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Asymptotically safe and free chiral theories with and without scalars

Esben Mølgaard* and Francesco Sannino†

CP3-Origins & the Danish Institute for Advanced Study D-IAS, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

(Received 26 October 2016; published 11 September 2017)

We unveil the dynamics of four-dimensional chiral gauge-Yukawa theories featuring several scalar
degrees of freedom transforming according to distinct representations of the underlying gauge group. We
consider generalized Georgi-Glashow and Bars-Yankielowicz theories. We determine, to the maximum
known order in perturbation theory, the phase diagram of these theories and further disentangle their
ultraviolet asymptotic nature according to whether they are asymptotically free or safe. We therefore extend
the number of theories that are known to be fundamental in the Wilsonian sense to the case of chiral gauge
theories with scalars.

DOI: 10.1103/PhysRevD.96.056004

I. INTRODUCTION

A. Chiral gauge-Yukawa theories

The Standard Model of particle interactions is a chiral
gauge-Yukawa field theory. These theories therefore play
an important role in nature. In addition, some of the first
and most compelling attempts to unify the electromagnetic,
weak, and color interactions make use of chiral gauge-
Yukawa theories with a single gauge coupling.
However, very little is known about the interacting

dynamics of this kind of theories. Furthermore, their being
chiral makes it impossible, at the moment, to investigate
their dynamics via first principle lattice simulations. These
are the reasons that compel us to uncover in this paper some
of the key dynamical properties of these theories via higher-
order computations. Our theories contain besides chiral
fermions also several kind of scalars transforming according
to different representations of the underlying gauge and
global symmetries. We will concentrate on important ultra-
violet and infrared properties of the theories such as, for
example, whether the theories are completely asymptoti-
cally free [1–6] or safe [7–11]. In both scenarios, i.e.,
asymptotic freedom or safety,1 the theories are fundamental
according to the Wilsonian definition and are therefore safe
from any UV cutoff. In the asymptotically free case, wewill
investigatewhether an interacting infrared fixed point exists.
When relevant, we will also determine the ~a function
[56–59] at the fixed point and check the ~a variation.
We consider scalar extensions of the two time-honored

chiral gauge theories [60,61]: the generalized Georgi-
Glashow (GG) [62] and the Bars-Yankielowicz (BY)

theories [63] (see Tables I and II, respectively). These
are both SUðNÞ theories with fermions in the fundamental
representation and fermions in the two-index antisymmetric
(symmetric) representation in the GG (BY) model. Besides
grand unified theories [62], these theories have been
employed to endow masses to standard model fermions
in composite extensions of the Standard Model [64] with
the most recent attempt provided in Ref. [65].
We will go beyond earlier investigations [61] and more

recent investigations [66,67] by adding to the dynamics two
distinct kinds of scalar matter fields: one transforming in
the fundamental representation of the gauge group and one
gauge singlet transforming in the bifundamental represen-
tation of the global symmetry.2 We will be investigating in
steps first the gauge-fermion theory that features only a
gauge coupling, and then we will be considering in turn
the various scalars that further induce Yukawa interactions
and scalar self-interactions. We will determine the infrared
trustable fixed-point dynamics for the (complete) asymp-
totically free theories as well as the potential emergence of
interacting UV fixed points in all couplings referred to as
complete asymptotic safety when asymptotic freedom is
lost, extending the work of Ref. [8] to chiral gauge theories.
The theories under investigation are built on the foun-

dation of the chiral Lagrangian

LχGT ¼ −
1

4
FμνFμν þ iTσμDμT̄ þ i ~Fjσ

μDμ
~̄F
j

þ iFkσ
μDμF̄k; ð1Þ

where we have suppressed the gauge indices. The flavor
indices are j ¼ 1; 2;…; ðN � 4þ pÞ, and k ¼ 1; 2;…; p.
The fermionic field T refers to either A or S and transforms*molgaard@cp3.sdu.dk

†sannino@cp3.dias.sdu.dk
1Asymptotic safety has also been invoked [7] to help tame

quantum gravity problems [12–16]. In a similar spirit, UV
conformal extensions of the Standard Model with and without
gravity have received attention [17–55].

2It is worth stressing that for the asymptotically safe scenario
in perturbation gauge as well as Yukawa interactions are crucial
for its possible existence as first argued in [8] and further
investigated in [68].
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in the two-index antisymmetric or two-index symmetric
representation of the gauge group, respectively. F and ~F
transform in the fundamental representation of the
gauge group.
We learn that it is possible to achieve complete asymp-

totically free chiral gauge field theories with scalars and
further that these theories possess an infrared conformal
window.
Once asymptotic freedom is lost in the gauge coupling,

by varying the number of vectorlike species, asymptotic
safety can occur in gauge-fermion theories only nonper-
turbatively and above a critical number of flavors. In the
presence of scalar singlets, the induced Yukawa inter-
actions help tame the ultraviolet behavior of the gauge
interactions, and perturbative asymptotic safety emerges
similarly to the case of purely vectorlike theories [8].
Our results extend the number of theories that can be

fundamental according to Wilson [69,70] to the case of
chiral gauge theories with scalars. In fact, the occurrence of
UV complete fixed points guarantees the fundamentality
of the theory since, setting aside gravity, it means that the
theory is valid at arbitrary short distances [69,70].

II. GAUGE-FERMION ANALYSIS OF THE BY
AND GG GENERALIZED THEORIES

We begin by reexamining and extending the investiga-
tions of the conformal dynamics of BY and GG theories
without scalars. To enable us to easily compare our analysis
across different values of the number of colors, N, we will
replace p by x ¼ p=N in the much of following and keep in
mind that the theory is only physical for certain values of x.

