
Schriftenreihe CIplus, Band 3/2012

Thomas Bartz-Beielstein, Wolfgang Konen, Horst Stenzel, Boris Naujoks

Beyond Particular Problem
Instances: How to Create
Meaningful and Generalizable
Results
Thomas Bartz-Beielstein

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TH Köln (Technische Hochschule Köln)

https://core.ac.uk/display/146896856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Beyond Particular Problem Instances: How to
Create Meaningful and Generalizable Results

Thomas Bartz-Beielstein

www.spotseven.de

Faculty for Computer and Engineering Sciences
Cologne University of Applied Sciences,

51643 Gummersbach, Germany
Schriftenreihe CIplus

TR 3/2012. ISSN 2194-2870

Abstract. Computational intelligence methods have gained importance
in several real-world domains such as process optimization, system iden-
tification, data mining, or statistical quality control. Tools are missing,
which determine the applicability of computational intelligence methods
in these application domains in an objective manner. Statistics provide
methods for comparing algorithms on certain data sets. In the past, sev-
eral test suites were presented and considered as state of the art. How-
ever, there are several drawbacks of these test suites, namely: (i) problem
instances are somehow artificial and have no direct link to real-world set-
tings; (ii) since there is a fixed number of test instances, algorithms can
be fitted or tuned to this specific and very limited set of test functions;
(iii) statistical tools for comparisons of several algorithms on several test
problem instances are relatively complex and not easily to analyze. We
propose a methodology to overcome these difficulties. It is based on stan-
dard ideas from statistics: analysis of variance and its extension to mixed
models. This paper combines essential ideas from two approaches: prob-
lem generation and statistical analysis of computer experiments.

1 Introduction

Computational intelligence (CI) methods have gained importance in several real-
world domains such as process optimization, system identification, data mining,
or statistical quality control. Tools are missing, which determine the applicability
of CI methods in these application domains in an objective manner. Statistics
provide methods for comparing algorithms on certain data sets. In the past,
several test suites were presented and considered as state of the art. However,
there are several drawbacks of these test suites, namely:
– problem instances are somehow artificial and have no direct link to real-world

settings;
– since there is a fixed number of test instances, algorithms can be fitted or

tuned to this specific and very limited set of test functions. As a consequence,
studies (benchmarks) provide insight how these algorithms perform on this
specific set of test instances, but no insight on how they perform in general;

Beyond Particular Problem Instances 3

– statistical tools for comparisons of several algorithms on several test problem
instances are relatively complex and not easily to analyze.

We propose a methodology to overcome these difficulties. It is based on ideas
presented in Marco Chiarandini’s and Yuri Goegebeur’s seminal publication [10].
This methodology, which generates problem classes rather than use one instance,
is constructed as follows. First, we pre-process the underlying real-world data.
In a second step, features from these data are extracted. This extraction relies
on the assumption that mathematical variables can be used to represent real-
world features. Since we are using time-series data, standard tools from time-
series analysis are applicable. For example, decomposition techniques can be
applied to model the underlying data structures. We obtain an analytic model of
the data. Then, we parametrize this model. Based on this parametrization and
randomization, we can generate infinitely many new problem instances. From
this infinite set, we can draw a limited number of problem instances which will
be used for the comparison. Since problem instances are selected randomly, we
apply random and mixed models for the analysis [14]. Mixed models include fixed
and random effects. A fixed effect is an unknown constant. Its estimation from
the data is a common practice in analysis of variance (ANOVA) or regression.
A random effect is a random variable. We are estimating the parameters that
describe its distribution, because—in contrast to fixed effects—it makes no sense
to estimate the random effect itself.

We will present data used in case studies from drinking water management,
energy production, and finance. These examples cover several application do-
mains and illustrates that our approach is not limited to one specific problem
instance only. Further problem domains can be added in an generic manner. This
article combines ideas from two approaches: problem generation and statistical
analysis of computer experiments. The generation of test problems, which are
well-founded and have practical relevance, is an on-going field of research for
several decades. [13] present a problem instance (landscape) generator that is
parameterized by a small number of parameters, and the values of these param-
eters have a direct and intuitive interpretation in terms of the geometric features
of the landscapes that they produce. The work presented by Chiarandini and
Goegebeur [10] provides the basis of our statistical analysis. They present a sys-
tematic and well-developed framework for mixed models. We will combine this
framework with ideas presented in [5]. Basically, this articler tries to find answers
for the following fundamental questions in experimental research.

(Q-1) How to generate problem instances?
(Q-2) How to generalize experimental results?

The article is structured as follows. Section 2 introduces real-world problems
and describes a taxonomy of their typical features. Algorithms and typical fea-
tures are described in Sect. 3. Objective functions and statistical models are
introduced in Sect. 4. These models take problem and algorithm features into
consideration. Section 5 presents case studies, which illustrate our methodology.
This article closes with a summary and an outlook.

4 T.Bartz-Beielstein

2 Features of Real-World Problems

2.1 Problem Classes and Instances

Nowadays, it is a common practice in optimization to choose a fixed set of prob-
lem instances in advance and to apply classical ANOVA or regression analysis.
In many experimental studies a few problem instances πi (i = 1, 2, . . . , q) are
used and results of some runs of the algorithms αj (j = 1, 2, . . . , h) on these in-
stances are collected. The instances can be treated as blocks and all algorithms
are run on each single instance. Results are grouped per instance πi. Analyses of
these experiments shed some light on the performance of the algorithms on those
specific instances. However, the interest of the researcher should not be just the
performance of the algorithms on those specific instances chosen, but rather on
the generalization of the results to the entire class Π. Generalizations about the
algorithm’s performance on new problem instances are difficult or impossible in
this setting.

Based on ideas from Chiarandini and Goegebeur [10], to overcome this dif-
ficulty, we propose the following approach: A small set of problem instances
{πi ∈ Π|i = 1, 2, . . . , q} is chosen at random from a large set, or class Π, of pos-
sible instances of the problem. Problem instances are considered as factor levels.
However, this factor is of a different nature from the fixed algorithmic factors in
the classical ANOVA setting. Indeed, the levels are chosen at random and the
interest is not in these specific levels but in the problem class Π from which they
are sampled. Therefore, the levels and the factor are random. Consequently, our
results are not based on a limited, fixed number of problem instances. They are
randomly drawn from an infinite set, which enables generalization.

2.2 Feature Extraction and Instance Generation

A problem class Π can be generated in different manners. We will consider arti-
ficial and natural problem class generators. Artificially generated problems allow
feature generation based on some predefined characteristics. They are basically
theory driven, i.e., the researcher defines certain features such as linearity or
multi modality. Based on these features, a model (formula) is constructed. By
integrating parameters into this formula, many problem instances can be gen-
erated by parameter variation. We will exemplify this approach in the following
paragraph. The second way, which will generate natural problem classes, uses
a two-stage approach. First, features are extracted from the real-world system.
Based on this feature set, a model is defined. Adding parameters to this model,
new problem instances can be generated. There is also a third way to "generate"
test instances: if we are lucky, many data are available. In this case, we can
sample a limited number of problem instances from the larger set of real-world
data. The statistical analysis is similar for these three cases.

Artificial Test Functions Several problem instance generators have been pro-
posed over the last years. For example, [13] present a landscape test generator,

Beyond Particular Problem Instances 5

which can be used to set up problem instances for continuous, bound-constrained
optimization problems.

To keep this article focused, we will propose a simple test problem instance
generator, which is based on time-series decomposition. Inspired by the harmonic
seasonal time series model with s seasons, which can be formulated as

Y (t) = m(t) +
[s/2]∑
k=1
{sk sin(2πkt/s) + ck cos(2πkt/s)}+ Z(t), (1)

where m(t) denotes the trend and Z(t) the error, we will define the following
function generator Y (·)

Y (x) = |b0 + b1x+ b2x
2 + sin(b3πx/12) + cos(b4πx/12) + ε|, (2)

where the bi’s are independent with bi ∼ U [0, wi] and ε ∼ N (0, 1) for i =
0, 1, . . . , 4.

The vector w = (w0, w1, w2, w3, w4)′ is used to define problem classes Π.
Problem instances π can be drawn from each instance class. Using different
random seeds for a fixed w in (2) results in different problem instances. These
instances will be treated as levels of factors in the statistical analysis. Obviously,
min(y(x)) ≥ 0. Nine typical problem instances are illustrated in Fig. 1. We con-
sider the problem class Π1, which is based on w = (−0.1, 0.01, 0.001, 10.0, 10.0)′.
We will use this problem instance generator in Sect. 5 to demonstrate our ap-
proach.

Natural Problem Classes This section exemplifies the three fundamental
steps for generating real-world problem (RWP) instances, namely
1. Describing the real-world system and its data
2. Feature extraction and model construction
3. Instance generation

We will illustrate this procedure by using the classic Box and Jenkins airline
data [9]. These data contain the monthly totals of international airline passen-
gers, 1949 to 1960.

> str(AirPassengers)

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...

