Corso di Laurea specialistica in:

Biotecnologie vegetali e microbiche

Tesi di Laurea:

PRODUZIONE DI BIOMASSA IN VITRO DI ECHINACEA ANGUSTIFOLIA D.C.

Relatori:

Dott.ssa Anna Mensuali..............................

Dott.ssa Mariella Lucchesini.......................

Correlatore:

Prof.ssa Luisa Pistelli..............................

Candidata:

Alessia Grassi

..............................

Anno Accademico 2006-2007
“Tutti gli uomini tendono per natura al sapere”

Aristotele
Ringraziamenti

Ringrazio la Dott.ssa Anna Mensuali per la disponibilità e l’aiuto offertomi per la stesura di questo lavoro di tesi.

Un grazie particolare alla dott.ssa Mariella Lucchesini per avermi seguito con grande disponibilità e collaborazione durante lo svolgimento del lavoro sperimentale, svolto presso il Dipartimento di Biologia delle Piante Agrarie Sez. di ortofloricoltura della Facoltà di Agraria dell’Università di Pisa, e durante l’elaborazione dei dati di tutte le prove effettuate.

Ringrazio anche per la loro disponibilità, la prof.ssa Luisa Pistelli del Dipartimento di Bioorganica e Biofarmacia della Facoltà di Farmacia dell’Università di Pisa e la Dott.ssa Silvia Pacifici del Dipartimento di Biologia delle Piante Agrarie Sez. di ortofloricoltura della Facoltà di Agraria dell’Università di Pisa.
INDICE

1 INTRODUZIONE – LE PIANTE MEDICINALI: UN’ OPPORTUNITA' PER LE BIOTECNOLOGIE

1.1 PRINCIPI ATTIVI: I PRODOTTI DEL METABOLISMO SECONDARIO

2 BIOTECNOLOGIE VEGETALI: SISTEMI DI COLTIVAZIONE IN VITRO

2.1 ORGANOGENESI

2.2 TECNICHE DI COLTURA IN VITRO

2.2.1 RIGENERAZIONE IN VITRO

2.2.2 IBRIDAZIONE SOMATICA – FUSIONE DI PROTOPLASTI

2.2.3 TRASFORMAZIONE GENETICA

2.2.4 COLTURE CELLULARI IN SOSPENSIONE

2.3 PRODUZIONE DI METABOLITI SECONDARI IN COLTURE IN VITRO

2.3.1 PRODUZIONE DI PIGMENTI IN COLTURE IN VITRO

2.3.2 PRODUZIONE DI ANTIOSSIDANTI NATURALI IN COLTURE IN VITRO

3 ECHINACEA ANGUSTOFOLIA D.C.

3.1 INQUADRAMENTO BOTANICO - SISTEMATICO

3.2 AREALE D’ORIGINE

3.3 ATTIVITA’ FARMACOLOGICA E USI IN MEDICINA

3.3.1 APPLICAZIONI

3.3.2 FORME D’USO

3.3.3 CONTROINDICAZIONI

3.3.4 PRINCIPI ATTIVI

4 STATO DELL’ARTE DELLE BIOTECNOLOGIE APPLICATE AL GENERE ECHINACEA

4.1 GERMINAZIONE

4.2 PROPAGAZIONE IN VITRO, RIGENERAZIONE AVVENTIZIA E RADICAZIONE

5 SCOPO DEL LAVORO

6 MATERIALI E METODI

6.1 INDUZIONE CALLO DA PEZZI DI FOGLIA

6.1.1 INDUZIONE DI CALLO INDIFFERENZIATO

6.1.2 CURVA DI CRESCITA DEL CALLO INDIFFERENZIATO

6.1.3 INDUZIONE DI CALLO RIGENERANTE SU SUBSTRATO AGARIZZATO

6.1.4 CURVA DI CRESCITA DEL CALLO RIGENERANTE SU SUBSTRATO AGARIZZATO

6.1.5 INDUZIONE DI CALLO RIGENERANTE SU SUBSTRATO LIQUIDO

6.1.6 SUBCULTURE DEL CALLO RIGENERANTE SU SUBSTRATO LIQUIDO

6.1.7 CURVA DI CRESCITA DEL CALLO RIGENERANTE SU SUBSTRATO LIQUIDO

6.2 ANALISI DI CLOROFILLE, CAROTENOIDI E XANTOFILLE

6.2.1 ESTRAZIONE ED ANALISI QUANTITATIVA DI CLOROFILLE CAROTENOIDI E XANTOFILLE

6.3 ANALISI DEI PIGMENTI FENOLICI APPARTENENTI ALLA FAMIGLIA DEI FLAVONOIDI

6.3.1 ESTRAZIONE ED ANALISI QUANTITATIVA DEI FLAVONOLI GLICOSILATI

4
6.3.2 ESTRAZIONE ED ANALISI QUANTITATIVA DELLE ANTOCIANINE ..67

6.4 ATTIVITA’ ANTI OSSIDANTE DELLA BIOMASSA DI ECHINACEA ANGUSTIFOLIA D.C. .. 69
 6.4.1 ESTRAZIONE ED ANALISI QUANTITATIVA DEGLI ACIDI FENOLICI............................69
 6.4.2 ATTIVITA’ ANTI OSSIDANTE DEGLI ESTRATTI DI ECHINACEA ANGUSTIFOLIA D.C. CONTRO IL RADICALE DPPH•.. 70
 6.4.3 ESTRAZIONE DEI CAMPIONI .. 70
 6.4.4 CALCOLO DELL’ATTIVITA’ ANTI OSSIDANTE ... 71
 6.4.5 PROCEDURA PER REALIZZARE LA CURVA DELLA CINETICA DI DECADIMENTO DELLA CONCENTRAZIONE DEL DPPH•.. 71
 6.4.6 ANALISI STATISTICA ... 71

7 RISULTATI E DISCUSSIONE .. 74
 7.1 INDUZIONE DI CALLO INDIFFERENZIATO E CURVE DI CRESCITA.......................... 74
 7.2 INDUZIONE CALLO RIGENERANTE SU SUBSTRATO AGARIZZATO E CURVE DI CRESCITA.. 76
 7.3 CALLO RIGENERANTE SU SUBSTRATO LIQUIDO E CURVE DI CRESCITA........ 83
 7.4 ANALISI QUANTITATIVA DI CLOROFILLE CAROTENOIDI E XANTOFILLE........... 88
 7.5 ANALISI DEI PIGMENTI FENOLICI APPARTENENTI ALLA FAMIGLIA DEI FLAVONOIDI .. 90
 7.6 ATTIVITA’ ANTI OSSIDANTE DELLA BIOMASSA DI ECHINACEA ANGUSTIFOLIA D.C. ... 93

8 CONCLUSIONE ... 97

9 BIBLIOGRAFIA ... 101
1 INTRODUZIONE – LE PIANTE MEDICINALI: UN’ OPPORTUNITA’ PER LE BIOTECNOLOGIE

Le piante medicinali sono state oggetto dell’interesse dell’uomo sin dall’antichità e ancora oggi nonostante l’avvento della chimica di sintesi, la maggior parte delle medicine utilizzate deriva direttamente o indirettamente dal mondo vegetale.

Infatti, molte sostanze un tempo estratte dalle piante hanno ceduto il passo a molecole di sintesi, a volte più efficaci e sicuramente più economiche da produrre. In altri casi invece, il ritorno alle molecole naturali ha determinato una rivalutazione di alcuni principi attivi di sintesi, non più efficaci o con preoccupanti effetti collaterali (Maffei, 1999).

Negli ultimi anni questo interesse sembra aver ripreso vigore poiché, secondo quanto riportato dalla World Health Organization, nei Paesi industrializzati più del 25% della Popolazione si cura con rimedi naturali, mentre nei Paesi in via di sviluppo più dell’80%.

A tali dati si associano un maggior consumo di materiale vegetale e purtroppo anche problemi relativi all’approvvigionamento dello stesso; dato che: la maggioranza delle piante sono raccolte allo stato spontaneo senza che esista alcuna regolamentazione, di esse molte sono in via di estinzione e solo una piccola percentuale risulta essere coltivata (in Europa non più del 10% delle specie commercializzate) (Canter et al., 2005).

Da qui nasce la preoccupazione per la diminuzione delle piante allo stato spontaneo, per la perdita della diversità genetica e per la degradazione dell’habitat. In più, la pianta selvatica dà spesso un prodotto molto eterogeneo, inadatto soprattutto ad un rifornimento continuo e all’ottenimento di un prodotto standardizzato. Questi elementi, insieme alla necessità di aumentare la produzione di materiale vegetale con caratteristiche qualitative uniformi, spingono le case farmaceutiche ad innovare i sistemi di ricerca puntando anche sulle tecnologie geniche e cellulari, note come Biotecnologie (Falcone, 1990).
1.1 PRINCIPI ATTIVI: I PRODOTTI DEL METABOLISMO SECONDARIO

I principi attivi, i responsabili dell’attività curativa delle piante, sono prodotti del metabolismo secondario e la loro sintesi non è altro che l’attuazione di una strategia di difesa della pianta in seguito al verificarsi di condizioni avverse come fattori di stress, patogeni o predatori (Berlin, 1988 e Briskin, 2000).

Essi, pur non essendo blocchi di costruzione per la crescita delle piante (come i metaboliti primari: zuccheri, grassi e proteine), sono indispensabili alla pianta per la sua sopravvivenza. Inoltre, sono responsabili, oltre che delle virtù medicinali, anche del colore, sapore e profumo di molte spezie, bevande e alimenti di uso quotidiano.

Tali principi attivi sono classificati in base ai loro percorsi biosintetici, in tre grandi famiglie molecolari: alcaloidi, isoprenoidi (Terpeni e Steroidi) e composti fenolici.

I metaboliti secondari, a differenza di quelli primari che devono essere mantenuti stabili sia per concentrazione che per struttura chimica per assicurare l’integrità strutturale e funzionale delle cellule, hanno un “elevato grado di libertà” per quanto riguarda struttura e concentrazione (Maffei, 1999 and Collin, 2001).

Ad esempio, il contenuto in flavonoidi nelle piante, oltre che dal genotipo, dipende strettamente dalle condizioni ambientali, soprattutto dalla radiazione luminosa; è noto, ad esempio, che in molte specie le radiazioni UV inducono significativi incrementi nel contenuto fogliare di flavonoidi (Bornman et al., 1993, Lercari et al., 1997). Oppure, l’elicitazione da parte di un patogeno ad una via metabolica secondaria può portare all’accumulo localizzato di fitoalessine nella pianta. Infatti elicitori vengono usati in alcune applicazioni biotecnologiche per stimolare la produzione di metaboliti secondari.

Il bilanciamento tra metabolismo primario e secondario dipende dalla crescita, dallo stadio di differenziazione dei tessuti, dallo sviluppo della pianta e dalle condizioni ambientali. Da una parte i composti secondari possono essere prodotti ex novo (es. fitoalessine in seguito all’attacco di patogeni); dall’altra vengono sintetizzati dall’eccesso di carbonio e azoto del metabolismo primario. Quando
verranno degradati poi, gli stessi atomi di carbonio e azoto verranno riciclati per la produzione di metaboliti primari in caso di necessità (Fig.1) (Collin, 2001).

La coltivazione in pieno campo è quindi solo una risposta all’insufficiente reperimento del materiale vegetale che, per i motivi suddetti, presenta una notevole variabilità nella concentrazione dei metaboliti secondari. Per questo, per la loro estrazione, l’impiego di sistemi di coltura artificiale biotecnologici potrebbe essere una valida alternativa alla coltivazione tradizionale.

![Diagram: Relazioni tra le vie metaboliche primarie e secondarie nelle piante (da Collin, 2001)](image)

Figura 1: Relazioni tra le vie metaboliche primarie e secondarie nelle piante (da Collin, 2001)
2 BIOTECNOLOGIE VEGETALI: SISTEMI DI COLTIVAZIONE IN VITRO

L’obiettivo dell’attività biotecnologica in vitro applicata alle piante è quello di selezionare e propagare linee cellulari con elevata capacità di sintesi dei composti attivi utili in ambito farmaceutico e alimentare, avendo una particolare attenzione per quelli contenuti in specie ormai poco disponibili in natura o allo stato spontaneo o allo stato coltivato (Bajai, 1998 and Minghetti, 2003).

La coltivazione in vitro è quindi un sistema alternativo di produzione di prodotti naturali e ha il vantaggio di:

- Poter disporre di una fornitura costante nel tempo e quindi non dipendere dalla stagionalità della produzione, dalle condizioni metereologiche e dalla specificità di produzione legata all’area geografica di crescita della pianta;
- Avere definiti sistemi di produzione che portano ad una migliore qualità e resa del prodotto;
- Utilizzare piccole porzioni di pianta per propagarle e ottenere numerose nuove plantule;
- Poter effettuare una regolazione flessibile dei regolatori di crescita, luce e temperatura;
- Non presentare negli estratti residui di erbicidi o inquinanti ambientali, in quanto la coltura è condotta in condizioni asettiche;
- Effettuare l’estrazione appena la coltura ha raggiunto le dimensioni adeguate, eliminando così il problema della raccolta, trasporto e stoccaggio del prodotto;
- Permettere la salvaguardia dell’ambiente in quanto non si effettua una raccolta intensiva;
- Permettere la selezione in laboratorio di piante a maggiore produttività;
- Poter conservare il materiale riprodotto per lunghi periodi.

I sistemi di coltivazione in vitro permettono di sfruttare cellule, tessuti, organi o interi organismi coltivandoli e manipolandoli geneticamente per ottenere i composti desiderati (Ramachandra Rao, 2002).
2.1 ORGANOGENESI

Le applicazioni biotecnologiche nelle piante hanno spesso come prerequisito la possibilità di rigenerare un individuo completo a partire da cellule e/o tessuti coltivati in vitro, cioè coltivati su un terreno di coltura sintetico e in condizioni chimico- fisiche ben definite.

L’organogenesi (la capacità dei tessuti vegetali di formare organi ex novo) rappresenta la base della propagazione asessuale delle piante a partire da tessuti somatici poiché le cellule vegetali hanno la caratteristica di essere totipotenti (cioè hanno la capacità di potersi dedifferenziare dal loro stato strutturale e funzionale e così differenziarsi in tutte le cellule di un organismo adulto per poter quindi rigenerare una pianta intera completa in tutti i suoi tessuti ed identica alla pianta di partenza).

Dalla letteratura scientifica emergono due processi di sviluppo in grado di condurre all’organogenesi:

- **Organogenesi indiretta**: partendo dall’espianto primario, per arrivare ad avere cellule meristemoidi e poi i primordi, si passa da una fase di callo (cellule dedifferenziate totipotenti);

- **Organogenesi diretta**: le cellule dell’espianto agiscono come i precursori diretti del primordio senza passare dalla fase di callo (Schwarz et al., 2003).

Le cellule dallo stato di dedifferenziazione, prima di poter essere indotte alla produzione di primordi, devono divenire competenti; ovvero devono acquisire la capacità di rispondere allo stimolo organogenetico. Questa tappa di solito viene raggiunta con l’aggiunta nel mezzo di coltura di fitoregolatori di crescita. Una volta avuta la produzione dei primordi si dice che il tessuto è “determinato”.

Cellule isolate da organi o tessuti di una pianta possono essere indotte a crescere e moltiplicarsi secondo un processo di organogenesi diretta o indiretta se poste in un terreno di coltura in determinate condizioni nutrizionali, ambientali e ormonali (Rossi et al., 2004).
Si possono infatti ottenere:

- La rigenerazione diretta di un germoglio a partire da poche cellule somatiche, le quali dopo alcune divisioni intraprendono il percorso della organogenesi producendo un germoglio. Da questo, con la formazione di radici, avrà origine una plantula geneticamente identica alla pianta madre;

- La formazione di un callo, in seguito ad una proliferazione cellulare non organizzata, che può perpetuarsi tal quale o, in seguito a specifici stimoli ormonali, può intraprendere un percorso organogenetico che porta alla produzione di germogli e radici;

- L’induzione di una popolazione cellulare con capacità embriogenetiche, in grado di portare alla formazione di un embrione somatico del tutto simile a quello zigotico.

2.2 TECNICHE DI COLTURA IN VITRO

La coltura in vitro in decenni di sperimentazioni ha consentito la specializzazione di processi di produzione vegetale grazie alla messa a punto di una serie di tecniche: micropropagazione, rigenerazione avventizia, embriogenesi somatica, fusione di protoplasti, trasformazione genetica e colture cellulari per la produzione di metaboliti secondari (Rossi et al., 2004).

2.2.1 RIGENERAZIONE IN VITRO

La rigenerazione in vitro si presenta come primo e fondamentale passaggio per ottenere un numero indefinito di cloni di una stessa pianta prescelta.

Il mezzo di coltura ed il tipo di espianto variano a seconda della strategia di rigenerazione che si intende seguire.

Secondo quanto riportato da Murashige (1962) esistono tre possibili vie di moltiplicazione in vitro: la propagazione meristematica (o micropropagazione), la rigenerazione avventizia e l’embriogenesi somatica.

La micropropagazione, parte dalla coltura in vitro di un meristema (l’apice proliferativo di un germoglio della pianta o di una gemme dormiente) da cui è possibile ottenere un germoglio che, dopo ripetuti cicli di moltiplicazione, può
essere indotto a radicare, mediante trasferimento su un idoneo terreno di coltura, per dare origine ad una piantina completa.

La rigenerazione avventizia, parte dallo sviluppo di germogli avventizi da tessuti od organi privi di strutture preformate (porzioni fogliari, segmenti internodali, cotiledoni, strutture fiorali…) indotto attraverso un processo di organogenesi diretta o indiretta.

L’embriogenesi somatica prevede lo sviluppo di embrioni a partire da tessuti somatici. Mentre un embrione somatico dal punto di vista genetico è perfettamente identico alla pianta donatrice, nel caso dell’embrione zigotico ogni individuo è diverso geneticamente per effetto della ricombinazione dei caratteri maschili e femminili che si ha attraverso la meiosi (Rossi et al., 2004).

I processi di organogenesi ed embriogenesi implicano la formazione di callo e la successiva riorganizzazione in plantula, comportando un aumento nella frequenza delle variazioni genetiche.

Per quanto riguarda la moltiplicazione in vitro di cloni selezionati, soltanto la rigenerazione a partire dalla componente meristematica dell’apice vegetativo (micropropagazione) garantisce la stabilità genetica nella progenie.

La rigenerazione in vitro richiede alcuni passaggi fondamentali che possono essere così riassunti:

Stadio 0, sterilizzazione dell’espianto;

Stadio 1, preparazione del mezzo nutritivo e allestimento delle colture in condizioni asettiche;

Stadio 2, induzione, sviluppo e moltiplicazione;

Stadio 3 a, allungamento dei germogli;

Stadio 3 b, radicazione e trasferimento in vivo (Debergh et al., 1981).

