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Abstract

During the last ten years, the presence of sensors in common life has become pervasive. Sensor
nodes are used in many areas of interest: from military fields to environment monitoring, from
medical applications then to domotic uses. One of the most common radio communication pro-
tocol designed for Personal Area Network (PAN) is described by the IEEE 802.15.4 standard.
Data communication among devices can be protected on a per frame basis, allowing to provide
data authenticity and data confidentiality, and configure security mechanisms in a flexible and
precise way.

With reference to the IEEE 802.15.4 MAC layer, the security sublayer was implemented
during this thesis work, providing the main security features the standard describes. In particular,
the TinyOS implementation for the TelosB mote was considered, as well as its CC2420 chipset
features. The main goal of this work is exploit the IEEE 802.15.4 security mechanisms both
sending and receiving ciphered frames, as well as integrate IEEE 802.15.4 security suite with the
security features provided by the CC2420 chipset.

During this work, a simple two nodes network was considered. Besides, ciphering only mode
was used, while all security options and parameters were statically set up. Finally, a simple

application was developed, in order to test and evaluate the network activity.
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Chapter 1

Introduction

In the last few years, sensors networks phenomenon has grown so much. These systems can be
used for military facilities and war fields monitoring, as well as for environment monitoring and
patients’ record collection. Nowadays this technology can be used by anyone, with applications
such as Global Position Systems or traffic control, office monitoring or white goods remote control.

A sensor node (or mote) is a small battery supplied device endowed with a sensing system
able to collect data (temperature, moistness rate, position variations), a processing system which
elaborates information and a communication system which sends and shares data with other
motes.

One of the most important aspects regarding motes is power saving: typically, sensors are
battery powered devices and batteries are not supposed to be changed frequently; thus, it is very
important to increase sensors lifetime with smart techniques, like powering off the communication
system when they do not transmit data or when they are not supposed to receive any.

Another interesting thing regarding motes concerns data transfer: since they have not much
computational resources, data are sent via one or more hops to a Network Coordinator, which in
turn can send them to a host able to cope with data processing and results storage. Communica-
tion between nodes must be reliable, in order to guarantee that frames are received uncorrupted
and avoid retransmissions, saving battery power as well. Besides, it could be necessary or desirable
to make communications safe and secure, that is guarantee messages provenance (authenticity),
protect data from unauthorized accesses (confidentiality) and prevent unwanted replies of re-
ceived messages (anti-replay). By doing so, it is more difficult for an adversary to alter or have

access to data communications.



One technology suitable for sensors networks is described by the IEEE 802.15.4 Standard:
it describes wireless Medium Access Control (MAC) and Physical (PHY) layers specifications
for Low-Rate Wireless Personal Area Networks (LR-WPANs). Two different device types can
participate in an IEEE 802.15.4 network: Full-Function Devices (FFD) and Reduced-Function
Devices (RFD). A network comprises at least one coordinator, that is a FFD capable of relaying
messages from other devices. Plus, one coordinator is elected as the PAN Coordinator. An RFD is
intended for extremely simple applications, such as light switching or passive infrared sensoring.
Consequently, it can be implemented using minimal resources and memory capacity. In addition,
an RFD is associated to a single PAN coordinator at a time.

Depending on the application requirements, a network may be organized in either of two
topologies: the star topology in which all motes communicate directly and only with the network
coordinator, or the peer-to-peer topology where all motes can communicate with each other
within their radio range. Trasmissions are organized into frames, which have been designed
trying to keep complexity at a minimum, while still assuring robustness for transmissions on a
noisy channel.

The medium access exploits the Carrier Sense Multiple Access protocol, with Collision Avoid-
ance. It can be used in an un-slotted version or in a time-slotted version with beacon frames to
keep motes synchronized. In time-slotted version, between every two beacons each device com-
petes with others by means of a slotted CSMA-CA mechanism during the Contention Access
Period (CAP), while guaranteed time slots can be assigned during the Contention Free Period
(CFP).

Moreover, IEEE 802.15.4 offers many security options: encryption only mode (CTR), au-
thentication only mode (CBC-MAC) and a combination of them (CCM). Cryptography is based
on AES (Advanced Encryption Standard) 128 bits symmetric-key cryptography and keys are
provided by the higher layers. Security is handled by means of specific structures (containing
security parameters) and the Auxiliary Security Header used to validate and decipher messages
on reception.

In this thesis work, TelosB motes are used. TelosB is an open source platform designed for
experimentation within the research community. Besides, it includes a CC2420 chipset which
provides extensive hardware support for packet handling and security mechanisms. In particular,
some security routines have been implemented, in order to create and use the Auxiliary Security
Header within IEEE 802.15.4 frames, as provide security services in CTR mode, with reference

to the nesC developing language and the TinyOS environment. Nevertheless, some simplified



assumptions were made: cryptographic keys and security mode are set in a static way. Finally a
simple application has been realized, in order to test the correctness of communications between
two motes, with or without security.

The rest of the thesis is organized as follows: next chapter (chapter 2) provides a brief de-
scription about IEEE 802.15.4 networks, while chapter 3 describes the main features of TelosB
motes and CC2420 chipset. Chapter 4 includes a description of the referential network scenario
and discusses the implementation of the Auxiliary Security Header and the security routines as

well. Finally, chapter 5 reports the conclusions.



Chapter 2

Overview on IEEE 802.15.4

2.1 Basic Concepts

In an TEEE 802.15.4 network, two kinds of device are admitted to participate: full-function de-
vices (FFD) and reduce-function devices (RFD). FFD devices can operate as Personal Area
Network coordinator, as coordinator or as device and they can also talk to RFDs or other FFDs.
RFD devices can communicate only with a single FFD at time and are intended for simple ap-
plications (e.g. light switches). As already told in the previous chapter, two types of network
can be created according to the IEEE 802.15.4 standard, that is star topology and peer to peer

Star Topology Peer-to-Peer Topology
. PAN
. ‘_‘HHH"'O Coordinator

@ Full Function Device
O Reduced Function Device
<—* Communication Flow

topology(fig 2.1).

F’AN
Coordinator [e)

Figure 2.1: Topology in IEEE 802.15.4

In star topologies the communication is established between devices and a single central con-
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troller, called the PAN coordinator. A device has to associate with the PAN coordinator to be
part of the network. Also in peer-to-peer topologies there is a PAN coordinator, but any device
is allowed to communicate with any other device as long as they are in range of one another.
Peer-to-peer topology allows more complex network formations to be implemented, such as mesh
networking topology. Applications such as industrial control and monitoring, wireless sensor net-
works, asset and inventory tracking, intelligent agriculture, and security would benefit from such
a network topology. The physical medium is accessed through a CSMA /CA protocol. Networks
which are not using beaconing mechanisms utilize an unslotted variation which is based on the
listening of the medium, leveraged by a random exponential backoff algorithm; acknowledgments
do not adhere to this discipline. Common data transmission utilizes unallocated slots when bea-
coning is in use; again, confirmations do not follow the same process. Confirmation messages may
be optional under certain circumstances, in which case a success assumption is made. Whatever
the case, if a device is unable to process a frame at a given time, it simply does not confirm
its reception: timeout-based retransmission can be performed a number of times, following after
that a decision of whether to abort or keep trying. Because the predicted environment of these
devices demands maximization of battery life, the protocols tend to favor the methods which
lead to it, implementing periodic checks for pending messages, the frequency of which depends
on application needs. IEEE 802.15.4 specify both PHY and MAC layer. The PHY layer activates
and deactivates the radio transceiver, monitors energy detection and link quality indicator for
received packets, controls the clear channel assessment (CCA) for carrier sense multiple access
with collision avoidance (CSMA-CA), selects Channel Frequency and data transmission and re-
ception [1]. The MAC layer allows the transmission of the MAC frames through the use of the
physical channel. Besides the data service, it offers a management interface and manages access
to the physical channel and network beaconing. It also controls frame validation, guarantees time
slots and handles node associations. Finally, it offers hook points for secure services; this topic

will be deepen later.

2.2 Frame Structure

The standard defines four kinds of frame: the four frame structures were designed to keep the
complexity to a minimum as well as making them sufficiently robust for transmission on a
noisy channel. Each further protocol layer is added to the structure with layer-specific headers

and footers. Beacon frames are transmitted by a coordinator, data frames and acknowledgment
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frames are used for data transfers and to confirm successful frame reception respectively. Finally,

MAC command frames are used to handle all MAC peer entity control transfers.

2.2.1 Beacon Frame

Octets: 2 1 dorip BEGIO 2 k m n 2
MAC Frame | Sequence | Addressing | A=Y | qupefame | GTS =
sublayer | Control | Number Fields SEUT | Specficaion | Fields | A4S T2
MHR MAC Paylcad MFR
""""""""" Y :
Octets: 1 ! i
PHY Preamble | Start of Frame |Frame Length/
| ayer Sequence Dielimiter Reserved
SHR PHR PHY Payload

Figure 2.2: Beacon Frame and PHY Packet

The beacon frame (fig. 2.2) contains the MAC header (MHR), the MAC Payload and the MAC
footer (MFR). These fields compose the PHY payload and the PHY packet is completed by the
Synchronization Header (SHR) and the PHY header (PHR). The MAC header is composed by 2
octets Frame Counter Field, a single octet Sequence Number Field, a variable length Addressing
Fields and, optionally, the Auxiliary Security Header. The MFR contains a 16-bit frame check
sequence. This frame is used in beacon-enabled network to guarantee synchronization between

RFDs and FFDs.

2.2.2 Data Frame

Octets: 2 1 41020 0.5, ?:'m ar n 2
Frame Addressing Auxiliary
MAC q " Audiary =
sublayer Control | Number Fields
MHR MAC Payload MFR
Octets: F;":eﬂ;:j:ﬁ? 1 5+(4t034)+n
PHY Preamble | Start of Frame [Frame Length|
layer Sequence Delimiter | f Reserved
SHR PHR PHY Payload .

Figure 2.3: Data Frame and PHY Packet

The data frame content is originated by the upper layers. The MAC payload is prefixed with
the MHR and appended with the MFR. The MHR contains the Frame Control Field, the Data

12



Sequence Number (DSN), the Addressing Fields, and, optionally, the Auxiliary Security Header.
The MFR is composed of a 16-bit FCS. The MHR, the MAC payload, and the MFR, together
form the MAC data frame (fig 2.3). These fields compose the PHY payload and the PHY packet
is completed by the Synchronization Header (SHR) and the PHY header (PHR). This frame is
used to exchange data between RFDs and FFDs in star topology networks or between RFDs in

peer-to-peer networks.

2.2.3 Acknowledgment Frame

Octets: 2 1 2
MAC Frame |Sequence| Frcsg
sublayer Contro| | Number
) MHR MFR
Octets- PHY dependent 1 : 5 :
1 1
Start of Frame
PHY Preamble
Frame Length / PSDU
Iayer Sequence Delimiter | Reserved

SHR PHR PHY Payload

Figure 2.4: Acknowledgment Frame and PHY Packet

The MAC acknowledgment frame (fig. 2.4) is composed by the MHR and the MFR, and it has
no MAC payload. The MHR contains the MAC Frame Control Field and the Sequence Number
(DSN). The MFR is composed of a 16-bit FCS. The MHR and MFR together form the MAC
acknowledgment frame, that is the payload of the PHY packet. The PHY payload is prefixed with
the SHR, containing the Preamble Sequence and SFD fields, and the PHR containing the length
of the PHY payload in octets. The SHR, the PHR, and the PHY payload together form the PHY
packet. As we can see in figure, acknowledgment frames do not support the security mechanism;
so they never have the Auxiliary Security Header. This frame, if requested, is sent to the data
sender to notify that the frame it sent, was correctly received. This mechanism is asymmetric:
if a single transmission attempt has failed and the transmission was indirect, the coordinator
shall not retransmit the data or MAC command frame. Instead, the frame shall remain in the
transaction queue of the coordinator and can only be extracted following the reception of a new
data request command. If a new data request command is received, the originating device shall
transmit the frame using the same DSN as was used in the original transmission. Otherwise if a
single transmission attempt has failed and the transmission was direct, the device shall repeat the
process of transmitting the data or MAC command frame and waiting for the acknowledgment,

up to a maximum of macMaxFrameRetries times.
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2.2.4 MAC Command Frame

Oclets: 2 1 41020 0.3, @L"c or n 2
Frame |Sequence| Addressing | Auiliary
ibtay ? Security Data Payload FCS
sublayer Control | Mumber Ficlds A
MHR MAC Payload MFR |
Octets: 1 5+(4to34)+n
PHY Preamble | Start of Frame [Frame Length|
layer Sequence Dielimiter ! Reserved PSDU
SHR PHR PHY Payload

Figure 2.5: Command Frame and PHY Packet

MAC command frames(fig. 2.5) are entirely originated within the MAC sublayer. The MAC
payload contains the Command Type field and the command payload, which is prefixed with
the MHR and appended with the MFR. The MHR, contains the MAC Frame Control field, the
DSN, the Addressing Fields, and, optionally, the Auxiliary Security Header. The MFR contains
a 16-bit FCS. The MHR, the MAC payload, and the MFR together form the MAC command
frame and compose the PHY payload. The PHY payload is prefixed with an SHR, containing
the Preamble Sequence and SFD fields, and a PHR containing the length of the PHY payload

in octets. The preamble sequence allows the receiver to achieve symbol synchronization.

2.3 MAC Header and Auxiliary Security Header

Octets: 1 02 0218 02 o8 | "IV vaviabte | 2
Frame Sequence | Destination | Destination | Source Source Auxiliary Frame FCS
Control | Number PAN Address PAN Address | Security Payload
Identifier Identifier Header
Addressing fields
MHE MAC MFR
Payload

Figure 2.6: MAC Frame

The MAC frame is composed of the MAC header, the MAC payload, and the MAC Footer.
However, some fields like Addressing Fieds or Security Header might not be included in all frames,

as shown in figure 2.6
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2.3.1 Frame Control Field

:%‘_‘;: 3 4 5 6 7-9 10-11 12-13 14-15
Frame | Secunty | Frame Ack. PANID P{esm'ed Dest. Frame Source
Type Enabled | Pending | Request | Compression Addressing | Version | Addressing

Mode Mode

Figure 2.7: Frame Control Field

The Frame Control Field is 2 octets field, containing information defining the frame type,
addressing fields type, and other control flags. It is formatted as illustrated in figure 2.7.
2.3.1.1 Frame Type Subfield
The Frame Type subfield specifies the current frame type (command, beacon, acknowledgment
or data).
2.3.1.2 Security Enabled Subfield

The Security Enabled subfield is set to one if the frame is protected by the MAC security sublayer
and must be set to zero otherwise. This is an important bit, since the Auxiliary Security Header

field of the MHR is present only if this subfield is set to one.

2.3.1.3 Frame Pending Subfield

The Frame Pending subfield is set to one if the device sending the frame has more data for the
recipient.

2.3.1.4 Acknowledgment Subfield

The Acknowledgment Request subfield is 1 bit in length and specifies whether or not an acknowl-
edgment is required from the recipient device, on receipt of a data or MAC command frame. If
this subfield is set to one, the recipient device sends an acknowledgment frame only if, upon
reception, the frame passes the third level of filtering. If this subfield is set to zero, the recipient

device will never send acknowledgment frames.
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2.3.1.5 PAN ID Compression subfield

The PAN ID Compression subfield specifies whether the MAC frame to be sent contains only
one of the PAN identifier fields when both source and destination addresses are present. If this
subfield is set to one and both the source and destination addresses are present, the frame has
to contain only the Destination PAN Identifier field, and the Source PAN Identifier field is be

assumed equal to the destination’s.

2.3.1.6 Frame Version Subfield

The Frame Version subfield specifies the version number corresponding to the frame.

2.3.1.7 Addressing Mode Subfields

Finally, the Destination Addressing Mode and the Source Addressing Mode subfields indicate if
Address fields contain 16-bit short addresses or 64-bit extended addresses.

2.3.2 Other MAC Header fields

2.3.2.1 Sequence Number

The Sequence Number field specifies the sequence identifier for the frame: for a Beacon frame, the
Sequence Number field has to specify a Beacon Sequence Number. For Data, Acknowledgment,
or MAC Command frame, the Sequence Number field has to specify a Data Sequence Number,

used to match an acknowledgment frame to the data or MAC command frame.

