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Introduction

Current Solution: Full Hardware Implementation.

As  a  well  known  and  largely  spread  technology  ETSI  (European 

Telecommunication Standard Institute) DVB (Digital Video Broadcasting) is a 

project  developed  by  an  European-based  industry  consortium,  with  more 

than 270[1] members,  which has been developing specifications for digital 

television broadcasting since 1992, many of them now used all around the 

world from south America to Australia.

Actual  standard  implementation  of  this  technology  rely  completely  upon 

hardware components: hardware is the modulator, hardware is the receiver, 

while software is relegated in small platforms that may be used as substitute 

performing  some plain  TV-related functions  such as  channel  switching or 

video  recording.  Nowadays  digital  audio-video  streams  are  sent  on  air 

through  modulators  built  into  satellites  or  terrestrial  base-stations  and 

received with dedicated hardware set top boxes (STBs) connected to common 

analogue television, or with built in digital-TV.
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To  be  a  winning  technology,  this  standard  had  to  allow  a  variety  of 

transmission  both  over  air  and  over  cable,  with  a  complete  whole  of 

parameters  that  may be  set  to  fit  peculiar  countries'  television  needs  and 

habits, showing a great deal of flexibility. As an example “2k mode” (2048 

carriers) is suitable for single transmitter operation in small single frequency 

network (SFN) with limited transmitter  distances,  while the “8k mode” is 

commonly used for the normal digital television broadcasting, be it terrestrial 

(DVB-T) or by satellite (DVB-S), while the “4k mode” , exclusively for use in 

the DVB-H, offers an additional flexibility hybrid feature.

As said, at the moment of writing almost each and every operation needed to 

convert  an electromagnetic  wave into  a  video  stream (and vice-versa)  are 

executed  trough  dedicated  hardware,  projected  and  set  to  implement  the 

peculiar DVB functions. While this is really handy and reasonable when we 

are dealing just with feasibility problems it soon becomes an heavy, limiting 

burden  when  it  comes  to  face  with  market  inertia,  personalization  of 

characteristics,  IP-TV  competition  and  possibility  of  updates.  It  is  quite 

paradigmatic of this the lack of dynamism shown by technological oriented 

markets based on people unwillingness to change their hardware (and habits) 

without a really strong reason to. Consumers, in fact, seem to wonder why 

should they pay money to renew their own hardware when the old one is still 

perfectly working, and the new one does not offer great improvement.  Of 

course this is quite a rational point of view, but the obvious consequence is 

that  even  good  standard  like  ISDN  or  DAB  dealt  with  insurmountable 

difficulties that turned smart and possible widespread solutions into niche 

technologies. Even DVB, though being honestly quite innovative compared to 

old  TV standards  like  PAL or  NTSC,  is  experimenting  some of  the  same 

difficulties with market inertia: at the time on a whole of almost one billion 

TV householders there are only 143 million digital receivers, with a ratio of 
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one every seven[2]. Of course one might object that it is not bad as diffusion, 

but it is undeniable it is still far away from the speed of brand new software 

spread.

This inertia is a double blade knife, it deals damages not only to the users that 

may be willing to switch to new technologies but are kept back and  forced to 

use old technologies, and also to developers frustrated for seeing their ideas 

not having the hoped success.  

Now, let's focus: what if one can easily and in a free (or definitely cheap) way 

upgrade his own technological equipment to get a better service, or to add 

new functions? What if this could be done remotely from services providers 

on demand? It is even too easy to forecast that almost every one would be 

willing to let his system to improve without any cost! It has not to be stressed 

much that nothing of this is really possible with full hardware components 

where it would be easily obtained adopting software solutions.  

Being already available a completely software DVB-T modulator, developed 

by Vincenzo Pellegrini [3] and presented at the WSR Karlsruhe conference in 

March 2008 (  http://www-int.etec.uni-karlsruhe.de/seiten/conferences/wsr08/

Program_WSR08.pdf     ), aim of this thesis will be the creation of a prototype 

DVB-T software receiver, from the ADC (Analog to Digital Converter) to the 

MPEG-2 (Motion Picture Expert  Group) decoder,  without focussing on the 

channel estimation and the timing synchronization, trying to be as near as 

possible to real time performance. 
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Software Defined Radio : Benefits And Drawbacks.

As said the main aim of replacing hardware component with software ones is 

to win market inertia and let evolutionary not just revolutionary technologies 

access the market. Other great benefits comes when we start talking about 

research.  The chance of  experimenting researched solutions in a software-

oriented systems is in all  way extremely much cheaper and easier than in 

hardware ones, and, as an example, may boost the ability of researchers to 

find  and  implement  better  and  faster  decoding  or  channel  estimation 

algorithm.  Of course this does not come fro free. 

Very complicated real time algorithm, as we need to make software radio, are 

computationally very demanding and functions that may require only a 300 

MHz ASIC could become too hard even for a 3GHz CPU general  purpose 

computer. This is especially true at the receiver side, where the Forward Error 

Correction  (FEC)  work  is  computed  and  the  channel  and  timing  must  be 

estimated.

But is this a real insurmountable bottleneck? Of course it controversial, but 

we strongly believe it is not. Smart code writing, threads deserialization on 

multi-CPU machines,  and faster  processors  may be  much of  help  making 

even heavy programs good for running at real time.

Benefits  of  developing  Software  Define  Radio  (SDR)  are  not  ended  here. 

Another  great  feature  their  intrinsic  portability  and  flexibility:  a  good, 

performing and fast code has to be written just one time, then its copies are 

done free of charge, tearing down the comprehensive cost of hardware based 

components. 
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There's  an  additional  point  of  view.  Nowadays  traditional  media  have 

another growing up competitor:  IP (Internet  Protocol)  TV.  In order  to not 

being  eliminated  by  the  natural-user  selection  of  technologies,  traditional 

media  broadcasting  have  to  keep  or  even  boost  its  advantages  over  IP 

infrastructure, pointing not only toward their intrinsic strong point such as 

scalability, but also trying to give the user services that may be given form an 

IP TV, consequentially it is imperative to provide the end user with a state of 

the art multimedia products,  otherwise the consumer will switch for a PC 

CODEC easily downloaded from the Internet.

Moreover,  we  are  assisting  to  the  diffusion  of  small  cellular  phone  who 

perform  TV  decoding  functions,  letting  people  look  at  what  they  want 

whenever they want ans wherever they are. Having a strong tested software 

able of demodulating a DVB-T signal on common users CPU, would let the 

technology  owner  be  able  to  turn  any  normal  Laptop  into  a  TV receiver 

probably taking back home the “smart-phone” TV market.

State Of The Art : Soft-DVB Modulator

As a first step let us point out the state of art about software defined radio. 

At  the  time of  writing  the  open source  community  has  released  the  3.1.3 

version  of  “GNU-Radio”,   an  ensemble  of  tools  created  in  order  to  help 

developers to “translate” hardware operations into soft ones. 

GNU-Radio  had  been  used  as  the  framework  for  SDR  real  time  DVB-T 

modulator made by Vincenzo Pellegrini. This piece of software is able to put 

in air a 2 Mbps DVB-T signal, with a 2/3 puncturing convolutional channel 
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coding,  perfectly  receivable  by  any  DVB-T  receiver.  An  useful  feature  in 

creating its “dual” was Soft-DVB's ability -of course not present within the 

hardware  world-  of  creating  dump  intermediate  files  for  testing  single 

demodulator  parts.  This  modulator has been largely  tested and used,  and 

showed great reliability with contained computational cost that allowed itself 

to be run even over very low profile desktop and laptop computers. 

Of  course  we all  know,  by daily  experience,  that  listening is  harder  than 

talking (especially if you are trying to listen to a single person inside a noisy 

crowd form a certain not negligible distance...), and this is also reflected  in 

communication  devices  by  a  major  amounts  of  functions  and by  a  major 

computational  weigh  of  each  one  beside  its  dual.  As  a  consequence,  the 

receiver implemented in this thesis will not be real time, but it will still try to 

be as fast as possible, so it will be work for others to to speed it up.

