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Vacuum alignment and radiatively induced Fermi scale

Tommi Alanne1,a

1CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Abstract. We extend the discussion about vacuum misalignment by quantum corrections
in models with composite pseudo-Goldstone Higgs boson to renormalisable models with
elementary scalars. As a concrete example, we propose a framework, where the hierarchy
between the unification and the Fermi scale emerges radiatively. This scenario provides
an interesting link between the unification and Fermi scale physics.

1 Introduction

In models with enhanced global symmetries, radiative effects have to be taken into account to deter-
mine the actual alignment between the electroweak (EW) gauge group and the stability group related
to the spontaneous global symmetry breaking. This was first observed in the context of technicolour
by Peskin [1] and Preskill [2]: They discovered that the EW gauge group prefers to be unbroken, and
thus tends to destabilise the technicolour vacuum. Later, it was noticed that the corrections from the
Standard-Model (SM) fermion sector, most notably the top quark, prefer the fully broken EW gauge
group, see e.g. [3, 4], and therefore the actual vacuum alignment depends strongly on the underlying
model. Kaplan and Georgi [5, 6] realised that the vacuum misalignment problem in technicolour mod-
els can be used to realise the Higgs doublet of the SM as doublet of dynamically generated Goldstone
bosons (GBs). Furthermore, since in such scenarios the Fermi scale, vw = 246 GeV, originates due
to the vacuum misalignment, the actual compositeness scale can be much higher than in traditional
technicolour models.

This phenomenon is not only relevant for underlying composite dynamics, but is present also in
models with elementary scalars whenever the scalar potential carries an enhaced global symmetry. It
turns out, however, that assuming renormalisability changes the vacuum alignment phenomenology
with respect to composite-Higgs case [7]. Analysing the vacuum alignment issue in the framework of
renormalisable models, thus, opens up interesting prospects for models with an elementary pseudo-
GB (pGB) Higgs boson and radiative Fermi scale.

The discussion is organised as follows: In Sec. 2, we outline the vacuum alignment analysis in
the framework of renormalisable models with elementary scalars and make a comparison with the
composite case. In Sec. 3, we provide in the Pati–Salam-unification framework a concrete model,
where the Fermi scale is radiatively generated and has an origin near the unification scale. Finally, we
conclude in Sec. 4.
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2 Vacuum alignment with elementary scalars

Whenever the scalar sector features a larger global symmetry than the full Lagrangian, radiative effects
must be taken into account to find out the actual alignment of the vacuum with respect to the gauge
group. It is well known that in technicolour models, the EW gauge group prefers to be unbroken [1, 2],
but the actual vacuum alignment crucially depends on the embedding of the SM-fermion masses.

In [7] it was shown that the different UV structures of the composite-Higgs models and renormal-
isable scenarios with elementary scalars lead to different vacuum alignment phenomenology. This
can be understood in terms of different effective-potential structures: In the composite case, the low-
energy effective theory below the compositeness scale depends on the underlying strongly-interacting
model and the SM-fermion-mass mechanism, and the leading contributions to the effective potential
are quadratic in the compositeness scale, i.e.

Veff
comp ∼ M2Λ2 + . . . (1)

On the other hand, in a renormalisable model with elementary scalars, the radiative corrections are
calculable, and the one-loop scalar potential is of the form of the renormalised Coleman–Weinberg
potential, i.e.

V1−loop
elem ∼ M4(log

M2

µ2
0

−C). (2)

In either case, the true vacuum depends on the underlying model, and should be determined when
the radiative corrections are correctly evaluated. In general, the actual vacuum is a linear combination
of the vacuum preserving the EW gauge group, E0, and the one fully breaking it to electromagnetism,
EB. In the former case, the stability group related to the global symmetry breaking fully contains
the EW gauge group, whereas in the latter case the two subgroups are maximally misaligned. It is
convenient to parameterise this misalignment by an angle, θ, and thus write the true vacuum as

Eθ = cos θE0 + sin θEB. (3)

The value of the angle, θ, is undetermined at the tree-level, but a preferred value is picked once
radiative corrections are taken into account. The amount of the breaking of the EW subgroup in the
spontaneous symmetry breaking thus depends on the vacuum alignment, and the Fermi scale is given
by vw = v sin θ. In particular, if a non-zero but small value of the angle, θ � 1, is preferred, the Fermi
scale is much smaller than the actual symmetry breaking scale, v.