2.3.2.2 Addressing fields

The addressing fields, if present, specify source and destination address and source and destina-
tion PAN ID, according with the PAN ID compression bit and destination and source addressing

mode in the Frame Control Field.

2.3.3 Auxiliary Security Header

The Auxiliary Security Header has a variable length and contains information required for se-
curity processing, including the Security Control field, the Frame Counter field, and the Key
Identifier field. The Auxiliary Security Header is present only if the Security Enabled subfield of

the Frame Control field is set to one and is formatted as illustrated in figure 2.8.
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Octets: 1 4 0/1/5/9

Securnty Control Frame Counter Key Identifier

Figure 2.8: Auxiliary Security Header

2.3.3.1 Security Control Field

Bit: 0-2 34 37

Security Level Eey Identifier Mode Reserved

Figure 2.9: Security Control Subfield

The 8-bit Security Control field is used to provide information about what kind of protection
is applied to the frame. The Security Control field has to be formatted as shown in figure 2.9.
The Security Level subfield is 3 bit in length and indicates the actual frame protection that is
provided. This value can be adapted on a frame-by-frame basis and allows for varying levels
of data authenticity (to allow minimization of security overhead in transmitted frames where

required) and for optional data confidentiality. Table 2.1 summarizes all security levels available.

Security Level | Security Control Security Data Data

Identifier Field Attributes confidentially | authenticity
0x00 ’000’ None OFF NO (M = 0)
0x01 001’ MIC-32 OFF YES (M = 4)
0x02 010° MIC-64 OFF YES (M = 38)
0x03 011’ MIC-128 OFF YES (M = 16)
0x04 ’100° ENC ON NO (M =0)
0x05 011’ ENC-MIC-32 ON YES (M = 4)
0x06 110° ENC-MIC-64 ON YES (M = 8)
0x07 111 ENC-MIC-128 ON YES (M = 16)

Table 2.1: Security Level values and options

The Key Identifier Mode subfield is 2 bit in length and indicates whether the key used to protect
the frame can be derived implicitly or explicitly. Furthermore, it is used to indicate the particular
representations of the Key Identifier field, in case the key is derived explicitly. The Key Identifier
Mode subfield is set according to Table 2.2. The Key Identifier field of the Auxiliary Security

Header is present only if this subfield has a value not equal to 0x00.
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Key Identifier | Key Identifier Description Key Identifier

mode Mode subfield field length
(octets)
0x00 00’ Key is determined implicitly from the 0

originator and receipient(s) of the frame

as indicated in the frame header.

0x01 01’ Key is determined from the 1-octet Key 1
Index subfield of the Key Identifier field
of the auxiliary security header in 6

conjunction with macDefaultKeySource.

0x02 10’ Key is determined explicitly from the 5
4-octet Key Source subfield and the
1-octet Key Index subfield of the Key

Identifier field of the auxiliary security

header.

0x03 11 Key is determined explicitly from the 9
8-octet Key Source subfield and the
1-octet Key Index subfield of the Key

Identifier field of the auxiliary security

header.

Table 2.2: Key Identifier values and options

2.3.3.2 Frame Counter Field

The Frame Couunter field is 4 octets length field and represents the macFrameCounter attribute
of the originator of a protected frame. It is used to provide semantic security of the cryptographic

mechanism used to protect a frame and to assure replay protection.

2.3.3.3 Key Identifier Field

The Key Identifier field has variable length and identifies used for cryptographic protection of
outgoing frames, either explicitly or in conjunction with implicitly defined side information. The
Key Identifier field is present only if the Key Identifier Mode subfield of the Security Control
field of the Auxiliary Security Header is set to a value different from 0x00. The Key Identifier
field is formatted as illustrated in figure 2.10. The Key Source subfield, when present, is either 4
octets or 8 octets in length, according to the value specified by the Key Identifier Mode subfield
of the Security Control field, and indicates the originator of a group key. The Key Index subfield

is 1 octet in length and allows unique identification of different keys with the same originator.
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Octets: 0/4|8 1

Key Source Key Index

Figure 2.10: Key Identifier Subfield

2.4 Security Structures

The MAC sublayer is responsible for providing security services on specified incoming and out-
going frames, when requested by the higher layers. The information according to which is de-
termined how to provide security is located in the security-related PIB (PAN Information Base)

[2]. This security-related PIB is divided in 7 structures:
e Key Table.
e Device Table.
e Minimum security level table.
e Frame counter.
e Automatic request attributes.
e Default key source.
e PAN coordinator address.

Key table contains key-descriptors, that they are keys with related key-specific information that
are required for security processing. The device table holds device-descriptors, containing device-
specific addressing and security-related information which, combined with key-specific informa-
tion from the key table, provide all the keying material needed to secure/unsecure frames. The
minimum security level table holds information regarding the minimum security level the device
expects to have been applied by the originator of a frame, depending on frame type and, if it
concerns a MAC command frame, the command frame identifier. The 4-octets frame counter is
used to provide replay protection and semantic security of the cryptographic building block used

for securing outgoing frames. The Automatic Request table holds all the information needed
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to secure outgoing frames generated automatically and not as a result of a higher layer prim-
itive, as is the case with automatic data requests. The default key source is commonly shared
between originator and recipient (s) of a secured frame, so that, when combined with additional
information explicitly contained in the requesting primitive or in the received frame, it allows
an originator or a recipient to determine the key required for securing or unsecuring the frame,
respectively. The address of the PAN coordinator is an information commonly shared between
all devices in a PAN. All the security-related PIB attribute and their options are summarize in

Table 2.3. Finally their implementation in the code can be seen in Appendix B.

2.5 Counter with CBC-MAC extension (CCM)

CCM is a generic authenticate-and-encrypt block cipher mode. CCM is only defined for use with
128-bit block ciphers, such as AES: the Advanced Encryption Standard. The AES ciphers have
been analyzed extensively and are now used worldwide, as was the case with its predecessor, the
Data Encryption Standard (DES). AES is based on a design principle known as a Substitution
permutation network. It is fast in both software and hardware, Unlike its predecessor, DES, AES
does not use a Feistel network [3]. The cipher operates on a 4 x 4 array of bytes, termed the
state (versions of Rijndael with a larger block size have additional columns in the state). Most
AES calculations are done in a special finite field. The AES cipher is specified as a number of
repetitions of transformation rounds that convert the input plaintext into the final output of
ciphertext. Each round consists of several processing steps, including one that depends on the
encryption key. A set of reverse rounds are applied to transform ciphertext back into the orig-
inal plaintext using the same encryption key. For Example, an eXtended Sparse Linearization
attack, (XLS) relies on first analyzing the internals of a cipher and deriving a system of quadratic
simultaneous equations. These systems of equations are typically very large, for example 8000
equations with 1600 variables for the 128-bit AES: it requiring 2'°° operations (compared to 2128
possible keys) would be considered a break. For the generic CCM mode there are two parameter
choices. The first choice is M, the size of the authentication field. The choice of the value for M
involves a trade-off between message expansion and the probability that an attacker can unde-
tectably modify a message. The second choice is L, the size of the length field. This value requires
a trade-off between the maximum message size and the size of the Nonce. Different applications
require different trade-offs, so L is a parameter. Regarding the strength of CCM. It is tested that
shows that CCM provides a level of confidentiality and authenticity that is in line with other
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Attribute Identifier Type Range Description Default
macKeyTable 0x71 List of Key — A table of KeyDescriptor (empty)
Descriptor entries, each contains
entries. keys and related
information required for
secured communications.
macKeyTable- 0x72 Integer Implementa- The number of entries in 0
Entries tion specific macKeyTable.
macDeviceTable 0x73 List of - A table of Device- (empty)
Device- Descriptor entries, each
Descriptor indicating a remote device
entries with which this device
securely communicates.
macDeviceTable- 0x74 Integer Implementa- The number of entries in 0
entries tion specific macDeviceTable.
macSecurity- 0x75 Table of — A table of SecurityLevel- (empty)
LevelTable SecurityLevel Descriptor entries, each
Descriptor with information about
entries minimum security level
expected depending on
incoming frame type and
subtype.
macSecurity- 0x76 Integer Implementa- The number of entries in 0
LevelTableEntries tion specific macSecurityLevelTable
macFrameCounter 0x77 Integer 0x00000000- The outgoing frame 0x00
(I iniitiig counter for this device.
macAutoRequest- 0x78 Integer 0x00-0x07 The security level used for 0x06
SecurityLevel automatic data request.
macAutoRequest- 0x79 Integer 0x00-0x03 The key identifier mode 0x00
KeyldMode used for automatic data
request. This Attribute is
invaild if the macAuto-
RequestSecurityLevel
attribute is set to 0x00.
macAutoRequest- 0x7a As specified — The originator of the key All octets
KeySource by the mac- used for automatic data 0xff
AutoRequest- request.
KeyIDMode.
macAutoRequest- 0x7b Integer 0x01-0xff The index of the key used All octets
KeyIndex for automatic data request. Oxft
macDefaultKey- 0x7c Set of 8 octets — The originator of the All octets
Source default key used for key Oxft
identifier mode 0x01.
macPANCoord- 0x7d IEEE address | An extended 64-bit address of the —
Extended Address 64-bit IEEE PAN coordinator.
address
MacPANCoord- 0x7e Integer 0x0000-0xfFHt 16-bit address of the 0x0000
Short Address PAN coordinator.

Oxfffe means that PAN
coordinator uses only 64-bit
extended address.
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proposed authenticated encryption modes, such as OCB mode. The only weakness of CCM is
the trade-off between nonce size and counter size. For a general mode we want to support large
messages. Some applications use only small messages, but would rather have a larger nonce.
Introducing the L parameter solves this issue. The parameter M gives the traditional trade-off
between message expansion and probability of forgery. For most applications, it is choosing M
at least 8. Performance depends on the speed of the block cipher implementation.

In hardware, for large packets, the speed achievable for CCM is roughly the same as that achiev-
able with the CBC encryption mode. Encrypting and authenticating an empty message, with-
out any additional authentication data, requires two block cipher encryption operations. For
each block of additional authentication data one additional block cipher encryption operation
is required (if one includes the length encoding). Each message block requires two block cipher
encryption operations. The worst-case situation is when both the message and the additional
authentication data are a single octet. In this case, CCM requires five block cipher encryption
operations. CCM results in the minimal possible message expansion; the only bit added are the
authentication bit. Both the CCM encryption and CCM decryption operations require only the
block cipher encryption function. In AES, the encryption and decryption algorithms have some
significant differences. Thus, using only the encrypt operation can lead to a significant savings
in code size or hardware size In hardware, CCM can compute the message authentication code
and perform encryption in a single pass. That is, the implementation does not have to complete
calculation of the message authentication code before encryption can begin. CCM was designed
for use in the packet processing environment. The authentication processing requires the message
length to be known at the beginning of the operation, which makes one-pass processing difficult
in some environments. However, in almost all environments, message or packet lengths are known

in advance [4].
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Chapter 3

TelosB and CC2420

3.1 TelosB mote

A sensor node, also known as a 'mote’ , is a node in a wireless sensor network that is capable
of performing some processing, gathering sensory information and communicating with other
connected nodes in the network. As we saw in figure 3.1, one point of strength about motes is

their small dimension.

Figure 3.1: A simple mote
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Figure 3.2: Components of a Mote

In the figure 3.2, we can see the components of the mote: an antenna, that permits to send and
receive data; a microcontroller that performs tasks, processes data and controls the functionality
of other components in the sensor node; 3 leds that can be use to signal certain situation or for
debugging and a AA Battery slot. A generic sensor has 5 subsystems(fig 3.3), each of one with

specific tasks:
e Sensing subsystem
e Processing subsystem
e Communication subsystem
e Actuation subsystem
e Power management subsystem.

The sensing subsystem is designed to gather information about the environment. It will process
and store information that other subsystem use. The data collection system would capture data
such as reflected light and sound. The processing subsystem is designated to take the information
from e.g. the sensing subsystem and elaborate them in the way they can be used by other sub-
systems. The communication subsystem is designated for sending and receiving tasks. The power
management subsystem concerns about all the operations about battery managing (e.g. power
saving) and finally the actuation subsystem gathers information from sensing and processing and
decide how to control and evolve the system. The mote we work with is TelosB: it is an open

source platform designed to enable cutting-edge experimentation for the research community.
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Figure 3.3: Generic Architecture

The TPR2400 bundles all the essentials for lab studies into a single platform including: USB
programming capability, an IEEE 802.15.4 radio with integrated antenna, a low-power MCU

with extended memory and an optional sensor suite (TPR2420).
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Figure 3.4: TPR2400CA Block Diagram

This suite offers many features, including:

e IEEE 802.15.4/ZigBee compliant RF transceiver

Integrated onboard antenna
e Low current consumption
e 1 MB external flash for data logging

e Programming and data collection via USB
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e Runs TinyOS 1.1.10 or higher

This platform delivers low power consumption allowing for long battery life as well as fast wakeup
from sleep state. Though the TPR2400 is an uncertified radio platform, it is fully compatible
with the open-source TinyOS distribution. TPR2400 is powered by two AA batteries. If the
TPR2400 is plugged into the USB port for programming or communication, power is provided
from the host computer. If the TPR2400 is always attached to the USB port no battery pack
is needed. TPR2400 provides users with the capability to interface with additional devices. The
two expansion connectors and onboard jumpers may be configured to control analog sensors,
digital peripherals and LCD displays [5]. The platform with we work is TinyOS versione 2.0.2:
it is a small, open-source, energy-efficient software operating system developed by UC Berkeley
which supports large scale, selfconfiguring sensor networks. Other information can be found at

TinyOS main site www.tinyos.org.

3.2 (CC2420 Chipset

CC240 is the chipset that TelosB motes used. It can be used in several applications: Zigbee and
TinyOS systems, home and building automation, industrial control and wireless sensor networks.
The CC2420 is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver designed
for low-power and low-voltage wireless applications. It provides extensive hardware support for
packet handling, data buffering, burst transmissions, data encryption, data authentication, clear
channel assessment, link quality indication and packet timing information. Between its many
features, we can highlight the separate transmit and receive FIFOs, the IEEE 802.15.4 MAC
hardware support (CRC-16 computation, Energy Detection, Link Quality detection, etc.) and
IEEE 802.15.4 MAC hardware security (CTR encryption/decryption, CBC-MAC authentication
CCM encryption /decryption and authentication, stand-alone AES encryption).

3.2.1 Configuration and Data Interface

There are 33 16-bit configuration and status registers, 15 command strobe registers, and two
8-bit registers to access to the separate transmit and receive FIFOs. Each of the 50 registers is
addressed by a 6-bit address. The configuration registers can be read by the microcontroller via
the same configuration interface. The R/W bit must be set high to initiate the data read-back.
CC2420 then returns the data from the addressed register on the 16 clock cycles following the
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register address. During transfer of the register access byte or command strobes, the first RAM
address byte and data transfer to the TXFIFO, the CC2420 status byte is returned on the SO
pin. The status byte contains 6 status bit which are described in Table 3.1. Issuing a SNOP (no
operation) command strobe may be used to read the status byte.

Command strobes may be viewed as single byte instruction to CC2420.

Bit# Name Description
7 — Reserved, ignore value
6 XOSC16M_STABLE Indicates whether the 16 MHz oscillator is running or not

0 : The 16 MHz crystal oscillator is not running
1 : The 16 MHz crystal oscillator is running

5 TX_ UNDERFLOW Indicates whether a FIFO underflow has occurred during
transmission. It must be cleared manually with a SFLUSHTX
command strobe.

