
R-DVB:

Software Defined Radio

implementation of DVB-T signal

detection functions for digital

terrestrial television.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14697249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction...1
Current solution: full hardware implementation..1
Software Defined Radio : Benefits and Drawbacks...4
State of the art : Soft-DVB Modulator...5

OFDM, DVB-T Standard...7
1.1 Main features..7
1.2 Propagation channel modelling : Ricean and Rayleigh channel..........................8
1.3 Modulator functional blocks..13

GNU-Radio Framework...15
2.1 Python C/C++ Architecture...15
2.2 Gnu-radio blocks and functional blocks..18

Demodulator Blocks : R-dvb...21
3.1 Descrambler...21
3.2 Reed Solomon Decoder...23

3.2.1 Syndrome Computation..25
3.2.2 Key Equation Solving: Berlekamp-Massey...26
3.2.3 Chien search...28
3.2.4 Forney Algorithm...29
3.2.5 Considerations..30

3.3 Outer Interleaver..32
3.4 Viterbi Decoder..34

3.4.1– Initialization and butterfly creation..37
3.4.2 Branch Metrics...38
3.4.3- Add Compare Select (ACS)..38
3.4.4- Consideration..38

3.5 Inner De-Interleaver...39
3.5.1 Formula evaluation...41

3.6 De-mapper..44
3.7 Not Information carriers removal..46

3.7.1 Scattered, continual Pilots and TPS...47
3.8 Fast Fourier Transform..47

Optimization..49
4.1 Real time horizon...49
4.2 Viterbi computational problems...50
4.3 Possible patching..51

Implementation Results..54
5.1 Demodulator validation test...54

Conclusions..58

List of Figures...60

2

List of acronyms..61

Bibliography and notes...63

3

Introduction

Current Solution: Full Hardware Implementation.

As a well known and largely spread technology ETSI (European

Telecommunication Standard Institute) DVB (Digital Video Broadcasting) is a

project developed by an European-based industry consortium, with more

than 270[1] members, which has been developing specifications for digital

television broadcasting since 1992, many of them now used all around the

world from south America to Australia.

Actual standard implementation of this technology rely completely upon

hardware components: hardware is the modulator, hardware is the receiver,

while software is relegated in small platforms that may be used as substitute

performing some plain TV-related functions such as channel switching or

video recording. Nowadays digital audio-video streams are sent on air

through modulators built into satellites or terrestrial base-stations and

received with dedicated hardware set top boxes (STBs) connected to common

analogue television, or with built in digital-TV.

1

To be a winning technology, this standard had to allow a variety of

transmission both over air and over cable, with a complete whole of

parameters that may be set to fit peculiar countries' television needs and

habits, showing a great deal of flexibility. As an example “2k mode” (2048

carriers) is suitable for single transmitter operation in small single frequency

network (SFN) with limited transmitter distances, while the “8k mode” is

commonly used for the normal digital television broadcasting, be it terrestrial

(DVB-T) or by satellite (DVB-S), while the “4k mode” , exclusively for use in

the DVB-H, offers an additional flexibility hybrid feature.

As said, at the moment of writing almost each and every operation needed to

convert an electromagnetic wave into a video stream (and vice-versa) are

executed trough dedicated hardware, projected and set to implement the

peculiar DVB functions. While this is really handy and reasonable when we

are dealing just with feasibility problems it soon becomes an heavy, limiting

burden when it comes to face with market inertia, personalization of

characteristics, IP-TV competition and possibility of updates. It is quite

paradigmatic of this the lack of dynamism shown by technological oriented

markets based on people unwillingness to change their hardware (and habits)

without a really strong reason to. Consumers, in fact, seem to wonder why

should they pay money to renew their own hardware when the old one is still

perfectly working, and the new one does not offer great improvement. Of

course this is quite a rational point of view, but the obvious consequence is

that even good standard like ISDN or DAB dealt with insurmountable

difficulties that turned smart and possible widespread solutions into niche

technologies. Even DVB, though being honestly quite innovative compared to

old TV standards like PAL or NTSC, is experimenting some of the same

difficulties with market inertia: at the time on a whole of almost one billion

TV householders there are only 143 million digital receivers, with a ratio of

2

one every seven[2]. Of course one might object that it is not bad as diffusion,

but it is undeniable it is still far away from the speed of brand new software

spread.

This inertia is a double blade knife, it deals damages not only to the users that

may be willing to switch to new technologies but are kept back and forced to

use old technologies, and also to developers frustrated for seeing their ideas

not having the hoped success.

Now, let's focus: what if one can easily and in a free (or definitely cheap) way

upgrade his own technological equipment to get a better service, or to add

new functions? What if this could be done remotely from services providers

on demand? It is even too easy to forecast that almost every one would be

willing to let his system to improve without any cost! It has not to be stressed

much that nothing of this is really possible with full hardware components

where it would be easily obtained adopting software solutions.

Being already available a completely software DVB-T modulator, developed

by Vincenzo Pellegrini [3] and presented at the WSR Karlsruhe conference in

March 2008 (http://www-int.etec.uni-karlsruhe.de/seiten/conferences/wsr08/

Program_WSR08.pdf), aim of this thesis will be the creation of a prototype

DVB-T software receiver, from the ADC (Analog to Digital Converter) to the

MPEG-2 (Motion Picture Expert Group) decoder, without focussing on the

channel estimation and the timing synchronization, trying to be as near as

possible to real time performance.

3

http://www-int.etec.uni-karlsruhe.de/seiten/conferences/wsr08/Program_WSR08.pdf
http://www-int.etec.uni-karlsruhe.de/seiten/conferences/wsr08/Program_WSR08.pdf

Software Defined Radio : Benefits And Drawbacks.

As said the main aim of replacing hardware component with software ones is

to win market inertia and let evolutionary not just revolutionary technologies

access the market. Other great benefits comes when we start talking about

research. The chance of experimenting researched solutions in a software-

oriented systems is in all way extremely much cheaper and easier than in

hardware ones, and, as an example, may boost the ability of researchers to

find and implement better and faster decoding or channel estimation

algorithm. Of course this does not come fro free.

Very complicated real time algorithm, as we need to make software radio, are

computationally very demanding and functions that may require only a 300

MHz ASIC could become too hard even for a 3GHz CPU general purpose

computer. This is especially true at the receiver side, where the Forward Error

Correction (FEC) work is computed and the channel and timing must be

estimated.

But is this a real insurmountable bottleneck? Of course it controversial, but

we strongly believe it is not. Smart code writing, threads deserialization on

multi-CPU machines, and faster processors may be much of help making

even heavy programs good for running at real time.

Benefits of developing Software Define Radio (SDR) are not ended here.

Another great feature their intrinsic portability and flexibility: a good,

performing and fast code has to be written just one time, then its copies are

done free of charge, tearing down the comprehensive cost of hardware based

components.

4

There's an additional point of view. Nowadays traditional media have

another growing up competitor: IP (Internet Protocol) TV. In order to not

being eliminated by the natural-user selection of technologies, traditional

media broadcasting have to keep or even boost its advantages over IP

infrastructure, pointing not only toward their intrinsic strong point such as

scalability, but also trying to give the user services that may be given form an

IP TV, consequentially it is imperative to provide the end user with a state of

the art multimedia products, otherwise the consumer will switch for a PC

CODEC easily downloaded from the Internet.

Moreover, we are assisting to the diffusion of small cellular phone who

perform TV decoding functions, letting people look at what they want

whenever they want ans wherever they are. Having a strong tested software

able of demodulating a DVB-T signal on common users CPU, would let the

technology owner be able to turn any normal Laptop into a TV receiver

probably taking back home the “smart-phone” TV market.

State Of The Art : Soft-DVB Modulator

As a first step let us point out the state of art about software defined radio.

At the time of writing the open source community has released the 3.1.3

version of “GNU-Radio”, an ensemble of tools created in order to help

developers to “translate” hardware operations into soft ones.