The beta function to three-loop order can be found in the
Appendix (A2). We note that in the limit of large N and
large p with the ratio x ¼ p

N held constant (which we will
refer to as the Veneziano limit) the BY and GG theories
have the same beta functions, and indeed it can be shown
that the theories are completely equivalent in this limit.
In our search for fixed points, we will use the Banks-

Zaks method, where we start out by finding the value of x
where the one-loop term in the beta function vanishes
for a given N and call this xAF. For x > xAF, the theory is
infrared free, and for x < xAF, the theory is asymptotically
free. We have

xAF ¼ 9

2
∓ 3

N
: ð2Þ

A. Asymptotically free dynamics
and conformal window

We first investigate the phase diagram for the asymp-
totically free regime of the theory.

1. Veneziano limit

In this limit, the ratio x ¼ p=N is held constant, and we
rescale the coupling by N as follows:

āg ¼
g2N
ð4πÞ2 : ð3Þ

For convenience, we write the beta function in this case
explicitly:

βāg ¼ −ā2g
�
6 −

4x
3

�
− ā3g

�
13 −

26x
3

�

− ā4g

�
127

3
−
979x
18

þ 112x2

27

�
: ð4Þ

TABLE II. Transformation properties of the generalized Bars-
Yankielowicz fields under the gauge and anomaly-free global
symmetries.

Fields ½SUðNÞ� SUðN þ 4þ pÞ SUðpÞ U1ð1Þ U2ð1Þ
S ◫ 1 1 N þ 4 2p
~F □̄ □̄ 1 −ðN þ 2Þ −p
F □ 1 □ N þ 2 −ðN − pÞ
M 1 □ □̄ 0 N
H □̄ 1 1 −2 −p

TABLE I. Transformation properties of the generalized Georgi-
Glashow fields under the gauge and anomaly-free global
symmetries.

Fields ½SUðNÞ� SUðN − 4þ pÞ SUðpÞ U1ð1Þ U2ð1Þ
A ⊟ 1 1 N − 4 2p
~F □̄ □̄ 1 −ðN − 2Þ −p
F □ 1 □ N − 2 −ðN − pÞ
M 1 □ □̄ 0 N
H □̄ 1 1 2 −p

FIG. 1. Fixed point values of the gauge-fermion theory in the
Veneziano limit. The blue line is the well-known two-loop result,
and the yellow line is our improved three-loop one.
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Here, the Banks-Zaks fixed point is an IR one. It is found
by setting βāg ¼ 0 and by picking the solution which
vanishes smoothly for x ¼ xAF, as is seen in Fig. 1.
However, the three-loop term introduces a second fixed

point that will be discussed later.

2. Finite N and p conformal window

From a phenomenological point of view, it is interesting
to cover also the low-N limit. Since the GG theory is
defined only forN ≥ 5, we will use this as a reference value
but also consider the conformal window for any N and p.
For N ¼ 5, we proceed exactly as in the Veneziano case

above. Here, we have that BY and GG possess a qualita-
tively similar picture; see Figs. 2(a) and 2(b). A similar
picture is also found for the BY model for N ¼ 2, but since
the GG theory cannot be extended to such low values, we
do not discuss it further.
It is conventional to speak of the conformal window,

that is, the region in parameter space where the theory is
asymptotically free and has a trustable IR fixed point. To
determine the conformal window in the theories discussed
in this paper, we restore the parameter p and work in the
parameter space spanned by N and p. The upper boundary
of the conformal window is uniquely given by the line for
which the one-loop beta function vanishes:

β0 ¼ −2 − 3N þ 2

3
p ¼ 0 ð5Þ

pAF ¼ 3

2
ð2þ 3NÞ: ð6Þ

For definitiveness, we consider explicitly the conformal
window for the GG theory since the one for the BY theory
is similar. To estimate the lower boundary of the conformal
window, we use several methods. One could simply ask
when the two-loop beta function ceases to have a fixed
point, which happens when the two-loop term vanishes,
β1 ¼ 0. However, at this point, the putative fixed-point

value diverges, indicating that perturbative control has long
been lost. Another method, which draws upon our non-
perturbative knowledge of the theory, is to define the limit
as the point where the anomalous dimension of the fermion
mass operator at the fixed point equals 2, γ� ¼ 2. For
anomalous dimensions larger than 2, the associated scalar
operator would violate the unitarity bound [71]. Instead of
this method, we will use the more conservative expectation
that the lower boundary of the conformal window occurs
for γ� around unity when four-fermion operators cannot be
neglected since they can drive chiral symmetry breaking.
Yet a fourth possibility [72] is to insist that, along the flow
connecting the IR and UV fixed points, the ~a function of
Osborn [57,58] has the property [56] that

Δ ~a ¼ ~aUV − ~aIR ≥ 0: ð7Þ
This inequality was conjectured by Cardy [56]; it has been
shown to hold in the limit of vanishing coupling constants
[57,58], and it has since been argued to hold nonperturba-
tively [73,74]. We consider here all these estimated lower
boundaries and note that they each give different constraints
with the most constraining coming from the perturbative
positivity of Δ ~a. We present the conformal window for the
generalized Georgi-Glashow theory in Fig. 3.
Alternative nonperturbative suggestions to estimate the

lower boundary of the conformal window and the possible
infrared phases of these theories have been discussed
in Ref. [61].
Finally, the conformal window for the BY theory at

large N agrees with the GG one by construction, while it is
qualitatively very similar to the GG at smaller N.

