

UNIVERSITÀ DI PISA
FACOLTÀ DI INGEGNERIA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

TESI DOTTORATO

DESIGN OF ELECTRONIC SYSTEMS FOR
AUTOMOTIVE SENSOR CONDITIONING

IX CICLO

FRANCESCO IOZZI

CURRICULUM

TECNOLOGIE, DISPOSITIVI E SISTEMI MICRO E

NANOELETTRONICI

 1

UNIVERSITÀ DI PISA
FACOLTÀ DI INGEGNERIA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

TESI DOTTORATO

DESIGN OF ELECTRONIC SYSTEMS FOR
AUTOMOTIVE SENSOR CONDITIONING

IX CICLO

CURRICULUM

TECNOLOGIE, DISPOSITIVI E SISTEMI MICRO E

NANOELETTRONICI

Tutori:

 Prof. L. Fanucci ___________________

 Prof. R. Saletti ___________________

Allievo:

 Francesco Iozzi ___________________

 2

 3

TABLE OF CONTENTS

Table of contents .. 3
Index of Figures.. 5
Index of Tables ... 8
Introduction ..9
Chapter 1 Sensor Systems in Automotive Applications................. 11

1.1 Automotive electronics market overview........................... 11
1.2 MEMS sensors markets.. 14
1.3 MEMS technology.. 16
1.4 MEMS automotive applications ... 17

i. Compensated Compass... 17
ii. Intelligent Airbags .. 17
iii. Vibration Monitoring.. 18
iv. Antitheft.. 18
v. Head Light Positioning... 18
vi. Occupant Detection .. 19
vii. Navigation Systems.. 19
viii. Active Safety .. 20

1.5 Specifications for automotive electronics........................... 23
1.6 Technologies and electronics design issues........................ 25
Bibliography... 29

Chapter 2 Design of sensor interfaces... 31
2.1 State of the art... 31
2.2 Platform Based Design ... 33
2.3 Generic platform for inertial sensors.................................. 35
2.4 Design flow .. 37
2.5 Case study: gyro sensor .. 40

i. Gyro sensor... 40
ii. System architecture... 41

 4

iii. Results...45
2.6 IP development for sensor interfaces..................................47

i. sd_8051_cache..48
ii. sd_cache_fpga...53
iii. sd_SRAM_controller ..55
iv. sd_freq_meter..59

2.7 Low power optimization of IPs for SoCs............................61
i. 8051 CPU core by Oregano Systems..................................62
ii. Flow for low power synthesis ...69

Bibliography..73
Chapter 3 Fast prototyping flow..75

3.1 Limitations of Platform Based Design flow75
3.2 ISIF platform...76

i. Analog section...79
ii. Digital section ...79
iii. DSP software...81

3.3 Case studies...82
i. Magneto-resistive position sensor.......................................82
ii. Biosensor...83
iii. Gyro sensor ...85
iv. YZ low-g accelerometer..87

Bibliography..99
Conclusions...101

 5

INDEX OF FIGURES

Figure 1: Electronic Units inside a car ... 12
Figure 2: Number of ECUs inside Volkswagen cars in the last 10
years.. 13
Figure 3: Growth forecast for MEMS gyros and accelerometers up to
year 2009. ... 14
Figure 4: Sensors are the main application field for microsystems in
the car. .. 15
Figure 5: microscope views of MEMS structures on silicon 16
Figure 6: Value added electronics in cars... 19
Figure 7: Evolution of passive and active safety features in cars 22
Figure 8: Moore’s law: projections and integration capability over the
last 30 years. ... 25
Figure 9: Design drivers and design methodology gaps..................... 26
Figure 10: Technologies in automotive ICs 27
Figure 11: Block diagram of the USI. .. 32
Figure 12: Example of complex sensor system architecture with USI.
.. 32
Figure 13: UMSI chip and optional external components.................. 33
Figure 14: System platform layer and design flow. The system
platform effectively decouples the application development process
(the upper triangle) from the architecture implementation process (the
lower triangle)... 35
Figure 15: Building a Universal Sensor Interface 36
Figure 16: Design flow... 37
Figure 17: Gyro sensor: Cross-section (a) and top view (b). 41
Figure 18: Platform architecture... 42
Figure 19: DSP chain for gyro sensor conditioning. 43
Figure 20: CPU core architecture with communication resources..... 43

 6

Figure 21: Waveforms of PLL locking (MATLAB).45
Figure 22: Measured waveforms (AC probe).46
Figure 23: Macro photo of the single chip ASIC implementation......47
Figure 24: cache hit and cache miss timing diagrams........................49
Figure 25: example of serial protocol. ..50
Figure 26: direct mapped architecture. ...51
Figure 27: 2-way set-associative cache architecture...........................52
Figure 28: sd_cache_fpga block diagram. ..54
Figure 29: Handshake at start-up between sd_8051_cache and
sd_cache_fpga...55
Figure 30: SRAM controller connections. ..56
Figure 31: SRAM controller block diagram.57
Figure 32: example of a probing session with subsequent read back. 59
Figure 33: sd_freq_meter control via JLCC.60
Figure 34: sd_freq_meter block diagram..61
Figure 35: Area complexity of IP main blocks...................................63
Figure 36: Power consumption of IP main blocks..............................64
Figure 37: Different styles for clock gating.64
Figure 38: Clock gating insertion..65
Figure 39: example of clock gating clustering....................................67
Figure 40: operand isolation. ..69
Figure 41: Low power synthesis flow with Synopsys™....................71
Figure 42: comparison between design time for a traditional Platform
Based and the ISIF flow..77
Figure 43: example of partitioning of a DSP chain within ISIF
platform between analog, digital and software processing blocks......78
Figure 44: ISIF block diagram..78
Figure 45: ISIF input channel. ..79
Figure 46: ISIF digital section. ...80
Figure 47: Variation of resistance versus ferromagnetic field (Red)
and magnetization of sensor versus applied magnetic field (Blue). ...82
Figure 48: schematization of biochip working principle.83
Figure 49: Example of biosensor measure..84
Figure 50: Gyro sensor vibrating, sense and rate axis.85
Figure 51: signal processing architecture for gyro sensor.86
Figure 52: lateral structure for MEMS accelerometers.......................88
Figure 53: vertical structure for MEMS accelerometers.....................88
Figure 54: Feedback sweep on Y and Z sensors.................................89
Figure 55: T compensation procedure. ...90

 7

Figure 56: offset over T characterization and compensation (red lines)
with 2 linear trend line approximation. .. 90
Figure 57: sensitivity over T characterization and compensation (red
lines) with 2 linear trend line approximation...................................... 91
Figure 58: miniboard with ISIF and sensor dies bonded together...... 92
Figure 59: processing architecture for YZ accelerometer. 92
Figure 60: architecture for evaluating mechanical transfer function of
the sensor. ...94
Figure 61: mechanical transfer functions of Y sensors. 95
Figure 62: mechanical transfer functions of Z sensors....................... 95
Figure 63: parallel board inside turning table for simultaneous
trimming and characterization of up to 6 modules............................. 96
Figure 64: Characterization procedure. .. 97
Figure 65: characterization of Y offset and sensitivity (20 samples). 97
Figure 66: characterization of Z offset and sensitivity (20 samples). 98

 8

INDEX OF TABLES

Table 1 : resume of MEMS sensors, applications and technologies in
automotive field. ...22
Table 2: Thermal operating environments. ...24
Table 3: Automotive temperature extremes (Delphi Delco Electronic
Systems). ...24
Table 4: Performance of Sensordynamics implementation.46
Table 5: Performance of ADXRS300. ..47
Table 6: Performance of Murata’s Gyrostar®.47

 9

INTRODUCTION

Electronic systems for vehicles are constantly gathering more
commercial importance in the extremely competitive automotive
market, as they represent a factor of differentiation for car
manufacturers and have proved to be very attractive for
customers. Nonetheless, the integration of electronics into most
mechanical components inside modern cars has considerably
contributed to the increase of vehicles performances, comfort and,
above all, travel safety.
Such systems have reached a noteworthy complexity and one or
more functionalities are handled by each Electronic Control Unit,
which generally acquire the needed information through a set of
sensors and process the data in order to properly command the
actuators. Dozens of these ECUs are commonly present inside a
medium-segment car: this implies that hundreds of sensors are
working at the same time under the hood or hidden anywhere in
the body or chassis.
This thesis deals with the development of sensor systems for
automotive, mainly targeting the exploitation of the new
generation of Micro Electro-Mechanical Sensors (MEMS), which
achieve a dramatic reduction of area and power consumption (thus
making possible the coexistence of so many sensing elements) but
at the same time require more complexity in the sensor
conditioning interface.
The design of sensor systems for automotive applications is
subject to tighter constraints with respect to, for example,
consumer electronics, as superior performances as required
(especially for applications related to safety systems) and they
must be guaranteed over the [-40°C,+125°C] temperature range
and in harsh operating environment (high vibrations, liquid and
moist exposure). Also self detection of failures is a common
automotive demand, together with ‘classic’ requirements such as
low power, low area and short time-to-market.

 10

Several issues concerning the development of automotive ASICs
are presented in Chapter 1, together with an overview of
automotive electronics market and its main sensor applications.
Chapter 2 introduces the state of the art for sensor interfaces
design (the generic sensor interface concept), which consists in
sharing the same electronics among similar sensor applications,
thus saving cost and time-to-market but also implementing a sub-
optimal system with area and power overheads. A Platform Based
Design methodology is proposed to overcome the limitations of
generic sensor interfaces, by keeping the platform generality at
the highest design layers and pursuing the maximum optimization
and performances in the platform customization for a specific
sensor. A complete design flow is presented (up to the ASIC
implementation for gyro sensor conditioning), together with
examples regarding IP development for reuse and low power
optimization of third party designs.
Chapter 3 describes a further evolution of Platform Based Design
achieved by means of implementation into silicon of the ISIF
(Intelligent Sensor InterFace) platform. ISIF is a highly
programmable mixed-signal chip which allows a substantial
reduction of design space exploration time, as it can implement in
a short time a wide class of sensor conditioning architectures. Thus
it lets the designers evaluate directly on silicon the impact of
different architectural choices, as well as perform feasibility
studies, sensor evaluations and accurate estimation of the
resulting dedicated ASIC performances.
Several case studies regarding fast prototyping possibilities with
ISIF are presented: a magneto-resistive position sensor, a
biosensor (which produces pA currents in presence of surface
chemical reactions) and two capacitive inertial sensors, a gyro and
a low-g YZ accelerometer. The accelerometer interface has also
been implemented in miniboards of about 3 cm2 (with ISIF and
sensor dies bonded together) and a series of automatic trimming
and characterization procedures have been developed in order to
evaluate sensor and interface behaviour over the automotive
temperature range, providing a valuable feedback for the
implementation of a dedicated accelerometer interface.

 11

Chapter 1
SENSOR SYSTEMS IN AUTOMOTIVE

APPLICATIONS

1.1 Automotive electronics market overview

Automotive electronics are major criteria of differentiation in the
automotive market. Car manufacturers use chips in increasing
numbers to develop powerful electronic systems for driver
information and communication, in-car entertainment electronics,
power train and body control electronics as well as automotive
safety and convenience electronics. In 2005, about one quarter of
the value of the average car is comprised of electrical and
electronics components [1].

• The $16-plus billion worldwide automotive semiconductor
business in 2004 will rise at an average annual growth rate
(AAGR) of 9% through 2009 to nearly $25 billion.

• Integrated circuits will show the highest use growth-trend
in safety (10.4%), followed by body and chassis, each with
AAGRs of 9.8%. In these areas, there is need for accurate,
closed-loop, real-time control, necessitating the processing
of large volumes of data from multiple sensors.

• Automotive safety represents a growing, and the most
stable market for semiconductors due to influence from
governments, consumers and the automakers themselves.

 12

Figure 1: Electronic Units inside a car [source: Freescale
Corp.]

With innovative automobile electronics serving as considerable
value additions, customers are increasingly demanding features
that enhance overall travelling pressure. Such features range from
the basic control of climate, lighting, and humidity to the
automatic setting of seat, rear view mirrors and steering wheel
position according to the driver’s physique. The mixed signal
system on a chip (SoC) in the very last years has appeared to be
the single-source solution that can manage the entire spectrum of
such features.
System on a chip applications are expected to further extend to a
range of new intelligent and compact systems, prompting
semiconductor companies to heighten their focus on the
automobile industry by developing a wider range of solutions for
the industry. There is now a widely shared vision among chip
designers, suppliers, as well as original equipment manufacturers
(OEMs) and this promises a clear commitment to improvising the
use of the technology in the automobile end-user segment.
In addition to the growing popularity of novel comfort features, the
increasing demand for advanced safety systems as well as driver
infotainment systems is likely to spur the use of system on chips in
automobiles.
For what concerns safety, one of the main purposes of electronic
systems is to assist the driver to control the vehicle through
functions related to the steering, traction (i.e., control of the
driving torque) or braking such as the antilock braking system
(ABS), electronic stability program (ESP), electric power steering

Chapter 1 Sensor Systems in Automotive Applications

 13

(EPS), active suspensions, or engine control. Such functions are
enjoying greater demand and employ mixed signal chipsets to
alert drivers ahead of any possible mishaps.
With respect to infotainment features (e.g. entertainment and
communication equipment such as radio, DVD, hands-free phones,
navigation systems), more and more consumers are opting for
wireless systems, onboard computers, information display, as well
as voice processing capabilities in their vehicles and this has lead
to tremendous technology improvements from companies
developing this class of mixed signal system on chips.
In today’s luxury cars, up to 2500 signals (i.e., elementary
information such as the speed of the vehicle) are exchanged by up
to 70 Electronic Control Units [2].

Figure 2: Number of ECUs inside Volkswagen cars in the last
10 years [source: Volkswagen AG]

In terms of geographic regions, Europe is the predominant
revenue generator for SoCs in the automobiles market and is
expected to garner a market share of around 58.0 percent in
2006. Among the others, the Americas (including the United
States, Canada, Mexico, and Latin America) as well as Asia Pacific
are likely to account for an almost equal share of the remaining
market revenues between 2006 and 2009. Overall, in the next ten
years, mixed signal system on chips in automobiles are likely to
offer tremendous market opportunities for vendors in the segment.
SoCs are expected to have an incredible impact on the market and
are posed to be among the best emerging opportunities in the
automotive segment [3].

 14

1.2 MEMS sensors markets

The market for MEMS inertial sensors (accelerometers and
gyroscopes) is set to grow from $835 million in 2004 to over
$1360 million in 2009 — a CAGR of 10%. Currently, the main
applications are in the automotive industry. These markets are
well established and growth rates range from a stagnant 1% for
airbag acceleration sensors up to 8% for gyroscopes used in ESP
units and GPS navigation assistance.
A new exciting opportunity for MEMS inertial sensors is the market
of mobile applications and consumer electronics (Figure 3). Over
the next few years, market reviews predict annual growth rates
exceeding 30% for accelerometers. Mobile phones in particular
will provide multi-axis accelerometers with interesting
opportunities in menu navigation, gaming, image rotation, pedo-
meters, GPS navigation and the like. Gyroscopes are largely
servicing markets for image stabilization and HDD protection in
camcorders.

Figure 3: Growth forecast for MEMS gyros and
accelerometers up to year 2009 [4].

In contrast to the automotive sector, consumer applications
feature relaxed specifications. Failure rates for automotive
electronic control units (ECU) that house airbag accelerometers
must be less than 50 ppm, and down to a few ppm for ASICs. Car
manufacturers deploy reliable, high performance accelerometers
that are relatively expensive (up to $5 to measure lateral
acceleration in ESP units, for example). Mobile phones
manufacturers on the other hand tolerate failure rates of 5000

Chapter 1 Sensor Systems in Automotive Applications

 15

ppm. Active control of the car motion is critical to safety whereas
failure in consumer applications result more in an inconvenience.
Sensor manufacturers can therefore sacrifice some accuracy and
reliability to lower the price [4].
The auto industry was among the first to embrace micro-electro-
mechanical sensor (MEMS) technologies on a wide scale, as it
substituted MEMS technology for more expensive conventional
manifold absolute pressure sensors in engine management
systems and electro-mechanical accelerometers in airbag
deployment applications. The industry continues to be a leader in
finding ever more MEMS applications in the automobile platform,
including new inertia, pressure and position sensing roles.
Other sensor technologies of interest include object and headway
detection systems, which can utilize a mix of sonic, laser, radar
and vision technologies to avoid accidents and increase vehicle
safety. Engine and drivetrain applications represent the largest and
most well established category in sensor use, with much of the
value in this category residing in oxygen sensors, which continue
to both multiply and become more sophisticated. However, safety
and security applications promise the greatest growth potential for
OEM automotive sensors, propelled by new mandated and market-
driven products such as tire pressure sensors in the US, pedestrian
warning systems in Europe, and airbags and automatic seatbelts in
many emerging markets [5]. A high-end car may contain between
50 and 100 sensors, most of which are MEMS-based and they are
distributed all over the car as shown in Figure 4.

Figure 4: Sensors are the main application field for
microsystems in the car. [Source: Robert Bosch Corp.]

 16

1.3 MEMS technology

Micro-Electro-Mechanical-Systems (MEMS) are three-dimensional
structures manufactured through silicon micromachining
technologies. They made their first appearance in semiconductor
foundries in the sixties. Our daily life is full of micromachined
products.
MEMS compete with non-semiconductor based solutions in price
and performances. But miniaturization is definitely another big
advantage they bring to the consumer market.
MEMS are micron-sized devices that interact with the physical
world. They are manufactured via a process called
micromachining, which shares the same processing steps derived
from basic integrated circuit techniques. The end result, however,
is typically a 3-Dimensional mechanical structure, most often on a
silicon substrate. Nonetheless, other materials can be micro-
machined or micro-formed. Among these materials are quartz,
glass, plastic, and ceramic [6]. Quartz is used for crystal
resonators and for Coriolis-based gyroscopes. Still, silicon is
becoming increasingly popular thanks to its excellent electrical,
mechanical and thermal properties. In addition to its excellent
physical properties, silicon is extremely attractive because
manufacturers can realize thousands of micro-machined
components at a time on silicon wafers using proven
manufacturing techniques developed for silicon chip production.

