have decided, for the sake of clearness, to postpone and to leave for the last two Chapters.

Theorem 7.5.5. Let us consider the density cost function

H(z) = H(|z|), z ∈ RN ,

given by (7.1.1) and assume that ρ0, ρ1 ∈ P(Ω) are absolutely continuous with respect to the
N−dimensional Lebesgue measure L N . Suppose moreover the following:

(i) ρi = fi ·L N , with fi ∈ Lip (Ω) and fi ≥ c > 0, for i = 0, 1;
(ii) Ω open connected bounded subset of RN having smooth boundary1.

Then the vector field φ̂ given by (7.2.2) is well-defined and satisfies the hypotheses of DiPerna-Lions
Theorem 7.5.4, thus we obtain

(W) = (B).

In particular, a Wardrop equilibrium Q for the congestion function h = H ′ does exist and it is

supported on the flow (in the DiPerna-Lions sense) of φ̂, i.e. given φ optimal for (B), then

(7.5.4) Q =

∫
δX(x,·) dρ0(x),

is optimal for (W), where X is the flow map of φ̂ given by Theorem 7.5.4.

Proof. With these assumptions at hand, assuming for the moment that they imply the fol-
lowing regularity for φ optimizing (B)

(7.5.5) φ ∈W 1,r(Ω) ∩ L∞(Ω),

for a suitable exponent r ≥ 1, then it is a straightforward fact to see that φ̂(·, t) ∈ W 1,r(Ω), i.e.

the spatial Sobolev regularity of φ̂ is equivalent to that of φ, once f0 and f1 are Lipschitz. In the

1We will precise the smoothness assumptions on ∂Ω in the next chapters.
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same fashion, for the condition on the divergence, one may see that we have

divxφ̂ =
div φ

(1− t)f0 + tf1
− (1− t)〈φ,∇f0〉+ t〈φ,∇f1〉

((1− t)f0 + tf1)2

=
f0 − f1

(1− t)f0 + tf1
− (1− t)〈φ,∇f0〉+ t〈φ,∇f1〉

((1− t)f0 + tf1)2
,

so that Lipschitz regularity of f0 and f1, lower bounds on f0 and f1 and L∞ on φ (again, we

use (7.5.5)) easily implies that φ̂ has a L∞ spatial divergence, with L∞ norm integrable in time.
Moreover observe that condition (i) guarantees that µt = (1− t)ρ0 + tρ1 is a distributional solution
in L∞([0, 1];L∞(Ω)) of the continuity equation

∂tµt + divx(φ̂t µt) = 0,

and thus it is also a renormalized solution, thanks to Theorem 7.5.2. But then µt must coincide with
(X(·, t))]ρ0, again thanks to the well-posedness result given by Theorem 7.5.2: this in particular
tells us that

µ1 = ρ1 = (X(·, 1))#ρ0,

so that Q defined by (7.5.4) is admissible for (W), that is (ei)#Q = ρi for i = 0, 1, and with the
same computations performed in Theorem 7.4.2, we obtain

iQ(x) = |φ(x)|, for L N−a.e. x ∈ Ω,

which concludes the proof. �

As one can see, the proof of the previous crucial result is not really complete: what is still
missing is the regularity result (7.5.5) for the optimizer of (B). This mission will be accomplished
in Chapter 8 (Sobolev regularity) and Chapter 9 (L∞ estimate). As already said, we will achieve
these results thanks to the primal-dual optimality condition given by Theorem 6.4.2, which ensures
that

φ = (|∇u| − 1)q−1
+

∇u
|∇u|

,

where the Beckmann potential u ∈W 1,q(Ω) solves the degenerate elliptic equation

(7.5.6) div

(
(|∇u| − 1)q−1

+

∇u
|∇u|

)
= f0 − f1,

under homogeneous Neumann boundary conditions or, which is the same, is a minimum point of
the functional

F(ϕ) =
1

q

∫
Ω

(|∇ϕ(x)| − 1)q+ dx−
∫

Ω
(f0(x)− f1(x))ϕ(x) dx, ϕ ∈W 1,q

� (Ω).

Remark 7.5.6. Observe that in general no more than C0,1 regularity should be expected for
solutions of equation (7.5.6), as far as every 1−Lipschitz function is a solution of the homogeneous
equation. Moreover regularity results for equation (7.5.6) (or equations exhibiting a similar type of
degeneracy) are not at all trivial and they will be of their own interest, apart from its connection
with Wardrop equilibria.



CHAPTER 8

Sobolev regularity for the solution of Beckmann’s problem

1. Introduction

This chapter is devoted to prove that the solution φ of

(B) = min
φ∈Lp(Ω;RN )

{∫
Ω
H(φ(x)) dx : div φ = ρ0 − ρ1, 〈φ, ν〉 = 0 on ∂Ω

}
,

is a Sobolev vector field, where again

H(z) =
1

p
|z|p + |z|, z ∈ RN .

The hypotheses on ρ0 and ρ1 (or more correctly, on their densities) will be slightly weaker than
that assumed in Theorem 7.5.5: anyway, we recall that in the proof of that result the Lipschitz

requirement on ρ0 and ρ1 can not be dropped, because we need the divergence of φ̂ defined by
(7.2.2) to be an L∞ function. The result will be achieved using the fact that φ = ∇H∗(∇u), where
u solves

div∇H∗(∇u) = ρ0 − ρ1,

and then proving that a certain non-linear function of the gradient ∇u (the function V, see below)
is in W 1,2(Ω). Observe that, due to our assumptions on H, it is not possible to prove Sobolev
regularity of φ just passing from that of ∇u (as in the case of Example 7.3.1): indeed, when dealing
with degenerate elliptic equations, as in this case, it is quite a delicate matter the question of
whether or not ∇u is in a Sobolev space, even for very regular data ρ0 and ρ1.

2. Interior Sobolev estimates

Looking at equation (7.5.6), we first observe

(|∇u| − 1)q−1
+

|∇u|
|ξ|2 ≤ 〈D2H∗(∇u)ξ, ξ〉 ≤ (q − 1)(|∇u| − 1)q−2

+ |ξ|2, ξ ∈ RN ,

that is the ellipticity constants degenerate in the region {|∇u| ≤ 1}. We will confine our analysis to
the non-singular case q ≥ 2, which is anyway relevant for the applications of the previous Chapter:
indeed, recall that in the continuous Wardrop model, it is assumed p < N/(N − 1) in order to give
proper sense to the optimality conditions and to the related concept of Wardrop equilibrium (see
Chapter 6, Theorem 6.3.9).

First of all, we need the following pointwise inequalities. This is the main point where the
precise structure of H∗ plays a role.

129
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Lemma 8.2.1. For every q ≥ 2, let us define the following vector field

(8.2.1) V (z) := |∇H∗(z)|
p
2
z

|z|
= (|z| − 1)

q
2
+

z

|z|
, z ∈ RN .

Then for every z, w ∈ RN we get

(8.2.2) 〈∇H∗(z)−∇H∗(w), z − w〉 ≥ 4

q2
|V (z)− V (w)|2 ,

(8.2.3) |∇H∗(z)−∇H∗(w)| ≤ (q − 1)
(
|V (z)|

q−2
q + |V (w)|

q−2
q

)
|V (z)− V (w)| .

Proof. We first observe that if

max{|z|, |w|} ≤ 1,

then (8.2.2) and (8.2.3) are trivially true. Secondly, in the case

min{|z|, |w|} ≤ 1,

supposing for example that |w| ≤ 1 and |z| > 1, using Cauchy-Schwarz inequality we get

〈∇H∗(z), z − w〉 =
(|z| − 1)q−1

+

|z|
〈z, z − w〉

≥ (|z| − 1)q−1
+ |z| − (|z| − 1)q−1

+ = (|z| − 1)q+,

which proves (8.2.2), while (8.2.3) is easily seen to be true in this case, too.
Let us now suppose that |z| > 1 and |w| > 1. Now, we recall the inequality (see Appendix C,

Lemma C.1.3)

(8.2.4) 〈|s|q−2s− |t|q−2t, s− t〉 ≥ 4

q2

∣∣∣|s| q−2
2 s− |t|

q−2
2 t
∣∣∣2 , s, t ∈ RN ,

and we see that if we are able to prove the following

(8.2.5)

〈
|s|q−2s− |t|q−2, (|s|+ 1)

s

|s|
− (|t|+ 1)

t

|t|

〉
≥ 〈|s|q−2s− |t|q−2t, s− t〉,

then choosing

s = (|z| − 1)+
z

|z|
, t = (|w| − 1)+

w

|w|
,

and using (8.2.5) in combination with (8.2.4), we obtain (8.2.2). So, it is left to prove inequality
(8.2.5): one sees that this is equivalent to

|s|q−1 + |t|q−1 − 〈s, t〉
[
|s|q−2

|t|
+
|t|q−2

|s|

]
≥ 0,

which is just a simple consequence of Cauchy-Schwarz inequality 〈s, t〉 ≤ |s||t|.

In order to prove (8.2.3), it is enough to start from the inequality (see Appendix C, Lemma
C.1.4)

||s|q−2s− |t|q−2t| ≤ (q − 1)(|s|
q−2

2 + |t|
q−2

2 )
∣∣∣|s| q−2

2 s− |t|
q−2

2 t
∣∣∣ ,

which is valid for every t, s ∈ RN and then take s and t as before. �
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We are ready to prove the main result of this section: the proof is an adaption of an argument
used by Bojarski and Iwaniec (see [20]) for the p−Laplace operator.

Theorem 8.2.2. Let Ω ⊂ RN be an open set and take f ∈ W 1,p(Ω), with p = q/(q − 1). If
u ∈W 1,q(Ω) is a local weak solution of

(8.2.6) −div∇H∗(∇u) = f, in Ω,

then we get V ∈W 1,2
loc (Ω), where the function V is defined by

(8.2.7) V(x) := V (∇u(x)) = (|∇u(x)| − 1)
q
2
+

∇u(x)

|∇u(x)|
, x ∈ Ω.

More precisely, for every Σ b Ω there exists a constant C = C(N, q) such that

‖∇V(x)‖2L2(Σ) ≤
C

dist (Σ, ∂Ω)2
‖∇u‖qLq(Ω) + C ‖∇f‖pLp(Ω).

Proof. We fix two subsets compactly contained in Ω, that is Σ b Σ0 b Ω and such that
0 < h0 = dist (Σ, ∂Ω) = 2 dist (Σ0, ∂Ω): we aim to prove that V ∈ W 1,2(Σ), using integrated
difference quotients. First of all, we observe that u local weak solution of (8.2.6) means∫

Ω
〈∇H∗(∇u(x)),∇ϕ(x)〉 dx =

∫
Ω
f(x)ϕ(x) dx, for every ϕ ∈W 1,q

0 (Ω).

In particular, for every h such that |h| < h0/2, taking a ϕ ∈W 1,q
0 (Σ0), we get that∫

Ω
〈∇H∗(∇u(x+ hω)),∇ϕ(x)〉 dx =

∫
Ω
f(x+ hω)ϕ(x) dx,

for any direction ω ∈ SN−1. Hence subtracting and dividing by h, we obtain

(8.2.8)

∫
Ω
〈δh,ω∇H∗(∇u),∇ϕ〉 dx =

∫
Ω
δh,ωf ϕ dx,

for every ϕ ∈W 1,q
0 (Σ0), where we have used the notation

δh,ωg(x) :=
g(x+ hω)− g(x)

h
.

We now want to exploit (8.2.8) for a suitable choice of the test function ϕ, in order to obtain W 1,2

estimates on V. At this end, let us take a smooth cut-off function ζ ∈ C∞c (Σ0), such that:

(i) 0 ≤ ζ ≤ 1;
(ii) ζ ≡ 1 on Σ;
(iii) ‖∇ζ‖∞ ≤ C(dist (Σ, ∂Ω))−1.

Then we make the following choice for the test function ϕ

ϕ(x) = ζ2(x) δh,ωu(x), x ∈ Ω,
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for every pair (h, ω) ∈ R × SN−1 such that |h| < h0/2: observe that with this choice, this is an
admissible test function in (8.2.8). We now develop ϕ and use Cauchy-Schwarz inequality, getting∫

Ω
〈δh,ω∇H∗(∇u), δh,ω∇u〉 ζ2 dx ≤ 2

∫
Ω
|δh,ω∇H∗(∇u)| ζ |∇ζ| |δh,ωu| dx

+

∫
Ω
ζ2 |δh,ωf | |δh,ωu| dx.

An application of the pointwise inequalities (8.2.2) and (8.2.3) yields∫
Ω
|δh,ωV|2ζ2 dx ≤ C

∫
Ω

(
|Vh,ω|

q−2
q + |V|

q−2
q

)
|δh,ωV| ζ |∇ζ||δh,ωu| dx

+

(∫
Ω
ζp|δh,ωf |p dx

) 1
p
(∫

Ω
ζq|δh,ωu|q dx

) 1
q

where the constant C depends on q only. By means of Young’s inequality, we get for every ε > 0(
|Vh,ω|

q−2
q + |V|

q−2
q

)
|δh,ωV| ζ |∇ζ||δh,ωu| ≤ ε |δh,ωV|2 ζ2

+
1

ε

(
|Vh,ω|

q−2
q + |V|

q−2
q

)2
|∇ζ|2|δh,ωu|2,

so that choosing ε small enough, the term on the right-hand side containing δh,ωV can be absorbed
by the term on the left hand-side. Up to now, we have shown∫

Ω
|δh,ωV|2ζ2 dx ≤ C

∫
Ω

(
|Vh,ω|

q−2
q + |V|

q−2
q

)2
|∇ζ|2|δh,ωu|2 dx

+
1

p

∫
Ω
ζp|δh,ωf |p dx+

1

q

∫
Ω
ζq|δh,ωu|q dx.

