
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/146514061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGMENT

Acknowledgement is due to King Fahd University of Petroleum and Minerals for support

of this research.

I wish to express my appreciation and thanks to my advisor: Dr. Mohammad Alshayeb for

cooperation and support. I also wish to thank members of my thesis committee: Dr. Jaralla

AlGhamdi and Dr. Sabri Mahmoud. Special thanks to all members of the Software

Engineering Research Group at KFUPM for their constructive feedback.

iii

TABLE OF CONTENS

ACKNOWLEDGMENT .. ii

TABLE OF CONTENS ...iii

LIST OF TABLES .. vii

LIST OF FIGURES ...viii

ABSTRACT ... ix

ABSTRACT (ARABIC) ... x

CHAPTER 1 INTRODUCTION .. 1

1.1. PROBLEM DEFINITION ... 1

1.2. RESEARCH GOALS .. 3

1.3. RELATED WORK .. 5

1.4. THESIS STRUCTURE .. 6

CHAPTER 2 SOFTWARE METRICS DEFINITIONS .. 7

2.1. COMMON SOFTWARE METRICS SUITES .. 7

2.1.1. Chidamber and Kemerer Metrics Suite .. 8

2.1.2. Li’s Metrics Suite .. 10

2.1.3. MOOD Metrics Suite .. 11

2.1.4. Kim’s Metrics Suite .. 12

2.1.5. Other Object Oriented Metrics ... 13

2.2. CLASSIFICATION OF Software Metrics .. 14

iv 2.2.1. Classification based on Paradigm ... 14

2.2.2. Classification based on Usage ... 15

2.3. Issues in Metrics Definitions .. 16

2.3.1. Examples of Ambiguity in Metrics Definitions ... 17

2.3.2. Sources of Metrics Ambiguity ... 18

2.3.3. Addressing Metrics Ambiguity ... 18

2.3.4. Metrics Reusability and Extensibility ... 19

CHAPTER 3 FORMALIZATION OF METRICS DEFINITIONS 20

3.1. Abstracting Metrics Definitions USING INTERMEDIATE Meta-models 21

3.1.1. Meta-models of Metrics Data ... 21

3.1.2. Meta-models of Software Artifacts ... 22

3.2. Metrics Definitions Formalization ... 27

3.2.1. Early Attempts .. 27

3.2.2. Metrics Meta-models .. 28

3.2.3. Using the Dagstuhl Middle Meta-model .. 28

3.2.4. Using XML in Metrics Definitions .. 30

3.3. Comparison Between Metrics Definition Approaches 31

CHAPTER 4 FRAMEWORK FOR REPRESENTATION OF SOFTWARE

METRICS DEFINITIONS .. 34

4.1. Metrics MEasurement PROCESS .. 34

4.2. Objectives of the Metrics Measurement Framework ... 35

4.3. Elements of the Metrics Measurement Framework ... 36

4.4. the Metrics Measurement Framework ... 40

v CHAPTER 5 THE SOFTWARE METRICS DEFINITION LANGUAGE 41

5.1. SMDL Concepts ... 42

5.1.1. Meta-Model Base ... 42

5.1.2. Variables and Queries .. 43

5.1.3. Intermediate Storage / Meta-Model Database ... 43

5.1.4. Deep vs. Progressive Evaluation .. 43

5.1.5. Invalidation Rules ... 46

5.1.6. Exceptions and Constraints .. 47

5.2. SMDL Attibutes ... 48

5.2.1. Metrics Properties .. 50

5.2.2. Metrics Computation .. 51

5.3. SMDL Application Progamming Interface (API) .. 53

5.3.1. API Model Classes ... 53

5.3.2. API Built-In Queries ... 53

5.3.3. XMLMath .. 53

5.3.4. Meta-Model Evaluation and Initialization ... 55

5.4. SMDL DEFINITION SCHEME .. 62

CHAPTER 6 APPLYING SMDL ... 70

6.1. SAMPLE DEFINITIONS IN SDML ... 70

6.1.1. Depth of Inheritance ... 70

6.1.2. Weighted Method per Class (WMC) .. 71

6.1.3. Response for Class (RFC) .. 71

6.1.4. Number of Children (NOC) .. 72

vi 6.1.5. Coupling Between Objects (CBO) .. 73