0 : No underflow has occurred

1 : An underflow has occurred

4 ENC_BUSY Indicates whether the encryption module is busy
0 : Encryption module is idle

1 : Encryption module is busy

3 TX ACTIVE Indicates whether RF transmission is active
0 : RF Transmission is idle

1 : RF Transmission is active

2 LOCK Indicates whether the frequency synthesizer PLL is in lock or not
0 : The PLL is out of lock
1 : The PLL is in lock

1 RSSI_ VALID Indicates whether the RSSI value is valid or not.
0 : The RSSI value is not valid
1 : The RSSI value is valid, always true when reception has been

enabled at least 8 symbol periods (128 us)

0 — Reserved, ignore value

Table 3.1: Status Byte

By addressing a command strobe register internal sequences will be started.
These commands must be used to enable receive mode, start decryption etc. All command strobe

can be viewed in Table 3.2.
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Address Register Description
0x00 SNOP No Operation (has no other effect than reading out status-bits)
0x01 SXOSCON Turn on the crystal oscillator (set XOSC16M_PD = 0 and
BIAS_PD = 0)

0x02 STXCAL Enable and calibrate frequency synthesizer for TX;

Go from RX / TX to a wait state where only the synthesizer is

running.
0x03 SRXON Enable RX
0x04 STXON Enable TX after calibration (if not already performed)
Start TX in-line encryption if SPI_SEC MODE # 0
0x05 STXONCCA If CCA indicates a clear channel:
Enable calibration, then TX.
Start in-line encryption if SPT_SEC _MODE # 0
else
do nothing
0x06 SRFOFF Disable RX/TX and frequency synthesizer
0x07 SXOSCOFF Turn off the crystal oscillator and RF
0x08 SFLUSHRX Flush the RX FIFO buffer and reset the demodulator. Always
read at least one byte from the RXFIFO before issuing the
SFLUSHRX command strobe
0x09 SFLUSHRX Flush the TX FIFO buffer
0x0A SACK Send acknowledge frame, with pending field cleared.
0x0B SACKPEND Send acknowledge frame, with pending field set.
0x0C SRXDEC Start RXFIFO in-line decryption / authentication (as set by
SPI_SEC_MODE)
0x0D STXENC Start TXFIFO in-line encryption / authentication (as set by
SPI_SEC_MODE), without starting TX.

0x0E SAES AES Stand alone encryption strobe. SPI_SEC_MODE is not

required to be 0, but the encryption module must be idle. If not,

the strobe is ignored.

Table 3.2: Strobe configuration registers overview
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3.2.2 RAM access

CC240 also has 368 bytes RAM that can be accessed through the SPI interface. It contains 1-1
mapping of the FIFO registers, the KEY0 and the KEY1 registers, the RXNONCE and the
TXNONCE registers. In Table 3.3 we can see a little summarization of RAM. The TXFIFO is
write only, but it may be read back using RAM access. Data is read and written one byte at a
time, as with RAM access. The RXFIFO is both writeable and readable. The KEY0 and KEY1
registers contain a 16-bit key used for ciphering/deciphering operation. After a key is written in
any of these registers, it is selected and used reading the SEC_ TXKEYSEL/SEC RXKEYSEL
bit in SECCTRLO register. TXNONCE and RXNONCE contain nonce for authentication.

Addressing Name Description

0x16F — - Not used

0x16C

0x16B — SHORTADR 16-bit Short address, used for address recognition.
0x16A
0x169 PANID 16-bit PAN identifier, used for address recognition.
0X168

0x167 — IEEEADR 64-bit IEEE address of current node, used for address
0x160 recognition .

0x15F — CBSTATE Temporary storage for CBC-MAC calculations.
0x150

0x14F — TXNONCE / TXCTR Transmitter nonce for in-line authentication and
0x140 transmitter counter for in-line encryption.

0x13F — KEY1 Encryption Key 1.
0x130

0x12F — SABUF Stand-alone encryption buffer, for plaintext input and
0x120 ciphertext output.

0x11F — RXNONCE / RXCTR Receiver nonce for in-line authentication or
0x110 receiver counter for in-line decryption.

0x10F — KEY 0 Encrypted Key 0.
0x100

0x0FF — RXFIFO 128 bytes receive FIFO.
0x80

0x07F — TXFIFO 128 bytes transmit FIFO.
0x00

Table 3.3: RAM Memory Space
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3.2.3 Security Operation

CC2420 features hardware TEEE 802.15.4 MAC security operations. This includes counter mode
(CTR) encryption/decryption, CBC-MAC authentication and CCM encryption and authentica-
tion. All security operations are based on AES encryption using 128 bit keys. Security operations
are performed within the transmit and receive FIFOs on a frame basis. The SAES, STXENC and
SRXDEC command strobes are used to start security operations in CC2420 as will be described
in the following sections. The ENC _BUSY status bit may be used to monitor when a security
operation has been completed. Security command strobes issued while the security engine is busy,
will be ignored and the ongoing operation will be completed. The CC2420 RAM space has storage
space for two individual keys (KEY0 and KEY1). Transmit, receive and stand-alone encryption
may select one of these two keys individually in the SEC_TXKEYSEL, SEC_RXKEYSEL and
SEC SAKEYSEL control bits (SECCTRLO0). A way of establishing the keys used for encryption
and authentication must be decided for each particular application. IEEE 802.15.4 does not de-
fine how this is done, it is left to the higher layers of the protocol. The nonce must be correctly
initialized before receiving or transmitting operation. The format of the nonce is shown in figure
3.5. The block counter must be set to 1. The key sequence counter is controlled by a layer above
the MAC layer. The frame counter must be increased for each new frame by the MAC layer. The
source address is the 64 bit IEEE address.

1 byte | 8 bytes 4 bytes 1 byte 2 bytes

Flags Source Frame Fey Block
Address | Counter | Seguence | Counfer
Caounter

Figure 3.5: IEEE 802.15.4 Nonce

The other registers used on security operation are SECCTRLO(Table 3.4) and SECCNTRL1(Table
3.5): SECCTRLO contains all security options(which key is used, what type of security it is ap-
plied to frame, other options); SECCNTRLI contains the offset where encryption/decryption/au-
thentication starts.

The key, nonce (does not apply to CBC-MAC), SECCTRLO and SECCTRL1 control registers
must be correctly set before starting any in-line security operation.

The in-line security mode is set in SECCTRLO.SEC MODE to one of the following modes:
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Bit Field Name Reset Description
15:10 — 0 Reserved, write as 0
9 RXFIFO PROTECTION 1 Protection enable of the RXFIFO (overflow)
8 SEC_CBC_HEAD 1 Defines what to use for the first byte in CBC-MAC
( does not apply to CBC-MAC part of CCM):
0 : Use the first data byte as the first byte into CBC-MAC
1: : Use the length of the data to be authenticated for tx
or using SEC_ RXL
7 SEC_SAKEYSEL 1 Stand Alone Key select
0: Key 0is used - 1: Key 1 is used
6 SEC TXKEYSEL 1 TX Key select
0: Key 0is used - 1: Key 1 is used
5 SEC_RXKEYSEL 1 RX Key select
0:Key 0is used - 1 : Key 1 is used
4:2 SEC _M]|2:0] 1 Number of bytes in authentication field for CBC-MAC,
bytes encoded as (M-2)/2.
0 : Reserved — 1: 4 - 2:6 - 3: 8
4:10 - 5: 12 - 6:14 — 7: 16
1:0 SEC_MODE[1:0] 0 Security mode
0 : In-line security is disabled
1: CBC-MAC
2: CTR
3:CCM

Table 3.4: Security Control0 Register
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Bit | Field Name | Reset Description
15 — 0 Reserved, write as 0
14:8 SEC TXL 0 Multi-purpose length byte for TX in-line security operations:
CTR : Number of cleartext bytes between length byte and the
first byte to be encrypted
CBC-MAC : Number of cleartext bytes between length byte and
the first byte to be authenticated
CCM : I(a), defining the number of bytes to be authenticated but
not encrypted
Stand-alone : SEC _TXL has no effect
7 — 0 Reserved, write as 0
6:0 SEC_RXL 0 Multi-purpose length byte for TX in-line security operations:
CTR : Number of cleartext bytes between length byte and the
first byte to be deencrypted
CBC-MAC : Number of cleartext bytes between length byte and
the first byte to be authenticated
CCM : I(a), defining the number of bytes to be authenticated but
not decrypted
Stand-alone : SEC_RXL has no effect
Table 3.5: Security Controll Register
e Disabled

e CBC-MAC (authentication)

e CTR (encryption / decryption )

e CCM (authentication and encryption/decryption)

When enabled, TX in-line security is started in one of two ways: issuing the STXENC command
strobe, so in-line security will be performed within the TXFIFO, but a RF transmission will not
be started. Ciphertext may be read back using RAM read operations; or issuing the STXON
or STXONCCA command strobe, so in-line security will be performed within the TXFIFO and
a RF transmission of the ciphertext is started. When enabled, RX in-line security is started as
follows: issuing a SRXDEC command strobe, so the first frame in the RXFIFO is then decrypt-
ed/authenticated as set by the current security mode. RX in-line security operations are always
performed on the first frame currently inside the RXFIFO, even if parts of this has already been

read out over the SPI interface. This allows the receiver to first read the source address out to
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decide which key to use before doing authentication of the complete frame. In CTR or CCM
mode it is of course important that bytes to be decrypted are not read out before the security
operation is started. The frame in the RXFIFO may be received over RF or it may be written

into the RXFIFO over the SPI interface for debugging or higher layer security operations.

3.2.3.1 CTR mode encryption / decryption

CTR mode encryption/decryption is performed by CC2420 on MAC frames within the TXFI-
FO/RXFIFO respectively. SECCTRL1.SEC_TXL/SEC_RXL sets the number of bytes between
the length field and the first byte to be encrypted/decrypted respectively. This controls the num-
ber of plaintext bytes in the current frame. When encryption is initiated, the plaintext in the
TXFIFO is then encrypted. The encryption module will encrypt all the plaintext currently avail-
able and it will wait if not everything is prebuffered. The encryption operation may also be
started without any data in the TXFIFO at all, and data will be encrypted as it is written to
the TXFIFO. When decryption is initiated with the SRXDEC command strobe, the ciphertext
of the RXFIFO is then decrypted.

3.2.3.2 CBC-MAC

CBC-MAC in-line authentication is provided by CC2420 hardware. SECCTRLO.SEC M sets
the MIC length M, encoded as (M-2)/2. When enabling CBC-MAC in-line TXFIFO authentica-
tion, the generated MIC is written to the TXFIFO for transmission. The frame length must in-
clude the MIC. SECCTRL1.SEC TXL/SEC_ RXL sets the number of bytes between the length
field and the first byte to be authenticated, normally set to 0 for MAC authentication. SECC-
TRLO.SEC_CBC_HEAD defines if the authentication length is used as the first byte of data to
be authenticated or not. This bit should be set to 1. When enabling CBC-MAC in-line RXFIFO
authentication, the generated MIC is compared to the MIC in the RXFIFO. The last byte of the
MIC is replaced in the RXFIFO with: 0x00 if MIC is correct, OxFF if MIC is incorrect.

3.2.3.3 CCM

CCM combines CTR mode encryption and CBC-MAC authentication in one operation. SECC-
TRL1.SEC TXL/SEC_ RXL sets the number of bytes after the length field to be authenticated
but not encrypted. The MIC is generated and verified very much like with CBC-MAC [5].

33



Chapter 4

Security Implementation

4.1 Overview

As we said in the previous chapters, IEEE 802.15.4 offers several way to secure a frame: packets
can be only encrypted, only authenticated or encryption and authenticated. In our scenario,we
consider two motes: a RFD sender that transmits ciphered data and a FFD coordinator that
deciphers messages and sends acks. When security is off, upper layers send to MAC no security
parameters: when the frame is built, security routines are not called and the frame is sent in clear
text. The coordinator, while parsing the frame, understands that it has no security and does not
proceed to unsecure. This exchange can be seen in figure 4.1.

Sender Receiver
APP
APP
] [ ] L]
MAC
PHY
PHY

—>

Figure 4.1: Frame transfer with no security

When security is on, upper layers send to MAC some security parameters: when the frame is
built, Auxiliary Security Header is inserted in the frame and security routines are called.
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Then security is applied to the frame and send. The coordinator, while parsing the frame, un-
derstands that it is not in clear text and does proceed to unsecure . This exchange can be seen
in figure 4.2. Security parameters, from now we can refer to these as Security Structure, must

Sender Receiver
APP
APP
—
Pl nll
all o o
PHY
PHY

—>

Figure 4.2: Frame transfer with security

contain the values in Table 4.1.

Name Type Range Description
SecurityLevel | Integer 0x00 — 0x07 The security level to be used.(see Table 2.1)
KeyldMode Integer 0x00 — 0x03 The mode used to identify the key to be used.
(see Table 2.2)

Key Source Set of 0 As specified by the The originator of the key to be used.
4,0r8 KeyldMode parameter This parameter is ignored if the KeyldMode
octets parameter is ignored or set to 0x00.

KeylIndex Integer 0x01 — Oxff The index of the key to be used. This

parameter is ignored if the KeyldMode

parameter is ignored or set to 0x00.

Table 4.1: Security Structure

This security structure is used by application layer to pass the security parameters when the
frame is created. The implementation of the security structure is the following: !

// tkn154/TKN154. h

typedef struct ieeel54 security {
uint8_t SecurityLevel;
uint8 t KeyldMode;
uint8 t KeySource[8];

LAll the code is Copyright (c) 2008, Technische Universitaet Berlin All rights reserved
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7

uint8 t Keylndex;
} ieeelb4 security t;

The actual frame protection provided can be adapted on a frame-by-frame basis and allows for
varying levels of data authenticity (to minimize security overhead in transmitted frames where
required) and for optional data confidentiality. For this reason all the routines handled by MAC
management entity, called the MLME, has to manage at least one security structure. The MLME
commands can be seen in Table 4.2. We will focus on the MCPS-DATA .request:

Name Description
MLME-ASSOCIATE.request Allows a device to request an association with a coordinator.
MLME-ASSOCIATE.indication Indicates a reception of an association request
command.
MLME-ASSOCIATE.response Initiates a response to a MLME-ASSOCIATE.indication primitive.
MLME-ASSOCIATE.confirm Informs the next higher layer of the initiating device
whether its request to associate was successful or unsuccessful.
MLME-DISASSOCIATE.request Notifies the coordinator of its intent to leave the PAN.
MLME-DISASSOCIATE.indication The reception of a disassociation notification command.
MLME-GTS.indication Indicates that a GT'S has been allocated or
that a previously allocated GTS has been deallocated.
MLME-ORPHAN.indication Allows the MLME of a coordinator to notify
the next higher layer of the presence of an orphaned device.
MLME-ORPHAN.response Allows the next higher layer of a coordinator
to respond to the MLME-ORPHAN.indication primitive.
MLME-SCAN.request Is used to initiate a channel scan over a given list of channels.
MLME-COMM-STATUS.indication Allows the MLME to indicate a communications status.
MLME-START .request Allows the PAN coordinator to initiate a new PAN
or to begin using a new superframe configuration.
MLME-SYNC-LOSS.indication Indicates the loss of synchronization with a coordinator.
MLME-POLL.request Prompts the device to request data from the coordinator.

Table 4.2: MLME commands

MAC common part sublayer (MCPS) data.request primitive requests the transfer of a data SPDU
(i.e., MSDU) from a local SSCS (Service-specific convergence sublayer) entity to a single peer

SSCS entity. In the Table 4.3 we can see the semantic of this command:
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Name Type Range Description
SrcAddrMode | Integer 0x00 — 0x03 The source addressing mode for this primitive and
subsequent MPDU.
DstAddrMode | Integer 0x00 — 0x03 The destination addressing mode for this primitive
and subsequent MPDU.
DstPANId Integer 0x0000 — Oxffff The 16-bit PAN identifier of the entity to which the
MSDU is being transferred.
DstAddr Device As specified by the The individual device address of the entity to which
address | DstAddrMode parameter the MSDU is being transferred.
msduLength Integer | < aMaxMACPayloadSize | The number of octets contained in the MSDU to be
transmitted by the MAC sublayer entity.
msdu Set of — The set of octets of MSDU to be transmitted
octets by the MAC sublayer entity.
msduHandle Integer 0x00 — Oxff The handle associated with the MSDU to be
transmitted by the MAC sublayer entity.
TxOptions Bitmap 3-bit field The 3 bits (b0, b1, b2) indicate the transmission
options for this MSDU.
SecurityLevel | Integer 0x00 — 0x07 The security level to be used.(see Table 2.1)
KeyldMode Integer 0x00 — 0x03 The mode used to identify the key to be used.
(see Table 2.2)
Key Source Set of 0 As specified by the The originator of the key to be used.
4,0r 8 KeyldMode parameter This parameter is ignored if the KeyldMode
octets parameter is ignored or set to 0x00.
KeyIndex Integer 0x01 — Oxff The index of the key to be used. This

parameter is ignored if the KeyldMode

parameter is ignored or set to 0x00.

