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Abstract

This paper studies the strategic behavior of a large number of game designers and studies
the scalability, stability and robustness of their allocations in a large number of homogeneous
coalitional games with transferable utilities (TU). For each TU game, the characteristic function
is a continuous-time stochastic process. In each game, a game designer allocates revenues based
on the extra reward that a coalition has received up to the current time and the extra reward
that the same coalition has received in the other games. The approach is based on the theory
of mean-field games with heterogeneous groups in a multi-population regime.
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1. Introduction

“System of systems” or “network of networks” were keywords in the FP7 research agenda
of the European Community and are still dominating the research agenda of Horizon 2020 (see
e.g. http://ec.europa.eu/digital-agenda/en/system-systems). The terms “System of systems”
or “network of networks” have often appeared in a variety of scientific papers in social sciences,
engineering, and economics [16]. Despite the diversity in their domains of application, these
systems have a common characteristic: the elementary units of the system or network are
themselves systems or networks (see the expository article [28]). This is illustrated in abstract
terms in Fig. 1, where we have multiple groups of people interacting (left). At the higher
level, the network topology describes the connections between the groups. At the lower level, a
second network topology describes the interactions among people within the same group. Thus,
we identify two dimensions for the problem at hand. One is the size of the higher-level network,
i.e., the number of groups. The other one is the size of each group, measured by the number of
people in that group. As a consequence, the complexity of the system may increase because of
both the large number of groups (middle), and the increasing number of people in each group
(right). In the latter case, we end up with a finite network of populations, each population
involving an infinite number of individuals in the limit. On the other hand, when the number
of groups grows, the resulting system can be viewed as a population composed of an infinite
number of groups, each of finite size. This paper deals with the second scenario, i.e., a single
population made up of an infinite number of homogeneous groups, with each group comprised
of a finite number of individuals. Individuals within each group are heterogeneous as they can
form coalitions characterized by different values. The number of players within each group is
the same.
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Figure 1: Social networks with multiple groups: 8 groups, each one consisting of 5 players (left); increasing
number of groups, i.e., 14 groups, each one consisting of 5 players (middle); increasing number of players in
each group, i.e, 8 groups, each one consisting of 8 players (right).

Placing the contribution of this paper in proper context, we consider a large number of the
same copy of a coalitional game with transferable utilities (TU game). In other words, each
group forms a coalitional TU game and the individuals of each group are the players of such
a game. For each TU game, we also have a designer who distributes revenues to the players
according to certain criteria introduced in the paper. In other words, the designer is the one
who distributes the revenues among the players within each group to make the group (grand
coalition) stable. Each group (TU game) has its own designer. In the second part of the paper
we also consider the case where we have heterogeneous populations of TU games. By this
we mean multiple populations of TU games and a structured environment, where interactions
between populations occur locally.

A model with an infinite number of copies of the same TU game is interesting and relevant
primarily for three reasons. First multiple copies describe scenarios where the stability of a
coalition depends on the revenue expectations and perceptions that the members of a coalition
develop. Such expectations and perceptions depend on the revenue allocation observed in the
other games, and we refer to this as social pressure factors. Second, as a consequence of the
previous point, multiple copies are useful to capture expectations and perceptions in the form
of how much the same coalition receives in the other games on the average. Hence, we say that
a coalition in one game can be stable if it receives at least as much as the average allocation
computed over the other games. This point is also related to inequity aversion as explained in
detail in Subsection 1.1.1. Third, multiple copies may be used to model different realizations
of a stochastic process.

This paper extends the results presented earlier in the conference versions [6, 7]. One of the
main new contributions is the analysis of the multi-population case. The paper also provides
more extensive background on the theory of coalitional games with transferable utility and a
detailed treatment of the mean-field response. Some of the simulations in Section 8 are also
new.

1.1. Highlights of the main points

The novelty of this paper is that the problem of finding stable allocations in a TU game is
now approached in the context of an environment that is dynamic and uncertain, with a large
number of indistinguishable designers sharing aggregate opinions on the coalitions’ average
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excesses and readjusting their allocations based on such information. We redefine stability of
allocations in terms of fairness as follows: allocations are stable if the accumulated excesses in
each single game correspond to the average excesses computed over the population. In other
words, by fairness we mean that there is no inequity in the allocations in any of the TU games.

The proposed game-theoretic approach provides fundamental insights into the collective
behavior deriving from individual rationality on the part of the designers. More specifically,
this study focuses on the following three aspects: i) strategic behavior of the game designers,
ii) mean-field approach: consistency, scalability, and stability of the allocation policies, and
iii) robustness of the allocation policies in the face of inaccurate forecast of excesses or model
misspecifications. In the following we further elaborate on these aspects, separately.

1.1.1. Strategic behavior and game theory

Strategic behavior means that each designer is rational and reasons strategically. Strategic
behavior is described by the following game-theoretic model.

Each single game has a game designer who allocates rewards or revenues based on the
excesses of the coalitions. In the context of repeated interactions, the excess of a coalition
is the cumulative deviation of the total amount given to the coalition from the value of the
coalition up to the current time. In classical TU games, the coalitions’ values are constant
and known, and the ultimate goal of the game designer is to stabilize the grand coalition.
This occurs when the total revenue assigned to all members of any sub-coalition is greater
than the value of the sub-coalition itself (see the notion of “core” in [31]). Differently, in
this work the coalitions’ values are time-varying and thus the excesses evolve according to
controlled uncertain stochastic differential equations. The objective of the game designer is to
align the excesses with the average value computed over the other copies of the same game.
Such a phenomenon is known as crowd-seeking behavior in mean-field games and mirrors a
typical attitude in macroeconomics known as inequity aversion. The latter is a research area
in behavioral economics studying people’s resistance to inequitable outcomes [15].

In each game, the stochastic differential equation describing the time evolution of its excesses
is referred to as microscopic dynamics to distinguish it from the dynamics of the aggregate
excesses of the whole population, the latter called macroscopic dynamics.

In addition to the state dynamics, each TU game is programmed with a given finite-horizon
cost functional that accounts for i) deviation of the excesses from the average one, which we
call inequity, ii) energy expenditure due to the revenue allocations, and iii) energy expenditure
due to the allocations’ miss-specifications. More formally, the deviation in i) is measured by an
error vector used in a cross-coupling term (we will see later that this is a mean-field term) that
incentivizes the designer to allocate more revenue to those coalitions whose excesses are below
the average value and to decrease the allocations of those coalitions whose excesses are above
the average value. In other words, the cross-coupling term models fairness (the social cost) in
that it forces the designers to shift allocations from high to low-revenued ones.

Given a cost functional of the type discussed above, the designers adjust their allocation
policies in order to optimize it. The strategic behavior enters through the contribution of the
TU game to the social cost. Actually, strategic thinking involves also the capability of the
designer to predict the macroscopic effect on the average excesses produced by all designers
acting rationally and selecting a proper best-response allocation policy. The average excesses
evolve then based on the current and predicted best-response allocation policies.
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1.1.2. Mean-field approach: consistency, scalability, and stability

We consider numerous and indistinguishable copies of the TU game. Indistinguishability
means that two designers under identical conditions will react in the same way. The idea is
then to build a simulator model that returns an excesses landscape, i.e., the mean-field model,
based on past data. Each designer uses such a landscape of excesses to derive an aggregate
information on the state of the world, captured by an average excess vector. The mean-field
game involves a macroscopic description based on the classical forward Kolmogorov partial
differential equation which generates the distribution of the excesses over the populations and
over the horizon.

In this context, the results obtained in this paper shed light on the existence of mean-field
equilibrium solutions. By this we mean allocation policies based on the current and forecasted
average excesses, which are proven to guarantee fairness in the long run. Allocation strategies
are designed as closed-loop feedback strategies on the current excesses. Such strategies are
computed over a finite horizon and are therefore based on forecasted average excesses. From
another angle, we may say that mean-field equilibrium strategies represent the asymptotic limits
of Nash equilibrium strategies, and as such they are the best-response strategies of each single
player, given fixed behaviors of the other players. Given such a system, we study the mean-field
equilibrium for the underlying deterministic mean-field game. The relevance of such a mean-
field equilibrium is that i) it guarantees consistency of the model, ii) equilibrium strategies are
scalable, and iii) the resulting dynamics are stable. More specifically,

• (consistency) From the definition of mean-field equilibrium itself, the resulting microscopic
and macroscopic models are consistent. The mean-field equilibrium is indeed a fixed
point of the set of partial differential equations characterizing the best-responses in each
single game and the macroscopic evolution of the system as a whole if all the players act
rationally. Best-response allocation policies are obtained via dynamic programming while
the macroscopic dynamics provide the time history of the distribution of excesses over the
population. Best-response allocation policies, which provide consistency, are also called
mean-field equilibrium policies.