6.1.6. Lack of Cohesion in Methods (LCOM) .. 73

6.2. Prototype Implementation .. 74

6.3. Code Parsing .. 75

6.3.1. SMDL Parser and Editor ... 75

6.3.2. SMDL Calculator ... 78

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 81

7.1. CONCLUSION .. 81

7.2. CONTRIBUTION .. 81

7.3. FUTURE WORKS ... 82

APPENDICES .. 84

APPENDIX A. THE SOFTWARE METRICS DEFINITION LANGUAGE

SCHEMA .. 85

REFERENCES ... 91

VITA .. 96

vii

LIST OF TABLES

Table 1 - List of Size Metrics ... 13
Table 2 - Classification of Software Metrics by Fenton [1] ... 16
Table 3 – Comparison of Modern Approahces to Formalization of Software Metrics 31
Table 4 – Built-in SMDL Queries based in the DMM Model ... 55
Table 5: Selected Metrics for Prototype Implementation .. 78

viii

LIST OF FIGURES

Figure 1 - Metrics Taxonomy by Sarker .. 15
Figure 2 - Design Meta-model described by Lanza and Ducasse [20] 23
Figure 3 - The Dagstuhl Middle Meta-model Entities Hierarchy 25
Figure 4 - Relationships of the DMM Meta-model .. 26
Figure 5 - Formal Definition of the McCabe Metric using Attribute Grammar 27
Figure 6 – Meta-model database example .. 37
Figure 7 - Metrics Measurement Framework Architecture .. 40
Figure 8 – Overview of the main SMDL elements .. 50
Figure 9 - SMDL Role in the Software Metrics Measurement Framework 52
Figure 10 - Portions of the SMDL schema definition (ver. 1.0) .. 69
Figure 11 - Screenshot of Jaxe Editing the SMDL Schema .. 76
Figure 12 Screenshots of Creating an SMDL Document ... 78
Figure 13 Screenshot of SMDL Metrics Calculator ... 80

ix
 ABSTRACT

: FULL NAME OF STUDENT YASSER ELSAYED SHAABAN

: TITLE OF STUDY Software Metrics Definition Language

: MAJOR FIELD Computer Science

: DATE OF DEGREE January, 2008

Software metrics are becoming more acceptable measures for software quality

assessment. However, there is no standard form of representing metrics definitions, which

would be useful for metrics exchange and customization. We propose the Software

Metrics Definition Language (SMDL), an XML-based description language for defining

software metrics in a precise and reusable form. Metrics definitions in SMDL are based

on meta-models extracted from either source code or design artifacts, such as the Dagstuhl

Middle Meta-model, with support for various abstraction levels. The language also

defines several flexible computation mechanisms such as extended OCL queries and

predefined graph operations on the meta-model.

x

ABSTRACT (ARABIC)

 خلاصة الرسالة

 اسم الطالب الكامل : ياسر السيد شعبان

 عنوان الدراسة : لغة تعريف متريات البرمجيات

 التخصص : علوم الحاسوب

1431صفر ، تاريخ الشهادة :

لتمثيل موحدة طريقة هناك ليس ذلك من البرمجيات. بالرغم جودة لتقييم قبولاً أكثر أصبح قياس البرمجيات

 البرمجيات متريات لقياس لغة نقترح البحث هذا في .المتريات وتخصيص المتريات، مما يحد من تبادل تعريفات

(SMDL)، لغة على مبنية XML، تعريف .الاستخدام لإعادة وقابل دقيق شكل في البرمجيات متريات لتعريف

 التصاميم أو المصدر شفرة من مستخرجة Meta-model الفوقية النماذج على مبنية SMDL بلغة المتريات

 الحساب آليات من العديد تعرف أيضا اللغة.التجريد مستويات لمختلف دعم يوفر الذي Dagstuhl نموذج مثل

 .الفوقية النماذج على سلفا المحددة البيانية الرسوم عمليات وكذلك المطورة OCL استعلامات مثل المرنة