Table 4.3: MCPS-DATA .request primitive
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4.2 Creation of data packets

4.2.1 MAC Header and Data Frame
As we can see in figure 4.3, a data frame contains the MAC Header, the MAC Payload and the

© 00 N D U s W N =

e e e e e
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Magc footer.

Octets: 2 1 41020 0.5 ?:‘m ar
Frame |5 Addressing
MAC q :
sublayer Control | Number Fields
MHR

PHY dependant

Octets: (see clause 6)

SHR FPHR

5+(4t034)+n

PHY Payload

Figure 4.3: MAC Data Frame

There are two main structures that describe the data packet: the generic message t structure

and the ieeel54 txframe t.

// tos/types/message.h
typedef nx struct message t {

nx uint8 t header[sizeof(message header t)];

nx_ uint8 t data[TOSH DATA LENGTH];

nx_uint8_t footer[sizeof(message footer_t)];

nx_uint8 _t metadata[sizeof(message metadata_t)];

} message_t;

// tkn154/TKN154 MAC.h
typedef struct
{

uint8_t client;

uint8 _t handle; // The set of octets forming the MSDU
ieeel54 header t xheader; //MAC Heder (MHR)

uint8 t headerLen; // Length of MHR
uint8 t xpayload; //MAC payload

uint8 _t payloadLen; // Length of Payload

ieeel54 _metadata_t *metadata;

ieeel54 txframe t;

MAC Payload

PHY Preamble | Start of Frame [Frame Length
layer Sequence Delimiter ! Reserved

T W N =

The ieeelbd txframe t is a structure used for prepare the frame that will be sent. It contains
the MAC header, the MAC payload and the MAC metadata; the MAC footer is added in a
second time by CC2420 during transmission. Now we see the MAC Header must be and the how
is implemented (fig. 4.4):

// thn154/TKN15{ MAC. h
MHR MAX IEN = 37; // 23 + 14
typedef struct {

uint8_t length;

uint8 t mhr[MHR MAX LEN];
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} ieeel54 header t;

typedef struct {

uint8 t rssi;

uint8_t linkQuality;

uint32 _t timestamp;

} ieeel54 metadata_t;

N O O W N =

Octets: 1 0/2 0/2/8 02 0/2/8 ']"""f;l“"' variable | 2
Frame Sequence | Destination | Destination | Source Source Auxiliary Frame FCS
Control | Number PAN Address PAN Address | Security Payload
Identifier Identifier Header
Addressing fields
MHR MAC MFR
Payload

Figure 4.4: MAC Frame

4.2.2 Auxiliary Security Header
The Auxiliary Security Header field shall be formatted as illustrated in figure 4.5 and ?7.

Octets: 1 4 0/1/5/9

Security Control Frame Counter Key Identifier

Figure 4.5: Auxiliary Security Header

This is the implementation of the Auxiliary Security Header:

// tkni154/TKN15, MAC.h
typedef struct {
uint8_t securityControl;
uint32 t frameCounter;
uint8 t keySource[8];
uint8 t keylndex;

} ieeelb54 security header_t;

For setting the different subfields of Security Control field, can be used the macros in the same
file.

// thn154/TKN15{ MAC. h
SEC_CNTL_LEVEL_POS =0, // Position of Security Level in Security Control
SEC_CNTL_KEYIDMODE _POS = 3, // Position of KeylIDMode in Security Control
SEC_CNTL_RESERVED POS = 5, // Position of Reserved in Security Control
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4.2.3 Setting the MAC header

The MAC header is built by two different operations: the first will set all the fields regard-
ing addressing and the security header; the second will set the other fields and prepare the

ieeel54 txframe t packet that will be transfered.

4.2.3.1 setAddressingField function
Now we see the function that sets the addressing fields:

// tkn154/PibP .nc
command error t Frame.setAddressingFields(message t* frame,
uint8 t srcAddrMode,
uint8 t dstAddrMode,
uintl6_t dstPANId,
ieeel54 address_t *xdstAddr,
ieeelb4 security t xsecurity)
{
uint8 t *mhr = MHR(frame );
message_t* myframe = frame;
ieeel54 address_t srcAddress;
ieeel54 _macPANId_t srcPANId = call MLME GET.macPANId();

ieeelb54 security t *temp = security;

mhr[MHR_INDEX FC2] &= (FC2 DEST MODE MASK | FC2 SRC MODE MASK);
mhr [MHR_INDEX_FC2] |= dstAddrMode << FC2_DEST_ MODE_OFFSET;

mhr [MHR_INDEX_FC2] |= srcAddrMode << FC2_SRC MODE_OFFSET;

if (srcAddrMode = ADDR_MODE_SHORT ADDRESS)
srcAddress.shortAddress = call MLME GET.macShortAddress ();
else
srcAddress . extendedAddress = call GetLocalExtendedAddress.get ();
if (dstAddrMode>=ADDR_MODE_ SHORT ADDRESS &&
srcAddrMode>=ADDR_MODE_SHORT ADDRESS && dstPANId — srcPANId)
mhr [MHR_INDEX_FC1] |= FC1_PAN_ID COMPRESSION;
else
mhr [MHR_INDEX_FC1] &= "FC1_PAN ID COMPRESSION;
call FrameUtility . writeHeader (
mhr,
dstAddrMode,
dstPANId,
dstAddr,
srcAddrMode ,
srcPANId ,
&srcAddress ,
(mhr[MHR_INDEX FC1]| & FC1_PAN_ ID_COMPRESSION) ? TRUE: FALSE);

if (temp && (temp—>SecurityLevel & SEC CNTIL LEVEL))

{
#ifdef IEEE154_ SECURITY_ ENABLED
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F#else

if (( temp—>SecurityLevel & SEC CNTL LEVEL) == CTR)
call CC2420SecurityMode.setCtr (myframe,0,0 ,temp);
else if (( temp—>SecurityLevel & SEC CNTL LEVEL) = CBC MAC 4)
call CC2420SecurityMode.setCbcMac(frame,0, 0,MICLENGTH4,temp );
else if (( temp—>SecurityLevel & SEC_CNTL_LEVEL) == CBC_MAC_3g)
call CC2420SecurityMode.setCbcMac(frame ,0, 0,MICLENGTHS,temp );
else if (( temp—>SecurityLevel & SEC CNTL LEVEL) = CBC_MAC_16)
call CC2420SecurityMode.setCbcMac (frame ,0, 0,MICLENGTHI16, temp );
else if (( temp—>SecurityLevel & SEC_CNTL_LEVEL) — CCM_4)
call CC2420SecurityMode.setCcem (frame ,0, 0 ,MICLENGTH4, temp );
else if (( temp—>SecurityLevel & SEC_CNTL_LEVEL) — CCM_8)
call CC2420SecurityMode.setCcm (frame ,0, 0,MICLENGTHS, temp );
else if (( temp—>SecurityLevel & SEC CNTL LEVEL) — CCM _16)
call CC2420SecurityMode.setCcm (frame ,0, 0,MICLENGTHI16, temp );
status = IEEE154_UNSUPPORTED_SECURITY ;

#endif

return SUCCESS;

The function Frame.setAddressingFileds() takes in these parameters:

e @ frame: The frame;

@ srcAddrMode: The source addressing mode;

@ dstAddrMode: The destination addressing mode;

@ dstPANID: The 16 bit PAN identifier of the destination;

@ dstAddr: Individual device address of the destination as per the dstAddrMode;

@ security: the security options (NULL means security is disabled);

As we saw in the code, after declaration and initialization of local variables (lines 9 - 13), the
subfields of the Frame Control Field regarding addressing are set (line 14 - 25) and then the
addressing fields are written in the MHR by Frame Utility. writeHeader() (see Appendix A). Then,
if the security structure that upper layer passed, is not NULL, the Security Level is not 0x00
and security is enabled (lines 36 - 38), depending of the value of Security Level, it is called a
function that writes the Auxiliary Security Header in the MAC header. The CC2420SecurityMode
interface takes the role of selecting the security mode and adding the security headers in the MAC
Header by defining the commands setCTR(), setCbcMac() and setCcm(). These commands are

also extended with the security structure as a parameter.
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command error_t setCtr() is called when the user wants to encrypt using the counter encryption

mode. The command takes in three parameters as the following.
e uint8 t setKey: This parameter selects one of the two key registers.

e uint8 t setSkip: It is a CC2420 specific parameter that sets the number of bytes to skip
in the payload without the affect of security functions.To be IEEE 802.15.4 compliant, the

value should be set to 0.
e ieeel54 security t *security: Security values.

command error_t setCbcMac() is called when user wants to authenticate using the Cipher Block
Chaining Message Authentication Code (CBC-MAC) mode. The command takes in four param-

eters as the following.
e uint8 t setKey: This parameter selects one of the two key registers.

e uint8 t setSkip: It is a CC2420 specific parameter that sets the number of bytes to skip
in the payload without the affect of security functions.To be IEEE 802.15.4 compliant, the

value should be set to 0.

e uint8 t size: This parameter sets the length of the MIC used in the authentication
process. Sizes can be selected from 4, 8, and 16. If a different value is selected, the command

returns a FAIL.
e ieeel54 security t *security: Security values.

command error_t setCem() is called when user wants to encrypt and authenticate using the

Counter with CBC-MAC (CCM) mode. The command takes in four parameters as the following.
e uint8 t setKey: This parameter selects one of the two key registers.

e uint8 t setSkip: It is a CC2420 specific parameter that sets the number of bytes to skip
in the payload without the affect of security functions.To be IEEE 802.15.4 compliant, the

value should be set to 0.

e uint8 t size: This parameter sets the length of the MIC used in the authentication
process. Sizes can be selected from 4, 8, and 16. If a different value is selected, the command

returns a FAIL.

e ieeel54 security t *security: Security values.
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4.2.4 Setting the Auxiliary Security Header
Now we see how the Auxiliary Security Header is written in MHR with setCtr():

J/ tkn154/PibP.nc
command error_t CC2420SecurityMode.setCtr (message t* frame, uint8 t setKey,
uint8 t setSkip ,ieeel54 security t *security)
{
uint8 t *mhr = MHR(frame );
ieeel54 security t xmysec = security;
uint8_t len = 0;
uint8 _t offset = 0;
ieeel54 macFrameCounter t macCounter;
if (setKey > 1 || setSkip > 7){
return FAIL;

}
if( mysec —> SecurityLevel > 7 || mysec —> KeyIldMode > 4)

return FAIL;
call FrameUtility.getAddressingFieldsLength (mhr[0], mhr[1], &len);

offset = len;

mhr [MHR,_INDEX_FC1] |= FC1_SECURITY ENABLED;

mhr[offset] = (mysec—> SecurityLevel << SEC_CNTL_LEVEL_ POS);
mhr[offset] |= setSkip << SEC_CNTL_RESERVED_ POS;

mhr|[ offset++] |= (mysec —>KeyldMode << SEC CNIL KEYDMODE POS);
macCounter = call MLME GET.macFrameCounter ();

if ( macCounter = Oxffffffff)

return IEEE154_COUNTER_ERROR;
*((nx_uint32 tx) (&(mhr[offset]))) = macCounter;
offset +=4;
call MLME SET.macFrameCounter(++macCounter);
if ( mysec—>KeyldMode & SEC_CNTL_KEYIDMODE ) {
if ((mysec—>KeyldMode & SEC_CNTL_KEYIDMODE) — KEYIDMODEL) {
mhr[ offset++] = mysec—>KeylIndex;

¥
else if ( (mysec—>SecurityLevel & SEC CNIL KEYIDMODE) == KEYIDMODE2) {
mhr|[offset++] = mysec—>KeySource[0];
mhr| offset++] = mysec—>KeySource[1];
mhr|[ offset++] = mysec—>KeySource[2];
mhr|[ offset++] = mysec—>KeySource[3];
mhr|[ offset++] = mysec—>KeyIndex;
}
else {

mhr|[ offset++] = mysec—>KeySource[0];
mhr|[ offset++] = mysec—>KeySource[1];
mhr| offset++] = mysec—>KeySource|[2];
mhr| offset++] = mysec—>KeySource [3];
mhr|[offset++] = mysec—>KeySource[4];
mhr[ offset++] = mysec—>KeySource[5];
mhr[ offset++] = mysec—>KeySource[6];
mhr| offset++] = mysec—>KeySource |[7];
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mhr| offset++] = mysec—>KeylIndex;

return SUCCESS;

}

After consistency checks (line 10 - 14), the function FrameUtility.getAddressingFieldsLength()
(see Appendix A) returns the addressing fields length (so the position where Auxiliary Secu-
rity Header starts). Then the Security Enabled Bit in Frame Control Field and Security Con-
trol Field are set (lines 17 and 18-20 respectively), after it is set the macFrameCounter field
and updated (lines 22-26). Finally depending of the value of KeyID mode, the others field of
the Auxiliary Security Header are set by the value of the security structure. (lines 27 - 48).
CC24208ecurityMode.setCbcMac(), CC2420SecurityMode.setCCM() and Frame.writeSecurityMHR()
(another function that writes the Auxiliary Security Header in some cases) do the same things

as CC2420SecurityMode.setCtr(). For detailed codes, see the Appendix A.

4.2.4.1 MCPS_DATA. request

The MCPS _DATA.request() takes in these parameters:
e @ message t *frame: The frame;
e @ uint8 t payloadLen: The length of the payload;
e @ uint8 t msduHandle: Msdu parameter;

e @ uint8 t txOptions: Transmission options

Now we see how this command is implemented.

