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Abstract Mixed integer optimal compensation deals with optimization prob-

lems with integer- and real-valued control variables to compensate distur-

bances in dynamic systems. The mixed integer nature of controls could lead

to intractability in problems of large dimensions. To address this challenge,

we introduce a decomposition method which turns the original n-dimensional

optimization problem into n independent scalar problems of lot sizing form.

Each of these problems can be viewed as a two-player zero-sum game, which

introduces some element of conservatism. Each scalar problem is then refor-
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mulated as a shortest path one and solved through linear programming over

a receding horizon, a step that mirrors a standard procedure in mixed integer

programming. We apply the decomposition method to a mean-field coupled

multi-agent system problem, where each agent seeks to compensate a combi-

nation of an exogenous signal and the local state average. We discuss a large

population mean-field type of approximation and extend our study to opinion

dynamics in social networks as a special case of interest.

Keywords Mean-Field Games · Optimal Control · Mixed Integer Optimiza-

tion

Mathematics Subject Classification (2000) 91A13 · 49J35 · 49L20 ·

90C11

1 Introduction

Mixed integer optimal compensation arises when optimizing a mix of integer-

and real-valued control variables in order to compensate for disturbances in

dynamic systems. Mixed integer control can be viewed as a specific sub-field

of optimal hybrid control [1], addressed recently also in a receding horizon

framework [2]. Optimal integer control problems have been receiving grow-

ing attention and are often categorized under different names (e.g., alphabet

control [3, 4]). Handling integer control requires more than standard convex

optimization techniques. It is known that new structural properties of the

problem play important roles in mixed integer control; as an example, see

multimodularity presented as the counterpart of convexity in discrete action
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spaces [5]. We should note that there is vast literature on mixed integer pro-

gramming [6], and it is in this context that we cast the problem addressed

in this paper. For a survey of solution methods for mixed integer lot sizing

models circa early 1990’s, we refer the reader to [7]. Mixed integer optimal

control has been dealt with in [8–11].

Highlights of the main results and relationship with the relevant

literature. We build on existing results in the lot sizing literature that convert

lot sizing problems into shortest path problems. More details on this conversion

can be found in [12, p.98], and [13, 14]. The underlying idea is summarized in

Fig. 1, which depicts a qualitative time plot of the stock vs. time (right column)

for different reordering policies and associated paths (dashed arcs in figures on

the left). One can use a graph where nodes correspond to periods and (solid)

arcs to regeneration intervals (time intervals between consecutive orders). For

a 4-period demand, the just in time policy consisting of reordering at every

period in order to fulfill the expected daily demand corresponds to the path

(ordered sequence of nodes) traversing all the nodes, i.e., {0, 1, 2, 3, 4} (top).

The other extreme case is the one shot reordering policy where one reorders

only once and at the beginning of the interval in order to fulfill the 4-period

demand. The corresponding path is the single arc from node 0 to node 4, i.e.,

{0, 4} (middle). An intermediate policy would be to reorder at periods 0 and

2 in order to fulfill the 2-period demand. The corresponding path traverses

nodes 0, 2, and 4, i.e., {0, 2, 4} (bottom). In the paper, we extend this scheme

to more general systems.
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Fig. 1: Lot sizing problem turned into a shortest path problem: (top) just in time policy;
(middle) one shot production policy; (bottom) two period production policy.

Specifically, the paper makes three main contributions. First, we formu-

late the mixed integer optimal compensation problem. Second, we provide a

performance analysis of the decomposition method that reformulates the n-

dimensional mixed integer problem as n independent uncertain lot sizing sys-

tems. Each of these problems can be viewed as a two-player zero-sum game,

which introduces some element of conservatism. Third, we view each decom-

posed mixed integer problem as a shortest path problem and solve the latter

through linear programming.

The conservatism arising from the robust decomposition and approxima-

tion can be reduced if we operate in accordance with the predictive control

technique: i) optimize controls for each independent system based on the pre-
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diction of other states, ii) apply the first control, iii) provide measurement

updates of other states and re-iterate.

There are several differences between the problem treated and the ap-

proach adopted in this paper and those in the related literature. The differ-

ence from [2], for example, is that here we focus on a smaller class of problems

that can be solved exactly by simply relaxing the integer constraints. In that

respect, the lot sizing like model used in this paper has much to do with the

inventory example briefly mentioned in [1]. There, the authors simply include

the example in a large list of hybrid optimal control problems but do not ad-

dress the issue of how to fit general methods to this specific problem. Here,

however, we emphasize the computational benefits that can be derived from

the “nice structure” of the lot sizing constraints matrix. Binary variables, used

to model impulses, match linear programming in [15]. There, the linear refor-

mulation is a straightforward derivation of the (inverse) dwell time conditions

that have first appeared in [16]. Similarity with [15] is the use of total uni-

modularity to prove the exactness of the linear programming reformulation.

Differences are in the procedure itself upon which the linear program is built.

The shortest path model is an additional new element which distinguishes the

present approach from that of [15].

We also provide in the paper a discussion on a special case of interest where

each agent seeks to compensate a combination of the exogenous signal and the

local state average. Here, the model is suitable to capture opinion fluctuations

(sawtooth waves) in social networks [17]. We assume that the opinion dynamics
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are influenced by three different factors: the media, whose influence is modeled

as an exogenous signal; the presence of a stubborn agent who is able to reset

other agent’s opinions; and the interactions among the agents (the endogenous

factor). An underlying assumption here is that a reset for a particular agent

occurs whenever that agent chooses to meet with the stubborn agent, in which

case the binary control is set to one. Also, the interactions among the agents

are captured by an averaging process.

In the sense above, our decomposition idea is similar to mean-field meth-

ods in large population consensus. The mean-field theory of dynamical games

with large but finite populations of asymptotically negligible agents (as the

population size grows to infinity) originated in the work of M.Y. Huang, P.