The feature extraction is based on methods from time-series analysis. Because of
its simplicity the Holt-Winters method is popular in many application domains.
It is able to adapt to changes in trends and seasonal patterns. The multiplicative
Holt-Winters prediction function (for time series with period length p) is

Ŷt+h = (at + hbt)st−p+1+(h−1) mod p,

6 T.Bartz-Beielstein

−100 0 50 100

0
2

4
6

8
10

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
2

4
6

8
10

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
2

4
6

8

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
1

2
3

4
5

6

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
5

10
15

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
1

2
3

4
5

6

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0.
0

1.
0

2.
0

3.
0

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
2

4
6

8
12

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
1

2
3

4
5

−120:120

th
is

.f(
−

12
0:

12
0)

Fig. 1. Nine instances from problem class Π1. Artificial problem instances are based
on a harmonic time series model. The vector w = (−0.1, 0.01, 0.001, 10.0, 10.0)′ was
used for scaling the parameters in (2). The initial ES population is generated in the
interval [100; 120].

Beyond Particular Problem Instances 7

where at, bt and st are given by

at = α(Yt/st−p) + (1− α)(at−1 + bt−1)
bt = β(at − at−1) + (1− β)bt−1

st = γ(Yt/at) + (1− γ)st−p

The optimal values of α, β and γ are determined by minimizing the squared
one-step prediction error. New problem instances can be generated as follows.
The parameters α, β, and γ are estimated from original time-series data Yt.
To generate new problem instances, these parameters can be slightly modified.
Based on these modified values, the model is re-fitted. Finally, we can extract
the new time series. Here, we plot the original data, the Holt-Winters predictions
and the modified time series.

> generateHW <- function(a,b,c){
+ ## Estimation
+ m <- HoltWinters(AirPassengers, seasonal = "mult")
+ ## Extraction
+ alpha0<-m$alpha
+ beta0<-m$beta
+ gamma0<-m$gamma
+ ## Modification
+ alpha1 <- alpha0*a
+ beta1 <- beta0*b
+ gamma1 <- gamma0*c
+ ## Re-estimation
+ m1 <- HoltWinters(AirPassengers, alpha=alpha1
+ , beta = beta1, gamma = gamma1)
+ ## Instance generation
+ plot(AirPassengers)
+ lines(fitted(m)[,1], col = 1, lty=2, lw=2)
+ lines(fitted(m1)[,1], col = 1, lty = 3, lw =2)
+ }
> generateHW(a=.05,b=.025,c=.5)

One typical result from this instance generation is shown in Fig. 2.
To illustrate the wide applicability of this approach, we will list further real-

work problem domains, which are subject of our current research.

Smart Metering. The development of accurate forecasting methods for electri-
cal energy consumption profiles is an important task. Accurate consump-
tion profile forecasting enables intelligent control of renewable energy source
infrastructure, such as storage power plants, and therefore contributes to
a smaller carbon footprint. Accurate consumption profile forecasting also
enables energy consumers to accurately assess the return on investment of
measures to increase energy efficiency. We consider time series collected from
a manufacturing process. Each time series contains quarter-hourly samples

8 T.Bartz-Beielstein

Time

A
irP

as
se

ng
er

s

1950 1952 1954 1956 1958 1960

10
0

20
0

30
0

40
0

50
0

60
0

Fig. 2. Holt-Winters problem instance generator. The solid line represents the real
data, the dotted line predictions from the Holt-Winters model and the fine dotted line
modified predictions, respectively.

of the energy consumption of a bakery. A detailed data description can be
found in [2].

Water Industry. Canary is a software developed by the United States Envi-
ronmental Protection Agency (US EPA) and Sandia National Laboratories.
Its purpose is to detect events in the context of water contamination. An
event is in this context defined as a certain time period where a contami-
nant deteriorates the water quality significantly. Distinguishing events from
(i) background changes, (ii) maintenance and modification due to operation,
and (iii) outliers is an essential task, which was implemented in the Ca-
nary software. Therefore, deviations are compared to regular patterns and
short term changes. The corresponding data contains multi-variate time-
series data. It is a selection of a larger dataset shipped with the open source
Event Detection Software CANARY developed by US EPA and Sandia Na-
tional Laboratories [16].

Finance. The data are real-world data from intraday foreign exchange (FX)
trading. The FX market is a financial market for trading currencies to enable
international trade and investment. It is the largest and most liquid financial
market in the world. Currencies can be traded via a wide variety of different
financial instruments, ranging from simple spot trades over to highly complex
derivatives. We are using three foreign exchange (currency rate) time series
collected from Bloomberg. Each time series contains hourly samples of the
change in currency exchange rate [11].

Now that we have demonstrated the applicability of our approach to a well
known time series and listed time series, which are subject of our current re-
search, we will introduce the optimization algorithm.

Beyond Particular Problem Instances 9

3 Algorithm Features

3.1 Factors and Levels

Evolutionary algorithms (EA) belong to the large class of bio-inspired search
heuristics. They combine specific components, which may be qualitative, like the
recombination operator or quantitative, like the population size. Our interest
is in understanding the contribution of these components. In statistical terms,
these components are called factors. The interest is in the effects of the specific
levels chosen for these factors. Hence, we say that the levels and consequently the
factors are fixed. Although modern search techniques like sequential parameter
optimization or Pareto genetic programming allow multi-objective performance
measures (solution quality versus variability or description length), we restrict
ourselves to analyze the effect of these factors on a univariate measure of per-
formance. We will use the quality of the solutions returned by the algorithm at
termination as the performance measure.

3.2 Example: Evolution Strategy

Evolution strategies (ES) are prominent representatives of evolutionary algo-
rithms, which includes genetic algorithms and genetic programming as well [15].
Evolution strategies are applied to hard real-valued optimization problems. Mu-
tation is performed by adding a normally distributed random value to each
vector component. The standard deviation of these random values is modified
by self-adaptation. Evolution strategies can use a population of several solutions.
Each solution is considered as as individual and consists of object and strategy
variables. Object variables represent the position in the search space, whereas
strategy variables store the step sizes, i.e., the standard deviations for the muta-
tion. We are analyzing the ES basic variant, which has been proposed in [8]. It is
understood as population based stochastic direct search algorithm—not exclud-
ing population sizes of one as e.g. featured in simple evolution strategies—that
in some sense mimics the natural evolution.

Besides initialization and termination as necessary constituents of every al-
gorithm, ES consist of three important factors: A number of search operators,
an imposed control flow (Figure 3), and a representation that maps adequate
variables to implementable solution candidates.

Although different ES may put different emphasis on the search operators
mutation and recombination, their general effects are not in question. Mutation
means neighborhood based movement in search space that includes the explo-
ration of the "outer space" currently not covered by a population, whereas re-
combination rearranges existing information and so focuses on the "inner space".
Selection is meant to introduce a bias towards better fitness values; GAs do so
by regulating the crossover via mating selection, ESs utilize the environmental
selection.

A concrete ES may contain specific mutation, recombination, or selection
operators, or call them only with a certain probability, but the control flow is

10 T.Bartz-Beielstein

mating selection

recombination

initialization
and evaluation

mutationevaluation

test for termination

environmental
 selection

crossoverreplacement

Fig. 3. The evolutionary cycle, basic working scheme of all ES and EA. Terms common
for describing evolution strategies are used, alternative terms are added below in blue.

usually left unchanged. Each of the consecutive cycles is termed a generation.
Concerning the representation, it should be noted that most empiric studies
are based on canonical forms as binary strings or real-valued vectors, whereas
many real-world applications require specialized, problem dependent ones. Ta-
ble 1 summarizes important ES parameters. The reader is referred to [1] for a
detailed description of these parameters.

Factors, which were modified during our case studies are listed in Table 1. We
will consider effects of the mutation operator and the recombination operator
for strategy and object variables on the performance.

4 Objective Functions and Statistical Models

4.1 Objective Function

We are convinced that the applicability of the methods presented in this ar-
ticle go far beyond the simplified case studies. Our main contribution is a
framework, which allows conclusions that are no limited to a small number
of problem instances but to problem classes. The focus our presentation lies
on the real-world function generator and the related statistical framework. Un-
der this perspective, it is legitimate to use the following simplified optimiza-
tion framework: An ES is applied directly as a minimizer on the test function
f(x). Formally speaking, let S denote some set, e.g., S ⊆ Rn. We are seek-
ing for values f∗ and x∗, such that minx∈S f(x) with f∗ = minx∈S f(x) and
x∗ = arg min f(x) : f(x∗) ≤ f(x) ∀x ∈ S. This approach can be extended in
many ways, e.g., by applying an optimization algorithm to minimize the empir-
ical mean squared prediction error 1

|S|
∑
x∈S(Ŷ (x)− Y (x))2.

Beyond Particular Problem Instances 11

Table 1. Settings of exogenous parameters of an ES. Recombination operators are
labeled as follows: 1=no, 2=dominant, 3=intermediate, 4=intermediate as in [8]. Mu-
tation uses the following encoding: 1 = no mutation, 2 = self adaptive mutation.

Parameter Symbol Name Range Value
mue µ Number of parent individuals N 5
nu ν = λ/µ Offspring-parent ratio R+ 2
sigmaInit σ

(0)
i Initial standard deviations R+ 1

nSigma nσ Number of standard deviations. d denotes the
problem dimension

{1, d} 1

cτ Multiplier for individual and global mutation pa-
rameters

R+ 1

tau0 R+ 0
tau R+ 1
rho ρ Mixing number {1, µ} 2
sel κ Maximum age R+ 1
sreco rσ Recombination operator for strategy variables {1, 2, 3, 4} 3
oreco rx Recombination operator for object variables {1, 2, 3, 4} 2
mutation Mutation {1, 2} 2

4.2 Mixed Models

Standard models in statistics are based on linear combinations of the factor
effects. The standard analysis assumes that the factors remain fixed, i.e., the
levels of the factors were the levels of interest. Conclusions from the statistical
analysis are valid for these levels. In our setting, we are interested in drawing
conclusions about a larger population of levels, not only those that were used
in the experimental design. Therefore, factor levels are chosen at random from
a larger population or class. The simplest situation occurs when an in a single-
factor experiment one factor is random. This leads to the random factor model,
which will be introduced in Sec. 5.2. Combining the fixed and random effects
factors results in so-called linear mixed models.