Figure 5: microscope views of MEMS structures on silicon [6].

The scope and use of MEMS is primarily due to extremely small
size, terrific reliability, and low power consumption, which, in
many instances, allows MEMS to be capable of faster and more
precise operations than their macroscopic equivalents. But the cost
advantage for the customer cannot be ignored.
Although each company uses a specific micro –machining process,
all of the processes can be classified into two broad classes:
A. Bulk Micromachining: it is a subtractive process because a large
portion of the substrate is removed to form whatever structure is

Chapter 1 Sensor Systems in Automotive Applications

 17

desired. This technique requires less precision than surface
micromachining. Thicker structures are easier to fabricate because
the substrate thickness can be chosen quite freely, but the shape
of the micro-machined structure is quite limited by the crystal
planes of the silicon substrate.
B. Surface Micromachining: it is an additive process requiring the
building up of various layers of materials that are selectively left
behind or removed by subsequent processing. The bulk of the
substrate remains essentially untouched. This technique was
initially limited to thin devices (~2 micron), since only thin films
could be deposited or grown on the substrate.

1.4 MEMS automotive applications

In this paragraph an overview of the possible automotive
applications for MEMS sensors is presented [7].

i. Compensated Compass
In addition to user interfaces the use of MEMS sensors are allowing
more precise and user-friendly compasses on handhelds. With an
inertial module, containing magnetometers and accelerometers, a
user is able to read a compass while handling the device in every
position and inclination. In fact, the accelerometer compensates
the inclination of the device enabling a correct and precise reading
of the compass.

ii. Intelligent Airbags
During car crashes the safety of the occupants are also devoted to
airbags deployment, and it must occur at the perfect time and also
with the correct power toward the passengers.
While the detection of the passengers and their motion can be
detected by a seats-based MEMS accelerometer system, the airbag
system can be positioned differently in a car allowing multiple
information determination such as identification of type of collision,
its direction, g-force impact; in this way a specific and dedicated
airbag system reaction can be guaranteed.
Using the MEMS accelerometer, exploiting their high integration
capability and accuracy, can be defined more complex system
architecture will allow replacing multiple electromechanical crash
sensor system guaranteeing an advanced passenger safety
condition.

 18

iii. Vibration Monitoring
An accelerometer may be used to measure the frequency,
amplitude (strength) and spectrum (signature) of vibrations,
enabling the ability to perform active monitoring of home
appliances and industrial applications.
It is well known that machine vibrations lead to excessive power
consumption and impose additional wear on bearings, seals and
foundations. Vibrations, which are typically caused by machine
misalignment and unbalance, are detectable through the spectral
analysis (FFT) of the measured acceleration signal.
If left uncorrected, machine vibration results in degraded
performances, shorter tool life, unpleasant noise and increased
maintenance costs. In addition, vibration monitoring permits the
identification of potential machine problems prior to equipment
failure and allows predictive maintenance to be implemented.

iv. Antitheft
The accelerometer also finds application in another important area
especially in the automotive field: antitheft. In this case the
accelerometer is used as an inclinometer which senses the
inclination of the car or motorbike versus the ground. When a tow
truck is used to steal a vehicle, the accelerometer will detect the
change in inclination and sound the security system.
A 3-axis accelerometer also enables easy installation: the security
system can be installed in any position inside the vehicle.

v. Head Light Positioning
Driving cars safely in a darkness condition it depends also on
accurate and precise head light positioning of our cars.
A lot of different conditions may vary the alignment of head light
respect to road we are driving; some of them depend by road
track such as asphalt, curves, uphill, downhill, driver skill,
experiences, speed and so on, other ones depend on car-system
condition like type pressure, suspensions, number of occupants,
weights and balancing.
Driver must not take care to continuously align head light to those
conditions but the head lights themselves should take care of it.
With the MEMS sensors like accelerometer and gyroscope a new
era of head lights will appear enhancing road and obstacles
illumination guaranteeing safer driving conditions.

Chapter 1 Sensor Systems in Automotive Applications

 19

Figure 6: Value added electronics in cars. [source: BMW
Group]

vi. Occupant Detection
In case of impact between cars and obstacles to safely allow life of
passengers a complete system of airbags are distributed along the
seats.
Because the instant of the impact cannot be foreseen in advance,
the car-system shall determine who and/or what is sitting in
passenger seats. This will allow not only which airbags should be
deployed but even more important the force it should be deployed
accordingly some factors depend from each passenger and their
position inside the car.
The MEMS accelerometer enhances this function – detects when a
person is lifted from the seat because of the force of impact.

vii. Navigation Systems
Satellite navigation systems used in vehicles use radio signals from
Global Positioning System (GPS) satellites to determine the
position of the receiver anywhere on the globe.
In practice, however, satellite position data is not sufficient
because the satellite signals are shadowed by buildings and
blocked by bridges and overpasses especially in dense urban
areas.

 20

In this context, the MEMS-based inertial sensors can assist and
substitute for the GPS in case there is signal loss: a dead
reckoning system will continue tracking movements during the
time when satellite signals are not visible or where they are not
sufficiently accurate. To implement dead reckoning, it is necessary
to know the distance and direction travelled.
To provide continuous coverage vehicle navigation equipment also
includes an acceleration sensor attached to the transmission and a
MEMS-based Coriolis Effect gyroscope and a magnetometer to
determine the direction of motion. Together the acceleration
sensor, the magnetometer and gyroscope allow "deduced
reckoning" independent of the visibility of satellites. The GPS
satellite position fixes eliminate the accumulation of errors over
time.
It is important to note that because battery-operated GPS devices
consume a lot of power, dead reckoning is a vital feature enabled
by MEMS-based inertial sensors in portable devices.

viii. Active Safety
The MEMS accelerometers and gyroscopes are both sensors which
can perfectly address active safety systems in the automotive
domain.
Control of car roll-over, vehicle stability for skidding and antilock
braking, parking brake energy, activation of wheel pressure
monitoring, suspension adaptation to car and road condition, and
other systems embedded in cars represent always more attractive
features for customers and are becoming a synonym for high
quality standard of the vehicle. Hereafter a brief explanation [8] of
the most in vogue acronyms is reported:
ABS (Anti-lock Braking System): prevents the wheels from locking
while braking. Since it came into widespread use in production cars
(1978), ABS has made considerable progress. Recent versions not
only handle the ABS function itself but also Emergency Braking

Assistance (EBA), which interprets the speed and pressure at
which the brake pedal is pushed to detect a critical braking
situation, and is often coupled with Electronic Brake force

Distribution (EBD), which automatically varies the amount of force
applied to each of a vehicle's brakes, based on road conditions,
speed, loading, etc.
Cornering Brake Control (CBC): stabilisation during partial braking
whilst cornering. With sensitive regulation of the braking force on
individual wheels, this ABS function compensates for any
destabilizing yawing moments around the vertical axis when
braking on a curve.

Chapter 1 Sensor Systems in Automotive Applications

 21

Traction control system (TCS): an electro-hydraulic system
designed to prevent loss of traction (and therefore the control of
the vehicle) when excessive throttle or steering is applied by the
driver.
Electronic (Dynamic) Stability Control (ESC, ESP, DSC): such
systems compare the driver's intended direction in steering and
braking inputs, to the vehicle's response, via lateral acceleration,
rotation (yaw) and individual wheel speeds. ESC then brakes
individual front or rear wheels and/or reduces excess engine power
as needed to help correct understeer (plowing) or oversteer
(fishtailing). ESC also integrates all-speed traction control, which
senses drive-wheel slip under acceleration and individually brakes
the slipping wheel or wheels, and/or reduces excess engine power,
until control is regained.
Adaptive (Active, Intelligent) Cruise Control (ACC, ICC): use either
a radar or laser setup to allow the vehicle to slow when
approaching another vehicle and accelerate again to the preset
speed when traffic allows. Some systems also feature forward
collision warning systems, which warns the driver if a vehicle in
front - given the speed of both vehicles - gets too close (within the
preset headway or breaking distance).
Dynamic Steering Response (DSR): corrects the rate of hydraulic
or electric power steering system to adapt it to vehicle's speed and
road conditions.
Lane Departure Warning system (LDW): warns a car driver when
the vehicle begins to move out of its lane (unless a turn signal is
on in that direction) on freeways and arterial roads.
AWAKE: monitors the driver and detects hypovigilance in real
time, based on multiple measuring parameters. It is composed of
HDM (Hypovigilance Diagnosis Module), TRE (Traffic Risk
Estimation Module), DWS (Driver Warning System, using acoustic,
visual and haptic means in various levels of warnings) and HM
(Hierarchical Manager, to perform self-diagnosis and co-ordinate
the other system components) [9].

 22

Table 1 : resume of MEMS sensors, applications and
technologies in automotive field.

Figure 7: Evolution of passive and active safety features in
cars [10].

Chapter 1 Sensor Systems in Automotive Applications

 23

1.5 Specifications for automotive electronics

The design of electronics for automotive applications must
necessarily comply with the severe specifications of this field. A
strict requirement of such devices concerns performances, first of
all in terms of power consumption, area and cost. The high
numbers of ECUs simultaneously working inside a car and the
growing impact of electronics on the vehicle cost are pushing
towards a reduction of available power for each electronic system,
together with the need to combine multiple functionalities inside a
smaller number of modules in order to optimize power
consumption and decrease the expensive demands of
interconnection resources. Regarding the edges of such complex
units, i.e. the sensing elements, the related specifications may add
further requirements with respect to the ECU functionality they
belong to. While sensors working in the infotainment sphere share
specifications with most of consumer electronics, those being part
of active safety systems or body electronics have often stricter
requirements in terms of noise, sensitivity and stability over
temperature.
A maybe even bigger challenge for automotive electronics
designers concerns the reliability issues. Car manufacturers are
competing in a difficult and almost zero-growth market.
Robustness is a powerful mean to attract customers and claim
superior quality with respect to competitors. For this reason they
tend to raise as much as possible the expectations on the
operative life of the vehicle (the so called "mission profile"),
resulting in always tighter specifications for the related electronics.
BMW for example, assumes a car service life of 15 years, with
300000 Km distance and 6000 hours of operation, 12000 engine
starts and environment temperature between -40°C and +85°C
[11]. Moreover OEM customer quality level requirements increased
from defects over 100 units produced to parts per million and are
expected to raise to parts per billion in the near future in the quest
for absolute zero defects.
Electronics, as a part of the vehicle, has to guarantee the
compliance to such standards, with the added difficulty of
operating in harsh environment. The electronics products in
vehicles, especially under-hood components, work in severe
conditions, including petroleum vapours, vibration (up to 10g rms
near the engine), moisture, various fluids, dirt, chemicals and
electro-magnetic interference. Besides all these, automotive

 24

microelectronics must sustain temperatures well above the
traditional maximum operating temperatures for consumer
electronics, as in Table 2.

Electronics Operating Temperature

Consumer 0 °C to +70 °C
Industry -40 °C to +85 °C

Automotive -40 °C to +125 °C
Military -55 °C to +125 °C

Table 2: Thermal operating environments [12].

Protract exposure to high temperature can affect badly the
behaviour of an integrated circuit. The main consequence of high
operating temperature is a faster wearing of the device: as a
matter of fact, during testing the average life expectancy of a
component is calculated statistically from the faults detected in a
set of samples working continuously at high T or subject to a
number of temperature cycles. According to experimental laws
[13], the medium junction temperature shortens the device life
time exponentially. This implies that when the specified operating
temperature gets too high (also considering the physical limits of
working T for the silicon substrate, around 125 °C) it becomes
critical (or too time consuming) to evaluate correctly the life
expectancy of the electronic system. Such issues obviously conflict
with the long term reliability required from the car manufacturers.
Table 3 resumes the worst conditions to be faced by automotive
electronic devices according to their position inside the vehicle.

Location Typical Continuous
Max Temperature Vibration Level Fluid Exposure

On engine
On transmission

140°C Up to 10 g rms Harsh

At the engine
(intake manifold)

125°C Up to 10 g rms Harsh

Under hood
(near engine)

120°C 3 – 5 g rms Harsh

Undrer hood
(remote location)

105°C 3 – 5 g rms Harsh

Exterior 70°C 3 – 5 g rms Harsh
Passenger
compartment

70-80°C 3 – 5 g rms Benign

Table 3: Automotive temperature extremes (Delphi Delco
Electronic Systems) [14].

Chapter 1 Sensor Systems in Automotive Applications

 25

1.6 Technologies and electronics design issues

Increasing time-to-market pressures and the availability of
shrinking process technologies (as the Moore’s law is showing no
sign of outdating) are the two fundamental forces driving
designers, design methodologies, and EDA tools and flows today.

Figure 8: Moore’s law: projections and integration capability
over the last 30 years [source: Intel Corporation].

On one hand, market pressures together with the added
integration afforded by the latest technologies, have forced a move
to higher levels of abstraction to cope with the added complexity in
design. On the other hand, shrinking processes have also caused a
move in the opposite direction: because of the increasing
significance of physical effects, there has been a need to observe
lower levels of detail. Signal integrity, electro-migration, and
power analysis are adding severe complications to design
methodologies already stressed by the increasing device count.

 26

Figure 9: Design drivers and design methodology gaps [15].

These stresses uncover significant methodology gaps, which occur
both between abstraction layers as well as within them. Design
methodologies, tools, and flows, evolve to try to hold the design
“system” together. Designers are driven to take advantage of the
smaller process technologies, putting entire systems on chips:
analog blocks, digital hardware, microcontrollers with memories
and so on. In this way they succeed in reducing the product cost
and fulfil the market demands, but also have to deal with a
complexity difficult to be handled. In this scenario, top-down
design methodologies have become a must [16]. In a basic top-
down approach, the chip architecture is defined as a block diagram
and simulated and optimized using either a Mixed Signal HDL
simulator or a system simulator. From the high-level simulation,
requirements for the individual circuit blocks are derived. Circuits
are then designed individually to meet these specifications. Finally,
the entire chip is laid out and verified against the original
requirements.
Designers and EDA tools have to keep under control an increasing
number (and various categories) of constraints when implementing
mixed signal SoCs. Physical constraints apply to the physical
entities used to implement the layout. Examples are distances,
area and aspect ratio, alignment between instances. Electrical
constraints apply to specific signals in the circuit. Examples are
timing, parasitics, IR drop, crosstalk noise, substrate coupling
noise and electro-migration. Design constraints are used to
characterize the behavior of individual components in terms of
their I/O signals and performance. Examples are throughput, slew
rate, bandwidth, gain, phase margin, power dissipation, jitter, etc.
With complex AMS chips, design constraints might include
specifications on sophisticated measurements such as distortion,
noise and frequency response.
Due to the high complexity of modern SoCs and the large design
effort thus required, it is hoped that the mixed-signal blocks can

Chapter 1 Sensor Systems in Automotive Applications

 27

be designed in advance as relatively generic components and
incorporated into many designs. To support this, the mixed-signal
blocks must be designed for reuse: at a minimum this implies that
should be available certain documentation that describes the block.
Standards that specify what type of documentation is required
have been set by the Virtual Socket Interface Alliance (VSIA) [17].
In addition, if the block is large it may be required to be embedded
in special interface collars to make it easier to import them into an
ASIC-SOC. Design for reuse is effective only in case that
developing a module for future reuse and customizing it takes
significantly less effort than redesigning the block for a new
application. An important task when preparing a block for reuse is
generating a high-level model of the block that captures its
essential behavior in order to be able to evaluate the suitability of
the block for use in follow-on projects.
For what concerns more specifically the technologies for
automotive applications, Figure 10 explains the trend over the last
ten years. While pure digital devices can follow the pace of
consumer and industry electronics, affording the front-end CMOS
processes, mixed signal SoCs often employ derivate technologies
(such as HVCMOS or BCD), which fit better the implementation of
high performance analog cells and also allow the integration of
power devices.

Figure 10: Technologies in automotive ICs [source: Robert
Bosch GmbH]

In terms of dimensioning the automotive technologies have the
same shrinking trend as front-end CMOS, simply with a few years
gap that the latest BCD processes are trying to reduce (for
example 0.35 µm BCD6 comes almost 10 years after the
corresponding CMOS size appearance). This gap originates from
the need to provide sufficient analog characterization of the

 28

featured devices, after the CMOS process modification for the
integration of bipolar transistors and DMOS. Moreover, the strict
requirements of automotive standards (as mentioned in paragraph
1.5) impose accurate process verification before release.

Chapter 1 Sensor Systems in Automotive Applications

 29

Bibliography

[1] ‘World Automotive Semiconductor Markets’,
http://www.electronics.ca/reports/ic/semiconductor_markets.html

[2] Navet, N.; Song, Y.; Simonot-Lion, F.; Wilwert, C.; “Trends in Automotive
Communication Systems”, Proceedings of the IEEE Volume 93, Issue 6,
June 2005 Page(s):1204 - 1223

[3] ‘World Markets for Mixed Signal SoC in Automobiles’ ,
www.marketresearch.com

[4] ‘Inertial MEMS sensors for consumer applications’ by Richard Dixon and
Jérémie Bouchaud, Wicht Technologie Consulting
http://www.memsinvestorjournal.com/2006/05/inertial_mems_s.html

[5] ‘World Automotive Sensors’,
http://www.electronics.ca/reports/instruments-
sensors/automotive_sensors.html

[6] Vigna, B.; “Future of MEMS: An industry point of view”, Thermal,
Mechanical and Multiphysics Simulation and Experiments in Micro-
Electronics and Micro-Systems, 2006. EuroSime 2006. 7th International
Conference on, 24-26 April 2006 Page(s):1 - 8

[7] ‘MEMS Applications Automotive’,
http://www.st.com/stonline/products/technologies/mems/applications/auto.
htm

[8] ‘Automobile Safety’, Wikipedia
[9] AWAKE, System for Effective Assessment of Driver Vigilance and

Warning According to Traffic Risk Estimation, http://www.awake-eu.org/
[10] G. Leen, D. Heffernan, “Expanding automotive electronic systems,”

Computer, Vol. 35, no. 1, January 2002, pp. 88-93.
[11] ‘Targets and Requirements for Robust Automotive Electronics’, BMW

group
[12] Ohadi, M.; Jianwei Qi; “Thermal Management of Harsh-Environment

Electronics”, Semiconductor Thermal Measurement and Management
Symposium, 2004. Twentieth Annual IEEE 9-11 Mar 2004 Page(s):231 -
240

[13] R. Amro; J. Lutz; A. Lindemann; “Power Cycling with High Temperature
Swing of Discrete Components based on Different Technologies” Proc. Of
35th annual IEEE power electronics specialists conference, pp.2593-2598,
Aachen, Germany,2004

[14] M. R. Fairchild, R. B. Snyder, C. W. Berlin, and D. H. R. Sarma,
“Emerging substrate technologies for harsh-environment automotive
electronics applications,”, SAE Technical Paper Series 2002-01-1052.