• (scalability) The model developed is scalable in the sense that the allocation policies
depend on the excesses as well as an aggregate description of the world in terms of past,
current, and forecasted average excesses. In other words, the allocation strategies are built
on aggregate information and therefore their structures do not depend on the number of
players. Such policies are obtained by carrying out a robust control design based on
augmentation and regularization of the state space [13].

• (stability) We perform a stability analysis on the microscopic dynamics of the excesses as
well as the average excesses. According to this analysis, the stochastic processes describing
the excesses are mean square bounded. Asymptotic stability means that both excesses
of each TU game converge in a stochastic sense to the reference values. The proven
stability of the microscopic dynamics confirms the asymptotic convergence of the TU
game excesses to an equilibrium point, this being expressed in terms of average excesses.

We should note that indistinguishability is not a limitation as far as the general approach of
this paper goes. In fact, Section 7 of the paper deals with a case of heterogeneity of the TU
games, and provides a more complex multi-population model.
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1.1.3. Model misspecification and robustness

As noted in the previous subsection, mean-field equilibrium policies are built on local infor-
mation, as well as some global information. The local information concerns the local state of
the TU game (the excesses) and its predicted dynamics. The global information is about the
average excesses, which can be thought of as a common state, which depends on the present
and forecasted population behavior. One question of interest is what happens if the estimation
of the current local and common states or their forecasted dynamics are misspecified? In other
words, whether the above mean-field equilibrium policies determining the allocation policies
are still scalable, consistent and stable even in the case where the microscopic and macroscopic
dynamics are misspecified and/or are uncertain. In the case of imperfect modeling, model mis-
specification is considered in both stochastic and deterministic worst-case scenarios. Assuming
imperfect models with stochastic or worst-case deterministic disturbances acting on the state
dynamics, the paper provides conditions for convergence of the microscopic dynamics. Several
cases studied in the paper show that the best-response allocation policies perform well in the
cases of both perfect and imperfect modeling.

More specifically, stochastic disturbance has the form of a Brownian motion in the mi-
croscopic dynamics. After establishing a mean-field equilibrium, we provide some results on
stochastic stability. In the scenario considered, the stochastic disturbance is independent of
the state, and the Brownian motion coefficients are constants. This leads to dynamics which
resemble what would be generated by the Langevin equation. Following well-known results on
the Langevin equation, the dynamic is proven to be stochastically stable in the second-moment.
An exposition of stochastic analysis and stability can be found in [22]. A further result deals
with robustness for the microscopic dynamics. The dynamics are now influenced by an addi-
tional adversarial disturbance, with bounded resource or energy. For this case also, we study
the mean-field equilibrium and investigate the conditions that guarantee worst-case stability.

1.2. Related Literature

We discuss here two streams of literature relevant to the topic of this paper, one pertaining
to coalitional TU games and the other one to the theory of differential games with a large
number of indistinguishable players.

1.2.1. Coalitional TU games

Coalitional games with transferable utilities (TU), introduced first by Von Neuman and
Morgenstern [31], have recently sparked much interest in the control and communication engi-
neering communities [27]. In essence, coalitional TU games are comprised of a set of players
who can form coalitions, and a characteristic function associating a real number with every
coalition. This real number represents the value of the coalition and can be thought of as a
monetary value that can be distributed among the members of the coalition according to some
appropriate fair allocation rule. The value of a coalition also reflects the monetary benefit
demanded by that coalition to be part of the grand coalition. In the context of coalitional TU
games, robustness and dynamics naturally arise in all the situations where the coalition values
are uncertain and time-varying; see e.g., [10, 11, 25].

There is also connection with the set invariance theory [3] and stochastic stability theory
[1, 17, 22], which provides some useful tools for stability analysis.

1.2.2. Mean-field games

The theory of mean-field games originated in the work of M.Y. Huang, P. E. Caines and
R. Malhamé [18, 19] and independently in that of J. M. Lasry and P.L. Lions [21], where the

5



now standard terminology of Mean Field Game (MFG) was introduced (see also [30]). The
problem we study in this paper follows in spirit the study on robust dynamical TU coalitional
games in [12] with additional mean-field interactions between infinite copies of the same game,
which was not present in [12]. Explicit solutions in terms of mean-field equilibria are not
common unless the problem has a linear-quadratic structure, see [2]. This is the motivation
behind the method presented in this paper, which approximates the original problem by an
augmented linear quadratic one. Heterogeneity is studied in mean-field games with major and
minor players [20, 26]. Directions for further developments are i) the formulation, analysis
and design of Stackelberg mean-field games where we have leaders and followers [24], ii) the
analysis of mean-field games over structured environments by using networks [14], and iii) the
applications to demand-side management and intelligent mobility [23].

The rest of the paper is organized as follows. In Section 2, we introduce the problem and
the model. In Section 3, we present the mean-field game. In Section 5, we describe the solution
approach, and show stability in Section 6, with extension to the heterogeneous case in Section 7.
In Section 8, we illustrate the main results through simulations. Finally, in Section 9, we draw
some conclusions and discuss possible future directions.
Notation. R+ denotes the set of nonnegative real numbers. Given a random vector ξ, E[ξ]
denotes its expected value. Given a Brownian motion (with drift) B(t), we denote by dB(t)
its infinitesimal increment, i.e., B(t) =

∫ t
0
dB(τ), the latter being the Itô integral. We use

B̄(t) = B(t)
t

to indicate the average infinitesimal up to time t. If a(t) is the derivative of
an almost everywhere differentiable function, the symbol ã(t) denotes the function itself, i.e.,

ã(t) =
∫ t

0
a(τ)dτ . We also use ā(t) = ã(t)

t
to indicate the average up to time t.

1.3. Preliminary observations
This subsection provides an overview of coalitional TU games and highlights connections

with network flow control. In particular, for the first part, we introduce coalitional TU games
and the well-known solution concepts of imputation set and core. The material of the first
part is based on [5], Chapter 5. The second part recalls recent results on how to turn the
allocation problem into a network problem with controlled and uncontrolled flows. This second
part builds on recent results obtained in [12].

1.3.1. Coalitional TU game

Given a set N = {1, . . . , n} of players and a function η : S 7→ R defined for each nonempty
coalition S ⊆ N , we write < N, η > to denote the transferable utility (TU) game with players
set N and characteristic function η.

Let S = 2N \ ∅ be the set of all possible coalitions of n players except for the empty set.
Let us introduce some arbitrary mapping of S into M := {1, . . . , q} where q = 2n − 1 is the
number of nonempty coalitions, namely, the cardinality of S. Denote a generic element of M
by j. In other words, we can see j standing for the labeling of the jth element of S, say Sj,
according to some arbitrary but fixed ordering. Let q be the index of the grand coalition N .

We let ηj be the value of the characteristic function η associated with a nonempty coalition
Sj ⊆ N . Given a TU game, the main question is how to distribute the costs or rewards among
the participants of the coalition.

1.3.2. Imputation set

A partial answer to the above question lies in the concept of the imputation set. Let v be
the characteristic function determining the coalitions’ values, the imputation set I(v) is the set
of allocations that are
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• efficient, that is, the sum of the components of the allocation vector is equal to the value
of the grand coalition, and

• individually rational, namely no individual benefits arise from leaving the grand coalition
and playing alone.

More formally, the imputation set is a convex polyhedron defined as

I(v) = {x ∈ Rn|

Efficiency︷ ︸︸ ︷∑
i∈N

xi = v(N), xi ≥ v({i}), ∀i ∈ N︸ ︷︷ ︸
individual rationality

}.

If the imputation set is empty, then, given any efficient allocation, there is always at least one
player who is better off by quitting the grand coalition. The imputation set is nonempty if and
only if the sum of the values of the single players is not greater than the value of the grand
coalition:

I(v) 6= ∅ iff v(N) ≥
∑
i∈N

v({i}).

It turns out that the imputation set I(v) is the convex hull of the points f 1, f 2, . . . , fn where

f ik =

{
v(N)−

∑
k∈N\{i} v({k}) k = i

v({k}) k 6= i.