B. Asymptotically safe conformal
window without scalars

For x > xAF, the theory is infrared free and develops a
Landau pole at one loop. At two loops and in the trustable

(a) (b)

FIG. 2. N ¼ 5 in gauge-fermion BY and GG theories. (a) Fixed points values of the gauge-fermion BY theory with N ¼ 5. The blue
line is the well-known 2 loop result, and the yellow our improved 3 loop one. (b) Fixed points values of the gauge-fermion GG theory
with N ¼ 5. The blue line is the well-known 2 loop result, and the yellow our improved 3 loop one.
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perturbative regime, it does not develop an interacting UV
fixed point in agreement with the results of Ref. [75]. This
theory, however, might still become asymptotically safe in
the large-p limit in a fashion similar to the one investigated
in Ref. [76] for a purely vectorlike theory. In fact, a
tantalizing hint that asymptotic safety can indeed emerge
here is provided by a careful analysis of the three-loops
results. Here, we observe the occurrence of an interacting
UV fixed point with the coupling value at criticality that
decreases as we increase the number of vectorlike fermions
p. The value of the UV fixed-point coupling both in the
Veneziano limit and GG theory for N ¼ 5 (the BY theory
has an equivalent behavior) is shown in Figs. 4(a) and 4(b),
respectively, as function of x. The blue curve is the three-
loop result for the Banks-Zaks fixed point that, once
asymptotic freedom is lost, moves to the negative axis
and becomes unphysical. The yellow curve shows the

emergence of an asymptotically safe non-Banks-Zaks-like
fixed point when asymptotic freedom is lost and x, i.e., the
number of flavors, is above a critical value.
The potentially novel asymptotically safe conformal

window is shown in Fig. 5. The qualitative feature of this
asymptotically safe window is that it would start at a critical
number of flavors above the loss of asymptotic freedom
and would then continue for any number of flavors above
that. Of course, because of the absence of a perturbatively
trustable Banks-Zaks-like fixed point, this picture needs
independent confirmation. It is in line, however, with
similar expectations at a large number of flavors in vector-
like theories discussed in Refs. [76,77].
If asymptotic safety were to occur in these theories, like

for the vectorlike case [76,77], because of the absence of a
Bankz-Zaks fixed point, a critical number of flavors must
develop such that in between the loss of asymptotic

FIG. 3. The conformal window for N ≥ 5 generalized Georgi-Glashow theory. From above, the lines are the border between IR
freedom and asymptotic freedom, Δ ~aBZ ¼ 0, γ� ¼ 1, and β1 ¼ 0.

(a) (b)

FIG. 4. Three-loop asymptotically safe fixed point in the Veneziano limit and for theN ¼ 5GG gauge-fermion theory. (a) Fixed points
values of the gauge-fermion theory in the Veneziano limit. The blue line is the three loop Banks-Zaks-like fixed point that moves to
negative values once asymptotic freedom is lost. The yellow shows the emergence of a non-Banks-Zaks asymptotically safe FP. (b) Fixed
points values of the gauge-fermion GG theory with N ¼ 5. The blue line is the three loop Banks-Zaks-like fixed point that moves to
negative values once asymptotic freedom is lost. The yellow shows the emergence of a non-Banks-Zaks asymptotically safe FP.
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freedom and this value the theory cannot be fundamental.
Above this critical value, the theory admits a continuum
limit. The crucial fact is that these theories could become
asymptotically safe because of the sufficiently large num-
ber of fermions rather than due to the balancing effect of
Yukawa interactions in theories featuring also scalars [8].
In these theories, scalars would not be needed to restore the
fundamentality of the theory when asymptotic freedom
is lost.
To elucidate the question of whether this putative fixed

point is indeed physical or a mere artifact of perturbation
theory, we have computed Δ ~aNBZ, the change in the ~a
function between the ultraviolet non-Banks-Zaks fixed
point and the infrared Gaussian fixed point, and for all
relevant values of p andN, we find that it is negative, which
appears to be a strike against the perturbative trustability of
this fixed point. We also find that the anomalous dimension
of the ~FF operator at this fixed point is always negative. Of
course, these results imply that nonperturbative methods
must be considered here to decide whether a new UV-safe
conformal window emerges.

III. GENERALIZED CHIRAL GAUGE THEORIES
WITH A MESONLIKE SCALAR

We now move to consider chiral gauge theories that
include also scalars and investigate their phase structure.
Because of the presence of scalars, new interactions such as
Yukawa and self-interactions become possible. This means
that new marginal couplings, including their beta functions,
need to be considered. We provide the detailed analysis
for the examples that we found most representatives and
comment on the general results later.
We start by adding a mesonlike scalar fieldM, which is a

singlet under the SUðNÞ gauge group and bifundamental
under the global SUðN � 4þ pÞ × SUðpÞ group. This
means that the Lagrangian will be extended to include

Yukawa interactions and scalar self-interaction and assume
the generic form

L ¼ LχGT þ LM ð8Þ

LM ¼ Tr½∂μM†∂μM� þ ðyM ~FjM
j
kF

k þ H:c:Þ
þ u1Tr½M†M�Tr½M†M� þ u2Tr½M†MM†M�: ð9Þ

The newly introduced coupling constants are rescaled as

aM ¼ y2M
ð4πÞ2 ; z1 ¼

u1
ð4πÞ2 ; z2 ¼

u2
ð4πÞ2 ; ð10Þ

and the full set of beta functions is given in Eqs. (A4)–(A7).
Because the newly introduced scalar does not modify the
one-loop gauge beta function, asymptotic freedom for the
gauge coupling is lost again for

xAF ¼ 9

2
∓ 3

N
: ð11Þ

We now investigate the IR conformal dynamics of this
theory both in the Veneziano and finite-N and -p limits.

A. Complete asymptotic freedom in the Veneziano limit

In this limit, the two theories are degenerate, and the
double-trace coupling z1 decouples from the running of the
other couplings. The opportunely rescaled couplings read

āM ¼ y2MN
ð4πÞ2 ; z̄1 ¼

u1p2

ð4πÞ2 z̄2 ¼
u2p
ð4πÞ2 : ð12Þ

Because of the presence of Yukawa and scalar self-
coupling interactions, this theory does not in general allow
for a continuum limit, even when the gauge coupling is
asymptotically free. One has to further study the one-loop
conditions for the Yukawa and scalar self-coupling inter-
actions to ensure that they are also asymptotically free.