A simple application of Hölder’s inequality to the first term on the right side, yields∫
Ω
|δh,ωV|2 ζ2 dx ≤ C

(∫
Σ0

(
|Vh,ω|

q−2
q + |V|

q−2
q

) 2q
q−2

dx

) q−2
q (∫

Ω
|∇ζ|q|δh,ωu|q dx

) 2
q

+
1

p

∫
Ω
ζp|δh,ωf |p dx+

1

q

∫
Ω
ζq|δh,ωu|q dx.

(8.2.9)

It is now sufficient to observe that(∫
Σ0

(
|V|

q−2
q + |Vh,ω|

q−2
q

) 2q
q−2

dx

) q−2
q

≤ 2

(∫
Ω
|V|2 dx

) q−2
q

,

so that inserting the latter in (8.2.9), we easily get∫
Ω
|Vh − V|2ζ2 dx ≤ C

dist (Σ, ∂Ω)2

(∫
Ω
|V|2 dx

) q−2
q
(∫

Σ0

|δh,ωu|q dx
) 2
q

+
1

p

∫
Ω
ζp|δh,ωf |p dx+

1

q

∫
Ω
ζq|δh,ωu|q dx.
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Finally, we just observe that, by means of the characterization of Sobolev spaces in terms of
integrated difference quotients (see [28]), we have∫

Σ0

|δh,ωu|q dx ≤ CN
∫

Ω
|∇u|q dx,

and ∫
Σ0

|δh,ωf |p dx ≤ CN
∫

Ω
|∇f |p dx,

and moreover by the very definition of V we have∫
Ω
|V|2 dx ≤

∫
Ω
|∇u|q dx,

so that in the end we get∫
Σ
|δh,ωV|2 dx ≤

C

dist (Σ,Ω)2

∫
Ω
|∇u|q dx+ C

∫
Ω
|∇f |p dx,

that is V has a square-integrable weak derivative along the direction given by ω ∈ SN−1. �

Remark 8.2.3. We observe that as an easy consequence of Theorem 8.2.2 and Sobolev Imbed-
ding Theorems, we get a gain of integrability for ∇u: indeed, in the case N > 2, we get V ∈ L2∗

loc(Ω)
and then ∫

Ω
(|∇u(x)| − 1)

qN
N−2
+ dx =

∫
Ω
|V(x)|

2N
N−2 dx < +∞,

which ensures that

(8.2.10) ∇u ∈ L
q N
N−2

loc (Ω),

while if N = 2 we get that V (and so |∇u|) is in every Lsloc, with s < ∞. Moreover in the case

q > N − 2, then we can assure that u ∈ C0,α
loc (Ω), with α = 1− (N − 2)/q.

Going back to our vector field φ = H∗(∇u), Theorem 8.2.2 easily implies the following.

Corollary 8.2.4. Under the assumptions of Theorem 8.2.2, we get

(8.2.11) φ = ∇H∗(∇u) = |V|
q−2
q V ∈W 1,r

loc (Ω),

for suitable exponents r = r(N, q) given by

r(N, q) =


2, if N = q = 2,

any value < 2, if N = 2, q > 2,
Nq

(N−1)q+2−N , if N > 2.

Proof. The case q = 2 is clearly trivial, in fact in this case φ = V ∈W 1,2
loc (Ω).

Let us begin with the case N > 2: using inequality (8.2.3) with z = ∇u(x+hω) and w = ∇u(x),
we get

|δh,ωφ| ≤ (q − 1)
(
|Vh(x)|

q−2
q + |V(x)|

q−2
q

)
|δh,ωV|.
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and we already observed that V ∈ L2∗
loc(Ω), so that |V|

q−2
q ∈ L

2∗q
(q−2)

loc (Ω) and the right hand side in
the previous inequality belongs to Lrloc(Ω), with r being given by the relation

1

r
=

(q − 2)

2∗q
+

1

2
.

This clearly implies that we can control the integrated difference quotients∫
|δh,ωφ(x)|r dx,

thus proving the assertion.
Finally, when N = 2 and q > 2, we can proceed as before, taking into account the fact that

V ∈ Lsloc(Ω) for every s <∞.

Notice also that, should V be bounded, one would automatically get φ ∈W 1,2
loc (Ω). �

Remark 8.2.5. The same arguments in the proof of Theorem 8.2.2 may obviously be applied
to the case of uniformly elliptic equations, such as −div(∇K(∇u)) = f with

λ|ξ|2 ≤ 〈D2K(z)ξ, ξ〉 ≤ Λ|ξ|2.

In this case they provide local W 2,2 regularity estimates for the solution u, under the assumption
that f ∈ W 1,2. It is worth remarking that, as is well-known, these estimates are still true under
the sole assumption that f ∈ L2 (see [55, Theorem 8.8]): this somehow could suggest that actually
we asked for a regularity assumption on f , stronger than what is really needed. As one can easily
guess, this is intimately linked to the degeneracy of our operator ∇H∗. Actually, in non-degenerate
equations, when we arrive to the term ∫

δh,ωf δh,ωu dx,

we can pass all the increments on the function u, that is we can use the trick∫
δh,ωf δh,ωu dx = −

∫ (∫ 1

0
f(x+ thω) dt

)
δh,ω∇u dx,

thus getting something that may be estimated again by the L2 norm of δh,ω∇u (but to the power
of one, while at the left hand side it is to the power of two). Yet, here this is no more useful, since
V is not invertible as a function of ∇u: this is why we asked for a higher regularity on f .

It is worthwhile noticing that even in the case of the q−Laplacian, where the corresponding
quantity V is given by

|∇u|
q−2

2 ∇u,
the difference quotients technique is known to work only with a Sobolev assumption on f and a
result of the type

f ∈ Ls=⇒|∇u|
q−2

2 ∇u ∈W 1,2(Ω),

for a suitable exponent s ≥ p = q′ should not be expected (see the discussion at the end of Appendix
C). We end up recalling that even with a very regular datum f , in the case of the q−Laplacian
with q > 2, the weak differentiability of ∇u can be guaranteed only in a fractional sense (see [69]):
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a simple proof of this fact uses V ∈ W 1,2 (which is true when f ∈ W 1,p) and the elementary
inequality (see the Appendix C, Lemma C.1.1)

|∇u(x)−∇u(y)| ≤ C
∣∣∣|∇u(x)|

q−2
2 ∇u(x)− |∇u(y)|

q−2
2 ∇u(y)

∣∣∣ 2
q
,

so that ∇u ∈W
2
q
−ε,q

, for every ε > 0. Again, such a kind of result fails in the case of our operator
∇H∗.

3. Sobolev estimates up to the boundary

Under suitable assumptions on the domain Ω and on the boundary datum, Theorem 8.2.2 can
be enforced, thus obtaining a global W 1,2 estimate. This is exactly the content of the next result:
observe that we also ask for a higher summability of f . The reason for this further requirement
will appear from the proof.

Theorem 8.3.1. Let us suppose that Ω is a C3,1 domain and take f ∈W 1,p
� (Ω)∩LN+α(Ω), with

p = q/(q − 1) and α > 0. If u ∈ W 1,q
� (Ω) is a weak solution of the following Neumann boundary

problem

(8.3.1)

{
−div (∇H∗(∇u)) = f, in Ω,
〈∇H∗(∇u), ν〉 = 0, on ∂Ω,

then we get V ∈W 1,2(Ω), where

V(x) = (|∇u(x)| − 1)
q
2
+

∇u(x)

|∇u(x)|
, x ∈ Ω.

Proof. Let us fix a boundary point x0 and a neighborhood of it U . We set

B+ = {x = (x′, xN ) : |x| < 1, xN ≥ 0},

and observe that thanks to our assumptions on Ω, we can guarantee the existence of a diffeomor-
phism ψ, sending B+ on U+ = U ∩ Ω and the flat part of ∂B+ on U ∩ ∂Ω.

Let us set B− = RB+, R being the reflection with respect to the hyperplane {xN = 0}, then
we define

û(y) =

{
u(ψ(y)), if y ∈ B+,
u(ψ(Ry)), if y ∈ B−,

f̂(x) =

{
f(ψ(y))| detDψ(y)|, if y ∈ B+,

f(ψ(Ry))| detDψ(Ry)|, if y ∈ B−,

and observe that û ∈ W 1,q(B) and f̂ ∈ W 1,p(B) ∩ LN+α(B), with B := B+ ∪ B−. Moreover we
will use the fact that1 u ∈W 1,∞(Ω) (see next section, Theorem 9.2.1), so that the same is true for
û, that is

(8.3.2) û ∈W 1,∞(B).

1Here we use the higher summability requirement on f , as far as Theorem 9.2.1 is proven under the assumption
that f ∈ LN+α. It is clear that f ∈ W 1,p(Ω) does not imply this kind of summability in general, and especially in
our case, where p ≤ 2.
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We now want to find the equation satisfied by û in the unit ball: using the change of variables
x = ψ(y) and the fact that u satisfies∫

Ω
〈∇H∗(∇u(x)),∇ϕ(x)〉 dx =

∫
Ω
f(x)ϕ(x) dx, for every ϕ ∈W 1,p(Ω),

it is easy to see that û satisfies∫
B+

〈a(y,∇û(y)),∇ϕ(y)〉 dy =

∫
B+

f̂(y)ϕ(y) dy, for every ϕ ∈W 1,p
0 (B),

where the function a is defined by

a(y, p) = | detDψ(y)| ∇H∗(p [Dψ(y)]−1)
(
[Dψ(y)]−1

)t
, (y, p) ∈ B+ × RN .

On the other hand, using the change of variables x = ψ(y) := ψ(Ry) we obtain∫
B−
〈a(∇û(y)),∇ϕ(y)〉 dy =

∫
B−

f̂(y)ϕ(y) dy, for every ϕ ∈W 1,p
0 (B),

with a given by

a(y, p) = | detDψ(y)| ∇H∗(p [Dψ(y)]−1)
(
[Dψ(y)]−1

)t
, (y, p) ∈ B− × RN .

Observe that we have

|detDψ(y)| = |detDψ(Ry)| and [Dψ(y)]−1 = R[Dψ(Ry)]−1,

then let us assume for a moment the existence of O ∈ C1,1(B+;RN×N ) such that for every y ∈ B+,
O(y) is an orthogonal matrix verifying

(8.3.3) [Dψ(y′, 0)]−1 = R[Dψ(y′, 0)]−1O(y′, 0), y′ ∈ ∂B+ ∩ ∂B−.
Setting for simplicity

M̂(y) =

{
[Dψ(y)]−1, if y ∈ B+

R[Dψ(Ry)]−1O(Ry), if y ∈ B−

the previous discussion, together with assumption (8.3.3) and the fact that

∇H∗(zO) = ∇H∗(z)O,
tells us that û is a weak solution in B of the equation

(8.3.4) −divA(y,∇û) = f̂ ,

where the operator A is defined by

A(y, p) = |det M̂(y)|−1∇H∗(p M̂(y))M̂(y)t, (y, p) ∈ B × RN .

Observe that having assumed (8.3.3), is crucial to obtain that A(·, p) is continuous across the
hyperplane {xN = 0}, which in turn implies that A(·, p) is Lipschitz.

So let us verify the existence of such a matrix field O: by polar decomposition, we know
that OU = Dψ, with O orthogonal and U symmetric and positive definite. This implies that
O = DψU−1 and [Dψ]tDψ = U2, that is

(8.3.5) O = Dψ([Dψ]tDψ)−
1
2 ,
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which is our candidate for the C1,1 matrix field. We now have to make an explicit choice for the
diffeomorphism ψ, in order to obtain that this O further verifies (8.3.3): we can suppose, up to a
translation, that x0 = 0 and moreover that, up to a rotation, the set U ∩ ∂Ω can be represented as
the graph of a g ∈ C3,1 defined on {|y| ≤ 1 : yN = 0}, that is U ∩ ∂Ω = {(y′, g(y′)) : |y′| ≤ 1}.
Then we see that taking ψ of the following form

ψ(y′, yN ) = (y′, g(y′))− yN (∇g(y′),−1),

we get that ψ is diffeomorphism between B+ and U+ (up to redefine the neighborhood U , without
changing its intersection with the boundary U ∩ ∂Ω). Moreover we have the following expression
for the Jacobian matrix

Dψ(y) =

 IdN−1 − yN D2g(y′) ∇g(y′)

−(∇g(y′))t 1


where IdN−1 stands for the (N − 1)× (N − 1) identity matrix. Then it is easily seen that with the
choice (8.3.5), property (8.3.3) is equivalent to require that

[Dψ(y′, 0)]tDψ(y′, 0) = (Dψ(y′, 0)R)2,

and this is a straightforward consequence of the structure of Dψ. We point out that despite the
hypothesis on ∂Ω of being C3,1, the diffeomorphism we have provided is only of class C2,1 (we use
the gradient of g in the definition of ψ): this is due to the fact that we need a diffeomorphism
having a Jacobian matrix with a special structure, because of condition (8.3.3). Moreover we stress

that the matrix field M̂ is piecewise C1,1 and globally no more than C0,1.

