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Abstract When using machine learning techniques for learning a function ap-
proximation from given data it is often a difficult task to select the
right modeling technique. In many real-world settings is no preliminary
knowledge about the objective function available. Then it might be
beneficial if the algorithm could learn all models by itself and select the
model that suits best to the problem. This approach is known as auto-
mated model selection. In this work we propose a generalization of this
approach. It combines the predictions of several into one more accurate
ensemble surrogate model. This approach is studied in a fundamental
way, by first evaluating minimalistic ensembles of only two surrogate
models in detail and then proceeding to ensembles with three and more
surrogate models. The results show to what extent combinations of
models can perform better than single surrogate models and provides
insights into the scalability and robustness of the approach. The study
focuses on multi-modal functions topologies, which are important in
surrogate-assisted global optimization.

Keywords: Function Approximation, Surrogate Models, Model Selection, Ensemble
Methods, Global Optimization

1. Introduction

Surrogate models are mathematical functions that, basing on a sam-
ple of known function values, approximate the behavior of the original
function, while being cheaper in terms of evaluation. In the field of
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optimization on expensive objective functions it is state of the art to
use surrogate models to get an idea of the objective function landscape
with lesser evaluations of the objective function. Expert systems like
SPOT [1] come with a large variety of models that has to be chosen
from when initiating an optimization process. The choice of the right
model determines the quality of the the optimization process.
Often expert knowledge is needed to decide which model to select for a
given problem. If there is no preliminary knowledge about the objective
function it might be beneficial if the algorithm could learn all by itself
which model suits best to the problem. This can be done by evaluat-
ing different models on test data a priori and using a statistical model
selection approach to select the most promising model.
Some occurrences imply that there might also be a benefit in linearly
combining predictors from several models into a more accurate predic-
tor. In Fig. 1 such an occurrence is happening. Predictions with two
different (Kriging) models are shown and results obtained by a convex
combination of the predictors of these models. Different errors seem to
be compensated by the combined model’s predictions.
Such occurrences indicate that a predictor based on a single modeling
approach is not always the best choice. On the other hand, complicated
expressions based on multiple predictors might not be a good choice,
either, due to overfitting and lack of transparency. Using convex combi-
nations of predictors from available models seems to be a ‘smart’ com-
promise. Given surrogate models ŷi : Rd → R, i = 1, . . . , s, by a convex
combination of models we understand a model given by

∑s
i=1 αiŷ with∑

αi = 1 and αi ≥ 0, i = 1, . . . , s. Finding an optimal convex combi-
nation of models can be viewed as a generalization of model selection.
The selection of a single model is a special case with only one positive
coefficient and the other coefficients zero.
This paper investigates the idea of using convex combinations of pre-
dictions of different models (model mixtures) to gain a more accurate
predictions. Focusing on the predictions rather than implementation
specialties when combing models gives us the ability to combine models
without further considering the type of the model, making the approach
very flexible. The main research questions are:
(Q-1) Can convex combinations of predictors improve as compared to

(single) model selection?
(Q-2) Given the answer is positive, what are explanations of the ob-

served behavior?
(Q-3) How can a system be build that finds the optimal convex combi-

nation of predictions on training data?
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Figure 1: The black line marks the actual objective function value. The dots show
the results obtained in a leave-one-out cross-validation. Blue and red dots mark the
predictions of single models. The green dots shows predictions obtained with an
optimal linear combination of the two predictors.

In order to answer these questions, detailed empirical studies are con-
ducted, starting from simple examples and advancing to more complex
ones. To improve readability, this paper follows a non-standard struc-
ture, where the discussion of experimental results follows directly the
introduction of the modeling extensions.
The paper is structured as follows: Section 2 discusses the general ap-
proach and related work. Section 3 provides technical preliminaries for
the subsequent experiments. Section 4 introduces the idea of model mix-
tures and explores binary model mixtures. Section 5 provides a more
detailed analysis of binary model mixtures. Section 6 extends the anal-
ysis to ternary model mixtures, and Section 7 provides first results and
techniques for enabling mixtures of a larger number of models. Section
8 discusses the main results and future research directions.
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2. General Approach and Related Work