FIG. 5. Asymptotically safe conformal window for the generalized Georgi-Glashow theory via the three-loop order estimate. The
shaded region is the area where the asymptotic safety sets in. The blue line marks the loss of asymptotic freedom.
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Since, at least at large N, the double-trace operator is a
spectator coupling, the general conditions for this to happen
reduce to the ones presented in Ref. [6] that we review here
for the reader’s convenience. In the parameter space region
where the Yukawa coupling āM vanishes faster than āg, the
conditions for complete asymptotic freedom are

b0 < 0; b0 − c1 > 0;

k ≥ 0; b0 − d2 þ
ffiffiffi
k

p
> 0; ð13Þ

with these coefficients related to the beta functions via

βg ¼ ā2gðb0 þ b1āg þ bMāMÞ ð14Þ

βM ¼ āMðc1āg þ c2āMÞ ð15Þ

βz2 ¼ z̄2ðd1z̄2 þ d2āg þ d3āMÞ þ d4ā2g þ d5ā2M ð16Þ

and

k ¼ ðb0 − d2Þ2 − 4d1d4: ð17Þ
For the theory studied here, and within the regime of
interest, we have

b0 ¼
4x
3
− 6; b0 − c1 ¼

4x
3
; k ¼

�
4x
3
− 6

�
2

;

b0 − d2 þ
ffiffiffi
k

p
¼ 0; ð18Þ

where in the last equation we have used that b0 < 0. Thus,
the first three conditions are satisfied when 0 < x < 9

2
, and

the last in Eq. (13) fail to be satisfied for all values of x
since d2 ¼ d4 ¼ 0.

Along the fixed flow given by āy ¼ c2
b0−c1

āg (see Ref. [6]
for details), the conditions are

b0 < 0; b0 − c1 > 0;

k0 ≥ 0; b0 − d02 þ
ffiffiffiffi
k0

p
> 0; ð19Þ

with

d02 ¼ d2 þ d3
b0 − c1

c2
;

k0 ¼
�
b0 − d2 − d3

b0 − c1
c2

�
2

− 4d1

�
d4 þ d5

�
b0 − c1

c2

�
2
�
; ð20Þ

and we find

k0 ¼
�
6 −

4x
3
þ 16x
3ð3þ 2xÞ

�
2

þ 512x2ð1þ 2xÞ
9ð3þ 2xÞ2 ;

b0 − d02 þ
ffiffiffiffi
k0

p
¼ −6þ 4x

3
−

16x
3ð3þ 2xÞ þ

ffiffiffiffi
k0

p
> 0; ð21Þ

which satisfies the conditions for 0 < x < 9
2
.

Since the final condition of Eq. (13) only fails to be
satisfied when the influence of the Yukawa coupling is
ignored entirely, we interpret these results as complete
asymptotic freedom being found for all values of ag and ay
in the region bounded by the fixed-flow line and ay ¼ 0.
We present in Fig. 6 the renormalization group (RG)

flow for pairs of couplings demonstrating the existence
of a completely asymptotically free region, as well as the
IR-attractive fixed points discussed in the IR dynamics
paragraph.

(a) (b) (c)

FIG. 6. Three slices of the āg − āM paramter space. We see that there is an all-directions IR-attractive fixed point in figure b. It, along
with the two fixed points in figure c, indicates the boundaries of the region of complete asymptotic freedom where all flows go to the
Gaussian fixed point in theUV. The pointsmarked in purple, red, and blue are the fixed points of the theory, with purple being theGaussian
fixed point, red being the all-directions IR-attractive fixed point, and blue being the additional fixed points. (a) RG flow of the Veneziano
limit of the generalized GG/BY theory with mesons. This slice of parameter space has x ¼ 4.2 and z̄2 ¼ z̄⋆2 ≈ 0.1293. (b) RG flow of the
Veneziano limit of the generalized GG/BY theory with mesons. This slice of parameter space has x ¼ 4.2 and z̄2 ¼ z̄⋆2 ≈ 0.0299:. (c) RG
flow of the Veneziano limit of the generalized GG/BY theory with mesons. This slice of parameter space has x ¼ 4.2 and z̄2 ¼ 0.
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1. Conformal IR dynamics

The presence of IR fixed points can be investigated
independently of the complete asymptotically free analysis
since the RG trajectories will inevitably end at the IR
fixed point.
For x < xAF, we have two Banks-Zaks–type fixed points

(meaning that they vanish at x ¼ xAF), one for positive z2,
which has two corresponding solutions for z1, and one
fixed point with negative z2 and only imaginary solutions
for z1. For further details, see Figs. 7(a) and 7(b). Since the
second fixed point has a negative value for the self-
coupling, the theory described by this fixed point is
unstable, and we will not consider it further. We refer to
the fixed values of the first fixed point as ā�g; ā�M; z̄

�
1, and z̄

�
2.

The analysis of this fixed point follows closely the one of
the theory described in Refs. [59,78], and we will only deal
with it briefly here. Note that there are other fixed points
which can be found by allowing āg, āM, or z̄2 to equal zero.
We have in Fig. 6(a) referred to the fixed point one finds by
setting āg ¼ 0 by ā⋆M and z̄⋆2 .
It is interesting to note [see Fig. 7(a)] that where the

fixed-point value of ag in the gauge-fermion case diverges
for low x we find that the presence of Yukawa and quartic
couplings forces the fixed-point value down to instead
vanish at low x.

2. Finite N

We proceed by examining the IR dynamics of the
mesonic gauge-Yukawa BY theory for N ¼ 5, and find
that the fixed point with negative z2 (corresponding to
Fig. 7(b) has disappeared, while the one with positive z2
(corresponding to Fig. 7(a)) remains. We also see that even
at finite N the contribution from the double-trace operator
z1 is small, in that the fixed-point locations for ag, aM, and
z2 are largely unchanged. In Figs. 8(a) and 8(b), we have
plotted these fixed-point locations, a�g, a�M, z

�
2, and z�1, for

the two closely related fixed points.
Moving on to the mesonic gauge-Yukawa GG theory for

N ¼ 5, we find a very similar pattern repeated once more;
see Figs. 9(a) and 9(b). However, careful observation will
show that the fixed-point values no longer vanish as the
border of asymptotic freedom, xAF ¼ 51

10
, is approached

from below. We will return to this point in the next section,
but for values of x lower than xAF, the behavior is
unaffected by these details.
In the finite-N cases, the influence of the single-trace

coupling z1 cannot be ignored on the question of complete
asymptotic freedom, and the analysis of Ref. [6] needs to
be expanded to include multiple quartic self-couplings. An
in-depth analysis goes beyond the scope of this work.
Nevertheless, by continuity, we expect, at least for N and

(a) (b)

FIG. 7. Veneziano limit of the mesonic gauge-Yukawa theory. (a) Values of the primary fixed point of the mesonic gauge-Yukawa
theory in the Veneziano limit. There is also another value of z̄1 which gives a fixed point, but this is the IR stable solution. (b) Values of
the secondary fixed point of the mesonic gauge-Yukawa theory in the Veneziano limit. Notice that for these values, there is no real-
valued fixed point for z̄1.