We now aim to show that

V̂(y) = V
(
∇û(y) M̂(y)

)
∈W 1,2

loc (B),

where as before V (z) = (|z| − 1)
q/2
+ z/|z|. If this is true, then we will clearly have that V ∈W 1,2 in

a neighborhood of x0, thus concluding the proof. Let us begin with some manipulations: in order

to simplify the notations, we set b(y) = |det M̂(y)|−1, then we begin applying (8.2.2), so that as
in Theorem 8.2.2 we obtain ∣∣∣δh,ωV̂∣∣∣2 ≤ 〈δh,ω∇H∗(∇û M̂), δh,ω(∇û M̂)〉,

where as always δh,ω denotes the incremental ratio in the direction ω ∈ SN−1. Then with some
algebraic manipulations, the right-hand side can be re-written as

〈δh,ω∇H∗(∇û M̂), δh,ω(∇û M̂)〉 = 〈δh,ω
(
∇H∗(∇û M̂)M̂ t

)
, δh,ω∇û〉

− 〈∇H∗(∇û M̂)(δh,ωM̂
t), δh,ω∇û〉

− 〈δh,ω∇H∗(∇û M̂),∇û δh,ωM̂〉,
and multiplying by bh we obtain

bh|δh,ωV̂|2 ≤ 〈δh,ωA, δh,ω∇û〉 − 〈∇H∗(∇û M̂)(δh,ωb M̂
t), δh,ω∇û〉

− bh〈δh,ω∇H∗(∇û M̂),∇û δh,ωM̂〉.
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We can now as always take a smooth cut-off function ζ supported in some smaller ball B′ ⊂ B,
multiply the previous inequality by ζ2 and then integrate over supp ζ, so that we get∫
|δh,ωV̂|2 dy ≤

∫
|δh,ωA| |∇ζ| ζ |δh,ωû| dy

−
∫
〈∇H∗(∇û M̂)δh,ω(b M̂), δh,ω∇û〉 ζ2 dy

+

∫
|bh||δh,ω∇H∗(∇û M̂)| |∇û| |δh,ωM̂ | ζ2 dy +

∫
|δh,ωf̂ | |δh,ωû|ζ2 dy :=

4∑
i=1

Ii,

where we have used the fact that û is a solution of (8.3.4) and b ∈ L∞ with b ≥ c > 0. For
simplicity, we now discuss separately the estimates of each integral:

Estimate for I1 We would like to use the basic inequality (8.2.3): we first observe that

δh,ωA(y,∇û) =
[
∇H∗(∇û(y + hω) M̂(y + hω))

]
δh,ω(b M̂ t)

+
[
b(y)M̂ t(y)

]
δh,ω∇H∗(∇û M̂),

so that

I1 ≤
∫ ∣∣∣∇H∗(∇û(y + hω) M̂(y + hω))

∣∣∣ |δh,ω(b M̂ t)| |∇ζ| ζ |δh,ωû| dy

+

∫ ∣∣∣b M̂ t
∣∣∣ |δh,ω∇H∗(∇û M̂)| |∇ζ| ζ |δh,ωû| dy,

and it is easily seen that the first term does not present any problem, thanks to the fact that

û ∈ W 1,q, b M̂ t ∈ W 1,∞ and ∇H∗(∇û M̂) ∈ Lp. On the contrary, the second integral is a kind of
term that has already been estimated in the proof of Theorem 8.2.2, once one takes care of the fact

that b M̂ t ∈W 1,∞: indeed, in this case it is only left to estimate∫
|δh,ω∇H∗(∇û M̂)| |∇ζ| ζ |δh,ωû| dy,

and it is now sufficient to apply (8.2.3), thus the previous integral can be estimated from above by∫
Ω

(
|V̂h,ω|

q−2
q + |V̂|

q−2
q

)
|δh,ωV̂| ζ |∇ζ| |δh,ωû| dx.

Then one can use the ε−Young’s inequality in order to absorb a term of the kind∫
Ω
|δh,ωV̂|2ζ2 dx,

and finally one is left with an integral∫
Ω

(
|V̂h,ω|

q−2
q + |V̂|

q−2
q

)2
|∇ζ|2|δh,ωu|2 dx,

which can be easily estimated just as in the proof of Theorem 8.2.2.

Estimate for I2 This is the most delicate integral: indeed, we have to integrate by parts in order
to avoid the difference quotients of ∇u. As a drawback, this will let appear second-order difference
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quotients of b M̂ , which in principle can not be easily managed, due to the fact that this is only

a Lipschitz function: anyway, thanks to our construction, we know that b M̂ is a function which
is C1,1 out of {xN = 0} and globally C0,1. This implies that its second-order difference quotients

δ2
h,ω(b M̂) (see below for their definition) are uniformly bounded if one stays out of a strip of size

h around the hyperplane {xN = 0} and are bounded by C h−1 in that strip (whose measure is of

the order of h), which implies
∫
|δ2
h,ω(b M̂)| ≤ C.

First of all, we separate the two terms ∇û(y + hω) and ∇û(y) and we perform the change of
variable z = y + hω in the first integral, thus obtaining

I2 =
1

h

∫
〈∇H∗(∇û(y − hω) M̂(y − hω))δ−h,ω(b M̂),∇û(y)〉 ζ2(y − hω) dy

+
1

h

∫
〈∇H∗(∇û M̂)δh,ω(b M̂),∇û(y)〉 ζ2 dy,

which can be recast into

I2 =

∫
〈H∗(∇û(y − hω) M̂(y − hω)) δ2

h,ω(b M̂),∇û〉 ζ2(y − hω) dy

+

∫
〈H∗(∇û(y − hω) M̂(y − hω)) δh,ω(b M̂),∇û〉 δ−h,ωζ2 dy

+

∫
〈δ−h,ωH∗(∇û M̂),∇û〉 ζ2(y) dy,

where

δ2
h,ω(b M̂) =

b(y + hω)M(y + hω) + b(y − hω)M(y − hω)− 2b(y)M(y)

h2
.

We now observe that the last two terms can be easily estimated as already seen (see the discussion

for I1 and I3), while the first contains second-order difference quotients of b M̂ : since all the other
factors in the integral are bounded (because ∇û is bounded), this integral may be estimated with

C
∫
|δ2
h,ω(d M̂)| dx, and this integral is indeed bounded.

Estimate for I3 Using the fact that M̂ is Lipschitz, together with estimate (8.2.3), yields

I4 ≤ C lip(M̂)

∫ ∣∣∣δh,ω∇H∗(∇û M̂)
∣∣∣ |∇û| ζ2 dy ≤

∫ ∣∣∣δh,ωV̂∣∣∣ (|V̂| q−2
q + |V̂|

q−2
q

)
|∇û| ζ2 dy,

and this can be estimated as before (see the estimation for I1), absorbing the difference quotients

of V̂ in the left-hand side, thanks to Young’s inequality.

Estimate for I4 This is clearly the easy part: it is sufficient to use Hölder’s inequality and the

fact that f̂ ∈W 1,p and û ∈W 1,q. �

Finally, we get the desired global Sobolev estimate on the optimizer φ: the proof is a straight-
forward extension of that of Corollary 8.2.4.

Corollary 8.3.2. Under the assumptions of Theorem 8.3.1, the conclusions of Corollary 8.2.4
are global.





CHAPTER 9

L∞ gradient estimates for Beckmann potentials

1. Introduction

To complete our program, we will show in this chapter that the optimizer φ of

(B) = min
φ∈Lp(Ω;RN )

{∫
Ω
H(φ(x)) dx : div φ = ρ0 − ρ1, 〈φ, ν〉 = 0 on ∂Ω

}
,

is actually an element of L∞(Ω;RN ) (H is still the same as in (7.1.1)). We recall that, for the
scopes of this work, the main application of this result is in the proof of Theorem 7.5.5, where
a Lipschitz assumption on ρ0 and ρ1 is needed: anyway, in this chapter we will derive this L∞

estimate under fairly more general assumptions on ρ0 and ρ1. Moreover, the result will be true
without any restriction on the exponent p.

Again, this result will be achieved by looking at the equation solved by a corresponding Beck-
mann potential u, that is

div∇H∗(∇u) = ρ0 − ρ1,

with homogeneous Neumann boundary conditions and proving that ∇u ∈ L∞: then, the optimality
condition φ = ∇H∗(∇u) will do the job.

Before going into the details of this further regularity result, let us spend some words on
the method of proof: the desired L∞ estimate on ∇u is achieved by means of considering more
regular (we would say more elliptic or more convex, depending on the point of view) approximating
problems, for which one can provide robust a priori estimates, which in the end depend only on the
behaviour at infinity of the operator ∇H∗. This strategy is nowadays classical: in order to apply it,
we have benefited from a careful reading of the seminal papers [45] and [63] by Di Benedetto and
Lewis, respectively. In particular, we underline that the variational nature of the problem seems
to play a crucial role in our proof, like in [63], while this was unnecessary in [45]: this is due to
the fact that the convergence we obtain on the solutions uε of the approximating problems is not
strong enough to permit to work only with the weak formulations of the equations, while in [45]
this is possible thanks to uniform C1,α estimates, from which one can infer uniform convergence
(on compact sets) of uε and of their gradients. This is clearly linked to the type of degeneracy of
our problem, which allows only for C0,1 estimate.

2. Main result, strategy and basic tools

As always, with H∗ we indicate

H∗(z) = 1/q (|z| − 1)q+, z ∈ RN ,
where 1 < q <∞ and ( · )+ stands for the positive part.
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In this chapter we will finally prove the following crucial result.

Theorem 9.2.1. Let Ω ⊂ RN be a C2,1 domain. Given f ∈ LN+α with zero-mean, every
solution u ∈W 1,q

� (Ω) of the following Neumann boundary value problem

(9.2.1)

{
−div (∇H∗(∇u)) = f, in Ω,
〈∇H∗(∇u), ν〉 = 0, on ∂Ω,

is a Lipschitz function.

We regard (9.2.1) as the Euler-Lagrange equation of the original optimization problem

min
ϕ∈W 1,q

� (Ω)

∫
Ω
H∗(∇ϕ) dx−

∫
Ω
f ϕ dx,

and then we approximate the latter with a more regular one, depending on a small parameter
ε ∈ (0, ε0], i.e.

min
ϕ∈W 1,q

� (Ω)

∫
Ω
H∗ε(∇ϕ) dx−

∫
Ω
fε ϕdx,

possessing a unique solution uε such that uε ⇀ u in W 1,q(Ω), with u solution of the original
problem. In particular we will suppose that

(9.2.2) ‖uε‖W 1,q(Ω) ≤ C, for every 0 < ε ≤ ε0,

then we aim to prove that the solutions uε satisfy uniform L∞ gradient estimates, independent of
ε, which consequently will pass to the limit, showing the required regularity on the original solution
u.

Remark 9.2.2. As far as the original problem is convex but not strictly convex, in general we
can not expect any kind of uniqueness for the minimizers of∫

Ω
H∗(∇ϕ) dx−

∫
Ω
f ϕ dx.

Anyway, for our scope it is important to stress the fact that, given two distinct minimizers u1, u2

over W 1,q
� (Ω), we have

∇H∗(∇u1(x)) = ∇H∗(∇u2(x)), for L N−a.e. x ∈ Ω,

which is a consequence of the primal-dual optimality condition φ = ∇H∗(∇u) and of the uniqueness
for the solution of Beckmann’s problem. This in particular implies that, once for a particular
minimizer u it is proven that ∇u ∈ L∞, the same must be true for any other minimizer.

2.1. Approximation. For every ε ∈ (0, ε0] let us consider a smooth function H∗ε : RN → R
with the following basic properties:

(C1) H∗ε is strictly convex and depends only on the modulus, that is H∗ε(z) = hε(|z|);
(C2) 1/q (t− 1)q+ ≤ hε(t) ≤ A tq + 1, for some A independent of ε;
(C3) for every ε1 > ε2 we have hε1 ≥ hε2 and hε converges to 1/q (t− 1)q+ as ε goes to 0.

Moreover we require that the functions H∗ε further satisfy the following ellipticity and growth
conditions:
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Figure 1. The approximating functions H∗ε .

(G1) there exist two positive constants µi = µi(ε) such that

µ1(1 + |z|2)
q−2

2 |ξ|2 ≤ 〈D2H∗ε(z) ξ, ξ〉 ≤ µ2(1 + |z|2)
q−2

2 |ξ|2;

(G2) there exist two constants λ > 0 and M >> 1 independent of ε such that

(9.2.3)
1

λ
(1 + |z|2)

q−2
2 |ξ|2 ≤ 〈D2H∗ε(z) ξ, ξ〉 ≤ λ(1 + |z|2)

q−2
2 |ξ|2, for every |z| ≥M ;

(G3) there exists a constant κ, independent of ε, such that

|∇H∗ε(z)| ≤ κ(1 + |z|2)
q−1

2 , for every z ∈ RN .