J/ tkn154/DataP.nc

command ieeel54 status_t MCPS DATA.request (
message t *xframe,
uint8 t payloadLen,
uint8 t msduHandle,

uint8_t txOptions

{

uint8 t srcAddrMode = call Frame.getSrcAddrMode (frame);
uint8 t dstAddrMode = call Frame.getDstAddrMode(frame);
ieeel54 address t dstAddr;
ieeel54 _status_t txStatus;
ieeel54 _txframe_t xtxFrame;

uint8 t sfType=0;
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uint8 t xmhr;
if (payloadLen > call Packet.maxPayloadLength())
txStatus = IEEE154 INVALID PARAMETER;
else if ((!srcAddrMode && !'dstAddrMode) ||
(srcAddrMode > ADDR_MODE_EXTENDED ADDRESS | |
dstAddrMode > ADDR_MODE_EXTENDED ADDRESS) ||
(srcAddrMode = ADDR MODE RESERVED | |
dstAddrMode = ADDR MODE RESERVED))
txStatus = IEEE154_ INVALID_ADDRESS;
else if (!(txFrame = call TxFramePool.get())) {
txStatus = IEEE154 TRANSACTION_OVERFLOW;
} else {
txFrame—>header = &((message header tx) frame—>header)—>ieeelb4;
txFrame—>payload = (uint8 tx*) frame—>data;
txFrame—>metadata = &((message_ metadata_t*) frame—>metadata)—>ieeelb4;

txFrame—>payloadLen = payloadLen;

mhr = txFrame—>header—>mhr;
txFrame—>headerLen = call Frame.getHeaderLength (frame);
mhr [MHR,_INDEX_FC1] &= ~(FCl_FRAMETYPE MASK | FCl FRAME PENDING | FC1_ACK REQUEST);
mhr [MHR_INDEX_FC1] |= FCl_FRAMETYPE_DATA;
if (txOptions & TX_ OPTIONS ACK)
mhr [MHR_INDEX_FC1] |= FCl_ACK_REQUEST;

mhr [MHR_INDEX FC2| &= ~FC2 FRAME VERSION MASK;
if (payloadLen > IEEE154 aMaxMACSafePayloadSize)
mhr [MHR_INDEX_FC2| |= FC2 FRAME_VERSION 1;
txFrame—>handle = msduHandle;
#ifdef IEEE154_ SECURITY_ ENABLED
if ( mhr[MHR_INDEX FC1] & FC1_SECURITY ENABLED)
mhr[MHR_INDEX FC2| |= FC2 FRAME VERSION 1;
#endif
call Frame.getDstAddr(frame, &dstAddr);
if (dstAddrMode =— ADDR_MODE SHORT ADDRESS) {
if (dstAddr.shortAddress = call MLME GET.macCoordShortAddress ())
sfType = INCOMING SUPERFRAME;
else
sfType = OUTGOING _SUPERFRAME;
} else if (dstAddrMode — ADDR_MODE_EXTENDED ADDRESS){
if (dstAddr.extendedAddress == call MIME GET.macCoordExtendedAddress())
sfType = INCOMING SUPERFRAME;
else
sfType = OUTGOING SUPERFRAME;
} else if (dstAddrMode — ADDR_MODE_NOT PRESENT)
sfType = INCOMING SUPERFRAME
if (txOptions & TX_ OPTIONS GTS){
if (sfType — INCOMING SUPERFRAME)
txStatus = call DeviceCfpTx.transmit (txFrame);
else
txStatus = call CoordCfpTx.transmit (txFrame);
} else if ((txOptions & TX_OPTIONS INDIRECT) &&
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call IsSendingBeacons.getNow () &&
(dstAddrMode >= ADDR_MODE_SHORT ADDRESS)) {
if (dstAddrMode == ADDR_MODE_SHORT ADDRESS &&
dstAddr.shortAddress = OxFFFF){
mhr [MHR_INDEX_FCi1| &= “FCl_ACK_ REQUEST;

txStatus = call BroadcastTx.transmit (txFrame);
} else
txStatus = call IndirectTx.transmit (txFrame);

} else {
if (sfType = INCOMING_SUPERFRAME)

txStatus = call DeviceCapTx.transmit (txFrame);

else

txStatus = call CoordCapTx.transmit (txFrame);

if (txStatus != IEEE154_ SUCCESS){

call TxFramePool.put(txFrame);
}

}
return txStatus

}

After checking the correctness of the arguments (line 16 - 23), the transmission frame is built
(26 - 33); then AckPending and FrameVersion bits are set (lines 36 - 47). After that, in case a
node is both, coordinator and device, it has to be decided whether the frame is to be sent in the
incoming or outgoing superframe: it is done we do this by comparing the destination address to
the coordinator address in the PIB, if they match the frame is sent in the incoming sf otherwise
in the outgoing superframe (lines 49 - 61). Finally it is set Gts options (if enabled) and the

transmitting mode (direct or indirect) in lines 73 -84.

4.3 Sending and Receiving

4.3.1 Transmitting packets

Transmission process involves two steps: firstly is inserting the frame in transmission buffer,
secondly is sending what is contained in it.

4.3.1.1 Load TXFIFO

Transmission buffer is the register TXFIFO of CC2420. The TXFIFO is write only, but may be
read back using RAM. This register can be used with CC2420Fifo interface that offers the HAL
abstraction for accessing the FIFO registers of a ChipCon CC2420 radio. This interface provides
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a command that writes the FIFO and an event that signals the completion of a write operation.
async command cc2420_status_t write( ) is used to write byte in FIFOs.

async event void writeDone( ) is an event signaled when the write is finished.
e @uint® t* COUNT_NOK(length) data: pointer to data buffer;

e @ uint® t length: byte to write/written;

See now how this routine is implemented.

// chips/cc2420_ tkn154/CC2420TransmitP
async command error t CC2420Tx.loadTXFIFO (ieeel54 txframe t =xdata)
{

atomic {
if ( m_state !I= S _STARTED )
return FAIL;
m_state = S LOAD;
m_frame = data;
m_frame—>header—>length = m frame—>headerLen + m frame—>payloadLen + 2; //2 for CRC
call CSN.clr ();
call SFLUSHTX.strobe (); // flush out anything that was in TXFIFO
call CSN.set ();
call CSN.clr ();
call TXFIFO.write( &(m frame—>header—>length), 1 );
}
return SUCCESS;

}

async event void TXFIFO.writeDone( uint8 t* tx buf, uint8 t tx len, error t error)
{
atomic {
call CSN.set ();
if (tx buf = &(m_ frame—>header—>length)){
call COSN.clr ();
call TXFIFO.write( m frame—>header—>mhr, m frame—>headerLen );
return;
} else if (tx_buf = m _frame—>header—>mhr) {
call OSN.clr ();
call TXFIFO.write( m frame—>payload, m frame—>payloadLen );
return;
}
}
m_state = S_READY TX;
signal CC2420Tx.loadTXFIFODone(m frame, error);
}

Firstly, we must check if the radio is in the correct state; if so, it is switched in loading state.

Afterward the TXFIFO is flushed and the length of the frame is written in transmission buffer(line
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14): the CRC is written by CC2420 that needs two more bytes in FIFO, so the frame we will write,

has to be two bytes longer (line 9). When we finished to write the length, and the writedone()

is signaled, we write the header (line 27) and in the next iteration the payload (line 31). Finally

the state changes in ready to_transfer state and the end of operation is signaled.

4.3.1.2 Send

Loaded the TXFIFO, we choose the sending mode: we can use Radio Tx.transmit(), transmit-
ting withouCCA, Radio Tz.transmitUnslottedCsmaCa(), transmittig with a single CCA or Ra-
dio Tx.transmitSlottedCsmaCa(). Chosen one of that, with all implications, send command can

be called.

/) chips/cc2420 tknl54/CC2420TransmitP
async command error t CC2420Tx.send{bool cca){
cc2420 _status_t status;
bool congestion = TRUE;
atomic {
if (m_state != S READY TX)
return EOFF;
#ifdef IEEE154_ SECURITY_ ENABLED

if ((m_frame—>header—>mhr[0] & FCl_SECURITY_ ENABLED)? TRUE :

securityCheck ();
}
#Hendif
call CSN.set ();
call CSN.clr ();
status = cca 7?7 call STXONCCA.strobe () : call STXON.strobe ();
if ( !{ status & CC2420 STATUS TX ACTIVE ) ) {
status = call SNOP.strobe ();
if ( status & CC2420 STATUS TX ACTIVE ) {
congestion = FALSE;

}
call CSN.set ();

if (congestion)
return FAIL;
else {
m_state = S_SFD;
#ifdef IEEE154 SECURITY ENABLED
ALREADY CHIPERED — 0;
#endif
call BackoffAlarm.start (CC2420_ ABORT_PERIOD ) ;
return SUCCESS;
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If the radio is in the correct state (line 7), we look in the frame to see if it needs authentica-
tion/encryption (lines 11 - 13). We focus on this point in the next section. Then we effectively
send the packet with the strobe command and we read the status byte. If we have no errors, the
radio changes to the next state (line 34) and the ALREADY CIPHERED bit is reset (it means
that the next packet, eventually, is not already ciphered) or we assume that the channel is busy
and we try to retransmit (if a encrypted packet has to be retransmit, we do not encrypt it again

because it is already encrypted).

4.3.2 Receiving packets

Receiving packets operation consists on reading the receiving buffer RXFIFO of CC2420: it is
both writeable and readable. Writing to the RXFIFO should however only be done for debugging
or for using the RXFIFO for security operations (decryption/authentication). This register can
be used with CC2420Fifo interface that provides the following read routines:

async command cc2420 _status_t beginRead( ) is used for reading from FIFOs.

async command error_t continueRead( ) is used for reading from FIFOs. without sending address
bytes.

async event void readDone() it is an event that signals the end of reading operation.
e @ uint8 t* COUNT _NOK(length) data : A pointer to the receive buffer.

e @ uint8 t length : Length number of bytes read.

The beginRead() routine starts reading from the FIFO, continueRead() continues reading from
the FIFO without having to send the address byte again. Event readDone() will be signaled upon
completion of both routines. Now we see how they are implemented.

// chips/cc2420_tn154/CC24{20ReceiveP
void receive () {
#ifdef IEEE154 SECURITY ENABLED
header parsing function ();
F#Hendif
call CSN.clr ();
call RXFIFO.beginRead( &({ieeel54 header_t+*) m_rxFramePtr—>header)—>length, 1 );
}

Receive process starts with the receive(): first operation that must be done, is understand if the
packet we will read in the buffer, is secured or not. This is the job of header parsing function()
(line 5) that will be analyzed in the next section. So it can start reading from the RXFIFO: the
first read tells us the length byte, then it is signaled the readDone().

async event void RXFIFO.readDone( uint8 t* rx_buf, uint8 t rx len,

error t error ) {
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uint8 t#* buf;
atomic {
buf = (uint8 tx*) &((ieeel54 header t=*) m rxFramePtr—>header)—>length;
rxFrameLength = ((ieeel54 header t*) m_rxFramePtr—>header)—>length;
switch( m_state ) {

case S_RX LENGTH:

m_state = S RX FCF;

m_mhrLen2 = 0;

if ( rxFrameLength + 1 > m_bytes_left ) {

// Length of this packet is bigger than the RXFIFO, flush it out.

flush ();
} else {
if ( !tcall FIFO.get() && !call FIFOP.get() ) {
//m_bytes left —= rzFrameLength + 1;
flush ();

//if (reFrameLength <= MAC PACKET SIZE) {
if (rxFrameLength <= (sizeof(ieeel54 header t) — 1 + TOSH DATA LENGTH + 2)){
if (rxFrameLength > 0) {
if (rxFrameLength > SACK HEADER LENGTH) {
// This packet has an FCF byte plus at least one more byte to read
call RXFIFO.continueRead (buf + 1,
SACK HEADER LENGTH)
break;
} else {
// This is really a bad packet, skip FCF and get it out of here.
flush ();
//m_state = S RX PAYLOAD;
//call RXFIFO. continueRead(buf + 1, rzFrameLength);

}
} else {
// Length == 0; start reading the nezt packet
flush ();
e atomic receivingPacket = FALSE;*/
Jx call CSN.set();*/
/' call SpiResource.release ();*/
e waitForNextPacket ();x/
¥
} else {
// Length is too large; we have to flush the entire Rz FIFO
flush ();
¥
}
break;

case S_RX_FCF:
if (call FrameUtility . getAddressingFieldsLength(buf[1], buf[2], &m_mhrLen)
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52 != SUCCESS || m_ mhrLen > rxFrameLength — 2) {

53 // header size incorrect

54 flush ();

55 break;

56 } else if (m_mhrLen > SACK HEADER LENGTH) {

57 m_state = S_RX HEADER;

58 //Reading if the frame is secured

59 #ifdef IEEE154 SECURITY ENABLED

60 if (buf[1] & FC1_SECURITY ENABLED) {

61 m_state = S_RX_SECURITY;

62 //<C.C.> I have to read one more byte to know how tht ASH in long.
63 call RXFIFO.continueRead (buf + 1 4+ SACK HEADER LENGTH,
64 m_mhrLen — SACK HEADER LENGTH +1);

65 break;

66 1t

67 #endif

68 call RXFIFO.continueRead (buf + 1 4+ SACK HEADER LENGTH,

69 m_mhrLen — SACK HEADER LENGTH);

70 break;

71 } else {

72

73 // complete header has been read: fall through

74 3

75 // fall through

76 case S_RX_ HEADER:

77 // JH: we are either using HV ACKs (normal receive mode) or don’t ACK any
78 // packets (promiscuous mode)

79 // Didn’t flip CSn, we’re ok to continue reading

80 if ((rxFrameLength — (m_ mhrLen+m mhrLen2) — 2) >

81 TOSH DATA LENGTH) // 2 for CRC

82 flush ();

83 else {

84 m_state = S_RX_ PAYLOAD;

85 call RXFIFO.continueRead ((uint8 t*) m rxFramePtr—>data,
86 rxFrameLength — (m_ mhrLent+m mhrLen2 ));

87 }

88 break;

89

90 case S RX SECURITY:

91 if (call FrameUtility.getSecurityHeaderLength (buf[1],

92 buf[m mhrLen + 1], &m mhrLen2)!= SUCCESS ||

93 (m_mhrLen + m_mhrLen2) > rxFrameLength — 2) {

94 // header size incorrect

95 flush ();

96 break;

97 }

98

99 m_state =5_RX_ HEADER;

100 call RXFIFO.continueRead (buf + 2 4 m_mhrLen, m_mhrLen2 — 1);
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101 break;

102

103 case S RX PAYLOAD:

104 call CSN.set ();

105 if (!m_missed packets) {

106 // Release the SPI only if there are no more frames to download
107 call SpiResource.release ();

108 1

109 if ( m_timestamp_size ) {

110 if ( rxFrameLength > 10 ) {

111 memcpy(&m_timestamp, &m_timestamp queue|[ m _timestamp head |,
112 sizeof(ieeel54 reftime t) );

113 m_timestampValid = TRUE;

114 m_timestamp head = ( m_timestamp head + 1 ) %

115 TIMESTAMP _QUEUE_SIZE;

116 m_timestamp _size ——;

117 }

118 } else {

119/« metadata—>time = Oxffff;*/

120 m_timestampValid = FALSE;

121 1

122

123 // We may have received an ack that should be processed by Transmit
124 // buf[reFrameLength] >> 7 checks the CRC

125 if ( ( m_rxFramePtr—>data| rxFrameLength — (m_mhrLentm_ mhrLen2) — 1 | >> 7 ) && rx_buf ) {
126 uint8 _t type = ((ieeel54 header_ t+*) m_rxFramePtr—>header)—>mhr[0] & 0x07;
127 /x signal CC2420Receive. receive( type, m_p_rz_buf );x/

128 signal CC2420Receive.receive( type, m _ rxFramePtr );

129/« if ( type == IEEE154, TYPE DATA ) {x/

130 if ( (type !— IEEEI54 TYPE ACK ||

131 call CC2420Config.isPromiscuousModeEnabled ())

132 && !'m_stop) {

133 post receiveDone _task ();

134 return;

135 1

136 }

137 waitForNextPacket ();

138 Dbreak;

139 default:

140 atomic receivingPacket = FALSE;
141  call CSN.set ();

142  call SpiResource.release ();

143  if (m_stop){

144 continueStop ();
145 return;

146 3

147 break;

148}

149}
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}

The first iteration of the readDone() (lines 19 - 57), after consistency checks about frame length,
is reading Frame Control Fields and Sequence Number (3 bytes) of the MHR: they are read with
continueRead() at line 37; then, if the packet has the addressing fields (line 64) we have two
options: if Security Enabled flag is set, we will have to receive the the Auxiliary Security Header,
so we will read all addressing fields and the first byte of Auxiliary Security Header(line 77); if
Security Enabled is not set, we will not have the Auxiliary Security Header, so we will read only
addressing fields. Assume that packet was ciphered, the next step is reading the security header
in S RX_ SECURITY state (line 109 - 126): we discover how long is the Auxiliary Security
Header (line 117) and read the same numbers of byte minus one from RXFIFO because the
Security Control Field has been already read. Finally (line 128 - 162) , we receive payload and,
if we receive an acknowledgment, the transmission process ends, if not, post receiveDone_ task()

that complete the receiving procedure.

4.4 Security Procedures

4.4.1 Ciphering

Ciphering/authentication process is done by securitycheck() as we saw in the previous section.
This function sets all the parameters CC2420 needs to secure a packet recovering them from the
Auxiliary Security Header and the internal security structure or, in this case, statically.