E. Caines and R. Malhamé [18–20] and independently in that of J. M. Lasry

and P.L. Lions [21–23], where the now standard terminology of Mean Field

Games (MFG) was introduced. In addition to this, the closely related notion of

Oblivious Equilibria for large population dynamic games was introduced by G.

Weintraub, C. Benkard, and B. Van Roy [24] in the framework of Markov Deci-

sion Processes. This theory is very versatile and is attracting an ever-increasing

interest with several applications in economics, physics and biology (see [25–

27]). From a mathematical point of view, the mean-field approach leads to the

study of a system of partial differential equations (PDEs), where the classical

Hamilton-Jacobi-Bellman equation is coupled with a Fokker-Planck equation

for the density of the players, in a forward-backward fashion. The decomposi-

tion method proposed here requires that each agent i computes in advance the
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time evolution of the local average (see, e.g., the Fokker-Planck-Kolmogorov

equation in [23, 28–33]). However, since this is practically impossible, we use

here the predictive control method to approximate the computation of the

solution.

The main contributions of this work can therefore be summarized as fol-

lows: First, we draw a connection between game theory and a class of mixed

integer control problems by decomposing an n-dimensional optimization prob-

lem into n two-player zero-sum games. Second, by reformulating decomposed

problems as shortest path problems, we show that mixed-integer optimal com-

pensation problems are tractable under certain assumptions. Third, we lever-

age this connection to develop a mean-field game approach to study the large-

scale optimization problem using a large population game framework.

A preliminary version of this paper was presented at the 2012 American

Control Conference [34]. In addition to what was presented in [34], the current

paper includes a detailed analysis of the case where a large number of agents

interact and this interaction is described through a state averaging process.

For this case we provide a macroscopic description of the system in terms of

consensus to the average mass distribution. This part of the paper includes

an additional example (Example 6.3) that illustrates possible population evo-

lutions. A further element, which is not present in [34], is an experimentally-

driven discussion on performance and complexity of the method provided in

Example 6.1.
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The paper is organized as follows. We present the problem statement in

Section 2. We then move to present the decomposition method in Section 3.

In Section 4, we turn to introducing the shortest path reformulation and the

linear program. In Section 5, we discuss the case where the local state average

appears in the dynamics. In Section 6, we present three numerical examples

to illustrate the results in the paper. We conclude the paper with the recap of

Section 7.

2 Mixed Integer Optimal Compensation (MIPC)

In mixed integer optimal compensation problems, we have continuous states

x(k) ∈ Rn, continuous controls u(k) ∈ Rn, discrete controls y(k) ∈ {0, 1}n,

and continuous disturbances w(k) ∈ Rn, where k = 0, 1, . . . is the time index.

Evolution of the state over a finite horizon of length N is described by a linear

discrete-time (difference) equation in the general form (1) below, where A and

E are matrices of compatible dimensions and x(0) = ξ0 ≥ 0 is a given initial

state. Continuous and discrete controls are linked through the general capacity

constraints (2), where the (scalar) parameter c is an upper bound on control,

with the inequalities in (1) and (2) to be interpreted component-wise.

x(k + 1) = Ax(k) + Ew(k) + u(k) ≥ 0, x(N) = 0, (1)

0 ≤ u(k) ≤ cy(k), y(k) ∈ {0, 1}n. (2)
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The above dynamics are characterized by one discrete and one continuous

control variable per each state. Starting from nonnegative initial states, we

force the state to remain confined to the positive orthant, which may describe

a safety region in engineering applications or reflect the desire to prevent

shortfalls in inventory applications. The final state, x(N), is forced to be equal

to zero, which corresponds to saying that the control u(k) has to “compensate”

the cumulative effects of the disturbances Ew(k) and term Ax(k) over the

given horizon.

The following assumption serves to describe the common situation where

the disturbance seeks to push the state out of the desired region. Its value is

given at the beginning and fixed that way. Each column of matrix E establishes

how each disturbance component influences the evolution of the state vector.

Assumption 1 (Unstabilizing disturbance effects)

Ew(k) < 0, (3)

where the inequality is to be interpreted component-wise. ut

Actually, the control actions push the state away from the boundaries into

the positive orthant, thus counteracting the destabilizing effects of the distur-

bances. However, controlling the system has a cost and “over acting” on it is

penalized, which is quantified through a cost/objective function. This func-

tion, to be minimized with respect to y(k) and u(k), is a linear one including

proportional, holding, and fixed cost terms expressed by parameters pk, hk,
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and fk respectively:

N−1∑
k=0

(
〈pk, u(k)〉+ 〈hk, x(k)〉+ 〈fk, y(k)〉

)
, (4)

where 〈·, ·〉 denotes the Euclidean inner product. The problem of interest is

thus completely characterized by (1)-(4). This hybrid minimization problem

can be turned into a mixed integer linear program by using the standard

method discussed next. Henceforth we refer to (1)-(4) as (MIPC).

2.1 Introducing some Structure on A

With regard to (1), we can isolate the dependence of one component state

on the other ones and rewrite (1) in a way that establishes similarity with

standard lot sizing models [7]:

x(k + 1) = x(k) +Bx(k) + Ew(k) + u(k) ≥ 0. (5)

Equation (5) is a straighforward representation of (1) where

B := A− I =: {bij}, bij = aij − δij , δij :=


1, if i = j,

0, otherwise.

(6)

To preserve the nature of the problem, which has stabilizing control actions

playing against unstabilizing disturbances, we assume that the influence of

other states on state i is relatively “weak”. In other words we assume that
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the influence of Bx(k) is small if compared with the unstabilizing effects of

disturbances captured by the term Ew(k).