2.1 SO(N)→ SO(N − 1) template

To illustrate the main features of the vacuum alignment problem with elementary scalars, let us con-
sider the SO(N) → SO(N − 1) breaking pattern. The SO(N)-symmetric scalar sector can be written
as

V0 =
m2

2
Φ†Φ +

λ

4!
(Φ†Φ)2. (4)

When the scalar Φ acquires a vev, the symmetry is broken spontaneously to SO(N −1) leaving behind
N − 1 GBs. It is convenient to parameterise Φ in terms of these GBs and an SO(N − 1) singlet, σ, as

Φ = (σ + iΠaXa) E, (5)

where Xa are the broken generators corresponding to the vacuum alingment, E.
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Whenever N > 4, we can embed SO(4) � SU(2)L × SU(2)R as a subgroup of SO(N − 1) so that
EW is unbroken at the tree level. We gauge the EW subgroup by introducing the covariant derivative

DµΦ = ∂µΦ − ig Aa
µ τ

a · Φ, (6)

and parameterise the true vacuum as in Eq. (3), E ≡ Eθ = cos θE0 + sin θEB, where E0 preserves EW
and EB breaks it to U(1)Q. Thus, when Φ acquires a vev, 〈Φ〉 = vE, the gauge bosons obtain masses

µ2
W =

1
4
g2v2 sin2 θ, µ2

Z =
1
4

(g2 + g′ 2)v2 sin2 θ. (7)

Furthermore, we add the SM-like Yukawa interaction for the top quark, i.e. couple it to the left
doublet of Φ, such that as 〈Φ〉 = vE, the top quark gets a mass

mt =
1
√

2
ytv sin θ. (8)

To study the vacuum structure, we calculate the one-loop Coleman–Weinberg potential in the MS
scheme,

V1−loop = Vscalar
1 + Vgauge

1 + V fermion
1 , (9)

where

Vscalar
1 =

1
64π2 Tr

M4(ϕ)
log

M2(ϕ)
µ2

0

− 3
2


 ,

Vgauge
1 =

3
64π2 Tr

µ4(ϕ)
log
µ2(ϕ)
µ2

0

− 5
6


 , (10)

V fermion
1 = − 4

64π2 Tr

(
m†(ϕ)m(ϕ)

)2 log
m†(ϕ)m(ϕ)
µ2

0

− 3
2


 ,

and M(ϕ), µ(ϕ), and m(ϕ) are the background-dependent scalar, gauge boson, and fermion mass
matrices, respectively.

To find out the preferred value for the vacuum angle, θ, at the vacuum, we minimize the the full
effective potential, Veff = V0 + V1−loop both with respect to the fields and the angle. As described in
detail in [7], the minimum of the potential is at θ = 0. Therefore, the EW symmetry remains intact,
and there are no non-trivial solutions that would allow for a pGB Higgs.

2.2 Vacuum misalignment

In order to break the EW symmetry and obtain a pGB Higgs, we need to extend the model in some
way. In the composite framework, one invokes some further explicit breaking of the global symmetry
induced by e.g. the underlying fermion-mass mechanism. With elementary scalars, there is also
another possibility, as described in [7]: We can obtain a non-trivial vacuum alignment by adding a
singlet scalar acquiring some of its mass from the vev of Φ. The most minimal extension of this kind
is to add a real Z2-symmetric singlet scalar and respectively extend the scalar potential to

V0 =
1
2

m2Φ†Φ +
1
2

m2
S S 2 +

λ

4!
(Φ†Φ)2 +

λσS

4
(Φ†Φ)S 2 +

λS

4!
S 4. (11)
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In the limit of very heavy singlet, MS � v, we find

sin2 θ = λσS

v2w

3A + 2B + 2A log
g2v2w

M2
S



4M2
S

2A + B + A log
g2v2w

M2
S


+ O
(
(v/MS )4

)
, (12)

where

A =
1

16g4

(
3g4 + 2g2g′ 2 + g′ 4 − 16y4

t

)
,

B =
1

16g4

[
(g2 + g′ 2)2 log

(
1
4

(
g′ 2

g2 + 1
))
− 4g4 log 2 − 16y4

t log
y2

t

2g2 (13)

−5
6

(
3g4 + 2g2g′ 2 + g′ 4

)
+ 24y4

t

]
.

It is worth noting that this reproduces the EW symmetry in the excactly decoupled limit. For finite
values of MS , the portal coupling is directly responsible for a non-zero value of θ.