Remark 9.2.3. For example, in the case q > 2, we could simply take H∗ε(z) = H∗(z) + ε(1 +

|z|2)
q
2 , while for q ∈ (1, 2] the same choice would be feasible, modulo a smoothing of H∗ around

|z| = 1.

With the previous assumptions, we have that the equation

−div∇H∗ε(∇u) = fε,

fε being a smooth approximation of f , is uniformly elliptic outside a ball of radiusM , with ellipticity
constants independent of ε. Moreover for every fixed ε > 0, this is also a uniformly elliptic equation
(but now with ellipticity constants becoming degenerate with ε), so that every solution uε is regular
enough for computing first derivatives of ∇H∗ε(∇uε): indeed, roughly speaking, our scope will be
that of deriving the equation, thus obtaining a linear equation for the gradient which can be used
to establish estimates for it.

With the aid of hypotheses (C1)–(C3), it is quite easy to prove the following basic result,
granting the convergence of the minimizers of the approximating problem to a minimizer of the
original problem.
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Proposition 9.2.4. Let f ∈ Lp(Ω), with p = q/(q − 1) and
∫

Ω f dx = 0. We then consider
{fε}ε>0 ⊂ Lp(Ω) such that fε ⇀ f in Lp(Ω) and having zero-mean. Then every functional

Fε(u) =

∫
Ω
H∗ε(∇v(x)) dx−

∫
Ω
fε(x) v(x) dx, v ∈W 1,q

� (Ω),

admits a unique minimizer uε ∈W 1,q
� (Ω). Moreover we get that {uε}ε>0 weakly converges in W 1,q

to a minimizer of

F(u) =

∫
Ω
H∗(∇u(x)) dx−

∫
Ω
f(x)u(x) dx, u ∈W 1,q

� (Ω).

Proof. We are not concerned here with existence and uniqueness of the minimizers, which
follow in a standard way, thanks to the assumptions on H∗ε . We directly go to the second part of
the statement, so, first of all, we show that the sequence of minimizers {uε}ε>0 satisfies estimate
(9.2.2): we can clearly suppose that

‖fε‖Lp(Ω) ≤ C, for every 0 < ε ≤ ε0,

and then by means of the minimality of uε we get∫
Ω
〈∇H∗ε(∇uε),∇uε〉 dx =

∫
Ω
fεuε dx,

and so

c1

∫
Ω
|∇uε|q dx− c2 ≤

∫
Ω
〈∇H∗ε(∇uε),∇uε〉 dx =

∫
Ω
fεuε dx

≤ ‖fε‖Lp(Ω)‖uε‖Lq(Ω)

≤ C ‖fε‖Lp(Ω)‖∇uε‖Lq(Ω)

≤ C

τ
‖fε‖pLp(Ω) + Cτ‖∇uε‖qLq(Ω),

where we used Poincaré’s inequality and Young’s inequality, where the constants c1, c2 do not
depend on ε. From the latter, taking τ small enough, we can easily infer the desired uniform
estimate (9.2.2), thus giving the weak compactness of {uε}ε>0 in W 1,q(Ω).

We now call u the weak limit (up to a subsequence) of {uε} and we show that this is indeed a
minimizer of F. By minimality of every uε we know that∫

Ω
H∗ε(∇uε) dx−

∫
Ω
fε uε dx ≤

∫
Ω
H∗ε(∇v) dx−

∫
Ω
fε v dx, for every v ∈W 1,q

� (Ω),

then we observe that∫
Ω
H∗(∇u) dx ≤ lim inf

ε→0

∫
Ω
H∗(∇uε) dx ≤ lim inf

ε→0

∫
Ω
H∗ε(∇uε) dx

where we used the fact that H∗ε ≥ H∗ and the semicontinuity of the term

W 1,q(Ω) 3 v 7→
∫

Ω
H∗(∇v) dx.
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Moreover thanks to the fact that uε → u in Lq and fε ⇀ f in Lp, we get∫
Ω
f u dx = lim

ε→0

∫
Ω
fε uε dx.

So in the end we have obtained∫
Ω
H∗(∇u) dx−

∫
Ω
f u dx ≤ lim inf

ε→0

(∫
Ω
H∗ε(∇uε) dx−

∫
Ω
fε uε dx

)
≤ lim

ε→0

(∫
Ω
H∗ε(∇v) dx−

∫
Ω
fε v dx

)
=

∫
Ω
H∗(∇v) dx−

∫
Ω
f v dx, for every v ∈W 1,q

� (Ω).

where we used (in last inequality) the monotone convergence of H∗ε to H∗. This clearly proves the
minimality of u, thus concluding the proof. �

In what follows, we will set wε = (1 + |∇uε|2)
q
2 and this function will play a fundamental role

in the whole discussion: in particular, we will prove that wε ∈ L∞, which in turn will imply that
∇uε itself is in L∞. We will also set

(9.2.4) k0 = (M2 + 1)
q
2 ,

and the set {wε > k0} = {|∇uε| > M} will be called the good region (M is the same as in (G2)).

2.2. Reduction to the boundary. For the solutions uε of the approximating problems, we
will confine ourselves to prove a uniform L∞ gradient estimate near the boundary, the interior
estimates being simpler and easily deducible from the former. In order to do this, we proceed as in
the proof of Theorem 8.3.1 of the previous chapter: this means that, up to apply a diffeomorphism,
we can furtherly reduce to prove the required estimate for local solutions in the ball B = {x ∈
RN : |x| < 1} of an equation of the type

(9.2.5) −divAε(x,∇u) = fε,

with z 7→ Aε(x, z) satisfying the ellipticity conditions (G1)–(G3) uniformly in x and with x 7→
Aε(x, z) satisfying

(9.2.6) |Aε(x, z)−Aε(y, z)| ≤ L (1 + |z|2)
q−1

2 |x− y|.

To be more precise, the function Hε so constructed has the form (here we use the same notation
as in the proof of Theorem 8.3.1 of Chapter 8)

Aε(x, z) = |det M̂(x)|−1∇H∗ε(z M̂(x)) M̂(x)t, (x, z) ∈ B × RN ,

and as already observed, the C2,1 assumption on the boundary is needed in order to guarantee that
Hε is Lipschitz with respect to the x variable.

Then, in order to prove Theorem 9.2.1, it will be enough to prove local uniform L∞ gradient
estimates for solutions of (9.2.5) in the ball B = {x ∈ RN : |x| < 1}.
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2.3. Basic tools. Finally, before starting the proof of our main result, we need to recall two
fundamental tools in Elliptic Regularity: the first is a higher integrability result for the gradient,
which can be found in [80, Theorem 3.3.6] (which anyway deals with rather more general situations).
This is based on an amended version (proven by Stredulinsky in [81]) of the well-known Gehring
Lemma ([54]). Here we give a slightly simplified version of the statement of Theorem 3.3.6 of [80],
adapted to our needing.

Theorem A. Let 1 < q < N and F ∈ L(q∗)′+α(Ω) for some α > 0, where q∗ = Nq/(N − q).
Let A : Ω× RN → RN be a Borel function satisfying the conditions

(i) |A(x,∇u)| ≤ c0|∇u|q−1 + a;
(ii) 〈A(x,∇u),∇u〉 ≥ c1|∇u|q − γ;

where c0, c1 are positive constants and the nonnegative Borel measurable functions a, γ are such
that a ∈ Lp+α(Ω) and γ ∈ L1+α(Ω), where p = q/(q − 1). Then if u ∈ W 1,q

loc (Ω) is a local weak
solution of

−divA(x,∇u) = F (x),

there exists θ > 0, depending only on N, q, c0 and α, such that ∇u ∈ Lq+θloc (Ω). Moreover for every
pair of concentric cubes Q%(x0) ⊂ Q3%(x0) b Ω the following estimate holds

(9.2.7)

(
−
∫
Q%(x0)

|∇u(x)|q+θ dx

) q
q+θ

≤ C

[
−
∫
Q3%(x0)

|∇u(x)|q dx+ Z(Q3%(x0))

]
,

with the constant C depending only on N, q, θ and the distance of x0 from ∂Ω, while Z is given by

Z(Q3%(x0)) =

(
−
∫
Q3%(x0)

|γ|1+α dx

) 1
(1+α)

+

(
−
∫
Q3%(x0)

|a|p+α dx

) 1
(p+α)

+

(
−
∫
Q3%(x0)

|u− uQ3%(x0)|q
∗
dx

) t
q∗

+

(
−
∫
Q3%(x0)

|F |(q∗)′+α dx

) t′
(q∗)′+α

,

and vE standing for the average of v over a generic set E. Here t is a suitable exponent such that
t < q∗ and t′ < (q∗)′ + α.

Remark 9.2.5. The content of Theorem 3.3.6 of [80] in indeed more general and it also includes
the case q ≥ N . In this situation, the thesis of Theorem A above is still true taking F ∈ L1+α(Ω)
and replacing the Lp

∗
norm of u− uQ3% in estimate (9.2.7) with any Lr norm (critical case q = N)

or its L∞ norm (super critical case q > N).

The second result is the following, giving an L∞ bound for a class of functions which sometimes
are called De Giorgi classes (but the terminology could not be standard, see also [62, Theorem 5.2]
for a similar definition and related results). The proof of the following fact can be found in [57,
Theorem 7.2].

Theorem B. Let v ∈ W 1,q
loc (Ω) be a positive function and suppose that there exist constants

C,χ > 0, an exponent ϑ > 0 and a radius R0 > 0, such that for every couple of concentric balls
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B%(x0) and BR(x0) with % < R ≤ R0, we get∫
B%(x0)

|∇(v − k)+|q dx ≤
C

(R− %)q

∫
BR(x0)

(v − k)q+ dx

+ C(χq + kqR−Nϑ)|{v > k} ∩BR(x0)|1−
p
N

+ϑ,

(9.2.8)

for every k ≥ k0. Then v ∈ L∞loc(Ω) and for every x0 ∈ Ω and R ≤ min{R0, dist (x0, ∂Ω)} we get
the estimate

(9.2.9) sup
BR/2(x0)

v ≤ C

(−∫
BR(x0)

vq dx

) 1
q

+ k0 + χR
Nϑ
q

 .
Having declared our strategy and introduced all the required tools, we will dedicate the next

three sections to the proof of Theorem 9.2.1.

3. Step 1 – Integrability gain

We now want to work with equation (9.2.5), which is defined in the ball B. The first step is to
show that w ∈ L2

loc(B) uniformly in ε, with an estimate on ‖w‖2 depending only on the data and
‖∇u‖q: in order to guarantee this gain of integrability on w, we wish to use a Moser-type argument
([72]), applied to the equation (9.3.1). In the sequel we will drop the subscript ε for the solutions
uε and for the approximated data fε, just for notational convenience: the only important fact is
the uniform assumption

‖fε‖LN+α ≤ C, for every 0 < ε ≤ ε0.

The weak formulation of (9.2.5) is given by∫
〈Aε(x,∇u),∇ϕ〉 dx =

∫
f ϕ dx, for every ϕ ∈W 1,q

0 (B),

and deriving this equation with respect to xi, we arrive at

(9.3.1)

∫
〈∇zAε(x,∇u)D2

i u,∇ϕ〉 dx+

∫
〈∂xiAε(x,∇u),∇ϕ〉 dx = −

∫
f ϕxi dx,

where D2
i u is the i−th column of the Hessian matrix D2u.

First of all, observe that by means of Theorem A, we already have obtained the gain of in-
tegrability w ∈ L1+θ/q, for some θ > 0 (the Aε can be easily constructed so to satisfy the mild
hypothesis of Theorem A uniformly in ε). Then, let us choose

ϕ = uxi(w
s − ks0)+ζ

2,

with s ≥ θ/q, where ζ is a C∞c cut-off function supported on some ball BR(x0) b B, equal to 1 on
a smaller concentric ball B%(x0) and such that its maximal slope is of order (R− %)−1.
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Inserting ϕ into (9.3.1) and summing over i = 1, . . . , N, we obtain

N∑
i=1

∫
{w>k0}

〈∇zAε(x,∇u)D2
i uuxi ,∇w〉ws−1 ζ2 dx(9.3.2)

+

N∑
i=1

∫
〈∇zAε(x,∇u)D2

i u,D
2
i u〉 (ws − ks0)+ ζ

2dx(9.3.3)

+2

N∑
i=1

∫
〈∇zAε(x,∇u)D2

i uuxi ,∇ζ〉 ζ (ws − ks0)+uxi dx(9.3.4)

+

N∑
i=1

∫
{w>k0}

〈∂xiAε(x,∇u),∇w〉ws−1 uxi ζ
2dx(9.3.5)

+
N∑
i=1

∫
〈∂xiAε(x,∇u), D2

i u〉 (ws − ks0)+ ζ
2dx(9.3.6)

+2
N∑
i=1

∫
〈∂xiAε(x,∇u),∇ζ〉uxi (ws − ks0)+ ζdx(9.3.7)

= −
N∑
i=1

∫
f uxixi (ws − ks0)+ζ

2(9.3.8)

−
N∑
i=1

∫
f uxi ((ws − ks0)+)xi ζ

2(9.3.9)

−
N∑
i=1

2

∫
f ζxi(w

s − ks0)+uxiζ.(9.3.10)

We start by saying that the two main terms are given by (9.3.2) and (9.3.4), which are the corner-
stones that in the end will give a Caccioppoli-type inequality. In the sequel, in order to provide
a cleaner and easier to follow description of the estimates, we divide the integrals in the previous
equation in three groups: the main terms (9.3.2), (9.3.3) and (9.3.4), terms containing f , i.e.
(9.3.8), (9.3.9) and (9.3.10) and terms containing ∂xiAε, which are (9.3.5), (9.3.6) and (9.3.7). We
aim to analyze each group separately, starting from the basic ones.