Assumption 2 (Weak coupling)

Bx(k) + Ew(k) < 0, (7)

where inequality is again component-wise. ut

Essentially, the states’ mutual dependence expressed byBx(k) only emphasizes

or reduces “weakly” the destabilizing effects of the disturbances. In the next

section, we present a decomposition approach that translates dynamics (5)

into n scalar dynamics in “lot sizing” form [7].

3 Robust Decomposition

With the term “robust decomposition” we mean a transformation through

which dynamics (5) are replaced by n independent uncertain lot sizing models

of the form (8) where xi(k) is the inventory, di(k) the demand, ui(k) the

reordered quantity and Dki ⊂ R denotes the uncertainty set:

xi(k + 1) = xi(k)− di(k) + ui(k) ≥ 0, di(k) ∈ Dki . (8)

Recall that in (5) the disturbance is given at the beginning and fixed that way.

We use those values of the disturbance to determine set Dki in (8), as explained

in the following. Replacing (5) with (8) is possible once we relate the demand
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di(k) to the current values of all other state components and disturbances as

expressed below:

di(k) = −
[∑n

j=1 bijxj(k) +
∑n
j=1Eijwj(k)

]
= − [〈Bi•x(k)〉+ 〈Ei•w(k)〉] ,

(9)

where we denote by Bi• the ith row of the matrix B, with the same conven-

tion applying to Ei•. Following the decomposition, each lot sizing model is

controlled by an agent i (whose state is xi) who plays against a virtual oppo-

nent which selects a worst-case demand, which can be viewed as a two-player

game.

Our next step is to make the n dynamics in the form (8) mutually inde-

pendent. Toward that end, we introduce Xk as the set of x(k) and observe

that this set is bounded for bounded di(k). The set Xk can be defined in

two steps. First, we assume that the states never leave a given region, then

we compute the worst-case vector x(k) in the region, namely the vector x(k)

that, once substituted in (9), has the effect of pushing the ith state out of the

safe region. Then, we check whether the trajectory still lies within the region.

Boundedness of Xk means that there exists a scalar φ > 0 such that

‖x‖∞ ≤ φ for all x ∈ Xk. In view of this, it is possible to decompose the

system by replacing the current demand di(k) by the maximal or minimal
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demand as computed below:

d+i (k) = max
ξ∈Xk

{−〈Bi•ξ〉 − 〈Ei•w(k)〉} =
∑
j

[Bij ]−φ− 〈Ei•w(k)〉 (10)

d−i (k) = min
ξ∈Xk

{−〈Bi•ξ〉 − 〈Ei•w(k)〉} =
∑
j

[Bij ]+φ− 〈Ei•w(k)〉, (11)

where [Bij ]+ denotes the positive part of Bij , i.e., max{Bij , 0} and [Bij ]− the

negative part. In the following we will write compactly dei (k), e ∈ {+,−, nil}

to generically address the maximal demand (10) when e = +, the minimal

demand (11) when e = −, and the exact demand (9) when e = nil. From the

above preamble we derive the uncertainty set as

Dki = {η ∈ R : d−i (k) ≤ η ≤ d+i (k)}.

Likewise, (11) describes the demand that would push the state out of the

positive orthant in the longest time. To complete the decomposition, it remains

to transform the objective function (4) into n independent ones:

Ji(ui, yi) =

N−1∑
k=0

(
pki ui(k) + hki xi(k) + fki yi(k)

)
.

Note that because of the linear structure of J(u, y) in (4), we have

J(u, y) =

n∑
i=1

Ji(ui, yi).

Thus, we have transformed the original problem into n independent mixed

integer minimization problems of the form (12)-(14) below.
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In the spirit of predictive control, we solve, for τ = 0, . . . , N − 1, and

e(τ) = nil, e(k) = e, for k > τ , e ∈ {nil,+,−}, and with ξτi being the

measured state at time τ :

(MIPCi)
e

min
ui,yi

N−1∑
k=τ

(
pki ui(k) + hki xi(k) + fki yi(k)

)
(12)

xi(k + 1) = xi(k)− de(k)i (k) + ui(k) ≥ 0, (13)

xi(τ) = ξτi , xi(N) = 0

0 ≤ ui(k) ≤ cyi(k), yi(k) ∈ {0, 1}. (14)

Note that when the superscript e = nil then we simply write (MIPCi).

Denote by (MIPC)
r

the relaxation of (MIPCi) where 0 ≤ y ≤ 1.

Lemma 3.1 The following relations hold:

(MIPCi)
−
, (MIPC)

r ≤ (MIPCi) ≤ (MIPCi)
+
.

Proof. The conditions (MIPCi)
− ≤ (MIPCi) ≤ (MIPCi)

+
are true as

d−i (k) ≤ di(k) ≤ d+i (k) for all k = 0, . . . , N − 1 and the cost (12) is increasing

in the demand. The inequality (MIPC)
r ≤ (MIPCi) follows from observing

that in (MIPC)
r

we relax the integer restrictions on y and therefore the cost

cannot be higher than that in (MIPCi). ut

4 Shortest Path and Linear Programming

What we will establish here is that, for the problem at hand, relaxing and

massaging the problem in a certain manner, leads to a shortest path reformu-
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lation of the original problem. Shortest path formulations are based on the

notion of regeneration interval as discussed next.

Let us borrow from [7] the concept of regeneration interval and adapt it to

the generic minimization problem i defined by (12)-(14).

Definition 4.1 (Pochet and Wolsey 1993) An interval [α, β] forms a re-

generation interval for (xi, ui, yi) if xi(α − 1) = xi(β) = 0 and xi(k) > 0 for

k = α, α+ 1, . . . , β − 1.