Lo stadio zero è molto importante in quanto da esso dipenderà il successo della coltura. La sterilità è necessaria soprattutto per espianti provenienti da piante cresciute in pieno campo, spesso contaminate dai più svariati microrganismi anche se apparentemente sane. I metodi di sterilizzazione più frequenti prevedono l’immersione degli espianti, per un tempo variabile dai 10 ai 20 minuti, in soluzioni
disinfettanti costituite da ipoclorito di calcio o sodio (in percentuali variabili dal 5 al 15 %) o alcol etilico (dal 50 al 95%) o cloruro di mercurio (0.01-0.1%); in ultimo seguono lavaggi in acqua sterile.

La rigenerazione in vitro, avendo come obiettivo la formazione di germogli e/o radici a partire da un determinato espiano, si concentra sullo studio della composizione dei mezzi di coltura da utilizzare; in modo da garantire una risposta ottimale da parte della specie vegetale di interesse. Questi mezzi nutritivi sono costituiti da: macro e microelementi e da diversi regolatori di crescita (es. auxine e citochinine) tra loro in concentrazioni variabili a seconda della specie e dell’obiettivo che si vuole raggiungere (stadio 2, 3a, 3b).

2.2.2 IBRIDAZIONE SOMATICA – FUSIONE DI PROTOPLASTI

Un protoplasto è una cellula vegetale sprovvista di parete cellulare.

Il suo isolamento permette di rigenerare una pianta dalla singola cellula, oppure, quando è necessario, di ibridare due specie che sono sessualmente incompatibili con la probabilità che la nuova piantina ottenuta presenti caratteristiche diverse provenienti rispettivamente dalle due specie di partenza.

Molti degli ibridi ottenuti per alcune specie sono stati studiati per l’aumento del contenuto in metaboliti secondari, per ottenere piante medicinali resistenti ad antibiotici, nematodi, virus e patogeni in genere; anche se come tecnica risulta essere molto dispendiosa.

I protoplasti sono utilizzati anche in ingegneria genetica nelle operazioni di trasformazione, in quanto la mancanza della parete cellulare facilita notevolmente l’inserzione del frammento di DNA per lo meno all’interno della cellula.

In letteratura sono riportati alcuni protocolli di isolamento e duplicazione dei protoplasti, relativi alla rigenerazione di alcune piante medicinali e alla produzione dei loro metaboliti secondari.

Ad esempio Bajaj, 1988 riporta colture di protoplasti per la produzione di alcaloidi; Kumar, 1992 riporta che da linee cellulari da callo di *Lithospermum erythrorhizon*, derivato da protoplasto, è stato estratto un alto contenuto di sciconina.
2.2.3 TRASFORMAZIONE GENETICA

La trasformazione genetica prevede la manipolazione di sequenze di DNA e il trasferimento di geni da un organismo ad un altro per poter ottenere: piante con nuovi tratti morfo-fisiologici e/o una più alta produzione, da parte delle colture, di principi attivi (Canter, 2005).

In campo farmaceutico negli ultimi anni ha suscitato molto interesse la manipolazione delle vie metaboliche secondarie per una maggiore produzione di metaboliti attivi. Ad esempio su Mentha spp. sono state applicate tecniche di trasformazione genetica per aumentare la produzione di oli essenziali nei tricomi e la resistenza alle infezioni fungine e agli stress abiotici (Veronese et al., 2001).

I metodi di trasformazione si distinguono in: indiretti, quando si avvalgono dell’uso di vettori (virus o batteri come Agrobacterium Thumefaciens e A. Rhizogenes) o diretti quando il trasferimento di DNA non ha bisogno di intermediari.

La trasformazione con bacteri si basa sulla capacità dell’agente patogeno di trasferire il proprio DNA plasmidico nelle cellule vegetali, dopo l’introduzione di un segmento genico di interesse in tale DNA. Tale plasmide si integra, poi, nei cromosomi delle cellule vegetali le quali riproducendosi acquisiranno stabilmente i caratteri introdotti e le trasmetteranno alla progenie.

La trasformazione con il plasmide Ri dell’A. rhizogenes viene utilizzata per l’induzione di hairy roots in vitro. Tale batterio ha infatti la capacità di indurre radici avventizie nella pianta ospite in quanto i geni rol (o locus root) presenti nel T-DNA incrementano la sensibilità alle auxine con la conseguente formazione delle hairy roots.

L’interesse per tali radici nasce dal fatto che queste hanno la capacità di accrescersi molto rapidamente senza l’aggiunta di auxine di sintesi e, grazie alla loro stabilità genetica, hanno un livello di produzione di metaboliti secondari piuttosto stabile (Ramachandra Rao, 2002).
2.2.4 COLTURE CELLULARI IN SOSPENSIONE

Questo sistema di coltivazione in vitro utilizza tessuti organizzati per ottenere cellule singole o in piccoli aggregati, utilizzabili come materiale di partenza per: lo studio del metabolismo primario, lo studio e la produzione di metaboliti secondari, la comprensione dei processi di rigenerazione, l’isolamento dei protoplasti, l’induzione di mutazioni e trasformazioni genetiche.

La coltura in sospensione inizia solitamente da callo friabile (tessuto disorganizzato costituito da una massa di cellule parenchimatiche in attiva divisione) ottenuto da tessuti differenziati che si sdifferenziano su idonei substrati colturali e in opportune condizioni ambientali.

Figura 2: Rappresentazione schematica delle procedure per la preparazione di una coltura cellulare in sospensione (da Falcone, 1990)

Le cellule vengono mantenute in tale stato grazie all’utilizzo di fitoregolatori nel substrato di crescita. Infatti, con la somministrazione di auxine si stimola la crescita cellulare attraverso l’induzione della sintesi dell’enzima cellulasi che determina l’elasticità delle pareti cellulari e quindi favorisce la distensione e l’accrescimento cellulare; mentre con le citochinine si stimola la moltiplicazione cellulare attraverso un’azione a livello ribosomiale con l’incremento della sintesi dell’RNA e con l’induzione della sintesi di proteine specifiche (Minghetti, 2003).

L’induzione del callo dipenderà dal tipo di espianto, dalla scelta del substrato e dalle condizioni di coltura (Berardi, 1991).

Una volta indotto, per ottenere un’alta resa di metaboliti, è necessario trasferirlo
in un substrato liquido in agitazione (colture in sospensione), di solito dispensato prima in beute da laboratorio sistemate su piattaforme a movimento orbitale e poi in reattori.

Lo stato liquido del substrato facilita gli scambi gassosi e nutritivi tra le cellule e il mezzo di coltura; mentre l’agitazione ne consente l’aerazione e previene i fenomeni di aggregazione cellulare.

Lo sviluppo cellular avviene secondo una tipica curva di crescita (Fig.3).

All’inizio si ha una **fase di latenza** in cui il numero di cellule rimane costante ma si intensificano tutte le attività metaboliche; la lunghezza di questa fase varia a seconda dello stato fisiologico delle cellule. A livello biochimico coincide con un aumento di ATP per effetto della ossidazione dei carboidrati, aumento di proteine e acidi nucleici. Seguono una **fase di crescita esponenziale** che diminuisce in velocità quando uno o più fattori nutritivi divengono fattori limitanti (zucchero, vitamine,
aminoacidi). In questo stadio le cellule sono in prevalenza morfologicamente indifferenziate (cellule meristematiche), mentre nella successiva fase lineare aumenta la dimensione cellulare. Segue quindi la fase di decelerazione in cui la moltiplicazione cellulare rallenta fino ad arrestarsi.

Infine, si raggiunge la fase stazionaria (plateau) nella quale la crescita raggiunge un plateau; mentre continuano ancora le attività metaboliche ed aumenta la quantità di cellule con grandi vacuoli.

La crescita è normalmente calcolata come peso fresco o peso secco.

Allo stato dell’arte attuale vengono adottati due sistemi di coltura: i sistemi chiusi e i sistemi di coltura continua (Falcone, 1990).

I SISTEMI CHIUSI sono quelli più comunemente adottati dai laboratori e consistono in colture cellulari ottenute aggiungendo una determinata quantità di cellule ad un volume fisso di substrato di crescita. Di solito la quantità di callo utilizzata come inoculo iniziale è variabile dal 5 al 20% v/v (es. 20ml/100ml oppure 70ml/250 ml) (Taticzek et al.,1991). In questo sistema la biomassa aumenta finché un fattore nutritivo diviene limitante e i metaboliti vengono recuperati direttamente dal mezzo di coltura.

Nei SISTEMI CONTINUI, quelli utilizzati nei fermentatori su scala industriale, i fattori nutritivi sono forniti da una continua aggiunta di mezzo fresco accompagnata dal prelievo di un uguale volume di coltura. Questo ricambio di substrato è possibile mediante particolari apparecchiature chiamate chemostati che consentono di mantenere il volume della coltura costante per mezzo di prelievi fatti attraverso uno scarico di “troppo pieno”.

L’interesse per tale sistema nasce da una serie di vantaggi di seguito elencati:

- Completa indipendenza dall’ambiente e dalle condizioni climatiche;
- Se ben sviluppati, i protocolli di estrazione garantiscono rifornimenti continui, per quantità e qualità, del metabolita secondario.
2.3 PRODUZIONE DI METABOLITI SECONDARI IN COLURE IN VITRO

Alla luce dell’attuale aumentata domanda di prodotti alimentari naturali e di sostanze medicinali di origine vegetale, la produzione in vitro di metaboliti secondari della piante è divenuta una valida alternativa alla produzione industriale di prodotti sintetici.

La produzione di queste sostanze mediante la coltura di tessuti vegetali si basa sulla premessa che gli stessi prodotti rinvenuti in natura all’interno di un organo, di un frutto o di altri tessuti vegetali, possono essere indotti ad accumularsi in cellule indifferenziate (Smith, 2003).

Infatti questa tecnica è resa possibile dal fatto che le cellule vegetali sono totipotenti dal punto di vista biosintetico, cioè mantengono completa l’informazione genetica e sono quindi in grado di produrre quel range di principi attivi che si trovano nella pianta madre.

La sintesi di queste sostanze, nelle sospensioni cellulari, non è associata alla crescita; ovvero si verifica quando la cellula rallenta o cessa la sua attività di divisione e quindi quando si riduce il suo metabolismo primario (Berardi, 1991).

Quindi, per ottenere una buona resa di tali composti, è utile e necessario stabilire, attraverso una composizione specifica degli elementi presenti nel substrato, delle condizioni che mantengano la popolazione cellulare in una fase del loro ciclo vitale che non preveda divisioni, ma che allo stesso tempo non ne inducano la morte (Berlin, 1988 e Route t al., 2000).

La produzione di metaboliti secondari da colture di cellule viene oggi effettuata per quelle molecole che hanno costi di estrazione elevati e basse rese da materiale vegetale proveniente da coltivazione (Dornenburg, 1997; Ravishankar, 1993).

A livello commerciale su vasta scala sono stati messi a punto protocolli per la produzione ed estrazione di: berberina, shikonina e saponine del Ginseng (Smith, 1995 e Ramachandra Rao, 2002) attraverso l’uso di bioreattori. La berberina è prodotta in vitro da due membri della Famiglia delle Ranuncolaceae (Thalictrum minus e Coptis japonica); la shikonina è prodotta in vitro da Lithospermum.
erythrorhizon in quantità 800 volte maggiore rispetto a quella ottenibile dalle radici della pianta; le saponine sono prodotte in vitro da Panax ginseng.

Sono state inoltre effettuate ricerche nel campo di altri metaboliti secondari quali: aromi (es. vanillina prodotta in bioreattori da callo derivato da espianti vegetativi di Vanilla planifolia dalla industria ESCAgenetic Corporation- San Carlos- CA), coloranti per alimenti (es. antocianine da Euphorbia millii), composti medicinali (es. taxolo), diversi oli essenziali e insetticidi naturali.

I fattori che influiscono sulla sintesi di metaboliti secondari in vitro sono molteplici: tipo di materiale di partenza, condizioni ambientali e climatiche, mezzo di coltura (ad esempio la quantità di carboidrati presenti influisce sulla biomassa, in quanto la crescita è eterotrofa), tipo e quantità di ormoni presenti, luce (il passaggio della luce ad intensità ed in quantità ottimali rappresenta un prerequisito per la massima espressione dei metaboliti), temperatura.

Molti ricercatori che lavorano con colture cellulari stanno provando a comprendere i percorsi biosintetici messi in atto dalle piante per produrre i composti organici, al fine di poterne indurre una resa maggiore; a questo scopo occorre agire sulle tappe enzimatiche che portano alla produzione del metabolita di interesse.

Questo può essere fatto mediante l’utilizzo di elicitatori che sono composti di origine biotica (estratti proteici, omogenati fungini o batterici autoclavati, polisaccaridi, chitosano, glicoproteine) o abiotica (raggi UV, sali di metalli pesanti, agenti chimici di vario tipo) in grado di indurre stress nelle cellule e che una volta aggiunti ai mezzi di coltura, stimolano la produzione dei composti attivi. In conclusione, le colture di cellule vegetali rappresentano un’alternativa economicamente vantaggiosa rispetto al materiale coltivato in campo che è suscettibile alle condizioni ambientali e spesso non permette una facile estrazione dei composti attivi. Per questo motivo sono definite anche “fabbriche chimiche di metaboliti secondari” (Ramachandra Rao, 2002).
2.3.1 PRODUZIONE DI PIGMENTI IN COLTURE IN VITRO

Sebbene la maggior parte delle ricerche pone la sua attenzione sui composti secondari di importanza medicinale, di non poco interesse sono quelli utilizzati come coloranti e aromi nell’industria alimentare come ad esempio le antocianine, dotate peraltro anche di benefici effetti chemioprotettivi (proprietà cardioprotettive e anticarcinomiche).

E’ da tenere presente che il sistema di produzione in vitro fornisce solo un modello di studio per il controllo della sintesi delle antocianine e la presenza del pigmento è generalmente misurata per estrazione e successiva quantificazione mediante TLC (cromatografia a strato sottile), HPLC (cromatografia liquida ad alta pressione) e/o assorbimento (spettroscopia). Infatti, la correlazione tra il quantitativo di un pigmento naturale prodotto dalla pianta (nel frutto o nelle foglie) e quello inducibile attraverso la coltura di tessuti può essere minima o del tutto assente. Ad es. una cultivar di mirtillo rosso (Vaccinium macrocarpum) selezionata in campo per l’intensità della colorazione, allevata in vitro può dare origine ad un callo con un ridotto quantitativo di pigmento; mentre una cultivar caratterizzata in vivo da un colore opaco, può accumulare un’elevata concentrazione di antocianine nel callo e nella cultura in sospensione (Smith, 2003).

Ricerche sono state fatte su diverse piante, ad es. su Ajuga reptans N. Tayl. che presenta fogliame violaceo e che cresce rigoglosamente in vitro mantenendo tale colore sia nelle piante propagate che nel callo indifferenziato (Smith, 2003). La coltura in sospensione di tale pianta ha dato risultati differenti in base alla condizioni di luce dell’esperimento: al buio aumentavano i pigmenti antocianici mentre alla luce diminuivano (Smith et al., 1995). Anche colture di callo di Oxalis linearis hanno dimostrato un induzione di sintesi di antocianine in un substrato privo di regolatori di crescita, i composti sono poi aumentati in un mezzo ricco in zeatina e saccarosio, mentre la sintesi è stata inibita dalla presenza di auxine (Collin, 2001).
2.3.1.1 CENNI SULLA FOTOSINTESI

La fotosintesi è quel processo biochimico mediante il quale gli organismi che contengono clorofilla (piante, alcuni protozoi e batteri) producono glucosio a partire da acqua e anidride carbonica (CO₂) in presenza di energia solare (per questa ragione le piante si dicono organismi fotoautotrofi). Il glucosio ottenuto è il combustibile per la sintesi di molecole ad alto contenuto energetico (es. ATP) necessarie ai processi metabolici dei viventi. La fotosintesi produce come sottoprodotto l’ossigeno che, liberato in atmosfera, viene utilizzato nei processi respiratori.

Gli eventi della fotosintesi possono essere divisi in due serie di reazioni. Durante la prima parte, avvengono le reazioni dipendenti dalla luce (fase luminosa) dove l’energia della luce del sole è assorbita e convertita in energia chimica che è immagazzinata in ATP e NADPH. Nel corso della seconda parte, avvengono le reazioni indipendenti dalla luce (fase oscura), dove vi è produzione di glucosio a spese dell’energia chimica precedentemente accumulata.

- **Fase luminosa:** L’energia luminosa viene catturata dalle molecole di pigmento presenti nel fotosistema II e viene trasferita ad una particolare molecola di clorofilla, il centro di reazione, dove avviene la scissione di una molecola di acqua (fotolisi): l’ossigeno viene liberato in atmosfera e l’idrogeno viene utilizzato per formare NADPH. Il flusso di elettroni eccitati passa attraverso due catene di trasporto dal fotosistema II all’I e fornisce energia per la produzione di ATP.

- **Fase oscura:** Il carbonio della CO₂ viene ridotto a glucosio nel corso di un ciclo di reazioni (ciclo di Calvin) nel quale sono coinvolti l’ATP e il NADPH prodotti nella fase luminosa. L’enzima principale che catalizza la prima reazione del ciclo è la ribulosio-1,5-difosfato carbossilasi. La parte di glucosio che non viene utilizzata subito come fonte energetica può essere convertita in altri composti organici come i lipidi, o immagazzinata come amido o trasformata in cellulosa.

La fotosintesi nelle cellule eucarioti avviene in un organello citoplasmatico a ciò
deputato, il cloroplasto, situato nelle cellule del mesofillo della foglia.

La maggior parte del meccanismo fotosintetico del cloroplasto (che comprende i pigmenti che assorbono la luce, una catena di trasportatori di elettroni e un apparato in grado di sintetizzare ATP) è situato in un sistema di membrane interne chiamate tilacoidi (disposti in pile dette grana, che contengono il sistema di traduzione dell’energia) e fisicamente separato dalle membrane esterne da una matrice chiamata stroma (Fig. 4) (Karp, 2000).

Le membrane tilacoidali contengono molecole di clorofilla a e clorofilla b (differenti nello spettro di assorbimento della luce) disposte a formare rispettivamente il fotosistema I e il fotosistema II.
Figura 4: a) a sinistra: organizzazione funzionale di una foglia La sezione trasversale della foglia mostra parecchi strati di cellule compendenti le cellule a palizzata, che sono un tipo di cellule del mesofillo che contengono i cloroplasti che attuano la fotosintesi, procurando il materiale grazzo e l’energia chimica per tutta la pianta. b) a destra: diagramma schematico di un cloroplasto La membrana interna è disposta in pile di tilacoidi a forma di disco, dette grana, che sono fisicamente separate dalla membrana esterna per la presenza dello stroma. Lo stroma contiene piccole molecole circolari di DNA, ribosomi ed enzimi (da Karp, 2000).
2.3.1.2 **LE CLOROFILLE**

I pigmenti sono molecole che contengono un cromoforo, ovvero un gruppo chimico in grado di assorbire luce di una particolare lunghezza d’onda nello spettro del visibile.