5 Case Studies

As stated in Sec. 4, we are discussing simple optimization problems. The un-
derlying algorithm and problem designs were chosen for didactical purpose only.
However, this approach can be extended to time-series problems, e.g., in order
to minimize prediction accuracy, mean-squared errors, or mean absolute errors.

5.1 SASP: Single Algorithm, Single Problem

In the most basic design, the researcher wishes to assess the performance of an
optimization algorithm on a single problem instance π. An optimization prob-
lem has a set of input data which instantiate the problem. This might be a
function in continuous optimization or the location and distances between cities

12 T.Bartz-Beielstein

in a traveling salesman problem. Because many optimization algorithms such as
evolutionary algorithms are randomized, their performance Y on one instance is
a random variable. It might be described by a probability density/mass function
p(y|π). In experiments we collect sample data y1, . . . , yr, which are independent,
identically distributed. There are situations, in which SASP is the method of
first choice. Real-world problems, which have to be solved only once in a very
limited time, are good examples for using SASP optimizations. Because of its
limited capacity for generalization, SASP will not be further investigated in this
study.

5.2 SAMP: Single Algorithm, Multiple Problems

Fixed-effects Models This setup is commonly used for testing an algorithm
on a given (fixed) set of problem instances. It is subject to many criticism, e.g.,
that algorithms are trained for this specific set up test instances (over fitting).

Standard assumptions from analysis of variance (ANOVA) lead us to pro-
pose the following fixed-effects model [14]:

Yij = µ+ τi + εij , (3)

where µ is an overall mean, τi is a parameter unique to the ith treatment (prob-
lem instance factor), and εij is a random error term for replication j on problem
instance i. Usually, the model errors εij are assumed to be normally and inde-
pendently distributed with mean zero and variance σ2. Since problem instance
factors are fixed, i.e., non random, the stochastic behavior of the response vari-
able originates from the algorithm. This implies the experimental results

Yij ∼ N(µ+ τi, σ
2), i = 1, . . . , q, j = 1, . . . , r, (4)

and that the Yij are mutually independent. Results from statistical analyses
remains valid only on the specific instances. In order to take into account de-
pendencies arising from applying an algorithm repeatedly to the same instances,
[10] propose randomized and mixed models as an extension of (3). In contrast
to model (3), these models allow generalizations of results to the whole class of
possible instances.

Randomized Models In the following, we consider a population or class of
instances Π. The class Π consists of a large, possibly an infinite, number of
problem instances πi, i = 1, 2, 3, . . . The performance Y of the algorithm α on
the class Π is described by the probability function

p(y) =
∑
π∈Π

p(y|π)p(π), (5)

with p(π) being the probability of sampling instance π. If we ran an algorithm α
r times on instance π, then we receive r replicates of α’s performance, denoted

Beyond Particular Problem Instances 13

by Y1, . . . , Yr. These r observations are independent and identically distributed
(i.i.d.), i.e.,

p(y1, . . . , yr|π) =
r∏
j=1

p(yj |π). (6)

So far, we have considered r replicates of the performance measure Y on one
problem instance π. Now consider several, randomly sampled problem instances.
Over all the instances the observed performance measures may show dependence:

p(y1, . . . , yr) =
∑
π∈Π

p(y1, . . . , yr|π)p(π). (7)

Equation (6) will be referred to as the conditional model, whereas (7) will be
referred to as the marginal model.

Example SAMP: ES on Π1 (Random-Effects Design) The simplest
random-effects experiment is performed as follows. For i = 1, . . . , q a problem
instance πi is drawn randomly from the class of problem instances Π. On each
of the sampled πi, the algorithm α is run r times using different seeds for α.
Due to α’s stochastic nature, we obtain, conditionally on the sampled instance,
r replications of the performance measure that are i.i.d.

Let Yij (i = 1, . . . , q; j = 1, . . . , r) denote the random performance measure
obtained in the jth replication of α on πi. We are interested in drawing conclu-
sions about α’s performance on a larger set of problem instances from Π, and
not just on those q problem instances included in the experiment. A systematic
approach to accomplish this task comprehends the following steps.
SAMP-1 Algorithm and Problem Instances
SAMP-2 Validation of the Model Assumptions
SAMP-3 Building the Model and ANOVA
SAMP-4 Hypothesis Testing
SAMP-5 Confidence Intervals and Prediction

SAMP-1 Algorithm and Problem Instances The goal of this case study is to
analyze if one algorithm shows a similar performance on a class of problem
instances, say Π1. A random-effects design will be used to model the results.
We illustrate the decomposition of the variance of the response values in (i) the
variance due to problem instance and (ii) the variance due to the algorithm and
derive results, which are based on hypotheses testing as introduced in (12).

We consider one algorithm, an ES, which is run r = 5 times on a set of
randomly generated problem instances. The ES is parametrized with setting
from Table 1. These parameters are kept constant during the experiment. Nine
instances were drawn for the set of problem instances, which is generated with
the time-series decomposition function generator from (2). The corresponding
problem instances are shown in Fig. 1. The null hypothesis reads "There is no
instance effect". Since we are considering the SAMP case, our experiments is
based on one ES instance only, i.e., we are selecting self-adaptive mutation. We
load the data frame and display its content.

14 T.Bartz-Beielstein

'data.frame': 45 obs. of 4 variables:
$ y : num 0.2036 0.0557 0.0979 0.7142 4.3018 ...
$ fSeed : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...
$ algSeed: Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
$ yLog : num -1.592 -2.887 -2.324 -0.337 1.459 ...

Here, y denotes the function value. Since self adaptation was used, mut is set
to "2". The variable fSeed represents the problem instance, algSeed is the repeat
of the ES run with different seeds, while yLog denotes the log function values.
There are 45 observations of 5 variables, because 5 repeats were performed on 9
problem instances.

SAMP-2 Validation of the Model Assumptions In the second step we should test
the validity of the model assumptions by generating normal quantile plots (QQ
plots) as shown in Fig. 4.

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●●●

● ●

●

●

●

●

●

●

● ● ●

●

●● ●●

●

●
●

●

●
●

−2 −1 0 1 2

0
2

4
6

8

(a)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−2 −1 0 1 2

−
6

−
4

−
2

0
2

(b)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Fig. 4. Quantile-Quantile (Q-Q) plots provide a good way to compare the the distri-
bution of a sample with a distribution. Here, the samples are compared to a normal
distribution. Large deviations from the line indicate non-normality of the sample data.
These two Q-Q plots show that a log transformation might be useful: (a) before the
log transformation, (b) after the log transformation is applied to the data.

Beyond Particular Problem Instances 15

Table 2. ANOVA table for a one-factor fixed and random effects models

Source Sum Degrees Mean EMS EMS
of Variation of Squares of freedom Square Fixed Random

Treatment SStreat q − 1 MStreat σ
2 + r

∑q

i=1
τ2

i

q−1 σ2 + rσ2
τ

Error SSerr q(r − 1) MSerr σ2 σ2

Total SStotal qr − 1

SAMP-3 Building the Model and ANOVA The following analysis is based on the
linear statistical model

Yij = µ+ τi + εij

{
i = 1, . . . , q
j = 1, . . . , r (8)

where µ is an overall mean and εij is a random error term for replication j on
instance i. Note, in contrast to the fixed-effects model from (3), τi is a random
variable representing the effect of instance i. The stochastic behavior of the
response variable originates from both the instance and the algorithm. This is
reflected in (8), where both τi and εij are random variables. The model (8) is
the so-called random-effects model, cf. [14, p. 512] or [10, p. 229].

If τi is independent of εij and has variance Var(τi) = σ2
τ , the variance of

any observation is Var(yij) = σ2 + σ2
τ . Furthermore, we assume that τ1, . . . , τq

are i.i.d. N (0, σ2
τ) and εij , i = 1, . . . , q, j = 1, . . . , r, are i.i.d. N (0, σ2). Similar

to the partition in classical ANOVA, the variability in the observations can be
partitioned into a component that measures the variation between treatments
and a component that measures the variation within treatments. Based on the
fundamental ANOVA identity SStotal = SStreat + SSerr, we define

MStreat = SStreat

q − 1 =
r
∑q
i=1(Ȳi. − Ȳ..)2

q − 1 ,

and

MSerr = SSerr

q(r − 1) =
∑q
i=1
∑r
j=1(Yij − Ȳi.)2

q(r − 1) .

It can be shown that

E(MStreat) = σ2 + rσ2
τ and E(MSerr) = σ2, (9)

cf. [14]. Therefore, the estimators of the variance components are

σ̂2 = MSerr (10)

σ̂2
τ = MStreat −MSerr

r
. (11)

The corresponding ANOVA table is shown in Table 2.

16 T.Bartz-Beielstein

We will demonstrate, how these estimators can be calculated in R. First, the
ANOVA model is build. Then, we extract the mean squared values, i.e., MSA
(treatment) and MSE (error). The estimators of the variance components can
be calculated as follows. From (10) we obtain an estimator of the first variance
component σ̂2 as the mean squared error and from (11), we obtain the second
component σ̂2

τ . The model variance can be determined as var.A +var.B. Finally,
the mean µ from (8) can extracted.