Given a regeneration interval [α, β], we can define the accumulated demand

over the interval dαβi , and the residual demand rαβi , as

dαβi =

β∑
k=α

d
e(k)
i (k), rαβi = dαβi −

⌊
dαβi
C

⌋
C. (15)

The path we take now is to reformulate problem (12)-(14) in terms of

some new variables. More formally, let us consider variables yαβi (k) and εαβi (k)

defined below with the following interpretation. Variable yαβi (k) is equal to 1

in the presence of a saturated control at time k, and 0 otherwise. Similarly,

variable εαβi (k) is equal to 1 in the presence of a non-saturated control at time

k, and 0 otherwise:

yαβi (k) =


1 ui(k) = c

0 otherwise.

εαβi (k) =


1, 0 < ui(k) < c,

0, otherwise.

Variables yαβi (k) and εαβi (k) tell us on which period full or partial batches

are ordered. Then, we can use some well-known results from the lot sizing lit-
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erature to convert the original mixed integer problem (12)-(14) into a number

of linear programs
(
LPαβi

)
, each one corresponding to a specific regeneration

interval [α, β].

Letting eki := pki +
∑N−1
j=k+1 h

j
i , after some standard manipulations, the

linear program
(
LPαβi

)
for fixed regeneration interval [α, β] can be expressed

as:

min
yα,βi ,uα,βi

β∑
k=α

(
ceki + fki

)
yαβi (k) +

β∑
k=α

(
rαβeki + fki

)
εαβi (k) (16)

β∑
k=α

yαβi (k) +

β∑
k=α

εαβi (k) =

⌈
dαβi
c

⌉
(17)

t∑
k=α

yαβi (k) +
t∑

k=α

εαβi (k) ≥
⌈
dαti
c

⌉
, t = α, . . . , β − 1 (18)

β∑
k=α

yαβi (k) =

⌈
dαβi − r

αβ
i

c

⌉
(19)

t∑
k=α

yαβi (k) ≥
⌈
dαti − rαti

c

⌉
, t = α, . . . , β − 1 (20)

yαβi (k), εαβi (k) ≥ 0, k = α, . . . , β. (21)

The above model has been extensively used in the lot sizing context.

Equality constraints (17) and (19) tell us that the ordered quantity over

the interval has to be equal to the accumulated demand over the same interval.

This makes sense as the initial and final states of a regeneration interval are

null by definition. The inequality constraints (18) and (20) impose that the

accumulated demand in any subinterval may not exceed the ordered quantity

over the same subinterval. Again, this is due to the condition that the states

are nonnegative in any period of a regeneration interval. Finally, the objective
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function (16) is simply a rearrangement of (12) induced by the variable trans-

formation seen above and specialized to the regeneration interval [α, β] rather

than being on the entire horizon [0, N ].

The solutions of (LPαβi ) that are binary are called “feasible”. We are now

in a position to recall the following “nice property” of (LPαβi ) presented first

by Pochet and Wolsey in [7].

Theorem 4.1 (Total Uni-modularity) The optimal solution of (LPαβi ) is

feasible.

Proof. Note that the constraint matrix of (LPαβi ) is a 0− 1 matrix. We can

reorder the constraints in a certain manner, so that the matrix has the con-

secutive 1’s property on each column and turns out to be totally unimodular.

It then follows that yα,βi and εα,βi are 0− 1 in any extreme solution. ut

4.1 Shortest Path

We now resort to well-known results on lot sizing to arrive at a shortest path

model which links together the linear programming problems of all possible

regeneration intervals.

Toward that end, let us define variables zαβi ∈ {0, 1}, which yield 1 when

a regeneration interval [α, β] appears in the solution of (12) -(14), and 0 oth-

erwise. The linear programming problem (LPi) solving (12) -(14) takes on the
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form below. For τ = 0, . . . , N − 1, solve

min
yαβi ,uαβi ,zαβi

N−1∑
α=τ+1

N−1∑
β=α

β∑
k=α

[(
ceki + fki

)
yαβi (k) +

β∑
k=α

(
rαβeki + fki

)
εαβi (k)

]

N∑
β=τ+1

zτ+1,β
i = 1

t−1∑
α=τ+1

zα,t−1i −
N∑
β=t

ztβi = 0 t = τ + 2, . . . , N,

τ + 1 ≤ α ≤ β ≤ N
β∑

k=α

yαβi (k) +

β∑
k=α

εαβi (k) =

⌈
dαβi
c

⌉
zαβi , τ + 1 ≤ α ≤ β ≤ N

t∑
k=α

yαβi (k) +

t∑
k=α

εαβi (k) ≥
⌈
dαti
c

⌉
zαβi , t = α, . . . , β − 1,

τ + 1 ≤ α ≤ β ≤ N
β∑

k=α

yαβi (k) =

⌈
dαβi − r

αβ
i

c

⌉
zαβi τ + 1 ≤ α ≤ β ≤ N

t∑
k=α

yαβi (k) ≥
⌈
dαti − rαti

c

⌉
zαβi , t = α, . . . , β − 1,

τ + 1 ≤ α ≤ β ≤ N

yαβi (k), εαβi (k), zαβi ≥ 0, k = α, . . . , β.

The above constraints have already appeared in
(
LPαβi

)
. The only difference

here is that, now, because of the presence of zαβi in the right hand term, the

constraints referring to a given regeneration interval come into play only if

that interval is chosen as part of the solution, that is, whenever zαβi is set
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equal to one. Furthermore, a new class of constraints appear in the first line

of the constraints. These constraints are typical of shortest path problems and

in this specific case help us force the variables zαβi (k) to describe a path from

0 to N . Finally, note that for τ = 0, the linear program (LPi) coincides with

the linear program presented by Pochet and Wolsey in [7].

At this point, we are in a position to recall the important result established

by Pochet and Wolsey in [7] and adapt it to (MIPCi) within the assumption

of null final state (high values of hNi ).

Theorem 4.2 The linear program (LPi) solves (MIPCi) with null final state.