3.1. The main terms. So first of all, we proceed to estimate (9.3.2) and (9.3.4): using the
fact

∇w = q w
q−2
q D2u∇u,

the first term can be written as

s

∫
{w>k0}

〈∇zAε(x,∇u)D2u∇u,∇w〉ws−1 ζ2 dx =
s

q

∫
{w>k0}

〈∇zAε(x,∇u)∇w,∇w〉 ζ2w
s−2+ 2

q dx
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and recalling the fact that {w > k0} = {|∇u| > M} and taking into account (9.2.3), we can estimate
this integral from below with

s

λq

∫
{w>k0}

|∇w|2ws−1 ζ2 dx =
4s

λq(s+ 1)2

∫
{w>k0}

∣∣∣∇(w
s+1

2 )
∣∣∣2 ζ2 dx

=
4s

λq(s+ 1)2

∫ ∣∣∣∣∇(w s+1
2 − k

s+1
2

0

)
+

∣∣∣∣2 ζ2 dx := J .

Concerning the other term, we observe

2

∫
〈∇zAε(x,∇u)D2u∇u,∇ζ〉 (ws − ks0)+ζ dx ≤

2

q

∫
|∇zAε(x,∇u)||∇w| |∇ζ| ζ(ws − ks0)+w

2−q
q dx

≤ 2λ

q

∫
|∇w| |∇ζ| ζ (ws − ks0)+ dx,

≤ 2λ

q

∫
{w>k}

|∇w| |∇ζ| ζ ws dx.

Finally, using Young’s inequality the last integral can be treated as∫
{w>k}

|∇w| |∇ζ| ζ ws dx ≤ τ
∫
{w>k}

|∇w|2ws−1 ζ2 dx+
1

τ

∫
{w>k}

ws+1 |∇ζ|2, dx,

and the first term can be absorbed in J , taking τ > 0 small enough. Before going on, we observe
that the first group contains also the term

N∑
i=1

∫
〈∇zAε(∇u)D2

i u,D
2
i u〉 (ws − ks0)+ ζ

2dx,

which has positive sign and we could consequently be tempted to drop it: on the contrary, it will
be crucial to keep it, in order to absorb similar terms appearing on the right-hand side (for this
reason, we will call it sponge term, see below). So, it is important to give an estimation from below
for it: indeed, we get

(9.3.11)

∫
〈∇zAε(∇u)D2u,D2u〉 (ws−ks0)+ ζ

2dx ≥ 1

λ

∫
w
q−2
q |D2u|2 (ws−ks0)+ ζ

2 dx :=
1

λ
S(BR),

and sometimes, for simplicity, we will call this the sponge term. Up to now, we have obtained∫ ∣∣∣∣∇(w s+1
2 − k

s+1
2

0

)
+

∣∣∣∣2 ζ2 dx+ S(BR) ≤ C
∫
{w>k0}

∣∣∣w s+1
2

∣∣∣2 |∇ζ2| dx

+ Estimates for ((9.3.5)− (9.3.10)) ,

with the constant C depending on q, s and λ, then using the following simple observation

(9.3.12) ws+11{w>k0} ≤ 2

(
w
s+1

2 − k
s+1

2
0

)2

+

+ 2 ks+1
0 ,



150 9. L∞ GRADIENT ESTIMATES FOR BECKMANN POTENTIALS

the previous can be recast into∫
B%(x0)

∣∣∣∣∇(w s+1
2 − k

s+1
2

0

)
+

∣∣∣∣2 ζ2 dx+ S(BR) ≤ C
∫ (

w
s+1

2 − k
s+1

2
0

)2

+

|∇ζ|2 dx

+
k2β

0 C

(R− %)2
|BR|

+ Estimates for ((9.3.5)− (9.3.10)) ,

(9.3.13)

which is the kind of estimate which will provide the desired gain of integrability.

3.2. Terms containing the datum f . Using Young’s inequality and the fact that w ≥ 1,
we get

−
∑
i

∫
f uxixi (ws − ks0)+ζ

2 dx ≤
∫
|f | |D2u| (ws − ks0)+ ζ

2 dx

≤ τ
∫
|D2u|2w

q−2
q (ws − ks0)+ ζ

2 dx+
1

τ

∫
|f |2 (ws − ks0)+ ζ

2 dx,

and the first integral can be absorbed in the left-hand side, taking τ > 0 small enough (for example
τ = 1/(2λ)) by means of the sponge term S(BR). Concerning the other term, we can proceed as
follows, noticing that

(9.3.14) (ws − ks0)+ ≤ ws+11{w>k0} ≤ 2

(
w
s+1

2 − k
s+1

2
0

)2

+

+ 2 ks+1
0 ,

so that using Hölder’s inequality and Sobolev inequality we get∫
|f |2 (ws − ks0)+ ζ

2 dx ≤ 2

∫
|f |2

(
w
s+1

2 − k
s+1

2
0

)2

+

ζ2 dx+ 2 ks+1
0

∫
|f |2 ζ2 dx

≤

(∫
BR(x0)

|f |N dx

) 2
N
(∫ ((

w
s+1

2 − k
s+1

2
0

)
+

ζ

)2∗

dx

) 2
2∗

+ 2 ks+1
0

∫
BR(x0)

|f |2 dx

≤ c ‖f‖2LN+α R
2α
N+α

∫ ∣∣∣∣∇((w s+1
2 − k

s+1
2

0

)
+

ζ

)∣∣∣∣2 dx
+ c ks+1

0 ‖f‖2LN+α |BR|1−
2

N+α ,

and then we simply observe that∫ ∣∣∣∣∇((w s+1
2 − k

s+1
2

0

)
+

ζ

)∣∣∣∣2 dx ≤ 2

∫ ∣∣∣∣∇(w s+1
2 − k

s+1
2

0

)
+

∣∣∣∣2 ζ2 dx

+ 2

∫
|∇ζ|2

(
w
s+1

2 − k
s+1

2
0

)2

+

dx,
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so that the term involving the gradient of (w(s+1)/2 − k(s+1)/2
0 )+ will be absorbed in the left-hand

side of (9.3.13), choosing the radius R small enough (so that all the estimates will be true for every
R smaller than a suitable R0), while the other term can be kept in the right-hand side of (9.3.13).

Let us go on, with the second term involving f in the derived equation: we use the fact that

|∇u| ≤ w
1
q and that w

1
q

+s−1 ≤ ws, so to obtain

−
∑
i

∫
f uxi((w

s − ks0)+)xi ζ
2 dx ≤ s

∫
{w>k0}

|f |w
1
q

+s−1 |∇w| ζ2 dx

≤ s

τ

∫
{w>k0}

|f |2ws+1 ζ2 dx+ sτ

∫
{w>k0}

|∇w|2ws−1 ζ2 dx,

and the second term can be absorbed by the left-hand side of (9.3.13), while the first can be

estimated as before, using (9.3.12). Finally, the last integral: we use the simple fact that w1/q+s ≤
ws+1 and Young’s inequality, so that

−2
∑
i

∫
f uxi ζxi (ws − ks0)+ ζ dx ≤ 2

∫
{w>k0}

|f |ws+1 |∇ζ| ζ dx

≤
∫
{w>k0}

|f |2ws+1 ζ2 dx+

∫
{w>k0}

|∇ζ|2
∣∣∣w s+1

2

∣∣∣2 dx,
and again the first term as already been estimated using (9.3.12), while the second can be recast
into ∫

{w>k0}
|∇ζ|2

∣∣∣w s+1
2

∣∣∣2 dx ≤ 2

∫
|∇ζ|2

(
w
s+1

2 − k
s+1

2
0

)2

+

dx+
C ks+1

0

(R− %)2
|BR|,

again using (9.3.12), the latter being exactly the same term of the right-hand side in (9.3.13).

Putting all together, after the estimation of the first two groups of terms we have obtained∫ ∣∣∣∣∇(w s+1
2 − k

s+1
2

0

)
+

∣∣∣∣2 ζ2 dx+ S(BR) ≤ C1

∫
{w>k0}

∣∣∣∣(w s+1
2 − k

s+1
2

0

)
+

∣∣∣∣2 |∇ζ|2 dx
+

C ks+1
0

(R− %)2
|BR|+ C ks+1

0 ‖f‖2LN+α |BR|1−
2

N+α

+ Estimates for ((9.3.5)− (9.3.7)) ,

(9.3.15)

with C1 depending on q, λ, s, ‖f‖LN+α .

3.3. Terms involving derivatives of Aε. We are left with the handling of the terms

Estimates for ((9.3.5)− (9.3.7)) ,
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and clearly we aim to obtain an inequality of the type (9.3.15). Let us start with the (9.3.5): we
have

N∑
i=1

∫
{w>k0}

〈∂xiAε(x,∇u),∇w〉ws−1 uxi ζ
2dx ≤ C

∫
{w>k0}

|∇w|w
q−1
q ws−1w

1
q ζ2 dx

≤ C τ
∫
{w>k0}

|∇w|2ws−1 ζ2 dx

+
C

τ

∫
{w>k0}

ws+1 ζ2 dx,

and the first term can be absorbed by the left-hand side of (9.3.15), while for the other we can
simply proceed as before, using (9.3.12) in combination with Hölder and Sobolev inequality to get∫

{w>k0}
ws+1 ζ2 dx ≤ C |BR|

2
N

∫ ∣∣∣∣∇(w s+1
2 − k

s+1
2

0

)
+

∣∣∣∣2 ζ2 dx

+ C |BR|
2
N

∫
|∇ζ|2

(
w
s+1

2 − k
s+1

2
0

)2

+

dx

+ C ks+1
0 |BR|,

the term containing the gradient of (w
s+1

2 − k
s+1

2
0 )+ being absorbed, taking R small enough.

We go on with (9.3.6), that is

N∑
i=1

∫
〈∂xiAε(x,∇u), D2

i u〉 (ws − ks0)+ ζ
2dx ≤ C

∫
|D2u|w

q−1
q (ws − ks0)+ ζ2 dx

≤ Cτ
∫
|D2u|2w

q−2
q (ws − ks0)+ ζ2 dx

+
C

τ

∫
w (ws − ks0)+ ζ2 dx,

and the first integral will be absorbed by S(BR) in the left-hand side, while the other can be
estimated as before.

We are only left with the last integral (9.3.7), for which we can easily derive the following
estimate

2

N∑
i=1

∫
〈∂xiAε(x,∇u),∇ζ〉uxi (ws − ks0)+ ζdx ≤ C

∫
w (ws − ks0)+ |∇ζ| ζ dx

≤ C
∫
{w>k0}

|∇ζ|2ws+1 dx+ C

∫
{w>k0}

ζ2ws+1 dx,

and these latter two terms have already been treated.
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3.4. Caccioppoli-type inequality. Inserting the latter informations into (9.3.15) and setting

β = (s + 1)/2, we can drop the sponge term S(BR) and add the term
∫

(wβ − kβ0 )2
+ |∇ζ|2 dx on

both sides. This yields the Caccioppoli-type inequality

∫ ∣∣∣∇((wβ − kβ0 )+ζ
)∣∣∣2 dx ≤ C ∫ (wβ − kβ0)2

+
|∇ζ|2 dx+

k2β
0 C

(R− %)2
|BR|

+ C k2β
0 ‖f‖

2
LN+α |BR|1−

2
N+α .

Finally, we apply the Sobolev inequality and use the properties of the test function ζ, in order to
get

(∫
B%(x0)

(
wβ − kβ0

)2∗

+
dx

) 2
2∗

≤ C

(R− %)2

∫
BR(x0)

(
wβ − kβ0

)2

+
dx+

k2β
0 C

(R− %)2
|BR|

+ C k2β
0 ‖f‖

2
LN+α |BR|1−

2
N+α ,

(9.3.16)

for a constant C that can be chosen so as to depend only on q, λ, ‖f‖LN+α and β, and not on ε.

Starting from β = 1+θ/q
2 , choosing a sequence of concentric balls and iterating a suitable number of

times, we finally obtain w ∈ L2
loc, uniformly in ε. Moreover, for every BR b B we get an estimate

of the type

‖w‖L2(B%) ≤ C = C(λ,N, δ, L, ‖f‖LN+α , R− %),

for every 0 < % < R.

4. Step 2 – Boundedness of the gradient

The next step is to show that w is in a suitable De Giorgi class, i.e. it satisfies an estimate of
the type (9.2.8) (with p = 2, as we will see): then using Theorem B we will obtain that w ∈ L∞loc,
with an estimate on ‖w‖∞ depending on the L2 norm of w. Using the fact that w ∈ L2

loc uniformly
in ε (as shown in the previous section), we will finally obtain that ∇uε ∈ L∞loc uniformly in ε.