GNU-Radio had been used as the framework for SDR real time DVB-T

modulator made by Vincenzo Pellegrini. This piece of software is able to put

in air a 2 Mbps DVB-T signal, with a 2/3 puncturing convolutional channel

5

coding, perfectly receivable by any DVB-T receiver. An useful feature in

creating its “dual” was Soft-DVB's ability -of course not present within the

hardware world- of creating dump intermediate files for testing single

demodulator parts. This modulator has been largely tested and used, and

showed great reliability with contained computational cost that allowed itself

to be run even over very low profile desktop and laptop computers.

Of course we all know, by daily experience, that listening is harder than

talking (especially if you are trying to listen to a single person inside a noisy

crowd form a certain not negligible distance...), and this is also reflected in

communication devices by a major amounts of functions and by a major

computational weigh of each one beside its dual. As a consequence, the

receiver implemented in this thesis will not be real time, but it will still try to

be as fast as possible, so it will be work for others to to speed it up.

Lastly, to connect the “hyperuranium” ideas world of software to the material

real world Soft-DVB, and consequentially my demodulator, uses a Universal

Software Radio Peripheral (USRP) interface, connected via a fast USB port to

a common Desktop PC. USRP duties are not really complicated, it must

perform a simple conversion with a DAC (Digital Analog Converter), filtering

and a translation to Radio Frequency, while all the mathematical operation,

coding, scrambling, (i.e. baseband DSP) are computed by software by a

general purpose machine.

6

 Chapter 1

OFDM, DVB-T Standard

1.1 Main Features

Digital Video Broadcasting is the, most widely deployed system to

deliver both standard definition and high definition video to digital TV users.

It is defined as an ensemble of functional blocks performing the modulation

of the baseband TV signals from the output of the MPEG-2 coder into the

terrestrial channel. Optionally, it is possible to transmit two (high and low

priority) MPEG-2 transport streams in hierarchical mode and/or data channel.

Video distribution over Single Frequency Network is supported too.

Apart from the American world, DVB-T is deployed in more than 70

countries (European Union, Russia, India, Israel, Egypt, India, Australia...)

from all over the world. Such a spread would not be explainable without

stressing on DVB-T matchless ability in delivering high definition audio-video

streams even trough multi-path distorted channel. In order to perform this

Fig. 1.1: ETSI DVB-T modulator blocks7

good DVB needs a typical bandwidth of 8 MHz. Using such a large spectrum

we can neither assume nor even hope to experience an AWGN (Additive

White Gaussian Noise) flat channel, where a fading, multi-path selective one

is more likely.

To avoid the channel problems, rather than carrying the data on a single

radio frequency carrier, OFDM (Orthogonal Frequency Division Multiplexing)

works by splitting the digital data stream into a large number of slower digital

streams, each of which digitally modulate a large number of closely-spaced

orthogonal sub-carriers are used to carry data. Orthogonality between carriers

guarantees the smallest inter-carriers interference while minimizing the space

from carrier to carrier thus maximizing the spectral efficiency. In the case of

DVB-T, there are two choices for the number of carriers known as 2K-mode or

8K-mode. These are actually 1705 or 6817 active carriers (respectively 2048

and 8192 considering the “virtual” suppressed ones) that are approximately 4

kHz or 1 kHz apart.

Built to be used as an high performing video standard the OFDM signal

has to be well protected from errors due to the noisy channel. The the

standard provides two error protection codes, an inner and an external one.

For DVB-T they would be a convolutional punctured code and a Reed-

Solomon coding algorithm.

1.2 Propagation Channel Modelling : Ricean And Rayleigh Channel

8

As already pointed out DVB-T typical propagation channel is multi-path,

both Line-of-Sight (LoS) and No Line of Sight (N-LoS). The main consequence

of the reflection, refraction and scattering of the electro-magnetic wave, beside

of the time-variant channel is fading in and echoes.

Fig. 1.2: COFDM spectrum

Fig. 1.3 : Multi-path scenario

9

Designed to provide digital high definition TV services to both urban

and rural areas, the DVB-T standard has been developed in order to express

good performance in LoS and N-LoS multipath channels. The system was

validated by ETSI against the typical multipath channel model, with both

Rayleigh (N-LoS) and Ricean (LoS) fading.

In No Line of Sight condition, typically urban areas where we can

assume not having a direct ray from the transmitting antenna and the

receiving one, channel is statistically modelled as it follows:

• Path magnitude is an aleatory variable Ri with density probability

function:

f Ri
=2∗e−2

u 

• Path phase is an aleatory variable uniformly distributed:

f Ri
= 1

2
∗rect−

2 

Otherwise in a more optimistic scenario when it is possible to assume a

direct ray, like in rural areas, we may use the Ricean model:

• Path magnitude :

f Ri
=2 k−1 e−k12− k I 0 2k k1u  ;

• Path phase:

f Ri
= 1

2
∗rect−

2  .

10

Where k is the “Rice factor” k= LoS RXPower

NLoS RXPower  and I0 is the modified

Bessel function of the first kind with order zero:

I 0 z =1over 2∫
0

2

e zcos d 
.

To ensure a Quasi Error Free condition at the receiver MPEG-2 decoder,

the system behaviour has been tested in terms of required Carrier to Noise

ratio (C/N). Test result are shown in Table [1.1]. They clearly show the

flexibility obtainable with different modulation options, in order to allow

transmissions over the various condition of propagation scenarios. ETSI

standard also suggests that in order to achieve the QEF condition we must

provide enough SNR and enough bit-protection to have an error probability

of P e=2x10−4 after the first error correction function (Viterbi).

It is easy to state DVB-T can put in play really good performance,

especially in N-LOS multipath environments such as densely populated urban

areas, this characteristic was of great importance in allowing ETSI DVB-T to

outperform its American competitor, namely the Advanced Television

Systems Committee Standard (ATSC). In fact ATSC relies upon a different

modulation system, namely 8-VSB which is much less robust to multipath

propagation than DVB-T's OFDM.

11

Modulation Convolutional

Rate

Required C/N,

Gaussian Channel

Required C/N,

Ricean Channel

Required C/N,

Reyleigh Channel

QPSK 1/2 3.1 3.6 5.4

QPSK 2/3 4.9 5.7 8.4

QPSK 3/4 5.9 6.8 10.7

QPSK 5/6 6.9 8.0 13.1

QPSK 7/8 7.7 8.7 16.3

16-QAM 1/2 8.8 9.6 11.2

16-QAM 2/3 11.1 11.6 14.2

16-QAM 3/4 12.5 13.0 16.7

16-QAM 5/6 13.5 14.4 19.3

16-QAM 7/8 13.9 15.0 22.8

64-QAM 1/2 14.4 14.7 16.0

64-QAM 2/3 16.5 17.1 19.3

64-QAM 3/4 18.0 18.6 21.7

64-QAM 5/6 19.3 20.0 25.3

64-QAM 7/8 20.1 21.0 27.9

Table 1.1 Required Channel to Noise ratio to have BER=2x10^-4 after Viterbi decoding.

12

1.3 Modulator Functional Blocks

Before getting in the heart of receiving functions, it is worth to focus a

while on the transmission side and have a look to standard' s directives on

functional blocks shown in Fig [1.1]. Of course, not being the main spot of this

thesis, I am not going deep inside the modulator blocks that will be briefly

summarized :

1. Multiplex adaptation for energy dispersal (MAED). It is a stream

byte-scrambling unit with the purpose of removing time correlation between

bits in the MPEG-2 transport streams by performing a bit-wise XOR with a

proper defined PRBS. It also inverts the first byte (namely the SYNC byte)

every 8 MPEG-2 frames

2. Outer encoder. A typical Reed-Solomon (204-188) encoding

procedure derived from a common (255-239) by inserting 51 null bytes in the

head of the frame. Its main purpose is to protect the audio and video stream

from Viterbi burst errors. As specified by the standard, and better explained

later, the Galois Field polynomial generator is: p x =x8x4x3x21 ,

while the code polynomial is generated by: g  x=∏
i=0

i=15

xi where

=02HEX

3. Outer interleaver. A convolutional byte oriented interleaving

block based on the Forney approach. Its purpose is removing correlation

between casual errors due to a Viterbi failure at the decoding part.