Proof. It turns out that the linear program (LPi) is a shortest path problem

on variables zα,βi . Arcs are all associated with a different regeneration interval

[α, β] and the respective costs are the optimal values of the objective functions

of the corresponding linear programs (LPα,βi ) (cf. [7]). ut

4.2 Receding Horizon Implementation of (LPi)

The main difference between the lot sizing model [7] and the (LPi) arrived at

here is that in the (LPi) the initial state is non null. Actually, successive linear

programs (LPi) are linked together by the initial state condition expressed in

(13), which we rewrite below

xi(τ) = ξτi .
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To address this issue, we need to elaborate more on how to compute the

accumulated demand in (15). Take for [τ, t] any interval with x(τ) = ξτi > 0.

Then, condition (15) needs to be revised as

dτti = max

{
t∑

k=τ

d
e(k)
i (k)− ξτi , 0

}
. (22)

The effective demand over an interval is the accumulated demand reduced by

the inventory stored and initially available at the warehouse. From a computa-

tional standpoint, the revised expression (22) has a different effect depending

on whether the accumulated demand exceeds the initial state or not, as dis-

cussed next.

1.
∑β
k=α d

e(k)
i (k) ≥ ξτi : the mixed linear program (MIPCi) with initial state

x(τ) = ξτi > 0 and accumulated demand
∑β
k=α d

e(k)
i (k) is converted into an

(LPi) characterized by null initial state x(α− 1) = 0 and effective demand

dαβi =
∑β
k=α d

e(k)
i (k)− ξτi as in the example below:

(MIPCi)

β∑
k=α

d
e(k)
i (k) = 12, x(τ) = ξτi = 10

=⇒ (LPi) x(α− 1) = 0, dαβi = 2.

2.
∑β
k=α d

e(k)
i (k) < ξτi : the mixed linear program (MIPCi) with initial state

x(τ) = ξτi > 0 and accumulated demand
∑β
k=α d

e(k)
i (k) is infeasible. The

solution obtained at the previous period τ − 1 applies. The example below

shows unfeasibility:
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(MIPCi)

β∑
k=α

d
e(k)
i (k) = 7, x(τ) = ξτi = 10

=⇒ (LPi) unfeasible.

5 Mean Field Coupling

In this section, we discuss a special case of interest where each agent seeks to

compensate a combination of the exogenous signal and the local state average.

We assume that the worst-case demand introduced earlier takes into account

also of the mean-field influence of the population behavior on the ith dynam-

ics. Thus, each agent plays his best-response against the population behavior.

The resulting model is a mean-field game, which is suitable to describe fluctua-

tions (sawtooth waves) in opinion dynamics. Indeed, we can interpret the state

of each agent as her opinion on a certain issue, the exogenous signal as the

media influence, and the control as an instantaneous reset on the opinion sub-

sequent to a meeting with a stubborn agent [17]. In addition, the dependence

on endogenous factors, represented by the averaging process, is the result of

the interactions among the agents. In this case, our decomposition method-

ology becomes similar to mean-field methods in large population consensus

[20, 33, 35]. We discuss below the mean-field approximations as well as the

application of predictive control methods to approximate the computation.
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5.1 Multi-Agent System Model

Consider a graph G = (V,E) with a set of vertices V = {1, . . . , n} and a

set of edges E ⊆ V × V . Denote by Ni the neighborhood of agent i, i.e.,

Ni = {j ∈ V : (i, j) ∈ E}. We can associate with the graph G the normalized

graph Laplacian matrix L ∈ Rn×n whose ij-th entry is

lij =


−1
|Ni| , j ∈ Ni,

1, j = i.

Now, a special case of interest is when B in (5) is B = −εL for some

sufficiently small scalar ε > 0. In this case dynamics (5) become:

x(k + 1) = x(k)− εLx(k) + Ew(k) + u(k) ≥ 0. (23)

Essentially, the above dynamics together with the constraint x(N) = 0 arise

in all those situations where each agent i = 1, . . . , n tries to compensate a

combination of the exogenous signal w(k) and the local state average given by

m̄i(k) =
1

|Ni|
∑
j∈Ni

xj(k).

Elaborating along the line of the robust decomposition (8), we can then com-

pute the disturbance taking into account the influence of the local average on

the exogenous signal as follows:

di(k) = − [ε(m̄i(k)− xi(k)) + 〈Ei•, w(k)〉] .
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Note that Assumption 2 in this case says that the exogenous signal is dom-

inant if compared to the weak influence from neighbors.

In principle, for the decomposition method to be exact, each agent i should

know in advance the time evolution of the local average m̄i(k), for k =

0, . . . , N . However, this may not be feasible. One way to approximate the local

average m̄i(k) is through mean-field methods. Under the further assumption

that the number of agents is large and the agent dynamics are symmetric,

the local average can be characterized through the finite-difference approxi-

mation of the continuity or advection equation that describes the transport of

a conserved quantity [35]. Another way to deal with the problem is to use the

predictive control method to approximate the computation. More specifically,

when we solve the problem over the horizon from k̃ ≥ 0 to N , we assume

that neighbor agents communicate their state and so at least the first sample

m̄i(k̃) is exact. In the later stages of the horizon each agent approximates the

local average by specializing (10)-(11) to our case. Note that maximal and

minimal demand can be obtained by assuming that all agents j 6= i are in 0

or φ respectively, and thus we have for agent i:

d+i (k) = εxi − 〈Ei•, w(k) 〉, d−i (k) = − [ε(φ− xi) + 〈Ei•, w(k)〉] .

Alternatively, this also corresponds to assuming for the uncertain set Dki the

following expression:

Dki = {η ∈ R : −ε(φ− xi)− 〈Ei•, w(k)〉 ≤ η ≤ εxi − 〈Ei•, w(k)〉}.
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The above set up includes the case where agents are homogeneous as explained

next.

Homogeneous agents. Within the realm of mean-field coupling, a par-

ticularly interesting case is the one where agents are homogeneous in the sense

that they behave similarly when at the same state. For these problems, a main

question is the asymptotic population behavior, i.e., the behavior of the pop-

ulation when the number of agents is large.