Le foglie delle piante sono verdi dal momento che contengono grandi quantità del pigmento clorofilla, che assorbe nel blu e nel rosso, lasciando così che la lunghezza d’onda intermedia del verde venga riflesa ai nostri occhi.

La struttura di base della clorofilla è indicata nella Fig. 5.

![Formula di struttura delle clorofille](image)

Figura 5: Formula di struttura delle clorofille: Clorofilla (a) X = CH₃, Clorofilla (b) X = CHO; **Formule brute:** Clorofilla (a): C₅₅H₇₂MgN₄O₅, Clorofilla (b): C₅₅H₆₈MgN₄O₆.

Ciascuna molecola è costituita da due parti principali: un anello porfirinico (a sua volta costituito da quattro anelli pirrolici più piccoli con un atomo di magnesio coordinato al centro della molecola) che funziona nell’assorbimento della luce ed una catena idrofobica di fitolo (derivata dal ripetersi di un’unità isoprenoide) che mantiene la clorofilla immersa nella membrana tilacoidale e che le attribuisce il carattere lipidico. La presenza di legami doppi e semplici lungo la parte esterna dell’anello agisce dislocando gli elettroni che formano una nuvola attorno ad esso.
Sistemi coniugati di questo tipo assorbono la luce e l’assorbimento provoca una redistribuzione della densità elettronica della molecola, che a sua volta favorisce la perdita di un elettrone su un accettore appropriato. Le clorofille nei vegetali sono composte dalla clorofilla a (maggiore pigmento) e dalla clorofilla b tra loro in rapporto approssimativo di 3:1. Tuttavia, le condizioni ambientali e di crescita possono modificare questo rapporto, ad esempio piante esposte alla luce presentano un rapporto clf a : clf b = 3-4; mentre le piante esposte all’ombra presentano valori intorno a 2.5-2.9 (H. K. Lichtenthaler, 1987).

- Clorofilla a: è la principale dei vegetali ed è caratterizzata da un gruppo metile in C3 (anello II); il colore è verde smeraldo, è presente in tutti gli organismi fotosintetici che producono ossigeno, ma è assente in alcuni batteri sulfurei;
- Clorofilla b: differisce dalla clf a solo per un gruppo aldeidico in C3 (anello II); il colore è verde-pisello, è presente in tutte le piante superiori e nelle alghe verdi (Alpi, 2000).

2.3.1.3 I CAROTENOIDI E LE XANTOFILLE

I carotenoidi, tra cui il β-carotene, sono i più importanti pigmenti accessori nella fotosintesi. Assorbono la luce di lunghezze d’onda del blu e del verde e conferiscono le colorazioni gialle, arancio e rosse di organi come foglie, fiori e frutti. La loro funzione principale è quella di assicurare l’assorbimento della luce in ambiti spettrali non adeguatamente coperti dalle clorofille, alle quali poi in parte trasmettono l’eccitazione (Alpi, 2000), ma un’altra funzione degna di nota è quella di proteggere l’apparato fotosintetico dal danno provocato dalle specie reattive dell’ossigeno (fotossidazioni)

I carotenoidi sono molecole costituite da una lunga catena di atomi di carbonio (costituita da 35-40 atomi) provviste di 9 o più doppi legami coniugati e spesso terminanti in un anello (Fig. 6).
Le xantofille, sono carotenoidi contenenti atomi di ossigeno e danno la tipica colorazione bianco-giallastra alle foglie cresciute al buio. Appartengono a questa classe importanti pigmenti come la luteina, violaxantina e la zeaxantina.

Il tipico colore dei carotenoidi, che spazia dal giallo pallido all'arancione fino al rosso acceso, è una diretta conseguenza della struttura molecolare di questi composti. Le catene polimeriche che li compongono sono infatti caratterizzate dalla presenza di doppi legami, che interagiscono tra di loro permettendo agli elettroni degli atomi interessati di muoversi più liberamente; all'aumentare dei doppi legami...
nella catena, aumenta anche la libertà di movimento degli elettroni. Questo fatto fa sì che lo spettro della luce assorbita da queste molecole diminuisca. Come conseguenza di ciò, aumenta la lunghezza d'onda della luce riflessa, ed essa appare perciò di un colore tendente al rosso.

I carotenoidi possiedono molte proprietà fisiologiche tra cui una buona attività antiossidante sia nelle piante che nell’uomo.

Gli animali, compreso l’uomo, sono incapaci di sintetizzare i carotenoidi, e devono necessariamente implementarli tramite la dieta e poi modificarli in composti a loro utili. Di particolare importanza per l’uomo è la trasformazione degli α, β e γ-carotenoidi, soprattutto del β-carotene, in vitamina A (molecola indispensabile per il nostro organismo), a livello della mucosa intestinale; ragion per cui questi pigmenti sono importanti come provitamine A (Mearelli et al., 2006).

2.3.1.4 LE ANTOCIANINE

Gli antociani (dal greco anthos = fiore, kyáneos = blu) o antocianine sono una classe di pigmenti fenolici idrosolubili appartenente alla famiglia dei flavonoidi. Il loro colore dipende dal pH del mezzo in cui si trovano e dalla formazione di sali con metalli pesanti presenti in quei tessuti.

Infatti le antocianine sono di colore rosso od arancio in una soluzione fortemente acida e questo colore diminuisce man mano che il pH della soluzione aumenta fino a scomparire del tutto. In soluzioni prossime alla neutralità od alcaline, invece, si ha la comparsa di una soluzione blu o violetta, colore poco stabile che tende a sbiadirsi nel tempo. Queste variazioni di colore sono da attribuirsi a delle variazioni nella struttura dell'antocianina, conseguenti alle variazioni di pH.

Sono costituite da una molecola di benzene fusa con una di pirano (anello eterociclico contenente ossigeno), collegata a sua volta con un gruppo fenolico. Tale gruppo può essere a sua volta legato a diversi sostituenti. Questa molecola complessa prende il nome di catione flavilio che è la struttura di base di tutte le antocianine.
Figura 7: Il catione flavilio: R1 e R2 sono H, OH, o OCH3; R3 è un glicosile o H; R4 può essere o OH o un glicosile.

Le antocianine derivano dai rispettivi agliconi (antocianidine), da cui si differenziano per l'aggiunta di un gruppo glicosile (uno zucchero), di norma in posizione R3 e/o R4 (vedi Fig. 7).

Le principali antocianidine sono sei, tre delle quali sono comunemente rintracciabili: la pelargonidina, che produce i colori arancio, rosa e rosso; la cianidina, che produce i colori rosso o malva e che si trova principalmente nelle foglie pigmentate; la delphinidina, che produce i colori porpora, blu o blu scuro.

La glicosilazione del C3 dell'antocianidina è la più comune nelle piante, mentre la glicosilazione in altre posizioni (C5 e C7) è più sporadica e produce effetti meno marcati sul colore. La glicosilazione del C3 avviene, in genere, ad opera di una o due unità di glucosio o galattosio, ma frequente è anche la presenza di ramnosio, rabinosio e xilosio. A volte, il residuo zuccherino è legato a gruppi acilici, tra i quali sono stati identificati gli acidi idrossicinnamici.

Quando sono poste in vitro, le antocianine da sole, non esistendo in una forma colorata stabile (Asen, 1976), formano dei complessi molecolari con sostanze denominate copigmenti (Brouillard et al., 1993).

I copigmenti ricadono rapidamente in una delle seguenti due classi: i flavonoli (i principali dei quali sono il kempeferolo, la miricetina e la quercitina) ed i flavoni (apigenina, tricetina e luteolina) (Griesbach, 2005).

Le antocianine sono presenti, seppur con diverse quantità, in quasi tutte le piante superiori e si trovano specialmente nei frutti e nelle infiorescenze, ma si possono
riscontrare anche su foglie e radici, molto spesso insieme ad altri pigmenti quali carotenoidi e flavonoidi. Insieme sono responsabili della colorazione delle foglie delle piante caducifoglie in autunno, quando la fotosintesi si interrompe, così come la produzione di clorofilla (Tabella 1).

<table>
<thead>
<tr>
<th>Antocianina</th>
<th>Aglicone</th>
<th>Zucchero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cianidina-3-galattoside</td>
<td>Galattosio</td>
<td></td>
</tr>
<tr>
<td>Cianidina-3-glucoside</td>
<td>Glucosio</td>
<td></td>
</tr>
<tr>
<td>Cianidina-3-arabinoside</td>
<td>Arabinosio</td>
<td></td>
</tr>
<tr>
<td>Peonidina-3-galattoside</td>
<td>Galattosio</td>
<td></td>
</tr>
<tr>
<td>Peonidina-3-glucoside</td>
<td>Glucosio</td>
<td></td>
</tr>
<tr>
<td>Peonidina-3-arabinoside</td>
<td>Arabinosio</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 1: Formula di struttura delle principali antocianine presenti nel mondo vegetale.
Le antocianine svolgono un ruolo importante anche in piante giovani o con getti nuovi, proteggendole dai raggi ultravioletti quando la produzione di clorofilla e di cere non è ancora iniziata. (Konczak-Islam et al., 2003 et Meyer et al., 2002).

2.3.1.5 FLAVONOLI GLICOSILATI

I flavonoli, appartengono alla famiglia dei flavonoidi e i più diffusi sono: il kampeferolo, la miricitina e la quercetina. Sono incolori e sono presenti nelle foglie per prevenire i danni dovuti all’assorbimento dei raggi ultravioletti. In autunno, quando la clorofilla si decompone, questi composti incolori vengono privati dell’atomo di ossigeno attaccato all’anello centrale e si convertono in antocianidine che hanno colori brillanti. Questa trasformazione chimica che consiste solo nella perdita di un atomo di ossigeno è responsabile della nostra percezione del colore dell’autunno. Fungono da copigmenti, ovvero formano dei complessi molecolari con le antocianine, in modo da garantire ad esse una forma colorata stabile.

Spesso, i flavonoli si trovano in forma glicosilata (per questo motivo sono chiamati anche “glicosidi flavonici” o “flavonoli glicosilati”); ad esempio la rutina è un glicoside flavonoico composto dal flavonolo quercetina (aglicone) e dal disaccaride rutinosio, presente in molte specie vegetali come ad esempio quelle del genere *Citrus* e in foglie e petali del genere *Rheum* ().
Per antiossidante intendiamo “qualsiasi sostanza che, presente in concentrazione molto bassa rispetto a quella di un substrato ossidabile, è in grado di ritardare o inibire significativamente l’ossidazione di quel substrato” (Halliwell et al., 1989).

I principali composti che agiscono come ossidanti sono i ROS (Reactive Oxigen Species- radicali liberi) prodotti nell’organismo come conseguenza dei normali processi metabolici. Sono altamente instabili e reattivi e provocano quello che viene definito “stress ossidativo”, ovvero, donando l’atomo di ossigeno instabile, provocano danni a carico di macromolecole biologiche, come DNA, carboidrati e proteine.

Per contrastare la loro azione l’organismo umano ha a disposizione: meccanismi
enzimatici (superossido dismutasi, attiva contro il radicale superossido \(\text{O}_2^{\cdot -} \) e la catalasi, che riduce il perossido di idrogeno \(\text{H}_2\text{O}_2 \)), composti antiossidanti endogeni a basso peso molecolare, che reagiscono con i composti ossidanti riducendone il potenziale nocivo (glutatione, l’ubichinolo e l’acido urico, tutti normali prodotti del metabolismo corporeo) e composti antiossidanti di origine alimentare (vitamina C, vitamina E, carotenoidi antocianine e flavonoidi) (Alfonso Siani, 2000).

E’ soprattutto su questi ultimi che si è concentrata l’attenzione dell’industria alimentare e farmaceutica per promuovere le proprietà benefiche degli alimenti, in quanto i dati disponibili mostrano che un aumento dell’assunzione di antiossidanti da fonti naturali, in particolare frutta e vegetali può essere utile nella prevenzione di varie malattie. Per queste ragioni le colture in vitro consentono un mezzo efficace per la loro produzione.

Gli antiossidanti polifenolici presenti nella dieta possono essere in maggior parte ricondotti alle classi dei flavonoidi e acidi fenolici.

2.3.2.1 I FLAVONOIDI

I flavonoidi derivano dalla grande famiglia dei polifenoli, sono dei metaboliti secondari delle piante, principalmente idrosolubili, di solito presenti nella pianta come glicosidi.

Danno colore ai fiori e ai frutti, assorbono fortemente le radiazioni ultraviolette e il loro accumulo nell’epidermide delle foglie ne suggerisce una funzione specifica di protezione dal danno che queste radiazioni causano al DNA delle cellule. Nell’uomo questi composti hanno anche un’attività antibatterica e di protezione contro la fragilità capillare, ma soprattutto contrastano le reazioni chimiche provocate da diverse molecole, fra cui l’ossigeno, che è responsabile della formazione dei radicali liberi (sostanze chimiche altamente instabili molto dannose per l’organismo in quanto possono accelerare i processi di invecchiamento cellulare, attivare processi infiammatori, avere effetti cancerogeni e favorire l’arteriosclerosi). Per queste ragioni forniscono un sostanziale contributo al potenziale antiossidante della dieta in quanto esplicano il loro ruolo a livello del tratto digestivo, limitando la
formazione di ROS (radicali liberi) e/o catturando quelli formati (Pietta, 2005).

Nell’ ambito della famiglia dei flavonoidi è possibile distinguere sei classi principali: flavanoli (catechina, epicatechina), flavonoli (quercetina), flavanoni, flavoni, isoflavoni, antocianine (Figura 8). La struttura chimica di questi composti, presenti in tutte le parti della pianta, è basata su un scheletro base C6-C3-C6. Gli atomi di carbonio all’interno dello scheletro vengono originati da due distinti pathways (l’unità C6 deriva dall’acido cinnamico, mentre l’unità C6-C3 deriva dalla condensazione testa-coda di 3 unità di acetato (Salisbury et al., 1992).

Figura 8: Formule di struttura delle principali classi di flavonoidi. R_1, R_2, R_3 possono essere costituiti da: H, OH e OCH$_3$.
2.3.2.2 **GLI ACIDI FENOLICI**

Gli acidi fenolici sono composti polifenolici e rappresentano un gruppo di sostanze ampiamente presenti nelle piante superiori.

Sono caratterizzati da un anello aromatico con una catena alifatica laterale con tre atomi di carbonio (scheletro carbonioso di base C6-C3).

Sono derivati dell’acido cinnamico e i più diffusi sono: l’acido caffeico, l’acido p-cumarinico, l’acido ferulico, l’acido gallico e l’acido sinapico (\(\cdot \)). Spesso questi ultimi si trovano esterificati con alcoli alifatici (acido cicorico) o con acido quinico (acido clorogenico) o con glucosio ed altri zuccheri (echinacoside).

![Diagram of Acids Phenolic Derivatives from Cinnamic Acid](image)

Figura 9: Formula di struttura degli acidi fenolici derivati dell’acido cinnamico.

Sono metaboliti secondari delle piante e sono considerati sostanze farmacologicamente attive come agenti antiossidanti, antimutageni e anticancerogeni.
3 ECHINACEA ANGUSTOFOLIA D.C.

3.1 INQUADRAMENTO BOTANICO - SISTEMATICO

<table>
<thead>
<tr>
<th>Philum:</th>
<th>SPERMATOPHITAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sottodivisione:</td>
<td>ANGIOSPERMAE</td>
</tr>
<tr>
<td>Classe:</td>
<td>DICOTYLEDONES</td>
</tr>
<tr>
<td>Sottoclasse:</td>
<td>SYMPETALAE</td>
</tr>
<tr>
<td>Ordine:</td>
<td>CAMPANULALES</td>
</tr>
<tr>
<td>Famiglia:</td>
<td>ASTERACEAE (COMPOSITAE)</td>
</tr>
<tr>
<td>Sottofamiglia:</td>
<td>ASTEROIDAE (TUBULIFLORAE)</td>
</tr>
<tr>
<td>Genere:</td>
<td>RUDBECKIA L. (ECHINACEA)</td>
</tr>
</tbody>
</table>

Il genere di questa pianta, secondo Linneo, è *Rudbeckia* dedicata a O. Rudbeck, botanico svedese del XVII sec. Fu poi ridenominato da Moench, nel 1794, *Echinacea* (dal greco *echinos*, riccio), secondo alcuni autori per la struttura dei semi che possiedono, alla loro sommità, un margine con 4 denti appuntiti; secondo altri, per le brattee pungenti del capolino. Il termine *angustifolia* si riferisce alla forma tipica delle foglie e deriva da due parole latine: *angustus* (stretto) e *folium* (foglia).

Le piante sono poliennali, hanno riposo vegetativo in inverno (la parte epigea si dissecca in autunno) e sono resistenti alle rigide temperature invernali (da -25°C a -40°C) e alla siccità estiva. Sono alte dai 30 ai 100 cm, dotate di fusto glabro o peloso che può essere più o meno ramificato. Le foglie lanceolate, sono lunghe dai 15 ai 30 cm, presentano un margine intero o seghettato e possono essere provviste
di peli. Quelle superiori sono sessili, mentre quelle inferiori sono lungamente picciolate. La fioritura compare dal secondo o terzo anno all’inizio dell’estate con più di una infiorescenza a capolino per pianta. I capolini hanno forma conica e brattee pungenti e sono singoli all’estremità del fusto. I fiori del raggio (sterili) ligulati presentano due o tre denti all’estremità e sono di un colore che varia dal bianco al rosa pallido fino al porpora; mentre i fiori del disco tubulosi (ermafroditi) sono a cinque lobi e si sviluppano su un bulbo carnoso (Li Thomas S.C., 1998). Il polline presenta diverse colorazioni a seconda della specie. Il frutto è un achenio quadrangolare con presenza o meno di colorazione marrone chiaro all’apice. Le tre specie maggiormente coltivate, per l’uso diffuso in fitoterapia, sono facilmente distinguibili tra loro per alcune differenze morfologiche:

- **E. angustifolia** possiede foglie lanceolate a margine intero lunghe 10-12 cm e larghe 2-3 cm, brevemente picciolate, provviste di peli e di colore verde tendente al verde scuro. Gli steli, alti fino a 60 cm, sono singoli e dotati di peli biancastri. I fiori ligulati sono lunghi 2-4 cm e di colore rosa-chiaro; il polline è di colore giallo. L’achenio presenta un colore che va dal biancastro al bruno chiaro, con pigmentazione di colore marrone chiaro all’apice e ha una lunghezza di 3,5-5,5 mm. L’apparato radicale è poco fascicolato e di colore bruno chiaro.