> samp.aov <- aov(yLog ~fSeed, data=samp.df)
> (M1 <- anova(samp.aov))

Analysis of Variance Table

Response: yLog
Df Sum Sq Mean Sq F value Pr(>F)

fSeed 8 48.832 6.1040 1.0707 0.4048
Residuals 36 205.230 5.7008

> (MSA <- M1[1,3])

[1] 6.10401

> (MSE <- M1[2,3])

[1] 5.700838

> r <-length(unique(samp.df$algSeed))
> q <- nlevels(samp.df$fSeed)
> (var.A <- (MSA - MSE)/(r))

[1] 0.0806345

> (var.E <- MSE)

[1] 5.700838

> var.A + var.E

[1] 5.781472

> coef(samp.aov)[1]

(Intercept)
-1.136131

The p value in the ANOVA table is calculated as

> 1-pf(MSA/MSE,q-1,q*(r-1))

[1] 0.4047883

Beyond Particular Problem Instances 17

The MSA value will be stored for the calculation of confidence intervals.

> MSA.anova <- MSA

In some cases, the standard ANOVA, which was used in our example, pro-
duces a negative estimate of a variance component. This can be seen in (11): If
MSerr > MStreat, negative values occur. By definition, variance components are
positive. Methods, which always yield positive variance components have been
developed. Here, we will use restricted maximum likelihood estimators (REML).
The ANOVA method of variance component estimation, which is a method of
moments procedure, and REML estimation may lead to different results.

Restricted maximum likelihood. Based on the same data, we fit the random-
effects model (8) using the function lmer() from the R package lme4 [7]:

> library(lme4)
> samp.lmer <- lmer(yLog~ 1 +(1|fSeed),data=samp.df)
> print(samp.lmer, digits = 4, corr = FALSE)

Linear mixed model fit by REML
Formula: yLog ~ 1 + (1 | fSeed)

Data: samp.df
AIC BIC logLik deviance REMLdev

211.8 217.2 -102.9 205.6 205.8
Random effects:
Groups Name Variance Std.Dev.
fSeed (Intercept) 2.6196e-11 5.1182e-06
Residual 5.7741e+00 2.4029e+00

Number of obs: 45, groups: fSeed, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) -1.3528 0.3582 -3.776

First, the model formula (yLog ∼ 1 + (1| fSeed)) is shown. The data is
grouped by fSeed, because problem instances πi are generated using (2) with
nine different seeds. The fixed effect is the intercept, which is represented by
the symbol 1 in the formula. The term (1| fSeed) indicates that the data
is grouped by fSeed. The 1 is indicating that the random effect is constant
within each group. Information about measures of the fitting (AIC, BIC, etc.)
are displayed next. Our mains interest lies on the next lines of the output, which
are labeled Random effects. Here we find the estimates of parameters related to
the random effects and the error distributions, i.e., the variances for the problem
instances, i.e., τ or fSeed and the algorithm, i.e., ε or Residual. This shows that
the variability in the response observations can be attributed to the variability
of the algorithm.

18 T.Bartz-Beielstein

SAMP-4 Hypothesis Testing Testing hypotheses about individual treatments
(instances) is useless, because the problem instances πi are here considered as
samples from some larger population of instances Π. We test hypotheses about
the variance component σ2

τ , i.e., the null hypothesis

H0 : σ2
τ = 0 is tested versus the alternative H1 : σ2

τ > 0. (12)

Under H0, all treatments are identical, i.e., rσ2
τ is very small. Based on (9), we

conclude that E(MStreat) = σ2 + rσ2
τ and E(MSerr) = σ2 are similar. Under the

alternative, variability exists between treatments. Standard analysis shows that
SSerr/σ

2 is distributed as chi-square with q(r−1) degrees of freedom. Under H0,
the ratio

F0 =
SStreat
q−1
SSerr
q(r−1)

= MStreat

MSerr

is distributed as Fq−1,q(r−1). To test hypotheses in (8), we require that τ1, . . . , τq
are i.i.d. N (0, σ2

τ), εij , i = 1, . . . , q, j = 1, . . . , r, are i.i.d. N (0, σ2), and all τi
and εij are independent of each other.

These considerations lead to the decision rule to reject H0 at the significance
level α if

f0 > F (1− α; q − 1, q(r − 1)), (13)

where f0 is the realization of F0 from the observed data. An intuitive motivation
for the form of statistic F0 can be obtained from the expected mean squares.
Under H0 both MStreat and MSerr estimate σ2 in an unbiased way, and F0 can be
expected to be close to one. On the other hand, large values of F0 give evidence
against H0.

Based on (9), we can determine the F statistic and the p values:

> VC <- VarCorr(samp.lmer)
> (sigma.tau <- as.numeric(attr(VC$fSeed,"stddev")))

[1] 5.118205e-06

> (sigma <- as.numeric(attr(VC,"sc")))

[1] 2.402944

> q <- nlevels(samp.df$fSeed)
> r <- length(unique(samp.df$algSeed))
> (MSA <- sigma^2+r*sigma.tau^2)

[1] 5.774142

> (MSE <- sigma^2)

[1] 5.774142

Now we can determine the p value based on (13):

Beyond Particular Problem Instances 19

> 1-pf(MSA/MSE,q-1,q*(r-1))

[1] 0.4529257

Since the p value is large, the null hypothesis H0 : σ2
τ = 0 from (12) can not be

rejected, i.e., we conclude that there is no instance effect. A similar conclusion
was obtained from the ANOVA method of variance component estimation.

SAMP-5 Confidence Intervals and Prediction An unbiased estimator of the over-
all mean µ is

∑q
i=1
∑r
j=1 yij/(qr). It can be shown that its estimated standard

error is given by se(µ̂) =
√

MStreat/qr and that

Ȳ·· − µ√
MStreat/qr

∼ t(q − 1).

Hence, [10, p. 232] show that confidence limits for µ can be derived as

ȳ·· ± t(1− α/2; q − 1)
√

MStreat/qr. (14)

We conclude this case study with prediction of the algorithm’s performance
on a new instance. Based on (14), the 95% confidence interval can be calculated
as follows.

> s <- sqrt(MSA/(q*r))
> Y.. <- mean(samp.df$yLog)
> qsr <- qt(1-0.025,r)
> c(exp(Y.. - qsr * s), exp(Y.. + qsr * s))

[1] 0.1029441 0.6492394

Since we performed the analysis on log data, the exp() function was applied to
the final result. Hence, 95% confidence interval for µ is [0.10; 0.65].

Using the ANOVA results from above, we obtain the following confidence
interval for the performance of the ES:

> s <- sqrt(MSA.anova/(q*r))
> Y.. <- mean(samp.df$yLog)
> qsr <- qt(1-0.025,5)
> c(exp(Y.. - qsr * s), exp(Y.. + qsr * s))

[1] 0.1003084 0.6662989

Second SAMP Example The ES parametrization remains unchanged, but
the parametrization of the problem instances was modified. Nine problems in-
stances πi (i = 1, 2, . . . , 9) were generated, using the problem parameter vector
(−0.1,−0.1,−0.001, .10, 2)×i2. The resulting realizations are illustrated in Fig. 5.

20 T.Bartz-Beielstein

−100 0 50 100

0
2

4
6

8

−120:120
th

is
.f(

−
12

0:
12

0)

−100 0 50 100

0
20

40
60

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
40

80
12

0

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
20

40
60

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
20

0
40

0

−120:120
th

is
.f(

−
12

0:
12

0)

−100 0 50 100

0
20

0
40

0

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
10

0
20

0
30

0

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
20

0
60

0

−120:120

th
is

.f(
−

12
0:

12
0)

−100 0 50 100

0
50

15
0

25
0

−120:120
th

is
.f(

−
12

0:
12

0)

Fig. 5. Second set of problem instances Π2. The ES shows different performances on
this set of problem instances.

> str(samp2.df)

'data.frame': 45 obs. of 4 variables:
$ y : num 0.0315 0.1171 0.0136 1.8438 0.5961 ...
$ fSeed : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...
$ algSeed: Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
$ yLog : num -3.456 -2.145 -4.299 0.612 -0.517 ...

Again, we test the validity of the model assumptions by generating normal
quantile plots (QQ plots) as shown in Fig. 6.

We consider the classical ANOVA first.

> samp2.aov <- aov(yLog ~fSeed, data=samp2.df)
> (M2 <- anova(samp2.aov))

Analysis of Variance Table

Response: yLog
Df Sum Sq Mean Sq F value Pr(>F)

fSeed 8 82.830 10.3538 5.9856 6.805e-05 ***
Residuals 36 62.272 1.7298

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Beyond Particular Problem Instances 21

● ●●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●●

●●
●

−2 −1 0 1 2

0
5

10
15

20

(a)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●●
●●

●

●
●

●●
●

−2 −1 0 1 2
−

4
−

2
0

2

(b)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Fig. 6. Quantile-Quantile (Q-Q) plots for the second SAMP example: (a) before the
log transformation, (b) after the log transformation is applied to the data.

> (MSA <- M2[1,3])

[1] 10.35378

> (MSE <- M2[2,3])

[1] 1.729791

> r <-length(unique(samp2.df$algSeed))
> q <- nlevels(samp2.df$fSeed)

Following (11), the variance components σ̂2
τ (var.A) and σ̂2 (var.E) can be

determined as follows.