Suppose that all agents face the same disturbance comprised of a constant

value plus a random walk, i.e., ωi(k) := Ei•w(k) = const.+σiγi(k) where γi(k)

is the random walk, and σi is the random walk coefficient, for all agents i.

Denoting the saturation function by

sat[x] =


x+, if x > x+,

x−, if x < x−,

x, if x− ≤ x ≤ x+,

(24)

the system dynamics takes the form


xi(k + 1) = xi(k)− di(k) + ui(k),

di(k) = −[sat[ε(m̄i(k)− xi(k))] + ωi(k)],

(25)

where ui(k) is an (s, S) strategy (see, e.g., [36]) of the type

ui(k) =


S − xi(k) if xi(k)± ε ≤ s,

0 otherwise.

(26)
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Essentially, the control restores the original upper threshold S anytime the

stocked inventory (the state) goes below a lower threshold s. Such a policy

has been proven to be optimal in the presence of fixed costs in a number of

inventory applications. Note that the saturation function is used here only to

avoid state oscillations when the agents are far enough from the local average.

Our goal is now to provide a macroscopic description of the system and

analyze the corresponding behavior. To do this, we borrow from [37] a modeling

approach based on stochastic matrices. Let W = I − εL be a row stochastic

matrix, i.e., W1 = 1. The system equation (23) can be rewritten as

x(k + 1) = Wx(k) + ωi(k) + u(k).

Given the distribution m(k) followed by x(k), denote the corresponding

average distribution as m̄(k) = 1
n 〈1, x(k)〉. Using the property 1TW = 1T , we

can derive for the average the following recursive equation:

m̄(k + 1) = 1
n 〈1, x(k + 1)〉 = 1

n 〈1,Wx(k) + ω(k) + u(k)〉 (27)

= m̄(k) + 1
n 〈1, ω(k) + u(k)〉,

where ω(k) is the vector whose ith component is ωi(k).

The above is a stochastic process whose first-order moment is generated

by

Em̄(k + 1) = Em̄(k) + const.+ 1
n 〈1, u(k)〉,

Em̄(0) =
∑n
i=1 xi(0).

(28)
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Now, our aim is to analyze the convergence of the agents’ opinions to their

average. Toward that end, defineM = 1
n1⊗1. Then for a given vector x(k) we

haveMx(k) = ( 1
n1⊗1)x(k) = m̄(k)1. With the above in mind, the deviation

of each agent state xi(k) from the average m̄(k) is captured by the vector

z(k) := x(k)−Mx(k) = (I −M)x(k).

If agents reach average-consensus, i.e., their opinions all converge to the aver-

age, then the variable z(k) goes to zero. After some transformations we obtain

for z(k) the following iteration:

z(k + 1) = (I −M)(Wx(k) + ω(k) + u(k))

= (W −M)(I −M)x(k) + (I −M)(ω(k) + u(k))

= (W −M)z(k) + (I −M)(ω(k) + u(k)).

Following a few recursions, we can relate z(k) to the initial discrepancy value

z(0) and to the sequence of inputs ω(k) and u(k) as follows:

z(k) = (W −M)kz(0) +

k−t−1∑
t=0

(I −M)(ω(k) + u(k)).

Now, z(k) = (W −M)kz(0) is a typical averaging rule and we know that it

converges to the average if ‖W −M‖ < 1, where we denote by ‖W −M‖ the

spectral or maximum singular value norm of the matrix W −M [37]. In the

absence of Brownian motions, the agents can still reach consensus or at least

ε-consensus (ε is convergence tolerance) as established in the following result.
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Theorem 5.1 (Controlled Invariance) Let σi = 0 for all i and ‖W−M‖ < 1.

If there exists a τ > 0 such that ‖z(τ)‖ ≤ ε for a sufficiently small positive ε,

then ‖z(k)‖ ≤ ε for all k ≥ τ .

Proof. First, note that from σi = 0 for all i and homogeneity it follows that

(I−M)ω(k) = 0 for all k. Now, observe that if ‖z(τ)‖ ≤ ε then (I−M)u(k) ≈

0. This also means that

∞∑
k=0

‖(I −M)u(k)‖2 =

τ−1∑
k=0

‖(I −M)u(k)‖2 <∞, lim
k→∞

‖(I −M)u(k)‖2 = 0.

The above uses the fact that ‖(I −M)u(k)‖2 is bounded for all k and implies

that the sequence {z(k)} is convergent. Now, let us consider the subsequence

{ζ(k)} where ζ(k) = z(τ + k). We know that {ζ(k)} follows the equation

ζ(k) = (W −M)kζ(0) and from ‖W −M‖ < 1 it converges to zero. Since

{z(k)} is convergent and the subsequence {ζ(k)} converges to zero, then we

can conclude that {z(k)} converges to zero as well. ut

Example 5.1 For a given x(0) we can compute the first time that a control ui

is set to 1. Let us denote this time by t̃. We can also compute τ = min{k >

0| ‖(W −M)kz(0)‖ ≤ ε} and check that τ ≤ t̃. If the latter condition holds

true then the above theorem applies and opinions of all agents evolve according

the the periodic law (27) of m̄(k) and reach consensus to the average.
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6 Numerical Examples

In this section, we present three numerical examples to illustrate the findings

in the paper.