// chips/CC2420 tkn154/CC2420TransmitP.nc
void securityCheck () {
uint8 _t mode; //Variable that describe cipher/auth mode
bool key; // "Ram" position of the Key
uint8 t micLength; //Auth parameter
uintl6 t currentStatus;
cc2420 _status_t status;
uint8 _t AddLen; //Addressing field dimension
uint8 t SecLen; //Security field dimension
uint8 t SecLevel = 0; //Security Control Field
uint8 t start CipAuth =0; //Position where Authentication/Ciphering start
i f (SECURITYLOCK — 1){
post waitTask ();

telse {

//Will perform encryption lock registers
atomic SECURITYLOCK = 1;
call FrameUtility.getAddressingFieldsLength (m frame—>header—>mhr[MHR INDEX FCl1],
m_frame—>header —>mhr [ MHR_INDEX_ FC2],& AddLen );
call FrameUtility.getSecurityHeaderLength (m_frame—>header —>mhr [ MHR_INDEX FC1],
m_frame—>header—>mhr[AddLen], &SecLen);
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SecLevel

(m_frame—>header—>mhr[AddLen|

if (SecLevel == NO_ SEC){

mode = CC2420 NO_ SEC;
micLength = MICLENGTH4;

}else if (SecLevel == CBC_MAC 4){

mode = CC2420_CBC_MAC;
micLength = MICLENGTH4;

}else if (SecLevel = CBC MAC 8){

mode = CC2420_CBC_MAC;
micLength = MICLENGTHS;

}else if (SecLevel == CBC_MAC_16){

mode = CC2420 CBC_MAC;
micLength = MICLENGTHI6;

}else if (SecLevel == CIR){

mode = CC2420_CTR;
micLength = MICLENGTH4;

}else if (SecLevel == CCM 4){

mode = CC2420 CCM;
micLength = MICLENGTH4;

}else if (SecLevel = CCM_8){

mode = CC2420_CCM;
micLength = MICLENGTHS;

}else if (SecLevel = CCM 16){

telse{

}

key = KEYREGO;

mode = CC2420 CCM;
micLength = MICLENGTHI16;

//something is wrong here

return;

& SEC CNTL LEVEL);

// Using the KEYO RAM location for key

start _CipAuth = AddLen + SecLen; //Payload Position
CTR_SECCTRLO = ((mode << CC2420_SECCTRLO_SEC_MODE) |
((micLength —2)/2 << (2420 SECCTRLO_SEC M) |
(key << (2420 SECCTRLO SEC TXKEYSEL) |
(1 << CC2420 SECCTRLO_SEC_CBC_HEAD));
CTR_SECCTRL1 = (start_CipAuth << CC2420_ SECCTRL1_SEC_TXL);
//WRITE KEY0 REGISTER

call CC2420Keys.setKey (key ,mykey);
//WRITE TXNONCE REGISTER
nonce building function (AddLen,micLength);
call CSN.clr ();
call TXNONCE. write (RAM_START, nonceValue, BITDIMI16);
call CSN.set ();
//WRITE SECCTRLO REGISTER
call CSN.clr ();
call SECCTRLO. write (CTR SECCTRLO);
call CSN.set ();
//WRITE SECCTRL1 REGISTER
call CSN.clr ();
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call SECCTRLL. write (CTR_SECCTRLI);

call CSN.set ();

call CSN.clr ();

status = call SNOP.strobe ();

call CSN.set ();

while (status & CC2420 STATUS_ENC_BUSY){
uwait (1%x1024);
call OSN.clr ();
status = call SNOP.strobe ();
call CSN.set ();

}

call CSN.clr ();

call STXENC.strobe ();

call CSN.set ();

call CSN.clr ();

call SECCTRLO.read(&currentStatus);

call CSN.set ();

call CSN.clr ();

call SECCTRLO. write (currentStatus && 7 (3 << CC2420 SECCTRLO SEC MODE) );

call CSN.set ();

atomic SECURITYLOCK = 0;

ALREADY_ CHIPERED = 1;

}
}

The first operation for setting security parameters is locking the registers: we wait until they
are idle (line 14). After recovering the Auxiliary Security Header position from the frame (lines
20 - 21, see Appendix A for utility functions code), working mode and micLength are set from
Security Control Field (lines 26 - 53). Then CTR_SECTRLO is prepared for writing in SECC-
NTLO register of CC2420 and in the same way SECCTRLI (lines 75 - 83) : first contains working
mode, key used, MIC length and other options; second the position where ciphering/authentica-
tion starts. (see Tables 3.4 and 3.5 in chapter 3.2.3 for detail). Afterwards CC24{20Keys.setkey()
command puts the static key in the appropriate register (see Appendix A for details), and
nonce_ building _function() (line 73) builds the nonce in according of CC2420 specification. If
the security module is idle (lines 90 - 100), we can encrypt/authenticate the frame in TXFIFO.
Finally, after clean up (lines 107 - 114), we unlock the registers and enabled the already ciphered
flag: if the frame is not sent for any reason, it does not need another encryption/authentication.
When we send a encrypted frame, receiver is slower because it has more bytes to read (authenti-
cation) or it has to performs deciphering(encryption). So sender has to wait a little longer that
receiver sends an acknowledgment to it. This can be done with the following code:

// chips/cc2420_tkn154/CC2420TransmitP
#ifdef IEEE154_ SECURITY_ ENABLED
if ((m_frame—>header—>mhr [MHR INDEX FCl| & FC1_ SECURITY ENABLED))
call BackoffAlarm.start (200);
else
call BackoffAlarm.start (100);
#else
call BackoffAlarm.start (100);
#Hendif
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4.4.2 Deciphering

Deciphering/authentication is performed in two steps: initially we access the RAM to discover if
the received packet is secured and so the real decipher procedure.

// chips/cc2420_ tkn154/CC24{20ReceiveP.
void header parsing function ()
{

uint8 t temp — O0;
ieeel54 _header_t header;
atomic pos = (packetLength 4 pos) % RXFIFO_SIZE;
if (pos + (LENDIM + FCDIM) > RXFIFO_SIZE){
temp = RXFIFO SIZE — pos;
call OSN.clr ();
atomic call RXFIFO_RAM.read(pos,(uint8 tx)&header, temp);
call CSN.set ();
call CSN.clr ();
atomic call RXFIFO RAM.read (RAM START, (uint8 tx)&header+temp,
(LENDIM -+ FCDIM)—temp ) ;
call OSN.set ();

telse{
call CSN.clr ();
atomic call RXFIFO RAM.read (pos,(uint8 tx)&header, LENDIM + FCDIM );
call COSN.set ();
¥
if( header.mhr[ MHR_INDEX FCl| & FC1_SECURITY_ ENABLED ) {
dec();
return;
}else {
packetLength = header.length +1;
return;
}
}

Header _parsing _function() accesses to the RAM and reads how the packet is long and Frame
Control Field. Dimension of packet is important because RAM is a circular buffer, so we have
to know the replenish status of the RAM and the offset of the next packet; Frame Control Field
tells us if the Security Enabled bit is set: in that case, dec() is called and deciphering operation
is started.

// chips/cc240 tkn154/CC2420ReceiveP .nc

void dec(){

uint8 _t key =0 ,mode = 0;

uint8 _t AddLen = 0; //Addressing field dimension

0; //Security field dimension

uint8 t SecLevel = 0; //Security Control Field

uint8 t start CipAuth =0; //Position where Authentication/Ciphering start

uint8 _t SecLen

uint8_t temp = 0;

ieeel54 _header_t header;

cc2420 _status_t status;

ieeel54 address t *srcAddress = NULL;
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if (SECURITYLOCK — 1){
post waitTask ();
return;

telse{

atomic SECURITYLOCK = 1;

if (pos + (LENDIM + FCDIM) > RXFIFO_SIZE){
temp = RXFIFO SIZE — pos;
call OSN.clr ();

atomic call RXFIFO_RAM.read{pos,(uint8 tx)&header, temp);

call CSN.set ();
call CSN.clr ();

atomic call RXFIFO RAM.read (RAM START, (uint8 tx)&header+temp,

(LENDIM + FCDIM)—temp ) ;
call OSN.set ();

telse{
call CSN.clr ();
atomic call RXFIFO RAM.read (pos,(uint8 tx)&header,
LENDIM + FCDIM ) ;
call COSN.set ();
}

call FrameUtility.getAddressingFieldsLength (header.mhr[MHR INDEX FC1],

header .mhr[MHR INDEX FC2],&AddLen);
// NOW I read FROM THE START to the first

byte

of Awuziliary Security Header

if (pos + ( AddLen + LENDIM + FCDIM) > RXFIFO_SIZE){

temp = RXFIFO_SIZE — pos;
call CSN.clr ();

atomic call RXFIFO_RAM.read(pos,(uint8 tx)&header, temp);

call OSN.set ();
call OSN.clr ();

atomic call RXFIFO RAM.read (RAM START,(uint8 tx)&header+temp,

( AddLen + LENDIM + FCDIM) —temp);
call CSN.set ();

telse{
call COSN.clr ();
atomic call RXFIFO RAM.read (pos,(uint8 t*)&header, ( AddLen + LENDIM + FCDIM));
call CSN.set ();

}

call FrameUtility.getSecurityHeaderLength (header.mhr[ MHR_INDEX FC1],

header .mhr[AddLen], &SecLen);

//Now i read all until the end of Awuziliary Security Header
if (pos + ( AddLen + LENDIM + FCDIM + SecLen) > RXFIFO SIZE){

temp = RXFIFO_SIZE — pos;
call CSN.clr ();

atomic call RXFIFO RAM.read (pos,(uint8 t*)&header, temp);

call COSN.set ();
call OSN.clr ();

atomic call RXFIFO_RAM.read (RAM_START, (uint8 t*)&headerttemp,
( AddLen + LENDIM + FCDIM +SecLen ) —temp);

call CSN.set ();
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lelse{
call COSN.clr ();
atomic call RXFIFO RAM.read (pos,(uint8 tx)&header,
( AddLen + LENDIM + FCDIM + SecLen));
call CSN.set ();
}
SecLevel = (header.mhr[AddLen] & SEC CNTL LEVEL);
if (SecLevel == NO_ SEC){
mode = CC2420_NO_SEC;
micLength = MICLENGTH4;
}else if (SecLevel == CBC_MAC 4){
mode = CC2420 CBC_MAC;
micLength = MICLENGTH4;
}else if (SecLevel = CBC MAC 8){
mode = CC2420_CBC_MAC;
micLength = MICLENGTHS;
}else if (SecLevel = CBC MAC 16){
mode = CC2420 CBC_ MAC;
micLength = MICLENGTHI6;
}else if (SecLevel = CTR){
mode = CC2420_CTR;
micLength = MICLENGTH4;
}else if (SecLevel == CCM 4){
mode = CC2420 CCM;
micLength = MICLENGTH4;
}else if (SecLevel =— CCM_8){
mode = CC2420_CCM;
micLength = MICLENGTHS;
}else if (SecLevel = CCM 16){
mode = CC2420 CCM;
micLength = MICLENGTHI16;
telse{
//something is wrong here
return;
}
key = KEYREGO; // Using the KEYO RAM location for key
start _ CipAuth = AddLen + SecLen;
key = KEYREGO; //Position of the Key
call CC2420Keys.setKey (key ,mykey);
if (SecLevel == CBC MAC 4 || SecLevel — CBC MAC 8 || SecLevel = CBC_MAC 16){

nonceValue [FLAGS NONCE]| |= (micLength -2 ) / 2 << CBCMAC NONCE FLAGS;
nonceValue [FLAGS_NONCE|] |= 1 << CBCADATA NONCE FLAGS;
}
else {
nonceValue [FLAGS NONCE] |= 0 << CBCMAC NONCE FLAGS;
nonceValue [FLAGS NONCE] | 0 << CBCADATA NONCE FLAGS;
}

*{(nxle uint64_ tx*) (&(nonceValue[SOURCE_ CLIENT NONCE]))) =
srcAddress —>extendedAddress;
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nonceValue [FLAGS NONCE] |= 2 << L _NONCE FLAGS;
nonceValue [COUNTER NONCE] = header .mhr[AddLen + 1];
nonceValue [COUNTER NONCE + 1] = header.mhr[AddLen + 2];
nonceValue [COUNTER_NONCE + 2] = header.mhr[AddLen + 3];
nonceValue [COUNTER_NONCE + 3] = header.mhr[AddLen + 4];
nonceValue [KSC_NONCE] = SecLevel;
nonceValue [BLOCK COUNTER NONCE| = 0;
nonceValue [BLOCK COUNTER NONCE + 1] = 1;

call CSN.clr ();

atomic call RXNONCE. write (RAM_START, nonceValue, BITDIMI16);
call CSN.set ();

if (mode =— CO2420 CBC MAC || mode == CC2420 COM){

CTR_SECCTRLO — ((mode << (C2420 SECCTRLO SEC_ MODE) |

((micLength —2)/2 << CC2420_ SECCTRLO_SEC_M) |

(key << CC2420 SECCTRLO_SEC RXKEYSEL) |
RESET BIT1 << (2420 SECCTRLO SEC_CBC_HEAD) |
RESET BIT1 << CC2420 SECCOTRLO RXFIFO PROTECTION))

—_~ o~

call OSN.clr ();
atomic call SECCTRLO. write (CTR_SECCTRLO);
call CSN.set ();

}else if (mode = CC2420_ CTR )

{
CTR_SECCTRLO = ((mode << CC2420 SECCTRLO_SEC_MODE) |
(RESET_BIT1 << CC2420 SECCTRLO_SEC_M) |
(key << CC2420 SECCTRLO_SEC_RXKEYSEL) |
(RESET_BIT1 << C(2420 SECCTRLO_SEC. CBC_HEAD) |
(RESET_BIT1 << CC2420 SECCTRLO RXFIFO PROTECTION))
call OSN.clr ();
atomic call SECCTRLO. write (CTR_SECCTRLO);
calll CSN.set ();
}

CTR_SECCTRLI = (start CipAuth << CC2420 SECCTRL1 SEC RXL);
call CSN.clr ();
atomic call SECCTRLL. write (CTR_SECCTRLL);
call CSN.set ();
call CSN.clr ();
atomic call SRXDEC. strobe ();
call CSN.set ();
packetLength = header.length + 1;
call CSN.clr ();
status = call SNOP.strobe ();
call CSN.set ();
while (status & CC2420 STATUS_ENC_BUSY) {
uwait (1x1024);
call CSN.clr ();
status = call SNOP.strobe ();
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call OSN.set ();

}

call CSN.clr ();

atomic call SECCTRLO. write ((RESET_BIT0O << (CC2420 SECCTRLO_SEC_MODE) |
(RESET_BITO << CC2420 SECCTRLO_SEC_M) |
(RESET_BITO << CC2420 SECCTRLO_SEC_RXKEYSEL) |
(RESET BIT1 << (2420 SECCTRLO_SEC_CBC_HEAD) |
(RESET_BIT1 << CC2420 SECCTRLO RXFIFO PROTECTION)) ;

call CSN.set ();

SECURITYLOCK = 0;

return;

}

}

Dec() is very similar as securitycheck():after locking the registers (lines 16 - 19), we read the
security information with RAM access (lines 23 - 83); we set working mode (lines 86 - 111),
decryption key (line 120), nonce ( lines 121 - 144) and security control registers (lines 147 - 179).
Finally SRXDEC.strobe( ) performs decryption and, when security module is idle, SECCTRLO

is cleaned.

4.5 Test Application

Our scenario is made by two motes: a RFD that sends ciphered packets and a FFD that receives
ciphered packets and deciphers them; RFD sends one packet for beacon received. Working mode
is CTR because it is the easiest to verify and the key is static. In figure 4.6 can we see a

simplification the communication paradigm.
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Figure 4.6: Data Exchange

Sender Application

This is the sender application.