Lastly, to connect the “hyperuranium” ideas world of software to the material 

real world Soft-DVB, and consequentially my demodulator, uses a Universal 

Software Radio Peripheral (USRP) interface, connected via a fast USB port to 

a  common  Desktop  PC.  USRP  duties  are  not  really  complicated,  it  must 

perform a simple conversion with a DAC (Digital Analog Converter), filtering 

and a translation to Radio Frequency, while all the mathematical operation, 

coding,  scrambling,  (i.e.  baseband  DSP)  are  computed  by  software  by  a 

general purpose machine. 
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                                                          Chapter 1

OFDM, DVB-T Standard

1.1 Main Features

Digital  Video  Broadcasting  is  the,  most  widely  deployed  system  to 

deliver both standard definition and high definition video to digital TV users. 

It is defined as an ensemble of functional blocks performing the modulation 

of the baseband TV signals from the output of the MPEG-2 coder into the 

terrestrial  channel. Optionally, it is possible to transmit two (high and low 

priority) MPEG-2 transport streams in hierarchical mode and/or data channel. 

Video distribution over Single Frequency Network is supported too.

Apart  from the American world,  DVB-T is deployed in more than 70 

countries  (European  Union,  Russia,  India,  Israel,  Egypt,  India,  Australia...) 

from all  over  the world.  Such a  spread would not be  explainable  without 

stressing on DVB-T matchless ability in delivering high definition audio-video 

streams even trough multi-path distorted channel.  In order to perform this 

Fig. 1.1: ETSI DVB-T modulator blocks7



good DVB needs a typical bandwidth of 8 MHz. Using such a large spectrum 

we can  neither  assume nor even  hope to  experience  an  AWGN (Additive 

White Gaussian Noise) flat channel, where a fading, multi-path selective one 

is more likely.

To avoid the channel problems, rather than carrying the data on a single 

radio frequency carrier, OFDM (Orthogonal Frequency Division Multiplexing) 

works by splitting the digital data stream into a large number of slower digital 

streams, each of which digitally modulate a large number of closely-spaced 

orthogonal sub-carriers are used to carry data. Orthogonality between carriers 

guarantees the smallest inter-carriers interference while minimizing the space 

from carrier to carrier thus maximizing the spectral efficiency. In the case of 

DVB-T, there are two choices for the number of carriers known as 2K-mode or 

8K-mode.  These are actually 1705 or 6817 active carriers  (respectively 2048 

and 8192 considering the “virtual” suppressed ones) that are approximately 4 

kHz or 1 kHz apart. 

Built to be used as an high performing video standard the OFDM signal 

has  to  be  well  protected  from  errors  due  to  the  noisy  channel.  The  the 

standard provides two error protection codes, an inner and an external one. 

For  DVB-T  they  would  be  a  convolutional  punctured  code  and  a  Reed-

Solomon coding algorithm. 

1.2 Propagation Channel Modelling : Ricean And Rayleigh Channel
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As already pointed out DVB-T typical propagation channel is multi-path, 

both Line-of-Sight (LoS) and  No Line of Sight (N-LoS). The main consequence 

of the reflection, refraction and scattering of the electro-magnetic wave, beside 

of the time-variant channel is fading in and echoes. 

Fig. 1.2: COFDM spectrum

Fig. 1.3 : Multi-path scenario
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Designed to provide digital high definition TV services to both urban 

and rural areas, the DVB-T standard has been developed in order to express 

good performance  in  LoS and N-LoS multipath channels.  The system was 

validated  by  ETSI  against  the  typical  multipath  channel  model,  with  both 

Rayleigh (N-LoS) and Ricean (LoS) fading. 

In  No  Line  of  Sight  condition,  typically  urban  areas  where  we  can 

assume  not  having  a  direct  ray  from  the  transmitting  antenna  and  the 

receiving one, channel is statistically modelled as it follows: 

•  Path magnitude is an aleatory variable  Ri with density probability 

function: 

f Ri
=2∗e−2

u 

• Path phase is an aleatory variable uniformly distributed:

f Ri
= 1

2
∗rect−

2 

Otherwise in a more optimistic scenario when it is possible to assume a 

direct ray, like in rural areas, we may use the Ricean model:

• Path magnitude : 

f Ri
=2 k−1 e−k12− k I 0 2k k1u  ;

• Path phase:

f Ri
= 1

2
∗rect−

2  .
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Where k is the “Rice factor” k= LoS RXPower

NLoS RXPower   and  I0 is the modified 

Bessel function of the first kind with order zero:

I 0 z =1over 2∫
0

2

e zcos d 
.

To ensure a Quasi Error Free condition at the receiver MPEG-2 decoder, 

the system behaviour has been tested in terms of required Carrier to Noise 

ratio  (C/N).  Test  result  are  shown  in  Table  [1.1].  They  clearly  show  the 

flexibility  obtainable  with  different  modulation  options,  in  order  to  allow 

transmissions  over  the  various  condition  of  propagation  scenarios.  ETSI 

standard also suggests that in order to achieve the QEF condition we must 

provide enough SNR and enough bit-protection to have an error probability 

of P e=2x10−4  after the first error correction function (Viterbi).

It  is  easy  to  state  DVB-T  can  put  in  play  really  good  performance, 

especially in N-LOS multipath environments such as densely populated urban 

areas, this characteristic was of great importance in allowing ETSI DVB-T to 

outperform  its  American  competitor,  namely  the  Advanced  Television 

Systems Committee  Standard (ATSC). In fact  ATSC relies  upon a different 

modulation system,  namely 8-VSB which is  much less  robust  to  multipath 

propagation than DVB-T's OFDM.
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Modulation Convolutional  

Rate

Required C/N,  

Gaussian Channel

Required C/N,  

Ricean Channel

Required C/N,  

Reyleigh Channel

QPSK 1/2 3.1 3.6 5.4

QPSK 2/3 4.9 5.7 8.4

QPSK 3/4 5.9 6.8 10.7

QPSK 5/6 6.9 8.0 13.1

QPSK 7/8 7.7 8.7 16.3

16-QAM 1/2 8.8 9.6 11.2

16-QAM 2/3 11.1 11.6 14.2

16-QAM 3/4 12.5 13.0 16.7

16-QAM 5/6 13.5 14.4 19.3

16-QAM 7/8 13.9 15.0 22.8

64-QAM 1/2 14.4 14.7 16.0

64-QAM 2/3 16.5 17.1 19.3

64-QAM 3/4 18.0 18.6 21.7

64-QAM 5/6 19.3 20.0 25.3

64-QAM 7/8 20.1 21.0 27.9

Table 1.1 Required Channel to Noise ratio to have BER=2x10^-4 after Viterbi decoding.
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1.3 Modulator Functional Blocks

Before getting in the heart of receiving functions, it is worth to focus a 

while on the transmission side and have a look to standard' s directives on 

functional blocks shown in Fig [1.1]. Of course, not being the main spot of this 

thesis, I am not going deep inside the modulator blocks that will be briefly 

summarized :

1. Multiplex  adaptation  for  energy dispersal (MAED).  It  is  a  stream 

byte-scrambling unit with the purpose of removing time correlation between 

bits in the MPEG-2 transport streams by performing a bit-wise XOR with a 

proper defined PRBS. It  also inverts  the first byte (namely the SYNC byte) 

every 8 MPEG-2 frames

2. Outer  encoder.  A  typical  Reed-Solomon  (204-188)  encoding 

procedure derived from a common (255-239) by inserting 51 null bytes in the 

head of the frame. Its main purpose is to protect the audio and video stream 

from Viterbi burst errors. As specified by the standard, and better explained 

later,  the  Galois  Field  polynomial  generator  is: p x =x8x4x3x21 ,  

while  the  code  polynomial  is  generated  by: g  x=∏
i=0

i=15

xi where

=02HEX  

 

3. Outer  interleaver.  A  convolutional  byte  oriented  interleaving 

block  based  on  the  Forney  approach.  Its  purpose  is  removing  correlation 

between casual errors due to a Viterbi failure at the decoding part.