Another possibility is to add an additional global-symmetry-breaking term in the similar manner
as in the composite framework. The minimal of this kind is given by

VB = CBv
3E†0Φ, (14)

where CB is a dimensionless constant.

2.3 Comparison with the composite case

The leading EW-gauge and fermion-Yukawa contributions to the effective potential in the composite
framework are given by:

Ṽgauge
1 =

3
64π2

∑
K

CKTr
[
µ2
]
Λ2, and Ṽ ferm

1 = − 4
64π2

∑
F

CFTr
[
m†FmF

]
Λ2, (15)

where Λ is the physical cut-off, and CK ,CF are the form factors related to gauge group K and fermion
F, resp. Identifying Λ with the compositeness scale Λ ∼ 4π f , where f is the “pion decay constant”
for the underlying composite model, we obtain for the SM gauge group and top-quark embedding:

Ṽgauge
1

∣∣∣
vac =

3
16

(
3g2Cg + g′2Cg′

)
sin2 θ f 4, (16)

Ṽ top
1

∣∣∣
vac = −

3
2
y2

t Ct sin2 θ f 4. (17)

The gauge part has a minimum at θ = 0, and thereby the gauge sector prefers to be unbroken as already
noticed by Peskin [1] and Preskill [2]. The top sector, on the other hand, prefers the minimum to be
at θ = π/2. This contribution was considered only later in recent technicolour and composite-Higgs
models, see e.g. [3, 4]. Since the top contribution dominates over the gauge part, it aligns the vacuum
in the direction where the electroweak symmetry is fully broken. Therefore, to achieve a pGB Higgs
scenario, new sources of vacuum misalignment are needed.

A minimal solution to achieve the desired vacuum alignment is to add an explicit symmetry break-
ing operator taking the form:

VB = −CB f 4E†0Σ = −CB f 4 cos θ + . . . , (18)

where CB is a positive dimensionless constant.
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3 Unification with radiative Fermi scale

Unification of (some of) the SM interactions is one of the long-standing paradigms beyond the SM.
These scenarios, however, imply a large hierarchy between the EW symmetry breaking at the Fermi
scale, vw = 246 GeV, and the breaking of the unified symmetry at some much higher scale. These
symmetry breakings are typically modelled via ad-hoc scalar sectors, and there is no symmetry reason
to prohibit the portal interactions between these two sectors. However, unless the portal coupling is
highly suppressed compared to the SM Higgs self-coupling, the symmetry breaking at the unification
scale would induce a large mass for the SM Higgs already at the tree level.

In [8] we proposed a framework to explain this large hierarchy by vacuum misalignment. The
minimal scenario utilises global-symmetry-breaking pattern SU(4) � SO(6) → Sp(4) � SO(5) in
the Pati–Salam-unification [9] framework. This scheme unifies quarks and leptons by promoting
the lepton number to the fourth colour, and therefore the full symmetry group is then SU(4)PS ×
SU(4)global. In this scenario, the proton does not decay via gauge interactions, as is the case in the
Georgi–Glashow [10] framework, where one unifies strong and electroweak interactions. Instead, the
spin-one leptoquarks mediate KL → µ±e∓. Strong experimental limits on these decays lead to a lower
bound M > 1.5 · 106 GeV on the leptoquark masses [11] translating into the lower bound on the
Pati–Salam-unification scale ΛPS � 1.9 · 106 GeV.

The SU(4)/Sp(4) model with elementary scalars has been studied in both non-supersymmetric [12,
13] and supersymmetric frameworks [14]. The breaking pattern is obtained by a scalar, M, transform-
ing in the six-dimensional antisymmetric representation of SU(4), and can be conveniently parame-
terised in terms of the GBs, Πa, and the Sp(4) singlet, σ, as

M = (
σ

2
+ i
√

2ΠaXa)E, (19)

where Xa are the broken generators with respect to vacuum E.
We embed SU(2)L × SU(2)R � SO(4) into SU(4) by identifying the left and right generators

T i
L =

1
2

(
σi 0
0 0

)
, and T i

R =
1
2

(
0 0
0 −σT

i

)
, (20)

where σi are the Pauli matrices. The generator of the hypercharge is then identified with the third
generator of the SU(2)R group, TY = T 3

R. After embedding the EW group, we can identify the EW
preserving and breaking vacua, E0 and EB, resp.:

E0 =

(
iσ2 0

0 −iσ2

)
, EB =

(
0 1
−1 0

)
. (21)

As discussed in Sec. 2.1 , the misalignment between the EW group and the stability group, Sp(4), can
be parameterised by and angle θ, and the actual vacuum can again be written as Eθ = cos θE0+sin θEB.