6.1 Second-Order Dynamics

Example 6.1. In this specific example, dynamics (1) take the form given

below in (29). Such dynamics are particularly significant as they reproduce

the typical interaction between position and velocity in a sampled second-

order system. Initial and final states are null, x(0) = x(N) = 0, and state

values must remain in the positive quadrant for all time. More specifically,

denoting by x1(k) the position and x2(k) an opposite in sign velocity, the

dynamics appear as:

x1(k + 1)

x2(k + 1)

 =

1 −κ

κ 1


x1(k)

x2(k)

−
w1(k)

w2(k)

+

u1(k)

u2(k)

 ≥ 0. (29)

A closer look at the first equation reveals that a higher velocity x2(k) leads to a

faster decrease of position x1(k+1). Similarly, the second equation tells us that

a higher position x1(k) induces a faster increase of velocity x2(k+1) because of

some elastic reaction. In both equations, the nonnegative disturbances wi(k) ≤

0 seek to push the states xi(k) out of the positive quadrant in accordance with

Assumption 3. Their effect is counterbalanced by positive control actions ui.
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Also, acting on parameter κ we can easily guarantee the “weakly coupling”

condition given in Assumption 2.

Turning to the capacity constraints (2), for this two-dimensional example,

these constraints can be rewritten as:

0 ≤

u1(k)

u2(k)

 ≤ C
 y1(k)

y2(k)

 ,
 y1(k)

y2(k)

 ∈ {0, 1}2.

Regarding the objective function (4), we consider the case where fixed costs

are much more relevant than the proportional and holding ones. This results

in choosing a high value for fk in comparison to values of parameters pk,

hk as shown in the next linear objective function where 1n indicates the n-

dimensional row vector on 1’s:

J(u, y) =

N−1∑
k=0

(〈1n, u(k)〉+ 〈1n, x(k)〉+ 100〈1n, y(k)〉) . (30)

This choice makes sense for two reasons. First, all the work is centered around

issues deriving from the integer nature of y(k). So, high values of fk emphasize

the role of integer variables in the objective function. Second, high fixed costs

lead to solutions with the fewest number of control actions and this facilitates

the validation and interpretation of the simulated results.

Next, we decompose dynamics (29) in scalar lot sizing form (13) which we

rewrite below:

xi(k + 1) = xi(k)− de(k)i (k) + ui(k).
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As regards the estimated demand d+i , a natural choice is to set d+i as below,

where we have denoted by x̃1(k) (respectively x̃2(k)) the estimated value of

state x1(k) (respectively x2(k)) in the dynamics of x2(k) (respectively x1(k)):

d+1 (k)

d+2 (k)

 =

 0 κ

−κ 0


 x̃1(k)

x̃2(k)

+

w1(k)

w2(k)

 . (31)

Now, the question is: which expression should be used to represent the set of

admissible state vectors, Xk, appearing in equation (10)? A possible answer

is given next:

 x̃1(k + 1)

x̃2(k + 1)

 =

 x̃1(k)

x̃2(k)

+

0

κx̄1

−
0

w2(k)

 (32)

+

0

C

 ,
 x̃1(0)

x̃2(0)

 =

x1(0)

x̃2(0)

 .

Let us elaborate more on the above equations. Regarding variable x̃2(k), this

is used in the evolution of d+1 (k) as in the first equation of (31). Because of the

positive contribution of the term κx̃2(k) on d+1 (k), a conservative approach

would suggest to take for x̃2(k) a possible upper bound of x2(k) and this is

exactly the spirit behind the evolution of x̃2(k) as expressed in the second

equation of (32). Here, x̄1 is an average value for x1. A similar reasoning

applies to x̃1(k), used in the evolution of d+2 (k) as in the second equation of

(31). We now observe a negative contribution of the term −κx̃1(k) on d+2 (k)
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and therefore take for x̃1(k) a possible lower bound of x1(k) as shown in the

first equation of (32).

We can now move to show and comment on our simulated results.

We have carried out two different sets of experiments In the line of the

weakly coupling assumption (see Assumption 2), we have set κ small enough

and in the range from 0.01 to 0.225. Such a range works well as we will see

that |κxi| is always less than wi, which also means Bx(k) + Ew(k) < 0. For

the sake of simplicity and without loss of generality, we take capacity C = 3,

disturbances wi = 1 and x̄1 = 1. Unitary disturbances facilitate the validation

and interpretation of the results as the accumulated demand over the horizon

turns to be very close to the horizon length. The two experiments differ also

in the horizon length N for reasons to be clarified next. All simulations were

carried out with MATLAB on an Intel(R) Core(TM)2 Duo CPU P8400 at

2.27 GHz and a 3GB of RAM.

The first set of experiments aims at analyzing the computational benefits

of the decomposition and relaxation upon which our solution method is based.

So, we consider κ = 0.1 and horizon lengths N = 1, . . . , 10. We do not need to

consider larger values of N as even in this small range of values, the differences

in the computational times are already sufficiently evident as clearly illustrated

in Fig. 2. Here, we plot the average computational time vs. the horizon lengths

N of the mixed integer predictive control problem (solid diamonds), of the

decomposed problem (MIPCi) (dashed squares), and of the linear program

(LPi) (dotted circles). Average computational time means the average time
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one agent takes to make a single decision (the total time is about 2N times the

average one). As it can be seen, the computational time of the linear program

(LPi) is a fraction either of the one required by the (MIPC) or of the one

required by the (MIPCi).
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Fig. 2: Average computational time vs. horizon length N of
the mixed integer predictive control problem (solid diamonds),
of the decomposed problem (MIPCi) (dashed squares), and of
the linear program (LPi) (dotted circles).

In a second set of simulations, for a horizon length N = 6, we have stud-

ied how the percentage error below varies with different values of the elastic

coefficient κ = {0.01, 0.2, 0.225}:

ε% =
optimal cost of (MIPCi)− optimal cost of (MIPC)

optimal cost of (MIPC)
%.

The role of κ is crucial as we recall that κ describes the effective tightness

and coupling between different states x1(k) and x2(k). We do expect that

small values for coefficient κ, which means weak coupling of state components,



Title Suppressed Due to Excessive Length 33

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

20

elastic coefficient

p
e
rc

e
n
ta

g
e
 e

rr
o
r

Fig. 3: Percentage error ε% for different values of the elastic
coefficient κ.

may lead to small errors ε%. Differently, high values of κ, describing a strong

coupling between state components, are supposed to induce higher values of

ε%.