4. Inner coder.  A widely used convolutional encoder, built from a 

mother of ½ it is possible to rise the rate with puncturing technique from 2/3 
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to  7/8.  Convolutional  generators  are: G1=171OCT  and  G2=133OCT .  The 

convolutional is the main error correction block, its purpose is to protect bits 

form noisy channels in order to obtain the QEF condition.

5. Inner  interleaver.  Composed  by  a  DEMUX  and  two  different 

interleaver  (the first  working on bits  the second on “words”)  is  needed to 

avoid time correlation in the errors at the input of the Viterbi decoding block 

and to avoid, in transmission, to certain bit to be sent on air always in the 

same carriers with bad Signal to Noise ratio.

6. Mapper. It map the bit stream into symbols. It is possible to chose 

between QPSK, 16-QAM and 64-QAM. 

7. OFDM modulation. Perform  the  virtual  carriers,  TPS and pilot 

carriers insertion into the signal before computing the IFFT.

8. DAC,  Digital  to  Analog  Converter.  As  the  name  suggest,  it 

performs the conversion from deigital samples to analogue signal by means of 

interpolation.

9. Radio  Frequency front  end.   It  shifts  the base-band signal  to  its 

proper frequency for the desired TV channel and sends it to the aerial. 
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                                                          Chapter 2

GNU-Radio Framework

2.1 Python C/C++ Architecture

GNU-Radio is a free software development tool-kit created to build and 

test  and  defined  radios.  Its  main  characteristic  is  to  provide  the  signal 

processing runtime, the flow control between implemented “blocks” (where 

the typical communication functions happen) and to handle bufferization and 

the exchange of data. The use of GNU-Radio allow to implement the user with 

a  strong  communication  background  and  a  good  knowledge  of  C/C++ 

languages to create software defined radios using readily-available, low-cost 

external RF hardware and general purpose commodity processors.

GNU  Radio  applications  are  primarily  written  using  the  high  level 

scripting language Python, which main scope is providing GNU-Radio a data 

flow  abstraction.  Its  fundamental  atoms  are  “signal  processing  blocks”, 

implemented in C/C++, doted of one or more input and one or more output 

ports. These blocks, are pre-implemented classes where the developer must, 

generally speaking, override some member functions in order to obtain the 

desired  work.  Their  positions  and  their  connections  are  organized  into  a 

“flow-graph”. Besides, the Python has the purpose of dealing with the USRP 
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(Universal Software Radio Peripheral: our external Radio frequency terminal), 

in order to do so the Python runs the C/C++ classes needed for the USRP to 

work. Thus, being all the hard (computationally heavy!) work done by the C/

C++ code the developer is able to implement real-time, high-throughput radio 

systems in a simple-to-use, rapid-application-development environment. 

Moreover,  the framework comprehends a list  of pre-written blocks to 

perform  basilar  and  common  telecommunication  functions.  This  is 

comprehensive of FIR filers or FFT transform, in addiction to blocks needed 

to handle the data structure in the graph.   

While not a simulation tool, GNU Radio does support development of 

signal processing algorithms using pre-recorded or generated data stored into 

files, avoiding the need for actual RF hardware usage. This comes in handy 

when  you  have  to  validate  and  test  performances  of  single  or  group  of 

implemented  processing  blocks  before  being  able  to  use  it  with  Radio 

Frequency  real  signals.  As  an  example,  any  new idea  for  implementing  a 

demodulation function could be just implemented and tested firstly by itself, 

with the proper input and then with all the systems. 
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 Fig 2.1 : Pyhton code example
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2.2 Gnu-radio Blocks And Functional Blocks

As already shown in previous chapter, ETSI DVB-T standard determines 

a number  of  functional  block for  the modulation part  which make up the 

simple MPEG-2 audio-video stream ready for the RF, but, of course, it does 

not tell anything for what is about the receiver part. The path to follow, then, 

will  be  of  implementing  into  each  GNU-Radio  block  a  dual  for  every 

functional  block  in  the  modulator.  The  philosophy of  using  a  GNU-Radio 

block for each standard function has shown herself  to be the best trade-off 

between speed throughouts (that would anyway be slightly incremented by 

using  just  one  block  to  perform  all  the  decodification  process)  and  code 

readability  and portability.  This  doing  will  result  in  the  “chain”  of  blocks 

shown in Fig 2.2. Of course in projecting these duals there is high degree of 

freedom particularly in choosing the best algorithms to perform the needed 

functions. 

Having in mind the goal of taking the signal from the antenna to the 

monitor  with  a  test  bench  receiver  (this  means  avoiding  the  channel 

estimation and the synchronization, functions that may as well be introduced 

later  ),  the  difference  between  riding  the  wave  (and  consequentially 

implementing from the next-to-antenna block) or going backward from the 

one nearest to the MPEG-2 decoder is just a matter of strategy. Both paths 

present  their  peculiar  advantages  and drawbacks.  Going the  straight  way, 

surely would have allowed to set the entire data structure step by step, and 

furthermore it is somewhat more “natural”, but on the other side it would be 

quite an effort to check the correctness and the functionality of each function. 

As  an  example  it  would  not  at  all  be  easy  to  understand  if  the  channel 

estimation  and  the  timing  synchronization  were  done  correctly,  having  to 
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wait  until  the  last  block  to  be  really  sure.  Otherwise  the  going  backward 

option is surely more useful in debugging operation. This because the only 

thing to  do to  check  if  a  new block works  or  not  is  to  connect  the  entire 

system, run it, and have a look to the decoded video. The bad part of this 

implementation strategy relies in the synchronization between blocks, in fact 

it is quite hard to think and implement a working systems while not aware of 

what will definitely trigger everything on. In fact, as will be better explained 

later,  there are some parts that cannot work in “stream” mode, but need a 

vectorized data structure, they need, in simple words, to work on groups on 

N bytes. But this opens a problem: when they must start to consider a byte at 

their input a valid byte? When the receiving byte will be stream byte and not 

just noise? The problem has been solved by looking some transport stream 

known byte, (namely the SYNC and inverted SYNC bytes), but still it would 

be usefull, when everything will be ready, to define an inner way to trigger on 

and to trigger off each demodulator part.  

All summed up, and considering GNU-Radio pre-implemented blocks, 

which can make setting up of the data structure neither difficult nor really 

effective  on  performance,  estimating  the  benefits  would  outmatch  the 

drawbacks  we  adopted  the  reverse  way  strategy,  from  the  video  to  the 

antenna. 
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Figure 2.2 : Receiver functional blocks
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                                                          Chapter 3

Demodulator Blocks : R-dvb.

3.1 Descrambler

Before letting the base-band video stream be processed by the MPEG-2 

decoder it must be de-randomized. The randomization process takes part in 

DVB standard to perform a M.A.E.D.  (multiplex adaptation for energy dispersal). 

In order to do so the scrambler computes a bit-XOR between the video stream 

and a PRBS (pseudo random binary sequence) generated with a linear feedback 

shift  register  (LFSR)  by  the  generator  polynomial: p x =1x14 x15

initialized with the sequence: 100101010000000.