4. Inner coder. A widely used convolutional encoder, built from a

mother of ½ it is possible to rise the rate with puncturing technique from 2/3

13

to 7/8. Convolutional generators are: G1=171OCT and G2=133OCT . The

convolutional is the main error correction block, its purpose is to protect bits

form noisy channels in order to obtain the QEF condition.

5. Inner interleaver. Composed by a DEMUX and two different

interleaver (the first working on bits the second on “words”) is needed to

avoid time correlation in the errors at the input of the Viterbi decoding block

and to avoid, in transmission, to certain bit to be sent on air always in the

same carriers with bad Signal to Noise ratio.

6. Mapper. It map the bit stream into symbols. It is possible to chose

between QPSK, 16-QAM and 64-QAM.

7. OFDM modulation. Perform the virtual carriers, TPS and pilot

carriers insertion into the signal before computing the IFFT.

8. DAC, Digital to Analog Converter. As the name suggest, it

performs the conversion from deigital samples to analogue signal by means of

interpolation.

9. Radio Frequency front end. It shifts the base-band signal to its

proper frequency for the desired TV channel and sends it to the aerial.

14

 Chapter 2

GNU-Radio Framework

2.1 Python C/C++ Architecture

GNU-Radio is a free software development tool-kit created to build and

test and defined radios. Its main characteristic is to provide the signal

processing runtime, the flow control between implemented “blocks” (where

the typical communication functions happen) and to handle bufferization and

the exchange of data. The use of GNU-Radio allow to implement the user with

a strong communication background and a good knowledge of C/C++

languages to create software defined radios using readily-available, low-cost

external RF hardware and general purpose commodity processors.

GNU Radio applications are primarily written using the high level

scripting language Python, which main scope is providing GNU-Radio a data

flow abstraction. Its fundamental atoms are “signal processing blocks”,

implemented in C/C++, doted of one or more input and one or more output

ports. These blocks, are pre-implemented classes where the developer must,

generally speaking, override some member functions in order to obtain the

desired work. Their positions and their connections are organized into a

“flow-graph”. Besides, the Python has the purpose of dealing with the USRP

15

(Universal Software Radio Peripheral: our external Radio frequency terminal),

in order to do so the Python runs the C/C++ classes needed for the USRP to

work. Thus, being all the hard (computationally heavy!) work done by the C/

C++ code the developer is able to implement real-time, high-throughput radio

systems in a simple-to-use, rapid-application-development environment.

Moreover, the framework comprehends a list of pre-written blocks to

perform basilar and common telecommunication functions. This is

comprehensive of FIR filers or FFT transform, in addiction to blocks needed

to handle the data structure in the graph.

While not a simulation tool, GNU Radio does support development of

signal processing algorithms using pre-recorded or generated data stored into

files, avoiding the need for actual RF hardware usage. This comes in handy

when you have to validate and test performances of single or group of

implemented processing blocks before being able to use it with Radio

Frequency real signals. As an example, any new idea for implementing a

demodulation function could be just implemented and tested firstly by itself,

with the proper input and then with all the systems.

16

 Fig 2.1 : Pyhton code example

17

2.2 Gnu-radio Blocks And Functional Blocks

As already shown in previous chapter, ETSI DVB-T standard determines

a number of functional block for the modulation part which make up the

simple MPEG-2 audio-video stream ready for the RF, but, of course, it does

not tell anything for what is about the receiver part. The path to follow, then,

will be of implementing into each GNU-Radio block a dual for every

functional block in the modulator. The philosophy of using a GNU-Radio

block for each standard function has shown herself to be the best trade-off

between speed throughouts (that would anyway be slightly incremented by

using just one block to perform all the decodification process) and code

readability and portability. This doing will result in the “chain” of blocks

shown in Fig 2.2. Of course in projecting these duals there is high degree of

freedom particularly in choosing the best algorithms to perform the needed

functions.

Having in mind the goal of taking the signal from the antenna to the

monitor with a test bench receiver (this means avoiding the channel

estimation and the synchronization, functions that may as well be introduced

later), the difference between riding the wave (and consequentially

implementing from the next-to-antenna block) or going backward from the

one nearest to the MPEG-2 decoder is just a matter of strategy. Both paths

present their peculiar advantages and drawbacks. Going the straight way,

surely would have allowed to set the entire data structure step by step, and

furthermore it is somewhat more “natural”, but on the other side it would be

quite an effort to check the correctness and the functionality of each function.

As an example it would not at all be easy to understand if the channel

estimation and the timing synchronization were done correctly, having to

18

wait until the last block to be really sure. Otherwise the going backward

option is surely more useful in debugging operation. This because the only

thing to do to check if a new block works or not is to connect the entire

system, run it, and have a look to the decoded video. The bad part of this

implementation strategy relies in the synchronization between blocks, in fact

it is quite hard to think and implement a working systems while not aware of

what will definitely trigger everything on. In fact, as will be better explained

later, there are some parts that cannot work in “stream” mode, but need a

vectorized data structure, they need, in simple words, to work on groups on

N bytes. But this opens a problem: when they must start to consider a byte at

their input a valid byte? When the receiving byte will be stream byte and not

just noise? The problem has been solved by looking some transport stream

known byte, (namely the SYNC and inverted SYNC bytes), but still it would

be usefull, when everything will be ready, to define an inner way to trigger on

and to trigger off each demodulator part.

All summed up, and considering GNU-Radio pre-implemented blocks,

which can make setting up of the data structure neither difficult nor really

effective on performance, estimating the benefits would outmatch the

drawbacks we adopted the reverse way strategy, from the video to the

antenna.

19

20

Figure 2.2 : Receiver functional blocks

FFT

Virtual carriers,
pilots and TPS

remover
 16-QAM or 64-QAM

Demapper

Inner deinterleaver
Viterbi algorithm

Reed-Solomon
Decoder

Descrambler
Sink

Convolutional
deinterleaver

 Chapter 3

Demodulator Blocks : R-dvb.

3.1 Descrambler

Before letting the base-band video stream be processed by the MPEG-2

decoder it must be de-randomized. The randomization process takes part in

DVB standard to perform a M.A.E.D. (multiplex adaptation for energy dispersal).

In order to do so the scrambler computes a bit-XOR between the video stream

and a PRBS (pseudo random binary sequence) generated with a linear feedback

shift register (LFSR) by the generator polynomial: p x =1x14 x15

initialized with the sequence: 100101010000000.

The MPEG-2 transport packet is composed of 187 bytes + the SYNC byte

(0x47) at its head, following ETSI directive to provide an initialization signal

to the descrambler the SYNC byte every 8 transport packet is bit-wise inverted

from 0x47 to 0xB8. The SYNC bytes had not be randomized, thus they must

not be de-randomized but just inverted one every eight, this has been easily

achieved by computing the bit-XOR operation with 0xFF.

21

Finally every eight transport packets the initialization sequence, the seed,

must be reloaded into the LFSR, doing so will result in our PRBS having a

periodicity of 1504 bytes. By this point of view, being the XOR the base

operation a descrambler is almost the same of a scrambler, except for the

synchronization matter.

The inner periodicity of this descrambling operation suggest a fast and

easy implementation strategy: pre-calculate during initialization the 1504

bytes composing the PRBS and store them in a vector which will be used

when needed to perform the XOR.

As can easily be deducted, the synchronization between the first SYNC

byte (the first 0xB8) and the descrambling operation is all-important, so it is

demanded to the block to recognize a good sync byte and line up its PRBS.

As an additional feature, the Descrambler implements a BER-o-METER

to simply evaluate the signal corruption level after the FEC decoding states.

The estimation is done by working out the hamming distance between the

received sync byte (after synchronization has been recovered) and the

expected byte (both 0x47 and 0xB8).