(a) (b)

FIG. 8. Fixed-points values of the mesonic gauge-Yukawa BY theory with N ¼ 5. (a) The fixed point values when the almost-
decoupled z1 coupling numerically smallest. (b) The fixed point values when the almost-decoupled z1 coupling numerically largest.
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p sufficiently large, the theory to still feature a complete
asymptotically free region in coupling space.

B. Comments on asymptotic safety

We saw in Fig. 5 that hints of asymptotic safety show up
in the gauge-fermion N ¼ 5 generalized Georgi-Glashow
theory for high values of p. From careful analysis of the
conditions for asymptotic safety [8], one expects the
presence of a Yukawa coupling between a flavored meson
and gauged fermions to help bring about the presence
of asymptotic safety, by lowering the needed values of p.
The simple reason behind this expectation is the fact that
Yukawa interactions along the fixed flow, where the
Yukawa beta function vanishes, contribute negatively to
the resulting two-loop coefficient of the gauge beta function.
To elucidate this point here, wewrite the aM beta function

to one loop for the generalized GG model with the meson
field M and find the fixed flow by setting it to zero,

βaM ¼ a2Mð3N þ 2p − 4Þ − 6agaM
N2 − 1

N
ð22Þ

a�M ¼ 6

3N þ 2p − 4

N2 − 1

N
ag; ð23Þ

the resulting two-loop effective gauge beta function
reads

βeffag ¼
�
−4 − 6N þ 4p

3

�
a2g

þ
��

−1 − 13N2 −
2ðp − 6Þ

N
þ N

�
−30þ 26p

3

��

−
12pðN þ p − 4Þ
ð3N þ 2p − 4Þ

N2 − 1

N

�
a3g ð24Þ

¼
�
4p
3

− 34

�
a2g

þ
�
4

15
ð161p − 1776Þ − 288pð1þ pÞ

5ð11þ 2pÞ
�
a3g; ð25Þ

where in the second equation we have set N ¼ 5. In
Fig. 10, we plot simultaneously when the first (blue) and
the second (orange) coefficients vanish. Since the second
coefficient is negative below the orange curve, we deduce
that for N ¼ 5, 6, 7 a conformal window for asymptotic
safety opens up, albeit for a tiny region of noninteger p
for integer N.
Superficially, this seems at odds with the three-loop

result found in Figs. 9(a) and 9(b) indicating the presence of
an IR fixed point for values of x < xAF ¼ 51

10
corresponding

to p < 51
2
. However, a careful study shows that by zooming

into the figures around the point where asymptotic freedom
is lost, we find that there is no contradiction [Figs. 11(a)
and 11(b)]. For values of x slightly larger than xAF
(corresponding to noninteger p), we do have asymptotic
safety, but the fixed point soon turns around and yields a
perturbative IR-fixed point for x < xAF. The turning point
is at x ¼ x� ≈ 5.10122.
The analysis shows how the presence of a scalar degree

of freedom, even if singlet under the gauge interactions,
greatly changes the phase diagram structure with respect to
the pure gauge-fermion chiral gauge theory.

IV. CHIRAL GAUGE THEORIES
WITH A HIGGS-LIKE SCALAR

In this section, we will include a scalar H transforming
according to the fundamental representation of the gauge

5 6 7 8 9 10
0

10

20

30

40

50

N

p AF lost

β1=0

FIG. 10. Conformal window for the generalized Georgi-
Glashow theory with mesons and N ¼ 5 via the two-loop order
estimate.

(a) (b)

FIG. 9. Fixed-points values of the mesonic gauge-Yukawa GG theory with N ¼ 5. (a) The fixed point values when the almost-
decoupled z1 coupling numerically smallest. (b) The fixed point values when the almost-decoupled z1 coupling numerically largest.
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group instead of the mesonic singlet field M. This means
that the Lagrangian will be extended to include

L ¼ LχGT þ LH ð26Þ

LH ¼ DμðH†ÞaDμHa þ ðykTfa;bg ~Fk
aHb þ H:c:Þ

þ λðH†ÞaHaðH†ÞbHb: ð27Þ

Here, we adopt the convention that yk is a vector where the
first entry is yH and all others zero,3 such that ykyk ¼ y2H.
We rescale the newly introduced coupling constants in

the following manner:

aH ¼ y2H
ð4πÞ2 ; aλ ¼

λ

ð4πÞ2 : ð28Þ

Since we can, in this case, only form a single quartic
coupling, the theory has only three beta functions. We work
here at finite N and p and list the full beta functions in
Appendix A 3.

We learn that the presence of this specific scalar matter
does little to change the basic picture found in the pure
gauge-fermion case (see Sec. II) at the two-loop level since
the contribution of charged scalar degrees of freedom enters
the gauge beta function with the opposite sign of the
Yukawa interactions. One notable feature that occurs at the
three-loop level, however, is that we observe a fixed-point
merger which provides a calculable lower boundary to the
asymptotically free conformal window [see Figs. 12(a) and
12(b)]. Therefore, conformality will be lost smoothly, and
we expect that a walking region will be present for x
slightly below the merger value. A careful analysis of a
similar situation was performed in Ref. [79], and we will
not discuss this phenomenon further in this paper.