The MPEG-2 transport packet is composed of 187 bytes + the SYNC byte 

(0x47) at its head, following ETSI directive to provide an initialization signal 

to the descrambler the SYNC byte every 8 transport packet is bit-wise inverted 

from 0x47 to 0xB8. The SYNC bytes had not be randomized, thus they must 

not be de-randomized but just inverted one every eight, this has been easily 

achieved by computing the bit-XOR operation with 0xFF.
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Finally every eight transport packets the initialization sequence, the seed, 

must be reloaded into the LFSR, doing so will result in our PRBS having a 

periodicity  of  1504  bytes.  By  this  point  of  view,  being  the  XOR  the  base 

operation  a  descrambler  is  almost  the  same of  a  scrambler,  except  for  the 

synchronization matter.

The inner periodicity of this descrambling operation suggest a fast and 

easy  implementation  strategy:  pre-calculate  during  initialization  the  1504 

bytes composing the PRBS and store them in a vector  which will  be used 

when needed to perform the XOR.

As can easily be deducted, the synchronization between the first SYNC 

byte (the first 0xB8) and the descrambling operation is all-important, so it is 

demanded to the block to recognize a good sync byte and line up its PRBS.

As an additional feature, the Descrambler implements a BER-o-METER 

to simply evaluate the  signal corruption level after the FEC decoding states. 

The estimation is done by working out the hamming distance between the 

received  sync  byte  (after  synchronization  has  been  recovered)  and  the 

expected byte (both 0x47 and 0xB8). 

Moreover this BER estimation is used to avoid false SYNC alignment. It 

is more than obvious that mistaking an inverted SYNC would result in a BER 

very  similar  to  ½,  thus  if  the  BER  goes  over  a  limit  the  block  stops  its 

descrambling work and starts looking for a new inverted SYNC byte.
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3.2 Reed Solomon Decoder

It is well known that an MPEG-2 video stream is very compressed, but 

its  efficiency  in  terms  of  information  bit  for  binary  symbol  had  a  price: 

fragility and great susceptibility to errors. As a consequence any corrupted bit 

may  comport  substantial  degradation  in  the  video  quality  and  has  to  be 

avoided.

To provide the end user a high definition video experience, the standard 

expects the system to be able to put out a QEF (Quasi Error Free) MPEG video 

stream, where the QEF condition is obtained when BER10−11 . As a direct 

consequence,  the  system  must  have  some  very  good  error  correction 

algorithm,  without  inserting  too  much  redundancy.  The  concanetion  of 

Viterbi (convolutional) and  Reed Solomon (RS) FEC is the solution adopted 

by ETSI.

 Reed Solomon coder is a systematic code (this means that a portion of 

output word includes the input in its original form) with little insertion of 

parity  bytes  (in  DVB-T  RS  rate  is  only  1,085  16  parity  bytes  every  188 

information bytes). At any rate its main interesting characteristic, being byte 

oriented,  is  its  intrinsic  ability  to  perform  well  against  “burst”  errors,  the 

Fig. 3.1 : Descrambler schematic block
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typical kind of mistake a Viterbi decoder might do. In fact from an RS point of 

view a  byte  which  has  just  a  single  erroneous  bit  and  a  byte  completely 

mistaken are “wrong” to the same extent. 

The Reed Solomon implemented in DVB-T is a shortened (204,188) code, 

built from a classical (255,239) where the 51 remainder bytes are all set to zero 

during the coding procedure and consequentially not transmitted. The first 

assignment  of  a  decoder  then  will  be  re-inserting  this  51  zeros,  and  then 

compute the decoding process. Such a code is able to correct up to 8 erroneous 

bytes put everywhere inside each 204 bytes word. 

In  order  to  understand how this  code works  we must  afore  have an 

introduction in Galois (or finite) Field Algebra on which relies cyclic code. For 

each prime p  does exist a Galois Field GF(p) made of p elements, this field 

may be extended in field GF( pm ) where “m” is an integer greater than one. 

The Galois field we need for our Reed Solomon code is GF( 28 ) so we can 

arrange binary words of 8 bit (in other words: a byte). 

In a Galois field must be defined two operations: sum and product, with 

the following properties:

• closure (if a and b are elements of GF(m) then also a + b and a x b are 

elements of GF(m)

• associativity, commutativity, distributivity

• existence of the neutral element
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Beside the elements 0 and 1, whose existence is given by definition, there 

will be a  primitive element  a such each and every not null element f the GF 

may be represented as a power of a.

As we can see, then, we will have rings of sum and multiplication such 

as,given a element of GF a pm−1=1=a0 . For our need it becomes  a255=1 , 

while the addiction will easily be the binary XOR. 

A class of polynomials  called  primitive polynomials  is of interest as such 

functions define the finite fields GF( 2m ) that in turn are needed to define RS 

codes,  in  our  case  we  shall  have 1X 2X 3X 4X 8=0  as  our  field 

generator polynomial and a=0x02=00000010  as our base element.

     

As a consequence it is easy to state that every possible codeword can be 

mapped  into  a  Galois  Field  element,  so  the  RS  decoder  block,  during  its 

initialization phase, will generate the field and store this result into a vector, 

so that converting bytes into powers and powers into bytes could the easiest 

(and fastest) possible. During this initialization phase, that take place in the 

class constructor, the block will also create a “multiplication matrix” and an 

inverse vector, in this way every possible operation needed in the decoding 

phase will be copmleted with just a look-up.

3.2.1 Syndrome Computation

But why we need all this mathematical stuff? It is fast explained. The 

coder interprets the 188 byte as coefficients of a polynomial expressed with 

Galois Field's elements, naming d(x) the word to be coded (and thus the one 

we wish to decode..) we have: d x=d 0d 1∗xd 2∗x2....d 187∗x187  
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The coder now will use another polynomial namely the  code generator  

polynomial g(x) that characterizes the code: 

                          g  x=x−a0∗x−a1∗x−a2∗...∗x−a15=∏
i=0

15

x−ai .

to evaluate the code-word c(x):

                                                    
c x =x16∗d x p x

                         

where p(x) is

                                                 p x =x16∗d xmod g x 

Consequentially it is quite easy to state that c a i=0∀0≤i≤15 that is 

the condition we need in  order  to  understand how correct  is  the received 

word.

Now,  the  first  thing  the  decoder  does  is  to  compute  the  Syndromes  

evaluation.  These  Syndromes  are  obtained  by  just  evaluating  the  received 

polynomial named R(x) in the roots of g(x) . In fact, if the received bytes are 

correct  it  will  result  Rai=cai=0 .  Calculated  syndromes  are  then 

organized into a polynomial in the following way: S i =Rai .

If all these syndromes are equal to zero then the codeword is correct and 

the only function of the decoder will be eliminating all the parity symbols, else 

way it has to try to correct the errors.

3.2.2 Key Equation Solving: Berlekamp-Massey

Lets  assume the Syndrome polynomial is  not a null  one.  Next step is 

locating the errors  position and evaluate  the entity,  the magnitude  of  this 
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errors. In order to achieve this result we must solve the  key equation,  a non 

linear system that links syndromes to errors and their position. Solving by 

common way this system would be much an effort so the problem is split into 

2 steps:

1. Evaluate  an  error  locator  polynomial  C(x),  whose  roots  are  the 

positions of the errors.

2. From C(x) evaluate a magnitude polynomial . 

In order to evaluate C(x) two algorithms have been mainly proposed, the 

Euclidean  and the Berlekamp-Massey.  The first  is  easier  to  implement  but 

heavier, the latter then has been chosen to be implemented due to his lesser 

computational cost.

Berlekamp-Massey algorithm pseudo-code steps are the following:

1. Initialization of variables: C x=1 ; Dx =x; L=0 ;n=1  

2. Discrepancy computation:

                                            =Sn∑
i=1

L

C i∗Sn−i

3. Discrepancy test, if =0 go to step 8, else go to step 4

4. Error location polynomial modification:

                                               C x =C x −D x 

5. Registry length test: if 2L≥n then go to step 7, else go to step 6

6. Registry length and correction term modification:

                                                        L=n−L

                                                  D  x=C  x/

7. Error locator polynomial update:

                                                      C x = C  x  

8. Correction term update:
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                                                      D  x= D x 

9. Element counter update: 

                                                           n=n1

10. Syndrome element number check: if n<16 go to 2, else stop.

If everything is done correctly, it will result in a polynomial C(x) which 

roots  are  the “position” of  the errors,  of  course now it  is  time to find out 

where  this  roots  are,  in  order  to  do  this  we use  a  well  known algorithm 

known as the “Chien search”.