Moreover this BER estimation is used to avoid false SYNC alignment. It

is more than obvious that mistaking an inverted SYNC would result in a BER

very similar to ½, thus if the BER goes over a limit the block stops its

descrambling work and starts looking for a new inverted SYNC byte.

22

3.2 Reed Solomon Decoder

It is well known that an MPEG-2 video stream is very compressed, but

its efficiency in terms of information bit for binary symbol had a price:

fragility and great susceptibility to errors. As a consequence any corrupted bit

may comport substantial degradation in the video quality and has to be

avoided.

To provide the end user a high definition video experience, the standard

expects the system to be able to put out a QEF (Quasi Error Free) MPEG video

stream, where the QEF condition is obtained when BER10−11 . As a direct

consequence, the system must have some very good error correction

algorithm, without inserting too much redundancy. The concanetion of

Viterbi (convolutional) and Reed Solomon (RS) FEC is the solution adopted

by ETSI.

 Reed Solomon coder is a systematic code (this means that a portion of

output word includes the input in its original form) with little insertion of

parity bytes (in DVB-T RS rate is only 1,085 16 parity bytes every 188

information bytes). At any rate its main interesting characteristic, being byte

oriented, is its intrinsic ability to perform well against “burst” errors, the

Fig. 3.1 : Descrambler schematic block

23

typical kind of mistake a Viterbi decoder might do. In fact from an RS point of

view a byte which has just a single erroneous bit and a byte completely

mistaken are “wrong” to the same extent.

The Reed Solomon implemented in DVB-T is a shortened (204,188) code,

built from a classical (255,239) where the 51 remainder bytes are all set to zero

during the coding procedure and consequentially not transmitted. The first

assignment of a decoder then will be re-inserting this 51 zeros, and then

compute the decoding process. Such a code is able to correct up to 8 erroneous

bytes put everywhere inside each 204 bytes word.

In order to understand how this code works we must afore have an

introduction in Galois (or finite) Field Algebra on which relies cyclic code. For

each prime p does exist a Galois Field GF(p) made of p elements, this field

may be extended in field GF(pm) where “m” is an integer greater than one.

The Galois field we need for our Reed Solomon code is GF(28) so we can

arrange binary words of 8 bit (in other words: a byte).

In a Galois field must be defined two operations: sum and product, with

the following properties:

• closure (if a and b are elements of GF(m) then also a + b and a x b are

elements of GF(m)

• associativity, commutativity, distributivity

• existence of the neutral element

24

Beside the elements 0 and 1, whose existence is given by definition, there

will be a primitive element a such each and every not null element f the GF

may be represented as a power of a.

As we can see, then, we will have rings of sum and multiplication such

as,given a element of GF a pm−1=1=a0 . For our need it becomes a255=1 ,

while the addiction will easily be the binary XOR.

A class of polynomials called primitive polynomials is of interest as such

functions define the finite fields GF(2m) that in turn are needed to define RS

codes, in our case we shall have 1X 2X 3X 4X 8=0 as our field

generator polynomial and a=0x02=00000010 as our base element.

As a consequence it is easy to state that every possible codeword can be

mapped into a Galois Field element, so the RS decoder block, during its

initialization phase, will generate the field and store this result into a vector,

so that converting bytes into powers and powers into bytes could the easiest

(and fastest) possible. During this initialization phase, that take place in the

class constructor, the block will also create a “multiplication matrix” and an

inverse vector, in this way every possible operation needed in the decoding

phase will be copmleted with just a look-up.

3.2.1 Syndrome Computation

But why we need all this mathematical stuff? It is fast explained. The

coder interprets the 188 byte as coefficients of a polynomial expressed with

Galois Field's elements, naming d(x) the word to be coded (and thus the one

we wish to decode..) we have: d x=d 0d 1∗xd 2∗x2....d 187∗x187

25

The coder now will use another polynomial namely the code generator

polynomial g(x) that characterizes the code:

 g  x=x−a0∗x−a1∗x−a2∗...∗x−a15=∏
i=0

15

x−ai .

to evaluate the code-word c(x):

c x =x16∗d x p x

where p(x) is

 p x =x16∗d xmod g x 

Consequentially it is quite easy to state that c a i=0∀0≤i≤15 that is

the condition we need in order to understand how correct is the received

word.

Now, the first thing the decoder does is to compute the Syndromes

evaluation. These Syndromes are obtained by just evaluating the received

polynomial named R(x) in the roots of g(x) . In fact, if the received bytes are

correct it will result Rai=cai=0 . Calculated syndromes are then

organized into a polynomial in the following way: S i =Rai .

If all these syndromes are equal to zero then the codeword is correct and

the only function of the decoder will be eliminating all the parity symbols, else

way it has to try to correct the errors.

3.2.2 Key Equation Solving: Berlekamp-Massey

Lets assume the Syndrome polynomial is not a null one. Next step is

locating the errors position and evaluate the entity, the magnitude of this

26

errors. In order to achieve this result we must solve the key equation, a non

linear system that links syndromes to errors and their position. Solving by

common way this system would be much an effort so the problem is split into

2 steps:

1. Evaluate an error locator polynomial C(x), whose roots are the

positions of the errors.

2. From C(x) evaluate a magnitude polynomial .

In order to evaluate C(x) two algorithms have been mainly proposed, the

Euclidean and the Berlekamp-Massey. The first is easier to implement but

heavier, the latter then has been chosen to be implemented due to his lesser

computational cost.

Berlekamp-Massey algorithm pseudo-code steps are the following:

1. Initialization of variables: C x=1 ; Dx =x; L=0 ;n=1

2. Discrepancy computation:

 =Sn∑
i=1

L

C i∗Sn−i

3. Discrepancy test, if =0 go to step 8, else go to step 4

4. Error location polynomial modification:

 C x =C x −D x 

5. Registry length test: if 2L≥n then go to step 7, else go to step 6

6. Registry length and correction term modification:

 L=n−L

 D  x=C  x/

7. Error locator polynomial update:

 C x = C  x

8. Correction term update:

27

 D  x= D x 

9. Element counter update:

 n=n1

10. Syndrome element number check: if n<16 go to 2, else stop.

If everything is done correctly, it will result in a polynomial C(x) which

roots are the “position” of the errors, of course now it is time to find out

where this roots are, in order to do this we use a well known algorithm

known as the “Chien search”.

3.2.3 Chien search

As soon as the demodulator completes the Berlekamp-Massey Algorithm

it has to look for C(x) roots, to locate the errors in the codeword. Being

working in Galois Field the easiest way to do it is an algorithm known as

Chien search. This is nothing more than an exhaustive search: it just evaluate

C a i for every possible i from 0 to 254: if it is zero then a i is a root and

consequentially “i” is the position of the error.

To save time, when eight errors have been found the Chien search will

be stopped. Our Reed Solomon code can correct up to 8 errors, so it is of no

use to go on searching.

28

3.2.4 Forney Algorithm

Now that we know where erroneous byte are we still lack information,

in fact the decoder must be able to find the magnitude of the errors, to let

correction be possible. This is achieved using the Forney Algorithm.

First of all we compute the error magnitude polynomial as it follows:

x =[1S x ∗C x]mod x17

The second step is calculating the formal derivative of C(x). This is quite

easy, not only because C(x) is a polynomial but also because, due to the XOR

nature of the addictive operation in Galois Field algebra, the even powers will

always have null derivative.

At this point our block must evaluate the error amplitude:

 ek=X k

[X k
−1]

[C '  X k
−1]

where C'(x) is the upper defined formal derivative and X k is the k-th

root of C(x).

Once iterated the Forney algorithm for each X k it is time to correct our

code word, as said the position of the error will be degree X k  and its entity

ek .

Now, the only remaining steps are to sum (or better XOR) the corrupted

byte with the correspondent “error”, to discard the 16 parity bytes, and our

corrected word is ready to be de-scrambled.

29

3.2.5 Considerations

As previously stated, this Reed Solomon decoder can correct up to 8

errors, where errors are corrupted bytes whose position in the codeword and

amplitude are both unknown. But what does happen when there are more

than 8 erroneous byte in the codeword? There are two possibilities.