Note that the generic vector f i can be interpreted as a tentative allocation recommended by
player i and obtained as follows. Given that f ik is the revenue that player i is willing to allocate
to player k, then player i allocates to any other player the amount of his exact value, that is
f ik = v({k}), for k 6= i, and takes all the rest for himself, i.e., f ii = v(N)−

∑
k∈N\{i} v({k}).

1.3.3. Core

The core is a stronger solution concept than the imputation set and it is common in economic
applications. The core strengthens the conditions valid for the imputation set in that the players
do not benefit from not only quitting the grand coalition and playing alone, but also creating
any sub-coalition. Thus the core is still a polyhedral set which is included in the imputation
set.

Definition 1. The core of a game 〈N, v〉 is the set of allocations that satisfy i) efficiency, ii)
individual rationality, and iii) stability with respect to subcoalitions:

C(v) = {x ∈ I(v)|
∑
i∈S

xi ≥ v(S),∀S ∈ 2N \ ∅︸ ︷︷ ︸
stability w.r.t. subcoalitons

}.

Given a TU game < N, η >, we use C(η) to denote the core of the game:

C(η) =
{
x ∈ Rn

∣∣∣ ∑i∈N xi = ηq,
∑

i∈Sj
xi ≥ ηj for all nonempty S ⊂ N

}
.

We illustrate next the above concepts in a simple example.
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Example 1. (Connecting multiple communities to a power source) [29] Three com-
munities need to be connected to a power source. Connections between the communities and
between a community and the power source entail certain costs. This application can be mod-
eled as a minimum spanning tree game. The problem can be described by a graph as in Fig. 2,
where the nodes correspond to the communities and the power source, the links represent the
connections, and the coefficients on each link is the corresponding cost. Direct connections to
the source cost 100, 90, and 80, respectively. Communities 1 and 2 can both be connected to the
power source at a cost of 90+40 = 130. Such a cost corresponds to the tree {(source, 2), (2, 1)}.
Likewise, the cheapest connection for communities 1 and 3 has a cost of 80 + 30 = 110, which
corresponds to the tree {(source, 3), (3, 1)}. Analogously, communities 2 and 3 can be connected
to the power source at a minimum cost of 80 + 30 = 110, in which case the solution is repre-
sented by the tree {(source, 3), (3, 2)}. If all communities collaborate, they can all be connected
to the power source at a minimum cost of 80+30+30 = 140, which corresponds to the spanning
tree {(source, 3), (3, 1), (3, 2)}. The resulting TU game 〈N, c〉 is then given by: N = {1, 2, 3},

c({1}) = 100, c({2}) = 90, c({3}) = 80,

c({1, 2}) = 130, c({1, 3}) = 110, c({2, 3}) = 110,

c({1, 2, 3}) = 140.

Figure 2: Minimum spanning tree problem as TU game.

We can compute the amounts saved by the three communities when they collude. Thus the
value of the coalitions is given by

v(S) =
∑
i∈S

c({i})− c(S).

The corresponding cost saving game 〈N, v〉: N = {1, 2, 3}, is then given by

v({1}) = 0, v({2}) = 0, v({3}) = 0,

v({1, 2}) = 60, v({1, 3}) = 70, v({2, 3}) = 60,

v({1, 2, 3}) = 130.

As for the physical interpretation, the above means that if the three communities sign a contract
in which they commit to create a power network with minimum cost {(source, 3), (3, 1), (3, 2)},
the three communities will save 130 $. Any redistribution of such money that gives players 1 and
2 less than 60 $ cannot be accepted by the two players, who will withdraw from the negotiation.
We note that in the case where all the players agree to play in the grand coalition, the game
takes on the form of a classical minimum spanning tree problem.
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1.3.4. Relation with network flow control

Consider an n-player robust dynamical TU game< N, η(t) >, where η(t) is the characteristic
function representing the values of different coalitions. Let q = 2n − 1 be the number of
coalitions. The problem of finding stable allocations admits a network representation [12]. For
each game, let H be a corresponding hypergraph involving the vertex set V and edge set E,
namely:

H := {V,E}, V = {v1, . . . ,vq}, E := {e1, . . . , en}.
In other words, the vertex set V has one vertex per coalition whereas the edge set E has one
edge per player. The incidence relations establish that a generic edge i is incident to a vertex

Figure 3: Infinite copies of hypergraph H := {V,E} for a 3-player coalitional game.

vj if the player i is a member of the the coalition linked to vj. The hypergraph can then be
described by an incidence matrix BH whose rows are the characteristic vectors cS ∈ Rn. The
characteristic vectors are in turn binary vectors where cSi = 1 if i ∈ S and cSi = 0 if i /∈ S.
Figure 3 depicts an example of a hypergraph for a 3-player coalitional game on every single
grey node. Following the same approach as in [12], the allocation ũi(t) is represented by the
flow on edge ei and the coalition value ηj(t) of a generic coalition Sj ∈ S is the demand in
the corresponding vertex vj. It is apparent then that any allocation in the core of the game
C(η(t)) translates into over-satisfying the demand at the vertices. In particular, we have

ũ(t) ∈ C(η(t)) ⇔ BHũ(t) ≥ η(t), (1)

where the inequality is to be interpreted componentwise, and for the grand coalition is satisfied
with equality due to the efficiency condition of the core, i.e,

∑n
i=1 ũi(t) = ηq(t), where ηq(t)

denotes the qth component of η(t) and is equal to the grand coalition value.
Let

B =

BH
∣∣∣∣∣∣
−I

−−−−
0 . . . 0

 ∈ { − 1, 0, 1}q×n+(q−1). (2)

Inequality (1) can be rewritten as an equality by using an augmented allocation vector given
by u :=

[
ũ
s

]
∈ Rn+q where s is a vector of q nonnegative surplus variables. Then, we haveBH

∣∣∣∣∣∣
−I

−−−−
0 . . . 0

[ũ
s

]
=

 η1(t)
...

ηq(t)

 .
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v1 v2 v3 v4 v5 v6 v7

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0


︸ ︷︷ ︸

B



ũ1

ũ2

ũ3

s1

s2

s3

s4

s5

s6


︸ ︷︷ ︸

u

=



η1

η2

η3

η4

η5

η6

η7


︸ ︷︷ ︸

η

Table 1: Mapping coalitions into vertices (top) and corresponding dynamical system of a 3-player coalitional
game.

Note that each surplus variable sj corresponds to a coalition Sj of players and describes the
difference between the allocated value and the coalitional value, sj(t) =

∑
i∈Sj

ũi(t)− ηj(t). A

positive value for sj(t) can be interpreted as a debit for the coalition, whereas a negative value
can be interpreted as a credit. The main insights we borrow from [12] is that if all the surpluses
are nonnegative, then the total allocation to any coalition exceeds the value of the coalition itself
and the allocation vector lies in the core. Also, notice that there are only q−1 surplus variables
because coalition N has no surplus (

∑
i∈N ũi − ηq = 0) due to the efficiency condition of the

core.
Table 1 depicts the mapping from coalitions into vertices (top) and the corresponding dy-

namical system of a 3-player coalitional game.

2. Model and problem statement

We consider a large number of replicas of a single coalitional game. The game is an n-player
robust dynamical TU game < N, η(t) >, where η(t) is the characteristic function representing
the values of different coalitions. The characteristic function is modeled as a diffusion process
with drift, and its evolution is described by the stochastic differential equation:{

dη(t) = w(t)dt− σdB(t), in Rq,
η(0) = η0,

(3)

where q = 2n − 1 is the number of coalitions, w(t) is the vector of variations of coalitions’
values, σ is the diffusion parameter, B(t) is a vector of independent Brownian motions, and η0

is the vector of initial coalitions’ values.
Denote by x(t) ∈ Rq the coalition excess; then, we can describe the time evolution of x(t)
through the following stochastic differential equation:{

dx(t) = (Bu(t)− w(t))dt+ σdB(t),
x(0) = x0,

(4)

where matrix B is as in (2) and w(t) plays the role of a disturbance. In essence, every component
of vector Bu(t) is the total amount given to the members of a coalition at time t, and from
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this amount the value of the coalition itself, w(t), is subtracted. Then, a positive x(t) means
positive cumulative excess.

We assume that controls and disturbances do not have any hard bounds, namely, controls
and disturbances are in the sets U := Rn and W := Rq, respectively.

With the above preamble in mind, and given the infinite copies of the same game, we
can derive a probability density function m : Rq × [0,+∞[→ [0,+∞[, (x, t) 7→ m(x, t), for
which

∫
Rq m(x, t)dx = 1 for every time t. We also denote the mean distribution at time t by

m̄(t) :=
∫
Rq xm(x, t)dx.