A. Complete asymptotic freedom

Since, by construction, we have one gauge, one Yukawa,
and one quartic coupling, we can perform the complete
asymptotic freedom analysis at any N. This is neatly sum-
marized in terms of the complete asymptotic freedom (CAF)
parameter space regions of the theory in Figs. 13(a) and 13(b).
We see that both the BY and GG theories exhibit

complete asymptotic freedom for certain values of N

x

−0.0001

0.0001

0.0002

0.0003

0.0004

0.0005

ag

aM

z1

z2

x

−0.0001

0.0001

0.0002

0.0003

0.0004

0.0005

ag

aM

z1

z2

5.0990 5.0995 5.1005 5.1010 5.0990 5.0995 5.1005 5.1010

(a) (b)

FIG. 11. Fixed-point values of the mesonic gauge-Yukawa GG theory with N ¼ 5. (a) The fixed point values when the almost-
decoupled z1 coupling numerically smallest. (b) The fixed point values when the almost-decoupled z1 coupling numerically largest.

1.5 2.0 2.5 3.0 3.5
x

0.1

0.2

0.3

0.4

ag

aH

aλ

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
x

0.05

0.10

0.15

0.20

0.25

ag

aH

aλ

(a) (b)

FIG. 12. The Higgs-like chiral gauge-Yukawa theories with N ¼ 5. (a) Fixed points values of the higgs-like gauge-Yukawa BY theory
with N ¼ 5. Note the fixed point merger marking the lower boundary of the conformal window at x ≈ 1.2. (b) Fixed points values of the
higgs-like gauge-Yukawa GG theory with N ¼ 5. Note the fixed point merger marking the lower boundary of the conformal window at
x ≈ 3.6.

3This may seem like a very limiting condition, but it is
related to, e.g., setting all entries equal to the same value by an
SUðN � 4þ pÞ transformation.
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and p. In the BY theory [Fig. 13(a)], the region of paramter
space is smaller, but in the entire region, CAF can be
realized in both the ay → 0 and fixed-flow limits and
(presumably) for any value of the Yukawa coupling
between those two extremes. Conversely, in the GG theory,
CAF is realized for a large swath of parameter space, but for
most of it, the ay → 0 limit does not allow for complete
asymptotic freedom.

V. GENERALIZED GEORGI-GLASHOW
MODEL WITH ALL SCALARS

At last, we consider the generalized Georgi-Glashow
theory featuring simultaneously both the mesonic and
Higgs-like scalars,

L ¼ LχGT þ LH þ LM ð29Þ

LH ¼ DμðH†ÞaDμHa þ ðyHfkTfa;bg ~Fk
aHb þ H:c:Þ

þ λðH†ÞaHaðH†ÞbHb: ð30Þ

LM ¼ Tr½∂μM†∂μM� þ ðyMðδjk − fjfkÞ ~FjMk
l F

l þ H:c:Þ
þ ðy1fjfk ~FjMk

l F
l þ H:c:Þ

þ u1Tr½M†M�Tr½M†M� þ u2Tr½M†MM†M�; ð31Þ

where we have made some slight changes to the form
of the Lagrangian compared to the mesonic and Higgs-like
Lagrangian considered previously. First, we have made
explicit the fact that yk ¼ yHfk, where

fk ¼
�
1 k ¼ 1

0 k ≠ 1:
ð32Þ

The Higgs-like Yukawa interaction then breaks the pre-
vious symmetry of the mesonic Yukawa coupling into the
two pieces shown above through loop corrections. This
comes about because only ~F1 couples to the Higgs field H,
but all ~Fk couple to the mesonic field M.
In analogy with our previous analysis, we rescale the

couplings

ag ¼
g2

ð4πÞ2 aH ¼ y2H
ð4πÞ2

aM ¼ y2M
ð4πÞ2 a1 ¼

y21
ð4πÞ2 ; ð33Þ

6 8 10 12 14 16 18 20
0

20

40

60

80

100

N

p AF lost

1=0

FIG. 14. Conformal window of the generalized Georgi-
Glashow theory with Higgs- and mesonlike scalars. The blue
line defines the border between asymptotic and infrared freedom,
and the yellow line defines where β1 ¼ 0. The asymptotically free
conformal window is shaded in blue, and the asymptotically safe
conformal window is shaded in yellow.

5 10 15 20
0

1

2

3

4

5

6

N

x ay 0 CAF

Fixed flow CAF

6 8 10 12 14 16 18 20
0

1

2

3

4

5

N

x ay 0 CAF

Fixed flow CAF

(a) (b)

FIG. 13. Complete asymptotic freedom in chiral gauge theories with a Higgs-like scalar. (a) Area of the parameter space of BY theory
where complete asymptotic freedom can be found. The shaded region is completely asymptotically free in both the fixed-flow and
ay → 0 limits. (b) Area of the parameter space of GG theory where complete asymptotic freedom can be found. The upper shaded
shaded region is completely asymptotically free in both the fixed-flow and ay → 0 limits, whereas the lower only is in the
fixed-flow limit.
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and the beta functions up to two loops in the gauge
coupling and one loop in the Yukawas are given by