The first one happens when the decoder “understand” it is trying to

correct something that is over its correcting ability and then give it up,

copying in its output the 188 information bytes without performing any

correction and hoping most of the errors were in the parity bytes. This

acknowledgement happens when the formal derivative of the error position

polynomial evaluated in the inverse of C(x) roots during the Forney algorithm

becomes zero.

The second one happens when the decoding algorithm is completely

fooled by the errors, and the received codeword looks like another valid

codeword. In this case, which usually happens with lots of errors, the decoder

would not limit itself to neutrality, but it would even introduce newer errors,

by “correcting” the not corrupted bytes. At any rate this chance is not critical.

Whenever a signal is so bad to confuse the Reed Solomon it is probably too

noisy also for the other blocks, and we should not forget that the system is

thought to give the user a QEF video stream, so the unlucky event should be

avoided by other means.

30

Fig. 3.2 : Reed Solomom decoding blocks

31

3.3 Outer Interleaver

Between the two error protection blocks, the Vietrbi and the Reed

Solomon decoders, the DVB-T standard provides a state of convolutional

interleaving. The rationale behind this becomes quite clear once stated that

typical Viterbi errors are burst errors, and that Reed Solomon really improve

its performance in presence of “uncorrelated” corrupted bytes.

Interleaving is a technique commonly used in communication systems to

overcome correlated channel noise such as burst error or fading. It rearranges

input data such that consecutive data are split among different blocks so that

the latter error correction block may be capable of making them up.

As shown in Fig[3.3], the de-interleaver is composed by 12 FIFO (First In

first Out) shift registers (namely from 0 until 11) which are cyclically

connected to the byte stream, both as input and as output. The first shift

register of the interleaving function does not have buffers, as a consequence

the interleaver results conservative about SYNC (0x47) and inverted SYNC

(0xB8) bytes. This is very important during the dual function. In fact, would

the de-interleaver mistake the first inverted SYNC byte and put it in a

incorrect line, it would result in an completely unreadable and unrecoverable

video stream. Knowing this the de-interleaver must keep an eye on the first

shift register and expect to see there a SYNC every 17 bytes and an inverted

SYNC every 8 SYNCs.

The latter function is implemented through a BER-qatch over the

expected SYNC bytes. The difference of course relies on the threshold, being

before the Reed Solomon block we are forced to tolerate an higher error ratio,

32

thus whenever this BER goes over 10−2 the block will assume to be not

correctly aligned and will perform an inverted SYNC search in the stream.

Fig. 3.3 : Convolutional Interleaver and Deinterleaver

33

3.4 Viterbi Decoder

Followoing the DVB-T directives the channel error protection code is a

convolutional code with constraint length L=7 and generator polynomials

G x=171OCT G y=133OCT , which conceptual scheme is reported in the

following figure.

The classical method of decoding convolutional codes has been proposed

by Andrew James Viterbi. The Viterbi Algorithm (VA) is a recursive process

which consists in finding the most-likely state transition sequence in a state

diagram, given a sequence of symbols. In practice, the VA is observed as a

finite-state Markov process whose representation is either a state transition

diagram or a trellis.

34

Fig. 3.4 : Mother convolutional with rate 1/2

The mother code rate imposed by DVB-T standards is 1/2. However,

higher code rates such as
2
3

, 4
5

, 5
6

, 6
7

or 7
8 can be derived from the mother

code, by simply introducing “puncturing”.

On the encoder side, the so called puncturing consists in deleting a

certain number of bits in the encoded stream according to perforation patterns

(as shown in Fig [3.4]) which indicate the positions for bits to be deleted.

It is important to stress that the decision depth is lengthened to almost

15*L, where L indicates the constrain length of the convolutional code (for

DVB compliant convolutional L=7), then the classical Viterbi Algorithm can

be applied. Thus in the implemented Viterbi was needed a decision depth of

105, but as already affirmed we use 64-bits registers to memorize path , as a

consequence the used memory must be an integer multiple of 64. For such

reason it has been decided to choose 128-bits memory register realized with a

vector of two 64-bits buffer.

The coding rate selected in Soft-DVB modulator is most common in

commercial use, and also the one selected for Italian DVB-T transmission. It is

a good trade off between error protection and redundancy: 2/3. On the

decoder side, depuncturing can be obtained following at least two strategies.

The first way consists in inserting, in place of the deleted symbols, an a-

priori-known symbol equidistant from both “0” and “1”. This means to

substitute the standard Hamming distance with a doubled one where distance

from 1 to 0 is 2 and distance between the known symbol and 1 (or 0) is one. It

is easy to think at this symbol as at ½. In order to do so without wasting time

35

the block sets a distance matrix by pre-calculating it during initialization

phase.

Another strategy is the one of considering the punctured 2/3 as an actual

real 2/3 convolutional and then decode it in the very standard way.

Both path have been tried and tested, while they have shown the very

same attitude against noise the latter Viterbi has shown to be slightly faster

and it looks also a cleaner approach than the first, so it was chosen as the

convolutional decoder implementation.

36

Figure3.4 : Puncturing scheme

3.4.1– Initialization and butterfly creation.

The Viterbi algorithm has shown to be quite computationally expensive,

even if enormously better than an exhaustive strategy. This means that the

first thought when implementing a Viterbi is to pre-calculate everything that

can be pre-calculated. This will, of course, slightly slow down the starting

phase but it will really boost the decoding time.

During this start-up then the implementation will build up the distance

matrix (a simple matrix whose inputs are all the possible labels and all the

possible triples of bits and with the Hamming distance as output), and will

create the “butterfly”, a sort of finite state machine which stores all details

about Viterbi states (paths, branches label..). An example of a simple butterfly

for a 4 states Viterbi is shown in Fig[3.5].

As provided from the standard, and easily derivable from the

convolutional scheme, the encoder will have 6 shift registers and this will

result into a 26=64 states butterfly.

Fig. 3.5 : Four states butterfly
with labels

37

3.4.2 Branch Metrics

Once passed the start up phase, the branch metrics computation is quite

straight forward. The decoder must just take the three bits at the input of the

Viterbi and evaluate the Hamming distance with the pre-calculated labels,

using both the input and then label as input for the distance matrix

instantiated in the previous phase.

3.4.3- Add Compare Select (ACS)

Once computed the branch metrics it comes to add those to the previous

state accumulated metric with the goal of selecting, for each state, the smallest

one.

Once done, each state will update “path”, 64 two elements vectors made

of 64-bits registers who stores the Viterbi-path in the trellis in the form of

output decoded couple of bits. When this buffers are full, the one with the

smallest metric associated will be the one selected to send to the output

interface the decoded couple of symbols.

3.4.4- Consideration

As can easy be derived from the description, Viterbi algorithm

implemented is a classical Hard-Viterbi, this means that it may take as input

only already de-mapped symbols, and indeed it computes the branch metrics

by calculating an Hamming distance while an Euclidean one would be needed

to realize a soft Viterbi.

38

Of course it would be possible to implement a soft version which should

provide us of the known further 2 dB in coding gain, but this would coerce us

to evaluate no longer just an Hamming distance, but an euclidean one

probably becoming quite too heavy for the CPU that has already being

showing great stress with the “normal” weight of the hard Viterbi.

3.5 Inner De-Interleaver

It's common knowledge that Viterbi decoders have their weak point in

strongly correlated errors patterns, in other words they have difficulties in

recovering a bunch of erroneous bits the one too close to the other. Bearing in

mind the channel fading effect and the nature of the noise, particularly in

broad band multi-path communications, as well as the possible interference

from other source (intentional or casual) it is really expected that errors will

likely occur in burst.

The purpose of the inner interleaving, then, is shuffling the bit stream so

that dangerous and destructive events would not tear down the whole system

performance.

This block is the first block who changes his behaviour in accordance

with the transmission mode, it means it considerable changes if you are using

2k or 8k mode, and it also is mapping-dependent. As stated two

demodulation modes were implemented, 16-QAM 2k, and 64-QAM 8k, both

in not-hierarchical mode. The functional scheme of the two possible

interleaving functions is shown in Fig[3.6] and in Fig [3.7].