So, in order to conclude, we proceed exactly as in the last section, but with a different choice
for the test function, as far as we now want to show that (w − k)+ satisfies a suitable Caccioppoli
inequality, for every k ≥ k0.
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Keeping this in mind, the right choice for the test function is given by ϕ = uxi(w − k)+ζ
2.

Inserting this into (9.3.1) and summing over i = 1, . . . , N , we obtain

N∑
i=1

∫
〈∇zAε(x,∇u)D2

i uuxi ,∇(w − k)+〉 ζ2 dx(9.4.17)

+
N∑
i=1

∫
〈∇zAε(x,∇u)D2

i u,D
2
i u〉 (w − k)+ ζ

2dx(9.4.18)

+2
N∑
i=1

∫
〈∇zAε(x,∇u)D2

i uuxi ,∇ζ〉 ζ (w − k)+ uxi dx(9.4.19)

+
N∑
i=1

∫
〈∂xiAε(x,∇u),∇(w − k)+〉uxi ζ2dx(9.4.20)

+

N∑
i=1

∫
〈∂xiAε(x,∇u), D2

i u〉 (w − k)+ ζ
2dx(9.4.21)

+2

N∑
i=1

∫
〈∂xiAε(x,∇u),∇ζ〉uxi (w − k)+ ζdx(9.4.22)

= −
N∑
i=1

∫
f uxixi (ws − ks0)+ζ

2 dx(9.4.23)

−
N∑
i=1

∫
f uxi ((ws − ks0)+)xi ζ

2 dx(9.4.24)

−
N∑
i=1

2

∫
f ζxi(w

s − ks0)+uxiζ dx.(9.4.25)

As before, we divide the estimations in three groups.

4.1. The main terms. We observe that, using the fact that

∇(w − k)+ = q w
q−2
q D2u∇u 1{w>k},

the integral (9.4.17) can be written as∫
〈∇zAε(x,∇u)D2u∇u,∇(w − k)+〉 ζ2 dx =

1

q

∫
〈∇zAε(x,∇u)∇(w − k)+,∇(w − k)+〉 ζ2w

2−q
q dx

and the previous integral is restricted to the set {w > k}, so that taking k ≥ k0, with k0 given by
(9.2.4), and taking into account (9.2.3) we get∫

〈∇zAε(x,∇u)∇(w − k)+,∇(w − k)+〉w
2−q

2 ζ2 dx ≥ 1

qλ

∫
|∇(w − k)+|2ζ2.
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Then we observe that the term (9.4.18) can be treated as follows (this is the sponge term, as before)

N∑
i=1

∫
〈∇zAε(x,∇u)D2

i u,D
2
i u〉 (w − k)+ζ

2 dx ≥ 1

λ

∫
|D2u|2w

q−2
q (w − k)+ ζ

2 dx :=
1

λ
S ′(BR),

while concerning the third integral (9.4.19), we get

2

∫
〈∇zAε(x,∇u)D2u∇u,∇ζ〉 (w − k)+ζ dx =

2

q

∫
〈∇zAε(x,∇u)∇(w − k)+,∇ζ〉

× (w − k)+w
2−q
q ζ dx

≤ 2

q

∫
|∇zAε(x,∇u)||∇(w − k)+| |∇ζ|

× ζ (w − k)+w
2−q
q dx

≤ 2λ

q

∫
|∇(w − k)+| |∇ζ| ζ(w − k)+ dx,

where we have used again (9.2.3) and the fact that we are integrating over a region where |∇u| ≥M .
Summarizing, we have obtained∫

|∇(w − k)+|2 ζ2 dx+

∫
|D2u|2w

q−2
q (w − k)+ ζ

2 dx ≤ C
∫
|∇(w − k)+| |∇ζ| ζ(w − k)+ dx

+ Estimates for (9.4.20)− (9.4.25),

and with standard calculations we can then obtain the inequality

∫
|∇(w − k)+|2 ζ2 dx+

∫
|D2u|2w

q−2
q (w − k)+ ζ

2 dx ≤ C
∫
|∇ζ|2(w − k)2

+ dx,

+ Estimates for (9.4.20)− (9.4.25),

(9.4.26)

for every k ≥ k0.

4.2. Terms containing fε. Using the fact that w ≥ 1 and Young’s inequality, we get

∑
i

∫
f uxixi(w − k)+ζ

2 dx ≤
∫
|f |

(∑
i

|D2
i u|2

) 1
2

(w − k)+ ζ
2 dx

≤ τ
∫
|D2u|2w

q−2
q (w − k)+ζ

2 dx+
1

τ

∫
|f |2(w − k)+ζ

2 dx
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and observe that the first integral can be absorbed, choosing τ small enough, by the left-hand side.
Concerning the second integral, we observe that we can get∫

|f |2 (w − k)+ ζ
2 dx ≤ 1

2

∫
|f |2 (w − k)2

+ ζ
2 +

1

2

∫
{w≥k}∩BR

|f |2

≤ 1

2

(∫
|f |N dx

) 2
N
(∫

(w − k)2∗
+ ζ

2∗ dx

) 2
2∗

+
1

2
‖f‖2LN+α |{w ≥ k} ∩BR|1−

2
N+α

≤ c

2
‖f‖2LN+α R

2α
N+α

∫
|∇((w − k)+ζ)|2 dx

+
1

2
‖f‖2LN+α |{w ≥ k} ∩BR|1−

2
N+α ,

just as in the previous section.

Let us then consider (9.4.24): we first observe that |∇u| ≤ w
1
q , so that∑

i

∫
f uxi((w − k)+)xi ζ

2 dx ≤
∫
|f |w

1
q |∇(w − k)+| ζ2 dx

≤ 1

τ

∫
|f |2w

2
q ζ2 dx+ τ

∫
|∇(w − k)+|2 ζ2 dx,

and observe that the second term will be absorbed in the left-hand side.

As before, we write w
1
q in place of ∇u and then we use Young’s inequality, so that (9.4.25) can be

estimated as follows

2
∑
i

∫
f uxi ζxi (w − k)+ ζ dx ≤

∫
|f |2w

2
q ζ2 dx+

∫
|∇ζ|2 (w − k)2

+ dx.

Before putting all the estimates together, we observe that the last two integral have a common
term, which can be treated as follows∫

|f |2w
2
q ζ2 dx ≤

∫
|f |2w ζ2 dx ≤

∫
|f |2 (w − k)+ ζ

2 dx+ k

∫
{w>k}∩BR

|f |2 dx,

≤
∫
|f |2 (w − k)+ ζ

2 dx+ k ‖f‖2LN+α |{w ≥ k} ∩BR|1−
2

N+α ,

and the first integral above has already been estimated.

All in all, we have obtained the following:∫
|∇(w − k)+|2 ζ2 dx+ S ′(BR)dx ≤ C1

∫
(w − k)2

+ |∇ζ|2 dx

+ C (1 + k)‖f‖2LN+α |{w ≥ k} ∩BR|1−
2

N+α

+ Estimates for (9.4.20)− (9.4.22),

(9.4.27)

with C1 depending on ‖f‖LN+α .
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4.3. Terms involving derivatives of Aε. Using the growth conditions on ∂xi∇H∗ε(x,∇u)
and the fact that all the integrals are restricted to a region where {|∇u| > M}, we get

(9.4.20) ≤ c
∫
w
q−1
q |D2u| (w − k)+ ζ

2 dx ≤ cτ
∫
w
q−2
q |D2u|2 (w − k)+ ζ

2 dx

+
c

τ

∫
w (w − k)+ ζ

2 dx,

and we observe that the first term can be absorbed by the sponge term S ′(BR) as before, while
using the simple inequality

w(w − k)+ ≤ (w − k)2
+ + k(w − k)+ ≤

3

2
(w − k)2

+ +
k2

2
,

and the fact that

|{w > k} ∩BR(x0)| ≤ |BR(x0)|
2

N+α |{w > k} ∩BR(x0)|1−
2

N+α ≤ c |{w > k} ∩BR(x0)|1−
2

N+α ,

the second term can be written as∫
w (w − k)+ ζ

2 dx ≤ c
∫

(w − k)2
+ ζ

2 dx+ ck2|{w > k} ∩BR(x0)|

≤ cR2

∫
|∇(w − k)+|2 ζ2dx+ cR2

∫
|∇ζ|2 (w − k)2

+ dx

+ c k2|{w > k} ∩BR(x0)|1−
2

N+α ,

which is a kind of term that we have already treated (the first can be absorbed, taking R small
enough, while the second and the third are good).

Concerning (9.4.21), we easily get

N∑
i=1

∫
〈∂xiAε(x,∇u), D2

i u〉 (w − k)+ ζ
2dx ≤ c

∫
w
q−1
q |∇(w − k)+| |∇u| ζ2 dx

≤
∫
w |∇(w − k)+| ζ2 dx,

≤ cτ
∫
|∇(w − k)+|2 ζ2 dx+

c

τ

∫
{w>k}

w2 ζ2 dx,

and the first can be absorbed, while the second has been already estimated in the case of (9.4.20):
we can simply use w2 ≤ 2(w − k)2

+ + 2k2 and proceed as before.

Finally, the last term:

(9.4.22) ≤ c
∫
w (w − k)+ |∇ζ| ζ dx ≤

c

2

∫
{w>k}

w2 ζ2 dx+
c

2

∫
(w − k)2

+ |∇ζ|2 dx,

both being terms already estimated.
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4.4. Caccioppoli-type inequality. Putting all these estimates together into (9.4.27), we can
finally obtain the inequality

(9.4.28)

∫
B%(x0)

|∇(w− k)+|2 dx ≤
C

(R− %)2

∫
BR(x0)

(w− k)2
+ dx+C k2 |{w ≥ k} ∩BR(x0)|1−

2
N+α ,

which is valid for every k ≥ k0, with C depending on λ,N, ‖f‖LN+α , but not on ε. In particular,
inequality (9.4.28) implies that w is in a De Giorgi class, so that thanks to Theorem B we get for
every BR b B

sup
BR/2(x0)

w ≤ C = C(R, ‖w‖L2(BR), k0),

which gives the desired conclusion, thanks to the fact that w ∈ L2
loc, uniformly in ε as already

proven in the previous section.

5. Step 3 – Conclusion

Let us now take u ∈W 1,q
� (Ω) weak solution of (9.2.1), under the hypotheses of Theorem 9.2.1.

What we have proven so far implies in particular that the minimizers uε of Fε, which are equi-

bounded in W 1,q, are also equi-bounded in W 1,∞, so that uε
∗
⇀ ũ in W 1,∞, up to a subsequence.

It is only left to observe that this limit ũ ∈ W 1,∞(Ω) is a minimizer of F by means of Proposition
9.2.4 and thus another weak solution of (9.2.1): this and the fact that (see Remark 9.2.2)

∇H∗(∇ũ(x)) = ∇H∗(∇u(x)), for L N−a.e. x ∈ Ω,

finally imply ∇u ∈ L∞(Ω) as desired.



APPENDIX A

Curves in a metric space

We recall some basic facts about spaces of curves in a metric space. Here (X, d) is a Polish
space, equipped with a given Borel measure m, while I = [0, T ] ⊂ R is a compact interval.

1. Summable curves

For p ∈ [1,+∞), we say that a curve µ : I → X belongs to Lp(I;X) if µ is Borel measurable
and ∫

I
d(µ(t), x0)p dt < +∞,

where x0 is a point of X (clearly the definition does not depend on the choice of x0, by means of
the triangular inequality).

As in the Euclidean case, we call Lp(I;X) the space of equivalence classes (with respect to the
relation equivalence L 1-a.e.) of functions in Lp(I;X): this is clearly a metric space, endowed with
the distance

dp(µ1, µ2) =

(∫
I
d(µ1(t), µ2(t))p dt

)1/p

.

In the case of p = +∞, we define L∞(I;X) as the space of all curves µ : I → X such that

ess sup
t∈I

d(µ(t), x0) < +∞,

for some x0 ∈ X and again L∞(I;X) is the space of equivalence classes, with the distance

d∞(µ1, µ2) = ess sup
t∈I

d(µ1(t), µ2(t)).

Remark A.1.1. It is straightforward to see that if X is separable and complete, then for every
p ∈ [1,+∞) the metric space Lp(I;X) is complete and separable, too. Moreover as in the Euclidean
case, it is possible to show that if µn → µ in Lp(I;X), then there exists a subsequence {µnk}k∈N
converging to µ L 1-a.e.

2. Continuous curves

Let C(I;X) be the space of all continuous curves in X, endowed with the topology of the
uniform convergence, that is

µn → µ in C(I;X)⇐⇒ d∞(µn, µ) = max
t∈I

d(µn(t), µ(t))→ 0.

159
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We recall the definition of metric derivative of µ ∈ C(I;X) at the point t ∈ I, defined as

(A.2.1) |µ′|(t) = lim
s→t

d(µ(t), µ(s))

|s− t|
,

every time this limit exists.