 درجة الماجستير في العلوم

 جامعة الملك فهد للبترول والمعادن
 الظهران، المملكة العربية السعودية

 التاريخ

1431 صفر -

1

CHAPTER 1

INTRODUCTION

1.1. PROBLEM DEFINITION

Systematic measurement and metrics collection is an essential activity in engineering

disciplines. It serves as part of tracking and maintaining the quality attributes of project

deliverables and acts as an aid to managerial decisions. The basic principle is that quality

improvements need the guidance of quantitative representations of quality attributes taken

with proper measurement. The continuous growth of the software industry makes quality

assessment of software products a more crucial issue due to the impact of poorly written

software. It is therefore clear that systematic and meaningful quality measurement of

software artifacts is expected to see wider adoption over the next few years as the industry

recognizes its importance in supporting decision making activities throughout the

lifecycles of the projects and its roles in improving the development efficiency. Even

though software metrics have existed and been in use since the first compiler (e.g. Lines

of Code metrics), their industrial adoption has remained limited due to a number of issues.

A critical discussion of these factors can be found in Fenton’s book [1].

2
The top challenge among the challenges of software measurement is how to formally

represent the definitions of software metrics definitions. While many metrics seem easy to

define verbally, they get ambiguous and unclear when it comes down to the actual

implementation, particularly across different programming paradigms and environments.

In many cases, several methods to compute a given metric exist that produce similar yet

different results. A simple example is the source line of code (SLOC) metric. Appearing

fairly simple and straightforward, it is easy to see sources of ambiguity. The reference to

“lines of code” could be used to refer to the count of: (a) machine instructions (b)

complete language statements (c) textual code lines, or (d) specified list of the

programming language keywords and expressions. It could even be worse when the

metric is used to compare results of similar metrics computed on different platforms and

programming languages. For instance, some languages impose certain form of the lines of

code (e.g. in Visual Basic) while other languages do not follow the textual line format and

impose end-of-line delimiters, as it is the case with C++, Java and C#.

The problem of ambiguity and lack of consistency across the definitions of software

metrics is increasingly becoming more relevant due to the fact that modern software

products are often developed with multiple languages in heterogeneous environments. A

typical modern enterprise project, for example, uses at least three classes of source

languages: a server-side language (e.g. JavaServer Pages, JSP), a client side language (e.g.

JavaScript and Adobe Action Script) and a presentation language (e.g. HTML/CSS for

Web applications and XAML for Windows). Therefore, it is safe to assume that these

different components could use different measurement tools to compute and aggregate

3
their metrics. Even with a single tool, aggregating and maintaining the results’

consistency among these becomes essential to the measurement process.

The inconsistency in metrics definitions and methods of measurement raises the issue of

the lack of extensibility and interoperability across software metrics tools. In fact, it

partially contributes to the slow pace of research in this field. For example, when a new

metrics is proposed, taking the task of incorporating and integrating the metric into

existing metrics tools becomes a major roadblock. The lack of a proper format to present

software metric definitions makes it difficult to accommodate new metrics into the exiting

tools in a consistent manner that ensures compatibility and accuracy of measurement.

With a comprehensive standardized foundation of these definitions, researching and

incorporating new metrics to existing tools could become more seamless and accurate

across more environments whenever possible.

Our objective of this research is to address the problem of representing software metrics

definitions. The main focus is given to software product metrics, which are directly

related to source code and design artifacts with special emphasis on the object-oriented

paradigm.

1.2. RESEARCH GOALS

The purpose of this research is to introduce a common way of representing software

metrics definition elements. In general, these elements fall into one of the following:

4
 Metrics Classification Properties: this includes metric identity, abbreviation,

authority information, abstraction level, scope, classification reference, and

computation properties.

 Metric Calculation: this includes the steps required calculating the metric values

for a given element in the code or the design. Values can be either derived from a

meta-model that abstracts the product artifacts, variables of other metrics, or even

pre-computed / user-given values. Therefore, it can help in metrics extensibility

and reusability.

 Relationships: a list of the relationships between a metrics and other dependent

metrics, e.g. some metrics can be generalizations or specializations of others in

terms of computation. This can also be used to relate metrics from similar category

or suite.