To base a decision or build a prediction from multiple opinions is common
practice in our everyday live. It happens in a democratic government,
or when in TV shows the audience is asked for help. One also might
use it when we try to build an opinion on a topic that is new to us.
Naturally, such tools already found their way into statistical prediction
and machine learning.
In statistics and machine learning an ensemble is a prediction model from
several prediction models. A comprehensive introduction to ensemble-
based approaches in decision making is given in [6] and [4]. Gener-
ally, there are two groups of ensemble approaches: the first group’s ap-
proaches, the so-called single-evaluation approaches, only choose and
build one single model, whereas the second group’s approaches, the so-
called multi-evaluation approaches, build all models, and use the derived
information to decide which output to use. For each of these two ap-
proaches, several model selection strategies can be implemented. Well-
known strategies are:

Round robin and randomized choosing are the most simplistic im-
plementations of ensemble-based strategies. In the former approach,
the models are chosen in a circular order independent of their previ-
ously achieved gain. In the latter approach, the model to be used in
each step is selected randomly from the list of available models. The
previous success of the model is not a decision factor.
Greedy strategies choose the model that provided the best function
value so far, while the SoftMax strategy uses a probability vector,
where each element represents the probability for a corresponding
model to be chosen [8]. The probability vector is updated depending
on the reward received for the chosen models.
Ranking strategies try to combine the responses of all meta models to
one response, where all meta models contributed to, rather than to
choose one response.
Bagging combines results from randomly generated training sets and
can also be used in function approximation, whereas
Boosting combines several weak learners to a strong one in a stochastic
setting.
Weighted averaging approaches do not choose a specific model’s result
but rather combine it by averaging. Since bad models should not
deteriorate the overall result, a weighting scheme is introduced. Every
model’s result for a single design point is weighted by its overall error,
the sum over all models yields the final value assigned to the design
point. In stacking, several trained models are combined and trained
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again by a stacking algorithm. A typical example of a successful
weighted average model are Random Forests [3].

Convex combinations of surrogate models used in this paper can be
viewed as a special case of weighted averaging models, albeit we propose
here global optimization instead of re-training for finding the best convex
combination of models. Moreover, the analysis in this paper aims for
transparent presentation of results using mixture analysis and focuses on
multimodal function approximation, which is an important application
in surrogate-assisted global optimization.

3. Preliminaries

3.1 Surrogate Models

By a surrogate model, we will understand here a function ŷ : Rd → R
that is an approximation to the original function y : Rd → R, and
learned from a finite set of evaluations of the original function. A typical
application of surrogate models is to provide a fast approximations of
functions that are expensive to evaluate, for instance functions based
on costly computer simulations. Kriging surrogate models were used in
our study. A set of three different kernels was used to implement the
ensemble strategies. Following the definitions from [7], the correlation
models can be described as follows. We consider stationary correlations
of the form

R(θ, w, x) =

n∏
j=1

R(θj , wj − xj).

The first model uses the exponential kernel

R(θ, w, x) = exp(−θj |wj − xj |),

the second model uses an gaussian kernel

R(θ, w, x) = exp(−θj |wj − xj |2),

whereas the third model is based on the spline correlation function
R(θ, w, x) = ζ(θj |wj − xj ]) with

ζ(εj) =

{ 1− 15ε2j + 30ε3j for 0 ≤ ε ≤ 0.2

1.25(1− εj)3 for 0.2 < εj < 1
0 for εj ≥ 1.

The variables ε and θ are hyperparameters estimated by likelihood max-
imization.
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Table 1: Gaussian landscape generator options

Parameter Description Value
n Dimension 2 - 10
m Number of peaks 10 - 40
l Lower bounds of the region, where peaks are

generated
{0; 0}

u Upper bounds of the region, where peaks are
generated

{5; 5}

max Max function value 100
t Ratio between global and local optima 0.8

3.2 Objective Functions

For generating test functions we used the Max-Set of Gaussian Land-
scape Generator (MSG) [5], which can be used to set up problem in-
stances for continuous, bound-constrained optimization problems. It
uses the maximum of m weighted Gaussian functions