39

There are, of course, several possible strategies to implement a dual

block of such an interleaver, one could be reversing each and every function

starting from the last to the first function, but such solution being simple it has

its pay-off in computational weigh. Thus, the selected option has been

observing the interleaving function mapping a generic bit at its input into a

place at its output, and then inverting the formula.

A simple mathematical analysis of the functional blocks tells us it has got

a 3024 (2k mode) or 12096 (8k mode) bit periodicity. In fact it is the periodicity

of the last function, the symbol interleaving, while bit interleaving blocks have

a 126 periodicity and the de-mux a 4 (2k) or 6 (8k) one. At this point, the

40

Fig. 3.6 : Inner Interleaver, Mode 2k 16-QAM Not-hirarchical

Fig. 3.7 : Inner Interleaver, Mode 8k 64-QAM Not-hirarchical

implemented system will read form the input buffer “vectors” of right

dimension (3024 or 12096 bits) so it may de-shuffle their elements.

3.5.1 Formula evaluation

So let us assume the generic bit at the input of the interleaver position to

be “n”. Due to the interleaver parts different periodicity, it is necessary to

divide the total bit ensemble in different dimension group.

First of all, the Demultiplexer works every v bit, where v=4 for 2k mode

and 6 for 8k, we need to know which place the bit occupies inside group of v

bits and this is achieved by calculating e0=(n mod v). The de-mux state, then,

will put the bit in the right branch “b” (b may vary from 0 to v-1) according to

the standard's rule:

16-QAM 64-QAM

e0=0 => e1=0 e0=0 => e1=0

e0=1 => e1=2 e0=1 => e1=2

e0=2 => e1=1 e0=2 => e1=4

e0=3 => e1=3 e0=3 => e1=1

e0=4 => e1=3

e0=5 => e1=5

Let us call this demultiplexing function Hd, so that will easily result

e1=Hd(e0).

Once done, the bit will enter into the bit-interleaving state, whose

permutation formula is depending on the branch selected.

The possible formulas are:

41

H 0w =w mod 126

H 1w=w63mod 126

H 2w=w105mod 126

H 3w =w42mod 126

H 4 w =w21mod 126

H 5w=w84mod 126

Of course the subscript indexing these permutations corresponds to the

upper calculated e1. Clearly, if we are using the 2k mode, it cannot be over

three, in this case only the first four permutations (from H 0 to H 3) will be

used.

Now we have the problem of linking the position inside the e1 branch

called “w” with n. It happens it is quite easy! In fact, lets name gr0=n/6, where

“/” is the integer division, gr0 is telling us the bit 's position inside the branch,

bethinking that we are going to perform a 126 bits periodicity interleaving, it

is useful to calculate also “w0” as w0=gr0 mod 126. Naming w1 the exit

position it will result w1=H e1w0 and the absolute new position inside the

branch gr1=gr0w1−w0 .

As it results clear from the figure, those branches flow together into the

symbol interleaver. This block computes a vector permutation following a

DVB standard defined function Hqq . Just like the bit interleaver one, this

permutation is calculated once for all in the class constructor, during

initialization phase.

The pseudo code algorithm for Hqq is the following.

Set Mmax=2048 for 2k mode and Mmax=8192 for 8k mode, then set

N r=log2 M max and

42

i = 0 , 1 Ri
' [N r−2, N r−3, ,1,0]=0,0,0,0,0. ..0

i = 2 Ri
' [N r−2,N r−3, ,1,0]=0,0,0,0,0. .0,1

2 < i < Mmax: Ri
' [N r−3, N r−4, , 1,0]=Ri

' [N r−2, N r−3, , 1]

2k mode: Ri
' [9]=Ri−1

' [0] xor R I−1
' [3]

8k mode: Ri
' [11]=R i−1

' [0] xor Ri−1
' [1]xor R i−1

' [4] xor R i−1
' [6]

Now we must derive Ri from R'i by bit permutation given in Tab.

Bit permutations for the 2K mode

 R'i bit positions 9 8 7 6 5 4 3 2 1 0

 Ri bit positions 0 7 5 1 8 2 6 9 3 4

 Bit permutations for the 8K mode

R'i bit positions 11 10 9 8 7 6 5 4 3 2 1 0

Ri bit positions 5 11 3 0 10 8 6 9 2 4 1 7

Finally, H qq is defined:

q=0

0<i<Mmax :{ imod 2∗2N r−1∑
j=0

N r−2

R i[j]∗2 j ;

 if HqqN maxq=q1 ; }

Lately, the symbol interleaver will take our bit in “gr1” position in the

“e1” branch and put it in H qgr1 position when the OFDM symbol is even

(this occurs when n<1512 for 2k or when n<6048 for 8k) it will instead put it in

H q
−1gr1 if it happens to be odd.

In the end, we can state that the whole inner interleaver will put the

generic n-th bit in position “o” where

o=gr1∗ve1 .

43

Now, the hard part being done off-line, to invert this formula and

performing a de-interleaver it is sufficient to take the o-th bit at its input and

map it at its proper output position.

3.6 De-mapper

When the signal comes to this block it is composed of complex baseband

symbols embodied by two floating point characters representing respectively

symbol's real part (in phase) and imaginary part (quadrature).

44

Figure 3.7 : Symbol Interleaver addres computation scheme
for 2k (upper) and 8k (lower) modes

This block has been implemented for both 2k-16QAM and 8k-64QAM

transmission modes with a common threshold decision following the

constellations shown in Fig[3.8] and Fig[3.9]. The output, in order to be

consistent with the previous block, must be a bit stream.

Fig. 3.8 : Uniform 16-QAM Mapping and bit patterns

Fig. 3.9 : Uniform 64-QAM Mapping and bit patterns

45

3.7 Not Information Carriers Removal

The transmitted signal is organized in frames, each with duration of Tf

consisting of 68 OFDM symbols. Four frames constitute a super-frame. Each

OFDM symbols is made up of a set of 6817 carriers in the 8k mode and 1705

for the 2k one, and it is transmitted with a duration of Ts. To resist to

multipath channel the OFDM structure need some carriers not to carry video

or audio information but to be pilots that allow a correct channel estimation.

Pilots may be fixed or scattered, the latter being useful to avoid a multipath

channel notch to delete all the information about a single pilot. Other carriers

are needed for synchronization purposes and to transport transmission

parameters to the receiver such as used constellation, frame number,

hierarchy informations. Moreover after the 1705 (6816) information and pilot

carriers the DVB-T's OFDM provide the insertion of 343 (1375) “virtual

carriers”, which are suppressed carriers useful to put under control RF

spectrum profile.

Not being the goal of this thesis to recover synchronization and

transmission information, and being the virtual carrier obviously completely

aimless for video decoding we need just to cut off the fruitless carriers and

send to the de-mapper the right symbol stream. Besides, carriers must be

normalized according to normalization factors for data symbols. There is a set

of values available for both 16-QAM and 64-QAM provided by the DVB

standard, the two options useful for our goals are 10 for the 2k mode and

42 for the 8k one.

46

3.7.1 Scattered, continual Pilots and TPS

While the continual pilots and TPS positions, inside the OFDM symbol,

are fixed by the standard and set in the block as in Figure [3.10], the scattered

pilot carriers are inserted according the following rule. Being k the carriers

index, the ones which k belongs to the subset k=KMIN3 x l mod 4 12p

with p integer grater or equal to 1 and k∈[K MIN ; K MAX] are scattered pilots.

3.8 Fast Fourier Transform

The last implemented block in my receiver is the FFT. GNU radio

framework includes in its toolbox a FFT block which implements the Cooley-

Tukey algorithm, one of the most common and fast way to speed up the DFT

based on the divide-and-conquer approach.

Figure 3.10 : Continual pilot carriers position

47

Being optimally written and resulting extremely fast (or at least really

weightless in the chain time economy) it fitted and worked perfectly.