#include

"TKN154.h"

#include "app profile.h"

J/#include

"printf.h"

module TestDeviceSenderC

{

uses {
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface

interface

}

Boot;

MCPS DATA;
MLME_RESET;
MLME_SET;

MLME GET;

MLME SCANj;

MLME SYNC;
MLME_BEACON_NOTIFY;
MLME_SYNC_LOSS;

IEEE154Frame as Frame;

IEEE154BeaconFrame as
Leds;
Packet ;

} implementation {

message t m_frame;

uint8 t m_ payloadLen;

uint8_t myVar;

ieeel54 security t mysec;
ieeel54 PANDescriptor t m PANDescriptor;

bool m ledCount;

BeaconFrame;
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bool m isPANDescriptorValid;
bool m sending;
uint8 t u = 0;
uint8_t d = 0;

void startApp ();
task void packetSendTask ();

event void Boot.booted () {

char payload[] = "00_Packet_sent_from_Device";

uint8 t xpayloadRegion;
m_payloadLen = strlen (payload);
payloadRegion = call Packet.getPayload(&m_frame, m_payloadLen);
if (m_ payloadLen <= call Packet.maxPayloadLength ()){
memcpy ( payloadRegion, payload, m payloadLen);
call MLME RESET.request (TRUE, BEACON ENABLED PAN);

}
X
event void MLME RESET. confirm (ieeel54 status t status)
{
if (status = IEEE154_SUCCESS)
startApp ();
X

void startApp ()

{
ieeel54 phyChannelsSupported_t channelMask;
uint8 _t scanDuration = BEACON_ORDER;

m_isPANDescriptorValid = FALSE;

call MLME SET.macShortAddress (TOS NODE ID);
channelMask = ((uint32_t) 1) << RADIO_CHANNEL;
call MLME SET.macAutoRequest (FALSE);

mysec. SecurityLevel=CTR;

mysec.KeyldMode = 0;

call MLME SCAN.request (

PASSIVE SCAN, // ScanType

channelMask , // ScanChannels

scanDuration , // ScanDuration

0x00, // ChannelPage

0, // EnergyDetectListNumEntries
NULL, // EnergyDetectList

0, // PANDescriptorListNumEntries
NULL, // PANDescriptorList

NULL // security
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82 event message t* MLME BEACON NOTIFY.indication (message_ tx* frame)

83 {

84

85 ieeel54 phyCurrentPage t page = call MLME GET.phyCurrentPage ();
86 ieeel54 _macBSN_t beaconSequenceNumber = call BeaconFrame.getBSN(frame);
87 if (beaconSequenceNumber & 1)

88 call Leds.led20n ();

89 else

90 call Leds.led2Off ();

91 if (!m isPANDescriptorValid && call BeaconFrame.parsePANDescriptor (
92 frame , RADIO CHANNEL, page, &m_PANDescriptor) =— SUCCESS) {

93 if (m_PANDescriptor.CoordAddrMode == ADDR_MODE_SHORT ADDRESS &&

94 m_PANDescriptor.CoordPANId — PAN ID &&

95 m_PANDescriptor. CoordAddress.shortAddress =— COORDINATOR ADDRESS) {
96 m_isPANDescriptorValid = TRUE;

97

98

99 }

100 }

101 return frame;

102 1

103

104 event void MLME SCAN. confirm (

105 ieeel54 status t status,

106 uint8 t ScanType,

107 uint8 t ChannelPage,

108 uint32_t UnscannedChannels,

109 uint8_t EnergyDetectListNumEntries ,

110 int8 _t* EnergyDetectList ,

111 uint8 t PANDescriptorListNumEntries ,

112 ieeel54 PANDescriptor t* PANDescriptorList

113 )

114 {

115

116 if (m_ isPANDescriptorValid){

117

118

119 call MIME SET.macCoordShortAddress(m_PANDescriptor.CoordAddress.shortAddress);
120 call MLIME SET.macPANId(m_PANDescriptor.CoordPANId );

121 call MLME SYNC.request(m PANDescriptor.LogicalChannel,

122 m_PANDescriptor. ChannelPage, FALSE);
123 call Frame.setAddressingFields (

124 &m_frame,

125 ADDR_MODE_SHORT ADDRESS, // SrcAddrMode,

126 ADDR_MODE_SHORT ADDRESS, // DstAddrMode,
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127 m_PANDescriptor.CoordPANId, // DstPANId,
128 &m PANDescriptor. CoordAddress, // DstAddr,
129 &mysec // security
130 )

131 post packetSendTask ();

132 } else {

133 startApp ();

137 task void packetSendTask()

138 {

139 if (u+1>09){

140 m_frame.data[l] =’0";

141 u = 0;

142 if (d+1>9) {

143 m_frame.data[0] = ’0;
144 d = o;

145 }else{

146 m_frame.data[0]++;
147 d+-+;}

148 }else{

149 m_frame.data[l]++;

150 u+-+;

151 1

154 printf("My_payload_sent__%s\n" ,(char*) m frame—>data);
155 printfflush ();

156 if (!m sending && m isPANDescriptorValid &&

157 call MCPS DATA.request (

158 &m _frame, // frame,

159 m_payloadLen , // payloadLength ,
160 0, // msduHandle,

161 TX OPTIONS ACK // TzOptions,

162 ) == IEEE154_SUCCESS)

163 m_sending = TRUE;

168 event void MCPS DATA. confirm (

169 message_t *msg,

170 uint8 t msduHandle,

171 ieeel54 status t status,
172 uint32 t timestamp

175 m_sending = FALSE;
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if (status — IEEE154 SUCCESS ){
call Leds.led1Toggle ();

}
post packetSendTask ();

}

event void MLME SYNC LOSS.indication (
ieeel54 status t lossReason,
uint16 _t PANId,
uint8_t LogicalChannel,
uint8 _t ChannelPage,

ieeelb4 security t xsecurity)

startApp ();

event message tx MCPS DATA.indication (message tx frame)

{
// we don’t expect data

return frame;

The sender, after the MLME RESET.confirm(), hears the channel with the MLME SCAN.request()
to understand if there are any coordinators. Then when it discovers a beacon, set the parameters

in the frame and calls the MCPS _DATA .request(). Then when it receives acknowledgment, the
MCPS _DATA.confirm(), toggles also the green led and ends the sending process.

4.5.2 Receiver application
The receiver application is very similar.

#include "TKN154.h"
#include "app profile.h"
##include "printf.h"
module TestCoordReceiverC
{
uses {
interface Boot;
interface MCPS DATA;
interface MLME RESET;
interface MLME START;
interface MLME_SET;
interface MLME GET;
interface IEEE154Frame as Frame;

interface IEEE154TxBeaconPayload;
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}

interface Leds;

implementation {

bool m_ledCount;

char mypayload [50];

event void Boot.booted () {
call MLME RESET.request (TRUE, BEACON_ ENABLED PAN);

event void MLME RESET. confirm (ieeel54 status t

{

event message tx MCPS _DATA.indication

{

if (status !— IEEE154 SUCCESS)

return;

status)

call MLIME SET.macShortAddress (COORDINATOR_ADDRESS) ;

call MLME SET.macAssociationPermit (FALSE);

call MLME START.request (

PAN_ID,
RADIO_CHANNEL,

0,

0,
BEACON_ORDER,
SUPERFRAME_ORDER,
TRUE,

FALSE,

FALSE,

0,

0

)i

uint8 t tempo=0;

uint8_t len = ((ieeelb54 header_t=) frame—>header)—>length & FRAMECTL_ LENGTH MASK;

call Leds.ledl1Toggle ();
for (tempo = 0; tempo < len; tempo++)

// PANId

//
/7
/7
7/
7/
//
/7
/7
//
//

LogicalChannel
ChannelPage ,
StartTime ,
BeaconOrder
SuperframeOrder
PANCoordinator
BatteryLifeEztension
CoordRealignment
CoordRealignSecurity ,

BeaconSecurity

message tx frame
ge_

mypayload [tempo] = (char)frame—>data[tempo |;

printf("My_payload_received: _%s\n",
printfflush ();

for (tempo = 0; tempo < 50; tempo —++)
mypayload[tempo] = 0;

return frame;

mypayload );
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85
86
87
88
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event void MLME START.confirm (ieeel54 status t status) {}

event void MCPS DATA. confirm (

event

event

event

event

void

void

void

void

message_t *msg,
uint8 _t msduHandle,
ieeel54 _status_t status,

uint32 t Timestamp

H

IEEE154TxBeaconPayload . aboutToTransmit () { }

IEEE154TxBeaconPayload.setBeaconPayloadDone (void *beaconPayload,

IEEE154TxBeaconPayload . modifyBeaconPayloadDone (
uint8 t offset , void xbuffer,

IEEE154TxBeaconPayload . beaconTransmitted ()

uint8 t bufferLength)

ieeel54 _macBSN_t beaconSequenceNumber = call MIME GET.macBSN();

if (beaconSequenceNumber & 1)

call

else

call

Leds.led20n ();

Leds.led20Off ();

uint8 _

t length) { }

{13

After MLME reset(), the coordinator starts to send beacons and listens for incoming trans-

mission. When it finds an incoming frame, starts the receiving procedure and, at the very end,

the MCPS data.indication() is signaled and the application prints the payload of the frame the

coordinator receives.

4.5.3 Results

In the figures 4.7 and 4.8 we can see the output of the sender and of the receiver: the payload has a

dynamic part, the initial progressive counter that is incremented before single MCPS _ data.request()

command on the sender, and a fixed part, the remain portion of the payload. Like we see in the

picture, with a little delay, the payload that the senders sends to the coordinator, arrives on they

receiver and the were correctly deciphered.
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= Sender;

Elle Edit View Terminal Tabs Help

laptop:~% java net.tinyos.tools.PrintfClient -comm serial@/dev/ttyUSBO:telos [+]
Thread[Thread-1,5,main]serial@/dev/ttyUsB0:115200: resynchronising
My payload sent: 82 Packet sent from Device
My payload sent: 83 Packet sent from Device
My payleoad sent: 04 Packet sent from Device
My payload sent: 05 Packet sent from Device
My payload sent: 06 Packet sent from Device
My payload sent: 07 Packet sent from Device
My payload sent: 08 Packet sent from Device
My payload sent: 89 Packet sent from Device
My payload sent: 10 Packet sent from Device
My payload sent: 11 Packet sent from Device
My payload sent: 12 Packet sent from Device
My payload sent: 13 Packet sent from Device
My payload sent: 14 Packet sent from Device
My payload sent: 15 Packet sent from Device
My payload sent: 16 Packet sent from Device
My payload sent: 17 Packet sent from Device
My payload sent: 18 Packet sent from Device
My payload sent: 19 Packet sent from Device
My payload sent: 20 Packet sent from Device
My payload sent: 21 Packet sent from Device
My payload sent: 22 Packet sent from Device
My payload sent: 23 Packet sent from Device
My payload sent: 24 Packet sent from Device
My payload sent: 25 Packet sent from Device
My payload sent: 26 Packet sent from Device
E? payload sent: 27 Packet sent from Device

Figure 4.7: Sender Output

Coordinator

Flle Edit Wiew Terminal Tabs Help

laptop:~$ java net.tinyos.tools.PrintfClient -comm serial@/dev/ttyUSBe:telos

Thread[Thread-1,5,main]serial@/dev/ttyUSB0:115200: resynchronising
My payload received: 02 Packet sent from Device

My payload received: 83 Packet sent from Device

My payload received: 84 Packet sent from Device

My payload received: 85 Packet sent from Device

My payload received: 86 Packet sent from Device

My payload received: 87 Packet sent from Device

My payload received: 88 Packet sent from Device

My payload received: 09 Packet sent from Device

My payload received: 10 Packet sent from Device

My payload received: 11 Packet sent from Device

My payload received: 12 Packet sent from Device

My payload received: 13 Packet sent from Device

My payload received: 14 Packet sent from Device

My payload received: 15 Packet sent from Device

My payload received: 16 Packet sent from Device

My payload received: 17 Packet sent from Device

My payload received: 18 Packet sent from Device

My payload received: 19 Packet sent from Device

My payload received: 20 Packet sent from Device

My payload received: 21 Packet sent from Device

My payload received: 22 Packet sent from Device

My payload received: 23 Packet sent from Device

My payload received: 24 Packet sent from Device

My payload received: 25 Packet sent from Device

E? payload received: 26 Packet sent from Device =

[»]

Figure 4.8: Receiver Output

68



Chapter 5

Conclusions

This thesis work started considering IEEE 802.15.4 standard, that describes a radio communi-
cation protocol for wireless Personal Area Networks. It also provides a security suite by means
of which is possible to create encrypted packets, authenticated packets and encrypted and au-
thenticated packets. This functionalities can be integrated with the capabilities of the CC2420
chipset over TelosB motes.The chipset supports the IEEE 802.15.4 standard and features also a
set of options to provide the in-line security operations planned by IEEE 802.15.4. The TelosB
motes is IEEE 802.15.4 compliant and supports the TinyOs environment and NesC language.

The objective of this work was to create a secure communication between two motes. How-
ever, some simplifications were made during the development process: the communication occurs
between a single sender that sends packets to a single coordinator, having care to not overload
the network. In addition, the security parameters are statically set (there is not any key retrieval
procedure) and only the encryption mode (CTR) was implemented and tested.

The implementation was verified by means of a simple application: the sender transmits an
encrypted data frame each time a beacon frame has been received, while the coordinator receives
packets, decrypts them and sends acknowledgments to confirm that the packet was correctly
received. As shown by the application output, the payload of transmitted and received packets
always coincides, proving that encryption/decryption operations work properly.

Further improvements can be added as future work: CBC-MAC and CCM mode can be easily
implemented. Besides, full incoming/outgoing frame security procedures can be implemented
as well, with incoming/outgoing frame key retrieval procedures, in order to cope with frame

reception from multiple senders.
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Appendix A

Utility Functions

A.1 writeSecurityMHR

e Type: Command
e Provided by: Frame
e Implemented where: tknl54/PibP.nc

e Purpose: writing Auxiliary Security Field when message t *frame parameter is not avail-

able.
e uint8 t* mhr: Pointer to MAC Header.
e uint8 t start: Starting offset of Auxiliary Security Header.

e ieeel54 security t *security: Security values.

J/ tkn154/PibP.nc
command error_t Frame.writeSecurityMHR( uint8 t* mhr,
uint8_t start ,
ieeelb4 security t xsecurity)
{
ieeel54 macFrameCounter t macCounter;
ieeel54 security t xtemp = security;
uint8_t offset = start;
if( temp —> SecurityLevel > 7 || temp —> KeyIdMode > 4)
return FAIL; //wrong values
mhr|[ offset] = (temp—> SecurityLevel << SEC CNTIL LEVEL POS);
mhr[offset] |= 0 << SEC_CNTL_RESERVED POS;
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mhr|offset++] |= (temp —>KeyldMode << SEC CNTIL KEYIDMODE POS);

macCounter = call MLME GET.macFrameCounter ();
if ( macCounter >= O0xffffffff)

return IEEE154_COUNTER_ERROR;
*{((nx_uint8 t*) (&(mhr[offset]))) = macCounter;
offset += 4;
call MLME SET.macFrameCounter(++macCounter );
if ( temp—>KeyldMode & SEC CNIL KEYIDMODE ) {

if ((temp—>KeyldMode & SEC_CNTL_KEYIDMODE) — KEYIDMODEL) {

mhr| offset++] = temp—>KeyIndex;

}

else if ( (temp—>SecurityLevel & SEC CNIL KEYIDMODE) — KEYIDMODE2)
mhr|[ offset++] = temp—>KeySource[0];
mhr| offset++] = temp—>KeySource[1];
mhr[offset++] = temp—>KeySource [2];
mhr[offset++] = temp—>KeySource [3];
mhr| offset++] = temp—>KeyIndex;

}

else {

mhr|[ offset++] = temp—>KeySource[0];
mhr[offset++] = temp—>KeySource[1];
mhr[offset++] = temp—>KeySource [2];
mhr| offset++] = temp—>KeySource[3];
mhr| offset++] = temp—>KeySource[4];
mhr|[ offset++] = temp—>KeySource [5];
mhr[offset++] = temp—>KeySource [6];
mhr[offset++] = temp—>KeySource [7];
mhr| offset++] = temp—>KeyIndex;

return SUCCESS;
}

The commands setCbcMac() and setCCM(), provided by CC2420SecurityMode interface, have

the same code of writeSecurityMHR(), excepts of the message t *frame parameter instead of

uint® t* mhr.