G(x) = max
i∈1,2,...,m

(wigi(x)),

where g : Rn → R denotes an n-dimensional Gaussian function

g(x) =

(
exp

(
−1

2(x− µ)Σ−1(x− µ)T
)

(2π)n/2|Σ|1/2

)1/n

,

µ is an n-dimensional vector of means, and Σ is an (n × n) covariance
matrix. The mean of each Gaussian corresponds to an optimum on the
landscape and the location of all optima is known. The global optimum
is the one with the largest value. For the generation of the objective
function the spotGlgCreate method of the SPOT package has been used.
Implementation details are presented in [2]. The options used for our
experiments are shown in Table 1. With the parameter n the dimension
of the objective function is specified. The lower and upper bounds (l
and u, respectively) specify the region where the peaks are generated.
The value max specifies the function value of the global optimum, while
the maximum function value of all other peaks is limited by t, the ratio
between the global and the local optima.

4. Binary Ensembles

This Section analyses models which combine only two models. Convex
combinations of models will be referred to as ensemble models, while the
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original models will be referred to as base models. We focus on positive
weights, since we do not want to select models that make predictions
which are anti-correlated with the results.
A sample of points (design) is evaluated on the objective function (MSG,
for parameters see Table 1). For the sampling of the points a latin
hypercube design featuring 40 design points is generated. The two base
models are Kriging with exponential correlation function (referred to
as a) and gaussian correlation function (referred to as b). Both base
models are fitted to the data and then asked to do a prediction on the
testdata. The predictions ŷ of the ensemble models are calculated as
linear combinations of the predictions of the base models.
Given a weight αi, where αi ∈ {0.0, 0.1, 0.2, ..., 0.9, 1.0}, the ensemble
models can be defined as the linear combinations of the models a and b
as follows:

ŷn = αn × ŷa + (1− αn)× ŷb (1)

The models are evaluated by calculating the root mean squared error
(RMSE) of the predictions made during a leave-one-out cross-validation
on the 40 design points.
Since randomness has been induced into the experiment by using the
Latin hypercube design, the evaluation process has been repeated 50
times. With each model returning one prediction for each design point
in every repetition this results in a total of 2, 000 prediction values (40
design points × 50 repetitions) for each model.

To get a first quick insight into the result data, for each repetition the
rankings of the RMSE’s have been calculated. The models with α = 0.6,
α = 0.8 and α = 0.9 dominate this comparison, each performing best 8
out of 50 times. The base models, a and b, performed best only in four
respectively two cases out of 50. Never an ensemble model with positive
weights was performing worst.
In order to achieve some comparability between the RMSE’s of differ-
ent repetitions all RMSE’s have been repetition-wise scaled to values
between zero and one, so that the scaled RMSE of the best model in
one repetition is always zero and the scaled RMSE of the worst model
for one repetition is always 1.0. Figure 2 shows the boxplot over these
scaled RMSE’s. It can be seen that the model a (exponential) in most of
the cases performs worst since its median value is one, only some outliers
come closer to zero.
Model b (Gaussian) shows a larger variation in its performance. It has
been the best- as well as the worst performing model each at least once.
Its median and mean performances are average in comparison with all
models evaluated.
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Figure 2: Boxplot over the scaled RMSE’s of all models. The models are defined
by an α-weighted linear combination of the two base models. The results of the base
models depicted on the outer rows and colored red (exponential kernel), respectively
blue (Gaussian kernel). All linear combinations are drawn in between. The model
combination chosen as best with α = 0.6 is colored green. The mean value of each
result bar is marked by a dot.

A parabolic tendency can be seen in the performances. This indicates
that a linear combinations of the models are indeed beneficial. Due to
the convex combination of the predictor, a prediction by the ensemble
model cannot be worse but it might be better than both base models.
An ensemble can only be better, if one model overestimates and the
other model underestimates the original function value. In the experi-
ment this happens in 649 out of 2000 cases.

As a consistent method for evaluating the performance and automatically
choosing the best model the following approach is proposed: Model-wise
mean-, median- and 3rd quartile-values are calculated. The resulting
values are ranked and the rankings summed up to one final ranking.
The model that achieved the lowest value is recommended as best choice.
In Figure 2 the model recommended as best choice by this method is
colored green.