In the spirit of inequity aversion, the designer of each game follows a so-called crowd-seeking
law in that it readjusts the allocations by targeting the average distribution of the other games.

This is captured by considering a running cost g : Rq×Rq×Rn×Rq → [0,+∞[, (x, m̄, u, w) 7→
g(x, m̄, u, w) of the quadratic form:

g(x, m̄, u, w) = 1
2

[
(m̄− x)T Q (m̄− x) + uT (t)Ru(t)− wT (t)Γw(t)

]
, (5)

where Q,R,Γ > 0, that is positive definite.
We also take as terminal cost the function Ψ : Rq ×Rq → [0,+∞[, (x, m̄) 7→ Ψ(x, m̄) of the

form

Ψ(x, m̄) =
1

2
(m̄− x)TS(m̄− x), (6)

where S > 0. We are then ready to formalize the problem at hand as follows.

Problem 1. Find the closed-loop optimal control and worst-case disturbance for the problem:
infu(·)∈U supw(·)∈W

{
J(x0, u(·), w(·),m(·))

= E
[ ∫ T

0
g(x, m̄, u, w)dt+ Ψ(x(T ), m̄(T ))

]}
,

dx(t) = (Bu(t)− w(t))dt− σdB(t),

(7)

where U andW are the sets of all measurable functions u(·) and w(·) from [0,+∞[ to U and W ,
respectively, and m(·) as a time-dependent function is the evolution of the distribution under
the optimal control and the worst-case disturbance.

Note that the problem formulation includes the cases of both constrained and unconstrained
controls and disturbances.

Problem 1 models the strategic behavior of each single designer. Given a forecast on the
population behavior, which enters the problem through the distribution m(·), each designer
minimizes the inequity, represented by the cost functional. In doing this, the designer assumes
that an adversarial disturbance provides opposition to this. Evidently, problem (1) describes the
system from a microscopic standpoint. The main question is to what extent one can reconstruct
the same population behavior that is given as input to the cost functional in (7), assuming that
all designers act rationally. This is what we call the macroscopic model. In other words, for
model (7) to be consistent, we need to develop a more sophisticated model that integrates the
microscopic and macroscopic descriptions in a consistent way. We develop such a model in the
next section, and refer to it as the mean-field game representation of the model at hand.
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3. The mean-field game

Consistency means that the microscopic and macroscopic models are tied together and
are compatible. For the microscopic part, we know from optimal control theory, that the
solution to (7) in terms of u(·) and w(·) can be expressed in terms of the value function, i.e.,
the minimum value of the cost functional at each time t and state x. In our case, the value
function also depends on the distribution, which makes the problem different from a classical
optimal control problem. A classical approach based on dynamic programming, derives the
value function as solution of the well-known Hamilton-Jacobi-Isaacs (HJI) partial differential
equation (PDE), which has to be solved for every state and time. For the macroscopic part,
statistical mechanics tells us how the distribution of particles evolves, once they are immersed
in a vector field. Viewing each designer as a particle, and the excesses of each TU game as
its state, the optimal u(·) and w(·) represent the vector field, and thus we can use the Fokker-
Planck-Kolmogorov (FPK) equation for a simulated forecast of the evolution distribution. We
next study how to arrive at a consistent mean-field game for the problem at hand.

Let us denote by v(x, t) the (upper) value of the robust optimization problem under a worst-
case disturbance starting from time t at state x (which in this case also turns out to be the
lower value, and hence the value, since Isaacs condition [3] holds–see below). Problem 1 results
in the following mean-field game system for the unknown functions v(x, t), and m(x, t):

∂tv(x, t) + inf
u∈U

sup
w∈W

{
(Bu− w)T∂xv(x, t)

+g(x, m̄, u, w)
}

+ σ2

2
Tr
(
∂2
xxv(x, t)

)
= 0 in Rq × [0, T [,

v(x, T ) = Ψ(x, m̄(T )) in Rq,

∂tm(x, t) + div(m(x, t) · (Bu− w))

−σ2

2
Tr(∂2

xxm(x, t)) = 0, in Rq × [0, T [,
m(0) = m0,
d
dt
m̄t = Bū∗t − w̄∗t , in [0, T [,

(8)

where u∗(t, x) and w∗(t, x) are the optimal time-varying state-feedback controls and distur-
bances, respectively, obtained as

u∗(t, x) ∈ arg minu∈U{(Bu− w∗)∂xv(x, t) + g(x, m̄, u, w∗)},

w∗(t, x) ∈ arg maxw∈W{(Bu− w)∂xv(x, t) + g(x, m̄, u∗, w)}.
(9)

Note that the minimization and maximization problems above are completely decoupled, and
hence in (8) the inf sup is the same as sup inf (that is, Isaacs condition holds [3]). Further, we
have replaced inf and sup in (9) with min and max, respectively, since g is quadratic in u and
w.

The first equation in (8) is the Hamilton-Jacobi-Isaacs (HJI) equation with variable v(x, t).
Given the boundary condition on final state (second equation in (8)), and assuming a given
population behavior captured by m(·), the HJI equation is solved backwards and returns the
value function and best-response behavior of the individuals (first equation in (9)) as well as
the worst adversarial response (second equation in (9)). The HJI equation is coupled with a
second PDE, known as the Fokker-Planck-Kolmogorov (FPK) equation (third equation in (8)),
defined on the variable m(·). Given the boundary condition on initial distribution m(0) = m0
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(fourth equation in (8)), and assuming a given individual behavior described by u∗, the FPK
equation is solved forward and returns the population behavior time evolution m(t). The last
equation in (8) is obtained by averaging the left and right hand sides of the dynamics (4). Any
solution of the above system of equations along with (9) is referred to as worst-disturbance
feedback mean-field equilibrium.

Remark 1. (On the existence of solutions) Analyzing the existence of solutions for the mean-
field system (8) is a challenging task. However, under some restrictive sufficient conditions the
existence of classical solutions can be established using a fixed-point theorem argument as in [21].
Indeed, let us assume that the initial measure m0 is absolutely continuous with a continuous
density function with finite second moment. In this case, we note that the running cost is
convex in u. With these conditions, the existence of solution is established in Theorem 2.6 in
[21]. Existence and uniqueness of a fixed-point solution are also discussed in [19, Theorem 4.3]

Remark 2. (On connections with the case with finite players) As the cost is Lipschitz contin-
uous on m given that the control is bounded, the solution to the asymptotic case with infinite
number of players relates to the case with a finite number of players as established in [19, 21].
In particular the classical bound of 1√

N
holds true where N is the number of games. We refer

the reader to the ε-Nash Equilibrium Theorem [19, Theorem 5.6] for more details.

The mean-field game (8) can be reformulated as follows. Let us express the optimal u(·)
and w(·) explicitly as functions of the value function and its derivatives. To do this, we have
to solve (9) and substitute the expressions for u(·) and w(·) in (8). This procedure is the core
of this section, and culminates in the mean-field game captured in Theorem 1.

Let the Hamiltonian (without disturbance w) be given by

H(x, p, m̄) = inf
u

{
g̃(x, m̄, u) + pTBu

}
,

where p is the co-state and

g̃(x, m̄, u) =
1

2

[
(m̄− x)T Q (m̄− x) + uTRu

]
.

The robust Hamiltonian is then

H̃(x, p, m̄) = H(x, p, m̄) + sup
w

{
−pTw − 1

2
wTΓw

}
.

The unique maximizing w is
w∗ = −Γ−1p.

Using the Hamiltonian and the expression for w∗ in the mean-field system (8), and noting that
p = ∂xv(x, t), we have

∂tv(x, t) +H(x, p, m̄) +
1

2
(∂xv(x, t)TΓ−1∂xv(x, t))

+σ2

2
Tr(∂2

xxv(x, t)) = 0, in Rq × [0, T [,

v(x, T ) = Ψ(x, m̄(T )) in Rq,

∂tm(x, t) + div
(
m(x, t)∂pH(x, p, m̄)

)
+ div

(
m(x, t)Γ−1∂xv(x, t)

)
−σ2

2
Tr(∂2

xxm(x, t)) = 0, in Rq × [0, T [,

m(x, 0) = m0(x) in Rn.

(10)
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We are now in a position to specialize the results obtained above to the case under study.