3.2.3 Chien search

As soon as the demodulator completes the Berlekamp-Massey Algorithm 

it  has  to  look  for  C(x)  roots,  to  locate  the  errors  in  the  codeword.  Being 

working in Galois Field the easiest way to do it  is  an algorithm known as 

Chien search.  This is nothing more than an exhaustive search: it just evaluate 

C a i for every possible i from 0 to 254: if it is zero then a i is a root and 

consequentially “i” is the position of the error.

To save time, when eight errors have been found the Chien search will 

be stopped. Our Reed Solomon code can correct up to 8 errors, so it is of no 

use to go on searching.
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3.2.4 Forney Algorithm

Now that we know where erroneous byte are we still lack  information, 

in fact  the decoder must be able to  find the  magnitude  of the errors,  to let 

correction be possible. This is achieved using the Forney Algorithm.

First of all we compute the error magnitude polynomial as it follows:

x =[1S x ∗C x]mod x17

The second step is calculating the formal derivative of C(x). This is quite 

easy, not only because C(x) is a polynomial but also because, due to the XOR 

nature of the addictive operation in Galois Field algebra, the even powers will 

always have null derivative.

At this point our block must evaluate the error amplitude: 

                                            ek=X k

[X k
−1]

[C '  X k
−1]

where C'(x) is the upper defined formal derivative and X k  is the k-th 

root of C(x).

Once iterated the Forney algorithm for each X k it is time to correct our 

code word, as said the position of the error will be degree X k  and its entity 

ek . 

Now, the only remaining steps are to sum (or better XOR) the corrupted 

byte with the correspondent “error”,  to discard the 16 parity bytes, and our 

corrected word is ready to be de-scrambled.
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3.2.5 Considerations

As previously  stated,  this  Reed Solomon decoder  can correct  up to 8 

errors, where errors are corrupted bytes whose position in the codeword and 

amplitude are both unknown. But what does happen when there are more 

than 8 erroneous byte in the codeword? There are two possibilities. 

The first  one happens  when the decoder  “understand”  it  is  trying to 

correct  something  that  is  over  its  correcting  ability  and  then  give  it  up, 

copying  in  its  output  the  188  information  bytes  without  performing  any 

correction  and  hoping  most  of  the  errors  were  in  the  parity  bytes.  This 

acknowledgement happens when the formal derivative of the error position 

polynomial evaluated in the inverse of C(x) roots during the Forney algorithm 

becomes zero.  

The  second one happens  when the  decoding  algorithm is  completely 

fooled  by  the  errors,  and  the  received  codeword  looks  like  another  valid 

codeword. In this case, which usually happens with lots of errors, the decoder 

would not limit itself to neutrality, but it would even introduce newer errors, 

by “correcting” the not corrupted bytes. At any rate this chance is not critical. 

Whenever a signal is so bad to confuse the Reed Solomon it is probably too 

noisy also for the other blocks, and we should not forget that the system is 

thought to give the user a QEF video stream, so the unlucky event should be 

avoided by other means. 
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Fig. 3.2 : Reed Solomom decoding blocks
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3.3 Outer Interleaver

Between  the  two  error  protection  blocks,  the  Vietrbi  and  the  Reed 

Solomon  decoders,  the  DVB-T  standard  provides  a  state  of  convolutional  

interleaving.  The rationale  behind this  becomes quite  clear  once stated that 

typical Viterbi errors are burst errors, and that Reed Solomon really improve 

its performance in presence of “uncorrelated” corrupted bytes. 

Interleaving is a technique commonly used in communication systems to 

overcome correlated channel noise such as burst error or fading. It rearranges 

input data such that consecutive data are split among different blocks so that 

the latter error correction block may be capable of making them up.

As shown in Fig[3.3], the de-interleaver is composed by 12 FIFO (First In 

first  Out)  shift  registers  (namely  from  0  until  11)  which  are  cyclically 

connected  to  the  byte  stream,  both as  input  and as  output.  The  first  shift 

register of the interleaving function does not have buffers, as a consequence 

the interleaver results  conservative about SYNC (0x47) and inverted SYNC 

(0xB8) bytes. This is very important during the dual function. In fact, would 

the  de-interleaver  mistake  the  first  inverted  SYNC  byte  and  put  it  in  a 

incorrect line, it would result in an completely unreadable and unrecoverable 

video stream. Knowing this the de-interleaver must keep an eye on the first 

shift register and expect to see there a SYNC every 17 bytes and  an inverted 

SYNC every 8 SYNCs.

The  latter  function  is  implemented  through  a  BER-qatch  over  the 

expected SYNC bytes. The difference of course relies on the threshold, being 

before the Reed Solomon block we are forced to tolerate an higher error ratio, 
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thus  whenever  this  BER goes  over  10−2 the block will  assume to  be not 

correctly aligned and will perform an inverted SYNC search in the stream.

Fig. 3.3 : Convolutional Interleaver and Deinterleaver
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3.4 Viterbi Decoder

Followoing the DVB-T directives the channel error protection code is a 

convolutional  code with constraint   length L=7 and generator  polynomials 

G x=171OCT G y=133OCT ,  which  conceptual  scheme  is  reported  in  the 

following figure.

The classical method of decoding convolutional codes has been proposed 

by Andrew James Viterbi. The Viterbi Algorithm (VA) is a recursive process 

which consists in finding the most-likely state transition sequence in a state 

diagram, given a sequence of symbols. In practice, the VA is observed as a 

finite-state Markov process whose representation is either a state transition 

diagram or a trellis.
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The mother  code rate  imposed by DVB-T standards  is  1/2.  However, 

higher code rates such as  
2
3

, 4
5

, 5
6

, 6
7

or 7
8  can be derived from the mother 

code, by simply introducing “puncturing”.

On  the  encoder  side,  the  so  called  puncturing  consists  in  deleting  a 

certain number of bits in the encoded stream according to perforation patterns 

(as shown in Fig [3.4]) which indicate the  positions for bits to be deleted. 

It is important to stress that the decision depth is lengthened to almost 

15*L, where L indicates  the constrain length of the convolutional code (for 

DVB compliant convolutional  L=7), then the classical Viterbi Algorithm can 

be applied. Thus in the implemented Viterbi was needed a decision depth of 

105, but as already affirmed we use 64-bits registers to memorize path , as a 

consequence the used memory must  be an integer multiple of 64. For such 

reason it has been decided to choose 128-bits memory register realized with a 

vector of two 64-bits buffer.

The  coding  rate  selected  in  Soft-DVB  modulator  is  most  common  in 

commercial use, and also the one selected for Italian DVB-T transmission. It is 

a  good  trade  off  between  error  protection  and  redundancy:  2/3.  On  the 

decoder side, depuncturing can be obtained following at least two strategies. 

The first way consists in inserting, in place of the deleted symbols, an a-

priori-known  symbol  equidistant  from  both  “0”  and  “1”.  This  means  to 

substitute the standard Hamming distance with a doubled one where distance 

from 1 to 0 is 2 and distance between the known symbol and 1 (or 0) is one. It 

is easy to think at this symbol as at ½. In order to do so without wasting time 
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the  block  sets  a  distance  matrix  by  pre-calculating  it  during  initialization 

phase.

Another strategy is the one of considering the punctured 2/3 as an actual 

real 2/3 convolutional and then decode it in the very standard way.