[15] Ken Kundert, Henry Chang, Dan Jefferies, Gilles Lamant, Enrico Malavasi,
Fred Sendig, “Design of Mixed-Signal Systems on Chip”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 19, no. 12, pp. 1561-1571, December 2000.

 30

[16] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E.
Malavasi, A. Sangiovanni-Vincentelli, I. Vassiliou, “A Top-Down,
Constraint-Driven Design Methodology for Analog Integrated Circuits”,
Kluwer Academic Publishers, 1997.

[17] Virtual Socket Interface Alliance Official Web Page, www.vsi.org.

 31

Chapter 2
DESIGN OF SENSOR INTERFACES

2.1 State of the art

The designer of electronic devices for automotive applications has
to make his way in a fast growing but very competitive market.
The key to success resides in the ability to handle the always
increasing technology options (from MEMS advances to shrinking
BCD processes), developing high performance products and
fulfilling all the safety and reliability demands with short time-to-
market. This leads to an inevitable trade-off between the need for
the highest degree of optimization (in term of area, power and
overall performances) and the market pressures for low cost and
fast developed devices. While a full optimized ASIC requires
noteworthy design efforts and often results in higher development
costs (both time and money), a more generic and flexible chip can
meet the market demands by addressing at once several similar
applications and reduce its costs by having a longer production life.
From these basic considerations comes the Universal Sensor
Interface (USI) approach, a first answer to the issues concerning
the design of sensor interfaces.
The USI implementation proposed in [18] integrates a number of
high performance optimized analog front-ends, in order to address
the different conditioning needs of the various sensor classes (for
example capacitive, resistive or inductive sensors). Using a
voltage-to-period converter, the signal coming from the analog
front-end is digitalized and a microcontroller or DSP handles the
data and performs further digital processing.

 32

Figure 11: Block diagram of the USI [18].

This approach aims to reduce costs by merging and re-evaluating
the functions of the sensors, actuators, analog interfacing circuits
and digital processors in overall design [19]. In practice, under the
assumption that a complex system needs to process at the same
time the information of many different sensors, a lot of
conditioning electronics can be shared between several
functionalities and thus a global area and cost saving is achieved.
Unfortunately, such system does not foresee any customization
possibility for specific sensor needs, therefore resulting in good
performances but not up to the strict requirements of demanding
fields like the automotive one.

Figure 12: Example of complex sensor system architecture
with USI [20].

Chapter 2 Design of Sensor Interfaces

 33

A similar approach more specifically oriented towards MEMS and
called Universal Micro-Sensor Interface (UMSI) [21] expands the
capability of the USI circuits. It implements a network-capable
sensor bus, integrates programmable readout circuits for multiple
signal modes, and includes a standard interface for application-
specific peripherals. Up to 255 UMSI chips can be connected in a
complex sensor system and each UMSI can interface with up to 8
capacitive, resistive, and/or voltage output devices.
Such implementation eases the construction of a sensor network
with numerous nodes (which is indeed a need in several
applications, among which also the automotive stands), yet the
featured basic and generic analog front-end does not fit the
performance demands of modern automotive sensor interfaces.

Figure 13: UMSI chip and optional external components.

2.2 Platform Based Design

The technical difficulties exposed in Paragraph 1.6 have not been
overcome by approaches like Universal Sensor Interface. In the
last years, the progress of silicon technology has been followed by
the definition and the increasing application of Platform Based
Design [22], a methodology conceived to cope with the most
significant issues of modern ASIC development:

 34

1. Manufacturing cost depends mainly on the hardware
components of the product. Minimizing the size of the chip implies
tailoring the hardware architecture to the functionality of the
product. However, the cost of a state-of-the-art fabrication facility
continues to rise.
2. NRE (Non-Recurrent Engineering) costs associated with the
design and toolings of complex chips are growing rapidly. The cost
of masks will grow even more rapidly for the most shrunk
geometries, adding even more to the up-front NRE for a new
design. Furthermore, the cost of developing and implementing a
comprehensive test for such complex designs will continue to
represent an increasing fraction of a total design cost unless new
approaches are developed.
3. Design costs are exponentially rising due to the increased
complexity of the products, the challenges posed by physical
effects for deep sub-micron and the limited human resources.
Design productivity is falling behind exponentially with respect to
the technology advances. Time-to-market constraints are also
growing at such a fast pace that even if costs were not an issue, it
is becoming plainly impossible to develop complex parts within the
constraints. An additional problem is the lack of skilled work force
that could implement future IC’s considering the system aspects of
the design and all second order physical effects that will be of
primary importance in deep sub micron.
A platform [23] represents a layer in the design flow for which the
underlying, subsequent design flow steps are abstracted. Thus a
design from conception to implementation can be seen as a set of
platforms (abstraction layers) and of methods to transform the
design from one platform to the next. Platform based design
provides a rigorous foundation to design re-use, correct-by-
construction assembly of pre-designed and pre-characterized
components (versus full-custom design methods), design flexibility
(through an extended use of reconfigurable and programmable
modules) and efficient compilation from specifications to
implementations. At the same time, it allows to trade-off various
components of manufacturing, NRE and design costs while
sacrificing as little as possible potential design performance.
In general, a platform is made of a library of components that can
be assembled to generate a design at that level of abstraction. The
library may contain both computational blocks and communication
components and each element of the library has a characterization
in terms of performance parameters and supported functionality.

Chapter 2 Design of Sensor Interfaces

 35

Figure 14: System platform layer and design flow. The
system platform effectively decouples the application
development process (the upper triangle) from the

architecture implementation process (the lower triangle).

For every platform level, there is a set of methods used to map the
upper layers of abstraction into the platform and a set of methods
used to estimate performances of lower level abstractions.
A platform instance is a set of architecture components that are
selected from the library and whose parameters are set, according
to needs imposed by specifications.
Platforms should be defined to eliminate large loop designs
iterations: they should restrict design space via new forms of
regularity and structure that surrender some design potential for
lower cost and first-pass success.
A critical step of the platform-based design process is the
definition of intermediate platforms to support predictability, which
enables the abstraction of implementation detail to facilitate
higher-level optimization, and verifiability, i.e. the ability to
formally ensure correctness.

2.3 Generic platform for inertial sensors

The theory of Platform Based Design expressed in previous
paragraph has been employed in the development of a platform for
inertial sensors conditioning in automotive applications. With
respect to the USI approach, the aim is not to implement a single
chip which can address a wide range of inertial sensors in MEMS
technology (as it would result in a lower level of performances and
an overhead of resources that the automotive field cannot afford),

 36

but to keep the generality only at the system platform level (thus
only as a design concept instead of a silicon implementation),
while the highest level of optimization can be pursued in the
platform implementations (each one dedicated to a target sensor).
Figure 15 basically resumes the development of a Universal
Interface: according to the blocks needed for conditioning each
sensor class, they are integrated into the USI, which can save
some hardware as few blocks can be shared by more than one
sensor application. Of course some of them can’t be the optimal
choice for specific conditioning purposes, and others won’t be used
for certain application, therefore resulting in area and power
overhead and increased parasites.

Figure 15: Building a Universal Sensor Interface

In the platform based approach instead [24], all the required
blocks for different applications are collected inside the generic
platform as a library of building blocks, which aim to be part of the
signal processing path for inertial sensors. This platform represent
the highest level of abstraction and thus its components are
described as behavioural blocks in a proper language (for example
MATLAB™), without any specification about their physical
implementation (for instance whether they will be hardware or
software, analog or digital). The platform itself doesn’t even
contain any indication of the processing architecture, as this choice
will be made at a further step considering the target application.

Chapter 2 Design of Sensor Interfaces

 37

2.4 Design flow

prototyping

System Level
Description
(MATLAB)

MATLAB
sim.

VHDL
Behavioral

VHDL
RTL

VHDL
Gate Level

HDL
sim.

partitioning

VHDL-AMS

Schematic

SPICE
sim.

Software

ASIC

FPGA

AFE
+

sensor

Figure 16: Design flow.

In the sensor conditioning field, the use of MATLAB™ language for
the system platform eases the design space exploration phase and
the subsequent tightening of each component specification before
passing to the next platform at a lower abstraction level. In fact,
the target sensor itself can be modelled and employed in
simulations to evaluate the best conditioning architecture. In this
way the computational blocks can be first generically modelled in
their behaviour and then better defined through a set of
specifications: for example, a basic multiplier block during the
architecture evaluation can be provided step by step with more
specification (for example output saturation limit, input dynamic
range, etc…) in order to gather enough information for deciding

 38

the best implementation for the block (analog or digital) and
setting the final specifications (in the digital case for instance, the
proper bit true model, clock frequency and data-paths width).
The aim of the MATLAB™ simulation at system level is to find a
suitable conditioning architecture for the target sensor and
perform a proper partitioning of the used blocks between analog
cells, digital hardware and software routines. If the MATLAB™
evaluation has been comprehensive enough, the partitioning
entails:

- the matching of in-detail-specified (but implementation
independent) blocks with the nearest (for functionality and
requirements) already available IP.

- the design from scratch of the remaining IPs (in the case
none of those available fulfils the block requirements).

Except for the first run, a platform based design flow addresses a
set of similar applications which are supposed to share several
functionalities. For this reason, in this phase the reuse of existing
IPs prevails on the development of new blocks and the more this
design technique is exploited (i.e. the more applications are
addressed), the less is needed to create new IPs.
In both cases anyway, at the HDL abstraction level, each block has
to provide different views in order to guarantee the possibility to
verify step by step the functionality of the block itself together with
the overall system architecture. For example, digital hardware IPs
need first of all a behavioural description (in VHDL) which resumes
the block functionality hiding the details of the internal architecture
and the possible implementation choices. The corresponding
descriptions for the analog domain are VHDL-AMS models
[25][26], which allow a first system level simulation (at the HDL
abstraction level) that must match the results of the MATLAB™
investigation, thus validating the architectural and partitioning
choices.
The use of VHDL-AMS has two main purposes. First, it summarizes
the block specifications in a top-down approach before the design
of the analog cell, constituting a reference for the analog designer
and allowing a preliminary system validation during the
development of the block (so the system level verification
environment can be set up before the completion of each single
block implementation). Once the schematic is ready, the same
model can be updated with more detailed and realistic information
coming from SPICE simulations, in a bottom-up data flow. The
model can be then completed at the highest level of detail after
layout, allowing the platform verification with even higher
accuracy.

Chapter 2 Design of Sensor Interfaces

 39

The main benefit of the VHDL-AMS approach is the possibility to
check, at each stage of the design progress, the coherency of the
whole system with respect to the initial behavioural model. In fact,
though mixed signal HDL/SPICE simulation are supported by most
tools, they result to be extremely slow (and may have
convergence troubles) as the analog complexity raises over
hundreds of transistors. VHDL-AMS instead, allows the extraction
from the huge complexity of the schematic of only few parameters
which depict the cell behaviour, in a way that the system
simulation is dramatically speeded up but with no substantial loss
of global accuracy [26].
Another important feature of the VHDL-AMS modelling is the
possibility to detect bugs, shorts and system faults that can’t be
seen by simply simulating cells or macro-blocks. A mixed-signal
sensor interface parts itself almost equally between analog and
digital sections. Each analog cell has tens of configuration
switches, added to the routing configurability of input and test
signals, which lead to a huge number of configuration strings,
some of which may cause dangerous (or even killing) shorts or
misbehaviours. Being as a matter of fact impossible to check all
the possible configurations manually, VHDL-AMS allows the
insertion of safety checks within each model (for example current
or voltage over boundaries on a wire or node) that signal the
potential bug during simulation, helping to implement a first time
success silicon.
After the platform verification by means of VHDL/VHDL-AMS/C++
system simulations, the HDL abstraction level can be mapped to
last developing stage before silicon, the prototype. In this phase,
the needs of verification may depend strongly on the application
and the implementation choices made at the higher levels. For
instance, in case the design results to be mostly digital oriented
(i.e. analog section much smaller than the digital one) the
verification of the digital part assumes a predominant role and a
suitable strategy can be the emulation of the analog functionality
with a discrete-components front end, connected with a FPGA
implementing all the ASIC digital blocks plus few add-ins for
further test, evaluation and debug. This approach reduces
development time and cost, but does not cover in a comprehensive
way all the possible interactions between analog and digital
domains. Moreover, it is not fit for half-digital-half-analog (or
mostly analog) designs and the prototype can provide little
information on final ASIC performances, because of the excessive
level of parasites and disturbs in the discrete components setup
with respect to the corresponding integrated analog front-end. In
order to have a realistic and reliable prototype (for what concerns

 40

performance estimation and feedback information for further
improvements) the only possibility is to integrate the analog
section into a test chip, at the cost of a substantial increase of
design expenses and stretching of time-to-market. An effective
solution to this drawback will be described in Chapter 3.
The prototyping phase concludes the design iteration with a
bottom-up propagation of all the data collected by the prototype
working with the target sensor, in order to update the HDL
description and VHDL-AMS analog models and, in the end, the
original MATLAB™ blocks, allowing a system evaluation with
coherent results at each abstraction level. If the system
specifications haven’t been met, improvements are to be evaluated
and carried out at the top level and then propagated down to the
physical implementation.

2.5 Case study: gyro sensor

 In this paragraph a case study for the above mentioned
platform based design flow is presented. The generic platform
architecture has been customized for conditioning a gyroscopic
angular rate sensor, and implemented in collaboration with
Sensordynamics AG for a commercial chip.

i. Gyro sensor
Vibrating ring gyroscopes consist of a circular ring provided

with drive, sense and control electrodes [27]. Even though they
are also available as discrete components, automotive applications
push towards MEMS implementations [28], requiring stand-alone
devices able to provide accurate yaw rate measurement.

Gyro sensors base their working on the Coriolis force acting
on a vibrating mass: while the driving electrodes keep the ring
vibrating along the primary direction (with fixed amplitude, around
the z-axis in Figure 17 [28]), the rotation of the device (Ωx) causes
an energy transfer to the second vibrating mode, which is located
at 90° from the primary mode (on the y-axis). The amplitude of
this vibration is proportional to the angular rate, and in open loop
mode it can be detected through a differential capacitance
measure on the sense electrodes placed on the rectangular
structure. A closed loop configuration exploits the control
electrodes, by means of which the secondary vibration can be
compensated, in order to let the sensor work around its rest point,
thus achieving more linearity and accuracy.

Chapter 2 Design of Sensor Interfaces

 41

Figure 17: Gyro sensor: Cross-section (a) and top view (b).

The conditioning electronics for such sensors basically requires a
Phase Locked Loop (PLL, for primary drive), which has to keep the
ring in resonance (at a frequency of approximately 6 KHz), an
Automatic Gain Control (AGC, to control the amplitude of this
vibration) and a chain including demodulators, filters,
temperature/offset compensation and modulators for secondary
drive and rate sensing.

ii. System architecture
The generic platform architecture depicted in Figure 18 has been
customized to the gyro sensor conditioning requirements, in order
to achieve an almost optimal implementation for interfacing this
kind of sensor, together with several communication resources for
easier debugging, development and performance improvement.
For what concerns the analog front end, it can be critical in
automotive applications to meet the required noise, area and
power consumption constraints within a wide temperature range (-
40°C÷125°C). These limitations do not apply to the digital

 42

counterpart: for this reason it’s preferable to use as little analog
signal processing as possible and to perform most of the
conditioning in the digital domain. Thus the analog section only
absolves functions of driving sensor’s electrodes (through couples
of DACs for each loop) and performing signal acquisition (by
means of SAR ADCs, amplifiers and low pass filters). It also
provides stable voltage and current references and clock to the
digital section.

CPU
8051

CACHE SPI

JT
A

G
CPU BUS

VI

DAC ADC

VI

DAC ADC

RAM

ROM

TIMER

UART

Sensor

JT
A

G

DSP

Figure 18: Platform architecture

Each analog cell in the front-end is digitally controlled, and this
programmability can be of paramount importance for the whole
system functioning. Particular effort has been placed in building a
reliable and efficient interface between the analog and digital
world. A JTAG-like interface has been selected for the following
reasons:

- The standard protocol has largely been studied and tested
for several applications, so it guarantees high reliability
since first implementation.

- JTAG bases on asynchronous communication, which limits
clock skew issues that may lead to undetectable faults.

- It employs a short number of wires (only 4 per chain),
thus resulting easy to route also on very complex chips.

- It allows for full read-back capability (for fast verification
or debugging).

The digital section performs almost all the signal processing
(within the DSP block), and manages the communication resources
(through the CPU core). The DSP contains a chain of IPs for signal
elaboration, featuring the blocks schematically depicted in Figure
19: its architecture and sub-blocks dimensioning are derived from
the MATLAB™ model set up during the design space exploration
phase.

Chapter 2 Design of Sensor Interfaces

 43

Figure 19: DSP chain for gyro sensor conditioning.

 Though all the required processing can be performed
independently by analog front end and DSP block, a CPU core is
also present to fulfil control, monitoring and communication tasks.
These functionalities naturally find their best implementation via
software routines, as they may vary through system updates and
new system requirements.

SPI TIMER WDOG

UART

16-bit bus

BRIDGE

SFR bus

8051
CPU

CACHE

RAM

ROM

PC

CACHE
FPGA

SPI
EEPROM

External
SRAM

SRAM
ctrl

Figure 20: CPU core architecture with communication
resources.