Remark A.2.1. When X = RN equipped with the usual Euclidean distance, if µ : I → X is
differentiable at the point t0, then

|µ′|(t0) =

∥∥∥∥dµdt (t0)

∥∥∥∥ ,
that is |µ′|(t0) is nothing but the Euclidean norm of the derivative of µ at the point t0.

For p ∈ [1,+∞], we consider the space ACp(I;X) ⊂ C(I;X), defined as follows: we say that
µ ∈ ACp(I;X) if there exists some ψ ∈ Lp(I;R) such that

(A.2.2) d(µ(t), µ(s)) ≤
∫ t

s
ψ(r) dr, for every s, t ∈ I such that s ≤ t.

The elements of ACp(I;X) are called absolutely continuous curves with finite p-energy (or simply
absolutely continuous curves, in the case p = 1) and they have the nice property of being almost
everywhere metric differentiable, as the following Theorem states (see [6, Theorem 1.1.2]).

Theorem A.2.2. If µ ∈ ACp(I;X), with p ≥ 1, then the limit (A.2.1) exists for L 1-a.e. t ∈ I.
The function t 7→ |µ′|(t) belongs to Lp(I;R) and

d(µ(t), µ(s)) ≤
∫ t

s
|µ′|(r) dr, for every s, t ∈ I such that s ≤ t.

Moreover we have

|µ′|(t) ≤ ψ(t), for L 1-a.e. t ∈ I,
for every ψ ∈ Lp(I;R) for which (A.2.2) holds.

Next result is a sort of Poincaré-Wirtinger inequality with a trace term, that holds true for
curves in an arbitrary metric space.

Theorem A.2.3 (Poincaré-Wirtinger Inequality). If µ ∈ ACp(I;X), with p ∈ (1,+∞), then
for every x0 ∈ X we get(∫ T

0
d(µ(t), x0)p dt

) 1
p

≤ C(p, T )

(∫ T

0
|µ′|p(t) dt

) 1
p

+
|d(µ(0), x0)− d(µ(T ), x0)|

T
p−1
p


+ ξp(µ(0), µ(T );x0),

(A.2.3)

where the constant C(p, T ) is given by

(A.2.4) C(p, T ) =
pT

2π(p− 1)
1
p

sin

(
π
p− 1

p

)
,
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while the function ξp : (X ×X)×X → R is defined by

ξp(x, y; z) =


(

T

p+ 1

d(x, z)p+1 − d(y, z)p+1

d(x, z)− d(y, z)

) 1
p

, d(x, z) 6= d(y, z),

T
1
pd(x, z), d(x, z) = d(y, z).

In particular, if µ ∈ ACp(I;X) happens to be a loop with base point x0 ∈ X, that is µ(0) = µ(T ) =
x0, then

(A.2.5)

(∫ T

0
d(µ(t), x0)p dt

) 1
p

≤ C(p, T )

(∫ T

0
|µ′|p(t) dt

) 1
p

.

Proof. The proof is the same as in [53], except for the fact that we allow the exponent p to
vary in (1,+∞): we simply use the Poincaré-Wirtinger inequality for real functions of one variable.

Let us set

f(t) = d(µ(t), x0)−
(

1− t

T

)
d(µ(0), x0)− t

T
d(µ(T ), x0), t ∈ [0, T ],

then it is easily seen that f ∈ ACp(I;R), with f(0) = f(T ) = 0, so for it the standard Poincarè-
Wirtinger inequality holds true, that is(∫ T

0
|f(t)|p dt

) 1
p

≤ C(p, T )

(∫ T

0
|f ′(t)|p dt

) 1
p

,

where the best constant C(p, T ) is given by (A.2.4) (see [83, equation (7a)], for example, where
the best constant is computed, together with the function that realizes it).

We now observe that

|f ′(t)| ≤ |µ′|(t) +
1

T
|d(µ(0), x0)− d(µ(T ), x0)|, L 1-a.e. t ∈ I,

so that Minkowski inequality yields

(A.2.6)

(∫ T

0
|f(t)|p dt

) 1
p

≤ C(p, T )

(∫ T

0
|µ′|p(t) dt

) 1
p

+
|d(µ(0), x0)− d(µ(T ), x0)|

T
p−1
p

 .
Moreover by Minkowski inequality again we get(∫ T

0
d(µ(t), x0)p dt

) 1
p

≤
(∫ T

0
|f(t)|p dt

) 1
p

+

(∫ T

0

((
1− t

T

)
d(µ(0), x0) +

t

T
d(µ(T ), x0)

)p
dt

) 1
p

.

Computing the integral in the right-hand side and using (A.2.6), we obtain (A.2.3). �

Another remarkable property of curves in ACp is that they can be reparametrized by arc length.
Precisely, we have the following (see [9] for a proof):
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Lemma A.2.4 (Reparametrization Lemma). For p ∈ [1,+∞], suppose µ ∈ ACp(I;X) and let

`(µ) =

∫
I
|µ′|(t) dt.

Then there exists a strictly increasing left-continuous function

t : [0, `(µ)]→ [0, T ],

such that:

(1) µ = µ ◦ t ∈ AC∞([0, `(µ)];X);
(2) µ([0, `(µ)]) = µ([0, T ]);
(3) |µ′|(t) = 1, for L 1-a.e. t ∈ [0, `(µ)].

Remark A.2.5. The time rescaling t given by the previous Lemma is defined as

t(s) = inf

{
t ∈ [0, T ] : s =

∫ t

0
|µ′|(r) dr

}
.

We remark that in general this is not a continuous function: the important fact is that at its
discontinuity points, the jumps of t corresponds to time intervals where µ is constant.

Definition A.2.6. The space ACp(I;X) is endowed with the following notion of convergence:
we say that {µn}n∈N ⊂ ACp(I;X) weakly converges1 to some µ ∈ ACp(I;X), and we write µn ⇀ µ,
if

(i) lim
n→∞

max
t∈I

d(µn(t), µ(t)) = 0;

(ii) the sequence {|µ′n|}n∈N is equi-bounded in Lp(I;R) and equi-integrable;

where we intend that, if p > 1, then the equi-integrability condition is redundant.

Finally, we recall a compactness criterion for the space of continuous curves C(I;X).

Theorem A.2.7 (Ascoli-Arzelà). Given a sequence {µn}n∈N ⊂ C(I;X), this is relatively com-
pact if and only if the following are satisfied:

(i) {µn}n∈N is equi-continuous;
(ii) for every t ∈ I, the set {µn(t) : n ∈ N} is relatively compact in X.

3. Curves of bounded variation

Given a curve µ : I → X, it is possible to define its pointwise total variation

(A.3.1) Var(µ; I) = sup

{
k∑
i=0

d(µ(ti), µ(ti+1)) : 0 = t0 < t1 < · · · < tk < tk+1 = T

}
,

where the supremum is taken over all finite partitions of I and we say that µ is rectifiable if
Var(µ) < +∞. For absolutely continuous curves, we have the following (see [9] for a proof):

1When X = RN equipped with the Euclidean metric, the spaces ACp(I;RN ) are basically the same as the
standard Sobolev spaces W 1,p(I;RN ). Observe that in this case, when 1 < p <∞, we have

µn
W1,p

⇀ µ⇐⇒ sup
n
‖µn‖W1,p < +∞⇐⇒ µn → µ uniformly on I and sup

n
‖µ′n‖Lp < +∞,

where convergence is always intended up to a subsequence. This chain of equivalences justifies why we have decided
to call weak convergence the convergence introduced in ACp(I;X), rather than simply calling it uniform convergence.
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Lemma A.3.1. Let p ∈ [1,+∞] and µ ∈ ACp(I;X); then it holds

(A.3.2) Var(µ; I) =

∫
I
|µ′|(t) dt.

In particular, every µ ∈ ACp(I;X) is rectifiable.

We now want to introduce the space of curves of bounded variation: we essentially follow [49].
Let µ : I → X be a Borel measurable curve, we say that µ is approximately continuous at t ∈ I

if there exists x ∈ X such that all the sets

Xε = {s ∈ I : d(µ(s), x) > ε},
have 0-density at t, that is

lim
r→0+

L 1((t− r, t+ r) ∩Xε)

r
= 0, for every ε > 0.

The point x, if it exists, is unique and is called approximate limit of µ in t. We indicate with Sµ the
set of points where the approximate limit does not exist: we point out that there holds L 1(Sµ) = 0
(see [49, Theorem 2.9.13]).

Given a Borel measurable curve µ : I → X, we can also define its left and right approximate
limits: for every t ∈ I, we define x = µ+(t) if the sets

{s ∈ I : t < s, d(µ(s), x) > ε}
have 0-density at t for every ε > 0. Similarly we set x = µ−(t) if

{s ∈ I : t > s, d(µ(s), x) > ε}
have 0-density at t for every ε > 0.

Remark A.3.2. It is easily seen that for every t ∈ I \ Sµ, the limits µ+(t) and µ−(t) exist and
they coincide with the approximate limit of µ in t.

Let µ ∈ L1(I;X) be a summable curve, we define its essential total variation as

(A.3.3) |Dµ|(I) = sup

{
k∑
i=0

d(µ(ti), µ(ti+1)) : 0 < t0 < · · · < tk+1 < T

}
,

where the supremum is taken over all finite partitions of I \ Sµ.
We then say that µ has bounded variation if |Dµ|(I) < +∞ and we write BV (I;X) to indicate

the space of curves of bounded variation, with values in the metric space X. This is clearly a metric
space, too, with distance given by

dBV (µ1, µ2) = d1(µ1, µ2) +
∣∣|Dµ1|(I)− |Dµ2|(I)

∣∣, µ1, µ2 ∈ BV (I;X).

Curves of bounded variation posses left and right approximate limits at every point: we give a
proof of this fact (see also [49, 2.5.16]).

Lemma A.3.3. If µ ∈ BV (I;X), then for every t ∈ (0, T ) there exist µ+(t) and µ−(t). Fur-
thermore, the same conclusion holds for µ+(0) and µ−(T ).



164 A. CURVES IN A METRIC SPACE

Proof. We define the nondecreasing function

V (t) = |Dµ|([0, t]), t ∈ I,
then for every t ∈ I we have V (t−) ≤ V (t) ≤ V (t+), where

V (t−) = sup{V (s) : s < t} = lim
s→t−

V (s),

V (t+) = inf{V (s) : s > t} = lim
s→t+

V (s).

We just prove that µ−(t) exists for every t ∈ (0, T ]: the other part of the statement can be proven
in the same way. Indeed, observe that

d(µ(s1), µ(s2)) ≤ V (t−)− V (s1), s1, s2 ∈ I \ Sµ such that s1 < s2 < t,

which implies, by means of the completeness of X, the existence of

lim
s→t−

µ(s) ∈ X.

This has to coincide with the approximate limit µ−(t), concluding the proof. �

Remark A.3.4. For every p ∈ [1,+∞], if µ ∈ ACp(I;X) we have

|Dµ|(I) = Var(µ; I).

In particular, from Lemma A.3.1 it follows that ACp(I;X) ⊂ BV (I;X) and

|Dµ|(I) =

∫
I
|µ′|(t) dt, µ ∈ ACp(I;X).

We conclude this section with a metric variation of a classical compactness result on BV
functions: the proof can be found in [4, Theorem 2.4].

Theorem A.3.5. Let (X, d) be a locally compact, complete and separable metric space. Let
{µn}n∈N ⊂ BV (I;X) be a sequence such that

sup
n∈N

dBV (µn, x0) < +∞,

for some x0 ∈ X. Then there exists a subsequence {µnk}k∈N converging in L1(I;X) to µ ∈
BV (I;X) and

|Dµ|(I) ≤ lim inf
k→+∞

|Dµnk |(I).



APPENDIX B

The characteristics method for the continuity equation

We have used several times the fact that, for solutions of the continuity equation with smooth
vector fields, we have a representation formula in terms of the flow map of these vector fields and of
the initial datum. To keep the exposition as self-contained as possible, we recall the precise result:
for a proof, the reader is referred to [6, Proposition 8.1.8].

Theorem B.0.1. Let µ : [0, 1]→P(RN ) be a narrowly continuous curves solving the continuity
equation

∂µt + divx(vt µt) = 0,

where vt is a Borel vector field satisfying∫ 1

0

∫
RN
|vt(x)| dµt(x) dt <∞ and

∫ 1

0

(
‖vt‖L∞(K) + ‖∇vt‖L∞(K)

)
dt <∞,

for every compact set K ⊂ RN . Then for µ0−a.e. x ∈ RN the Cauchy problem{
σ′(t) = vt(σ(t)),
σ(0) = x,

admits a globally defined solution X(t, x) in [0, 1] and

µt = (X(t, ·))]µ0, for every t ∈ [0, 1].
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APPENDIX C

Basic estimates for the q−Laplacian operator

1. Basic inequalities

We collect here some pointwise inequalities, which are particularly useful when dealing with
the q-Laplacian operator or similar ones (for example the operator treated in Chapters 8 and 9):
we confine ourselves to the case q ≥ 2.

Lemma C.1.1. Let q ≥ 2, then for every z, w ∈ RN we get

(C.1.1) |z − w|q ≤ 2q−1〈|z|q−2z − |w|q−2w, z − w〉.