Both path have been tried and tested, while they have shown the very 

same attitude against noise the latter Viterbi has shown to be slightly faster 

and it  looks also a cleaner approach than the first,  so it was chosen as the 

convolutional decoder implementation.
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3.4.1– Initialization and butterfly creation.

The Viterbi algorithm has shown to be quite computationally expensive, 

even if enormously better than an exhaustive strategy. This  means that the 

first thought when implementing a Viterbi is to pre-calculate everything that 

can be pre-calculated.  This  will,  of  course,  slightly slow down the starting 

phase but it will really boost the decoding time.

During this start-up then the implementation will build up the distance 

matrix (a simple matrix whose inputs are all the possible labels and all the 

possible triples of bits and with the Hamming distance as output), and will 

create the “butterfly”,  a sort of finite state machine which stores all details 

about Viterbi states (paths, branches label..). An example of a simple butterfly 

for a 4 states Viterbi is shown in Fig[3.5].

As  provided  from  the  standard,  and  easily  derivable  from  the 

convolutional  scheme,  the encoder  will  have 6  shift  registers  and this  will 

result into a 26=64 states butterfly.

Fig. 3.5 : Four states butterfly 
with labels
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3.4.2 Branch Metrics

Once passed the start up phase, the branch metrics computation is quite 

straight forward. The decoder must just take the three bits at the input of the 

Viterbi  and evaluate  the Hamming distance with the pre-calculated labels, 

using  both  the  input  and  then  label  as  input  for  the  distance  matrix 

instantiated in the previous phase.

3.4.3- Add Compare Select (ACS)

Once computed the branch metrics it comes to add those to the previous 

state accumulated metric with the goal of selecting, for each state, the smallest 

one.

Once done, each state will update “path”, 64 two elements vectors made 

of  64-bits  registers  who stores the Viterbi-path in the trellis  in the form of 

output decoded couple of bits. When this buffers are full, the one with the 

smallest  metric  associated  will  be  the  one  selected  to  send  to  the  output 

interface the decoded couple of symbols.

3.4.4- Consideration

As  can  easy  be  derived  from  the  description,  Viterbi  algorithm 

implemented is a classical Hard-Viterbi, this means that it may take as input 

only already de-mapped symbols, and indeed it computes the branch metrics 

by calculating an Hamming distance while an Euclidean one would be needed 

to realize a soft Viterbi.
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Of course it would be possible to implement a soft version which should 

provide us of the known further 2 dB in coding gain, but this would coerce us 

to  evaluate  no  longer  just  an  Hamming  distance,  but  an  euclidean  one 

probably  becoming  quite  too  heavy  for  the  CPU  that  has  already  being 

showing great stress with the “normal” weight of the hard Viterbi. 

3.5 Inner De-Interleaver

It's common knowledge that Viterbi decoders have their weak point in 

strongly correlated errors  patterns,  in other words they have difficulties  in 

recovering a bunch of erroneous bits the one too close to the other. Bearing in 

mind the channel fading effect  and the nature of the noise,  particularly  in 

broad band multi-path communications, as well as the possible interference 

from other source (intentional or casual) it is really expected that errors will 

likely occur in burst.

The purpose of the inner interleaving, then, is shuffling the bit stream so 

that dangerous and destructive events would not tear down the whole system 

performance.

This block is the first block who changes his behaviour in accordance 

with the transmission mode, it means it considerable changes if you are using 

2k  or  8k  mode,  and  it  also  is  mapping-dependent.  As  stated  two 

demodulation modes were implemented, 16-QAM 2k, and 64-QAM 8k, both 

in  not-hierarchical  mode.  The  functional  scheme  of  the  two  possible 

interleaving functions is shown in Fig[3.6] and in Fig [3.7].
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There  are,  of  course,  several  possible  strategies  to  implement  a  dual 

block of such an interleaver, one could be reversing each and every function 

starting from the last to the first function, but such solution being simple it has 

its  pay-off  in  computational  weigh.  Thus,  the  selected  option  has  been 

observing the interleaving function mapping a generic bit at its input into a 

place at its output, and then inverting the formula.

A simple mathematical analysis of the functional blocks tells us it has got 

a 3024 (2k mode) or 12096 (8k mode) bit periodicity. In fact it is the periodicity 

of the last function, the symbol interleaving, while bit interleaving blocks have 

a 126 periodicity and the de-mux a 4 (2k) or 6 (8k) one.  At this point,  the 
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Fig. 3.7 : Inner Interleaver, Mode 8k 64-QAM Not-hirarchical



implemented  system  will  read  form  the  input  buffer  “vectors”  of  right 

dimension (3024 or 12096 bits) so it may de-shuffle their elements.

3.5.1 Formula evaluation

So let us assume the generic bit at the input of the interleaver position to 

be  “n”. Due to the interleaver parts different periodicity, it is necessary to 

divide the total bit ensemble in different dimension group.

First of all, the Demultiplexer works every v bit, where v=4 for 2k mode 

and 6 for 8k, we need to know which place the bit occupies inside group of v 

bits and this is achieved by calculating e0=(n mod v). The de-mux state, then, 

will put the bit in the right branch “b” (b may  vary from 0 to v-1) according to 

the standard's rule:

16-QAM 64-QAM

e0=0 => e1=0 e0=0 => e1=0

e0=1 => e1=2 e0=1 => e1=2

e0=2 => e1=1 e0=2 => e1=4

e0=3 => e1=3 e0=3 => e1=1

e0=4 => e1=3

e0=5 => e1=5

Let  us  call  this  demultiplexing  function  Hd,  so  that  will  easily  result 

e1=Hd(e0).

Once  done,  the  bit  will  enter  into  the  bit-interleaving  state,  whose 

permutation formula is depending on the branch selected.

The possible formulas are:
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H 0w =w mod 126

H 1w=w63mod 126

H 2w=w105mod 126

H 3w =w42mod 126

H 4 w =w21mod 126

H 5w=w84mod 126

Of course the subscript indexing these permutations corresponds to the 

upper calculated e1. Clearly, if we are using the 2k mode, it cannot be over 

three, in this case only the first four permutations (from H 0 to H 3 ) will be 

used. 

Now we have the problem of linking the position inside the e1 branch 

called “w” with n. It happens it is quite easy! In fact, lets name gr0=n/6, where 

“/” is the integer division, gr0 is telling us the bit 's position inside the branch, 

bethinking that we are  going to perform a 126 bits periodicity interleaving, it 

is  useful  to  calculate  also  “w0”  as  w0=gr0  mod 126.  Naming w1  the  exit 

position it will result w1=H e1w0 and the absolute new position inside the 

branch gr1=gr0w1−w0  .

As it results clear from the figure, those branches flow together into the 

symbol  interleaver.  This  block  computes  a  vector  permutation  following a 

DVB standard defined function Hqq . Just like the bit interleaver one, this 

permutation  is  calculated  once  for  all  in  the  class  constructor,  during 

initialization phase.

The pseudo code algorithm for Hqq  is the following.

Set  Mmax=2048  for  2k  mode  and  Mmax=8192  for  8k  mode,  then  set

N r=log2 M max  and 
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i = 0 , 1 Ri
' [N r−2, N r−3, ....... ,1,0]=0,0,0,0,0. ..0

i = 2 Ri
' [N r−2,N r−3, ....... ,1,0]=0,0,0,0,0. .0,1

2 < i < Mmax: Ri
' [N r−3, N r−4, ....... , 1,0]=Ri

' [N r−2, N r−3, ....... , 1]

2k mode: Ri
' [9]=Ri−1

' [0] xor R I−1
' [3]

8k mode:  Ri
' [11]=R i−1

' [0] xor Ri−1
' [1]xor R i−1

' [4 ] xor R i−1
' [6 ]

Now we must derive Ri from R'i by bit permutation given in Tab.