Theorem 1. The mean-field game is described by

∂tv(x, t) + 1
2
∂xv(x, t)T

(
−BR−1BT + Γ−1

)
· ∂xv(x, t) + 1

2
(m̄(t)− x)TQ(m̄(t)− x)

+1
2
σ2Tr(∂2

xxv(x, t)) = 0, in Rq × [0, T [,

v(x, T ) = Ψ(x, m̄(T )) in Rq,

∂tm(x, t) + div
(
m(x, t)(−BR−1BT + Γ−1) · ∂xv(x, t)

)
− 1

2
σ2Tr(∂2

xxm(x, t)) = 0,

in Rn × [0, T [,

m(x, 0) = m0(x) in Rn.

(11)

Furthermore, the optimal control and worst-case disturbance are
u∗(x, t) = −R−1BT∂xv(x, t),

w∗(x, t) = −Γ−1∂xv(x, t).
(12)

Proof. w∗ in (12) was already obtained earlier. u∗ follows from a straightforward minimization
of the Hamiltonian. We next prove (11). First notice that the second and last relations are the
boundary conditions, and do not require any further justification.

To prove the first equation, which is a PDE corresponding to the HJI, let us replace u∗

appearing in the Hamiltonian by its expression (12):

H(x, ∂xv(x, t), m̄) =
1

2

[
(m̄− x)TQ(m̄− x) + u∗TRu∗

]
+ ∂xv(x, t)Bu∗

=
1

2
(m̄− x)TQ(m̄− x) +

1

2
∂xv(x, t)TBR−1BT∂xv(x, t)− ∂xv(x, t)TBR−1BT∂xv(x, t)

=
1

2
(m̄− x)TQ(m̄− x)− 1

2
∂xv(x, t)TBR−1BT∂xv(x, t).

Using the above expression of the Hamiltonian in the HJI equation in (10), we obtain the
HJI equation in (11).

To prove the third equation, which is a PDE representing the FPK equation, we simply
substitute (12) in the FPK in (10), and this concludes the proof. �

Equation (12) returns the optimal u(·) and w(·) as explicit functions of the gradient of the
value function. Independently of how complicated the computation of such a gradient may
be, the expressions prove to be scalable as no direct dependence on the size of the population
appears. Scalability is one of the advantages of the provided model as it disconnects the
structure of the policies from the dimension of the problem.

4. Mean-field response

By mean-field response we mean the solution to the HJI in (11) for a fixed distribution.
By “fixed” we mean that the distribution is known but not constant. In other words, we solve
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the first PDE in (11), assuming that we are given a solution for the second PDE (the FPK
equation). Computing the mean-field response is relevant in that it produces insights on the
structure of the mean-field equilibrium allocation policies. The main goal of this section is to
show that such mean-field response allocation policies are linear and time-varying functions
of the local state. Furthermore, solving the HJI equation turns into solving a set of ordinary
differential equations in the parameters of the value function. This simplifies dramatically the
tractability of the mean-field equilibrium policies.

To see this, let us isolate the HJI part of (11) for fixed m, which leads to
∂tv(x, t) + 1

2
∂xv(x, t)T

(
−BR−1BT + Γ−1

)
· ∂xv(x, t) + 1

2
(m̄(t)− x)TQ(m̄(t)− x)

+1
2
σ2Tr(∂2

xxv(x, t)) = 0, in Rq × [0, T [,

v(x, T ) = Ψ(x, m̄(T )) in Rq.

(13)

Let us consider the following structure for the value function

v(x, t) =
1

2
xTφ(t)x+ h(t)Tx+ χ(t),

where φ(t) is a square matrix, h(t), χ(t) are vectors, and all depend on time and have compatible
dimensions. Then (13) can be rewritten as

1
2
xT φ̇(t)x+ ḣ(t)Tx+ χ̇(t) + 1

2
[φ(t)x+ h(t)]T

(
−BR−1BT + Γ−1

)
·[φ(t)x+ h(t)] + 1

2
(m̄(t)− x)TQ(m̄(t)− x)

+1
2
σ2φ(t) = 0 in Rq × [0, T [,

φ(T ) = S, h(T ) = −Sm̄(T ), χ(T ) = 1
2
Sm̄(T ).

(14)

The advantage of doing this is that the above system represents an identity in x, and
therefore it reduces to the following ordinary differential equations assuming that they admit
unique continuously differentiable solutions.

φ̇(t) + φ(t)T
(
−BR−1BT + Γ−1

)
φ(t) +Q = 0 in [0, T [, φ(T ) = S,

ḣ(t) + h(t)T
(
−BR−1BT + Γ−1

)
φ(t)− m̄(t)TQ = 0 in [0, T [, h(T ) = −Sm̄(T ),

χ̇(t) + 1
2
h(t)T

(
−BR−1BT + Γ−1

)
h(t) + 1

2
m̄(t)TQm̄(t) + 1

2
σ2φ(t) = 0

in [0, T [, χ(T ) = 1
2
Sm̄(T ).

(15)

For the optimal control and the worst-case disturbance we then have{
u∗(x, t) = −R−1BT (φ(t)x+ h(t))
w∗(x, t) = −Γ−1(φ(t)x+ h(t)).

(16)

The main insight we get from (15)-(16) is that the expressions for the mean-field equilibrium
policies may not be very different from the one in (16), obtained for the mean-field responses.
In the next section we show that the mean-field equilibrium policies for u(·) and w(·) are still
linear in the extended state, which includes both the local and the common states.
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It is well known that for (15) to be well posed, it must hold that −BR−1BT + Γ−1 < 0 (see
e.g. Appendix of [4] on the theory of conjugate points). Taking R = I and Γ = γ2I for a given
parameter γ, the above condition becomes

−BBT +
1

γ2
I < 0, (17)

which establishes a relation between the smallest eigenvalue (this is related to the connectivity
of the network) of the matrix BBT and the maximal eigenvalue of the matrix 1

γ2
I, namely 1

γ2
.

Condition (17) is particularly interesting as it provides a lower bound on γ2, namely, a lower
bound on the coefficient in the cost functional that weights the disturbance input representing
the coalitions’ values. A larger value for γ2 leads to smaller coalitions’ values w(t).

5. Mean-field equilibrium strategies

This section describes a simple heuristic approach toward solving the set of equations (8),
based on state space augmentation [13]. The augmented state space includes the mean distri-
bution, and thus the augmented state variables evolve according to the equations[

dx(t)
dm̄(t)

]
=
(
B

[
u∗(x, t)
ū∗(t)

]
−
[
w∗(x, t)
w̄∗(t)

])
dt+

[
σdBt

0

]
. (18)

For this system, we introduce an assumption on the rate of convergence of the state m̄(t).

Assumption 1. There exists a scalar θ > 0 such that

d

dt
m̄(t) = Bū∗(t)− w̄∗(t) ≥ −θm̄t, for all t ∈ [0, T ] ,

where the inequality is to be interpreted component-wise.

The above assumption implies that there exists a variable m̃(t) which approximates the
average mean value from below and evolves according to{

d
dt
m̃(t) = −θm̃(t), for all t ∈ [0, T ],

m̃0 = m̄0.
(19)

As a result, each single game is described by the dynamical closed-loop system depicted in
Fig. 4. The block at the top represents the state dynamics (4), it receives as input the control
u(t), and the disturbances w(t) and B(t). The block on the right includes the internal model
for m̃ as in (19) from which we obtain the error e(t) := m̃(t)− x(t). The block at the bottom
describes the closed-loop state feedback control obtained solving the linear quadratic tracking
problem. The resulting linear quadratic problem is detailed next.
By substituting the current mean value m̄(t) by its estimate m̃(t), the augmented problem
becomes

inf
u(·)∈U

sup
w(·)∈W

∫ T

0

1

2

[
(m̃(t)− x(t))T Q (m̃(t)− x(t)) + uT (t)Ru(t)− wT (t)Γw(t)

]
dt

[
dx(t)
dm̃(t)

]
=
([ 0 0

0 −θI

] [
x(t)
m̃(t)

]
+

[
B
0

]
u(t)−

[
I
0

]
w(t)

)
dt+

[
σdB(t)

0

]
.
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dx(t) = (Bu(t)
−w(t))dt+ σdB(t)

w(t), B(t)

˙̃m(t) = −θm̃(t)
e(t) = m̃(t)− x(t)

φ(e(t))

u(t)

Figure 4: The dynamical closed-loop system of each single game

Reformulating the problem in terms of the augmented state

X(t) =

[
x(t)
m̃(t)

]
,

we have the linear quadratic problem:

inf
u(·)∈U

sup
w(·)∈W

∫ T

0

[1

2
(X(t)T Q̃X(t) + uT (t)Ru(t)− wT (t)Γw(t))

]
dt+ Ψ̃(X(T ))

dX(t) =
(
FX(t) +Gu(t) +Hw(t)

)
dt+ LdBt,

where

Q̃ =

[
Q −Q
−Q Q

]
, L =

[
σI
0

]
,

F =

[
0 0
0 −θI

]
, G =

[
B
0

]
, H =

[
−I
0

]
,

R > 0, Γ > 0, and Ψ̃(X) := Ψ(x, m̃).
The idea is therefore to consider a new value function Vt(x, m̃) (in compact form Vt(X)) in the
augmented state space, which satisfies{

∂tVt(X) +H(X, ∂XVt(X)) + 1
2
σ2Tr∂2

xxVt(X) = 0, in R2q × [0, T [,

VT (X) = Ψ̃(X) in R2q,

where H(X, ∂XVt(X)) is the robust Hamiltonian [9]:

H(X, ∂XVt(X)) = 1
2
XT Q̃X + ∂XVt(X)FX

−1
2
∂XVt(X)[GR−1GT −HΓ−1HT ](∂XVt(X))T .