 Visualization: description of how to present metrics output to the user, e.g.

whether they are listed in a table per class/ per package or it can be constructed in

a matrix that compares classes/packages to each other. Also, the applicable types

of charts and their specifications should be included, e.g. bar-chart series, time-

series, histogram, etc…

In addition, this new form of representing software metrics has limited usefulness without

enabling extensibility and tools support. For example:

5
 Metrics Editor: for creating and customizing metrics in the standard form.

 Standard API: for reading, parsing and processing the metric descriptions.

The following summarizes the main goals of this research:

 Provide a standard form for representing software metrics.

 Support both design and code artifacts.

 Support multiple forms of describing metrics computations.

 Enable extensibility and reusability of metrics definitions.

 Provide a standard way to incorporate metrics into a hierarchy / classification

system of metrics.

1.3. RELATED WORK

To date, there is no common agreed-upon form of representing software metrics

definitions. However, there are some attempts toward formalizing metrics computations

and definitions which are discussed in Chapter 3. While some of these approaches address

the issues of metrics computation properly, based on abstract meta-models, they do not

address the issues of reusability, extensibility and exchangeability of the metrics

definitions. Most of the known approaches have several limitations.

6

1.4. THESIS STRUCTURE

The rest of this thesis is organized into six chapters. In Chapter 2, we review common

software metrics and the elements they have in common, providing a possible taxonomy

of software metrics. Next, we review several proposed methods for formalizing software

metrics definitions and we compare them, in Chapter 3. In Chapter 4, we propose a

framework for software metrics definition representation and we discuss the elements that

should be considered. In Chapter 5, we introduce the Software Metrics Definition

Language (SMDL) based on the proposed framework, highlighting its main components.

Chapter 6 provides some examples on applying SMDL including a discussion for a

prototype implementation of the language parser and a tool that computed the metrics

according to given SMDL definitions. Finally, Chapter 7 reviews the main contributions

and the possible future research toward formalization of software metrics definitions.

7

CHAPTER 2

SOFTWARE METRICS DEFINITIONS

Software metrics use the principles of measurement theory to formulate quantitative

measures of software artifacts’ that can be used to induce tractable quality measures that

gauge the development progress. In this chapter, we survey some of the well-known

software metrics suites and present examples of formal metrics definitions and how they

are presented. Another goal of this chapter is to select representative metrics that are used

as show cases of the proposed metrics definitions language (see CHAPTER 5). We also

discuss methods of software metrics classification and present two classification models.

Finally, review some of the challenges in standardizing metrics definitions.

2.1. COMMON SOFTWARE METRICS SUITES

Software metrics that are related to a single topic, measure coherent set of attributes, or

were introduced by a certain author are often referred to as suites. One of the early suites

was proposed by Troy et al. in 1981 an consisted of a set of 24 measures of modularity,

size, complexity, cohesion and coupling [2]. Function Points are also popular metrics

which focus on the user requirements rather than the software product. However, since the

8
focus here is on object-oriented systems, only relevant suites to object oriented design and

implementations are discussed.

2.1.1. Chidamber and Kemerer Metrics Suite

Chidamber and Kemerer introduced their infamous suite of software metrics for object

oriented languages in 1991 [3] and was revised later in 1994 [4]. This suite, commonly

referred to as C&K, consists of six metrics that measure some internal attributes and used

to measure some external quality attributes of object oriented classes.

Although these metrics were intended to be computable from design artifacts only, some

however require at least partial access to the implementation source. One particular

example is the Lack of Cohesion (LCOM) metric which relies upon the number of times a

field is being accessed through calls of the class’s methods.

The following summarizes definitions of the C&K suite [3, 4] :

• Weighted Methods per Class (WMC): represents complexity of a class in terms

of the methods it encloses. It is computed as the sum of complexities of all

member methods of a given class. Method complexities are often assumed to be

equal to one.

• Depth of Inheritance Tree (DIT): this metric measures the depth of a class in the

inheritance hierarchy. For a given class we count the number of ancestors, which

should be related to the complexity of the class since a sub-class in a hierarchy

inherits complexity of its ancestors.

9
• Number of Children (NOC): this metric measures the number of immediate

descendants or subclasses of a given class. A class with high descendants reflects

on its complexity as it increases dependencies and the importance of its role in the

preprogram hierarchy.

• Response for a Class (RFC): represents the size of the response-set of a given

class. The response-set includes all methods in the class plus all methods which

are invoked by the class’s methods.