- **E. purpurea** si distingue da *E. angustifolia* per avere le foglie con margine seghettato e provviste di peli molto corti, uno stelo lungo fino a 150 cm e ramificato, i fiori ligulati di colore porpora pendenti verso il basso e il frutto senza pigmentazione all’apice.

- **E. pallida** differisce prevalentemente per il colore rosa pallido dei fiori ligulati e per il fatto che sono pendenti (Aiello, 1998).
Figura 9: *E. angustifolia* : a) in alto a sinistra: pianta; b) in alto a destra: particolare di fiore; c) in basso a sinistra: particolare di acheni; d) in basso a destra: due particolari di brattee pungenti del capolino.
Figura 10: a) a sinistra: due foto di fiore di *E. pallida*; b) a destra: due foto di fiore di *E. purpurea*.
3.2 AREALE D’ORIGINE

Le piante del genere *Echinacea* sono native del Nord America e possiedono un areale di origine molto vasto che va dalle zone costiere del Golfo del Messico alle Grandi Pianure, fino al Lago Grande a Nord, alle Montagne rocciose ad Ovest e alla Catena degli Appalachi ad Est, interessando numerosi Stati.

Inoltre è emerso che l’areale delle tre specie più conosciute (*E. angustifolia*, *E. pallida* e *E. purpurea*) è più esteso rispetto a quello di tutte le altre (McGragor, 1968) e ciò potrebbe essere considerato un indice della loro adattabilità alle diverse condizioni ambientali (Aiello e Bezzi, 1999).

Crescono spontaneamente sia nelle zone di pianura che ad alta quota (fino ad oltre 1500 m di altitudine), privilegiando aree aperte e soleggiate, senza esigenze particolari di terreno e acqua; anche se prediligono suoli moderatamente fertili, bensì drenati e tendenti al sabbioso, come quelli delle grandi praterie nordamericane.
3.3 ATTIVITA’ FARMACOLOGICA E USI IN MEDICINA

Le specie di questo Genere erano presenti nelle farmacopee di molte tribù indigene americane che le utilizzavano per la cura di ferite, punture di insetti, morsi di serpente, ustioni, febbre, raffreddore, tosse, ghiandole ingrossate, mal di denti, mal di testa e mal di stomaco.

Fu solo dopo la colonizzazione dell’America, che queste piante si diffusero anche in Europa; basti pensare al primo farmaco a base di tintura di *Echinacea angustifolia*, il Meyer’s Blood Purifier (il purifica-sangue di Meyer), “brevettato” dall’omonimo dottore, che fu largamente utilizzato nella pratica medica, a partire dalla fine del 1800, per infezioni localizzate e sistemiche, sindromi da raffreddamento, infezioni cutanee.

Da qui l’iserimento dell’*Echinacea angustifolia* nella Farmacopea Nazionale Americana nel 1916 e intorno al 1930, anche nella Farmacopea Tedesca, la quale pose anche attenzione sull’attività farmacologica delle radici di *E. pallida* e della parte aerea di *E. purpurea*. Tuttavia, non compare nella Farmacopea Ufficiale Italiana X ed. (1999).

La droga delle tre specie di *Echinacea* destinate alla fitoterapia: *E. angustifolia, E. purpurea, E. pallida*; è costituita dalle radici e dalle parti aeree essiccate. In particolare si usano prevalentemente radici e rizomi di *E. angustifolia* e parti aeree di *E. purpurea*. In terapia vengono impiegate indifferentemente le tre specie anche se quella che viene maggiormente impiegata è l’*E. angustifolia* (Pistelli, 2004).

Il largo uso di questa pianta è dovuto alle sue diverse attività terapeutiche: attività antibatterica (da attribursi alla presenza di echinacside, acido caffeoico e acido clorogenico, che costituiscono una sorta di barriera meccanica contro la penetrazione di batteri attraverso la cute) (Binns et al, 2000); attività antiossidante (attribuita ai caffeoil-derivati, che proteggono il collagene dai danni causati dagli ioni superossido e radicali ossidrilici); attività antinfiammatoria (dovuta ad alcune molecole della frazione polisaccaridica (Caniato et al., 2004) e soprattutto alla sua attività immunostimolante (in quanto favorisce una stimolazione del sistema immunitario mediante l’attivazione della fagocitosi e dei fibroblasti ed una
maggiori produzioni di interleuchine e interferoni) (Caniato et al., 2004).

3.3.1 APPLICAZIONI

L'uso per via orale dell'Echinacea può essere utile sia nella stagione che precede le influenze, a scopo preventivo e di rafforzamento del sistema immunitario, sia durante la malattia stessa, per la sua azione sui macrofagi e sui linfociti T e B. Viene consigliata nelle malattie virali in genere (es. herpes) e nelle micosi. Per uso esterno, i vari componenti attivi della pianta producono un effetto antinfiammatorio su pelli arrossate, ferite o ustionate; in campo cosmetico entra nella composizione di prodotti utili al trattamento delle rughe, delle smagliature e dell'acne.

Il periodo di trattamento consigliato è un massimo di otto settimane consecutive. Nel caso di somministrazioni parenterali il periodo deve essere ridotto a tre settimane (Caniato et al., 2004).

3.3.2 FORME D'USO

Può essere assunta in capsule, compresse, tisane, tintura ed utilizzata esternamente in pomata o cataplasmi (Giles JT et al., 2000).

Si può preparare un decotto, mettendo a bagno a freddo un cucchiaio di radice (5 g circa) per ogni tazza d'acqua. Il preparato va quindi fatto bollire, coperto e a fuoco moderato per 10 minuti circa. Una volta filtrato, il decotto si utilizza nella dose di tre tazze al di in caso di infezioni. Se si vuole ottenere un effetto preventivo, risulta più agevole l'uso della tintura madre, nella dose di 10-15 gocce al giorno, da aumentare fino a 30 per tre volte al giorno in caso di malattia. Esistono in commercio preparati per bambini a base di Echinacea, spesso in associazione alla propoli e alla vitamina C: anche per loro è possibile ottenere un'azione preventiva o curativa avendo cura di rispettare le diverse dosi.

Le preparazioni sotto forma di estratti idroalcolici delle radici di E. purpurea e E. pallida o di succo spremuto delle parti aeree di E. purpurea o di capsule a base di polvere di radici e parti aeree di E. angustifolia, E. pallida e E. purpurea hanno raggiunto nel 1998 un valore di mercato pari a 8.3 milioni di dollari e nel 1997 sono stati i prodotti al top delle vendite nei natural food stores (Choffe et al., 2000).
3.3.3 CONTROINDICAZIONI

Va usata con prudenza nelle malattie autoimmuni, TBC, AIDS, sclerosi multipla. Dosi elevate possono talvolta causare nausea e vertigini.
3.3.4 **PRINCIPI ATTIVI**

I principi attivi contenuti nelle tre specie più utilizzate di *Echinacea* (angustifolia, pallida e purpurea) sono soprattutto derivati dell’acido caffeico, polisaccaridi, componenti lipofili, il cui contenuto qualitativo-quantitativo varia tra esse e nelle differenti parti della pianta. Sono presenti anche flavonoidi e composti volatili.

Quelli responsabili delle azioni terapeutiche sono da individuare in alcuni dei polisaccaridi (echinacina B, arabinogalattani), acido caffèico e derivati (composti polifenolici); mentre un incremento dell’attività dei linfociti T viene attribuito alla frazione lipoproteica (Pistelli, 2004).

<table>
<thead>
<tr>
<th>COMPOSTI POLARI</th>
<th>DERIVATI AC. CAFFEICO</th>
<th>FLAVONOIDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLISACCARIDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>echinacina B</td>
<td>ac. caffèico</td>
<td>apigenina</td>
</tr>
<tr>
<td>arabinogalattano</td>
<td>cinarina</td>
<td>luteolina</td>
</tr>
<tr>
<td></td>
<td>ac. cicorico</td>
<td>quercetina</td>
</tr>
<tr>
<td></td>
<td>ac. clorogenico</td>
<td>rutina</td>
</tr>
<tr>
<td></td>
<td>ac. caftarico</td>
<td>kampferolo</td>
</tr>
<tr>
<td>echinacoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOSTI APOLARI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALCHILAMMIDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>echinacea</td>
<td>terpeni (cariofilleni)</td>
<td>vitamine</td>
</tr>
<tr>
<td>isobutilammidi</td>
<td>alfa- e beta-pinene</td>
<td>glicoproteine</td>
</tr>
<tr>
<td></td>
<td>umulene</td>
<td>alcaloidi</td>
</tr>
<tr>
<td></td>
<td>beta-farnesene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>echinolone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>borneolo</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 2: schema delle classi di principi attivi contenuti nelle piante del Genere *Echinacea*
3.3.4.1 STRUTTURA CHIMICA DEI PRINCIPALI DERIVATI DELL’ACIDO CAFFEICO

Acido Caffeico

Acido Clorogenico

Acido Caftarico

Cinarina
3.3.4.2 STRUTTURA CHIMICA DELLE PRINCIPALI ALCHILAMMIDI

Acido dodeca-2E,4E,8Z,10E-tetraenoico

Acido dodeca-2E,4E,8Z,10Z- tetraenoico
3.3.4.3 STRUTTURA CHIMICA DEI COMPOSTI FENOLICI

Apigenina

Kaempferolo

Rutina

Quercetina
4 STATO DELL’ARTE DELLE BIOTECNOLOGIE APPLICATE AL GENERE ECHINACEA

Il consumo di preparazioni a base di Echinacea è aumentato negli ultimi anni, probabilmente per la crescente preoccupazione del consumatore dei numerosi effetti collaterali derivanti dall’uso dei prodotti farmaceutici di sintesi.

A questa sempre più crescente domanda del mercato segue la necessità di un continuo approvvigionamento del materiale di partenza che, soprattutto nel caso dell’E. angustifolia, non è semplice da reperire per la suscettibilità della pianta all’attacco di patogeni e al cambiamento repentino delle condizioni climatiche (Li, 1998).

In un tale contesto, lo sviluppo di sistemi di rigenerazione e di tecniche di micropropagazione in vitro permette: un’indipendenza dal cambioamento delle condizioni ambientali e dall’attacco di patogeni (si lavora in condizioni asettiche e con i parametri di luce, temperatura e umidità ben definiti), un incremento del tasso di moltiplicazione (la composizione in elementi nutritivi è studiata accuratamente per garantire una crescita e sviluppo ottimale della pianta), l’ottenimento di piante selezionate per le caratteristiche dei loro principi attivi e quindi un approvvigionamento di materiale vegetale quali-quantitativamente costante al mercato farmaceutico ed erboristico.

Le conoscenze fino ad ora acquisite circa le tecniche di propagazione e rigenerazione in vitro del genere Echinacea riguardano soprattutto la specie E. purpurea; solo pochi studi riguardano l’E. angustifolia, dal momento che la sua coltivazione in vitro è resa difficile da una scarsa germinazione (dormienza) e da una scarsa instaurazione dei semenzali (Walker et al., 1999/2000).

Di seguito viene riportato lo stato di conoscenze attuali, per quanto riguarda tecniche di coltura in vitro applicate alle piante del genere Echinacea.
4.1 GERMINAZIONE

La germinazione di queste specie è ostacolata dalla dormienza (i cui meccanismi responsabili del controllo non sono ancora ben conosciuti (Bradbeer, 1988) e dalla contaminazione microbica dei semi persistente e difficile da eliminare.

Secondo diversi autori l’aggiunta di mezzi chimici alla soluzione di lavaggio dei semi può essere utile per eliminare la contaminazione presente. Infatti, dopo un’immersione in etanolo al 70% per 30 secondi, seguita da un ammollo in una soluzione di Ipoclorito di sodio + Tween20® per 10 minuti, Choffe ha documentato che l’aggiunta di 3 ml/l di PPM® (Plant Preservation Mixture, Plant Cell Techonolgy Inc., Washington DC) in acqua sterile è un metodo efficace per la sterilizzazione (Choffe, 2000); mentre per Subbaiah la giusta dose di tale sostanza sarebbe 10 ml/l in acqua sterile per tutta la notte su un agitatore (Subbaiah et al., 2003); a queste soluzioni seguono infine risciacqui con acqua sterile deionizzata.

Per aumentare la percentuale di germinazione e quindi rompere la dormienza diverse soluzioni sono state proposte sebbene non sempre con esiti positivi.

Un trattamento con acido solforico, ad esempio, non è stato efficace in quanto lavaggi di 5’ con tale sostanza a diverse concentrazioni hanno dimostrato che sotto una certa soglia non c’è alcun effetto stimolante ed oltre una soglia di poco maggiore l’achenio viene danneggiato (Feghahati et al., 1994).

Baskin (Baskin et al., 1992) è riuscito ad ottenere un’alta percentuale di germinazione sottoponendo acheni di *E. angustifolia* a stratificazione fredda (5°C) per due settimane in luce continua, seguita da altre due settimane ad una temperatura di 15-16°C in condizioni di fotoperiodo di 14 ore di luce e 10 ore di buio.

Successivi studi confermando il ruolo dell’etilene endogeno nella rottura della dormienza, anche in specie diverse da quelle del Genere *Echinacea* (Corbineau et al., 1990), hanno permesso un ulteriore tentativo di miglioramento della germinazione di queste specie. È stato osservato che l’allestimento dei semi sterilizzati di *E. angustifolia* in Piatre Petri con filtro di carta bibula imbevuto con 1 ml/l di etephon (*acido 2-cloroetilfosfonico*, un composto, di formula bruta
C₂H₆ClO₃P, che rilascia etilene – Warner et al., 1969) in acqua distillata, messe in camera di crescita per 14 giorni a 4°C e poi a 25°C (questo è necessario per la stratificazione dei semi prima della germinazione), portava alla germinazione dopo 10 giorni di circa il 90% dei semi (Subbaiah et al., 2003).

L’uso di altri ormoni come le gibberelline (GA₃), invece, sembra non avere alcun effetto sulla germinazione di E. angustifolia (Macchia, et al., 2001) a differenza di quanto hanno sostenuto altri autori riguardo però all’E. purpurea (Pill et al., 1996).

Infine sono stati testati diversi metodi di scarificazione (meccanica, acida), al fine di chiarire il livello di coinvolgimento nel fenomeno della dormienza dei semi, di eventuali fattori chimici o fisici risiedenti negli strati che avvolgono l’embrione: pericarpo, tegumento interno e strato che avvolge l’endosperma. Si è osservato che la rimozione dei primi due strati ha consentito un aumento della percentuale di germinazione dal 50% al 97%; mentre la rimozione del terzo non ha avuto effetto aggiuntivo. Inoltre questo metodo è sembrato essere efficace anche contro la contaminazione dei semi poiché si è dimostrato come questa sia inversamente proporzionale al numero di rivestimenti di seme rimossi (Harbage, 2001).

Concludendo, i substrati nutritivi per l’induzione della germinazione sono composti prevalentemente da: Sali MS ½ Forza (Murashige e Skoog, 1962) (Choffe et al., 2000; Smith et al., 2002; H. Lata et al., 2004), vitamine (Vit B₃ ½ Forza-Gamborg, 1968, Choffe et al., 2000), saccarosio, agar e PPM® (Choffe et al., 2000).

4.2 PROPAGAZIONE IN VITRO, RIGENERAZIONE AVVENTIZIA E RADICAZIONE

Un confronto diretto tra le tre specie: E. purpurea, pallida e angustifolia, è stato effettuato da Harbage nel 2001 per uno studio riguardante la conservazione del germoplasma di specie a rischio di estinzione allo stato selvatico.

Tuttavia, le colture in vitro sono state prevalentemente sviluppate per espianti provenienti da E. purpurea e solo in minima parte per quelli provenienti da E. angustifolia.
Utilizzando ipocotili ottenuti per germinazione in vitro degli acheni di *E. purpurea*, Coker e Camper hanno messo a punto un protocollo per la rigenerazione e formazione di callo che prevede, nel mezzo di induzione MS (Murashige e Skoog, 1962), l’impiego di NAA (auxina) e Kinetina (citochinina) insieme (1:1 e 2:1 mg/l), oppure di 2,4-D (auxina) e Kinetina (0.5:1.5 e 1:2 mg/l). La prima combinazione ha dimostrato stimolare la formazione di nuovi germogli ed in misura minore la formazione di callo; mentre la seconda la formazione di callo con un alto contenuto di antocianine (le quali sono indice della presenza di un metabolismo secondario attivo che è un prerequisito per l’applicazione di tecnologie in vitro per la produzione di prodotti di importanza medicinale) (Coker et al., 2000).

Anche Choffé, partendo da espianti di picciolo di *E. purpurea* derivanti da semenzali di due mesi germinati in vitro, ha ottenuto una buona rigenerazione utilizzando un substrato contenente Sali MS e vitamine B₅ Gamborg (Gamborg, 1968) ed ormoni come BA (cit), NAA e IAA (aux) (0.5: 0.9: 0.8 mg/l). Lo stesso autore partendo da espianti di ipocotile di *E. purpurea* ne ha ottenuto una buona radicazione utilizzando un mezzo basale MS con l’aggiunta di IBA ed IAA (aux). Tuttavia nelle diverse prove l’IBA ha dimostrato una maggiore efficacia dell’IAA nell’induzione della rizogenesi (Choffé et al., 2000).

Substrati composti da Sali MS e vitamine LS (Linsmaier e Skoog, 1965) insieme a BA e NAA (1: 0,01 mg/l) hanno dato un buon tasso di rigenerazione ed in seguito, gli stessi germogli rigenerati, messi su un mezzo MS in presenza di IBA (0,1 mg/l), hanno radicato (Koroch et al., 2002).

Una buona rigenerazione di *E. purpurea* è stata anche ottenuta partendo da porzioni di foglia utilizzando un mezzo WPM (Woody Plant Medium) (Lloyd et al., 1980) con l’aggiunta di latte di cocco (50 ml/l) e BA (2.5 mg/l) (Subbaiah et al., 2003) e da protoplasti di mesofillo fogliare (Pan et al., 2004).

Smith si è invece dedicata alla coltura in vitro in sospensione di *E. angustifolia*, a partire da espianti di ipocotile e cotiledoni, per allestire dei sistemi di produzione adatti all’isolamento di composti bioattivi. Ha ottenuto callo friabile in un mezzo basale MS con la presenza di 2,4-D (aux 1 mg/l), adatto ad una coltura in
sospensione in un mezzo liquido, della stessa composizione di quello solido, ma privo di agar e con l’aggiunta di 2,4-D, NAA e BA (1: 1: 4,5 mg/l) (Smith et al., 2002).