> (var.A <- (MSA - MSE)/(r))

[1] 1.724798

> (var.E <- MSE)

[1] 1.729791

That is, we have σ̂2
τ = 0.08 and σ2 = 5.7. The p value is

22 T.Bartz-Beielstein

> 1-pf(MSA/MSE,q-1,q*(r-1))

[1] 6.805386e-05

We obtain the following confidence interval.

> s <- sqrt(MSA/(q*r))
> Y.. <- mean(samp2.df$yLog)
> qsr <- qt(1-0.025,5)
> c(exp(Y.. - qsr * s), exp(Y.. + qsr * s))

[1] 0.4260439 5.0171031

REML Next, we consider the restricted maximum likelihood approach.

Linear mixed model fit by REML
Formula: yLog ~ 1 + (1 | fSeed)

Data: samp2.df
AIC BIC logLik deviance REMLdev

173.1 178.5 -83.55 167.5 167.1
Random effects:
Groups Name Variance Std.Dev.
fSeed (Intercept) 1.7248 1.3133
Residual 1.7298 1.3152

Number of obs: 45, groups: fSeed, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.3798 0.4797 0.792

The statistical analysis reveals that the variability in the response observations
can be attributed to the variability in the problem instances. We continue by
computing the F statistic and the p value.

> VC <- VarCorr(samp2.lmer)
> (var.A <- (as.numeric(attr(VC$fSeed,"stddev")))^2)

[1] 1.724797

> (var.E <- (as.numeric(attr(VC,"sc")))^2)

[1] 1.729791

> q <- nlevels(samp2.df$fSeed)
> r <- length(unique(samp2.df$algSeed))
> (MSA <- var.E+r*var.A)

[1] 10.35378

Beyond Particular Problem Instances 23

> (MSE <- var.E)

[1] 1.729791

> 1-pf(MSA/MSE,q-1,q*(r-1))

[1] 6.805392e-05

The resulting p value gives reason for rejecting the null hypotheses H0 : σ2
τ = 0

as shown in (12), i.e., we conclude that there might be instance effects. The
corresponding 95% confidence interval for new problem instances is larger, which
also indicates that there are performance differences. Based on (14), we obtain
the following confidence interval for the performance of the ES:

[1] 0.4260439 5.0171029

Confidence intervals from the REML and ANOVA methods are very similar.

5.3 MAMP: Multiple Algorithms, Multiple Problems:

In this case study, we demonstrate how the marginal model (7) can be extended
to the case where several algorithms are applied to the same instance. We add
fixed effects in the conditional structure of (6). Next, we illustrate how this leads
naturally to a mixed model.

Instead of one fixed algorithm, we consider several algorithms or algorithms
with several parameters. Both situations can be treated while considering algo-
rithms as levels of a fixed factor, whereas problem instances are drawn randomly
from some population of instances Π.
MAMP-1 Algorithm and Problem Instances
MAMP-2 Validation of the Model Assumptions
MAMP-3 Building the Model and ANOVA
MAMP-4 Hypothesis Testing

a) Random effects
b) Fixed effects
c) Back-fitting (for multiple fixed factors)

MAMP-5 Confidence Intervals and Prediction

MAMP-1 Algorithm and Problem Instances In the first design we aim at com-
paring the performance of the ES with different recombination operators over
an instance class. More precisely, we have the following factors:

– algorithm: four ES instances using recombination operators {1, 2, 3, 4}
– instances: nine instances randomly sampled from the classΠ1 as illustrated
in Fig. 1 with problem parameters (-0.1, 0.01, 0.001, 10.0, 10.0)

– replicates: five

> str(mamp.df)

24 T.Bartz-Beielstein

'data.frame': 180 obs. of 5 variables:
$ y : num 0.001725 0.008679 0.001094 0.010323 0.000853 ...
$ sreco : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 2 2 2 2 2 ...
$ fSeed : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ algSeed: Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
$ yLog : num -6.36 -4.75 -6.82 -4.57 -7.07 ...

As can be seen from the str output, 4 × 9 × 5 = 180 data were used in this
study.

MAMP-2 Validation of the Model Assumptions Again, we test the validity of the
model assumptions by generating normal quantile plots (QQ plots) as shown in
Fig. 6.

●

●

●

●

●●

●●

●

● ●

●●

●●●●

●

●

●

●

●

●
● ●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

● ● ●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●

−2 −1 0 1 2

0.
00

0.
02

0.
04

0.
06

0.
08

(a)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●
●

●●

●

●

●

●●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

−2 −1 0 1 2

−
10

−
8

−
6

−
4

(b)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Fig. 7. Quantile-Quantile (Q-Q) plots for the MAMP example: (a) before the log trans-
formation, (b) after the log transformation is applied to the data. Although there is
still an outlier in the log transformed data, we will use the transformed data.

Next, we plot the results for each group. A first visual inspection, which
plots the performance of the algorithm within each problem instance, is shown
in Fig. 8.

> library(lattice)
> print(xyplot(yLog ~ sreco | fSeed, data=mamp.df,

Beyond Particular Problem Instances 25

sreco

y

−10

−8

−6

−4

1 2 3 4

●

●

●

●

● ●

●●

●

●
●

●●
●● ●●

●
●●

1

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

2

1 2 3 4

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

3

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

4

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

5

−10

−8

−6

−4
●

●

●
●
●

●

●●

●

●

●●

●
●●

●

●

●
●

●

6

−10

−8

−6

−4

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

7

1 2 3 4

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

8

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

9

Fig. 8. Four algorithms (ES with modified recombination operators) on nine test prob-
lem instances. Each panel represents one problem instance. Performance is plotted
against the level of the recombination operator.

26 T.Bartz-Beielstein

+ main="",ylab="y",xlab="sreco",
+ panel=function(x, y){
+ m <- sort.list(x)
+ panel.grid(h=-1,v=-1,lty=2)
+ panel.xyplot(x[m], y[m])
+ panel.loess(x[m], y[m], span=2, lty=1)
+ panel.lmline(x[m], y[m], lty=2)
+ }
+)
+)

MAMP-3 Building the Model and ANOVA Variance decompositions. The vari-
ability in the performance measure can be decomposed according to the following
mixed-effects ANOVA model:

Yijk = µ+ αj + τi + γij + εijk, (15)

where µ is an overall performance level common to all observations, αj is a fixed
effect due to the algorithm j, τi is a random effect associated with instance i, γij
is a random interaction between instance i and algorithm j, and εijk is a random
error for replication k of algorithm j on instance i. For identification purposes
we impose the usual sum constraint on the factor level effects, i.e.,

∑h
j=1 αj = 0.

This can be accomplished in R using the following command

> options(contrasts=c("contr.sum","contr.poly"))

The assumptions imposed on the random elements are τi are i.i.d. N (0, σ2
τ),

γij are i.i.d. N (0, σ2
γ), εijk are i.i.d. N(0, σ2), and τi, γij and εijk are mutually

independent random variables. Similar to (6) the conditional distribution of the
performance measure given the instance and the instance–algorithm interaction
is given by

Yijk|τi, γij ∼ N(µ+ αj + τi + γij , σ
2), (16)

with i = 1, . . . , q, j = 1, . . . , h, k = 1, . . . , r. The marginal model reads (after
integrating out the random effects τi and γij):

Yijk ∼ N (µ+ αj , σ
2 + σ2

τ + σ2
γ), i = 1, . . . , q, j = 1, . . . , h, k = 1, . . . , r. (17)

Based on these statistical assumptions, hypotheses tests can be performed about
fixed and random factor effects.

If all treatment (problem instances) combinations have the same number of
observations, i.e., if the design is balanced, the test statistics for these hypotheses
are ratios of mean squares that are chosen such that the expected mean squares
of the numerator differs from the expected mean squares of the denominator
only by the variance components of the random factor in which we are interested.
Chiarandini and Goegebeur [10] present the resulting analysis of variance, which
is shown in Table 3.

Beyond Particular Problem Instances 27

Table 3. Expected mean squares and consequent appropriate test statistics for a mixed
two-factor model with h fixed factors, q random factors, and r repeats. From [10, p. 235].

Mean Expected Test
Effects squares df mean squares statistics

Fixed factor MSA h− 1 σ2 + rσ2
γ + rp

∑h

j=1
α2

j

h−1 MSA/MSAB

Random factor MSB q − 1 σ2 + rσ2
γ + rhσ2

τ MSB/MSAB

Interaction MSAB (h− 1)(q − 1) σ2 + rσ2
γ MSAB/MSE

Error MSE hq(r − 1) σ2

ANOVA

> mamp.aov <- aov(yLog ~ sreco*fSeed, data=mamp.df)
> h <- nlevels(mamp.df$sreco)
> q <- nlevels(mamp.df$fSeed)
> r <- nlevels(mamp.df$algSeed)
> (M1 <- anova(mamp.aov))

Analysis of Variance Table

Response: yLog
Df Sum Sq Mean Sq F value Pr(>F)

sreco 3 13.5 4.51 2.28 0.082
fSeed 8 16.5 2.07 1.05 0.405
sreco:fSeed 24 37.8 1.57 0.80 0.738
Residuals 144 284.9 1.98

> (MSA <- M1[1,3])

[1] 4.51

> (MSB <- M1[2,3])

[1] 2.07

> (MSAB <- M1[3,3])

[1] 1.57

> (MSE <- M1[4,3])

[1] 1.98

Now we can extract the variance components.