• Lack of Cohesion of Method (LCOM): this is often referred to as LCOM1, since

it was the first in a series of other metrics of the lack of cohesion. C&K define

LCOM using two sets (P and Q) based on method’s access to class fields. P

represents pairs of methods which do not access the same fields. Q represents pairs

of methods which share at least one field. LCOM1 is given as:

LCOM1 = Max (P – Q, 0)

• Coupling between Objects (CBO): represents the number of classes to which a

class is coupled. A class is coupled to another class if it accesses variables or

methods of that other class.

The metrics suite by Chidamber and Kemerer is considered to be one of the major

contributions to the object oriented metrics research. It is also one of the most commonly

used and validated metrics suites as indicated by numerous citations to the authors’ work;

10
refer for example to [5, 6] and [7]. More details on the origin and objective of this suite

can be found in the original paper [4].

2.1.2. Li’s Metrics Suite

It is worthy to mention that W. another metrics suite in [8]that is both complementing

and deviating from the original C&K suite, in order to address ambiguity elements they

found in the original definition. For example, Li made a distinction between coupling

achieved through message passing and coupling through abstract data types, resulting in

two new alternative metrics. He also addressed ambiguity issues of the DIT metric that

occur in the case of multiple inheritance, in languages that support such feature.

Therefore, the following metrics suite has been introduced by Li [8]:

• Number of Ancestor Classes (NAC): represents the total number of ancestors of

a class, as an alternative to DIT in the case of multiple inheritance.

• Number of Descendent Classes (NDC): represents the total number of

descendants of an inherited class, as an alternative to NOC.

• Number of Local Methods (NLM): represents the total number of accessible

methods from outside the class.

• Class Method Complexity (CMC): a generalization of WMC which includes all

methods included in the class, whether accessible from other classes or not.

11
• Coupling through Abstract Data Type (CTA): represents the number of classes

used in a given class in the form of abstract data types (ADT).

• Coupling through Message Passing (CTM): represents the number of classes

that invoke or access methods of the given class.

2.1.3. MOOD Metrics Suite

The Metrics for Object Oriented Design (MOOD) suite was introduced by F. B. Abreu in

1995 [9] and it includes six metrics that provide an overview of the design quality of a

given object oriented project. Eventually, Abreu attempted to refine and formalize the

metrics definitions of his suite using the Object Constraint Language (OCL) which is

further discussed in Chapter 3. The metrics suite was later extended with another set of

metrics called MOOD2 [10]. The following are the metrics defined in the MOOD metrics

suite [9]: (Computation details are omitted here for simplicity, the reader can refer to the

source):

• Method Hiding Factor (MHF) and Attribute Hiding Factor (AHF): These

metrics relate to the quality of encapsulation of a given class. A private method is

considered hidden and it can have different degrees (e.g. public / private /

protected / package).

• Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF): If

a method inherits most of its members (methods and attributes) it is assigned a

high MIF or AIF. An independent class has lowest MIF/AIF.

12
• Polymorphism Factor (PF): This metric measures the level of using the override

method in inherited classes. It is equal to the ration of overridden methods to the

total possible overrides.

• Coupling Factor (CF): This metric measures the ratio of already coupled classes

to the maximum possible coupling of a given class.

2.1.4. Kim’s Metrics Suite

Kim et al. introduced their metrics suite in 1996 [11] which focuses on measuring the

complexity of object-oriented programs. This suite partially relies on the C&K metrics

and provides a more critical and accurate view of the complexity of software components.

Following is a list of the main metrics defined in the Kim et al. metrics suite with a

sample definition:

• Degree of Reuse (DOR), defined as follows:

DOR(Ci) = sum(k / (t+ tr)), for k=1 to r(Ci), where:

r(Ci) = reused number of each class Ci in the program (e.g. inherited)

t = total number of classes in the program

tr = total sum of all r(Ci)S in the program

• Degree of Coupling of Inheritance (CBI), assesses the degree of coupling to

which an implementation relies on inherited elements.

13
• Degree of Internal Method Complexity (IMC), based on an effort formula in

terms of the number of operators and operands in a given method.

• Number of classes used in a class (UCL), except for its super-classes and

subclasses.