Inoltre, su E. angustifolia, Lata ed i suoi collaboratori hanno messo a punto un protocollo per la produzione di germogli provenienti da espianti di ipocotile, per la loro moltiplicazione e radicazione. La rigenerazione è avvenuta su un mezzo basale MS ½forza con l’aiuto di BA (0.5 mg/l); la moltiplicazione su un mezzo basale MS con BA alla stessa concentrazione e la radicazione su un mezzo basale MS con NAA, IBA e IAA (0,4: 0,5: 0,4 mg/l) (Lata et al., 2004).
5 SCOPO DEL LAVORO

La coltura in vitro di piante medicinali ha assunto grande importanza, soprattutto per quelle specie che presentano problemi di propagazione classica o per le quali la produzione agricola non riesce a soddisfare la domanda del mercato. La micropropagazione in vitro permette infatti, oltre alla veloce moltiplicazione e all’ottenimento di piante in ogni stagione, una rapida propagazione di piante selezionate per le caratteristiche dei loro composti. Inoltre, la messa a punto di sistemi di colture in vitro di tessuti e cellule costituisce un presupposto indispensabile per la produzione di principi attivi a livello industriale.

La specie officinale oggetto della presente tesi sperimentale è l’Echinacea angustifolia D.C., coltivata principalmente per la presenza di derivati dell’acido caffeico, alchilammidi, flavonoidi e polisaccaridi nella droga, che è costituita in prevalenza da radici e rizomi. Tali composti presentano una comprovata attività immunostimolante, antibatterica, antimicotica, antivirale ed antiinfiammatoria. Consumata regolarmente da milioni di persone in tutto il mondo per combattere tosse, raffreddore, influenza, l’Echinacea angustifolia rappresenta il genere officinale di più largo consumo in Nord America.

Lo scopo della seguente tesi è quello di realizzare dei sistemi di coltivazione in vitro per la produzione di biomassa di Echinacea angustifolia D.C. e di valutarne l’efficienza per poter realizzare una produzione di metaboliti secondari con metodi economicamente convenienti.

In particolare, è stata messa a punto l’induzione di callo su substrati solidi in diverse condizioni ambientali caratterizzando le colture ottenute tramite la realizzazione di curve di crescita.

Inoltre, poiché dalla letteratura emerge che in molti casi la produzione di metaboliti secondari è strettamente associata al grado di differenziazione dei tessuti, si è voluto indagare se colture di callo di Echinacea angustifolia D.C. in rigenerazione (ovvero masse di cellule in attiva crescita che presentano dei centri di differenziazione con apici vegetativi e primordi fogliari) fossero più idonee alla
realizzazione di colture liquide per l’estrazione di principi attivi.

Si è quindi iniziato un sistema di coltura cellulare su substrati liquidi osservando l’andamento della crescita del callo nelle diverse condizioni testate.

Tenendo in considerazione che i principi attivi presenti in questa specie sono di interesse nutraceutico, si è cercato di mettere a punto anche un sistema colturale che prevedesse l’utilizzo minimo di fitoregolatori e l’uso alternativo di sostanze naturali come il latte di cocco.

Infine, la biomassa ottenuta in vitro è stata caratterizzata eseguendo un’indagine qualitativa preliminare sul contenuto in clorofilla, xantofille e carotenoidi, antocianine, flavonoli e acidi fenolici. È stata fatta anche una valutazione dell’attività antiossidante degli estratti al fine di stabilire quale dei sistemi di coltura adottati e quale dei substrati agarizzati e liquidi utilizzati, sia in grado di produurre biomassa con un elevato contenuto di sostanze, d’interesse per l’industria alimentare e farmaceutica.
6 MATERIALI E METODI

Il materiale vegetale utilizzato per le prove sperimentali di questa tesi è costituito essenzialmente da germogli ottenuti da colture stock mantenute in fase di proliferazione.

Per facilitare la lettura del testo viene riportato di seguito un indice delle abbreviazioni utilizzate (Tabella 3).

<table>
<thead>
<tr>
<th>Abbreviazione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Murashige & Schoog, 1962</td>
</tr>
<tr>
<td>B5</td>
<td>Gamborg, 1968</td>
</tr>
<tr>
<td>LS</td>
<td>Linsmaier and Skoog, 1965</td>
</tr>
<tr>
<td>Ch</td>
<td>Choffe et al., 2000</td>
</tr>
<tr>
<td>Che</td>
<td>Choffe et al., 2000- modificato</td>
</tr>
<tr>
<td>CW</td>
<td>Coconut water</td>
</tr>
<tr>
<td>SC</td>
<td>Bolta et. al., 2000 e Kintzios et al., 1999- modificati</td>
</tr>
<tr>
<td>ZZ</td>
<td>Zhu Liqing et al., 2005</td>
</tr>
<tr>
<td>MES</td>
<td>2-[N-morpholino]ethanesulfonic acid</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione reduced</td>
</tr>
<tr>
<td>IBA</td>
<td>indol-3-butyric acid</td>
</tr>
<tr>
<td>BA</td>
<td>6-bezylaminopurine</td>
</tr>
<tr>
<td>NAA</td>
<td>1-naphthaleneacetic acid</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2,4-dichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>GA</td>
<td>Gibberellic acid</td>
</tr>
<tr>
<td>PPM</td>
<td>Plant Preservation Mixture</td>
</tr>
<tr>
<td>chl</td>
<td>Clorofilla</td>
</tr>
<tr>
<td>DPPH•</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
</tbody>
</table>

Tabella 3: Indice delle abbreviazioni
6.1 INDUZIONE CALLO DA PEZZI DI FOGLIA

Il callo è un tessuto indifferenziato costituito da cellule parenchimatiche ed acqua e può essere indotto in tessuti di vari organi di molte specie vegetali.

Tuttavia, molti fattori possono influenzare la capacità specifica di un tessuto di formare callo: fattori chimici come la nutrizione minerale e i fitoregolatori di crescita; fattori ambientali come luce, temperatura e umidità e costituzione genetica della pianta stessa.

E’ da notare come un mezzo di coltura in grado di indurre una buona crescita del callo in una specie, può non indurre alcuna crescita in un’altra molto affine (Caponetti, 2003); pertanto è necessario studiare quale sia la migliore combinazione e concentrazione dei componenti nutritivi nel mezzo, dei fitoregolatori e dei fattori ambientali per massimizzare la produzione di callo per ogni specie.

Come materiale di partenza per l’induzione del callo sono state scelte foglie di piantine di Echinacea angustifolia D.C. rigenerate in vitro da substrato agarizzato, contenente sali minerali e vitamine LS ½ forza (Linsmaier and Skoog, 1965) con l’aggiunta di BA 0.25 mg/l, dispensato in vasi Baby food culture jar® (98.5 x 59 mm) con coperchio Magenta® B-Cap privo di filtro di ventilazione (diametro 1 cm e porosità 0.02 μM) (Sigma-Aldrich, USA) (25 ml di substrato per ogni vaso).

Per avere dimensioni omogenee degli espianti sono state prelevate porzioni di lamina fogliare di 0.5 cm² utilizzando un foratappi sterile. I dischetti di foglia così ottenuti sono stati dispensati in piastre Petri (Ø 6 cm). E’ stato quindi effettuato il peso medio fresco e secco di 5 dischetti di foglia per piastra.

Ogni piastra Petri è stata prima opportunamente sigillata con Parafilm® per diminuire la probabilità di inquinamenti causati da microrganismi presenti nell’atmosfera e poi sistemata in camera di crescita alla temperatura di 25±1°C, alla luce 80 μM s⁻¹ m⁻² radiazione fotosinteticamente attiva (PAR) o al buio, a seconda delle diverse prove sperimentali.
6.1.1 INDUZIONE DI CALLO INDIFFERENZIATO

I substrati utilizzati per indurre callo indifferenziato partendo da dischetti di foglia di dimensione nota (0.5 cm2), sono stati due: SC e ZZ (Bolta et.al., 2000 et Kintzios et al., 1999 et Zhu Liqing et al., 2005) e la loro composizione è espressa di seguito.

<table>
<thead>
<tr>
<th>Mezzo SC</th>
<th>Mezzo ZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro elementi</td>
<td>Macro elementi</td>
</tr>
<tr>
<td>MS</td>
<td>MS</td>
</tr>
<tr>
<td>100 ml/l</td>
<td>100 ml/l</td>
</tr>
<tr>
<td>Micro elementi</td>
<td>Micro elementi</td>
</tr>
<tr>
<td>MS</td>
<td>MS</td>
</tr>
<tr>
<td>10 ml/l</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Vit B5 Gamborg</td>
<td>Vit MS</td>
</tr>
<tr>
<td>10 ml/l</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Fe MS</td>
<td>Fe MS</td>
</tr>
<tr>
<td>10 ml/l</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>GSH</td>
<td>GSH</td>
</tr>
<tr>
<td>300 mg/l</td>
<td>300 mg/l</td>
</tr>
<tr>
<td>MES</td>
<td>MES</td>
</tr>
<tr>
<td>500 mg/l</td>
<td>500 mg/l</td>
</tr>
<tr>
<td>Saccarosio</td>
<td>Saccarosio</td>
</tr>
<tr>
<td>30 g/l</td>
<td>30 g/l</td>
</tr>
<tr>
<td>BA</td>
<td>BA</td>
</tr>
<tr>
<td>2 mg/l</td>
<td>0,4 mg/l</td>
</tr>
<tr>
<td>NAA</td>
<td>IBA</td>
</tr>
<tr>
<td>2 mg/l</td>
<td>0,1 mg/l</td>
</tr>
<tr>
<td>GA</td>
<td>GA</td>
</tr>
<tr>
<td>0,3 mg/l</td>
<td>0,3 mg/l</td>
</tr>
<tr>
<td>2,4-D</td>
<td>0,5 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
</tr>
<tr>
<td>5,8</td>
<td>5,8</td>
</tr>
<tr>
<td>Difco Bacto ®</td>
<td>Difco Bacto ®</td>
</tr>
<tr>
<td>Agar</td>
<td>Agar</td>
</tr>
<tr>
<td>7 g/l</td>
<td>7 g/l</td>
</tr>
</tbody>
</table>

I mezzi di coltura sono stati dispensati in piastre Petri (Ø 6 cm) ed in ognuna di esse sono stati sistemati 5 dischetti di lamina fogliare (Figura 12 e Figura 13).

Le capsule sono state poi sistemate in camera di crescita al buio.

La formazione di callo si è osservata intorno alla superficie di taglio dei dischetti e dopo 15 giorni di crescita si è proceduto all’impostazione della coltura per l’ottenimento di una curva di crescita.
Figura 12: Particolare di induzione di callo indifferenziato su mezzo SC (visibili i contorni dei dischetti di foglia evidenziati con un pennarello)

Figura 13: Particolare di induzione di callo indifferenziato su mezzo ZZ (visibili i contorni dei dischetti di foglia evidenziati con un pennarello)
6.1.2 CURVA DI CRESCITA DEL CALLO INDIFFERENZIATO

Per misurare l’accrescimento della coltura di callo si è scelto di utilizzare la metodologia che definisce la crescita cellulare in base alla variazione del peso fresco e peso secco nel tempo.

Sono state preparate 10 piastre Petri (Ø 6 cm) con 5 pezzetti ciascuna di callo cresciuto nella fase di induzione.

Le porzioni di callo sono state numerate da 1 a 5 in ogni piastra ed ognuna di esse ha avuto un peso fresco di partenza in media di 85 mg.

La variazione del peso fresco, per ognuna delle 5 porzioni di callo per piastra, è stata registrata dopo 7, 14, 21, 28 e 35 giorni a gruppi di due piastre per volta.

Una volta misurato il peso fresco, il materiale vegetale è stato depositato in stufa a 40°C per poterne registrare la variazione del peso secco.

Dai dati ottenuti, calcolando la media dei pesi per ogni piastra, si è realizzata una curva di crescita specifica per ogni substrato per poter confrontare l’effetto dei due mezzi di coltura sulla crescita e in tal modo identificare il substrato migliore.

6.1.3 INDUZIONE DI CALLO RIGENERANTE SU SUBSTRATO AGARIZZATO

I substrati utilizzati per indurre callo rigenerante partendo da dischetti di foglia di dimensione nota (0.5 cm\(^2\)), sono stati due: Ch 0,5 BA e Che (Choffe,2000). Sul mezzo Che sono stati osservati poi gli effetti della presenza o assenza di luce sulla crescita.

La composizione dei due substrati è espressa di seguito.
I mezzi di coltura sono stati dispensati in piastre Petri (Ø 6 cm) (8 ml di substrato in ogni piastra) ed in ognuna di esse sono stati sistemati 5 dischetti di lamina fogliare di dimensione nota (0,5 cm²).

Le capsule con il mezzo Ch 0,5 BA e Che-luce sono state poi sistemate in camera di crescita alla luce 80 μM s⁻¹ m⁻² radiazione fotosinteticamente attiva (PAR); mentre quelle con il mezzo Che-buio al buio.

La formazione di callo si è osservata intorno alla superficie di taglio dei dischetti e dopo 15 giorni si è proceduto all’impostazione della coltura per l’ottenimento di una curva di crescita.

<table>
<thead>
<tr>
<th>Mezzo Ch 0,5 BA</th>
<th>Mezzo Che</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro elementi</td>
<td>Macro elementi</td>
</tr>
<tr>
<td>MS</td>
<td>MS</td>
</tr>
<tr>
<td>100 ml/l</td>
<td>100 ml/l</td>
</tr>
<tr>
<td>Micro elementi</td>
<td>Micro elementi</td>
</tr>
<tr>
<td>MS</td>
<td>MS</td>
</tr>
<tr>
<td>10 ml/l</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Vit B5</td>
<td>Vit B5</td>
</tr>
<tr>
<td>10 ml/l</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Gamborg</td>
<td>Gamborg</td>
</tr>
<tr>
<td>10 ml/l</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Fe MS</td>
<td>Fe MS</td>
</tr>
<tr>
<td>10 ml/l</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>GSH</td>
<td>GSH</td>
</tr>
<tr>
<td>300 mg/l</td>
<td>300 mg/l</td>
</tr>
<tr>
<td>MES</td>
<td>MES</td>
</tr>
<tr>
<td>500 mg/l</td>
<td>500 mg/l</td>
</tr>
<tr>
<td>Saccarosio</td>
<td>Saccarosio</td>
</tr>
<tr>
<td>30 g/l</td>
<td>30 g/l</td>
</tr>
<tr>
<td>BA</td>
<td>BA</td>
</tr>
<tr>
<td>0,5 mg/l</td>
<td>3 mg/l</td>
</tr>
<tr>
<td>IBA</td>
<td>IBA</td>
</tr>
<tr>
<td>0,5 mg/l</td>
<td>0,5 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
</tr>
<tr>
<td>5,8</td>
<td>5,8</td>
</tr>
<tr>
<td>Difco Bacto ®</td>
<td>Difco Bacto ®</td>
</tr>
<tr>
<td>Agar</td>
<td>Agar</td>
</tr>
<tr>
<td>8 g/l</td>
<td>8 g/l</td>
</tr>
</tbody>
</table>

| 59 |
6.1.4 CURVA DI CRESCITA DEL CALLO RIGENERANTE SU SUBSTRATO AGARIZZATO

Sono state preparate 15 piastre Petri (Ø 6 cm) per ogni substrato agarizzato (8 ml di substrato in ogni piastra) con 5 pezzetti ciascuna di callo cresciuto nella fase di induzione.

Le porzioni di callo sono state numerate da 1 a 5 in ogni piastra ed ognuna di esse ha avuto un peso fresco di partenza in media di 85 mg.

La variazione del peso fresco, per ognuna delle 5 porzioni di callo per piastra, è stata registrata dopo 7, 10, 14, 18, 22 e 25 giorni per i mezzi Ch 0,5 BA e Che-luce; mentre dopo 7, 10, 13, 17, 20, 24 giorni per il mezzo Che-buio, a gruppi di tre e due piastre per volta.

Una volta misurato il peso fresco, il materiale vegetale è stato depositato in stufa a 40°C per poterne registrare la variazione del peso secco.

Dai dati ottenuti, calcolando la media del peso per ogni piastra, si è realizzata una curva di crescita specifica per ogni substrato per poter confrontare l’effetto dei due mezzi di coltura sulla crescita e in tal modo identificare il substrato migliore.

6.1.5 INDUZIONE DI CALLO RIGENERANTE SU SUBSTRATO LIQUIDO

Il callo rigenerante ottenuto come descritto precedentemente è stato subculturato su un substrato liquido del tipo Che (avente la stessa composizione del mezzo solido prima utilizzato, ma privo di agar), dispensato in beute da laboratorio “Erlenmayer” da 100 ml chiuse con fogli di alluminio e parafilmate per evitare l’ evaporazione del mezzo.

Ogni beuta è stata riempita con 10 ml di mezzo Che e con un inoculo iniziale di callo pari a 0,52 g e poi è stata sistemata su un agitatore orbitale (IKA® KS 260 basic) alla velocità di 100 rpm in camera di crescita alla temperatura di 25±1°C e alla luce 80 µM s⁻¹ m⁻² radiazione fotosinteticamente attiva (PAR) (Figura 14).

Infine, per valutare anche la crescita senza fitoregolatori sono state preparate beute da 100 ml con 8 ml di mezzo liquido del tipo Ch, ma senza ormoni e con l’aggiunta, dopo l’autoclavazione, di 2 ml di “Coconut water”® (Sigma Aldrich,
Milano) filtrato (20% v/v). Tale substrato è stato denominato Ch-CW e la sua composizione è espressa di seguito.

<table>
<thead>
<tr>
<th>Mezzo Che liquido</th>
<th>Mezzo Ch-CW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro elementi MS</td>
<td>100 ml/l</td>
</tr>
<tr>
<td>Micro elementi MS</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Vit B₅ Gamborg</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Fe MS</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>GSH</td>
<td>300 mg/l</td>
</tr>
<tr>
<td>MES</td>
<td>500 mg/l</td>
</tr>
<tr>
<td>Saccarosio</td>
<td>30 g/l</td>
</tr>
<tr>
<td>BA</td>
<td>3 mg/l</td>
</tr>
<tr>
<td>IBA</td>
<td>0,5 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>5,8</td>
</tr>
<tr>
<td>Macro elementi MS</td>
<td>100 ml/l</td>
</tr>
<tr>
<td>Micro elementi MS</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Vit B₅ Gamborg</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>Fe MS</td>
<td>10 ml/l</td>
</tr>
<tr>
<td>GSH</td>
<td>300 mg/l</td>
</tr>
<tr>
<td>MES</td>
<td>500 mg/l</td>
</tr>
<tr>
<td>Saccarosio</td>
<td>30 g/l</td>
</tr>
<tr>
<td>Coconut-water</td>
<td>20% v/v</td>
</tr>
<tr>
<td>pH</td>
<td>5,8</td>
</tr>
</tbody>
</table>

6.1.6 **SUBCULTURE DEL CALLO RIGENERANTE SU SUBSTRATO LIQUIDO**

Nelle beute, quando la quantità di callo cresciuta sotto forma di aggregati cellulari sferici, non permetteva più un adeguato contatto tra il materiale vegetale e il substrato, si è proceduto alla suddivisione del callo in piccoli pezzi, in modo da consentire anche alla cellule più interne un’opportuna nutrizione ed aerazione.