Control and monitoring are performed real-time by the processor
on both DSP and analog front end: a routine constantly checks the
system status by accessing the several readable registers spread
along the processing chain (for example makes sure that the PLL is
locked). Meanwhile other routines handle communication services,

Gyro

Analog FE JTAG like

PLL

DEMOD

DSP

AGC

DEMOD
Temp,

DC offset
comp

MOD

primary drive

primary pick-up

secondary pick-up

secondary drive

RATE OUT

 44

providing status and output data to the user: during prototyping
phase, the system can be linked to a PC and through a graphical
interface manual trimming can be performed and all intermediate
data of the chain can be accessed. The same communication
resources are used during the chip normal working conditions to
provide external devices (typically the car’s electronic control
system) the required angular rate measure and status information.
As shown in Figure 20, CPU core architecture comprises the
Oregano 8051 processor [31] (freely distributed under LGPL
licence), which provides a good compromise between performance
and area occupation, and fits well the mentioned microcontroller
applications; it is provided with ROM and RAM memories and cache
controller, all configurable (both with hardware generics and at
run-time) in order to get the maximum flexibility for software
download, development and update. Just to give a few examples,
an ‘ASIC’ version could include a big ROM (16 Kb) with all the
needed software (the latest available at the moment) and through
the cache (which is conceived to access big external RAM with a
custom 2-wire protocol) newer software versions could be
downloaded and tested; in a ‘prototype’ version, a big RAM would
be instantiated and used as Program Storage (while the boot
placed in a small 1 Kb ROM would perform software download via
UART) and cache would not be instantiated. Software download is
also possible by means of RS485 (in place of simple RS232
protocol implemented by the UART) and SPI (at start-up all the
communication devices look for a response on their channel, in a
way that the connected peripheral is automatically detected);
moreover it’s possible to store the downloaded software into an
external SPI EEPROM, and so reboot directly from EEPROM instead
of downloading each time after reset. This high configurability
gives the designers the chance of developing software with
maximum simplicity and efficiency, through the whole system
prototyping phase and even after the first ASIC releases, in order
to achieve the utmost confidence on the final product success.
Cache controller and UART are located on the 8051 Special
Function Register (SFR) Bus (8-bit), while the other peripherals
(SPI, timer, watchdog, and SRAM controller) are accessed via a
custom bridge by means of a 16-bit bus. SRAM controller is used
during the prototyping phase, to store at real-time (into a 512 Kb
SRAM) digital data coming from any node of the DSP chain, with
chance of later read-back for analysis purposes.

Chapter 2 Design of Sensor Interfaces

 45

iii. Results
The platform based design flow has been carried out step by step
as described in paragraph 2.4: simulation of the entire system (in
particular sensor locking) has been first performed with MATLAB™
model (Figure 21 depicts main PLL signals), and then the same
result has been reached in a HDL simulation environment, thanks
to the full VHDL-AMS modelling of the analog section and the
sensor itself. After this important achievement, designers have
been able to get to the final mixed-signal platform implementation
in a short time, being already defined block partitioning,
dimensioning and connections.
The prototyping phase has then proved the validity of this
approach, and an emulation environment has brought the target
sensor to locking (see Figure 22 for measured PLL data) and
output yaw rate data. The digital part of roughly 200 Kgates
complexity has been implemented in a Xilinx X2S600E running a
20 MHz clock frequency, while the analog front-end has been
integrated into a 12 mm2 custom chip in 0.35 µm CMOS
technology.

Amplitude control

Phase error

Amplitude error

VCO control

Figure 21: Waveforms of PLL locking (MATLAB).

 46

Figure 22: Measured waveforms (AC probe).

Performance of higher level (as reported in Table 4, in comparison
with other commercial gyro sensors of Table 5 and Table 6) have
been achieved with the integration of the whole system in a single
mixed-signal chip in 0.35 µm CMOS technology.

Sensordynamics Parameter
Min. Typ. Max.

Units

Sensitivity
Dynamic Range
Initial
Over Temperature
Non Linearity

+/- 75
4.85
4.80
0.07

5.00
5.00
0.10

+/- 300

5.15
5.20
0.20

°/s

mV/°/s
mV/°/s
% of FS

Null
Initial
Over Temperature
Turn On Time

2.70
2.70

2.50

500.00

2.53
2.53

V
V
ms

Noise
Rate Noise Dens.

0.02

0.027

0.035

 __
°/s / √Hz

Freq. Response
3 dB Bandwidth

25.00

75.00

Hz

Temp. Ranges
Operating Temp.

- 40

+ 85

°C

Table 4: Performance of Sensordynamics implementation.

Analog Devices Parameter
Min. Typ. Max.

Units

Sensitivity
Dynamic Range
Initial
Over Temp.
Non Linearity

+/- 300
4.60
4.60

5.00
5.00
0.10

5.40
5.40

°/s
mV/°/s
mV/°/s
% of FS

Null
Initial
Over Temp.
Turn On Time

2.30
2.30

2.50

35.00

2.70
2.70

V
V
ms

Chapter 2 Design of Sensor Interfaces

 47

Noise
Rate Noise Dens.

0.1

 __
°/s / √Hz

Freq. Response
3 dB Bandwidth

40.00

Hz

Temp. Ranges
Operating Temp.

- 40

+ 85

°C

Table 5: Performance of ADXRS300 [29].

Murata Parameter
Min. Typ. Max.

Units

Sensitivity
Dynamic Range
Initial
Over Temperature
Non Linearity

0.54
- 5.00

0.67

+/- 300

0.80

+ 5.00

°/s

mV/°/s
mV/°/s
% of FS

Null
Initial
Over Temp.
Turn On Time

1.35

-
-

V
V
ms

Noise
Rate Noise Dens.

-

 __
°/s / √Hz

Freq. Response
3 dB Bandwidth

< 50

Hz

Temp. Ranges
Operating Temp.

- 5

+ 75

°C

Table 6: Performance of Murata’s Gyrostar® [30].

Figure 23: Macro photo of the single chip ASIC
implementation.

2.6 IP development for sensor interfaces

In this paragraph a few IPs are presented. They have been
developed as reusable designs with the aim of being easily

 48

integrated in the Platform Based Flow described in Paragraph 2.4.
One of the keys for success of the Platform Based approach resides
in the availability of a wide portfolio of IPs, among which the fittest
for each particular application can be chosen (without the need to
design them each time from scratch) and in the possibility to easily
and quickly configure the existing blocks in order to allow their
employment in as many applications as possible.
These digital IPs can be integrated in the system either for
implementing the required ASIC functionalities or for test and
debug purposes during the customized platform development.

i. sd_8051_cache
The 8051 Cache is an IP designed to replace a big code memory
(PSRAM or PSROM) with a smaller on-chip SRAM and an off-chip
EEPROM (or SRAM) accessed serially. The purpose of such cache
memory is to extend the capabilities of firmware development for
embedded systems, which usually cannot afford big code
memories because of area and power constraints. This cache for
8051 processors gives the possibility to extend the Program
Storage memory up to the full 8051 code address space (64 Kb),
by physically implementing on chip only a small SRAM and
accessing the external code memory through a custom serial
protocol which uses only 2 wires (thus not affecting badly also the
critical constraint on ASIC’s max number of pins).
The 8051 CPU works in the same way as in presence of the
PSRAM, issuing addresses and enable signal, and expecting data
before the following rising clock edge. Cache looks for the data in
its memory block and forwards it to the processor (if valid),
otherwise freezes the processor and loads data serially from the
external device.
To let Cache and CPU work properly, the processor must have a
freeze pin that halts CPU operations when active. If this pin is not
present, the freeze signal must gate the CPU clock, to prevent any
possible malfunction.
Serial communication with the EEPROM is intended to minimize the
number of wires and to keep a data rate as high as possible: this is
done with a 2-wire synchronous custom protocol (clock and
bidirectional data), that is much faster than standard SPI or I²C,
but requires an external interface (sram_interface) to latch data
and drive the second level memory (like EEPROM or SRAM).
The external device signals its presence after reset (according to a
simple protocol); in case it is not present, cache works in memory
mode, allowing the processor to use its SRAM as another PSRAM
bank, located in the address space left free by standard PSRAM.

Chapter 2 Design of Sensor Interfaces

 49

Main features:

• Compliant to 8051 CPUs.
• Fully parametric VHDL description, allows quick

architectural changes and dimensioning.
• Custom serial protocol (with open collector driving of the

bidirectional data line): easy to implement and gaining high
performances.

• SFR reduced interface allows to choose polarity of serial
data sampling (negative or positive edge).

• Includes power saving features (CPU and its memories are
not clocked during miss time).

• Memory mode: can be seen by CPU as PSRAM when no off-
chip memory is present.

Cache has to deal with two main functionalities:

- Interface the CPU, providing data for each address issued
by the CPU.
- Serially download new blocks from the external device in

case of cache miss.
In case of cache miss the CPU keeps receiving the last valid code
byte, while the assertion of signal CPU_freeze prevents all the
blocks (except cache) from being clocked. The absence of clock
and the constancy of inputs (from both ROM and RAM) guarantee
the processor to resume its functionality in the correct way after
the block replacement (and subsequent cache hit).

clk

clk_gated

CPU_addr

CPU_data d0 d1 d2

CPU_freeze

hit

cs_n

cache
hit

cache
miss

miss timehit time

00020000 0001 0003

d3 (not valid)

cache
access

Figure 24: cache hit and cache miss timing diagrams

The time diagram in Figure 24 shows how CPU data is managed by
the cache, during hits and misses. In this example addresses

 50

“0000”, “0001” and “0003” are supposed to generate cache hits,
while “0004” generates a cache miss and freezes the CPU: notice
that hits and misses are evaluated on the negative edge of clk (as
cache SRAM is clocked on the negative edge) allowing the issue of
signal CPU_freeze before the following rising clock (in which the
CPU would read invalid data). Notice also that a wait cycle (with
CPU_freeze active) is inserted in every cache access (resulting in a
hit), in order to simplify clock gating structure: for this reason
cache hit time is 2 clock cycles.
Miss time, instead, is controlled by the user (within certain limits)
through the cache configuration: by specifying a value for the
constant N_bytexblock is not only modified the cache memory
layout, but also the length of the serial stream sent to the cache
after each miss.
The following diagram illustrates the serial custom protocol
implemented by entities sd_8051_cache and sram_interface (the
part of sd_cache_fpga IP that handles the serial communication
protocol as a slave). It works on two wires only, a serial clock
(sclk, equal to system clock) and a bidirectional data line, driven
(as open collector) by master and slave alternatively. 8051 Cache
is the master, with the exclusive right to start a transaction by
driving to zero the data line. After the start bits, it transmits the
(16-N_bit_offset) MSB of the address (relative to the first location
of the EEPROM to be read). No information relative to the number
of bytes to be read is issued, as the slave inherits this parameter
from the cache package. The off-chip interface latches the address
and reads sequentially N_bytexblock bytes; then transmits the
whole new block serially (still starting with 2 start bits) through
sdata line. The first start bit is always a zero and is used to signal
the beginning of a stream. The second bit is a ‘1’ if the previous
stream has been received correctly (i.e. has passed the parity
check) and communication can go on normally. If it’s a ‘0’ (parity
fault), the talker stops driving the line, and waits for the last
stream to be retransmitted.

idle

pull-up

data

slave drives the line

wait

pull-up

idle

pull-up

sclk

sdata a0 d0parok an-1 ok dm-1 par

address

master drives the line

Figure 25: example of serial protocol.

Chapter 2 Design of Sensor Interfaces

 51

From the above diagram we can calculate miss time (in clock
cycles) as:

NNNNNTmiss 22 log)8(221821log162 −⋅++=+⋅++⋅++−+= αα

With =N N_bytexblock and =α EEPROM/SRAM read access time
(in clock cycles, usually 1).
For instance, in the cache implementation of the customized
platform for gyro sensor, total miss time is 95 clock cycles (91 for
the above mentioned stream, plus states for miss detection and
data storage/providing).
Internal cache can be configured with two different architectures:
direct mapped or 2-ways set-associative. The other configuration
parameters (cache dimension and number of bytes per block) can
be set independently from the chosen architecture, while these
three parameters together affect the derived dimensioning
constants, like tag and index bits and SRAM blocks width.

tag blockv

INDEX OFFSET

15 0

TAG

hit data

CPU address

Figure 26: direct mapped architecture.

The direct mapped is the simplest cache architecture, featuring
minimum complexity and SRAM employment. A schematic
representation of this architecture is given in Figure 26.
CPU address is split into three components:
- OFFSET selects one byte within a block. It’s expressed on
log2(N_bytexblock) bits (starting from LSB).

 52

- INDEX selects one cache row (v + tag + block). It takes
log2(N_block) bits, starting from the first not used as OFFSET.
N_block (number of blocks) is calculated as cache dimension /
number of bytes per block.
- TAG bits are all the other address bits not used as OFFSET or
INDEX.
Since cache dimension is always minor than address space (64 Kb
for 8051 CPU), a direct mapped architecture maps many memory
blocks to the same cache row (i.e. all those with the same INDEX).
The number of these blocks is just the ratio between memory and
cache dimensions. For this reason the TAG bits of the CPU address
must be compared to those of the block stored in cache: if they’re
equal (and if valid bit is set) the cache access results in a hit. Valid
bit is initially cleared for all rows (during flush state, after reset):
then every new block loaded into cache has a valid bit set to ‘1’,
being it valid data. By this moment it’s not possible to invalid data
present in cache (flush operation), neither via software nor
hardware. The above shown logic (SRAM, AND gate and
comparator, without multiplexer) is included in component called
‘cache’, which is instantiated both in direct mapped and associative
architectures.
Once set cache dimension and number of bytes per block, a 2-way
set-associative cache can be seen as two sets, each containing half
of the blocks that would be in a direct mapped cache.

tag blockv tag block

hit _2

vr

  

TAG

INDEX OFFSET

15 0

TAG CPU address

hit _1

hit data

Figure 27: 2-way set-associative cache architecture.

Chapter 2 Design of Sensor Interfaces

 53

This means that two ‘cache’ components are present: they receive
the same index, and both send out their data and partial hit result.
Global hit is the OR of the two partial hits, while global output data
is selected in a bigger multiplexer between partial outputs,
depending on OFFSET and partial hits.
This architecture employs more resources than direct mapped:
with the same cache dimension (i.e. total number of blocks) it has
1 bit less of INDEX and thus 1 bit more of TAG; so it requires
bigger SRAM, two bigger comparators (instead of one) and a
bigger output multiplexer. SRAM has to be wider not only for the
increased length of tags, but also for the presence of replacement
bit (r), necessary to indicate which is the last set used (for each
row) and so what is the block to be replaced in case of cache miss.
The higher area occupied by this architecture is rewarded with an
increase of performances, identified by a lower miss rate and
subsequent lower mean access time (TA). This is due to the higher
flexibility of cache storage (with respect to Direct Mapped
architecture): two memory blocks with the same INDEX can be
both stored in cache (and reused many times by processor)
without having to be replaced every time. This advantage is more
significant for smaller cache dimensions, as there are in this case
many memory blocks mapped to the same cache row.

ii. sd_cache_fpga
This IP is intended for being implemented on FPGA and provides a
32kb (or bigger, depending on the FPGA available resources) off-
chip SRAM for the 8051 cache. This SRAM has to be filled up with
the code that will be executed by the ASIC: for this reason it is
provided with CPU, UART, and embedded boot firmware which
handles the download of software at power up through the
standard 232 or 485 protocol. A memory wrapper lets CPU write
access the memory after reset (for code storage); when download
is finished, CPU disables itself by writing in a proper SFR, and the
wrapper lets the sram_interface (a serial/parallel converter,
implementing a slave in the cache custom protocol) read-access
the memory. The wrapper has also the task of driving the reset pin
of the ASIC (releasing it after download is completed) and issuing
the identification stream (defined in the package) through the
serial data line, so letting sd_8051_cache detect the presence of
this FPGA. To keep sd_sram_interface and sd_8051_cache
completely synchronous, this FPGA uses as system clock the serial
clock output pin of the ASIC.
Main features:

 54

• Compliant to sd_8051_cache: same serial custom protocol
and same package for dimensioning.

• Fully parametric VHDL description.
• SFR reduced interface allows to choose polarity of serial data

sampling (negative or positive edge).
• Power saving feature: CPU and its memories (PSROM, IDATA)

are not clocked after software download.

sys_clk sys_reset_n

tx

rx

rx_ip_chip

tx_op_chip

reset_o_chip

s_line

d485t

d485te

d485re

d485r

CPU
8051

UART

sram_
interface

RAM
(32kb)

PSROM

IRAM

SFR_write_pl

SFR_write_ed

SFR_data

wrstrb_extram

addr

reg_extaddr

cpu_idata

dout_cpu

dout

we
mem_

wrapper

sd_cache_fpga

end_download

Figure 28: sd_cache_fpga block diagram.

The CPU inside sd_cache_fpga is provided with a minimum number
of peripherals (UART, 256 bytes IDATA and 512 bytes PSROM
containing boot firmware), just those needed to correctly perform
serial code download (either through 232 or 485, selection made
by default value of signal pio_switch). The wrapper implements
two SFRs: polarity, used to choose between negative and positive
clock edge for sampling (and issuing) serial data on pin s_line, and
end_download, which is set by CPU after download is completed.
The signal end_download, output of this SFR, controls who can
access the 32kb memory (CPU or sram_interface), which UART
drives the tx pin (the one from sd_cache_fpga or the one from
ASIC) and is connected to the freeze pin of CPU 8051 (gates CPU
clock and disables IDATA and PSROM when active).
Figure 29 depicts the activation procedure of the cache modules at
power on. The user PC (containing the software to be run by the
ASIC) is connected via UART to the sd_cache_fpga. The FPGA
receives the CLOCKOUT signal from the ASIC but drives to ‘0’ its
RESETN pin keeping the chip idle. After the FPGA memory has

Chapter 2 Design of Sensor Interfaces

 55

been filled with the software, the end_download signal switches
the access control to the memory and connects the UART from the
ASIC to the PC serial interface. At the same time the RESETN pin is
driven to ‘1’ and thus the ASIC starts its own power up routines
(mostly hardware Built In Self Tests on ROMs and RAMs). If BISTs
are ok, the bidirectional CACHE line is released (pull-up) and the
sd_cache_fpga, after sampling the ‘1’ level, issues an identification
stream that enables in sd_8051_cache the active mode, thus
masking the ASIC PSROM or PSRAM and providing the code to the
CPU after serial communication with the FPGA slave.

sd_cache_fpga

RESETN

CACHE

CLOCKOUT

rs485
sd_8051_

cache

sd710

CLOCKOUT

CACHE

RESETN

code download
(PC sd_cache_fpga)

sd710 start-up
(bist memories, etc...)

pull-up sd_cache_fpga
detection stream

sd710 in
'cache mode'

driven by
sd710

driven by
 sd_cache_fpga

Figure 29: Handshake at start-up between sd_8051_cache
and sd_cache_fpga.