Proof. A direct calculation shows that the right-hand side in (C.1.1) can be written as

〈|z|q−2z − |w|q−2w, z − w〉 =
|z|q−2 + |w|q−2

2
|z − w|2 +

(
|z|q−2 − |w|q−2

)
(|z|2 − |w|2)

2

and observing that the second term has positive sign, we get

〈|z|q−2z − |w|q−2w, z − w〉 ≥ |z|
q−2 + |w|q−2

2
|z − w|2.

Then we go on with

|z − w|q−2 ≤ (|z|+ |w|)q−2 ≤ max{1, 2q−3}
(
|z|q−2 + |w|q−2

)
,

which enables us to conclude, using the simple fact that max{1, 2q−3} ≤ 2q−2. Observe that with
this proof, the constant 2q−1 that we obtain in (C.1.1) is not optimal (it is enough to test it with
q = 2). �

Remark C.1.2. By means of (C.1.1) and Cauchy-Schwarz inequality, we obtain

(C.1.2) |z − w|q ≤ 2q
∣∣∣|z| q−2

2 z − |w|
q−2

2 w
∣∣∣2 .

Indeed, (C.1.1) implies

|z − w|q ≤ 2q−1|z − w|
∣∣|z|q−2z − |w|q−2w

∣∣ ,
that is

|z − w|q−1 ≤ 2q−1
∣∣|z|q−2z − |w|q−2w

∣∣ ,
and replacing q with (q + 2)/2 and raising at the power 2, we obtain (C.1.2).

Lemma C.1.3. Let q ≥ 2, then for every z, w ∈ RN we get

(C.1.3)
∣∣∣|z| q−2

2 z − |w|
q−2

2 w
∣∣∣2 ≤ q2

4
〈|z|q−2z − |w|q−2w, z − w〉

167
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Proof. We start with the simple observation

|z|q−2z − |w|q−2w =

∫ 1

0

d

dt

[
|(1− t)w + tz|q−2((1− t)w + tz)

]
dt

= (z − w)

∫ 1

0
|(1− t)w + tz|q−2 dt

+ (q − 2)

∫ 1

0
|(1− t)w + tz|q−4〈(1− t)w + tz, z − w〉 ((1− t)w + tz) dt,

so that

〈|z|q−2z − |w|q−2w, z − w〉 = |z − w|2
∫ 1

0
|(1− t)w + tz|q−2 dt

+ (q − 2)

∫ 1

0
|(1− t)w + tz|q−4〈(1− t)w + tz, z − w〉2 dt.

(C.1.4)

As it is easily seen, the second term in the right-hand side is positive, so that

(C.1.5) 〈|z|q−2z − |w|q−2w, z − w〉 ≥ |z − w|2
∫ 1

0
|(1− t)w + tz|q−2 dt

Moreover observe that we have∣∣|z|q−2z − |w|q−2w
∣∣ ≤ (q − 1)|z − w|

∫ 1

0
|(1− t)w + tz|q−2 dt,

then, replacing q with (q+ 2)/2 (which is still an exponent ≥ 2) and raising at the power 2, we get∣∣∣|z| q−2
2 z − |w|

q−2
2 w

∣∣∣2 ≤ q2

4
|z − w|2

(∫ 1

0
|(1− t)w + tz|

q−2
2 dt

)2

≤ q2

4
|z − w|2

∫ 1

0
|(1− t)w + tz|q−2 dt

and finally using (C.1.5), we get the desired inequality. �

Lemma C.1.4. Let q ≥ 2, then for every z, w ∈ RN we get

(C.1.6)
∣∣|z|q−2z − |w|q−2w

∣∣ ≤ (q − 1)
(
|z|

q−2
2 + |w|

q−2
2

) ∣∣∣|z| q−2
2 z − |w|

q−2
2 w

∣∣∣
Proof. With the same argument of the previous proof, we arrive at∣∣|z|q−2z − |w|q−2w

∣∣ ≤ (q − 1)|z − w|
∫ 1

0
|(1− t)w + tz|q−2 dt,

and then we observe that

|(1− t)w + tz|q−2 = |(1− t)w + tz|
q−2

2 |(1− t)w + tz|
q−2

2 ≤ |(1− t)w + tz|
q−2

2

(
|z|

q−2
2 + |w|

q−2
2

)
,

which yields

(C.1.7)
∣∣|z|q−2z − |w|q−2w

∣∣ ≤ (q − 1)|z − w|
(
|z|

q−2
2 + |w|

q−2
2

)∫ 1

0
|(1− t)w + tz|

q−2
2 dt.
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To conclude, it is enough to observe that (C.1.5) with the exponent q replaced by (q+2)/2, implies∣∣∣|z| q−2
2 z − |w|

q−2
2 w

∣∣∣ ≥ |z − w|∫ 1

0
|(1− t)w + tz|

q−2
2 dt,

so that inserting this into (C.1.7), we finally end up with (C.1.6). �

2. Higher differentiability for solutions of the q−Laplacian

In this section, we consider q > 2 and with the term local weak solution of the equation
−∆qu = f we mean u ∈W 1,q

loc (Ω) such that∫
Ω
〈|∇u(x)|q−2∇u(x),∇ϕ(x)〉 dx =

∫
Ω
f(x)ϕ(x) dx, for every ϕ ∈ C∞c (Ω).

Theorem C.2.1. Let u ∈W 1,q
loc (Ω) be a local weak solution of

−∆qu = f,

with f ∈ Lploc(Ω) and p = q/(q − 1). Then

V(x) := |∇u(x)|
q−2

2 ∇u(x) ∈W
p
2
−τ,2

loc (Ω),

for every τ > 0.

Proof. Let us set H(x) = |∇u(x)|q−2∇u(x), then we have

(C.2.1)

∫
Ω
〈H(x),∇ϕ(x)〉 dx =

∫
Ω
f(x)ϕ(x) dx

and

(C.2.2)

∫
Ω
〈H(xh),∇ϕ(x)〉 dx =

∫
Ω
f(xh)ϕ(x) dx

where xh = x+ hek (we omit the dependence on k ∈ {1, . . . , N}). We set

δhu(x) =
u(xh)− u(x)

h
,

then subtracting (C.2.2) to (C.2.1) and dividing by h, we obtain∫
Ω
〈δhH(x),∇ϕ(x)〉 dx =

∫
Ω
δhf(x)ϕ(x) dx.

Inserting the test function ϕ = ξ2δhu in the previous equality, where ξ is the usual cut-off function,
supported on BR(x0) b Ω and ξ ≡ 1 on a smaller concentric ball B%(x0), with |∇ξ| ' (R − %)−1,
we get ∫

Ω
ξ2(x)〈δhH(x),∇δhu(x)〉 dx = −2

∫
Ω
ξ(x)〈δhH(x),∇ξ(x)〉δhu(x) dx

+

∫
Ω
ξ2(x)δhf(x)δhu(x) dx.
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We then observe that ∇δhu = δh∇u and using (C.1.3), we can estimate the left-hand side as follows

C

∫
Ω
ξ2(x)|δhV(x)|2 ≤

∫
Ω
ξ2(x)〈δhH(x),∇δhu(x)〉 dx

while for the first term in the right-hand side we can use Cauchy-Schwarz and (C.1.6), in order to
get

−2

∫
Ω
ξ(x)〈δhH(x),∇ξ(x)〉δhu(x) dx ≤ C

∫
Ω
ξ(x)|δhG(x)|

(
|G(xh)|

q−2
q + |G(x)|

q−2
q

)
× |∇ξ(x)||δhu(x)| dx = I1.

Concerning the second term in the right-hand side, we can use∣∣∣∣∫
Ω
ξ2(x) δhf(x) δhu(x) dx

∣∣∣∣ ≤ ∫
Ω
|ω(x)|

∣∣∣∣ ∂∂xk (ξ2(x)δhu(x)
)∣∣∣∣ dx = I2,

where ω is defined by

ω(x) =

∫ 1

0
f(x+ thek) dt.

Let us begin estimating integral I1: by means of Young’s inequality we get

ξ(x)|δhV(x)|
(
|V(xh)|

q−2
q + |V(x)|

q−2
q

)
|∇ξ(x)||δhu(x)| ≤ ε|δhV(x)|2ξ(x)2

+
1

ε

(
|V(xh)|

q−2
q + |V(x)|

q−2
q

)2
|δhu(x)|2|∇ξ(x)|2,

and we observe that using Hölder’s inequality, we get∫
Ω

(
|V(xh)|

q−2
q + |V(x)|

q−2
q

)2
|δhu(x)|2|∇ξ(x)|2 dx ≤ C

(∫
Ω
|δhu(x)|q|∇ξ(x)|q dx

) 2
q

×
(∫

Ω
|V(x)|2 dx

) q−2
q

,

and in the end, taking ε small enough, we can obtain∫
Ω
ξ2(x)|δhV(x)|2 ≤ C

(∫
Ω
|δhu(x)|q|∇ξ(x)|q dx

) 2
q
(∫

Ω
|V(x)|2 dx

) q−2
q

+ I2.

It is only left to estimate integral I2:∣∣∣∣ ∂∂xk (ξ2(x)δhu(x)
)∣∣∣∣ ≤ ξ(x)|∇ξ(x)||δhu(x)|+ ξ2(x)|δh∇u(x)|,

so that

I2 ≤
∫

Ω
ξ(x)|ω(x)||∇ξ(x)||δhu(x)| dx+

∫
Ω
ξ2(x)|ω(x)||δh∇u(x)| dx.
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We now proceed as follows: we use Hölder’s inequality and (C.1.2), so to obtain∫
Ω
ξ2(x)|ω(x)||δh∇u(x)| dx ≤

(∫
Ω
ξ2|ω(x)|p dx

) 1
p
(∫

Ω
ξ2 |δh∇u(x)|q dx

) 1
q

≤ C h
2−q
q

(∫
Ω
ξ2|ω(x)|p dx

) 1
p
(∫

Ω
ξ2 |δhV(x)|2 dx

) 1
q

≤ C h
2−q
q−1

ε

∫
Ω
ξ2|ω(x)|p dx+ ε

∫
Ω
ξ2 |δhV(x)|2 dx,

so that, for a suitable choice of ε, the second term can be absorbed in the left-hand side. Putting
all together, up to now we have shown the following∫

B%

|δhV(x)|2 dx ≤ C

(R− %)2

(∫
BR

|∇u(x)|q dx
) 2
q
(∫

Ω
|V(x)|2 dx

) q−2
q

+
C

R− %

(∫
BR

|∇u(x)|q dx
) 1
q
(∫

Ω
|f(x)|p dx

) 1
p

+ h
2−q
q−1

∫
Ω
|f(x)|p dx,

so that multiplying both sides by the term h
q−2
q−1 and using the fact that h

q−2
q−1 ≤ 1, thanks to the

fact that q > 2, then we obtain ∫
B%

∣∣∣∣V(x+ h ek)− V(x)

h
p
2

∣∣∣∣2 dx ≤ C,
which implies that V belongs to the Nikolskii space1 N

p
2
,2. Then we conclude by means of the

imbedding (see [1])

N
p
2
,2(Ω) ↪→W

p
2
−τ,2(Ω),

which holds true for every τ > 0. �

Remark C.2.2. Using the Sobolev imbedding Theorem for fractional Sobolev spaces (see [69,
Theorem 2.1]), we obtain as a corollary of the previous result

V ∈ L
2N
N−p−τ
loc (Ω), for every τ > 0,

1Given β ∈ (0, 1) and s ∈ [1,∞), for every ε > 0 we define Ωε = {x ∈ Ω : dist(x, ∂Ω) ≥ ε}. Then u ∈ N β,s(Ω)
if and only if u ∈ Ls(Ω) and

N∑
i=1

sup
ε>0,

0<|h|<ε

(∫
Ωε

|u(x+ h ei)− u(x)|s

|h|βs dx

)1/s

< +∞.
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and using the fact that φ = |∇u|q−2∇u = |V|
q−2
q V, we also obtain

φ ∈ L
2Nq

(N−p)(q−2)
−τ

loc (Ω), for every τ > 0,

which can be read as a higher integrability result for the solution of Beckmann’s problem corre-
sponding to the cost H(φ) = 1/p |φ|p, with p < 2 and ρ0, ρ1 ∈ Lp(Ω).

Remark C.2.3. Observe that letting q approach 2, from the result of Theorem C.2.1 we recover
the classical higher differentiability result

f ∈ L2
loc =⇒ ∇u ∈W 1,2

loc (Ω),

for local weak solutions of −∆u = f . In this latter case, remembering the Calderon-Zygmund
estimates ([55]), a better integrability of the datum f affects the integrability of the derivatives of
the solution, i.e.

f ∈ Lsloc =⇒ ∇u ∈W 1,s
loc (Ω),

for s ∈ (1,∞), but roughly speaking, it does not give more derivatives. This should tell that the

gain of a fractional order of derivation on the term V(x) = |∇u(x)|
q−2

2 ∇u(x) is the better that one
can hope for, as far as f acts on the scale of Lebesgue spaces. A tuning of the summability exponent
of f can only give a gain of summability of these fractional derivatives: clearly, the proof of this
fact should be much more involved and can not be achieved by means of integrated differential
quotients. Anyway, the interested reader is warmly suggested to consult [69] and the references
therein on these delicate topics.
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