28 T.Bartz-Beielstein

> (var.A <- (MSA - MSAB)/(q*r))

[1] 0.0652

> (var.B <- (MSB - MSAB)/(h*r))

[1] 0.0247

> (var.AB <- (MSAB - MSE)/r)

[1] -0.0809

> (var.E <- MSE)

[1] 1.98

> (var.A + var.B + var.AB + var.E)

[1] 1.99

The estimate of the variance component σ2
γ , i.e., var.AB, is negative. There are

several ways to deal with this result [14]. Here, we are assuming that var.AB
vanishes and generate the following additive model without interactions:

> mamp.aov2 <- aov(yLog ~ sreco + fSeed, data=mamp.df)
> summary(mamp.aov2)

Df Sum Sq Mean Sq F value Pr(>F)
sreco 3 14 4.51 2.35 0.075
fSeed 8 17 2.07 1.08 0.382
Residuals 168 323 1.92

By inspection of the p values, we can even assume that one of the main effects,
fSeed, vanishes.

> mamp.aov3 <- aov(yLog ~ sreco, data=mamp.df)
> (M3 <- anova(mamp.aov3))

Analysis of Variance Table

Response: yLog
Df Sum Sq Mean Sq F value Pr(>F)

sreco 3 14 4.51 2.34 0.075
Residuals 176 339 1.93

We are back in the one-way ANOVA.

> (MSA <- M3[1,3])

[1] 4.51

Beyond Particular Problem Instances 29

> (MSE <- M3[2,3])

[1] 1.93

> (var.A <- (MSA - MSE)/(h*r))

[1] 0.129

> (var.E <- MSE)

[1] 1.93

> var.A + var.E

[1] 2.06

> (Yj. <- with(mamp.df,aggregate(yLog,list(alg=sreco),mean)))

alg x
1 1 -5.82
2 2 -5.65
3 3 -5.18
4 4 -5.23

A Tukey’s Honest Significant Difference (Tukey HSD) test, which generates a
set of confidence intervals on the differences between the means of the levels of a
factor with the specified family-wise probability of coverage, is performed next.

> (mamp.aov3.Tukey=TukeyHSD(mamp.aov3,"sreco"))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = yLog ~ sreco, data = mamp.df)

$sreco
diff lwr upr p adj

2-1 0.1659 -0.593 0.925 0.942
3-1 0.6435 -0.116 1.403 0.128
4-1 0.5906 -0.169 1.350 0.185
3-2 0.4776 -0.282 1.237 0.363
4-2 0.4247 -0.334 1.184 0.470
4-3 -0.0529 -0.812 0.706 0.998

The largest difference occurs between no (1) and intermediate (3) recom-
bination of the strategy variables. However, this difference is not statistically
significant. Figure 9 illustrates this result.

30 T.Bartz-Beielstein

−0.5 0.0 0.5 1.0

4−3

4−2

3−2

4−1

3−1

2−1

95% family−wise confidence level

Differences in mean levels of sreco

Fig. 9. Tukey HSD test comparison plots. Results from four ES instances with different
recombination operators are shown in this plot.

REML We will consider the results of the analysis of the mixed model based on
lmer(). As stated above, we have specified sum contrasts instead of the default
treatment contrasts used in lmer().

> op <- options(contrasts=c("contr.sum","contr.poly"))
> mamp.lmer <- lmer(yLog ~ sreco + (1|fSeed) + (1|fSeed:sreco), data=mamp.df)
> print(mamp.lmer, digits = 4)

Linear mixed model fit by REML
Formula: yLog ~ sreco + (1 | fSeed) + (1 | fSeed:sreco)

Data: mamp.df
AIC BIC logLik deviance REMLdev

646.9 669.3 -316.5 624.9 632.9
Random effects:
Groups Name Variance Std.Dev.
fSeed:sreco (Intercept) 2.15e-18 1.47e-09
fSeed (Intercept) 7.37e-03 8.58e-02
Residual 1.92e+00 1.39e+00

Number of obs: 180, groups: fSeed:sreco, 36; fSeed, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) -5.4694 0.1072 -51.03
sreco1 -0.3500 0.1789 -1.96
sreco2 -0.1841 0.1789 -1.03
sreco3 0.2935 0.1789 1.64

Correlation of Fixed Effects:

Beyond Particular Problem Instances 31

(Intr) sreco1 sreco2
sreco1 0.000
sreco2 0.000 -0.333
sreco3 0.000 -0.333 -0.333

We will consider random effects first.

MAMP-4a) Hypothesis Testing: Random Effects The estimated variances for the
problem instance (fSeed) is small (7.37e− 03), whereas the variance due to the
algorithm (Residual) is relatively large (1.92).

Regarding problem instances, test about levels are meaningless. Hence, we
perform tests about the variance components σ2

τ and σ2
γ , which can be formulated

as follows:
H0 : σ2

τ = 0, and H0 : σ2
γ = 0,

H1 : σ2
τ > 0, H1 : σ2

γ > 0,

respectively. In contrast to the ANOVA method described before, we do not look
up the values in the ANOVA table (e.g., Table 3), but compute the likelihood
ratio as follows.

> mamp.lmer2 <- lmer(yLog ~ sreco + (1|fSeed:sreco)
, data=mamp.df, REML=FALSE)

> mamp.lmer3 <- lmer(yLog ~ sreco + (1|fSeed) + (1|fSeed:sreco)
, data=mamp.df, REML=FALSE)

> anova(mamp.lmer3,mamp.lmer2)

Data: mamp.df
Models:
mamp.lmer2: yLog ~ sreco + (1 | fSeed:sreco)
mamp.lmer3: yLog ~ sreco + (1 | fSeed) + (1 | fSeed:sreco)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mamp.lmer2 6 637 656 -312
mamp.lmer3 7 639 661 -312 0 1 1

This test clearly indicates that the problem instances, which are coded in the
model as (1|fSeed), have no significant effect. Performing the following test
shows that there are also no instance-algorithm interactions ((1|fSeed:sreco):

> mamp.lmer1 <- lmer(yLog ~ sreco + (1|fSeed)
, data=mamp.df, REML=FALSE)

> anova(mamp.lmer3, mamp.lmer1)

Data: mamp.df
Models:
mamp.lmer1: yLog ~ sreco + (1 | fSeed)
mamp.lmer3: yLog ~ sreco + (1 | fSeed) + (1 | fSeed:sreco)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mamp.lmer1 6 637 656 -312
mamp.lmer3 7 639 661 -312 0 1 1

32 T.Bartz-Beielstein

MAMP-4b) Hypothesis Testing: Fixed Factor Effects Regarding fixed factors, we
are interested in testing for differences in the factor level means µ + αi. These
tests can be formulated in the hypothesis testing framework as:

H0 : αi = 0∀i against H1 : ∃αj 6= 0 (18)

Here, we are using the test statistic from [14, p. 523] for testing that the means
of the fixed factor effects are equal:

> anova(mamp.lmer)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

sreco 3 13.5 4.51 2.35

Based on the F0 value, we calculate the p value for the test on the fixed-effect
term.

> h <- nlevels(mamp.df$sreco)
> q <- nlevels(mamp.df$fSeed)
> anova(mamp.lmer)$"F value"

[1] 2.35

> 1 - pf(anova(mamp.lmer)$"F value", h-1, (h-1)*(q-1))

[1] 0.0981

The obtained p value 0.1 is only of minor significance. It does not give clear
evidence that sreco should be included in the model. However, the impact of
the problem instances is negligible, because the corresponding p values are sig-
nificantly larger than zero.

We can estimate the fixed factor effects α̂j in the mixed model as

α̂j = Ȳ·j· − Ȳ···

Using sum of contrasts implies that
∑
αj = 0. The point estimates for the mean

algorithm performance with the jth fixed factor setting can be obtained by µ·j =
µ+αj . The corresponding fixed effects are shown in the Fixed effects section of
the output from fm2a <- lmer(yLog ∼ sreco + (1|fSeed) + (1|fSeed:sreco),
data=df) on page 30. For example, we obtain the following value: sreco1 = -
0.35. Usually, we are interested in the marginal mean µ·j = µ+ αj , whose best
estimator is

µ̂·j = Y ·j·.

> (Y.j. <- with(mamp.df,aggregate(yLog,list(sreco=sreco),mean)))

sreco x
1 1 -5.82
2 2 -5.65
3 3 -5.18
4 4 -5.23

Beyond Particular Problem Instances 33

MAMP-5 Confidence Intervals and Prediction Finally, we generate paired com-
parisons plots, which are based on confidence intervals. The confidence interval
are determined with the VarCorr() function, which extracts estimated variances,
standard deviations, and correlations of the random-effects terms.

> VC<-VarCorr(mamp.lmer)
> sigma.gamma<-as.numeric(attr(VC$"fSeed:sreco","stddev"))
> sigma<-as.numeric(attr(VC,"sc"))
> MSAB <- sigma^2 + r * sigma.gamma^2
> Y.j. <- with(mamp.df,aggregate(yLog,list(alg=sreco),mean))
> s <- sqrt(2)*sqrt(MSAB/(q*r))
> T <- qtukey(1-0.05,h,(h-1)*(q-1))/sqrt(2)
> Y.j.$lower <- Y.j.$x - 0.5 * T * s
> Y.j.$upper <- Y.j.$x + 0.5 * T * s
> Y.j.

alg x lower upper
1 1 -5.82 -6.22 -5.42
2 2 -5.65 -6.06 -5.25
3 3 -5.18 -5.58 -4.77
4 4 -5.23 -5.63 -4.83

Note, that the intercept term µ̂ = −5.4694 can be added to the estimated
fixed effects to obtain the Y· values, e.g., −5.82 = −5.4694 − 0.35 or −5.65 =
−5.4694− 0.1841.