This PDE admits the unique solution given by

Vt(X) =
1

2
X(t)T

[
P11(t) P12(t)
P12(t)T P22(t)

]
︸ ︷︷ ︸

P (t)

X(t) +
1

2
p(t),
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where the symmetric matrix P (t) satisfies (is the unique nonnegative-definite solution of) the
generalized (game) Riccati differential equation

Ṗ (t) + P (t)F + F TP (t)− P (t)(GR−1GT −HΓ−1HT )P (t) + Q̃ = 0 ,

P (T ) =

[
S −S
−S S

]
,

(20)

and p(·) is solved from
ṗ(t) + σ2 TrP (t) = 0 , p(T ) = 0 .

Then, the corresponding optimal control is given by

ũ(t) = −R−1GTP (t)X(t) = −R−1BT (P11(t)x(t) + P12(t)m̄(t)), (21)

and the worst-case disturbance is given by

w̃(t) = Γ−1HTPX(t) = −Γ−1(P11(t)x(t) + P12(t)m̄(t)). (22)

The Riccati equation (20) is relevant as it returns the parameters identifying the structure
of the value function, and as such it replaces the HJI equation. Such parameters are then
used in the mean-field equilibrium policies in (21)-(22). From (21)-(22), it is evident that the
mean-field equilibrium allocation policies have a linear structure in the extended state.

6. Stability

This section analyzes stability of the microscopic dynamics when the designer implements
the mean-field equilibrium allocation policy derived in the previous section. The main question
concerns the possibility that the excesses diverge with time from the average value, which would
ruin the inequity aversion requirement. We show that this is not the case under the provided
allocation policies. More formally, we prove that the excesses are mean square bounded. This
means that the second moment of the excesses, viewed as a stochastic process, is bounded.
To put it differently, the expected value of the deviation of the excesses in each game from
the average excesses is bounded. Successively, we also investigate how the provided allocation
policies affect the macroscopic dynamics. In particular we prove that the average excesses
converge exponentially to zero in the absence of stochastic disturbances.

6.1. Asymptotic stability and mean-field equilibrium

Using the optimal control and worst-case disturbance (21)-(22) in the SDE (4) we obtain

dx(t) = (−BR−1BT + Γ−1)P11(t)x(t)dt+ (−BR−1BT + Γ−1)P12(t)m̄(t)dt
+σdB(t), t ∈ (0, T ], x0 ∈ Rq.

(23)

Remark 3. If P11(t) ≈ −P12(t), then (23) becomes

dx(t) = (BR−1BT − Γ−1)P11(t)(m̄(t)− x(t))dt+ σdB(t).

This means that the state evolves as a function of the error (m̄(t)−x(t)). We will use this fact
in the simulation studies.
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Assumption 2. There exists a matrix K, which is Hurwitz, such that the following inequality
holds componentwise

Kx(t) ≥ (−BR−1BT + Γ−1)P11(t)x(t) + (−BR−1BT + Γ−1)P12(t)m̄(t) (24)

Under the above assumption, the SDE is linear and time-varying, and the corresponding
stochastic process can be analyzed in the context of stochastic stability theory [22].

Definition 2 (cf. Definition (11.3.1) in [1]). (stability in pth moment) The equilibrium so-
lution of a stochastic process ξ(t) is said to be stable in the pth moment, p > 0, if given ε > 0,
there exists a δ(ε, t0) > 0 so that ‖x(0)‖ ≤ δ guarantees that

E{sup
t≥t0
‖x(t)‖p < ε}.

When p = 1 or 2 we speak of stability in the mean or mean-square, respectively.

Theorem 2. The stochastic process (23) describing the time evolution of the excesses is mean-
square stable.

Proof. Let us consider as Lyapunov function the positive-definite quadratic function V (x) =
xTSx, where S is the unique positive-definite solution of the Lyapunov equation: KTS+SK =
−I, which exists since K is Hurwitz.

Let the infinitesimal generator be

L =
1

2
σ2

q∑
i=1

∂2

∂xi∂xi
+ (Kx(t))T

d

dx
. (25)

We recall that for a Brownian motion we have EdBt = 0 and EdBTt dB=
t q dt and dropping

the second-order terms (in dt2) one obtains (25).
Then the stochastic derivative of V (x) can be obtained by applying the infinitesimal gener-

ator to V (x), which yields

LV (x(t)) = lim
dt→0

EV (x(t+ dt))− V (x(t))

dt
= qσ2 + x(t)TKTSx(t) + x(t)TSKx(t) = qσ2 − x(t)Tx(t).

Then we have that LV (x) ≤ 0 on Qε := {x : V (x) ≥ ε} for some ε > 0. Hence the 2nd
moment is bounded and the process is mean square stable. �

The interpretation of the above result is that the variance of the excesses in each game is
bounded.

6.2. Mean-field equilibrium

We can approximate the mean-field equilibrium, which is captured by the evolution of m̄t

over the horizon (0, T ], as

d
dt
m̄t = ((−BR−1BT + Γ−1)P11(t)

∫
x(t)dm+ (−BR−1BT + Γ−1)P12(t)m̄(t)

= (−BR−1BT + Γ−1)(P11(t) + P12(t))m̄t t ∈ (0, T ], m̄0 ∈ Rq.
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Actually, we can derive an expression based on the matrix exponential eρt describing the evo-
lution of the mean distribution which represents a bound, namely{

m̄t = m̄0e
Zt

Z = (−BR−1BT + Γ−1)(P11(t) + P12(t)).

The equation above corresponds to saying that the mean distribution converges exponentially
to zero in the absence of the stochastic disturbances (the Brownian motion).

7. Multi-population and local interactions

The results obtained in the previous sections can be extended to the case where we have
heterogeneous populations of TU games. By this we mean multiple populations of TU games.
Here, we have a structured environment, namely, interactions between populations occur locally,
and we use a graph topology to describe them. We recall that each designer is associated with a
corresponding TU game and each population is characterized by a different initial distribution
of the excesses.

Consider p heterogeneous populations with each population comprised of infinite homoge-
neous designers; each designer is identified by an index k ∈ {1, . . . , p} which identifies the
population he belongs to. Each designer is also characterized by a state x(t) ∈ Rq whose dy-
namics follow (4). As indicated earlier in the paper, the state x(t) represents the excesses of
the corresponding TU game at time t ∈ [0, T ].

For every population k ∈ {1, . . . , p}, the distribution of the excesses is given by a probability
density function mk : R × [0,+∞[→ R, (x, t) 7→ mk(x, t). In other words, such a function
represents the density of players of that population in state x at time t. By conservation of
mass,

∫
Rmk(x, t)dx = 1 for every t. We call the mean state of population k at time t the value

m̄k(t) :=
∫
R xmk(x, t)dx.

To model the interactions between populations, we let a graph H′ = (V ′, E ′) be given where
V ′ = {1, . . . , p} is the set of vertices, one per each population, and E ′ = V ′ × V ′ is the set
of edges. For the sake of simplicity, we henceforth assume that H′ = (V ′, E ′) is a balanced
graph (or undirected graph) although most results hold even for more general graphs, possibly
time-varying. Denote the set of neighbors of k by N(k) = {j ∈ V ′| (k, j) ∈ E ′}.