This handshake has been conceived to guarantee the maximum
flexibility and the minimum overhead due to the presence of the
cache. In this way, when the cache is not needed it automatically
deactivates and its memory is available as additional PSRAM, while
the two pins for serial communication (CACHE and CLOCKOUT) are
free to be driven by other IPs.

iii. sd_SRAM_controller
This memory controller is an interface designed to drive an
external SRAM memory, with two main features: write (and read
back) 16-bit words from CPU and store into memory digital data
probes. The purpose of this IP is to be instantiated into a design

 56

with a multi-stage DSP chain allowing a software controlled probe
of the monitored nodes, by means of real-time signal acquisition
and subsequent data read back by the CPU, for off-line processing
(generally the CPU forwards the data stored in memory to a host
PC which performs signal elaboration and visualization. In this way
the designer can easily debug the hardware-implemented DSP
chain being able to trace up to 16 signals with the only limitation
of external SRAM dimension.

DSP #1 DSP #4DSP #3DSP #2 DSP #5

SRAM
ctrl

DSP chain ext. SRAM

Figure 30: SRAM controller connections.

The controller is located on the AMBA APB bus, where several
registers can be accessed by the CPU to issue commands and
settings, such as max number of samples, timing of the write
cycles, start address of the stored data and probe signal selection.
Through the APB interface the CPU can set these parameters and
also store into memory test words to verify that write (and read)
accesses to SRAM work properly, before starting to probe a signal.
Once in probing mode the selected probe words are forwarded to
memory, with variable latency but fixed throughput (depending on
the chosen write timing, max is 1 sample every 4 clock cycles).
Probing stops automatically after reaching the max number of
samples (or it’s forced to stop with the appropriate command).
Memory data can be read back by the CPU issuing first a ‘start
reading’ command, and then through read accesses to DATA
register (each access invokes a new memory read). Oldest stored
data are read first.
A STATUS register provides to CPU three flags: Probing Mode,
Data Ready (to be read) and All Memory Read (set when all the
stored samples have been read by the CPU).
Main features:

- Suitable to probe up to 16 digital signals (of 16 bits each).
- Programmable probe signal, write timing, start address and

number of samples.
- Write test word (and read back) feature allows

implementation of a SRAM access operation monitor.
- Fast memory access.
- Hardware management of probing operations (CPU is

completely free during probing mode).

Chapter 2 Design of Sensor Interfaces

 57

PCLK

PWRITE

PENABLE

PADDR[15..0]

PWDATA[31..0]

PRDATA[31..0]

PSEL

PRESETn

PCLK_en
mem_oe_n

mem_cs_n

mem_we_n

oe_n

mem_data_out[7..0]

mem_data_in[7..0]

mem_addr[19..0]

dv_in[15..0]

p_0[15..0]

p_15[15..0]...

probe_interface

memory_
interface

probe dv
APB_sl_interface

STATUS

N_SAMPLE

SET_TIMING

DATA

SET_ADDR

PROBE_SEL

probe_selclk

reset_n

Figure 31: SRAM controller block diagram.

The SRAM controller is a set of three interfaces, each one
described in a separate entity.
The probe_interface has the duty to work as a multiplexer
(selecting one of the sixteen probe inputs and the related Data
Valid) without being a multiplexer (it is indeed implemented as a
kind of shift register). This implies a limited use of routing
resources (that would be critical for a 256 to 16 mux) at the cost
of a higher employment of registers and a latency (up to 16 clock
cycles) applied to the probe signals.
The APB_sl_interface physically implements the APB registers
(through which the controller is programmed and accessed by
CPU) and forwards all the appropriate commands and information
to the memory_interface.
The memory_interface implements a simple state machine
designed to access memory on read and write, depending on the
operating mode set by the CPU.
The memory controller is by default in an idle state, where all the
APB registers can be accessed by the CPU, so that the controller
can be properly configured. It is possible to choose one of four
possible write timings, the number of samples that must be stored

 58

in memory during the probing mode, which one of the 16 probes
has to be stored and the start address in memory where they will
be located (this also allows to probe in sequence several signals
and then read them back all together, but this operation needs a
careful software handling). The idle state can be used to store test
words directly form CPU to memory, just writing the word in the
DATA register. Several test words can be written before reading
them back (but they mustn’t be more than the selected max
number of samples). Issuing the command ‘start reading’ the CPU
can then (read) access DATA register to read back all the test
words (starting from the first written), to verify the correctness of
memory accesses before starting to probe.
The memory controller enters the probing mode by issuing the
command ‘start probing’. It’s highly recommended to set all the
parameters (write to N_SAMPLE, SET_TIMING, SET_ADDR and
PROBE_SEL) before issuing this command, in order to avoid
unexpected behaviors. During the Probing Mode the PM flag is set
and all the accesses to the APB registers are masked (except the
STATUS register, where it’s possible to write the ‘stop probing’
command to abort the current probing and get back to idle state).
Otherwise the probing continues until all the N_SAMPLEs are
stored into memory; then the controller returns to idle state
(resets the PM bit).
It’s reasonable to have a read session after the signal probing: this
is done issuing first the ‘start reading’ command and then read
accessing DATA register. Each read automatically invokes a new
memory access, so that a new data is ready on the following
access to DATA. Memory read accesses are usually faster than APB
register reads; anyway a Data Ready (DR) flag is provided, in case
a handshake was needed (DR is reset after a DATA read and is set
when a new word is loaded into the register). The All Memory Read
(AMR) flag is set only when N_SAMPLE memory reads have been
carried out (after having issued a command ‘start reading’) and is
reset on a new command issued.
Note that no hardware control is provided on the read data kind
(probes or test words) and on the effective presence in memory of
valid data (for example, when a ‘stop probing’ command is issued,
less then N_SAMPLE valid words are stored in memory: in this
case AMR is not set when all the probed words have been read,
but just when N_SAMPLE reads have occurred).
Figure 32 depicts a typical probing/reading session: starting from
the address specified in the register SET_ADDR, data are stored
into subsequent memory locations until 2N_SAMPLE = 8 words have
been written. When the ‘start reading’ command is issued, words
are read starting from the same starting address, and the AMR flag

Chapter 2 Design of Sensor Interfaces

 59

is set when the last location (the 8th) is read from memory (not
when it is withdrawn by CPU through DATA register).

START_ADDR
(0C)

N_SAMPLE
(3)

00
02
04

0C

1A

1E

data
written

1st

8th

data
read

1st

8th

...
...

Figure 32: example of a probing session with subsequent
read back.

iv. sd_freq_meter
The sd_freq_meter IP is a simple period calculator for square wave
frequency monitoring. It can receive a programmable number of
square wave inputs (within a programmable frequency range) and
returns a period measurement according to the working mode: full
period, half period high or half period low. This IP is accessed
through the JTAG-like chain (JLCC).

Main features:

• JTAG-like access for programming and data output.
• Fully parametric VHDL description.
• Low power design (uses enable Flip-Flops that can be

automatically converted to gated clock FF).

The sd_freq_meter IP is period calculator accessed via JLCC chain.
One out of 4 possible working modes can be chosen by issuing a 2
bit command: NOP (No OPeration), FP (Full Period measurement),
HP (High half Period measurement), LP (Low half Period
measurement). As well the target input waveform must be chosen
(total number of inputs is programmable via generic). Issuing any
command implies a JLCC read back of the command previously
written and output data (relative to the old command): the period
measurement plus a valid bit (stating if the measurement has
been successfully accomplished or not).

 60

In order to perform a period measurement the following procedure
should be followed:

• Send a command to select which operation to do on which
input signal.

• Wait enough time to let sd_freq_meter complete the
measurement. Up to as twice as the measurement effective
length can be needed, because the first edge of input
waveform is cut off (it could be a spurious transition due to
a change of input channel).

• Issue another command in order to setup next measure or
a NOP command.

• With the third JLCC access another measure can be started,
and first meaningful data can be read back on the chain
(this data refers to the first command issued). Each
command read back is consistent with period data and valid
bit.

• Measures can go on according to the described scheme.
Software must take into consideration the data pipeline
(typical of JLCC operations) and should not access the
peripheral violating the timing in point 2). If a valid bit = ‘0’
is read back, it can be because of a measure not yet
terminated or a counter overflow (input frequency out of
specification).

CLK

TMS

r_cmd

r_channel

r_count

_

0 N3

CMD2

Ch2

N1 N2

CMD1 CMD3

Ch3Ch1

_

_

00

Set first CMD,
channel and

start measure 1

Start
measure 2

Start
measure 3

Start
measure 4

Readback
 N1 CMD1 Ch1

Readback
 N2 CMD2 Ch2

Figure 33: sd_freq_meter control via JLCC.

The basic block diagram of the sd_freq_meter is sketched in the
figure below. Synchronization is performed on paths crossed by
the dashed lines.

Chapter 2 Design of Sensor Interfaces

 61

TDI

TDO

wave_in [5..0]

channel cmd period DV

counter

Figure 34: sd_freq_meter block diagram.

2.7 Low power optimization of IPs for SoCs

Automotive applications and in particular the sensor interfaces field
is not exempt from tight constraints regarding power consumption.
Even though most of automotive system are powered by the car’s
battery (with several Amperes available) and the main focuses of
automotive electronics are elevated performance and high
reliability, low power optimization still plays an important role due
to several factors:

- The number of sensors inside a car (and in general of
electronic devices) is rapidly growing and for this reason
electric power budgeting is becoming a issue, especially
regarding power peaks which may compromise the
functionality of vital safety systems handled by electronic
units.

- Sensor systems must guarantee their high performances
over the full automotive range (-40°C to +125°C). Stability
over temperature is often a critical issue and a high power
consuming device is likely to suffer an excessive silicon
heating and the subsequent biasing (in particular in the
analog cells) which may spoil the overall system
performances.

- Also the system reliability, which is a binding requirement
for every automotive electronic device, may be badly
affected by the silicon heating due to the high power
consumption. Elevated silicon temperature means faster
aging and precocious wearing which inevitably shorten the
device life.

 62

The power consumption of CMOS digital circuits can be expressed
as follows:
 P = (αCLVdd

2fclk+ISCVdd) + IleakageVdd
where fclk is the clock frequency, α is the average switching
activity, Vdd is the supply voltage. The term within parenthesis in
the above formula is the dynamic power. It is given by the
switching power (due to charging and discharging of the capacitive
load CL of the circuit), and the short circuit component due to the
current ISC that arises when NMOS and PMOS transistors are
simultaneously on. The last component is around 10% of the
whole dynamic power [32]. The second term is the static power. It
is mainly due to reverse-bias diode leakage on the transistor
drains and to the sub-threshold current of off-devices. The
dominant contribution to power is currently the dynamic
component although, with latest technologies scaling below the
100 nm barrier, the contribution of leakage power can be no more
negligible [32].
The minimization of power consumption, for a CMOS digital
system, involves optimizations at different design levels: from the
technology used, to the custom sizing of transistors and clock tree
at gate level, up to architecture level techniques and, at a highest
level, to the algorithm to be implemented. All these approaches
require a trade-off between power, area, speed and flexibility.
In this paragraph are presented few examples of low power
optimization for IPs which were not originally designed with low
power features.
The optimization focuses on architecture level, being implemented
directly on the RTL description of the IP cell and hence portable in
different technologies and CAD environments. At the architectural
level the dynamic power can be significantly reduced by avoiding
superfluous switching activity, while static power can be kept low
by choosing a low-leakage target technology for the CMOS
implementation. The proposed optimizations are technology and
CAD independent, thus they can be combined with the other low-
power techniques proposed in literature.

i. 8051 CPU core by Oregano Systems
The considered 8051 core is freely distributed by Oregano Systems
under LGPL licence [31]. It features a fully synchronous design,
with an 8051 compatible instruction set, and optimized
architecture to execute most of instructions in one clock cycle.
The Oregano core is up to 10 times faster than conventional 8051
architecture making it suitable for integration in a large class of
embedded systems. A key feature, to let this IP highly reusable, is

Chapter 2 Design of Sensor Interfaces

 63

the chance to customize it, for example by implementing or not
the most demanding instructions (MUL, DIV) and by instantiating a
user defined number of timers and UARTs serial interfaces, with
relevant Special Function Registers. The VHDL source code has
been synthesized within Synopsys™ environment, using a
configuration with one timer, one UART and implementing
MUL/DIV instructions, targeting a 0.18µm CMOS low-leakage
technology. It resulted in a maximum clock speed of 48 MHz with a
circuit complexity of about 10.5 Kgates, distributed among the four
main blocks: ALU, control unit, UART and timer (Figure 35).

CONTROL UNIT
72%

ALU
13%

TIMER
7%

UART
8%

Figure 35: Area complexity of IP main blocks.

In order to identify the most power consuming block (on which
concentrating the efforts for power optimization), and to evaluate
power reduction on the modified architecture, the Dhrystone test
code from Keil™ Software [33] has been chosen. This code is
conceived to compare different CPU architectures (or compiler’s
efficiency), by providing a balanced instruction mix: 53% of
assignments, 32% of control statements and 15% of function and
procedure calls. This mix has been set up for simulating the
behaviour a generic microcontroller application: for this reason it
fits perfectly the role of reference code, as the results provided by
the optimization are guaranteed to be not application specific, and
an easy check of no performance loss due to the introduced
architectural changes is immediately given at the end of the
Dhrystone execution.
Power consumption of the four blocks has been estimated with
Synopsys™ Power Compiler, using a 0.18µm CMOS library at 1.95
V supply voltage and 10 MHz clock. Percentage results are shown
in Figure 36. This graph proves that control unit is definitely the
most power hungry within the four blocks: for this reason it has
been the object of the optimization. The ‘other’ entry in Figure 36

 64

is mainly related to the switching activity of the clock distribution
net.

CONTROL UNIT
72%

ALU
1% TIMER 4%

UART 5%
other
26%

Figure 36: Power consumption of IP main blocks.

Three different techniques have been adopted to reduce power
consumption at architectural level:
a) State encoding: this simple optimization [34] works on the state
register, and aims to reduce its switching activity by minimizing
Hamming distance between subsequent states (i.e. the number of
bits which toggle during the transition). With an only 3-bit state
register, this optimization did not lead to remarkable power
improvements for the 8051 core.
b) Clock gating: this technique is one the most effective and thus
widely employed in low power designs [32][35][36]. It is based on
the principle that substantial power savings can be obtained if
registers are not clocked when they don’t have to produce valid
outputs.

Figure 37: Different styles for clock gating.

Chapter 2 Design of Sensor Interfaces

 65

Two kinds of solutions [36] are generally adopted to prevent clock
from reaching a register: as shown in Figure 37, one employs a
transparent latch (with negative enable), while the other simply
ORs clock line with the enable logic. The latch-less technique
introduces a smaller area overhead, but can lead to misbehaviour
due to glitch propagation through the control logic, which is
directly connected to the clock pin of the register (signal en must
be held constant for all the clock negative half period).
To prevent timing errors, the latch technique has been chosen, as
it allows the employment of this IP core in safe critical applications
too (e.g. automotive, space [38]). The optimization methodology
bases on scanning the VHDL code to find descriptions of enable
registers, which are replaced by clock-gating latch-based
structures.

CN

>

EN

D

Qinputs

registered signals

en j

sig j

clk

r_sig j

>

D

Qinputs

registered signals (r_sig i , r_sig j)

en j

sig j

clk

r_sig j

CN

LE

LD
LQ

clk_en j

gclk j

Figure 38: Clock gating insertion.

If we use the naming convention presented in Figure 38, a generic
synchronization process can be described like this:

sync: process(clk)

...
if Rising_Edge(clk) then
 r_sig i <= sig i ; -- system clocking
 case (ctrl_sig i) is
 when (cond k) => r_sig k <= sig k ; -- gating
 end case;
 if (en j = ‘1’) then r_sig j <= sig j ; -- gating

 66

 end if;
end if;
end process;

We leave in process sync (sensitive to system clock) only those
signals which are always enabled (r_sigi), while we create two new
processes and a combinatorial statement for each register r_sigj
that has to be gated. Combinatorial logic that generates inputs and
enables for the registers doesn’t need to be changed.

gclk j <= clk and clk_en j ; -- clock gating
latch: process(clk, en j) -- latch modeling
begin
 if (clk = ‘0’) then clk_en j <= en j ;
 end if;
end process;
gsync: process(gclk j) -- new sync
...
 if Rising_Edge(gclk j) then
 r_sig j <= sig j ;
 end if;
end process;

This new description allows synthesizer to instantiate the proper
gating logic, but at the same time may be wrongly interpreted by
the RTL simulator. Indeed, in case some of the registered signals
sketched in Figure 38 are edge-triggered by the system clock (e.g.
signals r_sigi in the above description) the following problem
arises. A clock event causes the execution of the sync process,
updating signals r_sigi which are inputs to enabled (now gated)
registers; the relevant processes are executed after some delta
cycles, as they now originate from a gclkj event, instead of being
concurrent. This implies that some of the r_sigj signals are
updated with the new values, coming from r_sigi registers, that
they should have got on the following clock event according to the
original description. The solution is to assign these critical signals
outside the sync process to some aliases called sigi_aux, so that
they are updated at the same time as gclkj, and the gsync process
works correctly. Example:

sync: process(clk)
...
 if Rising_Edge(clk) then
 r_sig i <= sig i ;
 end if;
end process;

Chapter 2 Design of Sensor Interfaces

 67

sig i _aux <= CN(r_sig i ,…); -- updated together
gclk j <= clk and clk_en j ; -- updated together
gsync: process(gclk j) -- new sync
...
 if Rising_Edge(gclk j) then
 r_sig j <= sig i _aux;
 end if;
end process;

Clustering of gated registers: An important issue concerning the
clock gating of a set of registers is whether to gate clock once for
all the registers, or to generate gating signals dedicated to each
one. The more clock-gating are inserted, the more switching
activity is reduced, since each register has different clock enable
conditions. However, each gating structure introduces also an area
and power overhead. Therefore, it’s required to find an optimal
clustering. That is to say, dividing the total amount of registers in
M clusters of K registers, where each cluster is clocked by its own
gclk signal, we have to find K optimal.