48

 Chapter 4

Optimization

4.1 Real Time Horizon

Talking about software defined radio cannot be done without having in

mind to make all the effort fruit into working real time system, receiving real

electromagnetic waves and demodulating real signals. Even really rough

implementation is generally much more difficult than just talking. To achieve

real time performances we need to force the whole system to work faster than

the video stream, this means, in other words, that in order to demodulate a 10

minutes video we want the whole system to need less than 10 minutes, at least

in its average. Besides it is correct to state that the system built at this point

still lacks the synchronization and channel estimation parts that may

realistically be quite onerous for the system. As a consequence it is possible to

foresee that, to be abreast with real time goal, the system made so far should

do its work in something less than the video stream time.

So, how far are we from the real time horizon?

49

It results that for demodulating, from the FFT to the MPEG-2 decoder, a

20 seconds video the system need almost 3' and 18'', which means nearly 10

factor between the decoding time and the video time.

4.2 Viterbi Computational Problems

As it has already been suggested, the system has a great bottleneck: the

Vieterbi algorithm. In spite of a really fast Reed Solomon decoder the Viterbi

still lacks speed, in fact while the former take almost the 5% of all the time the

latter approaches the 90% of time consuming. It is a natural consequence to

wonder how it is possible that two error correcting algorithms are so different

in time consumption. The answer relies in two main differences.

First of all, as already said, the Reed Solomon decoder has got as its first

task a Syndrome calculation and evaluation. If these are equal to zero, the

decoder knows it is in presence of a correct codeword and thus it just tears

apart the parity bytes, with a very low computational cost. Viterbi, on the

other side, completely lack this “correctness-check” function and must

accomplish its work on every triple of bits, be them correct or wrong.

Moreover, Reed Solomon accomplishes its whole work every 188*8=1504 bits,

while the Viterbi does everything every 2 bits, thus the operations-per-

decoded-bit rate difference is clearly prominent.

In order to make it faster it is important, anyway, to focus on which part

of the Viterbi consumes the most time. Tests done by stopping (achieved by

commenting in the C/C++ code) some of the Viterbi inner part showed that the

main performance absorber is the add compare select (ACS), which for each

state, every three bits, evaluate the best path and stores the survivors.

50

4.3 Possible Patching

Of course we cannot let this problem stop us in our path through the real

time, so we come to think some of possible patches that can be applied to

make the implementation run faster.

As always, for performances related matters, the easiest way is to wait

for the industry to provide the market with better machines with faster chip-

sets so that they may be able to run the whole program real time. It has to be

underlined that, due to the 64 bits nature of the path-registers, a 64 bits

machine with a 64 bits Operating System has been able to almost halve the

overall CPU time required for decoding compared to of a 32 bit one, actually

we went from 5' and 57'' to the 3' and 18''. Luckily, other paths do exist.

In fact, state of art common user machine are supplied with multi CPUs.

The obvious consequence is that being able to “split” the algorithm in several

different threads will result in a relevant performance boost without having to

wait for hardware to improve. Thanks to its intrinsic nature Viterbi is an

algorithm that could be deserialized with no real effort from the developer.

Indeed it just needs to set a certain number of states for each thread (for

example 16 states for 4 thread) to possibly speed up the system. Surely, even

splitting the work in four pats would not realistically give us a four factor gain

in speed because of the obvious overhead yielded by multi-threading, it is

anyway not very drastic to assume to be able to lower from 10 to 3 the ratio

between decoding and video time.

With regard to the implementation the nowadays GNU-radio framework

does not support thread parallelization inside single blocks! It is true,

however, that its latest release allows an inter-block deserialized scheduler

51

called TPB (Thread Per Block) against the common STS (Single Thread

Scheduler). But while this is a good option (although still to be really tested)

when the problem is an ensemble of uniform computational weight blocks, it

is of really no use when you must deal with a single great bottleneck while all

the rest is running at the speed of light.

Another possible way is, of course, trying to replace the common full

Viterbi algorithm with something faster but not too worse in error protection.

As an example a “reduced-state” Viterbi may offer a great speed boost. In fact

it is really plethoric to show the strong correlation (nearly proportional)

between the number of states taken in consideration as next eligible state and

computational cost, thus is crystal clear that half the states will (almost) half

the time.

It is also true that lessening the states' number will realistically comport a

negative coding gain, or alternatively a minor error correction ability of the

decoder, but the are sufficiently strong clues that it would not be a great one.

In fact it has been shown [4] that going from 16 to 8 state would just result in a

0.3 dB loss. Moreover it is quite typical of this kind of strategy to perform their

best, in our case it means not working too worse compared to the full Viterbi,

with reasonably good SNR, and we are acknowledged that the whole DVB-T

system works only in presence of good SNR. Consequentially thinking to a

reduced state Viterbi as something that will not work too worse than a full

one is not a too limiting hypothesis.

Additionally it should be stressed that having ready a bench software

receiver is allowing us to implement quite easy and, hopefully, not too

computationally heavy soft-Viterbi with its 2 dB of power gain , which might

result in a possible re-gaining the loss yielded by the reduced states.

52

Functional block Implemented GNU-Radio
block name

Percentage of time
consuming

Descrambler rdvb.descrambler_bb 1.1%
Reed-Solomon Decoder rdvb.rs_bb 3.2%

Outer Interleaver rdvb.deinterleaver_bb 1.5%
Viterbi algorithm rdvb.punctviterbi_bb 90.8%
Inner Interleaver rdvb.innerinterleaver_bb 1%

Demapper 16-QAM rdvb.demapper16qam_cb 1.3%
Remove not informative

carriers
rdvb.removevirtual_cc 0.5%

FFT gr.fft_vcc 0.5%

53

 Chapter 5

Implementation Results

5.1 Demodulator Validation Test

Whenever a block had been implemented it had to be validated on a real

input to be sure it would do his job correctly, and once everything had gone

the right way, it had to be tested within the whole demodulation block

sequence. In this view it has been fundamental to have signal “dumps” to

perform these tests. Dumps are just files built from the modulation chain in

Soft-DVB truncated at right position, those, once elaborated through the dual

demodulation block (or blocks) have been byte checked with the original

generator files.

As a newbie I thought that the chain concatenation tests would have

been somewhat redundant once the single block were working perfectly as

single, but it turned out I was definitely wrong. Synchronization of all

functions is critical to the behaviour of the entire systems: each and every

block must understand the precise moment to start working, and it is never

stressed enough that failing in this task always results into a complete failure

54

of the demodulation (at least until the system manages to re-synchronize its

blocks!).

A demodulator as the one done, with two error correction block,

oriented toward a very strong video and audio quality assurance cannot be

considered tested without checking its error correction abilities. In order to see

if the implemented Reed-Solomon and Viterbi decoders were able to fulfil

their duties an ensemble of error corrupted files have been used. Those

corrupted files were done off-line with a self made dedicated C++ application

able to corrupt bits with a user defined error probability (and as a major

checkpoint with a post evaluated BER).

The “perfect” file's bits, then, were corrupted, and the noisy files given to

the chain to demodulate. The results of these tests are reported in following

table.

BER1 BER2 BER3

5,00E-003 0 0

1,00E-002 7,00E-006 0

2,50E-002 2,80E-006 0

3,00E-002 4,80E-004 9,80E-005

3,50E-002 1,00E-003 6,11E-004

Legenda:

BER1 = BER at the input of the Viterbi decoder

BER2 = BER at the output of the Viterbi and thus at the input of the

Reed-Solomon.

BER3 = BER at the output of Reed-Solomon decoding thus at the input of MPEG-2

decoder.

0 = BER is below measurable limits.

55

To validate these results, we can compare the performance of the Viterbi

implemented in my software decoder with an hardware one. As we can see

from Fig [5.1] (obtained from the Institute of Radio Electronics FECT from the

Brno University of Technology [5]) they are almost superposable.