The wrapper function intervals() from Chiarandini and Goegebeur [10]
was used for visualizing these confidence intervals as shown in Fig. 10. Again,

x

1

2

3

4

−6.0 −5.5 −5.0

●

●

●

●

Fig. 10. Paired comparison plots. Results from four ES instances with different recom-
bination operators are shown in this plot.

34 T.Bartz-Beielstein

the largest difference occurs between no (1) and intermediate (3) recombination
of the strategy variables.

Second Example MAMP: ES on Simple Test Data Set In the previous
case study, one fixed factor was used. We now discuss the case MAMP with three
fixed factors.

MAMP-1 Algorithm and Problem Instances

– algorithm: two ES mutation operators {1, 2}
– algorithm: four ES recombination operators for strategy variables {1, 2, 3, 4}
– algorithm: four ES recombination operators for object variables {1, 2, 3, 4}
– instance: nine instances randomly sampled from the class (-0.1, 0.01,

0.001, 10.0, 10.0)
– replicates: five

The 32 possible combinations give rise to 32 algorithms to test.

> str(mamp2.df)

'data.frame': 1440 obs. of 6 variables:
$ y : num 0.1218 0.0123 0.4072 0.2941 1.2331 ...
$ mut : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ sreco : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
$ oreco : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 2 2 2 2 2 ...
$ fSeed : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ algSeed: Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...

Here, 2× 4× 4× 9× 5 = 1440 algorithm runs were performed.

MAMP-2 Validation of the Model Assumptions The Q-Q plot reveals the non-
normality of the original data. As in the previous case studies, a logarithmic
transformation improves the normality. However, even the log transformed data
show deviations from normality, especially in the tails of the distribution.

MAMP-3 Building the Model and ANOVA The variance decomposition, which
was introduced in the previous case study, was used. The variability in the
performance measure is decomposed according to the mixed-effects ANOVA
model and the model equation (15) is used. We will use likelihood-ratio tests to
determine significant factor and interaction effects.

MAMP-4a) Hypothesis Testing: Random Effects We include all second order
interactions in our models.

> mamp2.lm <- lm(yLog ~ (mut + sreco + oreco)^2, data = mamp2.df)
> mamp2.lmer1 <- lmer(yLog ~ (mut + sreco + oreco)^2 + (1| fSeed),

data = mamp2.df, REML = FALSE)

Beyond Particular Problem Instances 35

> mamp2.lmer2 <- lmer(yLog ~ (mut + sreco + oreco)^2 + (1| fSeed) +
(1| fSeed:mut) +(1| fSeed:sreco) + (1| fSeed:oreco),
data = mamp2.df, REML = FALSE)

> LRT <- as.numeric(2 * (logLik(mamp2.lmer2) - logLik(mamp2.lm)))
> 1-pchisq(LRT,1)

[1] 8.5e-12

The likelihood ratio test reveals that the random factor problem instance is
significant and that there is at least one significant interaction between fixed
algorithm factors and random problem instance factors. The analysis based on
anova() gives a similar result.

> anova(mamp2.lmer2, mamp2.lmer1)

Data: mamp2.df
Models:
mamp2.lmer1: yLog ~ (mut + sreco + oreco)^2 + (1 | fSeed)
mamp2.lmer2: yLog ~ (mut + sreco + oreco)^2 + (1 | fSeed) + (1 | fSeed:mut) +
mamp2.lmer2: (1 | fSeed:sreco) + (1 | fSeed:oreco)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mamp2.lmer1 25 5958 6090 -2954
mamp2.lmer2 28 5938 6086 -2941 26.1 3 9.1e-06

Therefore, we conclude that the random factor instance is significant.

MAMP-4b) Hypothesis Testing: Fixed Effects We consider the fixed effects next.
The LMERConvenienceFunctions provides many tools for the analysis of mixed
models. Here, we will use the pamer.fnc() for computing upper- and lower-
bound p values for the ANOVA and the amount of deviance explained (%) for
each fixed-effect of an lmer model.

> mamp2.fixed <- lmer(yLog ~ (mut + sreco + oreco)^2 + (1| fSeed) +
(1| fSeed:mut) +(1| fSeed:sreco) + (1| fSeed:oreco)
, data = mamp2.df)

> library(LMERConvenienceFunctions)
> pamer.fnc(mamp2.fixed)

Df Sum Sq Mean Sq F value upper.den.df upper.p.val
mut 1 1046.1 1046.12 307.626 1417 0.0000
sreco 3 29.4 9.82 2.886 1417 0.0345
oreco 3 91.0 30.34 8.922 1417 0.0000
mut:sreco 3 11.6 3.85 1.134 1417 0.3343
mut:oreco 3 943.9 314.63 92.519 1417 0.0000
sreco:oreco 9 19.1 2.12 0.624 1417 0.7773

lower.den.df lower.p.val expl.dev.(%)
mut 1318 0.0000 10.889

36 T.Bartz-Beielstein

sreco 1318 0.0346 0.306
oreco 1318 0.0000 0.948
mut:sreco 1318 0.3343 0.120
mut:oreco 1318 0.0000 9.825
sreco:oreco 1318 0.7773 0.199

The analysis yields that mut, oreco, and their interaction might be significant.
We use interaction plots (Fig. 11) to illustrate this behavior.

−6

−5

−4

−3

−2

oreco

m
ea

n
of

 y
Lo

g

1 2 3 4

 mut

1
2

Fig. 11. Interaction plots. The solid line represents results with mutation, whereas the
dotted line illustrates results obtained without mutation. Since we are considering a
minimization problem, results with mutation are better than without mutation. Re-
combination shows possible interactions, e.g., modifying the recombination operator
from dominant (2) to intermediate (3) improves the ES performance, if no mutation
is used. It worsens the performance, if mutation is used.

The analysis clearly demonstrates that mutation should be used, whereas
recombination worsens algorithm’s performance. However, this result cannot be
generalized, because we we considering a one-dimensional test function only. If
no mutation is used, intermediate recombination of the object variables improves
algorithm’s performance.

MAMP-4c) Back-fitting The function bfFixefLMER_F.fnc back-fits an initial
lmer model on upper- or lower-bound p values.

> mamp2.lmer3 <- lmer(yLog ~ (mut + sreco + oreco)^2 + (1| fSeed) +
(1| fSeed:mut) +(1| fSeed:sreco) + (1| fSeed:oreco) , data = mamp2.df)

Beyond Particular Problem Instances 37

First, we update initial model on trimmed data.

> df.trimmed = romr.fnc(mamp2.lmer3, mamp2.df, trim = 2.5)

n.removed = 50
percent.removed = 3.47

> mamp2.df = df.trimmed$data
> mamp2.lmer4 = update(mamp2.lmer3)

Next, we backfit fixed effects.

> mamp2.lmer5 = bfFixefLMER_F.fnc(mamp2.lmer4, log.file = FALSE
, llrt = FALSE, alpha=0.005)

processing model terms of interaction level 2
iteration 1

p-value for term "sreco:oreco" = 0.5 > 0.005
not part of higher-order interaction
removing term

iteration 2
p-value for term "mut:sreco" = 0.0182 > 0.005
not part of higher-order interaction
removing term

processing model terms of interaction level 1
iteration 3

p-value for term "sreco" = 0.0057 > 0.005
not part of higher-order interaction
removing term

pruning random effects structure ...
nothing to prune

> pamer.fnc(mamp2.lmer5)

Df Sum Sq Mean Sq F value upper.den.df upper.p.val
mut 1 1701.0 1701.0 757.59 1382 0e+00
oreco 3 45.2 15.1 6.71 1382 2e-04
mut:oreco 3 916.5 305.5 136.07 1382 0e+00

lower.den.df lower.p.val expl.dev.(%)
mut 1283 0e+00 20.363
oreco 1283 2e-04 0.541
mut:oreco 1283 0e+00 10.972

As in the full model (mamp2.fixed), most of the variance is explained by
mutation and the interaction between mutation and recombination of the object
variables. This situation was also illustrated in Fig. 11.

38 T.Bartz-Beielstein

MAMP-5 Confidence Intervals and Prediction We will consider the average al-
gorithm performance on the nine problem instances in Fig. 12. These data are
aggregated to determine confidence intervals, which are plotted in Fig. 13. Both
figures support the assumption that mutation improves the algorithm’s perfor-
mance. An evolution strategy with mutation, no recombination of strategy vari-
ables, and discrete recombination of the object variables performs reasonably
well. Again, the R code written by Marco Chiarandini and Yuri Goegebeur [10]
was used to determine confidence intervals and to generate the plots.

6 Summary and Outlook

This paper tries to find answers for the following fundamental questions in ex-
perimental research.

(Q-1) How to generate problem instances?
(Q-2) How to generalize experimental results?

In order to answer question (Q-1), we propose a three-stage-approach:

1. Describing the real-world system and its data
2. Feature extraction and model construction
3. Instance generation

We demonstrated how real-world problem instances with features from the time-
series domain can be generated. In this setting, the proposed approach works
very good. Since this approach uses a model, say M , to generate new problem
instances, one conceptual problem arises: This approach is not applicable, if the
final goal is the determination of a model for the data, becauseM is per definition
the best model in this case and the search for good models will result in M . But
there is a simple solution to this problem. In this case, the feature extraction and
model generation should be skipped and the original data should be modified
by adding some noise or performing transformations on the data. However, if
applicable, the model-based approach is preferred, because it sheds some light
on the underlying problem structure. For example, seasonality effects can be
precisely modified, which results in an better understanding of the real-world
problem and its structure.