Il lavoro di subcultura è stato effettuato in condizioni sterili sotto cappa a flusso laminare; i bordi delle beute sono stati prima flambati, poi il loro contenuto è stato versato su filtri da 250 µm fissati su vasi Baby food culture jar® (98.5 x 59 mm) (entrambi precedentemente sterilizzati) in modo da poterne contenere il percolato. Il materiale così filtrato è stato trasferito in nuove beute da 100 ml, facendo attenzione che la quantità di inoculo iniziale fosse sempre quella di 0,52 g/beuta.
Figura 14: Callo rigenerante di *Echinacea angustifolia D.C.* su substrato liquido a) in alto: beute su agitatore orbitale; b) in basso: particolari di beuta con callo rigenerante su substrato liquido.
6.1.7 CURVA DI CRESCITA DEL CALLO RIGENERANTE SU SUBSTRATO LIQUIDO

Per l’impostazione della curva di crescita del callo su mezzo liquido, in presenza e assenza di fitoregolatori, sono state preparate 8 beute da 100 ml con 10 ml di substrato e con un inoculo iniziale di callo pari a 0,52 g per ogni beuta.

La variazione del peso fresco è stata registrata a gruppi di due beute dopo 7, 14, 21, 28 giorni dall’impostazione della coltura sia per il mezzo Che che per quello Ch-CW.

Per poter effettuare la misura del peso fresco, si è lavorato in condizioni asettiche sotto cappa a flusso laminare ed infine, il callo filtrato è stato prima pesato in piastre Petri (Ø 6 cm) sterili e poi depositato in stufa a 40°C per poterne registrare il peso secco.
6.2 ANALISI DI CLOROFILLE, CAROTENOIDI E XANTOFILLE

Per caratterizzare la biomassa ottenuta è stata fatta un’indagine qualitativa preliminare al fine di stabilire quale dei sistemi di coltura adottati e quale dei substrati solidi e liquidi utilizzati, sia in grado di produrre biomassa con un elevato contenuto di sostanze d’interesse per l’industria alimentare e farmaceutica.

Per prima cosa si è proceduto ad analizzare il contenuto di pigmenti come clorofille, carotenoidi e xantofille. I pigmenti sono molecole che contengono un cromoforo, ovvero un gruppo chimico in grado di assorbire luce di una particolare lunghezza d’onda nello spettro del visibile.

- **Clorofilla**: Determina il colore verde delle foglie delle piante dal momento che assorbe nel blu e nel rosso, lasciando così che la lunghezza d’onda intermedia del verde venga riflessa ai nostri occhi.

- **Carotenoidi**: I carotenoidi, tra cui il β-carotene, sono i più importanti pigmenti accessori nella fotosintesi. Assorbono la luce di lunghezze d’onda del blu e del verde e conferiscono le colorazioni gialle, arancio e rosse di organi come foglie, fiori e frutti. La loro funzione principale è quella di assicurare l’assorbimento della luce in ambiti spettrali non adeguatamente coperti dalle clorofille, alle quali poi in parte trasmettono l’eccitazione (Alpi, 2000), ma un’altra funzione degna di nota è quella di proteggere l’apparato fotosintetico dal danno provocato dalle specie reattive dell’ossigeno (fotossidazioni).

- **Xantofille**: Sono carotenoidi contenenti atomi di ossigeno e danno la tipica colorazione bianco-giallastra alle foglie cresciute al buio. Appartengono a questa classe importanti pigmenti come la luteina, violaxantina e la zeaxantina. La composizione in percentuale dei carotenoidi varia in base alle condizioni ambientali e ai fattori di stress, all’interno di determinati ranges: β-carotene 25-40%, luteina 40-57%, violaxantina 9-20% e neoxantina 5-13% (H. K. Lichtenthaler, 1987).

La clorofilla e i carotenoidi sono chimicamente correlati, sono localizzati all’interno dei cloroplasti e si trovano nel citoplasma delle cellule vegetali.
6.2.1 ESTRAZIONE ED ANALISI QUANTITATIVA DI CLOROFILLE CAROTENOIDI E XANTOFILLE

Essendo i pigmenti clorofilla a e b, carotenoidi e xantofille, composti lipofili, la loro estrazione è possibile con l’utilizzo di solventi organici. In questo lavoro si è proceduto alla loro estrazione da espianti di *Echinacea angustifolia* D.C. al termine di un ciclo di coltura *in vitro*.

A tale scopo, i campioni vegetali, prelevati da colture in attiva proliferazione, sono stati prima pesati, poi addizionati di un volume di etanolo al 95% pari a 10 volte il loro peso fresco ed infine incubati per una notte a 4 °C al buio.

Il giorno seguente il materiale vegetale, immerso in etanolo, è stato centrifugato per 5 minuti a 16.000 rpm.

L’analisi quantitativa dei pigmenti contenuti negli estratti di foglie e callo di *Echinacea angustifolia* D.C., cresciuta su differenti substrati di crescita e in differenti condizioni ambientali, è stata effettuata allo spettrofotometro Lambda 35 UV/VIS Spectometer, Perkin Elmer Instruments, Shelton-CT-U.S.A.. Sono state adoperate cuvette in plastica da 1 ml per la lettura alle varie lunghezze d’onda: 664.2 nm. per la clorofilla a, 648.6 nm. per la clorofilla b e 470 nm. per i carotenoidi comprendenti le xantofille.

È stato registrato un assorbimento specifico per ogni campione analizzato. Il contenuto totale dei suddetti pigmenti è stato calcolato come descritto da K. Lichtenthaler, 1987 e la loro concentrazione è stata quindi espressa come mg/g di peso fresco di campione.
6.3 ANALISI DEI PIGMENTI FENOLICI APPARTENENTI ALLA FAMIGLIA DEI FLAVONOIDI

I flavonoidi derivano dalla grande famiglia dei polifenoli, sono dei metaboliti secondari delle piante, principalmente idrosolubili, di solito presenti nella pianta come glicosidi.

Nell’ ambito della famiglia dei flavonoidi è possibile distinguere sei classi principali: flavanoli (ad es. catechina, epicatechina), flavonoli (ad es. quercetina), flavanoni, flavoni, isoflavoni, antocianine. Tra essi solo le antocianine hanno colori significativi, e per questo sono i più diffusi ed importanti pigmenti (Davies et al., 1997).

Le antocianine sono una classe di pigmenti idrosolubili ed il loro colore può variare dal rosso al blu e dipende dal pH del mezzo in cui si trovano e dalla formazione di sali con metalli pesanti presenti in quei tessuti.

La struttura chimica delle antocianine consiste nel tipico scheletro C15 dei flavonoidi in cui i tre anelli (uno cromonico, uno aromatico ed uno eterociclo) sono glicosilati con uno o più zuccheri (glucosio, galattosio e ramnosio) ed acilati con uno o più acidi cinnamici (acido cumarico, ferrulico, malonico o caffeico) attaccati in posizioni specifiche (Salisbury et al., 1992).

Le antocianine private dello zucchero e dei radicali acilici sono chiamate antocianidine (Griesbach, 2005). Le principali antocianidine sono sei, tre delle quali sono comunemente rintracciabili: la pelargonidina, che produce i colori arancio, rosa e rosso; la cianidina, che produce i colori rosso o malva; la delfinidina, che produce i colori porpora, blu o blu scuro (Davies et al., 1997). La più comune glicosilazione nelle piante è quella del C3 dell’antocianidina che avviene in genere ad opera di una o due unità di glucosio o galattosio. A volte poi il residuo zuccherino può essere legato a gruppi acilici tra i quali sono stati identificati gli acidi idrossicinnamici e acidi idrossibenzoici.

Quando sono poste in vitro, le antocianine da sole, non esistendo in una forma colorata stabile (Asen, 1976), formano dei complessi molecolari con sostanze denominate copigmenti (Brouillard et al., 1993 et. Wrolstad Ronald E. et al., 2005).
I copigmenti ricadono in una delle seguenti due classi: i flavonoli (i principali dei quali sono il kempeferolo, la miricetina e la quercitina) ed i flavoni (apigenina, tricetina e luteolina) (Griesbach, 2005).

In questo lavoro di tesi è stata fatta un’analisi quantitativa delle antocianine e dei flavonoli glicosilati, in quanto pigmenti della famiglia dei flavonoidi, composti questi presenti nella specie di interesse.

6.3.1 ESTRAZIONE ED ANALISI QUANTITATIVA DEI FLAVONOLI GLICOSILATI

Il contenuto tali composti è stato determinato secondo il metodo della farmacopea (1989, vedi Miliauskas et al.,2004) usando rutina come riferimento.

Il nostro estratto è stato di 50 mg di tessuto secco in 5 ml di MeOH 80%. Ne è stato prelevato 1 ml e miscelato con 1 ml di AlCl₃ (20 g/l in etanolo) e il volume della soluzione è stato portato a 25 ml.

Dopo 2,5 ore a temperatura ambiente, la lettura dei campioni è stata effettuata a 440 nm e la concentrazione dei flavonoli glicosilati nel campione è stata calcolata dalla curva di taratura ottenuta utilizzando rutina (poiché glicoside flavonoico maggiormente presente in natura) ed è stata espressa come mg di rutina/ g di peso secco del campione.

6.3.2 ESTRAZIONE ED ANALISI QUANTITATIVA DELLE ANTOCIANINE

La produzione di antocianine e la loro estrazione in Echinacea angustifolia D.C. coltivata in vitro, non è riportata dalla letteratura.

Perciò il protocollo di estrazione di questi pigmenti è stato messo a punto in seguito allo studio dei diversi protocolli utilizzati per altre piante coltivate in vitro, come ad esempio per colture cellulari di Ipomea batatas L. (Sweet potato) (Konczak-Islam et al., 2003) o di Ajuga reptans (A. Callebaut et al., 1990 et Smith et al., 2000) o di Perilla frutescens (Zhong J.-J. et al., 1995) o di Vaccinium
L’analisi quantitativa delle antocianine contenute negli estratti metanolici di foglie e callo di *Echinacea angustifolia* D.C., cresciuta su differenti substrati di crescita e in differenti condizioni ambientali, è stata effettuata allo spettrofotometro Lambda 35 UV/VIS Spectometer, Perkin Elmer Instruments, Shelton-CT-U.S.A. e sono state adoperate cuvette al quarzo da 3 ml per la lettura alle varie lunghezze d’onda.

L’estrazione è stata effettuata nel modo seguente: a 50 mg di campione fresco, pesati accuratamente in tubi da 12 e 15 ml, sono stati aggiunti 5 ml di 1,2 M di HCl in 80% MeOH/H$_2$O; il tutto è stato mescolato sul vortex per 1 minuto. I campioni così preparati sono stati poi lasciati al buio a 4°C per una notte ed il giorno dopo, prima di effettuare le analisi, sono stati nuovamente agitati sul vortex per 30 secondi.

La lettura dei campioni è stata effettuata a 535 nm.

Dato che è consuetudine calcolare la quantità totale di antocianine presenti in un campione usando come riferimento l’antocianina più diffusa per quel Genere a cui appartiene la pianta in analisi, non sapendo quale fosse quella in *E.angustifolia* *D.C.*, è stata presa come riferimento la cianidina-3-glucoside dal momento che è l’antocianina maggiormente presente in natura (Wrolstad R.E., et al., 2005).

La concentrazione di antocianine, quindi, è stata calcolata dalla curva di taratura ottenuta utilizzando cianidina-3-glucoside come riferimento ed è stata espressa come mg di equivalenti di cianidina-3-glucoside/g di peso fresco del campione.
6.4 ATTIVITA’ANTIOSSIDANTE DELLA BIOMASSA DI ECHINACEA ANGUSTIFOLIA D.C.

Per antiossidante intendiamo “qualsiasi sostanza che, presente in concentrazione molto bassa rispetto a quella di un substrato ossidabile, è in grado di ritardare o inibire significativamente l’ossidazione di quel substrato” (Halliwell et al., 1989).

6.4.1 ESTRAZIONE ED ANALISI QUANTITATIVA DEGLI ACIDI FENOLICI

Gli acidi fenolici, metaboliti secondari delle piante, caratterizzano il colore, l’aroma e le proprietà nutrizionali e sensoriali di vegetali e bevande. Alcuni acidi fenolici quali caffèico, clorogenico, ferulico, gallico ed ellagico sono considerati sostanze farmacologicamente attive come agenti antiossidanti, antimutageni e anticancerogeni. L’importanza di queste sostanze per la salute e il recente uso di composti fenolici in preparazioni alimentari ed in applicazioni mediche hanno stimolato lo sviluppo di nuove metodiche di analisi (M. Contursi et al., 2005) ed hanno catturato l’interesse dell’industria nutraceutica soprattutto per la loro attività antiossidante, in quanto si crede che introducendo fitonutrienti di questo tipo nella dieta si possa attuare una prevenzione di diverse malattie correlate con gli effetti dannosi di una produzione incontrollata di radicali liberi.

Dalla letteratura emerge che in Echinacea spp. la quantità di composti fenolici negli estratti è correlata alla sua attività antiossidante (Pellati et al., 2004; Miliauskas et al., 2004; Thygesen L. et al., 2007) e che il composto fenolico con proprietà antiossidante maggiormente presente in E. purpurea è l’acido cicorico; mentre in E. angustifolia e E. pallida è l’echinacoside (Pellati et al., 2004), entrambi derivati dell’acido caffèico.

L’analisi quantitativa degli acidi fenolici contenuti negli estratti metanolici dei
campioni è stata effettuata allo spettrofotometro Lambda 35 UV/VIS Spectometer, Perkin Elmer Instruments, Shelton-CT-U.S.A. e sono state adoperate cuvette al quarzo da 3 ml per la lettura alle varie lunghezze d’onda.

L’estrazione è stata effettuata con lo stesso procedimento utilizzato per l’estrazione delle antocianine.

La lettura dei campioni è stata effettuata a 320 nm. La concentrazione di acidi fenolici è stata calcolata dalla curva di taratura ottenuta utilizzando acido caffeico (acido fenolico maggiormente presente nelle piante del Genere Echinacea) ed è stata espressa come mg di acido caffeico/g di peso fresco del campione.

6.4.2 ATTIVITÀ ANTIOSSIDANTE DEGLI ESTRATTI DI ECHINACEA ANGUSTIFOLIA D.C. CONTRO IL RADICALE DPPH•

Nel presente lavoro, la radical scavenging activity degli estratti metanoloci di materiale vegetale di E. angustifolia D.C. ottenuta in vitro, è stata valutata contro il radicale DPPH• (2,2-diphenyl-1-picrylhydrazyl), così come riportato dalla letteratura anche per altre specie vegetali (W. Brand-Williams et al., 1995; Takahata et al., 2001; Liu et al., 2004; Pellati et al., 2004; G. Miliauskas et al., 2004; Sung-Sook Chun et al., 2005; Lucrecia L. Chaillou et al., 2006; Thygesen L. et al., 2007; Chiou Antonia et al., 2007) ed in particolare, è stato seguito il metodo riportato da Pellati et al., 2004 in quanto applicato ad Echinacea spp.

Nella sua forma radicalica, il DPPH• ha un picco di assorbimento a 517 nm che diminuisce nel momento in cui avviene la sua riduzione da parte di un composto antiossidante o di altri radicali (W. Brand-Williams et al., 1995).
DPPH• + AH → DPPH-H + A•
DPPH• + R• → DPPH-R

dove AH = antiossidante e R• = radicali

Quando il DPPH• reagisce con un composto antiossidante, che può cedergli un atomo di idrogeno, si riduce e cambia di colore, ovvero dal violetto della soluzione di radicale non ridotto passa al giallo pallido della soluzione di radicale ridotto.

6.4.3 ESTRAZIONE DEI CAMPIONI

Per l’estrazione è stato utilizzato materiale vegetale seccato in stufa a 40°C. A 50 mg di campione secco finemente macinato sono stati aggiunti 2,5 ml di MeOH 80%, ed il tutto è stato messo al buio a temperatura ambiente ed agitato per 15 minuti.

Successivamente il materiale è stato centrifugato a 4000 rpm per 10 minuti ed è stato prelevato il sovranatante. L’estrazione sul pellet è stata ripetuta aggiungendo 2,5 ml di MeOH 80%. E’ stata preparata una soluzione 1 mM di DPPH• in MeOH 80% (es: 8 mg in 20 ml di MetOH 80%) ed è stata mantenuta al buio a 4°C.

6.4.4 CALCOLO DELL’ATTIVITA’ ANTIOSSIDANTE

L’attività antiossidante è stata valutata sulla base di una curva della cinetica di decadimento della concentrazione del DPPH• a seguito della reazione avvenuta con i composti antiossidanti presenti nell’estratto.

L’attività antiossidante è stata espressa come la quantità di antiossidante (mg di tessuto secco) necessaria per diminuire la concentrazione iniziale del DPPH• del 50% (EC\textsubscript{50} = Efficient Concentration).

I valori di EC\textsubscript{50} sono stati determinati dopo un tempo di reazione di 20 minuti. Tale tempo corrisponde ai minuti necessari per raggiungere lo stato stazionario nella curva della cinetica di decadimento della concentrazione del DPPH• (chiamata anche curva del time scan).
6.4.5 PROCEDURA PER REALIZZARE LA CURVA DELLA CINETICA DI DECADIMENTO DELLA CONCENTRAZIONE DEL DPPH•

Si è andato a vedere come al variare del tempo il DPPH• si riduce a contatto con concentrazioni note di estratto dei tessuti di *Echinacea angustifolia D.C.* cresciuti *in vitro* nelle diverse condizioni (Figura 15).

In particolare è stato azzerato lo strumento (spettrofotometro Lambda 35 UV/VIS Spectometer, Perkin Elmer Instruments, Shelton-CT-U.S.A.) a 517 nm con un “bianco” di riferimento composto da MetOH 80% e successivamente con un “bianco” composto dal campione in MetOH 80%, per eliminare le interferenze dovute alle altre componenti dell’estratto. A quest’ultimo subito dopo sono stati aggiunti 300 µl di DPPH•.

Il time scan è stato eseguito sulle diluizioni degli estratti, ottenute aggiungendo 300 µl di DPPH• e variando la quantità di MeOH 80%, in modo da ottenere sempre un volume finale di 3 ml.

![Figura 15: Esempio di curva della cinetica di decadimento del DPPH• (detta anche curva del time scan) per il campione di callo cresciuto su substrato solido Che alla luce. E’ ben visibile il raggiungimento del plateau a 20 minuti per estratti di *Echinacea angustifolia D.C.* cresciuta *in vitro.*](image)

Successivamente le letture di tutti i campioni sono state fatte utilizzando la diluizione ottimale (quella che ha dato la migliore curva della cinetica di decadimento del DPPH•) ed un tempo di lettura a 20 minuti.