This is in line with what we can observe in Fig. 3 where we plot the error

ε% as function of coefficient κ. For relatively small values of κ in the range

from 0 to 0.2, we observe a percentage error not exceeding 1 percent, ε% ≤ 1.

A discountinuity at around κ = 0.2 causes the error ε% to go from about 1%

to 20%.

In Fig. 4, for a horizon length N = 6 and for a value of κ = 0.225, we depict

the exact solution (dashed squares) and approximate solution (solid triangles)

returned by the (MIPC) and by the (LPi) respectively. Dotted lines represent

predicted trajectories in earlier periods of the receding horizon. We note that

controls ui(k) never exceed the capacity and are always associated with unitary

control actions yi(k). Also, we observe four control actions (four peaks at 1)
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Fig. 4: Elastic coefficient κ = 0.225. Exact solution (dashed
squares) and approximate solution (solid triangles) returned by
the mixed integer linear program (MIPC) and by the linear
program (LPi), respectively. Horizon length is N = 6. Time plot
of states xi(k), continuous controls ui(k) and discrete controls
yi(k).

in the approximate solution, and three in the exact solution. So we have an

increase in the percentage error, of 20%. A last observation concerning the

exact plot of yi(k) is that the number of control actions is as minimal as

possible, i.e., 3 for y1(k) and 2 for y2(k), as seen by dividing the accumulated

demand (about 6) by the capacity C = 3 and rounding the fractional result

up to the next integer.

We also compared exact and approximate solutions for a smaller value of

κ = 0.2 and observed that we still have notable differences in the plot of

continuous controls u1(k) which cause a reduced percentage error ε% = 1. We

have concluded our simulations by noticing that the percentage error ε% is

around zero when we reduce further the value of κ to 0.01.
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6.2 Numerical examples on the mean–field

In this subsection, we present two numerical examples on the mean–field ap-

proximation.

Example 6.2. Consider a complete network of n = 10 agents. The local state

average is the same for all i and also equal to the global average, i.e., for all i it

holds that m̄i(k) = 1
n

∑
j∈V,j 6=i(xj(k)− xi(k)). The horizon length is N = 15,

the scalar ε = 0.1, the initial state is x(0) = [4 . . . 13], and the disturbance is

Ei•w(k) = 1 if k is odd and Ei•w(k) = 2 otherwise for all agents i. The bound

on input is C = 3 and the objective function is given below where 1n indicates

the n-dimensional row vector on 1’s:

J(u, y) =

N−1∑
k=0

(〈1n, u(k)〉+ 〈1n, x(k)〉+ 100〈1n, y(k)〉) . (33)

We also take φ = 13. We plot in Fig. 5 the time evolution of the state x(k).

As expected, the state is non-negative for all k. Also, the state x(k) converges

to a neighborhood of zero of size c−mink{d−i (k)} = 2.

Example 6.3. Consider a complete network of n = 1000 homogeneous agents.

As in the previous example, the local state average is the same for all i

and also equal to the global average, i.e., for all i it holds that m̄i(k) =

1
n

∑
j∈V,j 6=i(xj(k) − xi(k)). The horizon length is N = 60, the scalar ε =

10−4, 10−1, 1, the initial state x(0) is extracted from a Gaussian distribution

with mean 70 and standard deviation std = 10−1, 5, 10. The disturbance is

Ei•w(k) = 10 + 2γi(k) where γi(k) is a random walk, for all agents i. Thus,
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Fig. 5: Time evolution of state x(k).

the system dynamics take the form


xi(k + 1) = xi(k)− di(k) + ui(k),

di(k) = −[sat[ε(m̄i(k)− xi(k))] + 10 + 2γi(k)],

(34)

where ui(k) is an (s, S) strategy of the type

ui(k) =


100, if xi(k)± ε ≤ 20,

0, otherwise.

(35)

Results are shown in Figs. 6-7. In particular, Fig. 6 shows the population

evolution for increasing averaging parameter ε = 10−4, 10−1, 1 and initial spar-

sity std = 10−1, 5, 10 (from top to bottom). On the left column we observe the

time plot of state x(k); on the right column we have the mean distribution and

standard deviation. Clearly, a higher averaging parameter ε leads the agents to
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converge (with reduced standard deviation) in accordance to a consensus-type

dynamics.
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Fig. 6: Population evolution for values of the averaging parameter ε = 10−4, 10−1, 1 and
initial sparsity std = 10−1, 5, 10 (from top to bottom): (left) time plot of state x(k); (right)
average distribution and standard deviation.

Figure 7 shows the population distribution for each one of the above simula-

tions (from top to bottom). Thick lines highlight initial and final distributions.

7 Conclusions

In a nutshell, we have proposed a robust decomposition method which brings

an n-dimensional hybrid optimization problem into n independent tractable

scalar problems of lot sizing form. Through examples, we have illustrated the
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Fig. 7: Distribution for increasing values of the averaging parameter ε = 10−4, 10−1, 1 and
initial sparsity std = 10−1, 5, 10 (from top to bottom).

mean-field coupling in a multi-agent system problem, where each agent seeks to

compensate a combination of an exogenous signal and the local state average.

We have discussed a large population mean-field type of approximation as well

as the application of predictive control methods.

There are at least three possibilities for future developments. First, one

needs to study connections between regeneration intervals and reverse dwell

time conditions developed in hybrid/impulsive control. Second, we intend to

zoom in on the exploitation of cutting plane methods to increase the effi-

ciency of linear relaxation approximations. Third, it would be of interest to
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investigate the mean-field large population approximations that arise from the

decomposition of the mixed-integer optimal compensation problem.
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