The signal tracked by each designer in population k is given by the following local average

ρk =

∑
j∈N(k) m̄j(t)

|N(k)|
, (26)

where |N(k)| denotes the cardinality of the set N(k), namely the number of neighbors of k.
After replacing m̄ with ρk in the running cost (5), we have

g(x, ρk, u, w) = 1
2

[
(ρk − x)T Q (ρk − x) + uT (t)Ru(t)− wT (t)Γw(t)

]
, (27)

where Q,R,Γ are positive definite.
Likewise, for the terminal cost we have

Ψ(x, ρk) =
1

2
(ρk − x)TS(ρk − x), (28)

where S > 0. The problem for the multi-population case is then formulated as follows.
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Problem 2. Find the closed-loop optimal control and worst-case disturbance for the problem:
infu(·)∈U supw(·)∈W

{
J(x0, u(·), w(·), ρk(·))

= E
[ ∫ T

0
g(x, ρk, u, w)dt+ Ψ(x(T ), ρk(T ))

]}
,

dx(t) = (Bu(t)− w(t))dt− σdB(t),

(29)

where U andW are the sets of all measurable functions u(·) and w(·) from [0,+∞[ to U and W ,
respectively, and m(·) as a time-dependent function is the evolution of the distribution under
the optimal control and the worst-case disturbance.

In the following we derive the counterpart of Theorem 1 for the multi-population case. For
every population k ∈ {1, 2, . . . , p}, let vk(x, t) be the (upper) value of the robust optimization
problem under worst-case disturbance starting at time t and at state x.

Then we have the following result.

Theorem 3. The mean-field game is described by

∂tvk(x, t) + 1
2
∂xvk(x, t)

T
(
−BR−1BT + Γ−1

)
·∂xvk(x, t) + 1

2
(ρk(t)− x)TQ(ρk(t)− x)

+1
2
σ2Tr(∂2

xxvk(x, t)) = 0, in Rq × [0, T [,

vk(x, T ) = Ψ(x, ρk(T )) in Rq,

∂tmk(x, t) + div
(
mk(x, t)(−BR−1BT + Γ−1)

·∂xvk(x, t)
)
− 1

2
σ2Tr(∂2

xxmk(x, t)) = 0, in Rq × [0, T [,

mk(x, 0) = mk,0(x) in Rq,
m̄k(t) :=

∫
Rq xmk(x, t)dx,

ρk =
∑

j∈N(k) m̄j(t)

|N(k)| .

(30)

Furthermore, the optimal control and the worst-case disturbance are{
u∗k(x, t) = −R−1BT∂xvk(x, t),
w∗k(x, t) = −Γ−1∂xvk(x, t).

(31)

Proof. Condition (31) is derived as (12) in Theorem 1. We now prove (30). The set of equations
(8) adapted to the multi-population case takes the form

∂tvk(x, t) + inf
u∈U

sup
w∈W

{
(Bu− w)T∂xvk(x, t)

+g(x, ρk, u, w)
}

+ σ2

2
Tr
(
∂2
xxvk(x, t)

)
= 0 in Rq × [0, T [,

vk(x, T ) = Ψ(x, ρk(T )) in Rq,

∂tmk(x, t) + div(mk(x, t) · (Bu− w))

−σ2

2
Tr(∂2

xxmk(x, t)) = 0, in Rq × [0, T [,
mk(0) = mk,0.

(32)
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Introducing the Hamiltonian and the expression for w∗ in the mean-field system (32), we
obtain 

∂tvk(x, t) +H(x, p̃, ρk) +
1

2
(∂xvk(x, t)

TΓ−1∂xvk(x, t))

+σ2

2
Tr(∂2

xxvk(x, t)) = 0, in Rq × [0, T [,

vk(x, T ) = Ψ(x, ρk(T )) in Rq,

∂tmk(x, t) + div
(
mk(x, t)∂pH(x, p̃, ρk)

)
+ div

(
mk(x, t)Γ

−1∂xvk(x, t)
)

−σ2

2
Tr(∂2

xxmk(x, t)) = 0, in Rq × [0, T [,

mk(x, 0) = mk,0(x) in Rq

m̄k(t) :=
∫
Rq xmk(x, t)dx,

ρk =
∑

j∈N(k) m̄j(t)

|N(k)| .

(33)

To prove the first equation, which is a PDE corresponding to the HJI, let us replace u∗

appearing in the Hamiltonian by its expression (31):

H(x, ∂xvk(x, t), ρk) =
1

2

[
(ρk − x)TQ(ρk − x) + u∗TRu∗

]
+ ∂xvk(x, t)Bu

∗

=
1

2
(ρk − x)TQ(ρk − x)− 1

2
∂xvk(x, t)

T ·BR−1BT∂xvk(x, t).

Using the above expression of the Hamiltonian in the HJI equation in (33), we obtain the
HJI equation in (30).

To prove the third equation, which is a PDE representing the FPK equation, we simply
substitute (31) in the FPK in (33), and this concludes the proof. �

The next result provides mean-field equilibrium control strategies and worst-case distur-
bances for the multi-population case.

Theorem 4. A mean-field equilibrium for (30) is given by the following set of equation. For
all k ∈ {1, 2, . . . , p} {

vk(x, t) = 1
2
xTφ(t)x+ h(t)Tx+ χ(t),

˙̄mk(t) = (−BR−1BT + Γ−1)(φ(t)m̄k(t) + h(t)),
(34)

where 

φ̇(t) +
(
− 1
c1

+ 1
γ2

)
φ(t)2 + a = 0 in [0, T [, φ(T ) = S,

ḣ(t) +
(
− 1

2c1
+ 1

2γ2

)
2φ(t)h(t)− aρk(t) = 0 in [0, T [,

h(T ) = −Sρk(T ),

χ̇(t) +
(
− 1

2c1
+ 1

2γ2

)
h(t)2 + 1

2
aρk(t)

2 + 1
2
σ2φ(t) = 0

in [0, T [, χ(T ) = 1
2
Sρ2

k(T ).

(35)

The corresponding mean-field equilibrium control and disturbance are{
u∗(x, t) = −R−1BT (φ(t)x+ h(t))
w∗(x, t) = −Γ−1(φ(t)x+ h(t)).

(36)
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Furthermore,

d
dt
m̄k(t) =

(
−BR−1BT + Γ−1

)
φ 1
|N(k)|(

∑
j∈N(k)(m̄j(t)− m̄k(t))).

Proof. Isolating the HJI part of (30) for fixed ρk, we have
∂tvk(x, t) + 1

2
∂xvk(x, t)

T
(
−BR−1BT + Γ−1

)
·∂xvk(x, t) + 1

2
(ρk(t)− x)TQ(ρk(t)− x)

+1
2
σ2Tr(∂2

xxvk(x, t)) = 0, in Rq × [0, T [,

vk(x, T ) = Ψ(x, ρk(T )) in Rq.

(37)

Consider the following structure for the value function:

vk(x, t) =
1

2
xTφ(t)x+ h(t)Tx+ χ(t),

so that (37) can be rewritten as

1
2
xT φ̇(t)x+ ḣ(t)Tx+ χ̇(t)

+1
2
[φ(t)x+ h(t)]T

(
−BR−1BT + Γ−1

)
· [φ(t)x+ h(t)] + 1

2
(ρk(t)− x)TQ(ρk(t)− x)

+1
2
σ2φ(t) = 0 in Rq × [0, T [,

φ(T ) = S, h(T ) = −Sρk(T ), χ(T ) = 1
2
Sρk(T ).

(38)

Since this is an identity in x, it reduces to three equations:
φ̇(t) + φ(t)T

(
−BR−1BT + Γ−1

)
φ(t) +Q = 0 in [0, T [, φ(T ) = S,

ḣ(t) + h(t)T
(
−BR−1BT + Γ−1

)
φ(t)− ρk(t)TQ = 0 in [0, T [, h(T ) = −Sρk(T ),

χ̇(t) + 1
2
h(t)T

(
−BR−1BT + Γ−1

)
h(t) + 1

2
ρk(t)

TQρk(t) + 1
2
σ2φ(t) = 0

in [0, T [, χ(T ) = 1
2
Sρk(T ).

(39)

For the mean-field equilibrium control and worst-case disturbance, we then have{
u∗(x, t) = −R−1BT (φ(t)x+ h(t))
w∗(x, t) = −Γ−1(φ(t)x+ h(t)).