72
6.4.6 **ANALISI STATISTICA**

Tutte le analisi sono state effettuate prelevando i campioni tra la seconda e la terza settimana di coltura, perché, come emerge dalla letteratura, la sintesi di metaboliti secondari non è associata alla crescita, ovvero si verifica quando la cellula rallenta o cessa la sua attività di divisione e quindi quando si riduce il suo metabolismo primario (Berardi, 1991).

L’analisi statistica si è avvalsa del Software Graph Pad ® 4.0 (Graph Pad Software Inc., U.S.A.).

Negli esperimenti riguardanti la valutazione della crescita i dati sono stati riportati nei grafici come media + Errore Standard (ES) calcolato su 5 valori. Ogni esperimento è stato validato almeno due volte per validare i risultati.

I dati relativi alle analisi spettrofotometriche sono stati sottoposti ad ANOVA ad una via (p≤ 0,05) e le medie sono state confrontate utilizzando i test di Tukey.
7 RISULTATI E DISCUSSIONE

7.1 INDUZIONE DI CALLO INDIFFERENZIATO E CURVE DI CRESCITA

Partendo da dischetti di lamina fogliare di dimensione nota (0,5 cm2) provenienti da piantine di *E. angustifolia* D.C. cresciuta in vitro su un substrato agarizzato denominato LS BA/2 (mezzo base LS mezza forza con l’aggiunta di 0,25 mg/l BA) (Figura 12 e Figura 13), è stata osservata l’induzione del callo al buio su due substrati differenti denominati SC (sali MS, vitamine B$_5$ Gamborg e con l’aggiunta di 2 mg/l BA e 2 mg/l NAA; B) Particolare di callo indifferenziato cresciuto 2 settimane su substrato agarizzato ZZ contenente 0,4 mg/l BA, 0,1 mg/l IBA, 0,3 mg/l GA e 0,5 mg/l 2,4-D.

Dopo 2 settimane di coltura, si è osservato che è possibile indurre callo su entrambi i substrati (A), ma il callo sul substrato ZZ non ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha presentato una crescita evidente, anzi, spesso è andato incontro a necrosi ed ha...
presentato fenomeni di inquinamento. Al contrario, il callo sul mezzo SC ha presentato un notevole grado di proliferazione cellulare (è ben visibile la crescita rispetto alle dimensioni iniziali evidenziate con un pennarello) e si è presentato di colore verde pallido, di consistenza friabile e facilmente subculturabile.

Per queste ragioni si è preferito portare avanti la coltura sul mezzo SC e per una maggiore caratterizzazione si è proceduto all’impostazione della coltura per l’ottenimento di una curva di crescita ().

![Graph 1: Growth curve expressed as fresh weight of undifferentiated callus on solid SC substrate](image1)

![Graph 2: Growth curve expressed as dry weight of undifferentiated callus on solid SC substrate](image2)

Figura 18: Curva di crescita espressa come peso fresco e secco del callo indifferenziato sul substrato SC contenente 2 mg/BA e 2 mg/l NAA. I dati riportati sono valori medi + ES.
Per misurare l’accrescimento della coltura di callo si è scelto di utilizzare la metodologia che definisce la crescita cellulare in base alla variazione del peso fresco e secco nel tempo.

Dai risultati ottenuti () è emerso che, sia per il peso fresco che per il peso secco, il callo su tale substrato è in grado di crescere con una fase iniziale di latenza prolungata fino alla seconda settimana a cui segue un aumento della crescita (di circa tre volte superiore il peso iniziale) tra la seconda e terza settimana, che prosegue in maniera costante fino alla quinta settimana di coltura.

Da questi risultati emerge che il substrato ZZ, che si era rivelato efficace per l’induzione di callo in E. angustifolia D.C., al fine di isolare protoplasti (Zhu Liqing et al., 2005), nel caso delle foglie della stessa specie presa in esame nel seguente lavoro, non ha avuto la stessa efficacia. Al contrario, il substrato SC (Bolta et. al., 2000 et Kintzios et al., 1999), sebbene messo a punto per la coltura in vitro di Salvia officinalis L., ha dato buoni risultati anche per l’iduzione di callo in Echinacea angustifolia D.C..

7.2 INDUZIONE CALLO RIGENERANTE SU SUBSTRATO AGARIZZATO E CURVE DI CRESCITA

Vista l’importanza medicinale di tale pianta, poiché dalla letteratura emerge che in molti casi la produzione di metaboliti secondari è strettamente associata al grado di differenziazione dei tessuti, si è voluto indagare l’induzione di callo su substrati agarizzati contenenti sostanze citochininiche come BA in grado di indurre processi di differenziazione nei tessuti (Collin, 2001).

A tale scopo è stato usato inizialmente un substrato denominato Che (contenente BA 3 mg/l e IBA 0,5 mg/l) e si è voluto vedere la risposta dei tessuti fogliari della pianta in assenza e presenza di luce. Dopo una fase di induzione, le colture di callo sono state caratterizzate con curve di crescita realizzate in base alla variazione del peso fresco e secco nel tempo. Dapprima si è voluto osservare la risposta del tessuto fogliare in assenza di luce. Il callo cresciuto al buio si presentava di colore giallastro, molto spesso con evidenti segni di necrosi e cresceva poco. I risultati emersi dalla curva di crescita hanno confermato ciò, evidenziando come sia il peso
fresco che secco del callo cresciuto al buio non hanno avuto alcun incremento nell’arco dei 25 giorni di coltura ().

Figura 19: Curva di crescita, espressa come peso fresco e secco del callo cresciuto al buio su substrato agarizzato Che contenente 3 mg/l BA e 0,5 mg/l IBA. Nella figura sono riportati i valori medi + ES.
Successivamente, è stata osservata la risposta del tessuto in presenza di luce.

Come si può osservare dalla figura, la presenza di luce ha favorito un’induzione di callo di colore verde con la presenza di alcuni spots viola (individuati come probabili focus di differenziazione), e la presenza dei fitoregolatori, BA (3 mg/l) e IBA (0,5 mg/l), ha indotto un processo di rigenerazione ben visibile. Inoltre la consistenza friabile del callo ne ha permesso una facile subcultura.

In accordo con le osservazioni di Choffe et al., 2000, effettuate su E. purpurea, anche in E. angustifolia in fase di rigenerazione si possono osservare tre modalità di differenziazione: i germogli si differenziano a partire dal callo oppure direttamente dalle superfici di taglio oppure dalla nervatura centrale delle foglie.

L’aggiunta di un’auxina (IBA) alla dose indicata non ha condotto gli espianti alla formazione di radici organogenetiche, come invece è stato osservato da Choffe et al., 2000.

Invece, in accordo con lo stesso autore, che ha osservato la rigenerazione sia su porzioni foglia che di stelo fiorale, la presenza di una citochinina (BA) alla dose di 3 mg/l ha prodotto un effetto rigenerante. Quindi è possibile affermare che la rigenerazione di neo germogli è un fenomeno citochinino-dipendente.
Inoltre, per valutare l’andamento della crescita del callo in rigenerazione in condizioni di luce e quindi confrontarla con quella avuta al buio, sono state messe a punto curve di crescita per il peso fresco e secco e i risultati ottenuti sono mostrati in .

Figura 21: Curva di crescita, espressa come peso fresco e secco del callo cresciuto alla luce su substrato agarizzato Che contenente 3 mg/l BA e 0,5 mg/l IBA. Nella figura sono riportati i valori medi + ES.
Da tale figura si può osservare come la curva del peso fresco presenta una fase di latenza nella prima settimana di coltura a cui segue una lenta progressione della crescita, fino al raggiungimento del plateau nella terza settimana. Sul peso secco l'andamento è il medesimo e si è verificato un aumento circa 3 volte superiore alla biomassa iniziale nel punto di plateau.

Quindi l’induzione di callo rigenerante è possibile sia alla luce che al buio; mentre la crescita, a parità di mezzo, è di gran lunga migliore alla luce.

Poiché lo scopo del seguente lavoro di tesi prevede di trovare un sistema colturale che consenta una buona produzione di metaboliti secondari con un ridotto apporto di fitoregolatori, si è voluto osservare l’induzione e crescita di callo rigenerante su un substrato solido uguale per composizione minerale al Che, ma privo di IBA e con una concentrazione ridotta di BA (0,5 mg/l). Tale mezzo di coltura è stato denominato Ch 0,5 BA. Inoltre, essendo risultate le condizioni di luce migliori per la crescita del callo, si è deciso di operare mantenendole tali.

L’induzione di callo su tale mezzo è visibile nella , dalla quale emerge come gli espianti (pezzi di foglia di 0,5 cm2) abbiano presentato una spicata iperidricità accompagnata dalla formazione di callo basale verde e con spots viola da cui si sono originati nuovi germogli a partire dalla nervatura centrale e dalla superficie di taglio della foglia stessa.

La presenza di neoformazioni apicali sul callo ha confermato che la rigenerazione è un fenomeno citochinino-dipendente e suggerisce come i tessuti fogliari di queste piante siano altamente rigenerativi e richiedano solo una bassa quantità di BA per iniziare le cellule all’organogenesi.
La coltura su tale substrato (Ch 0,5 BA) è stata quindi caratterizzata tramite la realizzazione di curve di crescita dalli quali è emerso che la biomassa è aumentata notevolmente nel corso della coltura. Infatti, dalla curva del peso fresco emerge come la crescita inizi velocemente sin dalla prima settimana fino a raggiungere un palteau tra la seconda e terza settimana (aumento di circa tre volte la biomassa iniziale) mentenendosi in fase stazionaria fino alla fine della coltura. La curva del peso secco ha dimostrato un andamento abbastanza simile con un incremento della biomassa iniziale di circa 6 volte al 18° giorno di coltura.

In definitiva il callo rigenerante è cresciuto maggiormente sul substrato con minore dose di BA.
Figura 23: Curva di crescita, espressa come peso fresco e secco del callo cresciuto alla luce su substrato agarizzato Ch 0,5 BA contenente 0,5 mg/l BA. Nella figura sono riportati i valori medi ± ES.
7.3 CALLO RIGENERANTE SU SUBSTRATO LIQUIDO E CURVE DI CRESCITA

Avendo ottenuto dei buoni risultati relativi l’induzione e la crescita di callo rigenerante (ovvero masse di cellule in attiva crescita che presentano dei centri di differenziazione con apici vegetativi e primordi fogliari) su substrati solidi, si è voluto indagare se fosse possibile ottenere un buon sviluppo di biomassa coltivando il callo in substrato non agarizzato, realizzando colture liquide che maggiormente si prestano ad una possibile applicazione industriale per l’estrazione dei principi attivi.

A tal proposito il callo indotto sul mezzo solido del tipo Che è stato subculturato su un substrato liquido avente la stessa composizione, ma privo di agar, (denominato Che liquido) dispensato in beute da laboratorio sistemate su piattaforme a movimento orbitale.

Poiché il callo di partenza si presentava come una massa di cellule aggregate in evidente stato di differenziazione, non è stato possibile ottenere da questo materiale delle vere e proprie sospensioni di singole cellule. Infatti, il callo in coltura liquida si è presentato sottoforma di aggregati cellulari sferici di colore verde intenso con spots viola e poco friabile, ma non per questo inadatto alle successive subculture (Figura 14). Inoltre, quando nelle beute la quantità di callo cresciuta non permetteva più un adeguato contatto tra il materiale vegetale e il substrato, si è proceduto alla sua suddivisione in piccoli pezzi, in modo da consentire anche alle cellule più interne una opportuna nutrizione ed aereazione.

Infatti, la produttività delle colture su substrato liquido è anche influenzata dal fatto che le masse cellulari crescono sottoforma di aggregati sferici e quindi lo scarso contatto delle cellule più interne con il mezzo di coltura e con la luce ostacola l’attività metabolica (J. E. Meyer et al., 2002).

L’andamento della crescita è possibile osservarlo dalle curve costruite in base alla variazione del peso fresco e secco nel tempo, visibili nella.

Da esse è ben evidente come la crescita in substrato liquido sia circa 4 volte maggiore rispetto a quella ottenuta sullo stesso substrato solido. Tale risultato potrebbe essere giustificato dal fatto che la presenza di agar rende difficile
l’assorbimento dei nutrienti da parte del tessuto; infatti lo stato liquido del substrato facilita gli scambi gassosi e nutritivi tra le cellule e il mezzo di coltura; mentre l’agitazione ne consente l’areazione e previene i fenomeni di aggregazione cellulare (Berardi, 1991).

Inoltre, il peso fresco e secco aumentano gradualmente sin dalla prima settimana di coltura (per il peso fresco si passa da una media di 520 mg al t₀ e si arriva ad una media di 1088 mg al t₂₁; mentre per il peso secco si passa da una media di 37 mg e si arriva ad una media di 85 mg al t₂₁), per poi mantenenersi costanti solo tra la terza e quarta settimana.

Essendo lo scopo del seguente lavoro quello di realizzare dei sistemi di coltura in vitro che possano essere strumento preliminare per una possibile applicazione industriale della produzione di biomassa di Echinacea angustifolia D.C., e considerando l’importanza nutraceutica dei principi attivi contenuti in questa specie, visti i risultati positivi della crescita del callo su un substrato liquido, si è cercato di mettere a punto anche un sistema colturale che prevedesse l’uso alternativo di sostanze naturali come il latte di cocco.

A tal proposito è stato messo a punto un substrato denominato Ch-CW avente la stessa composizione del mezzo Che liquido, ma contenente latte di cocco al posto dei fitoregolatori.

Anche per il callo cresciuto su tale substrato sono state realizzate curve di crescita considerando la variazione del peso fresco e secco nel tempo.

Dalla si può osservare come la crescita del callo in presenza di latte di cocco sia rapida sin dall’inizio della coltura fino alla seconda settimana, dopo la quale si mantiene in uno stadio stazionario. Per quanto riguarda la crescita in peso fresco è stato registrato un aumento di circa 10 volte quello iniziale. La curva del peso secco ha avuto un andamento simile.
Figura 24: Curva di crescita in peso fresco e secco del callo cresciuto alla luce su substrato liquido Che contenente 3 mg/l BA e 0,5 mg/l IBA. Nella figura sono riportati i valori medi + ES.
Figura 25: Curva di crescita, per peso fresco e secco del callo cresciuto alla luce su substrato liquido Ch-CW contenente latte di cocco. Nella figura sono riportati i valori medi ± ES.
Dalle curve di crescita è possibile osservare come il substrato con il latte di cocco favorisca un maggiore accrescimento della biomassa rispetto al substrato Che liquido.

Questo dato è perfettamente in accordo con quanto riportato dalla letteratura, che afferma come questa sostanza nutriente abbia un’azione citochinina-simile e quindi sia in grado di stimolare la crescita cellulare.

Infatti, il latte di cocco è ricco in zucchero, lipidi, proteine, vitamine e sali minerali (Nutrition Data) ed è da tempo conosciuto e usato come stimolante della crescita cellulare nella coltura in vitro di diverse specie (sia per stimolare lo sviluppo di plantule micropropagate sia per migliorare la crescita di calli e la produzione di metaboliti secondari), sebbene inizialmente non si avesse conoscenza dei componenti responsabili di tale azione (Kaith Roger Brain et al., 1976, Xi-Yu Cheng et al., 2005).

Tuttavia, dalle recenti analisi, effettuate da Lia Ge et al., tramite LC- MS/MS (Liquid Cromatography-tandem Mass Spectrometry) per l’individuazione e quantificazione della kinetina nel latte di cocco (Liya Ge et al., 2005) e quelle tramite SPE (Solid Phase Extraction) e CZE-MS/MS (Capillary Zone Electrophoresis-tandem Mass Spectrometry) per la separazione e determinazione delle citochinine presenti nel latte di cocco (Lia Ge et al., 2006), è emersa la presenza di kinetina e zeatina (trans-Zeatin riboside 5’-monofosfato), ovvero di due citochinine.

Quindi questi risultati indicano che sul substrato Ch-CW contenente latte di cocco si può ottenere una cospicua crescita del callo di E.angustifolia D.C., che costituisce un presupposto fondamentale per una possibile applicazione industriale per la produzione di biomassa attraverso il minimo apporto di fitoregolatori.
7.4 ANALISI QUANTITATIVA DI CLOROFILLE, CAROTENOIDI E XANTOFILLE

L’analisi quantitativa dei pigmenti contenuti negli estratti di callo di *Echinacea angustifolia* D.C., cresciuto su differenti substrati di crescita e in differenti condizioni ambientali, è stata effettuata spettrofotometricamente come riporato nel capitolo “Materiali e metodi”.

I dati ottenuti indicano un maggior contenuto di clorofilla per il callo cresciuto sul substrato del tipo Che sia solido che liquido e per quello cresciuto sul substrato liquido in presenza di latte di cocco. Infatti questi due mezzi sono quelli con il più alto contenuto di sostanze citochininiche (3 mg/l BA e latte di cocco) le quali non solo sono in grado di stimolare la divisione cellulare, ma anche di inibire la degradazione della clorofilla in presenza di luce (Ferrante et al., 2003).

Il callo cresciuto al buio sul substrato SC, invece, ha mostrato avere il più basso contenuto di clorofilla. Tale risultato può essere dovuto al fatto che tali pigmenti, in accordo con H.K. Lichtenthaler, 1987, sono presenti nelle cellule fotosinteticamente attive di piante esposte alla luce; mentre in condizioni di buio la loro concentrazione è molto più bassa.

Gli stessi risultati si sono avuti anche per la concentrazione dei carotenoidi, e ciò conferma la sintesi di composti fotosintetici in tessuti coltivati *in vitro*.

In definitiva si può affermare che questa analisi ha dimostrato che la biomassa di *E. angustifolia* ottenuta su substrati con elevato tasso di sostanze citochininiche, presenta un significativo contenuto di pigmenti che conferma il maggior grado di differenziazione di questi tessuti.
Figura 26: Contenuto di clorofilla e carotenoidi per il callo di *E. angustifolia* cresciuto in vitro su differenti substrati di crescita: SC solido (2 mg/l BA e 2 mg/NAA), Che solido e liquido (3 mg/l BA e 0,5 mg/l IBA), Ch 0,5 BA solido (0,5 mg/l BA) e Ch-CW liquido (20% v/v di latte di cocco). Le lettere differenti indicano differenze statisticamente significative tra i valori delle medie (ANOVA ad una via, p≤ 0,05).
7.5 ANALISI DEI PIGMENTI FENOLICI APPARTENENTI ALLA FAMIGLIA DEI FLAVONOIDI

Nel presente lavoro di tesi è stata fatta un’indagine quantitativa preliminare sul contenuto di antocianine e flavonoli glicosilati, in quanto sono pigmenti molto diffusi in natura, con proprietà antiossidanti riconosciute e per questo di grande interesse per l’industria alimentare e farmaceutica. Inoltre, poiché l’accumulo di tali composti è già visibile ad occhio nudo (per il colore viola delle parti vegetali che li contengono), la loro biosintesi è riportata come sistema modello per la produzione di metaboliti secondari nelle colture in vitro (Konczak-Islam et al., 2003).