Figure 39: example of clock gating clustering.

For a generic n-bit register, the power saving due to clock gating
insertion can be expressed as follows [36]:

])1([2
addgatedddclksaved CCVfP −−= α

where Cgated is the total input capacitance of the gated n-bit
register and, with reference to Fig. 4, Cadd is the capacitance of the
AND and LATCH inputs, α is the switching activity of the gclk
signal. In case of M subsets of K registers the total power saving is
(all the K registers belonging to the same ith cluster share the
same gclki signal and hence the same αi) :

∑
=

−−=
M

i
addigatedddclksaved CKCVfP

1

2])1([α

 68

Logic synthesis results prove that Cadd is roughly equal to the
capacitance of a 1-bit register clock pin. In particular, for the
considered IP core most of the registers are at 8-bit and hence

addgated CC 8≈

Therefore, the total power saving is:

∑ ∑
= =









−






 −=−−=
M

i

M

i
iaddddclkiaddddclksaved MMKCVfKCVfP

1 1

22 8]1)1(8[αα

where Cadd is the capacitance of the AND and LATCH inputs, αi is
the switching activity of the gclki signal. Given that the number N
= 8KM is known a-priori from the CPU architecture and under the
assumption, verified by simulations, that the average IP switching
activity does not depend on the organization of gating clusters for
a given set of input stimuli, the summation

c
M

i
i =∑

=1

α

is independent from the particular value of K.
The saved power can be maximized using clusters of

 c

N
K opt 8

1=

registers. Through VHDL simulations with a special counting
process, we have evaluated that c = 0.48 for the Dhrystone test
code, with N = 328, leading to the result of Kopt = 3.26, that is to
say the optimal solution is using clusters of 3 registers (selecting
such value for K, the solution will be optimal for applications with
average switching activity in the range from 0.42 to 0.82).
While the clock gating insertion can also be performed
automatically by the synthesis tool (for example Synopsys™), the
clustering optimization cannot be performed automatically by the
tools (c is not known a priori), allowing this method to achieve
better results than the automatic clock gating insertion.
c) Operand isolation: this technique consists in ‘freezing’ the inputs
to big combinatorial nets when their outputs are not needed, for
example by ANDing them with a valid signal [38], and it can prove
very useful in DSP applications where large adders, shifters and
multipliers are employed. For the target 8051 IP core, operand
isolation has been implemented on the program counter register,
where adders that calculate pc (program counter), pc+2 and pc+3
have a high switching activity at their inputs and not always
provide significant data at their outputs, while has not been
applied to ALU’s adder, comparator and multiplier, as the whole

Chapter 2 Design of Sensor Interfaces

 69

energy consumed by this block is negligible if compared to that of
the control unit.

B

A
U

RC
U

RC

dv_A

dv_B

A

B

Figure 40: operand isolation.

Results: The 8051 IP was first modified inserting state encoding:
this optimization did not affect significantly area and maximum
frequency, and resulted in a small power reduction (1%). Better
results came from clock gating, which brought to a remarkable
decrease in power consumption (≈ 37%), while limiting area
overhead at 3%. Compared to automatic clock gating insertion, a
further 7% of dynamic power was saved. As a counterpart, this
technique lead to a slow down of maximum operating frequency,
as the enable signals entering the latches must settle before the
falling edge of clock. In the end, implementation of operand
isolation introduced with respect to the original IP a 3% power
reduction, with few effects on area and maximum frequency. The
final low-power version of the Oregano 8051 core, with all the
three techniques implemented, features a total power reduction of
about 40% with respect to the original IP, a small area overhead
of roughly 3% and a maximum clock frequency of 44 MHz. Yet the
modified 8051 core keeps the same timing and functionalities
(verified through the Dhrystone execution, it results in the same
performances), being still a technology independent, highly
reusable IP.

ii. Flow for low power synthesis
The manual modification of the IP’s VHDL code presented in
previous paragraph achieves the best power saving results. Yet it
implies two main drawbacks:

- The VHDL code modification has to be performed by a
designer (no scripting or automatic procedure can
efficiently accomplish this task) and often results to be
rather time consuming (and consequently expensive).

 70

- Such activity may introduce bugs into the IP, thus
requires a thorough verification before integrating the
modified IP into a project.

A costs/benefits analysis must be carried out in order to evaluate
whether this technique can be profitable for a wide set of
outsourced IPs, also considering that low power optimization is
undoubtedly helpful in automotive applications but no killing
requirement is set for power consumption constraints.
An alternative approach consists in waiving part of the low power
optimization and letting the synthesis tools handle this issue. By
setting up a low power synthesis flow (basically made of a series of
scripts and procedures) the tool automatically inserts clock gating
and sleep logic, achieving a substantial reduction of design costs
(those related to the engineering needed for the IP modifications)
and guaranteeing a bug free implementation.
This paragraph addresses the implementation of low power
synthesis flows for the main commercial synthesis tools
(Cadence™ and Synopsys™) and the results achieved for
comparison with the manual optimization of previous paragraph.

a) Synopsys™: as exemplified in Figure 41 [39], the HDL Compiler
perform a first synthesis and generates a forward-annotation file
(SAIF format) which contains the information on the nodes whose
switching activity has to be monitored and that will be used in a
further RTL simulation for the back-annotation SAIF file creation.
Then clock gating and operand isolation structures are inserted
and the modified design is synthesized by Design Compiler. At the
end of the flow, Power Compiler uses the switching activity
information from the back-annotation SAIF file for deciding which
power-saving structures are effective and which simply constitute
an overhead, thus outputting the power optimized netlist. A gate-
level (besides the RTL) simulation gives Power Compiler further
information on parasites, thus improving the optimization process.
The depicted flow was tested on the 8051 core by Oregano
Systems, using as a reference the same Dhrystone as in paragraph
2.7. The automating insertion of clock gating achieved a power
saving of 30% with respect to standard synthesis flows, thus
proving to be a valuable optimization method even if manual IP
modifications showed a better overall power reduction.

Chapter 2 Design of Sensor Interfaces

 71

Figure 41: Low power synthesis flow with Synopsys™ [39].

b) Cadence™: this tool [40] handles the synthesis for low power in
a similar way of Synopsys™. It basically consists of three steps:

- The initial synthesis (with low power switch selected)
searches for all the possible candidates of clock gating
and sleep mode, inserting the low power structure in
every case.

- A gate level simulation on the generated netlist collects
the switching activity data needed by the last synthesis
step.

- Low power optimization, according to the switching
activity information, decides whether to commit or
remove the clock gating and sleep mode structures
inserted at the first step.

This tool allows the choice of which low power technique to be
used (only clock gating, only sleep mode or both) and thus the
impact of each possibility has been evaluated. In order to extend
the validity of the results, besides the Oregano core another 8051
CPU has been employed for this study: the CPU 8051 developed by
Research Institute for Integrated Circuits (RIIC) [41]. The RTL
VHDL code of such IP is freely distributed under LGPL licence and
the IP is compliant to the MCS-51 specification (from Intel Corp.)

 72

for 8051 CPUs. The RIIC features a fully synchronous design with
code, external and internal data memories, SFRs, interrupt
controller, UART and timer, and optional second data pointer
(DPTR) and selectable hardware implementation of MUL, DIV and
DA instructions.
The performed analyses have shown global power saving of about
25% for both microcontrollers, which has been achieved mostly by
the automatic insertion of clock gating, while the sleep mode (both
when evaluated alone or added to the clock gating) did not bring
substantial improvements for this kind of IPs. This approach has
been further verified by extending the analysis to the back-end
flow: in this way the power saving results have been confirmed
also after place & route and interconnection parasites extraction.

Chapter 2 Design of Sensor Interfaces

 73

Bibliography

[18] Xiujun Li; Meijer, G.C.M.; de Boer, R.; van der Lee, M.; A high-performance
Universal Sensor Interface Sensor for Industry, 2001, Proceedings of the First
ISA/IEEE Conference, Pages:19 – 22, 5-7 Nov. 2001

[19] Meijer, G.C.M.; Xiujun LI; “Smart Sensor Interface Electronics”,
Microelectronics, 2002. MIEL 2002. 23rd International Conference on, Volume
1, 12-15 May 2002 Page(s):67 - 74 vol.1

[20] Guan Chao; Li Xiujun; Meijer, G.C.M.; “A System-Level Approach for the
Design of Smart Sensor Interfaces”, Sensors, 2004. Proceedings of IEEE 24-27
Oct. 2004 Page(s):210 - 214 vol.1

[21] Jichun Zhang; Junwei Zhou; Balasundaram, P.; Mason, A.; “A highly
programmable sensor network interface with multiple sensor readout circuits”
Sensors, 2003. Proceedings of IEEE , Volume: 2, Pages:748 – 752, 22-24 Oct.
2003

[22] Sangiovanni-Vincentelli, A.; Martin, G.; “Platform-based design and software
design methodology for embedded systems” Design & Test of Computers, IEEE
Volume 18, Issue 6, Nov.-Dec. 2001 Page(s):23 - 33

[23] Carloni, L.; De Bernardinis, F.; Sangiovanni Vincencentelli, A.; Sgroi, M.; “The
Art and Science of Integrated Systems Design”, Solid-State Device Research
Conference, 2002. Proceeding of the 32nd European, 24-26 September 2002
Page(s):19 - 30

[24] Fanucci, L.; Giambastiani, A.; Iozzi, F.; Marino, C.; Rocchi, A.; “Platform based
design for automotive sensor conditioning” Design, Automation and Test in
Europe, 2005. Proceedings 2005 Page(s):186 - 191 Vol. 3.

[25] Marino, C.; Forliti, M.; Rocchi, A.; Giambastiani, A.; Iozzi, F.; De Marinis, M.;
Fanucci, L.; “Mixed signal behavioral verification using VHDL-AMS”, Research
in Microelectronics and Electronics, 2005 PhD Volume 2, 25-28 July 2005
Page(s):115 - 118

[26] C. Marino, M. Forliti, A. Rocchi, F. Iozzi, A. Giambastiani. “VHDL-AMS
Modelling and System Verification Flow for Mixed-Signal System-On-Chip”,
Forum on specification & Design Languages Sept. 27-30 Lausanne 2005

[27] Farrokh Ayazi, and Khalil Najafi; “Design and Fabrication of A High-
Performance Polysilicon Vibrating Ring Gyroscope”, Eleventh IEEE/ASME
International Workshop on Micro Electro Mechanical Systems Heidelberg,
Germany, January 25-29 (1998)

[28] W. Geiger, W. U. Butt, A. Gaißer, J. Frech, M. Braxmaier, T. Link, A. Kohne, P.
Nommensen, H. Sandmaier, W. Lang and H. Sandmaier; “The silicon angular
rate sensor system DAVED©” Sensors and Actuators A: Physical, Volume 95,
Issues 2-3, Pages 239-249; (2002)

[29] ADXRS300 Datasheet www.analog.com
[30] Gyrostar® Datasheet www.murata.com
[31] Oregano Systems, Design & Consulting GesmbH, www.oregano.at
[32] Benini, L.; De Micheli, G.; Macii, E.; “Designing low-power circuits: practical

recipes”, IEEE Circuits and Systems Magazine, 1 (1) 2001, pp. 6-25
[33] Keil™ Software Embedded Development Tools, www.keil.com
[34] De-Sheng Chen; Sarrafzadeh, M.; Yeap, G.K.H.; “State encoding of finite state

machines for low power design”, Proc. IEEE ISCAS, pp. 2309 – 2312, May 1995
[35] Raghavan, N.; Akella, V.; Bakshi, S.; “Automatic insertion of gated clocks at

register transfer level”, Proc. IEEE VLSI Design, pp. 48–54, 1999

 74

[36] F. Emnett, M. Biegel, “Power Reduction Through RTL Clock Gating”, Synopsys
User Group, San Jose, March 2000

[37] Alidina, M.; Monteiro, J.; Devadas, S.; Ghosh, A.; Papaefthymiou, M.;
“Precomputation-based sequential logic optimization for low power”, IEEE
Trans. on VLSI Systems, 2 (4), 1994 pp. 426 – 436

[38] J.C. Lyke, “Design of a power-optimized micro miniature advanced instrument
controller for sensor craft applications”, AIAA/IEEE Digital Avionics Syst.
Conf., pp. 145–150, 1996

[39] Synopsys™ Design Compiler User Manual
[40] Cadence™ Buildgates User Manual
[41] Research Institute for Integrated Circuits, www.riic.at

 75

Chapter 3
FAST PROTOTYPING FLOW

3.1 Limitations of Platform Based Design flow

The Platform Based methodology presented in Chapter 2
constitutes a paramount support to the designers for handling the
raising chip complexity and the tightening of design constraints.
Nevertheless, regarding the development of sensor interfaces in
automotive applications, this approach features few drawbacks and
limitations that should be overcome in order to keep the pace of
demands coming from the market and at the same time fulfil all
the typical requirements of such applications.
The most critical aspect of a Platform Based flow (which also
recurs in every top-down design approach) resides in the
architectural choices which have to be performed at the highest
level of abstraction. These decisions concern not only the system
overall architecture (which blocks are to be used) but also rough
specifications for the selected blocks and partitioning choices at
least between analog and digital implementation domain. Of
course, being at the highest design level these decisions will affect
at the utmost degree final system performances, and thus they
need to be taken with maximum care. Yet at such design stage the
designer can easily lack comprehensive information that would be
necessary to make the correct choices: for example, the
architecture of a sensor interface is evaluated through MATLAB™
simulations using a model of the target sensor, but little
inaccuracies on that model may easily lead to wrong processing
blocks employment or insufficient specification, thus spoiling
system performances and outing only by the end of the design
flow, after the prototyping phase. This means that little and
unavoidable design mistakes have the possibility to cause further

 76

design iterations with the subsequent increase in development
costs and time-to-market delay.
In a similar way, the lack of critical information at the top design
level can be the reason (if not of a defective chip) of missing some
of the original chip specification. This may happen because the
simulations at high abstraction level often provide low accuracy
when used for estimating performances of complex systems. What
perfectly matches the project requirements after system level
simulations, does not give enough guarantees to be so performing
after its implementation.
At the extreme consequences, the top-down approach results to be
critical for all those platform customizations which would require a
dedicated feasibility study. Obviously the platform for inertial
sensors conditioning presented in Chapter 2 addresses a wide
range of capacitive sensors (like gyros and accelerometers), as it
was conceived for this goal, but it’s quite hard to foresee to what
extent it can be adapted to (for example) inductive hall sensors or
magneto-resistive position sensors, unless an implementation for
such application is designed and prototyped.

3.2 ISIF platform

Intelligent Sensor InterFace (ISIF) is a platform implementation
[42] which has been conceived to overcome the issues with top-
down design methodologies described in previous paragraph. ISIF
provides a set of programmable analog and digital IPs directly on
silicon, with the possibility to change their interconnections and
integrate them with DSP software routines emulating hardware
blocks. In this way a number of conditioning architectures can be
implemented and evaluated by simply connecting ISIF to the
target sensor and thus easing and speeding up the design space
exploration phase. A design flow with the employment of ISIF does
not necessarily preclude some MATLAB™ modelling and system
level simulations: yet it makes these analyses a further
investigation possibility instead of the only source of information
for taking critical architectural decisions.
In practice the main enhancement brought by ISIF resides in the
drastic reduction of development time of the interface. In place of
long time consuming simulations and potential inaccuracies in the
used model that may lead to several design iteration, ISIF allows
the system prototyping before its actual design, with accurate
feedback information coming from IPs already on silicon, thus it
eliminates the big parasitic overheads of discrete components

Chapter 3 Fast Prototyping Flow

 77

setups and lets the designer free to explore all the possible
processing solutions just by selecting the desired blocks, their
characteristics and the related interconnections.

modeling

modeling

design space explor

ISIF trim

implementation

implementation

prototyping

prototyping

traditional PBD flow

ISIF flow

??

Figure 42: comparison between design time for a traditional
Platform Based and the ISIF flow.

The key to achieve the goal of ISIF concept is the maximum
flexibility of each hardware-implemented IP (both in analog and
digital domains) and the extremely high routing possibilities, also
including the chance of moving from hardware to software at any
stage of the signal processing chain. Another paramount ISIF
feature is the emulation nature of the chip: although it presents
commonalities with the Universal Sensor Interfaces (as it aims to
conditioning a wide class of sensors) it is not intended to be a
product for any particular application, instead it constitutes a
hardware/software implementation of a generic platform for sensor
conditioning from which customizations and optimizations can be
derived for target applications, in order to achieve the highest
performances and the lowest overheads. For this reason most of
the IPs that are generally available for running a Platform Based
design flow have been integrated into ISIF keeping as wide as
possible the configurability options, while the remaining IPs
(mostly digital signal processing blocks) which haven’t been
integrated can be anyway inserted via their software emulations
(routines which perform the same functionalities of hardware IPs
and emulate their timing and data-paths limitations).
In this way a sensor conditioning architecture can be fast
prototyped (as shown in the example in Figure 43) by inserting the
signal coming from the sensor in any of the input channel stages
(it is possible to skip those not needed in the rest of the chain),
then the preferred ADC converter can be chosen and then the
signal is routed to one of the digital processing blocks, each one
can be accessed at his input or output by software for emulated
IPs insertion. Through the wide possibilities to route out the signal
via several DAC types, signal can be feedback to the sensor
implementing closed loop architectures.