To break the SU(4)PS-leptocolour group to SU(3)c × U(1)B−L, we need to introduce an addtional
scalar multiplet. The minimal extension of the scalar sector contains a scalar multiplet, P = paT a,
transforming in the adjoint representation under the leptocolour group but is singlet under the global
SU(4)glo. This additional scalar multiplet thus, in addition to breaking the leptocolour, serves as the
minimal EW-singlet extension allowing for a non-tirivial vacuum alignment as discussed in Sec. 2.2.
The most general renormalisable scalar potential including these scalar multiplets then reads

V =
1
2

m2
MTr[M†M] + m2

PTr[P2] +
λM

4
Tr[M†M]2 + λP1Tr[P2]2

+ λP2Tr[P4] +
λMP

2
Tr[M†M]Tr[P2], (22)

5

EPJ Web of Conferences 164, 07056 (2017) DOI: 10.1051/epjconf/201716407056
ICNFP 2016



EPJ Web of Conferences

and the desired breaking pattern occurs as the scalars acquire vevs 〈M〉 = v02 E, and 〈P〉 = b0T 15.
To find the actual vacuum alignment angle, we calculate the one-loop Coleman–Weinberg poten-

tial and minimize the full effective potential. We fix the renormalization scale such that the tadpole
contributions in the σ direction vanish, i.e. the vev v = 〈σ〉 is given by the tree-level value v0, while the
other vev, 〈p15〉 = b, is determined by minimising the full one-loop potential along with the dynamical
value of θ.

Fixing the mass of the Higgs boson further constrains the parameter space. Three states, Π4, σ
and p15, have the same quantum numbers as Higgs, and the lightest eigenstate, turning out to be dom-
inantly the pGB Π4, is identified with the Higgs boson. The Higgs phenomenology constraints were
investigated previously [12, 13], and it was shown that the elementary-Goldstone-Higgs paradigm
reproduces the phenomenological success of the SM. Similar analysis applies here.

The numerical analysis shows that a small value of θ is preferred, implying a mostly pGB Higgs
boson. Furthermore, we find that the preferred values of v are roughly of the order of b, which was
fixed just above the experimental bound for the unification scale, b = 2.5 · 106 GeV. We checked that
this conclusion is independent of the specific value of b, and the same conclusion holds for larger
values of the unification scale as well. Furthermore, the values of the quartic couplings are overall
very small, and in particular there is no large hierarchy between them. This feature of tiny quartic
couplings originates from the relation between the couplings of the scalar potential and the vacuum
angle θ given by the minimisation conditions. In the limit of equal self-couplings, and v = b, this
relation is given by λ ∝ sin2 θ. Note that this coincides with Eq. (12).

4 Conclusions

We argued that the different UV structures of a composite-Higgs scenario and a renormalisable model
with elementary scalars lead to different vacuum alignment phenomenology in the presence of en-
hanced global symmetries. Furthermore, in the elementary-scalar case, it is possible to achieve a
pGB-like Higgs by extending the scalar sector with an EW-singlet without introducing further ex-
plicit global-symmetry-breaking operators.

This provides an interesting connection between the Fermi scale physics and unification, since
the scalar multiplet that breaks the unification symmetry generally couples to the EW-breaking scalar
multiplet via portal interactions. Therefore, the heavier scalar multiplet can additionally play an im-
portant role in aligning the vacuum towards the pGB-like Higgs. We have provided a concrete model
example in the Pati–Salam-unification framework and found out that once the quantum effects are
taken into account, the enhanced global symmetry of the Higgs sector indeed tends to break near the
unification scale, and the actual Fermi scale is radiatively generated via the vacuum-misalignment
phenomenon. Another interesting feature of this kind of scenario is that all the quartic scalar cou-
plings are generally tiny, but there is no large hierarchy between them. This opens interesting paths to
be explored in the future ranging from neutrino masses to cosmic inflation.
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phenomenon. Another interesting feature of this kind of scenario is that all the quartic scalar cou-
plings are generally tiny, but there is no large hierarchy between them. This opens interesting paths to
be explored in the future ranging from neutrino masses to cosmic inflation.
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