βag ¼ −a2g
�
11

3
þ 6N −

4Nx
3

�

− a3g

�
−
10

N
þ 1þ 2xþ 82N

3
þ 13N2 −

26N2x
3

�

þ a2gaH

�
5

2
−
3N
2

�
þ a2gaMð10Nx − 2N2ðxþ x2ÞÞ

− 2a2ga1Nx: ð34Þ

βaH ¼ agaH

�
15

N
þ 6 − 9N

�
−
a2H
2

�
1 − 3N

�

þ aHa1Nx ð35Þ

βaM ¼ agaM

�
6

N
− 6N

�
− a2M

�
5 − N

�
3þ 2x

��

þ aMa1 ð36Þ

βa1 ¼ aga1

�
6

N
− 6N

�
− aHa1

�
1

2
−
N
2

�

− aMa1

�
5 − Nð1þ xÞ

�

þ a21

�
1þ N

�
2þ x

��
: ð37Þ

We find the conformal window of this theory using the
simplest possible criteria, i.e., that the border of asymptotic
freedom determines one edge of the conformal window and
the vanishing of the effective two-loop coefficient deter-
mines the second, see Fig. 14. To find the effective two-
loop coefficient, we find the fixed-point values for aH, aM,
and a1 using βaH ¼ βaM ¼ βa1 ¼ 0.
We observe that there the theory seems to exhibit two

qualitatively different conformal windows. For N > 10,
there is a narrow, but widening as N increases, slice
of parameter space where conformality can be found within
the asymptotically free region of parameter space. For
N ≤ 10, however, we find that the conformal window lies
above the boundary of asymptotic freedom, meaning that
any fixed points will be asymptotically safe. Careful
examination shows that asymptotically safe fixed points
exist for three distinct theories given by (N ¼ 5, p ¼ 26),
(N ¼ 6, p ¼ 30), and (N ¼ 8, p ¼ 39). The asymptotically
safe conformal window also extends to N ¼ 7, N ¼ 9 and
N ¼ 10; however, here, there are no integer values of p for
which asymptotic safety can be realized.

VI. CONCLUDING REMARKS

We studied the phase diagram of relevant chiral gauge-
Yukawa theories in perturbation theory with and without

several scalar degrees of freedom transforming according
to distinct representations of the underlying gauge group.
The gauge-fermion sector corresponds to the generalized
Georgi-Glashow and Bars-Yankielowicz theories. Not
only did we unveil the phase diagram of these theories,
but we further disentangled their ultraviolet asymptotic
nature according to whether they are asymptotically free
or safe.
The emerging general picture is that it is possible to have

complete asymptotically free chiral gauge field theories
with scalars and further that these theories can have a
controllable infrared conformal window.
Asymptotic safety can kick in, once asymptotic

freedom is lost in the gauge coupling, nonpertur-
batively when scalars are absent and furthermore above
a critical number of flavors in agreement with the
observations made in Ref. [80]. When, however, scalar
singlets are present, Yukawa interactions help tame the
ultraviolet behavior of the gauge interactions, and per-
turbative asymptotic safety emerges as observed first
in Ref. [8].
This is well in line with the argument of Ref. [68] that

asymptotic safety can only occur in theories with gauge and
Yukawa couplings.

ACKNOWLEDGMENTS

We would like to thank Elena Vigiani and Giulio Maria
Pelaggi for invaluable assistance in double-checking our
calculations of the beta functions. The CP3-Origins center
is partially funded by the Danish National Research
Foundation, Grant No. DNRF90.

APPENDIX A: BETA FUNCTIONS
AND ANOMALOUS DIMENSIONS

1. Gauge-fermion theories

In this Appendix, we present the beta functions of
the gauge-fermion theories under consideration. The beta
functions are derived on the basis of Refs. [81–86], which
is done in the Landau gauge of the MS scheme and as such
is independent of the gauge-fixing parameter. However,
if one considers the theory in another scheme, more care
must be taken to ensure gauge invariance; see, e.g.,
Refs. [87,88].
To make our expressions more transparent, we will work

initially with the coupling

ag ¼
g2

ð4πÞ2 : ðA1Þ

To the three-loop order, the beta function in
generalized Bars-Yankielowicz and Georgi-Glashow
theories is
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βag ¼−a2g
��

6−
4x
3

�
N∓ 4

�
−a3g

��
13−

26x
3

�
N2 ∓ 30Nþð1þ 2xÞ� 12

N

�
−a4g

��
127

3
−
979x
18

þ 112x2

27

�
N3

∓
�
180−

82x
3

�
N2þ

�
201

4
þ 77x

9
−
11x2

9

�
N�

�
283

6
− 11x

�
−
103− 2x

4N
� 9

N2

�
; ðA2Þ

where the upper (lower) signs correspond to the generalized BY (GG) theory. N is the number of colors which is restricted
toN > 5 for GG theory, x ¼ p=N is a more convenient variable than pwhen considering the large N limit, and it is a simple
matter to make the replacement if one cares only about a specific finite N.
We can also compute the anomalous dimension of the fermion mass operator F ~F to two-loop order,

γF ~F ¼ ag

�
3N
2

−
3

2N

�
þ a2g

��
61

8
−
5x
6

�
N2 ∓ 15N

6
þ
�
−8þ 5x

6

�
� 15

6N
þ 3

8N2

�
; ðA3Þ

where the upper (lower) signs again correspond to the generalized BY (GG) theory.

2. Chiral gauge theories with a mesonlike scalar

The following are the beta functions for the chiral gauge theories (either BY or GG) that include a mesonic scalar-like
operator with the Lagrangian given in Eq. (8):

βag ¼ −a2g
��

6 −
4x
3

�
N ∓ 4

�
− a3g

��
13 −

26x
3

�
N2 ∓ 30N þ ð1þ 2xÞ � 12

N

�
− a2gaMf2xð1þ xÞN2 � 8xNg

− a4g

��
127

3
−
979x
18

þ 112x2

27

�
N3 ∓

�
180 −

82x
3

�
N2 þ

�
201

4
þ 77x

9
−
11x2

9

�
N �

�
283

6
− 11x

�

þ
�
−103þ 2x

4N
� 9

N2

��
− a3gaM

�
27x
2

ð1þ xÞN3 � 54xN2 −
3x
2
ð1þ xÞN ∓ 6x

�

− a2ga2Mf−xð5þ 8xþ 3x2ÞN3 ∓ 2xð13þ 9xÞN2 − 24Nxg ðA4Þ

βaM ¼ agaM

�
−6N þ 6

N

�
þ a2Mfð3þ 2xÞN � 4g þ a2gaM

��
−
61

2
þ 10x

3

�
N2 � 10N

þ
�
32 −

10x
3

�
∓ 10

N
−

3

2N2

�
þ aga2M

�
ð9þ 8xÞN2 � 16N − ð9þ 8xÞ ∓ 16

N

�
þ a3M

�
−
�
3þ 13x

2
þ x2

2

�
N2

∓ ð12þ 2xÞN þ 4

�
þ a2Mz1f−8ð1þ 2xÞN ∓ 32fþa2Mz2f−8xð1þ xÞN2 ∓ 32xN − 8g

þ aMz21f4xð1þ xÞN2 � 16xN þ 4g þ aMz1z2f8ð1þ 2xÞN � 32g þ aMz22f4xð1þ xÞN2 � 16xN þ 4g ðA5Þ