La loro concentrazione è stata espressa, per le antocianine come mg di ciandina-3-glucoside/g di peso fresco del campione, e per i flavonoli glicosilati come mg di rutina/ g di peso secco; dal momento che questi composti di riferimento sono quelli maggiormente presenti in natura.

I risultati ottenuti sono stati riportati nelle . Da queste emerge che il callo contenente la maggiore concentrazione di antocianine è quello cresciuto sul substrato solido Che alla luce, mentre quello avente la più bassa concentrazione è quello cresciuto sul substrato solido SC al buio. Questo non fa altro che confermare le analisi visive effettuate sul materiale fresco in coltura, le quali hanno riportato un callo cresciuto al buio di colore crema; mentre quello alla luce di colore verde con alcune aree (spots) colorate di viola, indice appunto della presenza di pigmenti antocianici. Tale fenomeno è stato riportato anche da Callebaut et al., 1990 per le colture cellulari di Ajuga reptans, le quali al buio non avevano riportato la presenza di composti antocianici.

La maggior presenza di antocianine riscontrata nel mezzo Che conferma quanto sostenuto da alcuni autori, secondo cui la combinazione di citochinine e auxine (nel mezzo Che sono presenti BA come citochinina e IBA come auxina) promuove il fenomeno di differenziazione su callo di Echinacea spp. che spesso si manifesta con la presenza di punti scuri sul callo di colore viola che non sono altro che punti di origine di futuri germogli e quindi punti dove è maggiore l’attività metabolica (Coker et al., 2000, Koroch et al., 2002).
I calli cresciuti sui substrati liquidi non hanno differito significativamente tra loro ed hanno mostrato una concentrazione intermedia di antocianine.

Anche per quanto riguarda la concentrazione di flavonoli glicosilati il callo che ha mostrato avere la maggiore concentrazione è stato quello cresciuto sul Che solido, probabilmente perché i flavonoli fungono anche da copigmenti; ovvero stabilizzano la struttura delle antocianine (Brouillard et al., 1993, Griesbach, 2005) e come detto sopra, la combinazione auxina-citochinina ne favorisce il loro accumulo.

Ha dato buoni risultati anche la biomassa cresciuta sul substrato liquido Che, invece, il minore contenuto di flavonoli glicosilati è stato registrato per il substrato solido SC e per quello liquido Ch-CW con l’aggiunta di latte di cocco.

Il fatto che per le colture liquide non si sia avuta la più alta concentrazione di tali pigmenti potrebbe essere spiegato dalla diversa condizione di aereazione in cui si trovavano le cellule. È stato infatti riportato da alcuni autori, che la produzione di metaboliti può essere influenzata dal livello di ossigeno disponibile per la coltura (Schlatmann et al., 1992, Meyer et al., 2002).

In definitiva il callo che ha riportato la più alta concentrazione di questi pigmenti fenolici è stato quello cresciuto sul substrato solido del tipo Che. Tale callo può essere quindi definito come una biomassa costituita in parte da cellule parenchimatiche tipiche del tessuto calloso, in parte da cellule pigmentate, le quali costituiscono dei centri meristematici di differenziazione talora con evidente presenza di strutture differenziate (apici, primordi fogliari).
Figura 27: Contenuto di antocianine e flavonoli glicosilati per il callo di *E. angustifolia* cresciuto *in vitro* su differenti substrati di crescita: SC solido (2 mg/l BA e 2 mg/NAA), Che solido e liquido (3 mg/l BA e 0,5 mg/l IBA), Ch 0,5 BA solido (0,5 mg/l BA) e Ch-CW liquido (20% v/v di latte di cocco). Le lettere differenti indicano differenze statisticamente significative tra i valori delle medie (ANOVA ad una via, p ≤ 0,05).
7.6 ATTIVITA’ANTIOSSIDANTE DELLA BIOMASSA DI ECHINACEA ANGUSTIFOLIA D.C.

Essendo gli acidi fenolici, come ad esempio l’acido caffeico (uno dei principali principi attivi dell’ E.angustifolia D.C.), composti antiossidanti naturali, le analisi per valutare l’attività antiossidante della biomassa di E.angustifolia, sono state finalizzate alla determinazione della loro concentrazione nei campioni cresciuti su differenti substrati di crescita e in differenti condizioni ambientali.

Inoltre è stata valutata l’attività antiossidante degli estratti metanoloci di materiale vegetale di E. angustifolia D.C. ottenuta in vitro, contro il radicale DPPH• (2,2-diphenyl-1-picrylhydrazyl) ed infine è stata fatta una correlazione lineare tra essa e la concentrazione di acidi fenolici.

Secondo quanto riportato da Hudec Jozef et al., 2007, l’attività antiossidante dei composti fenolici dipende da diversi fattori: il grado di ossidazione e glicosilazione, la concentrazione, le condizioni di coltura del materiale vegetale. Ad esempio la sostituzione dell’anello aromatico degli acidi fenolici in posizione orto e para promuove l’efficacia antiossidante del composto, poiché la formazione di strutture di risonanza porta ad aumentare la stabilità del composto una volta che reagisce con il radicale (ad esempio l’acido caffeico ha due gruppi diidrossifenilici in posizione orto). Più grande è il numero di gruppi idrossilici legati all’anello aromatico e maggiore è l’attività antiossidante. Infatti per Echinacea spp. è stata dedotta, una scala in ordine decrescente dei principi attivi in base alla loro attività antiossidante contro il DPPH• espressa come EC$_{50}$: echinacoside> acido cicorico> cinarina> acido clorogenico> acido caffeico> acido caftarico (Pellati et al., 2004).

In questo lavoro la concentrazione di acidi fenolici è stata espressa come mg di acido caffeico/g di peso fresco del campione e dall’analisi quantitativa degli acidi fenolici () è emerso che il callo che ha dato i migliori risultati è quello cresciuto sul substrato liquido Ch-CW e su quello solido Ch 0,5 BA; mentre quelli che hanno riportato valori più bassi sono stati quelli cresciuti su substrato Che sia solido che liquido (al contrario di quanto verificatosi per la concentrazione di pigmenti) e su substrato SC; probabilmente perché la presenza di elevate concentrazioni di
sostanze citochininiche e la contemporanea presenza di auxine (in SC: NAA; in Che: IBA) non hanno avuto una buona influenza sulla sintesi di questi composti.

L’attività antiossidante, invece, è stata espressa come la quantità di antiossidante (mg di tessuto secco) necessaria per diminuire la concentrazione iniziale del DPPH• del 50% (EC₅₀ = Efficient Concentration).

I risultati ottenuti, visibili dalla , vanno interpretati considerando che minore è il peso secco di campione richiesto per ridurre la concentrazione iniziale del DPPH• del 50%, maggiore è la sua attività antiossidante.

Dalla figura emerge che il callo avente la maggiore attività antiossidante è quello cresciuto sul substrato liquido Ch-CW, seguito dal mezzo solido Ch 0,5 BA contenente una dose minore di citochinine rispetto agli altri substrati.

Tale risultato può essere spiegato con quanto sostenuto da Xi-Yu Cheng et al., 2005, ovvero che il latte di cocco agisce come agente stimolante per la sintesi di
composti fenolici (ad esempio, come riportato dall’autore, di PeGs -phenylethanoid glycosides- che sono i principali composti antiossidanti presenti in *Cistanche deserticola* Y.C.), durante la crescita cellulare *in vitro*.

Inoltre in accordo con quanto riportato da Gorinstein S. et al., 2004 su frutti di pompelmo, anche per gli estratti di *E.angustifolia* D.C., è emersa una correlazione significativa tra il contenuto di acidi fenolici nei tessuti esaminati e l’ attività antiossidante presente negli estratti (Figura 16).

In definitiva il sistema colturale in assenza di fitoregolatori di sintesi ha dimostrato una buona efficacia antiossidante e ciò potrebbe essere considerato un ulteriore vantaggio per una possibile applicazione industriale in campo alimentare e nuraceutico.
Infatti l’apporto di composti antiossidanti attraverso alimenti o preparati fitoterapici potrebbe essere molto più efficace ed economica rispetto all’uso individuale di composti antiossidanti come ad esempio l’acido ascorbico o l’α-tocoferolo, per proteggere il corpo umano dai pericolosi stress ossidativi.

Figura 16: Correlazione lineare tra il contenuto di acidi fenolici e l’attività antiossidante espressa come EC_{50} (ovvero come i mg di tessuto secco di campione necessari per ridurre la concentrazione iniziale del DPPH• del 50%) del callo di *E.angustifolia* cresciuto *in vitro* su differenti substrati di crescita: SC solido (2 mg/l BA e 2 mg/NAA), Che solido e liquido (3 mg/l BA e 0,5 mg/l IBA), Ch 0,5 BA solido (0,5 mg/l BA) e Ch-CW liquido (20% v/v di latte di cocco).
8 CONCLUSIONE

L’Echinacea angustifolia D.C. ha assunto negli ultimi anni un’importanza crescente, dovuta al grande interesse manifestato dal mercato per le applicazioni in campo erboristico e farmacologico.

Tale pianta medicinale infatti, è coltivata principalmente per la presenza di derivati dell’acido cafféico, alchilammidi, flavonoidi e polisaccaridi nella droga, che è costituita in prevalenza da radici e rizomi. Tali composti presentano una comprovata attività immunostimolante, antibatterica, antimicotica, antivirale, antinfiammatoria ed antiossidante.

Il lavoro di tesi è stato finalizzato al raggiungimento di un protocollo di produzione di biomassa in vitro della pianta medicinale Echinacea angustifolia D.C.. In particolare, gli sforzi sono stati volti all’ottenimento di una maggiore produzione di callo (ovvero masse di cellule in attiva crescita che presentano dei centri di differenziazione con apici vegetativi e primordi fogliari) su diversi mezzi di crescita (solidi e liquidi), in diverse condizioni ambientali (luce e buio) e in presenza e di fitoregolatori di sintesi o di sostanze naturali (latte di cocco).

Inoltre, dagli esperimenti eseguiti è emerso che colture di callo in rigenerazione sono idonee alla realizzazione di colture liquide per l’estrazione di principi attivi.

Si è quindi avviato un sistema di coltura in substrati liquidi osservando l’andamento della crescita del callo nelle diverse condizioni testate.

Tenendo anche in considerazione che i principi attivi presenti in questa specie sono di interesse nutraceutico, si è cercato di mettere a punto anche un sistema colturale che prevedesse l’utilizzo minimo di fitoregolatori e l’uso alternativo di sostanze naturali come il latte di cocco.
Infine, la biomassa ottenuta in vitro è stata caratterizzata eseguendo un’indagine qualitativa preliminare sul contenuto in clorofilla, carotenoidi, antocianine, flavonoli e acidi fenolici, ed è stata effettuata una valutazione dell’attività antiossidante degli estratti al fine di stabilire quale dei sistemi di coltura adottati e quale dei substrati agarizzati e liquidi utilizzati, sia in grado di produrre biomassa con un elevato contenuto di sostanze con tale proprietà, d’interesse per l’industria alimentare e farmaceutica.

E’ stato possibile infatti, partendo da porzioni di lamina fogliare, ottenere callo attraverso l’induzione di proliferazione di cellule indifferenziate su un substrato SC composto da: macro e micro elementi MS (Murashige & Schoog,1962), vitamine B₅ Gamborg (Gamborg, 1968), 2 mg/l BA (6-bezylaminopurine) e 2 mg/l NAA (1-naphthaleneacetic acid) al buio. L’uso del substrato Ch 0,5 BA composto da: macro e micro elementi MS, vitamine B₅ Gamborg, 0,5 mg/l BA ha indotto un processo di differenziazione nei tessuti, messo in luce prima dalla comparsa di aree pigmentate e successivamente di apici e primordi fogliari visibili. Queste colture sono cresciute attivamente soprattutto in presenza di luce dando origine ad una biomassa superiore al callo indifferenziato cresciuto sul substrato SC.

Dalle curve di crescita delle colture su substrato liquido (Che) in agitazione (sistema chiuso di coltura cellulare in cui le masse di tessuto ed il substrato sono stati rinnovati ogni tre settimane) è emerso che si ha una crescita maggiore rispetto ai mezzi solidi ed in particolare l’aggiunta di latte di cocco (substrato Ch-CW composto da: macro e micro elementi MS, vitamine B₅ Gamborg, 20% v/v latte di cocco) ha indotto un’accelerazione e un aumento della crescita cellulare. Questo dato è perfettamente in accordo con quanto riportato dalla letteratura, che afferma come questa sostanza nutriente abbia un’azione citochinina-simile e quindi sia in grado di stimolare la crescita cellulare.

I risultati ottenuti hanno quindi dimostrato che il latte di cocco può essere utilizzato come alternativa all’uso dei fitoregolatori di sintesi.

Dalle analisi eseguite sul materiale vegetale coltivato in vitro è emerso che il callo cresciuto sul mezzo SC, non mostrando alcun grado di differenziazione, ha in
generale un basso contenuto di pigmenti (clorofilla, carotenoidi, antocianine); mentre quello ottenuto su substrati con elevato tasso di sostanze citochininiche: Che solido (composto da: macro e micro elementi MS, vitamine B₅ Gamborg, 3 mg/l BA e 0,5 mg/l IBA) e liquido (stessa composizione del precedente, ma privo di agar), presenta un significativo contenuto di pigmenti che conferma il maggior grado di differenziazione di questi tessuti.

Dall’analisi quantitativa preliminare degli acidi fenolici è emerso che il callo che ha dato i migliori risultati è quello cresciuto sul substrato liquido Ch-CW e su quello solido Ch 0,5 BA contenenti solo citochinine. Quelli che hanno riportato valori più bassi sono stati quelli cresciuti su substrato Che sia solido che liquido (al contrario di quanto verificatosi per la concentrazione di pigmenti) e su substrato SC.

Dai risultati è emerso infine che il callo avente la maggiore attività antiossidante è quello cresciuto sul substrato liquido Ch-CW, seguito dal mezzo solido Ch 0,5 BA contenente una dose minore di citochinine rispetto agli altri substrati. Infatti secondo alcuni autori (Xi-Yu Cheng et al., 2005), il latte di cocco agisce come agente stimolante per la sintesi di composti fenolici durante la crescita cellulare in vitro.

Infine, dai campioni analizzati è emersa una correlazione significativa tra il contenuto di acidi fenolici e l’attività antiossidante.

In definitiva è stato possibile realizzare dei sistemi di coltura liquida di biomasse rigeneranti che hanno mostrato buone potenzialità come strumenti per la produzione dei metaboliti secondari.

Concludendo, nonostante il protocollo di produzione di biomassa messo a punto in questo lavoro di tesi, necessiti ancora di verifiche per quanto riguarda la presenza dei singoli principi attivi caratteristici di questa specie, il sistema colturale in assenza di fitoregolatori di sintesi (Ch-CW) ha dimostrato di dare origine ad una biomassa con una buona efficacia antiossidante.

Ciò potrebbe essere considerato un utile presupposto per una possibile applicazione industriale in campo alimentare e nuraceutico. Infatti l’apporto di composti antiossidanti attraverso alimenti o preparati fitoterapici potrebbe essere
molto più efficace ed economica rispetto all’uso individuale di composti antiossidanti come ad esempio l’acido ascorbico o l’α-tocoferolo, per proteggere il corpo umano dai pericolosi stress ossidativi.
9 BIBLIOGRAFIA

Contursi M., Colonna C., Casella I.G., 2005: “Determinazione di acidi fenolici mediante cromatografia liquida e rivelazione amperometrica. Applicazioni in matrici alimentari”, Atti del Congresso XIX Congresso di Chimica Analitica, 11 - 15 Settembre 2005. Università degli Studi di Cagliari, Centro Polaris, Pula (Sardegna);
Dornenburg H, Knorr D. , 1997: “Challenges and opportunities for metabolite production from plant cell and tissue cultures”. Food Technol. 51:47, 48, 50-52, 54;

http://it.wikipedia.org/wiki/Carotenoidi;

http://plants.usda.gov;

Hudec Jozef, Maria Burdova, L’Ubomír Kobida, Ladislav Komora, Vendelin Macho, Grigorij Kogan, Ivan Turianica, Radka Kochanova, Otto Lozek, Miroslav Harbán and Peter Chlebo, 2007: “Antioxidant capacity Changes and phenolic profile of Echinacea purpurea, Nettle (Urtica dioica L.), and Dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators”, J. of Agricultural and Food Chemistry, page est 7.4, A-G;

Keith Roger Brain and George Brian Lockwood, 1976: “Hormonal control of steroid levels in tissue cultures from Trigonella foenumgraecum”, Phytochemistry, 15: 1651-1654;
Kintzios A. Nikolaou · M. Skoula, 1999: “Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticosa leaf callus cultures”, Plant Cell Reports, 18: 462-466;
Kumar A., 1992: “Somatic embryogenesis and high frequency plantlet regeneration in callus cultures of Thevetia peruviana”. Plant Cell Tissue and Organ Culture 51:47-50;
Lercari B., Bertram L., 1997: “Photomorphogenic response to UV radiation IV: A comparative study of UVB effects on growths and pigment accumulation in etiolated and de-etiolated hypocotyls of wild-type and aurea mutant of tomato (Lycopersicon esculentum Mill.)”. Plant Biosystems, 131, 83-92;
Linsmaier E.M. e Skoog F., 1965: Physiol. Plantarum, 18, 100;

Liya Ge, Jean Wan Hong Yong, Swee Ngin Tan, Xin Hao Yang, Eng Shi Ong, 2006: “Analysis of cytokinin nucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry after solid-phase extraction”, Journal of Chromatography A, 1133: 322-331;

Maffei M., 1999: “Metabolismo e Prodotti secondari delle Piante”, Utet Università;

- Minghetti, 2003: “Colture cellulari di origine vegetale”, Natural 1, Marzo 2003;
- Pellati F., Benvenuti S., Magro L., Melegari M., Soragni F., 2004: “Analysis of phenolic compounds and radical scavenging activity of Echinacea spp.”, Journal of Pharmaceutical and Biomedical Analysis, 35, 289-301;
- Pietta P., 2005: “Frutta e verdure: non solo vitamine, minerali e fibra...”, UNAPROA, Verona 2005 (www.unaproa.com);

www.farmacovigilanza.org/fitovigilanza/corsi/echinacea.htm;

www.henriette'sherbal.com;

www.iblio.org/pfaf/cgi-bin/arr-html?Echinacea+angustifolia;

www.lifegate.it/salute;

www.nutritiondata.com;