Bit permutations for the 2K mode 

        R'i bit positions      9   8   7   6    5    4    3    2    1    0 

        Ri bit positions       0   7   5   1    8    2    6    9    3    4 

                   Bit permutations for the 8K mode 

R'i bit positions         11  10    9  8    7    6    5   4    3    2    1   0 

Ri bit positions          5    11    3  0   10   8    6   9    2    4    1   7 

Finally, H qq  is defined:

q=0

0<i<Mmax :{ imod 2∗2N r−1∑
j=0

N r−2

R i[ j ]∗2 j ;

                                 if HqqN maxq=q1 ; }

Lately, the symbol interleaver will take our bit in “gr1” position in the 

“e1” branch and put it in H qgr1  position when the OFDM symbol is even 

(this occurs when n<1512 for 2k or when n<6048 for 8k) it will instead put it in 

H q
−1gr1  if it happens to be odd.

In the end, we can state that the whole inner interleaver  will  put the 

generic n-th bit in position “o” where

o=gr1∗ve1 .
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Now,  the  hard  part  being  done  off-line,  to  invert  this  formula  and 

performing a de-interleaver it is sufficient to take the o-th bit at its input and 

map it at its proper output position.

3.6 De-mapper

When the signal comes to this block it is composed of complex baseband 

symbols embodied by two floating point characters representing respectively 

symbol's real part (in phase) and imaginary part (quadrature).
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Figure 3.7 : Symbol Interleaver addres computation scheme 
for 2k (upper) and 8k (lower) modes



This block has been implemented for both 2k-16QAM and 8k-64QAM 

transmission  modes  with  a  common  threshold  decision  following  the 

constellations  shown  in  Fig[3.8]  and  Fig[3.9].  The  output,  in  order  to  be 

consistent with the previous block, must be a bit stream.

Fig. 3.8 : Uniform 16-QAM Mapping and bit patterns

Fig. 3.9 : Uniform 64-QAM Mapping and bit patterns
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3.7 Not Information Carriers Removal

The transmitted signal is organized in frames, each with duration of Tf 

consisting of 68 OFDM symbols. Four frames constitute a super-frame. Each 

OFDM symbols is made up of a set of 6817 carriers in the 8k mode and 1705 

for  the  2k  one,  and  it  is  transmitted  with  a  duration  of  Ts.  To  resist  to 

multipath  channel the OFDM structure need some carriers not to carry video 

or audio information but to be pilots that allow a correct channel estimation. 

Pilots may be fixed or scattered, the latter being useful to avoid a multipath 

channel notch to delete all the information about a single pilot. Other carriers 

are  needed  for  synchronization  purposes  and  to  transport  transmission 

parameters  to  the  receiver  such  as  used  constellation,  frame  number, 

hierarchy informations. Moreover after the 1705 (6816) information and pilot 

carriers  the  DVB-T's  OFDM  provide  the  insertion  of  343  (1375)  “virtual 

carriers”,  which  are  suppressed  carriers  useful  to  put  under  control  RF 

spectrum profile.

Not  being  the  goal  of  this  thesis  to  recover  synchronization  and 

transmission information, and being the virtual carrier obviously completely 

aimless for video decoding we need just to cut off the fruitless carriers and 

send to  the  de-mapper  the  right  symbol  stream.  Besides,  carriers  must  be 

normalized according to normalization factors for data symbols. There is a set 

of  values  available  for  both  16-QAM  and  64-QAM  provided  by  the  DVB 

standard, the two options useful for our goals are 10  for the 2k mode and 

42 for the 8k one.
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3.7.1 Scattered, continual Pilots and TPS

While the continual pilots and TPS positions, inside the OFDM symbol, 

are fixed by the standard and set in the block as in Figure [3.10], the scattered 

pilot carriers are inserted according the following rule. Being k the carriers 

index,  the ones which k belongs to  the subset  k=KMIN3 x l mod 4 12p

with p integer grater or equal to 1 and k∈[K MIN ; K MAX] are scattered pilots. 

3.8 Fast Fourier Transform

The  last  implemented   block  in  my  receiver  is  the  FFT.  GNU  radio 

framework includes in its toolbox a FFT block which implements the Cooley-

Tukey algorithm, one of the most common and fast way to speed up the DFT 

based on the divide-and-conquer approach.

Figure 3.10 : Continual pilot carriers position
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Being optimally written and resulting extremely fast (or at least really 

weightless in the chain time economy) it fitted and worked perfectly.
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                                                            Chapter 4  

Optimization

4.1 Real Time Horizon

Talking about software defined radio cannot be done without having in 

mind to make all the effort fruit into working real time system, receiving real 

electromagnetic  waves  and  demodulating  real  signals.  Even  really  rough 

implementation is generally much more difficult than just talking. To achieve 

real time performances we need to force the whole system to work faster than 

the video stream, this means, in other words, that in order to demodulate a 10 

minutes video we want the whole system to need less than 10 minutes, at least 

in its average. Besides it is correct to state that the system built at this point 

still  lacks  the  synchronization  and  channel  estimation  parts  that  may 

realistically be quite onerous for the system. As a consequence it is possible to 

foresee that, to be abreast with real time goal, the system made so far should 

do its work in something less than the video stream time.

So, how far are we from the real time horizon? 
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It results that for demodulating, from the FFT to the MPEG-2 decoder, a 

20 seconds video the system need almost 3' and 18'', which means nearly 10 

factor between the decoding time and the video time.

4.2 Viterbi Computational Problems

As it has already been suggested, the system has a great bottleneck: the 

Vieterbi algorithm. In spite of a really fast Reed Solomon decoder the Viterbi 

still lacks speed, in fact while the former take almost the 5% of all the time the 

latter approaches the 90% of time consuming. It is a natural consequence to 

wonder how it is possible that two error correcting algorithms are so different 

in time consumption. The answer relies in two main differences. 

First of all, as already said, the Reed Solomon decoder has got as its first 

task a Syndrome calculation and evaluation. If  these are equal  to zero, the 

decoder knows it is in presence of a correct codeword and thus it just tears 

apart  the parity bytes,  with a very low computational cost.  Viterbi,  on the 

other  side,  completely  lack   this  “correctness-check”  function  and  must 

accomplish  its  work  on  every  triple  of  bits,  be  them  correct  or  wrong. 

Moreover, Reed Solomon accomplishes its whole work every 188*8=1504 bits, 

while  the  Viterbi  does  everything  every  2  bits,  thus  the  operations-per-

decoded-bit rate difference is clearly prominent.

In order to make it faster it is important, anyway, to focus on which part 

of the Viterbi consumes the most time. Tests done by stopping (achieved by 

commenting in the C/C++ code) some of the Viterbi inner part showed that the 

main performance absorber is the add compare select (ACS), which for each 

state, every three bits, evaluate the best path and stores the survivors.

50



4.3 Possible Patching

Of course we cannot let this problem stop us in our path through the real 

time, so we come to think some of possible patches that can be applied to 

make the implementation run faster. 

As always, for performances related matters, the easiest way is to wait 

for the industry to provide the market with better machines with faster chip-

sets so that they may be able to run the whole program real time. It has to be 

underlined  that,  due  to  the  64  bits  nature  of  the  path-registers,  a  64  bits 

machine with a 64 bits Operating System has been able to almost halve the 

overall CPU time required for decoding compared to of a 32 bit one, actually 

we went from 5' and 57'' to the 3' and 18''. Luckily, other paths do exist.

In fact, state of art common user machine are supplied with multi CPUs. 

The obvious consequence is that being able to “split” the algorithm in several 

different threads will result in a relevant performance boost without having to 

wait  for  hardware  to  improve.  Thanks  to  its  intrinsic  nature  Viterbi  is  an 

algorithm that could be deserialized with no real effort from the developer. 