5. Detailed Analysis on Transparent Test Cases

It can clearly be stated that for this first experiment setup the combina-
tion of two models is beneficial for the overall prediction. In this section
we’re going to have a closer look at possible explanations for the success-
ful result. Are there problem features that encourage using ensembles
and is this result generalizable?
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5.1 2D Experiment Setup and Analysis

The nature of the combination method we used suggests, that the use of
an ensemble built by linear combination is beneficial in cases when one
of the base models underestimates the objective function value while the
other overestimates it.
Figure 3 depicts additional results on the experiment setup carried out
in Sec. 4. The boxplot in the middle on the left column is the already
known one. The contour plot in the upper left shows the objective

Figure 3: Additional results on the experiment carried out in Sec. 4. The contour
plots show the actual objective function and the fits of the colored models at the best
choice’s mean performance. In the lower left the predictions ŷ are plotted against the
actual function values y.

function while the contour-plots in the right column show the fits of the
base models and the best choice model. Since during the experiment
each model has been fitted 50 times, the fits shown here relate to the
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Figure 4: Results on a 1D objective function. The boxplot shows the scaled RMSE’s
of the models over the experiments 50 repetitions. The α value defines the weight for
the linear combination. The ensemble obtained by a linear combination with α = 0.7,
here colored green, is suggested best for this experiment setup. On the right hand
side all predictions done during the leave-one-out cross validation for the base models
and the best model are plotted against the objective function.

repetition where the best choice model showed it’s mean performance. In
these plots the white dots mark the points of the design used to evaluate
the models fits. Variations in these plots are visible, but the benefit of
the ensemble model remains invisible.
The plot in the lower left shows results in more detail. Here the pre-
dictions ŷ are plotted against the actual function values y. The black
line marks the objective function values y. Only predictions ŷ for the
same parameter set (x1, x2), where the predictions ŷ of the base models
span the function value y, are plotted with full opacity. Prediction sets,
where both base models either over- or underestimated the actual func-
tion value are drawn only with a light opacity. In this experiment 649
out of 2000 prediction sets span the actual objective function value.

5.2 1D Experiment Setup and Analysis

Since the 2D experiment setup from Sec. 4 does not allow for an easy
analysis of the results, the experiment has been redone on a 1D objective
function to allow for a better understanding of the underlying process.
The only change in the experimental setup that has been made is the
dimension of the underlying objective function, which has been set to 1.
The main results of this second experiment setup are depicted in Figure
4. The boxplot on the left hand side shows the scaled RMSE’s for all
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Figure 5: Results on a triangle objective function. Left hand side plot shows the
scaled RMSE‘s. The α value defines the weight for the linear combination. Here the
base model b (α = 1.0) is chosen best. On the right hand side all predictions done
during the leave-one-out cross validation for the base models and the best model are
plotted against the objective function. Since model b has been chosen best it is colored
green.

models. Applying the rule defined in Sec. 4 names the model obtained
by a linear combination with α = 0.7 as the best choice. The plot on
the right hand side shows only the performance of the best choice model
and the base models. Each dot marks a single prediction. As can be
seen in the plot, the predictions of the model a (exponential), marked
by red dots,seem to smooth the objective function - straight segments
are well met while curved segments are smoothed out.
The predictions of the model b (gaussian), marked by the blue dots show
signs of overfitting. Again straight segments are well met but when ap-
proaching local extrema the predictions start to oscillate. So the linear
combination of both predictions averages positive as well as negative
outliers of base models. This seems to provide some benefit to the over-
all experiment outcome.

Since the curves and corners in the objective function seem to make the
game here, two additional experiments are set up. For these experiments
two functions are specified featuring corners that are not continuous
differentiable. For one experiment a triangle function is used for another
a piecewise assembled function. Whereas looking at the results on the
piecewise assembled function we again find a strong parabolic tendency
in the boxplot. Both base models have a rather large variance in their
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performance. The ensemble model marked as best choice has a smaller
variance and performed better than the base models in nearly all cases.