βz1 ¼ 4NaMz1 þ z21f4xð1þ xÞN2 � 16xN þ 16g þ z1z2f8ð1þ 2xÞN � 32g þ 12z22 ðA6Þ

βz2 ¼ −2Na2M þ 4NaMz2 þ 24z1z2 þ z22f4ð1þ 2xÞN � 16g: ðA7Þ

3. Chiral gauge theories with a Higgs-like scalar

The following are the beta functions for the chiral gauge theories (either BY or GG) that include a Higgs-like scalar
operator with the Lagrangian given in Eq. (26):
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βag ¼ a2g

��
4x
3
− 6

�
N þ 1� 12

3

�
þ a3g

��
26x
3

− 13

�
N2 þ 8� 90

3
N − ð1þ 2xÞ − 2� 12

N

�
− a2gaH

�
3N
2

� 5

2

�

þ a4g

��
−
127

3
þ 979x

18
−
112x2

27

�
N3 þ

�
1507� 12960

72
−
335� 2952

108
x

�
N2 þ

�
−
10997� 2286

216
−
77x
9

þ 11x2

9

�
N

−
382� 849

18
þ 73� 396

36
xþ 1903� 576 − 36x

72N
þ 29 ∓ 72

8N2

�
þ a3gaH

�
−
261N2

16
∓ 465N

16
þ 133

16
� 281

16N

�

þ a3gaλ

�
N þ 2 −

2

N

�
þ a2ga2H

�
57N2

32
þ 13� 82

16
N þ 115� 38

32

�
þ a2ga2λf−2N − 2g ðA8Þ

βaH ¼ agaH

�
−9N ∓ 6þ 15

N

�
þ a2H

�
3N
2

þ 2� 3

2

�
þ a2gaH

��
−
129

4
þ 4x

�
N2 þ

�
5 ∓ 34

2
� 10x

3

�
N

þ 819� 22

12
−
22x
3

−
13� 48

3N
−

3

N2

�
þ aga2H

�
63

8
N2 þ 30 ∓ 153

8
N −

39� 4

8
−
26� 153

8N

�

þ a3H

�
−
3N2

4
−
7� 2

4
N þ 9 ∓ 7

4

�
þ a2Haλf−4N − 4ð2� 1Þg þ aHa2λf4þ 4Ng ðA9Þ

βaλ ¼ a2g

�
3N
4

þ 3

4
−

3

N
þ 3

2N2

�
þ agaλ

�
−6N þ 6

N

�
þ a2H

�
−
N
2
−
1� 2

2

�
þ aHaλf2N � 2gþa2λf4N þ 16g: ðA10Þ

APPENDIX B: SUMMARY OF COMPLETE
ASYMPTOTIC FREEDOM CONDITIONS

The CAF conditions can be identified at one loop in all
couplings. The gauge coupling evolution at one loop reads

μ
dαg
dμ

¼ b0α2g: ðB1Þ

For a single Yukawa coupling,

μ
dαH
dμ

¼ αH½c1αg þ c2αH�; ðB2Þ

where in general c1 < 0 and c2 > 0, while the scalar self-
coupling reads

μ
dαλ
dμ

¼ αλðd1αλþd2αgþd3αHÞþd4α2g þd5α2H; ðB3Þ

where d1, d3, d4 ≥ 0 and d2, d5 ≤ 0. Together with
Eqs. (B1) and (B2), it describes the running of the gauge
coupling, Yukawa coupling, and self-coupling in a general
gauge-Yukawa system at one-loop order.
If the gauge and Yukawa couplings are not on their fixed

flow, these conditions are

b0 < 0; b0 − c1 > 0; k ≥ 0;

b0 − d2 þ
ffiffiffi
k

p
> 0; condition CAF1; ðB4Þ

where

k ¼ ðb0 − d2Þ2 − 4d1d4: ðB5Þ

If the beta function coefficients satisfy these constraints and
the couplings satisfy appropriate initial (infrared) condi-
tions, the theory is complete asymptotically free. The first
(second) condition is necessary to ensure asymptotic free-
dom of the gauge (Yukawa) coupling, while the third and
fourth conditions are necessary to ensure asymptotic free-
dom and positivity of the self-coupling.
On the other hand, if the gauge and Yukawa couplings

are on their fixed flow, then the necessary set of conditions
that the beta function coefficients must satisfy is

b0 < 0; b0 − c1 > 0; k0 ≥ 0;

b0 − d02 þ
ffiffiffiffi
k0

p
> 0; condition CAF2; ðB6Þ

where

d02 ¼ d2 þ d3
b0 − c1

c2
ðB7Þ
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k0 ¼
�
b0 − d2 − d3

b0 − c1
c2

�
2

− 4d1

�
d4 þ d5

�
b0 − c1

c2

�
2
�
: ðB8Þ

The condition for asymptotic freedom of the self-coupling
is in this case different from the condition where the gauge
and Yukawa couplings are not on their fixed flow. This is

because the running of the Yukawa coupling can no longer
be neglected and has an influence on the running of the self-
coupling. If these CAF2 conditions are satisfied and the
couplings satisfy appropriate initial (infrared) conditions,
the theory is complete asymptotically free.
Investigations of asymptotically free scenarios in non-

Abelian Higgs models making use of nonperturbative
approaches appeared in Refs. [89,90].
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