 78

ADC DACDAC

C

PI
ctrl

offset
comp

SENSOR

analog

digital

software

input channel

demod mod

nco

Figure 43: example of partitioning of a DSP chain within ISIF
platform between analog, digital and software processing

blocks.

For what concerns ISIF hardware, the analog section features a
wide range of IPs for sensor signal acquisition, driving and basic
analog conditioning such as DACs, ADCs, amplifiers, filters, and
current/voltage sources, while the digital section is composed by
the LEON CPU core, together with standard peripherals for
communication with external devices, memories and buses (AMBA
APB/AHB) and few blocks for digital signal processing (modulator,
demodulator and sine wave generator. ISIF platform has been
implemented by Sensordynamics AG in 0.35µm BCD6 technology,
on a single chip with area occupancy of about 72mm2.

z

I/V
REG

DAC

ADC

CPU

CACHE

RAM

ROM

TIMER UART

SPI WDOG

Input channel 0

Input channel 3

Input channel 1

Input channel 2
Leon

Digital section

J
T
A
G

C
H
A
I
N

IN
/O

U
T

 T
E

S
T

 B
U

S

Analog section

DIGITAL BUS

ISIF

DSP

SENSOR

Figure 44: ISIF block diagram.

Chapter 3 Fast Prototyping Flow

 79

i. Analog section
ISIF analog section is based on 4 input channels for signal
acquisition, and each channel is composed of different stages as
we can see in Figure 45. First an input charge amplifier is able to
detect voltage, current or capacitance (thus covering the most of
sensor typologies). This is possible thanks to the number of
different feedback capacitances and resistances which can be
selected and the input matrix switches that can make the input
stage operate as a charge amplifier, I/V converter or instrument
amplifier.
After signal acquisition, differential amplifiers, low pass filters and
level shifter provide proper analog conditioning with a high degree
of configurability. Then the signal properly filtered and adjusted in
gain and dynamic is converted by the Sigma Delta (or SAR) ADCs.
Additional analog blocks provide voltage/current references,
oscillators for clock generation and DACs converters.

Figure 45: ISIF input channel.

An additional feature is the input/output test bus, provided to
supply stimuli and probe output signals for each block. It
represents a key issue for an effective and quick debug of the
signal conditioning path, besides allowing the injection of input
signal at a different stage of the channel than the charge amplifier.
A peculiarity of ISIF analog section is the design accurateness for
improving the noise margin (for example analog and digital
supplies are kept separated in order to minimize noise couplings)
and that the digital bits for analog blocks configurations are
handled by a JTAG-like approach: programming is performed by
shifting the configuration bits through shift registers, in order to
overcome clock skew issues and thus guaranteeing a safe
communication between digital and analog structures.

ii. Digital section
The digital hardware section is composed of a CPU core with
related peripherals and dedicated IPs for digital signal processing
(see Figure 46).

 80

DEM MOD DAC
ctrl

DACDAC

DACDAC

NCO

LEON
CPU

I cache D cache

ROM

RAM

AHB ctrl

GPIO

IRQ
ctrl

SPISPI

UARTUART UARTTimer

DSP

LEON core

Figure 46: ISIF digital section.

LEON core is freely distributed under LGPL licence and includes a
32-bit RISC general purpose processor compliant to SPARC-V8
standard which features hardware multiplier and divider plus
memories (ROM, RAM and data/instruction caches) and a set of
peripherals like interrupt controller, UARTs, SPIs, timers and
watchdog. The hardware digital signal processing block is made up
of dedicated IPs optimized for low power consumption such as
modulator, four-channel demodulator, controller for driving up to 6
DACs, low pass filters (FIR and IIR) and sine wave generator which
can provide up to 16 waves with 3 different frequencies and
programmable phases. The interconnection among these IPs can
be implemented by hardware or they can be directly accessed at
their input/output by software. The high flexibility of DSP section
and CPU potentiality allows designers to implement complex and
ad hoc algorithms for the target sensor conditioning, for example a
digital PLL has been fully implemented and tested on a fast
prototyping board [42].
LEON processor performs system monitoring, controls signal
processing chain and handles the communication resources. Part of
the software is included in ROM (boot and few utility functions),
while the rest can to be downloaded at startup via UART, or can be
stored in external SPI EEPROM and so directly reboot from
EEPROM (which can hold different software and data to speed up
time in trimming and test procedures). Firmware utilities can
change interconnections among digital IPs, manage the
communication with external devices (for debug, monitoring) and
configure the whole analog front-end section (adjusting

Chapter 3 Fast Prototyping Flow

 81

parameters such gain, bandwidth e.g.) to match different sensors
requirements.

iii. DSP software
The requirements of automotive applications are pushing towards
the use of hardware solutions (especially concerning safety
issues), on the other hand presence the elevated number of
variables (for example regarding block and data-paths
dimensioning) make hardware implementation really difficult to be
successful at first time. Furthermore several digital IPs require
detailed analysis for proper parameters setting, as automotive
applications often requires both high performances and reduced
area, thing not compatible with the usage of a large number of
configuration bits for trimming or over-dimensioned paths. To
allow comprehensive investigations on the purpose of meeting
such requirements, ISIF platform includes software peripherals
(filters, controllers e.g.) with an exact matching with hardware
devices. The LEON processor offers good signal processing
features (hardware multipliers and accumulation) and guarantees
the flexibility and the computational power for real-time software
IPs implementation. It is worth noting that the aim of this platform
is not tended towards achieving the best performances (thus fully
exploiting LEON computational potential), but in the maximum
accurate emulation of a complete hardware optimized sensor
interface (which could hardly afford such an area and power
consuming processor). So the most common functionalities, which
are not fulfilled by ISIF digital section, are modeled by software
routines keeping the same behavior of the original DSP library IPs
(concerning bits width, saturation, linearity e.g.). A DSP software
environment allows input/output data from hardware digital IPs to
be acquired by routines, afterwards elaborated and passed back to
physical blocks: just as the data processing was completely
hardware-implemented. The monitoring, control and
communication functionalities are also handled by software, when
the CPU is free from data processing tasks (which have the highest
priority).
This platform flexibility helps the designer to find out the most
proper DSP solutions for a target sensor. With a Personal
Computer connected via UART to the ISIF board the designer can
quickly explore a wide project design space, changing analog
settings, interconnecting digital IPs and even instantiating new
ones in order to optimize architecture both in terms of area and
performances.

 82

In the ASIC derived from ISIF prototyping, software routines will
be replaced by corresponding hardware IPs with minimum risk of
redesign necessity and subsequent time-to-market improvement.

3.3 Case studies

In this paragraph several examples of sensor interface prototyping
with ISIF are presented.

i. Magneto-resistive position sensor

Figure 47: Variation of resistance versus ferromagnetic field
(R) and magnetization of sensor versus applied magnetic

field (M).

Magneto-resistive sensors have a wide range of applications such
as proximity detection, displacement sensing, rotational reference
detection and current sensing. Such sensors are based on the
Giant Magneto-Resistance (GMR) effect [43], a quantum
mechanical effect observed in thin film structures composed of
alternating ferromagnetic and nonmagnetic metal layers.
The effect manifests itself as a significant decrease in resistance
from the zero-field state, when the magnetization of adjacent
ferromagnetic layers are antiparallel due to a weak anti-
ferromagnetic coupling between layers, to a lower level of
resistance when the magnetization of the adjacent layers align due
to an applied external field. The spin of the electrons of the
nonmagnetic metal align parallel or antiparallel with an applied
magnetic field in equal numbers, and therefore suffer less

Chapter 3 Fast Prototyping Flow

 83

magnetic scattering when the magnetizations of the ferromagnetic
layers are parallel [44].
The electronic interface must detect resistance variation, also
providing some digital signal processing like noise filtering and
proper output signal bandwidth.
For the GMR sensor application two ISIF input channels have been
configured as instrument amplifier for voltage detection; data
coming from input channel have been converted with the sigma-
delta and the low-pass filtered first trough hardware LPFs inside
demodulator and then further processed by a software routine
performing a time average of samples.
The conditioning of this sensor was set up in about 2 days,
exploring a number of possible analog chain configurations in order
to achieve the minimum noise level for the desired sensitivity of
0.1°. Output signals bandwidth can reach up to 10 KHz.

ii. Biosensor

Figure 48: schematization of biochip working principle [45].

 84

A biosensor is an array of microelectrodes able to detect proteins,
acids and small molecules with many different applications such as
disease/virus diagnostic [46], toxins discovery [47] or
environment pollution monitoring [48]. It bases its working on a
chemical reaction on the sensor surface between the target
molecules and a proper reagent, which generates different current
time profiles on the electrodes for different target substances. The
electronic interface must detect these small currents (in the range
of nA) with extremely high sensitivity (up to few pA) from the
electrodes array, also providing some digital signal processing like
noise filtering and time average. The samples have to be
transmitted periodically to a host PC for current profiles displaying
and substance detection (made by specific software).

Figure 49: Example of biosensor measure.

In our implementation ISIF input channels have been configured
for high sensitivity current detection; analog data is then
converted and digitally processed by DSP software routines, while
LEON forwards output data (via UART) to a LabVIEW™ interface
for screen displaying and post-processing. The current profiles of
all the electrodes over a long time scale must be provided in order
to discriminate between the manifold chemical agents which can
interact with the biosensor. Firmware must also handle the input
channel multiplexing as 16 electrodes have to be monitored at the
same time with only 4 input channels available within ISIF: a

Chapter 3 Fast Prototyping Flow

 85

timed loop performs in a sequence the input switch matrix re-
configuration (connecting ISIF to 4 out of 16 electrodes), data
acquisition and related processing (such as time average) and then
forwards outputs to the UART for displaying on the LabVIEW™
interface.
The setup of the high-sensitivity acquisition procedure and the
firmware development was completed in few weeks, achieving a
sensitivity of 5 pA (noise standard deviation of 3.4 pA/√Hz on a 10
Hz output bandwidth) and fulfilling all the biosensor conditioning
requirements.

iii. Gyro sensor

Gyro sensors provide yaw rate measurement by working
accordingly to the Coriolis Effect [28]. While two sensor electrodes
are driven with a sine wave (in order to keep it oscillating at its
resonating frequency), an angular rotation of the device causes a
perpendicular oscillation, which can be detected by measuring the
capacitance variation at the sense electrodes (a gyro sensor
schematization is shown in Figure 50).

Figure 50: Gyro sensor vibrating, sense and rate axis.

For such application the electronic interface has to provide a sine
driving by a PLL (Phase-Locked Loop) with the capability of locking
at the gyro resonating frequency (around 5-10 KHz), meanwhile
an Automatic Gain Control (AGC) keeps its amplitude at a safe
level: more driving implies better SNR but excessive amplitude
makes the moving structure hit the fixed frame and causes sensor
malfunctioning.

 86

C
H

0
B

C
H

0A

D
E
M

O
D

C
H
3
A

C
H

3B

DSP SW

gain

+

offset

D
A
C

1
0

ga
in

+

offse
t

D
A
C

10
NCO

K
D

0 = 1
O

D
0 =

 0

K
D

1 = -1
O

D
1 =

 0

K
D

4 = 1
O

D
4 =

 0

K
D

5 = -1
O

D
5 =

 0

MOD

DAC_CTRL

b
and =

 10
 H

z

Σ∆Σ∆ Σ∆Σ∆Σ∆Σ∆ Σ∆Σ∆

D
A

C
D

A
C

D
A

C

loop
filter 2

loop
filter 1

qbiasrate

DEMOD

ANALOG
SECTION

biquad
 ce

ll

filters

b
iquad cell

filte
rs

biqua
d cell

filters

biquad
 ce

ll

filters

b
iquad cell

filte
rs

biqua
d cell

filters

Figure 51: signal processing architecture for gyro sensor.

A filtering path (with gain and offset compensation) is required
after demodulation for the detected rate signal. ISIF platform
implements this circuitry by using two input channels with
acquisition stage in charge amplifier configuration, sigma-delta
converters feed the hardware digital demodulator, which combines
the signals from the sensor with the sine waves coming from the
NCO (Numeric Controlled Oscillator). The DSP software routines
add biquadratic cells implementing generic transfer functions for
loop filtering, such as Proportional Integral Derivative (PID)

Chapter 3 Fast Prototyping Flow

 87

controller, which are needed in PLL and AGC loops, plus gain
adjustments and offset compensations, as depicted in Figure 7.
Another sine wave from NCO (whose frequency is set by PLL
control and whose amplitude comes from AGC loop) is forwarded
to the DAC controller which provides the needed 4 driving signals.
The customization of the whole system for gyro sensor
conditioning, including optimal input channel gains and bandwidth
setting, hardware IPs configuration and software modules setup
has been performed in about one week, and resulted in a working
system with a sensitivity of 20 mV/°/s and a rate noise of 0.4 °/s
on a 10 Hz output bandwidth.
The results achieved by ISIF fast prototyping (despite the short
time required to develop this implementation) can be compared
with those of the interface dedicated to gyro described in Chapter
2. Rate noise stays at higher levels because of the slightly higher
parasites of the signal acquisition stage (input switch matrix and
programmable R and C for charge amplifier), yet it still reaches the
levels of the commercial chips from Analog Devices [29] or Murata
[30] reported as a reference. The optimized interface for gyro
sensor can be designed using the ISIF prototype a starting point,
reusing most of its blocks (simply cutting unneeded configuration
options) and thus minimizing area, power consumption and
parasitics, with a strong confidence in achieving a first time
successful silicon with superior performances.

iv. YZ low-g accelerometer
MEMS accelerometers are capacitive inertial sensors which consist
of a proof mass suspended by beams anchored to a fixed frame
[49]. The device acceleration causes a displacement of the proof
mass with respect to the support frame, resulting in a capacitance
variation on the electrode between the moving and the fixed
structure.
Most of the accelerometers available today in literature [50][51]
and on the market [52] are called ‘in plain’ as they feature a
lateral structure similar to that depicted in Figure 52. The sense
fingers attached to the proof mass are interdigitated with the
fingers on the fixed frame, forming parallel differential capacitor
elements. In these devices the proof mass moves along the silicon
plane (XY plane).

 88

Figure 52: lateral structure for MEMS accelerometers.

A vertical structure instead, as depicted in Figure 53, consists in a
suspended mass without fingers which is attached by beams to the
fixed anchor and changes its position with respect to the ground
plate electrode according to the external acceleration [53]. These
accelerometers detect an out-of-plane acceleration and are less
common as they feature intrinsic non linearity, thus requiring a
more complex signal conditioning (for example a closed loop
control makes the system work always around the rest position
and is needed to improve linearity). Vertical accelerometers find
their best application when combined on the same chip with a
lateral one, in order to implement a dual axis accelerometer with
out-of-plane acceleration detection, as they result much cheaper
than two single axis devices mechanically mounted onto
perpendicular planes.

Suspension
Acceleration

Mass
Anc

hor

Substr
ate

Conductive electrode

Figure 53: vertical structure for MEMS accelerometers.

Among the described accelerometers, the low-g category includes
those with full scale within few g (3 to 10) and fits automotive
applications as acceleration detection for mechanical assistance
(ABS to ACC) and tilt detection in anti-theft systems.

Chapter 3 Fast Prototyping Flow

 89

Typical values of sensing capacitances in low-g accelerometers are
1-100 pF. Readout circuits for accelerometers often use
capacitance-to-frequency converters [54][55] capacitive AC-
bridges [56] or switched capacitor circuits [57]. By means of the
correlated double-sampling technique the switched capacitor
circuits can reduce the effect of 1/f noise [58][59].
The targeted dual axis YZ accelerometer features an in-plain
moving structure which shifts on Y axis causing a ∆C variation of
about 10 fF/g in the sense capacitances, while its rest value is
about 10 pF. The Z moving structure, as mentioned above,
presents poor linearity, but thanks to its feedback electrodes a
closed loop control can be implemented. A sweep on the feedback
electrodes has been performed in order to evaluate the extent of
acceleration that could be compensated in closed loop (and thus
the maximum full scale of the application). Results shown in Figure
54 prove that Y sensor can compensate less than +/- 1g and
therefore no closed loop is possible (but as well it is not needed
being the sensor structure intrinsic linear), while Z axis has
excellent feedback capabilities up to +/- 4g, suitable for the target
low-g FS of +/- 2g.

-20000

-15000

-10000

-5000

0

5000

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

Z_m

Z+1g

Z-1g

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

Y_m

Y+1g

Y-1g

Y Z

Figure 54: Feedback sweep on Y and Z sensors.

In the interface implementation with ISIF, charge amplifier
differentially reads the slight ∆C variation at the sense electrodes,
while the other input channel stages perform further low pass
filtering and gain adjustment, so that the input dynamic of the 12
bit ADC converter can be fully exploited.
As shown in Figure 519, closed loop on Z axis is implemented by
means of software-emulated IPs for reference subtraction, PI
controller and feedback actuation, while the Z acceleration value is
calculated as the difference between feedback driver inputs. Such
signal requires further low pass filtering (at the target bandwidth
of 10 Hz), offset compensation and gain correction in order to have

 90

the sensitivity in compliance with specifications. Y axis acceleration
signal coming from the analog section is directly low pass filtered
and sent to the offset and gain correction stages.
A series of measurements on several samples (three of them are
reported in Figure 56 and Figure 57) showed quite strong drift over
temperature for both Y and Z acceleration, because of a
combination of effects on the sensor itself and in the ISIF analog
conditioning stages. The overall drift showed an approximately
linear trend over T, so software T compensation has been set up
by means of further offset and sensitivity correction coefficients
calculated as a linear function of T (the approximation employ two
trend lines for each parameter to be corrected, as shown in Figure
55).

-20 30 80 Temperature (°C)

offset

not compensated

Low T
Trend Line

High T

Trend Line

offset T compensated

Figure 55: T compensation procedure.

-20 -10 0 10 20 30 40 50 60 70 80
-400

-300

-200

-100

0

100

200

300

400

Temperature (°C)

m
g

-20 -10 0 10 20 30 40 50 60 70 80
-200

-150

-100

-50

0

50

100

150

200

250

300

Temperature (°C)

m
g

Y Z

Figure 56: offset over T characterization and compensation
(red lines) with 2 linear trend line approximation.