Indeed it  just  needs  to  set  a  certain  number  of  states  for  each  thread  (for 

example 16 states for 4 thread) to possibly speed up the system. Surely, even 

splitting the work in four pats would not realistically give us a four factor gain 

in speed because of the obvious overhead yielded by multi-threading, it is 

anyway not very drastic to assume to be able to lower from 10 to 3 the ratio 

between decoding and video time. 

With regard to the implementation the nowadays GNU-radio framework 

does  not  support  thread  parallelization  inside  single  blocks!  It  is  true, 

however,  that  its  latest  release allows an inter-block deserialized scheduler 
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called  TPB  (Thread  Per  Block)  against  the  common  STS  (Single  Thread 

Scheduler). But while this is a good option (although still to be really tested) 

when the problem is an ensemble of uniform computational weight blocks, it 

is of really no use when you must deal with a single great bottleneck while all 

the rest is running at the speed of light.

Another possible way is, of course,  trying to replace the common full 

Viterbi algorithm with something faster but not too worse in error protection. 

As an example a “reduced-state” Viterbi may offer a great speed boost. In fact 

it  is  really  plethoric  to  show  the  strong  correlation  (nearly  proportional) 

between the number of states taken in consideration as next eligible state and 

computational cost, thus is crystal clear that half the states will (almost) half 

the time. 

It is also true that lessening the states' number will realistically comport a 

negative coding gain, or alternatively a minor error correction ability of the 

decoder, but the are sufficiently strong clues that it would not be a great one. 

In fact it has been shown [4] that going from 16 to 8 state would just result in a 

0.3 dB loss. Moreover it is quite typical of this kind of strategy to perform their 

best, in our case it means not working too worse compared to the full Viterbi, 

with reasonably good SNR, and we are acknowledged that the whole DVB-T 

system works only in presence of good SNR. Consequentially thinking to a 

reduced state Viterbi as something that will not work too worse than a full 

one is not a too limiting hypothesis.

Additionally it should be stressed that having ready a bench software 

receiver  is  allowing  us  to  implement  quite  easy  and,  hopefully,  not  too 

computationally heavy soft-Viterbi with its 2 dB of power gain , which might 

result in a possible re-gaining the loss yielded by the reduced states.
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Functional block Implemented GNU-Radio 
block name

Percentage of time 
consuming

Descrambler rdvb.descrambler_bb 1.1%
Reed-Solomon Decoder rdvb.rs_bb 3.2%

Outer Interleaver rdvb.deinterleaver_bb 1.5%
Viterbi algorithm rdvb.punctviterbi_bb 90.8%
Inner Interleaver rdvb.innerinterleaver_bb 1%

Demapper 16-QAM rdvb.demapper16qam_cb 1.3%
Remove not informative 

carriers
rdvb.removevirtual_cc 0.5%

FFT gr.fft_vcc 0.5%
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                                                            Chapter 5  

Implementation Results

5.1 Demodulator Validation Test

Whenever a block had been implemented it had to be validated on a real 

input to be sure it would do his job correctly, and once everything had gone 

the  right  way,  it  had  to  be  tested  within  the  whole  demodulation  block 

sequence.  In this view it  has been fundamental to have signal “dumps” to 

perform these tests. Dumps are just files built from the modulation chain in 

Soft-DVB truncated at right position, those, once elaborated through the dual 

demodulation  block  (or  blocks)  have  been  byte  checked  with  the  original 

generator files. 

As a newbie  I  thought that  the chain concatenation tests  would have 

been somewhat redundant once the single block were working perfectly as 

single,  but  it  turned  out  I  was  definitely  wrong.  Synchronization  of  all 

functions is  critical  to  the behaviour of  the entire  systems:  each and every 

block must understand the precise moment to start working, and it is never 

stressed enough that failing in this task always results into a complete failure 
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of the demodulation (at least until the system manages to re-synchronize its 

blocks!).

A  demodulator  as  the  one  done,  with  two  error  correction  block, 

oriented toward a very strong video and audio quality assurance cannot be 

considered tested without checking its error correction abilities. In order to see 

if  the implemented Reed-Solomon and Viterbi  decoders  were  able  to  fulfil 

their  duties  an  ensemble  of  error  corrupted  files  have  been  used.  Those 

corrupted files were done off-line with a self made dedicated C++ application 

able  to  corrupt  bits  with  a  user  defined  error  probability  (and as  a  major 

checkpoint with a post evaluated BER).

The “perfect” file's bits, then, were corrupted, and the noisy files given to 

the chain to demodulate. The results of these tests are reported in following 

table.

BER1 BER2 BER3

5,00E-003 0 0

1,00E-002 7,00E-006 0

2,50E-002 2,80E-006 0

3,00E-002 4,80E-004 9,80E-005

3,50E-002 1,00E-003 6,11E-004

Legenda:

BER1 = BER at the input of the Viterbi decoder

BER2 = BER at the output of the Viterbi and thus at the input of the 

Reed-Solomon.

BER3 = BER at  the output of  Reed-Solomon decoding thus at  the input  of  MPEG-2 

decoder.

0 = BER is below measurable limits.
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To validate these results, we can compare the performance of the Viterbi 

implemented in my software decoder with an hardware one. As we can see 

from Fig [5.1] (obtained from the Institute of Radio Electronics FECT from the 

Brno University of Technology [5]) they are almost superposable.

Legenda: 
BER1 = BER before Viterbi decoder
BER2 = BER after Viterbi decoder
C/N = Carrier to Noise ratio

Moreover, the Viterbi output BER required for having a QEF streams at 

the output of Reed Solomon is, according to the ETSI standard 2e-4, which is 

completely in accordance with the receiver error correction capability. 

In  order  to  test  the  Reed  Solomon  correction  efficiency,  a  random 

number  (between  1  and  8  for  each  204  bytes  block)  of  bytes  have  been 

corrupted in a random way. The decoder has been always able to correct the 

artificial errors, besides, when the required proper  BER is at its input port, it 

is  perfectly  capable  to  perform  in  accordance  to  DVB-T  standard 

requirements. 
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Validation of other implemented blocks has been quite easy. Because of 

their nature their functionality was of the “on-off” kind thus the only real test 

was connecting the entire revelation system and make tests on the output file. 

Since there was no difference (in a byte to byte comparison) between the test 

and the demodulated file when an error-free coded video was put at the input 

of the FFT, since the BER calculation with the BER-o-METER at the output of 

the Descrambling function was congruent with the one outside of the Reed- 

-Solomon and,  lastly,  since the video was perfectly  playable by a MPEG-2 

video player those blocks have been considered validated.
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                                                            Chapter 6  

Conclusions

In this master thesis work a prototype, fully-software, low-cost, DVB-T 

receiver has been implemented. It was developed using open source GNU-

Radio framework under GPL (General Public License) license. In order to be 

able to turn any common desktop or laptop computer into a DVB-T compliant 

receiver there is still some work to be done: lowering the computational cost 

in order  to  achieve  real  time performance  and complete  the demodulators 

chain. 

This  receiver  wants  to  be  a  starting  point  to  take  all  the  DVB-T 

transmission systems form hardware to software implementation, following 

the  trend  of  developing  new  multimedia  distribution  systems  based  on 

software defined radios. It also aims at exploring new strategies in developing 

demodulator functional blocks thanks to the peculiarity of its software nature.

For what concerns the feasibility of the whole project although the time 

consumption  is  quite  far  from  what  we  would  like  it  to  be,it   is  not 

discouraging and it is possible to consider it as a proof of feasibility, as well as 

the to forsee that it will be done with just some more work and effort.  
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It  is  never  stressed  enough  how  much  software  defined  radios  bears 

unprecedented  opportunities  for  service  providers,  developers  and  lastly 

users,  both  on  small  and  nation  wide  networks.  While  service  providers 

would be experiencing cost reduction by substituting hardware components 

with  software  ones,  developers  could  create  and deploy  new technologies 

faster and wider, while the end user would benefit from always up to date 

systems without the need to constantly change hardware and habits. 
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