(40)

By averaging the above expressions and substituting in d
dt
m̄k(t) = Būk(t) + w̄k(t), we obtain

˙̄mk(t) = (−BR−1BT + Γ−1)(φ(t)m̄k(t) + h(t))

as in (34). Take h = −φρk. Substituting in (40), the mean-field equilibrium control and
worst-case disturbance take the form{

u∗(x, t) = −R−1BTφ(ρk − x)
w∗(x, t) = −Γ−1φ(ρk − x).
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Then, mean states of neighbor populations are related by the local interaction rule:

d
dt
m̄k(t) = Būk(t) + w̄k(t) =

(
−BR−1BT + Γ−1

)
φ(

∑
j∈N(k) m̄j(t)

|N(k)| − m̄k(t))

=
(
−BR−1BT + Γ−1

)
φ 1
|N(k)|(

∑
j∈N(k) ·(m̄j(t)− m̄k(t))).

and this concludes the proof. �

Remark 4. Dynamics (34) is a consensus dynamics and as such it guarantees synchronization
as required by the design specifics. �

8. Simulations

In this section, results of Theorems 1 and 3 are illustrated. The simulations show that
the populations reach consensus on the excesses under different circumstances, i.e., with or
without stochastic disturbances, with local or global interactions, and with first or second-
order interaction dynamics in the case of local interactions.

8.1. Single-population example

We provide here simulations of a game with each group consisting of three players as illus-
trated in Fig. 3 and Table 1. The simulations are obtained using the algorithm displayed in
Table 3. The time evolution of the approximate average state is used to simulate the evolution
of one of the groups. Matrix BH ∈ {0, 1}7×3 takes the form

BT
H =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .
step size horizon length σ θ

0.1 500 0.01 0.01

Table 2: Single-population: simulations data

Given that (4) is an overdetermined system, where B is a tall matrix, we take the error as
e(t) = m̄(t)− x(t) and calculate the least square approximation as els(t) = (BT

HBH)−1BT
He(t).

We simulate (4) using the discrete-time expression

x(t+ dt) = x(t) + (BHu)dt+ σ(B(t+ dt)− B(t)), (41)

where the control u(t) = els(t) (see Remark 3), the step size dt = 0.1 and σ = 0.01. The initial
state is randomly selected, and in this specific example takes the value

x(0) = [1 3 2 3 2 5 4],

while for the initial average distribution we take

m̄(0) = [10 20 50 30 20 50 40].
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Algorithm

Input: Set of parameters as in Table 2.
Output: State trajectory x(t)

1 : Initialize. Generate x0 and m̄0

2 : for time t = 0, 1, . . . , T − 1 do
3 : if t > 0, then compute m̄t

4 : end if
5 : compute least-square error els(t),
6 : compute new state x(t+ 1) by executing (41)
7 : end for
12 : STOP

Table 3: Single-population: simulations algorithm.

We also approximate the time evolution of the average (19) by using the discrete-time expression{
m̃(t+ dt) = m̃(t)− θm̃(t)dt, for all t ∈ [0, T ],
m̃0 = m̄0.

where θ = 0.01.
The temporal evolution of the state is depicted in Figure 5. As to be expected, the state

converges to a neighborhood of the origin.
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Figure 5: First simulation scenario for the single-population case: time plot of state x(t) [7].

For a second scenario we take θ = 0, which implies that the average m̄ is constant and
simulate the state evolution in absence of disturbance (σ = 0). The resulting time-plot is
depicted in Fig. 6. We observe that the state converges to the least squares approximation of
m̄(0).

8.2. Multi-population example

For the multi-population scenario, the numerical studies have been conducted for 100 copies
of the same TU game (with three players in each group) and 5 different populations, i.e.,
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Figure 6: Second simulation scenario for the single-population case: time plot of state x(t) [7].

n = 102, and p = 5. Interactions between populations are modeled by a graph topology
H′ = (V ′, E ′), which is a chain. The algorithm used for the simulations is as in Table 4, while
the simulation parameters are listed in Table 2. We take the step size for the simulation to be
dt = 0.1 as in the previous example. A horizon length of T = 60 is proven to be large enough
to highlight the convergence properties of the trajectories of the excesses as a result of each
player using a mean-field game strategy.

For each single player, the microscopic dynamics is captured by the following discrete-time
equation:

x(t+ dt) = x(t) + (Bu(t)− w(t))dt+ σ rand[−1, 1], (42)

where the initial state x(0) = x. It is worth noting that the equation stated above corresponds
to (4) after time discretization. Later we explain how we randomly extract the initial state x.

For the macroscopic dynamics let us take

m̄ = (m̄1, . . . , m̄5, ˙̄m1, . . . , ˙̄m5)T .

More formally, for each component j = 1, . . . q, let us denote

µj•1(t) =
(
m̄1j(t), . . . , m̄5j(t)

)T
, µj•2(t) =

(
˙̄m1j(t), . . . , ˙̄m5j(t)

)T
,

Assuming that the mean-field equilibrium control and disturbance act on the second derivative
of the local state, we have the following second-order consensus dynamics[

µj•1(t)

µj•2(t)

]
=

[
I I

−θL −θ̃(L+ θ̂I) + I

] [
µj•1(t− 1)

µj•2(t− 1)

]
t = 1, 2, . . . , T ; (43)

where the initial condition is

µj•1(0) = (m̄1j(0), . . . , m̄5j(0))T , µj•2(t) = ( ˙̄m1j(t), . . . , ˙̄m5j(t))
T = (0, . . . , 0)T ,

and where the matrix L has one for the entries on the main diagonal, and the reciprocal of the
degree of node i for each adjacent node of i in the ith row. L is called the normalized Laplacian
matrix of the communication graph H′ = (V ′, E ′). The parameters θ, θ̂ and θ̃ are the elastic
and damping coefficients and are selected as illustrated in Table 5.

26



Input: Set of parameters as in Table 5.
Output: Excesses x(t) for each designer

1 : Initialize. Generate x(0) given m̄0k and std(m0k),
for any k = 1, . . . , p

2 : for time iter = 0, 1, . . . , T − 1 do
3 : if iter > 0, then compute mk, m̄k, and std(mk)
4 : end if
5 : for player i = 1, . . . , n do
6 : Set t = iter · dt and compute control
7 : compute m̄(t) = (µ•1(t)µ•2(t))T from (43)
8 : compute new state x(t+ dt) by running (42)
8 : end for
9 : end for
10 : STOP

Table 4: Multi-population: simulations algorithm

set/parameters n dt std(m0) T σ θ θ̃ θ̂

1st set 102 0.1 180 60 5.5 0.5 0.25 2.6

2nd set 102 0.1 180 60 5.5 0.5 0.25 1.6

3rd set 102 0.1 180 60 15.5 0.5 0.25 2.6

Table 5: Multi-population: simulations data.

As regards the initial distribution, we assume m0 to be Gaussian with mean m̄0k = 100 ·
(k − 1) + [1 2 3 4 5 6 7]T . The standard deviation std(m0k) is set to 5.5 for all k = 1, . . . , 5.
Then, the initial state x in (42) is obtained from a random realization with law m0k for all
k = 1, . . . , 5.

Figure 7 shows the time history of the microscopic evolution of the excesses x1(t), . . . , x6(t)
for each TU game. The time plot emphasizes two phenomena characterized by two different
time scales. First, on a fast time scale, the excesses in each single population k ∈ {1, . . . , 5}
reach consensus to the local aggregate state ρk. Second, on a slower time scale, the local
aggregate states reach consensus via second-order consensus dynamics.

In a second set of simulations we investigate the role of the damping coefficient θ̂. To do
this, we analyze a scenario corresponding to a decreasing damping coefficient θ̂ = 1.6 rather
than θ̂ = 2.6. The resulting time plot is displayed in Fig. 8. Oscillations arise, and these are
visually clear from the figure.

A third set of simulations are intended to reveal the influence of the stochastic disturbance.
This is done by adding a Brownian motion to the microscopic dynamics. We do this by setting
the parameter σ = 15.5. The resulting time plot is displayed in Fig. 9, where one can observe
small fluctuations during the transient and at steady-state. In this case, the convergence
properties illustrated in this section hold as we have a fully connected graph topology. A
different graph topology, perhaps characterized by more than one connected component, would
lead to the formation of clusters, but this is left for future analysis.
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Figure 7: First simulation scenario for the multi-population case: time plot of state x(t).

9. Conclusions and future directions

We have provided a mean-field game formulation of infinite copies of “small worlds”, each
one described as a TU coalitional game. The problem has connections to recent research on
robust dynamic coalitional TU games [12] and robust mean-field games [9, 13]. A quantitative
analysis of the approximation error of the solution presented is left as future work.
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