Chapter 3 Fast Prototyping Flow

 91

-20 -10 0 10 20 30 40 50 60 70 80
1900

1950

2000

2050

2100

2150

2200

Temperature (°C)

m
g

-20 -10 0 10 20 30 40 50 60 70 80
2000

2020

2040

2060

2080

2100

2120

Temperature (°C)

m
g

Y Z

Figure 57: sensitivity over T characterization and
compensation (red lines) with 2 linear trend line

approximation.

In addition a set of trimming procedures have been developed in
order to automatically set few important system parameters, such
as Z reference for closed loop (the value read by the digital part
with the sensor in open loop and position Z = 0 g), the sensitivity
and offset correction coefficients and the T dependant factors.
First, Z reference has to be set with an average value read at the
end of analog and digital signal conditioning when the sensor is in
Z = 0g position, then loop can be closed with confidence on the
fact that the moving structure will stay in its rest position (thus
improving linearity). Another procedure, to be started when the
sensor is rotating along the sensitive axis at about 25 °/s, detects
maximum and minimum acceleration values on both axes in order
to compensate offset and set gain coefficients for the target
sensitivity. The same routine, run with the sensor inside the
climate chamber at three different temperatures, allows calculation
of 2 linear trend lines both for offset and sensitivity, so that with
proper conversion factors T compensation coefficients can be
calculated at runtime (trend lines are estimated within the ranges
Tlow – Tenv and Tenv – Thigh). The described implementation has been
first evaluated with setups made by a PCB hosting two CLCC84
sockets for ISIF and accelerometer. A smarter setup is depicted in
Figure 58: it consists in a very small PCB (about 3 cm2 area) with
ISIF and sensor dies glued on and bonded together, then covered
by a cap. Such setup minimizes interconnection parasitics and is fit
for commercialization. Thanks to its reduced size it also allowed
parallel trimming and characterization of several modules in the
turning table, with noteworthy time savings.

 92

Figure 58: miniboard with ISIF and sensor dies bonded
together.

The system provides digital output via UART or SPI, with
sensitivity of 1024 LSB/g and FS of +/- 2g. The noise, which can
also be evaluated by firmware, stays within 3 mg for both axes
(with 10 Hz bandwidth).
The linear procedure for compensation over T resulted in a max
offset drift of 20 mg on Y and 40 mg on Z, and with sensitivity
error within 1% of FS on Y and 3% of FS on Z.
With respect to commercial devices, as for example ADXL322 [52],
this implementation features a slightly higher noise but better 0g
offset and stability over T.

ICH 2

FD0 LPF1

SENSOR Y - AXIS

ICH 1

FD0 LPF1

SENSOR Z - AXIS

ZFBR

ZFBL

ZSL

ZSR

ZMS

LPF sinc

LPF sinc

DEMOD

DEMOD

DSP SW

Z ref

ADC12

ADC12

ADC12

C

C

LPF sinc

LPF sinc

temp
LPF1

C

C

acc_Y

acc_Z

SENSOR Y - AXIS

YSN

YFBN

YSP
YFBP

YMS

LPF1
LPF1

LPF1

DAC
DAC

FB & sense

DAC
DAC

FB & sense

DAC
DAC

FB & sense

DAC
DAC

FB & sense

LPF

SD_NCO

DELF
VCO_CF

CAL_M

CAL_P

NCO

PI
ctrl

LPF

offset &
gain

comp

offset &
gain

comp
T comp

T comp

to
feedback

DACs
+

+

_

TEMPERATURE
SENSOR

Figure 59: processing architecture for YZ accelerometer.

Chapter 3 Fast Prototyping Flow

 93

The ISIF prototyping for dual-axis YZ accelerometer had a twofold
aim. As a first goal, the architectural space was explored in order
to find the best conditioning path as depicted in Figure 59. This
task is a step of the enhanced platform based design flow and was
needed to start the development of a optimized interface for
automotive applications, which implements the equivalent
architecture fully in hardware (for safety reasons) without the ISIF
configuration capabilities (in this way gaining immediately better
performances because of reduced parasites and area/power
optimization). The second goal was to extend the prototyping
phase (which typically requires short time and is performed on few
samples only) to a comprehensive characterization of the sensor
and the ISIF modules, investigating the issues concerning the used
blocks and the possible improvements to be implemented in the
dedicated ASIC. This phase exploits the firmware trimming
functions described above, which automatically set the modules in
working conditions with compensated offset and desired
sensitivity, plus a set of procedures for sensor and miniboard
characterizations.

a) Sensor mechanical transfer function: a different ISIF
configuration with respect to the standard accelerometer working
mode of Figure 60 allows the measurement of the sensor
mechanical transfer function. Keeping the device in 0g position for
both axes, the NCO generates a sine wave which is directly fed to
Y and Z feedbacks, thus stimulating the sensor at the given
frequency. The input channel detects the sense capacitance
variation as normal and the acquired waveform (representing the
moving mass displacement only due to the feedback driving) is
demodulated in phase and quadrature and filtered in order to

calculate by firmware its amplitude 22 QIA += .

 94

DAC12

DAC12

DAC10

DAC12

DAC12

ICH 1

ICH 2

VREF

VREF

C=

C=

C=

C=

LPF sinc CH0A

CH0BLPF sinc

LPF sinc CH3A

CH3BLPF sinc

SD_DEMOD

SENSOR Z - AXIS

ZFBR

ZFBL

SENSOR Y - AXIS

YSN
YFBN

YSP

YFBP

DAC10

ZSL

ZSR

YMS

ZMS

SD_NCO

DELF
VCO_CF

CAL_M

CAL_P

SD_DEMOD

DSP SW

acc_Z_amp

DAC10

DAC10

ADC12

ADC12 22 QI +

22 QI +

KD2= 1

KD3= 1

KD4= -1

KD5= -1

SD_DAC_CTRL

OD3

OD4

OD2

OD5

acc_Y_amp

Figure 60: architecture for evaluating mechanical transfer
function of the sensor.

The evaluation is performed at frequencies from 20 to 3000 Hz and
it has included about 100 sensors in different packages and with
different internal pressures, disclosing a low pass mechanical
behaviour for Z sensors (with 200 to 500 Hz bandwidth) while Y
features a resonating peak around 1.7 KHz with Q factors ranging
from 3 to 6 (of course mechanical damping acts a higher
frequencies). The investigation on sensors mechanical behaviour
provides important feedback to the sensor engineers (who can
validate related data coming from simulations) and helps them to
better understand how certain sensor parameter (among which
sizing and internal pressure) affect this behaviour. The aim in
automotive applications is to provide sensors which mechanically
feature low pass filter behaviour with as low bandwidth as possible
(theoretically matching the specification on acceleration
bandwidth), in order to minimize noise at the very source and also
prevent any malfunctioning due to environmental mechanical
stresses (like electrostatic sticking or beam damages).
The results of this investigation are shown in Figure 61 and Figure
62.

Chapter 3 Fast Prototyping Flow

 95

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

MINIBOARDS
Y axis

n26

n27
n26

2

n27
2

n28

n29

n30
n33

n34

Frequency (Hz)

Y
 r

es
po

ns
e

(L
S

B
)

Figure 61: mechanical transfer functions of Y sensors.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

4
MINIBOARDS

Z axis

n26

n27
n262

n272

n28

n29

n30
n33

n34

Frequency (Hz)

Z
 r

es
po

ns
e

(L
S

B
)

Figure 62: mechanical transfer functions of Z sensors.

 96

b) Offset and sensitivity drift over temperature: this study has
mostly involved samples in the miniboard setup shown in Figure
58. Once a module is working and trimmed, it is important to
verify the success of trimming procedures and also have a
statistical database of sensor behaviours over the chosen
temperature range. Stability over T is a crucial factor for
automotive sensors and such investigation aims to providing all
the needed information for the improvement of the critical blocks
which affect predominantly the drift over temperature (from
analog acquisition stage to T sensor and T compensation strategy).
For this reason a series of procedures analogue to the trimming
ones have been set up in order to characterize a wide lot of
samples in the shortest time and with lowest human employment
possible. The characterization environment includes a parallel
board setup for up to 6 modules concurrent evaluation (the same
used for parallel trimming, see Figure 63) with a LabVIEW™
interface controlling turning table, climate chamber and handling
SPI communication with the modules.

Figure 63: parallel board inside turning table for
simultaneous trimming and characterization of up to 6

modules.

The characterization procedure is depicted in Figure 64. The
LabVIEW™ interface acts as a master repeating a number of times
the characterization cycle, which consists in setting a temperature
in the climate chamber, waiting 3 minutes after it has been
reached (for thermal equilibrium of all components) and then

Chapter 3 Fast Prototyping Flow

 97

sending a command to each module via SPI and reading back the
results (temperature read by ASIC, offset and sensitivity for Y and
Z axis). The turning table is rotating at 25°/s during the whole
procedure to let both sensors cross all the positions between +/-
1g and allow the firmware calculation of sensitivities and offsets.
This characterization has been typically performed between -20°C
and 80°C with 10°C steps and the results for a 20-samples lot is
displayed in Figure 65 and Figure 66.

SET
Ti

WAIT 3 min.
@ Ti

SEND
COMMANDS

COMPUTE
OFFSET &
DYNAMIC

READ
RESULTS

READ
RESULTS

LabVIEW™

firmware

Figure 64: Characterization procedure.

-40 -20 0 20 40 60 80 100
-60

-40

-20

0

20

40

60
Y offset over T

m
g

n33
n35

n40

n46

n47
n48

n49

n50
n53

n55

n57

n58
n59

n60

n72
n73

n76

n77

n82
n83

-40 -20 0 20 40 60 80 100
1900

1920

1940

1960

1980

2000

2020

2040
Y dynamic over T

m
g

n33
n35

n40

n46

n47
n48

n49

n50
n53

n55

n57

n58
n59

n60

n72
n73

n76

n77

n82
n83

Y offset

Y sensitivity

Figure 65: characterization of Y offset and sensitivity (20
samples).

 98

-40 -20 0 20 40 60 80 100
-400

-300

-200

-100

0

100

200

300

400
Z offset over T

m
g

n33
n35

n40

n46
n47
n48

n49

n50
n53

n55

n57

n58
n59

n60

n72
n73
n76

n77

n82
n83

-40 -20 0 20 40 60 80 100
1900

1920

1940

1960

1980

2000

2020

2040

2060

2080
Z dynamic over T

m
g

n33
n35
n40

n46

n47
n48

n49
n50
n53

n55

n57
n58
n59

n60

n72
n73

n76

n77

n82
n83

Z offset

Z sensitivity

Figure 66: characterization of Z offset and sensitivity (20
samples).

Chapter 3 Fast Prototyping Flow

 99

Bibliography

[42] F. D’Ascoli, M. Tonarelli, M. Melani, M. De Marinis, a. Giambastiani, L.
Fanucci, “Intelligent sensor interface for automotive applications” ICECS2005
Gammarth Tunisia Dec 11-14

[43] ‘Giant magnetoresistive effect’, Wikipedia, http://en.wikipedia.org/
[44] J. Daughton, “GMR and SDT sensor applications”, Magnetics, IEEE

Transactions on, Volume 36, Issue 5, Part 1, Sept 2000 Page(s):2773 – 2778
[45] eBiochip Systems GmbH, www.ebiochip.com
[46] Yobas, L.; Wing Hui; Hongmiao Ji; Yu Chen; Liw, S.S.I.; Jing Li; Choong Ser

Chong; Xie Ling; Chew Kiat Heng; Lye, H.J.; Siti Rafeah Bte; Lee, K.; Sanjay
Swarup; Sek Man Wong; Tit Meng Lim; “Microfluidic chips for viral RNA
extraction & detection”, Sensors, 2005 IEEE, 30 Oct.-3 Nov. 2005 Page(s):4 pp.

[47] Radke, S.M.; Alocilja, E.C.; “Design and fabrication of a microimpedance
biosensor for bacterial detection”, Sensors Journal, IEEE, Volume 4, Issue 4,
Aug. 2004 Page(s):434 – 440

[48] Starodub, N.F.; Katzev, A.M.; Levkovetz, I.A.; Goncharuk, V.V.; Klimenko,
N.A.; Vakulenko, V.F.; “Biosensor based on the photoluminescent bacteria and
its use for express control of water contamination by some surface active
substances”, TRANSDUCERS, Solid-State Sensors, Actuators and
Microsystems, 12th International Conference on, 2003, Volume 2, 8-12 June
2003 Page(s):1197 - 1200 vol.2

[49] N. Yazadi, F. Ayazi and K. Najafi, “Micromachined Inertial Sensors”,
Proceedings of the IEEE, Volume 86, Issue 8, Aug. 1998 Page(s):1640 – 1659

[50] Ang, W.T.; Khoo, S.Y.; Khosla, P.K.; Riviere, C.N.; “Physical model of a
MEMS accelerometer for low-g motion tracking applications”, Robotics and
Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference
on, Volume 2, Apr 26-May 1, 2004 Page(s):1345 - 1351 Vol.2

[51] Bais, B.; Majlis, B.Y.; “Suspension design analysis on the performance of
MEMS area-changed lateral capacitive accelerometer”, Semiconductor
Electronics, 2004. ICSE 2004. IEEE International Conference on, 7-9 Dec. 2004
Page(s):5 pp.

[52] ADXL322 Datasheet. www.analog.com
[53] Pakula, L.S.; Yang, H.; French, P.J.; “A CMOS compatible SiC accelerometer”

Sensors, 2003. Proceedings of IEEE, Volume 2, 22-24 Oct. 2003 Page(s):761 -
764 Vol.2

[54] M. S. Smith, L. Bowman, and J. D. Meindl, “Analysis, design, and performance
of micropower circuits for a capacitive pressure sensor IC,” IEEE J. Solid-State
Circuits, vol. SC-21, pp. 1045–1056, Dec. 1986.

[55] Y. Matsumoto, M. Esashi, “Low drift integrated capacitive accelerometer with
PLL servo techniques,” in Tech. Dig. 7th Int. Conf. Solid-State Sensors and
Actuators (Transducers’93), Yokohama, Japan, June 1993, pp. 826–829.

[56] Jiangfeng Wu; Fedder, G.K.; Carley, L.R., “A low-noise low-offset capacitive
sensing amplifier for a 50-µg/√Hz monolithic CMOS MEMS accelerometer”;
Solid-State Circuits, IEEE Journal of Volume 39, Issue 5, May 2004
Page(s):722 - 730

[57] Amini, B.V.; Ayazi, F., “A 2.5-V 14-bit Σ∆ CMOS SOI capacitive
accelerometer”; Solid-State Circuits, IEEE Journal of Volume 39, Issue 12, Dec.
2004 Page(s):2467 - 2476

 100

[58] Junseok Chae; Kulah, H.; Najafi, K., “An in-plane high-sensitivity, low-noise
micro-g silicon accelerometer with CMOS readout circuitry”;
Microelectromechanical Systems, Journal of Volume 13, Issue 4, Aug. 2004
Page(s):628 - 635

[59] Seungbae Lee; Gi-Joon Nam; Junseok Chae; Kim, H.; Drake, A.J.; “Two-
dimensional position detection system with MEMS accelerometers, readout
circuitry, and microprocessor for padless mouse applications”; Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on; Volume 13, Issue 10, Oct.
2005 Page(s):1167 - 1178

 101

CONCLUSIONS

In this work a Platform Based Design Flow for automotive sensor
interfaces has been presented. This design approach achieves the
development of a sensor interface with optimized performances, as
required by the automotive standards, and yet keeps a short time-
to-market and low development costs thanks to the deep reuse of
design parts and the generic features of the highest platform
layers. The generic platform for inertial sensor conditioning has
been implemented on ASIC for a gyro sensor application (in
collaboration with Sensordynamics AG), featuring lower noise and
better offset and sensitivity stability over temperature with respect
to commercial state-of-the-art devices.
Moreover, the Platform Based Design flow has been substantially
enhanced with the implementation of ISIF platform, a mixed-signal
System On Chip which allows a fast prototyping of the sensor
interface, letting the designer find the best conditioning
architecture in a short time, thus improving time-to-market and
final ASIC performances.
Several case studies have been address, with the aim of proving
ISIF capabilities of conditioning different sensor classes, like
magneto-resistive sensors, biochips and capacitive inertial sensors
(accelerometers and gyros) with outstanding performances despite
the short time needed for prototype setup.
As a matter of fact, the ease and time savings in architectural
space exploration is the main achievement of ISIF interface
employment: for the presented case studies, working conditioning
architectures have been setup in times ranging from 1 day to 1
week, with huge benefits with respect to traditional investigations
performed through system level simulations. These benefits
include mainly development cost savings and accuracy of results,
but they also extend to the possibility of carrying out quick
feasibility studies and in depth analysis of the chosen architecture
for detecting eventual weak points or critical blocks, in order to

 102

further improve the performance in a dedicated ASIC
implementation derived from ISIF prototype.
Despite the ISIF lack of optimization for any specific sensor
application, valuable results have been obtained by ISIF case
studies. For example, the magneto-resistive sensor application
featured angular position sensitivity of only 0.1°, while the
biosensor conditioning has showed ISIF extremely high capability
of low current measurement (up to few pA) together with the
needed flexibility for time multiplexing of the input channels.
The setup of high performance interfaces for capacitive inertial
sensors has been a more challenging test for ISIF. The gyro sensor
case study has proved that ISIF is fit also for implementing very
complex conditioning architectures, resulting in a rate noise of
0.4°/sec which is still competitive with most commercial devices,
though higher than the one obtained by the dedicated ASIC
implementation of the generic inertial platform.
Also the YZ low-g accelerometer prototype has achieved excellent
performances for what concerns noise (3 mg on 10 Hz output
bandwidth) and stability over temperature: max offset drift of 20
mg on Y and 40 mg on Z, and sensitivity error within 1% of FS on
Y and 3% of FS on Z. This has been possible thanks to the full
exploitation of ISIF resources in a proper miniboard setup,
including the development of automatic trimming and
characterization firmware procedures and the evaluation of the
sensor mechanical transfer function. Such investigation has
involved about 100 modules, providing valuable information on all
the critical aspects of the sensor-interface couple, in order to
achieve superior performances in the optimized ASIC developed
for this application after ISIF prototyping phase.