Legenda:
BER1 = BER before Viterbi decoder
BER2 = BER after Viterbi decoder
C/N = Carrier to Noise ratio

Moreover, the Viterbi output BER required for having a QEF streams at

the output of Reed Solomon is, according to the ETSI standard 2e-4, which is

completely in accordance with the receiver error correction capability.

In order to test the Reed Solomon correction efficiency, a random

number (between 1 and 8 for each 204 bytes block) of bytes have been

corrupted in a random way. The decoder has been always able to correct the

artificial errors, besides, when the required proper BER is at its input port, it

is perfectly capable to perform in accordance to DVB-T standard

requirements.

56

Fig. 5.1 : Hardware Viterbi Decoder perfomance [5]

Validation of other implemented blocks has been quite easy. Because of

their nature their functionality was of the “on-off” kind thus the only real test

was connecting the entire revelation system and make tests on the output file.

Since there was no difference (in a byte to byte comparison) between the test

and the demodulated file when an error-free coded video was put at the input

of the FFT, since the BER calculation with the BER-o-METER at the output of

the Descrambling function was congruent with the one outside of the Reed-

-Solomon and, lastly, since the video was perfectly playable by a MPEG-2

video player those blocks have been considered validated.

57

 Chapter 6

Conclusions

In this master thesis work a prototype, fully-software, low-cost, DVB-T

receiver has been implemented. It was developed using open source GNU-

Radio framework under GPL (General Public License) license. In order to be

able to turn any common desktop or laptop computer into a DVB-T compliant

receiver there is still some work to be done: lowering the computational cost

in order to achieve real time performance and complete the demodulators

chain.

This receiver wants to be a starting point to take all the DVB-T

transmission systems form hardware to software implementation, following

the trend of developing new multimedia distribution systems based on

software defined radios. It also aims at exploring new strategies in developing

demodulator functional blocks thanks to the peculiarity of its software nature.

For what concerns the feasibility of the whole project although the time

consumption is quite far from what we would like it to be,it is not

discouraging and it is possible to consider it as a proof of feasibility, as well as

the to forsee that it will be done with just some more work and effort.

58

It is never stressed enough how much software defined radios bears

unprecedented opportunities for service providers, developers and lastly

users, both on small and nation wide networks. While service providers

would be experiencing cost reduction by substituting hardware components

with software ones, developers could create and deploy new technologies

faster and wider, while the end user would benefit from always up to date

systems without the need to constantly change hardware and habits.

59

List of Figures

Fig 1.1 : ETSI DVB-T modulator blocks ..8
Fig 1.2 : COFDM spectrum..9
Fig.1.3 : Multi-path scenario...10
Fig. 2.1 : Python code example...18
Fig. 3.1 : Descrambler schematic block..24
Fig 3.2 : Reed-Solomon decoding blocks..34
Fig. 3.3 : Convolutional Interleaver and Deinterleaver..36
Fig. 3.4 : Mother convolutional with rate 1/2...37
Fig. 3.4 : Puncturing scheme..39
Fig. 3.5 : Four states butterfly with labels..40
Fig. 3.6 : Inner Interleaver, Mode 2k 16-QAM Not-Hierarchical................................43
Fig. 3.7 : Inner Interleaver, Mode 2k 16-QAM Not-Hierarchical................................44
Fig. 3.7 : Symbol Interleaver address computation scheme for 2k (upper) and 8k
(lower) modes...48
Fig. 3.8 : Uniform 16-QAM Maping and bit patterns..49
Fig 3.9 : Uniform 64-QAM Mapping and bit patterns...49
Fig.3.10 : Contual pilot carriers position..51
Fig. 5.1 : Hardware Viterbi Decoder performance...60

60

List of acronyms

ADC Analogue to Digital Conversion
ATSCT Advanced Television Systems Committee
BER Bit Error Rate
BM Berlekamp Massey
CN Carrier to Noise Ratio
COFDM Coded OFDM
CPU Central Processing Unit
DAC Digital to Analogue Conversion
DFT Discrete Fourier Transform
DSP Digital Signal Processing
ETSI European Telecommunication Standards

Institute
FIFO First In First Out
FFT Fast Fourier Tansform
GF Galois Field
GNU GNU's Not Unix
GPL General Public License
HW Hardware
LoS Line of Sight
MAED Multiplex Adaptation for Energy

Dispersal
MPEG Motion Picture Expert Group
NLoS Not Line of Sight
OFDM Orthogonal Frequency Division

Multiplexing
QAM Quadrature Amplitude Modulation
QEF Quasi Error Free
RF Radio Freqeuncy
RS Reed Solomon
SDR Software Defined Radio
SFN Single Frequency Network
SNR Signal to Noise Ratio

61

STB Set Top Box
STS Single Thread Scheduler
SW Software
TPB Thread Per Block
USRP Universal Software Radio Peripheral
VA Viterbi algorithm

62

Bibliography and notes

[1] http://www.etsi.org/WebSite/AboutETSI/AboutEtsi.aspx

[2] http://en.wikipedia.org/wiki/DVB-T

[3] Soft-DVB: http://etd.adm.unipi.it/theses/available/etd-08222008-
002954/unrestricted/SoftDVB.pdf

[4] http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00511109
“It is obvious that the eight-state decoder is a good tradeoff because the performance loss
compared to the 16 state Viterbi decoder is only 0.3dB and the number of processors in the
Viterbi decoder is reduced to eight”

[5] http://www.urel.feec.vutbr.cz/ra2008/archive/ra2006/abstracts/025.pdf

Prof. Marco Luise: “introduzione all'OFDM”

Digital Video Broadcasting (DVB); DVB specication for data broadcasting,
ETSI Std. EN 301 192 V1.4.1, June 2004.

Digital Video Broadcasting (DVB); Framing Structure, channel coding and
modulation for digital terrestrial television, ETSI Std. EN 300 744 V1.5.1, Nov.
2004.

GNURadio website. Available at: http://gnuradio.org/trac

Bernard Sklar Reed Solomon paper:
http://www.informit.com/content/images/art_sklar7_reed-
solomon/elementLinks/art_sklar7_reed-solomon.pdf

63

http://www.informit.com/content/images/art_sklar7_reed-solomon/elementLinks/art_sklar7_reed-solomon.pdf
http://www.informit.com/content/images/art_sklar7_reed-solomon/elementLinks/art_sklar7_reed-solomon.pdf
http://gnuradio.org/trac
http://www.urel.feec.vutbr.cz/ra2008/archive/ra2006/abstracts/025.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00511109
http://en.wikipedia.org/wiki/DVB-T
http://www.etsi.org/WebSite/AboutETSI/AboutEtsi.aspx

	Introduction
	Current solution: full hardware implementation.
	Software Defined Radio : Benefits and Drawbacks.
	State of the art : Soft-DVB Modulator

	OFDM, DVB-T Standard
	1.1 Main features
	1.2 Propagation channel modelling : Ricean and Rayleigh channel
	1.3 Modulator functional blocks

	GNU-Radio Framework
	2.1 Python C/C++ Architecture
	2.2 Gnu-radio blocks and functional blocks

	Demodulator Blocks : R-dvb.
	3.1 Descrambler
	3.2 Reed Solomon Decoder
	3.2.1 Syndrome Computation
	3.2.2 Key Equation Solving: Berlekamp-Massey
	3.2.3 Chien search
	3.2.4 Forney Algorithm
	3.2.5 Considerations

	3.3 Outer Interleaver
	3.4 Viterbi Decoder
	3.4.1– Initialization and butterfly creation.
	3.4.2 Branch Metrics
	3.4.3- Add Compare Select (ACS)
	3.4.4- Consideration

	3.5 Inner De-Interleaver
	3.5.1 Formula evaluation

	3.6 De-mapper
	3.7 Not Information carriers removal
	3.7.1 Scattered, continual Pilots and TPS

	3.8 Fast Fourier Transform

	Optimization
	4.1 Real time horizon
	4.2 Viterbi computational problems
	4.3 Possible patching

	Implementation Results
	5.1 Demodulator validation test

	Conclusions
	List of Figures
	List of acronyms
	Bibliography and notes