As a test-function set randomly generated test functions are used. Algorithms
with different parameterizations are tested on this set of problem instances. This
experimental setup requires modified statistics, so-called random-effects models
or mixed models. This approach may lead to objective evaluations and compar-
isons. If normality assumptions are met, confidence intervals can be determined,
which "forecast" the behavior of an algorithm on unseen problem instances. Fur-
thermore, results can be generalized in real-world settings. This gives an answer
to question (Q-2).

Note, the underlying algorithm and problem designs were chosen for didacti-
cal purpose. These data are suitable for illustrating key features of the proposed
methods. Therefore, algorithm and problem designs were selected as simple as

Beyond Particular Problem Instances 39

yLog

2−1−2
2−2−1
2−2−2
2−1−1
2−4−2
2−3−1
2−4−1
2−1−4
2−1−3
2−3−2
2−4−4
2−3−4
2−4−3
2−2−3
2−3−3
2−2−4
1−2−3
1−2−4
1−4−4
1−1−4
1−3−4
1−1−3
1−4−3
1−3−3
1−2−1
1−1−2
1−4−2
1−3−1
1−2−2
1−3−2
1−1−1
1−4−1

−10 −8 −6 −4 −2 0

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

1
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

2

−10 −8 −6 −4 −2 0

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

3
2−1−2
2−2−1
2−2−2
2−1−1
2−4−2
2−3−1
2−4−1
2−1−4
2−1−3
2−3−2
2−4−4
2−3−4
2−4−3
2−2−3
2−3−3
2−2−4
1−2−3
1−2−4
1−4−4
1−1−4
1−3−4
1−1−3
1−4−3
1−3−3
1−2−1
1−1−2
1−4−2
1−3−1
1−2−2
1−3−2
1−1−1
1−4−1

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

4
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

5
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

6
2−1−2
2−2−1
2−2−2
2−1−1
2−4−2
2−3−1
2−4−1
2−1−4
2−1−3
2−3−2
2−4−4
2−3−4
2−4−3
2−2−3
2−3−3
2−2−4
1−2−3
1−2−4
1−4−4
1−1−4
1−3−4
1−1−3
1−4−3
1−3−3
1−2−1
1−1−2
1−4−2
1−3−1
1−2−2
1−3−2
1−1−1
1−4−1

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

7

−10 −8 −6 −4 −2 0

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

8
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

9

Fig. 12. Comparison of the mean values. Algorithms are classified as follows:
mut-sreco-oreco with mut ∈ {no, yes} and reco ∈ {no, discr, inter1, inter2}. Algo-
rithm instance 2-1-2 performs reasonably well, i.e., mutation, no recombination of
strategy variables and discrete recombination of object variables.

40 T.Bartz-Beielstein

log(y)

2−1−2

2−2−1

2−1−1

2−2−2

2−4−1

2−3−1

2−4−2

2−4−4

2−3−2

2−1−3

2−1−4

2−3−4

2−4−3

2−2−3

2−3−3

2−2−4

1−2−3

1−2−4

1−1−3

1−3−4

1−4−3

1−1−4

1−4−4

1−3−3

1−2−1

1−1−2

1−4−2

1−3−2

1−2−2

1−1−1

1−4−1

1−3−1

−6 −4 −2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1, 9 inst.

Fig. 13. Comparison of the confidence intervals. Algorithms are classified as in Fig. 12:
mut-sreco-oreco with mut ∈ {no, yes} and reco ∈ {no, discr, inter1, inter2} . 2-1-2
performs reasonably well, i.e., mutation, no recombination of strategy variables and
discrete recombination of object variables. Note, here we are considering the prob-
lem class Π1 in contrast to Fig. 12, where nine instances of this problem class were
compared.

Beyond Particular Problem Instances 41

possible. It was not our intention to present a detailed analysis of search heuris-
tics in this paper.

Tuning procedures such as sequential parameter optimization [3] can benefit
from this framework as follows: The algorithm is tuned as usually on a fixed set
of test problem instances. In a second step, the generalizability of the results
has to be demonstrated on randomly generated problem instances. Future in-
vestigations might consider structural properties of the set of problem instances,
e.g., linearity: if π1 ∈ Π and p2 ∈ Π, then (aπ1 + bπ2) ∈ Π? And, last but not
least, the concept of algorithm based validation [12, 4] will be used for further
investigations.

The software, which was used in this study, will be integrated into the R
package SPOT [6].

Acknowledgments This work has been kindly supported by the Federal Min-
istry of Education and Research (BMBF) under the grants MCIOP (FKZ 17N0311)
and CIMO (FKZ 17002X11). In addition, the paper and the corresponding R code
is based on Marco Chiarandini’s and Yuri Goegebeur’s publication Mixed Models
for the Analysis of Optimization Algorithms [10]. The author highly appreciates
their work.

References

1. T. Bartz-Beielstein. Experimental Research in Evolutionary Computation—The
New Experimentalism. Natural Computing Series. Springer, Berlin, Heidelberg,
New York, 2006.

2. T. Bartz-Beielstein, M. Friese, B. Naujoks, and M. Zaefferer. SPOT applied to
non-stochastic optimization problems—an experimental study. In K. Rodriguez
and C. Blum, editors, GECCO 2012 Late breaking abstracts workshop, pages 645–
646, Philadelphia, Pennsylvania, USA, July 2012. ACM.

3. T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. The sequential parameter
optimization toolbox. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, editors, Experimental Methods for the Analysis of Optimization Algo-
rithms, pages 337–360. Springer, Berlin, Heidelberg, New York, 2010.

4. T. Bartz-Beielstein, S. Markon, and M. Preuß. Algorithm based validation of a
simplified elevator group controller model. In T. Ibaraki, editor, Proceedings 5th
Metaheuristics International Conference (MIC’03), pages 06/1–06/13 (CD–ROM),
Kyoto, Japan, 2003.

5. T. Bartz-Beielstein and M. Preuss. Automatic and interactive tuning of algorithms.
In N. Krasnogor and P. L. Lanzi, editors, GECCO (Companion), pages 1361–1380.
ACM, 2011.

6. T. Bartz-Beielstein and M. Zaefferer. A gentle introduction to sequential parameter
optimization. Technical Report TR 01/2012, CIplus, 2012.

7. D. M. Bates. lme4: Mixed-effects modeling with R. 2010.
8. H.-G. Beyer and H.-P. Schwefel. Evolution strategies—A comprehensive introduc-

tion. Natural Computing, 1:3–52, 2002.
9. G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis, Forecasting

and Control. Holden-Day, 1976.

42 T.Bartz-Beielstein

10. M. Chiarandini and Y. Goegebeur. Mixed models for the analysis of opti-
mization algorithms. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, editors, Experimental Methods for the Analysis of Optimization Algo-
rithms, pages 225–264. Springer, Germany, 2010. Preliminary version available as
Tech. Rep. DMF-2009-07-001 at the The Danish Mathematical Society.

11. O. Flasch, T. Bartz-Beielstein, D. B. 1, W. Kantschik, and C. von Strachwitz. Re-
sults of the GECCO 2011 industrial challenge: Optimizing foreign exchange trading
strategies. CIOP Technical Report 10/11, Research Center CIOP (Computational
Intelligence, Optimization and Data Mining), Cologne University of Applied Sci-
ence, Faculty of Computer Scienceand Engineering Science, December 2011.

12. O. François and C. Lavergne. Design of evolutionary algorithms—a statistical
perspective. IEEE Transactions on Evolutionary Computation, 5(2):129–148, April
2001.

13. M. Gallagher and B. Yuan. A general-purpose tunable landscape generator. IEEE
transactions on evolutionary computation, 10(5):590–603, 2006.

14. D. C. Montgomery. Design and Analysis of Experiments. Wiley, New York NY,
5th edition, 2001.

15. H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester,
U.K., 1981.

16. M. Zaefferer. Optimization and empirical analysis of an event detection software for
water quality monitoring. Master’s thesis, Cologne University of Applied Sciences,
May 2012.

Kontakt/Impressum

Diese Veröffentlichungen erscheinen im Rahmen der Schriftenreihe "CIplus". Alle
Veröffentlichungen dieser Reihe können unter
www.ciplus-research.de
oder unter
http://opus.bsz-bw.de/fhk/index.php?la=de
abgerufen werden.

Köln, November 2012

Herausgeber / Editorship

Prof. Dr. Thomas Bartz-Beielstein,
Prof. Dr. Wolfgang Konen,
Prof. Dr. Horst Stenzel,
Dr. Boris Naujoks
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
Cologne University of Applied Sciences,
Steinmüllerallee 1,
51643 Gummersbach
url: www.ciplus-research.de

Schriftleitung und Ansprechpartner/ Contact editor’s office

Prof. Dr. Thomas Bartz-Beielstein,
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
Cologne University of Applied Sciences,
Steinmüllerallee 1, 51643 Gummersbach
phone: +49 2261 8196 6391
url: http://www.gm.fh-koeln.de/∼bartz/
eMail: thomas.bartz-beielstein@fh-koeln.de

ISSN (online) 2194-2870