Figure 6: Results on a piecewise assembled objective function. Left hand side plot
shows the scaled RMSE‘s. The α value defines the weight for the linear combination.
The ensemble obtained by a linear combination with α = 0.5, here colored green, is
suggested best for this experiment setup. On the right hand side all predictions done
during the leave-one-out cross validation for the base models and the best model are
plotted against the objective function.

Figures 5 and 6 show the results of these experiments. Looking at the
experiment results featuring the triangle objective function, the boxplot
shows a clear tendency towards base model b and in both plots only the
results of two models are colored. Here base models b clearly outper-
formed all other models und thus was chosen best.

6. Ternary Ensembles

Next, the experiments are extended to a larger scale: The dimension-
ality of the objective function is increased and three base models are
combined. As before Kriging models with different kernels are used, but
now a third model using the spline correlation function is added.

αn, βn, γn ∈ {0.0, 0.1, 0.2, ..., 0.9, 1.0}, αn + βn + γn = 1 (2)

For the linear combination of three base models three weights are needed,
that sum up to one as specified in (2). With a step size of 0.1 for the
linear combinations this results in 66 models.
Figure 7 shows the results of the first experiment using three base mod-
els. The only change that has been made to the original experiment
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Figure 7: The plot shows the results of the experiment set up with three base models.
Each circle depicts the performance results for one model . The three base models
are located on the corners of the triangle, models gained by linear combinations of
only two models are located on the outer border. Circles on the inner area of the area
show the results for models that were gained by linear combinations of all three base
models. The size of the circles denotes the mean RMSE value, the color the standard
deviation. The model proposed as best choice is marked by an additional white circle.

setup, besides the number of base models, is the dimension n of the ob-
jective function and the number of peaks m generated in the Gaussian
landscape. As a first step towards objective functions of higher com-
plexity, the dimension of the objective function has been set to 4. But
this change alone is not sufficient to gain a larger complexity, since with-
out adjusting the number of Gaussian components used for generating
the objective function, it rather gets less complex. Thus the number of
Gaussians used has been adjusted to ten times the Dimension. With
the points getting smaller when approaching the center of the triangle,
it can be stated, that again it is beneficial to do a linear combination of
the base models.
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7. Scaling-up to Multiple Models

Up to this point only experiments with up to three models have been
carried out, but the underlying goal is to evolve a system that is able
to handle quite a large set of available base models. But at this point
quickly another approach is needed, since the number of possible linear
combinations between a higher number of base models grows exponen-
tially.

f(s, n) = 1 +

s−1∑
s∗=1

f(s− s∗, n− 1), f(s, 1) = 1, f(1, n) = n (3)

The relation between number of models, the step width for the linear
combinations and the resulting number of linear combinations can be
expressed as function of s the reciprocal of the step width and n the
number of models as defined in (3). Using three base models and a step
width of 0.1 as defined in (2) this results in f(10, 3) = 66 linear combina-
tions that have to be taken account of. Now thinking of combinations of
10 base models already results in f(10, 10) = 92378 linear combinations.
The complexity of the search space, when increasing the number of mod-
els, quickly gets too large to do a complete evaluation of all possible
linear combination with a fixed step width of 0.1. Keeping in mind that,
looking at previous results, the function that describes the performance
of the models built by linear combinations up to this point only showed
unimodal characteristics, which seems to be expectable due to its nature.
We expect the function to show this characteristic also when combining
larger number of models.
Thus at this point, instead of a complete evaluation of all linear com-
binations, an optimization step has been implemented to find the best
combination. The allowed weights have been restricted to a precision of
two decimal places. Since the area around the optimum tends to build
a plateau, this reduces the possible search space without pruning the
possible best solution. In behalf of comparability, the experiment setup
here is exactly the same as the one used in Sec. 6. Only the process itself
changed. Beforehand all possible linear combinations have been evalu-
ated. Now, only the base models have been evaluated, all other models
were only evaluated during the evolutionary process. We also stuck to
the method used by the (1+1)-ES of comparing the offspring only to the
parent rather than to the whole population as we did it before.
For the mutation of the weights vector ~v = (α, β, γ)T three random
samples of a normal distribution function with standard deviation of
0.16 have been drawn and added to the weights vector. Since this alone
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Figure 8: The plot shows the results of the same experiment setup as presented
in Sec. 6. The optimal linear combination has been searched with a simple (1+1)-
Evolution Strategy with 1/5th success rule. Again, each circle depicts the performance
results for one model. The three base models are located on the corners of the triangle,
models gained by linear combinations of only two models are located on the outer
border. Circles on the inner area of the area show the results for models that were
gained by linear combinations of all three base models. The size of the circles denotes
the mean RMSE value, the color the standard deviation. The model proposed as best
choice is marked by an additional white circle.