A.2 writeHeader

e Type: Command
e Provided by: FrameUtility

e Implemented where: tkn154/PibP.nc
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e Purpose: writing Addressing Fields of Header.

e uint8 t* mhr: Pointer to MHR.

e uint8 t DstAddrMode: Destination Addressing Mode.

e uint8 t DstPANId: Destination PAN Identifier.

e ieceel54 address t* DstAddr: Destination IEEE extended address.
e uint8 t SrcAddrMode: Source Addressing Mode.

e uint8 t SrcPANId: Source PAN Identifier.

e const ieeel54 address t* SrcAddr: Source IEEE extended address.

e bool PANIdCompression: PAN Id compression flag

J/ tkn154/PibP.nc
async command uint8 t FrameUtility . writeHeader (
uint8 _t* mhr,
uint8 t DstAddrMode,
uintl6 t DstPANId,
ieeel54 address_t* DstAddr,
uint8 _t SrcAddrMode,
uintl6 _t SrcPANId,
const ieeel54 address tx* SrcAddr,
bool PANIDCompression

)

{
uint8 t offset = MHR_INDEX ADDRESS;

if (DstAddrMode =— ADDR_MODE SHORT ADDRESS || DstAddrMode = ADDR_MODE EXTENDED ADDRESS){
*((nxle uintl6é t=) &mhr[offset]) = DstPANId;
offset += 2;
if (DstAddrMode = ADDR_MODE_SHORT ADDRESS) {
*{(nxle uintl6_t=*) &mhr[offset]) = DstAddr—>shortAddress;
offset += 2;
} else {
call FrameUtility .convertToLE(&mhr| offset], &DstAddr—>extendedAddress);
offset += 8;

}

}

if (SrcAddrMode = ADDR_MODE SHORT ADDRESS || SrcAddrMode = ADDR_MODE EXTENDED ADDRESS){
if (DstPANId != SrcPANId || !PANIDCompression){

*{(nxle uintl6é t=) &mhr[offset]) = SrcPANId;
offset += 2;

}
if (SrcAddrMode — ADDR, MODE SHORT ADDRESS){
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}

*((nxle uintl6 t=x) &mhr[offset]) = SrcAddr—>shortAddress;
offset += 2;
} else {
call FrameUtility .convertToLE(&mhr[offset], &SrcAddr—>extendedAddress);
offset +—= 8;

¥

return offset;

A.3 getAddressingFieldsLength

/7

Type: Command

Provided by: FrameUtility

Implemented where: tkn154/PibP.nc

Purpose: Count how long is Addressing Fileds

uint8 ¢t fcfl: First Byte of Frame Control Field.

uint8 t fcf2: Second Byte of Frame Control Field.

uint8 t *len: Length of Header (except of Auxiliary Security Header, if present)

tkn154/PibP.nc

async command error_t FrameUtility.getAddressingFieldsLength (uint8 t fcfl
uint8 _t fcf2, uint8 t xlen)

{

uint8 t idCompression;

uint8 t offset = MHR INDEX ADDRESS;
idCompression = (fcfl & FC1_PAN_ID_COMPRESSION) ;
if (fcf2 & 0x08){

offset += 4;

if (fcf2 & 0x04)

¥

offset += 6;

if (fof2 & 0x80){

*len

}

offset += 2;
if (!idCompression)
offset += 2;
if (fcf2 & 0x40)
offset += 6;

= offset;
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21 return SUCCESS;
22 1

A.4 getSecurityHeaderLength

e Provided by: FrameUtility

e Implemented where: tkn154/PibP.nc

e Purpose: Count how long is Auxiliary Security Header
e uint8 t fcfl: First Byte of Frame Control Field.

e uint8 t SecurityControl: SecurityControl Field.

e uint8 t *len: Length of Auxiliary Security Header.

1 // tkn154/PibP.nc

2 async command error t FrameUtility.getSecurityHeaderLength (uint8 t fcfl,
3 uint8 t SecurityControl, uint8 t xlen)

4

5 uint8_t offset=0;

6 if (fcfl & FC1_SECURITY_ ENABLED) {

7 offset +=5;

8 if (SecurityControl & AUX KEYID) {

9 if ((SecurityControl & AUX KEYID) — AUX KEYID1) {
10 offset +=1;

11 3

12 else if ( (SecurityControl & AUX KEYID) — AUX KEYID2) {
13 offset —+=5;

14 }

15 else {

16 offset4+=9;

17 1

18 3

19

20 }

21 xlen = offset;

22 return SUCCESS;

23}

A.5 nonce_ building function

e Provided by: —
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Implemented where: chips/cc2420_tkn154/CC2420TransmitP

Purpose: Fill the TXNONCE with correct values.

uint8 t stat: Offset where Auxiliary Security Header start.

uint8 t Auth: Authentication option.

// chips/cc2420\ thkn154/CC2420TransmitP

void nonce building function(uint8 t start, uint8 t auth)
{

uint8 _t SecLevel = m_frame—>header—>mhr[start |;

ieeel54 address_t srcAddress;

if (SecLevel == CBC_MAC 4 || SecLevel = CBC_MAC 8 || SecLevel = CBC_MAC_16){

nonceValue [FLAGS NONCE| |= auth << CBCMAC_ NONCE FLAGS;
nonceValue [FLAGS NONCE] |= 1 << CBCADATA NONCE FLAGS;
}

else {
nonceValue [FLAGS_NONCE] |= 0 << CBCMAC_NONCE_ FLAGS;
nonceValue [FLAGS NONCE] |= 0 << CBCADATA NONCE FLAGS;

}

srcAddress.extendedAddress = call GetLocalExtendedAddress.get ();
*{(nxle_uint64_ tx*) (&(nonceValue[SOURCE CLIENT NONCE])))=srcAddress
nonceValue [FLAGS_NONCE] |= 2 << L_NONCE_ FLAGS;

nonceValue [COUNTER_NONCE] = m_frame—>header—>mhr[start + 1];
nonceValue [COUNTER NONCE + 1] = m frame—>header—mhr[start + 2];
nonceValue [COUNTER NONCE + 2] = m frame—>header—mhr[start + 3];
nonceValue [COUNTER_NONCE + 3] = m_frame—>header—>mhr[start + 4];
nonceValue [KSC_NONCE| = SecLevel;

nonceValue [BLOCK_COUNTER_NONCE| = 0;
nonceValue [BLOCK COUNTER NONCE + 1] = 1;

}

A.6 setKey

Provided by: CC2420Keys

Implemented where: chips/cc2420_tkn154/CC2420ControlP

Purpose: Set the Key in one Key Register of CC2420

uint8 t keyNo: Index of the register

uint8 t* key: Key.
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// chips/cc2420\ tknl154/CC2420ControlP

async command error t CC2420Keys.setKey (uint8 t keyNo,

{

uint8_t *currentKey = key;

bool currentKeyNo = keyNo;

if (currentKey =— NULL ||
return FAIL;

}

if (currentKeyNo) {
call CSN.clr ();
call KEY1. write (0,
call OSN.set ();

} else {
call OSN.clr ();
call KEY0.write (0,
call CSN.set ();

signal CC2420Keys.setKeyDone(currentKeyNo ,

return SUCCESS;

keyNo > 1) {

currentKey ,

currentKey ,

16);

16);

76

uint8 tx key)

currentKey );



© 00 N D U s W N =

e e e e e =
© W NS U e W NN = O

Appendix B

Security Structures

B.1

/7
#define

#define
#define
#define
#define
#define
#define
#define
#define

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

Types Definitions

thn154/TKN154. h

MAX MAC KEY TABLE ENTRIES 16
MAX MAC DEVICE TABLE ENTRIES 16
MAX MAC SECURITY LEVEL TABLE ENTRIES 16
MAX MAC KEY_ID_LOOKUP_LIST ENTRIES 16
MAX MAC_DEVICE_LIST ENTRIES 16
MAX MAC_KEY_ USAGE_LIST ENTRIES 16
MAX DEVICE TABLE ENTRIES 16
MAX MAC SECURITY TABLE ENTRIES 16
MAX OCTETS 8
uint8 ieeel54 macKeyTableEntries_t;

uint8

uint8

_t
t
%
uint8 t
uint8 _t
uint8 _t
uint64_t
uintl6 ¢
uint8 t

uint8 _t

uint8 _t

uintlé t=*

t
uint8 t
uint8 t
bool
bool
uint8 ¢

ieeel54 macDeviceTableEntries t;
ieeel54 macSecurityLevelTableEntries t;
ieeel54 macAutoRequestSecurityLevel t;
ieeel54 macAutoRequestKeyIdMode t;
ieeel54 _macAutoRequestKeyIndex t;
ieeel54 macPANCoordExtendedAddress t;
ieee1l54 macPANCoordShortAddress t;
ieeel54 KeyldLookupListEntries t;
ieeel54 _KeyDeviceListEntries _t;

ieeel54 KeyUsageListEntries_t;
ieeel54_Key t;

ieeel54 FrameType t;

ieeel54 CommandFrameldentifier t;
ieeel54 DeviceDescriptorHandle t;
ieeel54 UniqueDevice_t;

ieeel54 Blacklisted _t;

ieeel54 SecurityMinimum t;
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

typedef uint8 t ieeel54 DeviceOverrideSecurityMinimum ¢t

typedef uint64 t ieeel54 ExtAddress t;

typedef bool ieeel54 Exempt t;

typedef uint8_t ieeel54_LookUpDataSize_t;

typedef uint8 _tx ieeel54 _LookUpData_t;

typedef uint32_ ieeel54 _macFrameCounter_t;
typedef uint8 t ieeel54 macAutoRequestKeySource t;
typedef uint8 t ieeel54 macDefaultKeySource t;
typedef struct ieeel54 KeyUsageDescriptor_ t {

ieeel54_FrameType_t xframetype;

ieecel54 CommandFrameldentifier t commandframeidentifier;

} ieeel54 KeyUsageDescriptor t;

typedef struct ieeel54 KeyldLookupDescriptor t {

ieeel54 LookUpDataSize_t lookupdatasize;

ieeel54 LookUpData t lookupdata;
} ieeel54 KeyldLookupDescriptor t;

typedef struct ieeel54 KeyDeviceDescriptor_ t {

uint8_t devicedescriptorhandle;

ieeel54 _UniqueDevice_t uniquedevice;

ieeelb54 Blacklisted t blackListed;
} ieeel54 KeyDeviceDescriptor t;

typedef struct ieeel54 KeyDescriptor _t {

ieeel54 KeyldLookupDescriptor_t keyidlookupdescriptor

[MAX MAC KEY ID LOOKUP LIST ENTRIES];

ieeel54 KeyDeviceDescriptor t keydevicelist [MAX MAC DEVICE LIST ENTRIES];
ieeel54 KeyUsageDescriptor t keyusagelist [MAX MAC KEY USAGE LIST ENTRIES];

ieeel54_Key_ t key;
} ieeel54 KeyDescriptor t;

typedef struct ieeel54 macKeyTable t {

ieeel54 KeyDescriptor t keydescriptor [MAX MAC KEY TABLE ENTRIES];
bool valid [MAX_MAC_KEY_ TABLE_ENTRIES] ;

} ieeel54 macKeyTable t;

typedef struct {
ieeel54 macPANId t panid;

ieeel54 address t address;

ieeel54 _macFrameCounter_t framecounter;

bool Exempt;
} ieeel54 DeviceDescriptor t;

typedef struct {

ieeel54 DeviceDescriptor _t devicedescriptor [MAX MAC_ DEVICE TABLE ENTRIES];
bool valid [MAX_ MAC_DEVICE TABLE ENTRIES] ;

} ieeel54 macDeviceTable t;
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79
80 typedef struct {

81 ieeel54 FrameType t frametype;

82 ieeel54 _ CommandFrameldentifier_t commandframeidentifier;

83 ieeel54 SecurityMinimum_t securityminimum;

84 ieeel54 DeviceOverrideSecurityMinimum_t deviceoverridesecurity ;

85 } ieeel54 SecurityDescriptor t;

86

87 typedef struct {

88 ieeel54 SecurityDescriptor _t securitydescriptor [MAX MAC SECURITY TABLE ENTRIES];
89 bool valid [MAX_ MAC_SECURITY TABLE ENTRIES];

90 } ieeel54 macSecurityLevelTable t;

1/ tkni54 /TKN15j MAC.h

2 IEEE154_macKeyTable = 0x71,

3 IEEE154_ _macKeyTableEntries = 0x72,

4 IEEE154 macDeviceTable = 0x73,

5 IEEE154 macDeviceTableEntries = 0x74,

6 IEEE154 macSecurityLevelTable = 0x75,

7 IEEE154 _macSecurityLevelTableEntries = 0x76,

8 IEEE154_macFrameCounter = 0Ox77,

9 IEEE154_ macAutoRequestSecurityLevel = 0x78,

10 IEEE154 macAutoRequestKeyIdMode = 0x79,

11 IEEE154 macAutoRequestKeySource = 0xT7a,

12 IEEE154 macAutoRequestKeyIndex = 0x7b,

13 IEEE154_macDefaultKeySource = 0x7c,

14 IEEE154 macPANCoordExtendedAddress = 0x7d,

15 IEEE154 macPANCoordShortAddress = 0xT7e,

1 // tkn154/TKN154 PIB.h

2 ieeel54 _macKeyTable_t macKeyTable;

3 //0x72

4 ieeel54 _macKeyTableEntries_t macKeyTableEntries;

5 //0z73

6 ieeel54 macDeviceTable t macDeviceTable;

7 //0x74

8 ieeel54 _macDeviceTableEntries_t macDeviceTableEntries;

9 //0x75

10 ieeel54 macSecurityLevelTable t macSecurityLevelTable;

11 //0z76

12 ieeel54 macSecurityLevelTableEntries t macSecurityLevelTableEntries;
13 //0xT7

14 ieeel54 _macFrameCounter _t macFrameCounter;

15 //0X78

16 ieeel54 macAutoRequestSecurityLevel t macAutoRequestSecurityLevel;
17 //0z79

18 ieeel54 macAutoRequestKeyldMode_t macAutoRequestKeyIdMode;
19 //0z7a

20 ieeel54 _macAutoRequestKeySource t macAutoRequestKeySource [8];
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//0x7b

ieeel54 macAutoRequestKeyIndex t macAutoRequestKeyIndex;

//0z7c

ieeel54 _

//0x7d

macDefaultKeySource _t macDefaultKeySource[8];

ieeel54 _macPANCoordExtendedAddress _t macPANCoordExtendedAddress;

//0z7e

ieeel54 macPANCoordShortAddress t macPANCoordShortAddress;

#ifndef
#define
F#Hendif

#ifndef
#define
F#Hendif

#ifndef
#define
#Hendif

F#ifndef
#define
#endif

#ifndef
#define
#endif

#ifndef
#define
#Hendif

#ifndef
#define
#Hendif

F#ifndef
#define
#endif

#ifndef
#define

#endif

#ifndef

IEEE154 DEFAULT MACKEYTABLEENTRIES
IEEE154 DEFAULT MACKEYTABLEENTRIES 0

IEEE154 DEFAULT MACKEYTABLE
IEEE154 DEFAULT MACKEYTABLE FALSE

IEEE154 DEFAULT _MACDEVICETABLEENTRIES
IEEE154 DEFAULT _MACDEVICETABLEENTRIES 0

IEEE154 DEFAULT_MACDEVICETABLE
IEEE154 DEFAULT MACDEVICETABLE FALSE

IEEE154 DEFAULT MACSECURITYLEVELTABLEENTRIES
IEEE154 DEFAULT MACSECURITYLEVELTABLEENTRIES 0

IEEE154 DEFAULT_ MACSECURITYLEVELTABLE
IEEE154 DEFAULT MACSECURITYLEVELTABLE FALSE

IEEE154 DEFAULT MACFRAMECOUNTER
IEEE154 DEFAULT MACFRAMECOUNTER 0x00000000

IEEE154 DEFAULT MACAUTOREQUESTSECURITYLEVEL
IEEE154 DEFAULT _MACAUTOREQUESTSECURITYLEVEL 0x06

IEEE154 DEFAULT MACAUTOREQUESTKEYIDMODE
IEEE154 DEFAULT MACAUTOREQUESTKEYIDMODE 0X00

IEEE154 DEFAULT MACAUTOREQUESTKEYSOURCE
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#define
#Hendif

#ifndef
#define
#Hendif

F#ifndef
#define
#endif

#ifndef
#define
#endif

IEEE154 DEFAULT MACAUTOREQUESTKEYSOURCE

IEEE154 DEFAULT MACAUTOREQUESTKEYINDEX
IEEE154 DEFAULT MACAUTOREQUESTKEYINDEX

IEEE154_DEFAULT MACDEFAULTKEYSOURCE
IEEE154 DEFAULT MACDEFAULTKEYSOURCE

IEEE154 DEFAULT MACPANCOORDSHORTADDRESS
IEEE154 DEFAULT MACPANCOORDSHORTADDRESS
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Oxff

Oxff

Oxff

0x0000
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