does not meet the requirements needed for a valid weights vector, the
resulting vector has been adjusted in 3 steps:

1) If min(α, β, γ) < 0 then ~v := ~v−min(α, β, γ),
2) ~v := ~v/(α+ β + γ),
3) Round the values α, β, γ to two decimal places so, that α+β+γ = 1.

For this experiment we allowed a maximum of 100 individuals to be
evaluated. Within these bounds already the 35th individual evaluated
has been the best individual found in this run. Figure 8 depicts the
results of this optimization step. As before, the best individual is marked
by a white circle.
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8. Discussion and Outlook

Reconsidering the research questions from Sec. 1, we can state that lin-
ear combinations of predictors can generate better results than model
selection (Q-1). A system, which finds optimal linear combinations, was
presented in Sec. 4. The corresponding experiments were extended to a
larger scale in Sec. 6. The results from these experiments further sup-
port our statement, that combination of models leads to better results.
Finally, in Sec. 7, we proposed a method to include even more base
models to the system. For the same experiment setup as used before, a
solution of comparable performance quality has been found, with even
lesser number of ensemble model evaluations. With this method the
foundation has been created for a larger system including all available
models.
Although research question (Q-3) could be answered positively, a com-
plete answer to question (Q-2) could not be given in this study. Ex-
planations of the observed behavior require further research. Ideas and
questions that were not investigated so far include:

Experiments featuring more base models, also including other types
of models.
Extensive analysis of the influence of objective function attributes on
the experiment outcome. The results of Sec. 5.2 suggest, that partic-
ularly piecewise assembled functions might be of special interest.
Studies also allowing other operations than simple linear combinations
only.
Conception of a procedure that includes our method of ensemble
building into an sequential optimization process.

Summarizing, this preliminary study presents valuable and new findings
in the field of ensemble-based modeling. We developed a smart and sim-
ple strategy strategy for combining different modeling approaches. It
uses a (linear) combination of the predicted values and is easily appli-
cable in many modeling situations where several models are available.
Especially, if the user does not know, which model to choose, a linear
combination might be a promising approach. The weights in the lin-
ear model can shed some light on the relevance of certain models and
illustrate, which model is active. Ternary plots (as shown in Figure 7)
can be used to illustrate the progress of the optimization process. How-
ever, since determination of optimal weights in the linear model is a
non-linear optimization problem, we cannot guarantee the optimality of
the proposed weights. All in all, this experimental study presents some
important findings about the behavior of an ensemble-based approach
that defines an interesting direction of research.
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[5] M. Gallagher and B. Yuan. A general-purpose tunable landscape generator. IEEE
Trans. Evolutionary Computation, 10(5):590–603, 2006.

[6] R. Polikar. Ensemble based systems in decision making. Circuits and Systems
Magazine, IEEE, 6(3):21–45, 2006.

[7] J. S. Søren N. Lophaven, Hans Bruun Nielsen. Dace - a matlab kriging toolbox.
Technical report, Technical University of Denmark, 2002.

[8] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998.



	

	

CIplus 
Band 4/2016 
 
 

Building Ensembles of Surrogate Models by 
Optimal Convex Combination 
 
 
 
 
Martina Friese 
Thomas Bartz-Beielstein 
Technische Hochschule Köln 
 
Michael Emmerich 
LIACS, Leiden University 
 

März 2016 
 
 
 
 
 
 
 
 
 
 

 

 

Die Verantwortung für den Inhalt dieser  
Veröffentlichung liegt bei den Autoren. 


	Frie16a
	frie16aSchriftenreiheVorlage