• Number of Send Statements of a Class (MPC).

2.1.5. Other Object Oriented Metrics

There are several size metrics of object oriented program elements which are considered

trivial to compute and therefore do not really form a metrics suite, and hence are not given

detailed definitions. Although they might have little value with respect to quality

measures, several useful metrics can be derived from them, or in combination with other

more sophisticated metrics.

The following table lists some of these size metrics [12].

Table 1 - List of Size Metrics

Metric Description

NCM number of class methods

NCV number of class variables

NIM number of instance methods

NIV number of instance variables

NMA number of methods added

14

NMI number of methods inherited

NMO number of methods overridden

NOC number of children

NOM number of message sends

NOM number of local methods

NCM number of class methods

NCV number of class variables

NIM number of instance methods

NPM number of public methods

2.2. CLASSIFICATION OF SOFTWARE METRICS

Software metrics are often grouped into categories depending on different points of view.

Two of the broader goal-oriented categories are: product and process classes of metrics.

Product metrics reflect attributes of software product artifacts, whereas process metrics

are more concerned with measuring cost and effort as functions of time [1]. The following

sections summarize other proposed metrics classification taxonomies.

2.2.1. Classification based on Paradigm

In his survey of software metrics, M. Sarker proposed a taxonomy of metrics based on

subject and paradigm. Metrics in this classification are broken down into product and

process metrics where the former focuses on the software artifact. Product metrics are

15
further divided based on the programming language paradigm: object-oriented or

“traditional.” The latter refers to sequential and imperative programs. The following chart

illustrates the proposed metrics taxonomy and includes several examples of product

metrics [13]:

Figure 1 - Metrics Taxonomy by Sarker

2.2.2. Classification based on Usage

Fenton proposed a 2-dimentional classification of software metrics, in his infamous work

on the subject, which is based on two different viewpoints: the scope of metrics in the

project (e.g. product, process or resources) and the level of visibility they address (which

can be internal or external). The following table summarizes the classification scheme

along with examples from each category [1]:

16
Table 2 - Classification of Software Metrics by Fenton [1]

2.3. ISSUES IN METRICS DEFINITIONS

Software metrics are defined with the intention of evaluating different software artifacts to

produce quality measures and related attributes. In the process of evaluation software

quality, metrics are often compared with those of other artifacts similar in class. An

important implication here is the assurance of accuracy during the evaluation process

which cannot be achieved with ambiguous definitions, especially when evaluating metrics

17
with different tools. Therefore, it is imperative that metrics definition be definitive as

much as possible in order to yield consistent results across a heterogeneous set of tools,

languages or platforms. Unfortunately, even the simplest metrics easily contain ambiguity

at some level, for a variety of reasons, leaving a large room of “flexibility” in the

implementation which in turn could result in inconsistent readings by different tools. This

is especially a problem since modern software projects tend to use a mixture of different

languages in the same product, such as presentation layer languages (JavaScript) and

back-end server-side languages (Java or C#). Therefore, the ambiguity of metrics

definitions is considered chief among the challenges limiting the wide adoption of metrics

research in the software industry. [14] This section provides an overview on the sources of

metrics ambiguity, examples of ambiguous definitions, and general approaches to ensure

clear metrics definitions.

2.3.1. Examples of Ambiguity in Metrics Definitions

The following are example of ambiguity in some of the C&K metrics:

- Weighted Method per Class (WMC): do we count the inherited method or only

newly defined methods? What about method overrides? What is the treatment for

overloaded methods? [15]

- Depth of Inheritance (DIT): which route to follow in the case of multiple

inheritance? Do we take the longest path or the total number of parents? [8]

18
- Coupling between Objects (CBO): for method calls to the base class, do we count

these into the response set of the base class? The original definition leaves room

for interpretation.

2.3.2. Sources of Metrics Ambiguity

The ambiguity in the definition of software metric can be attributed to sources from

different levels. First, there is an ambiguity that comes from the definition itself. In such

cases the definition does not express how to deal with a general set of different and

special cases, leaving a wide room to the interpretation of the tool implementer. This is

especially problematic where definitions are intentionally left ambiguous for simplicity.

Second, ambiguity caused by a special situation of a specific language when trying to

compute the intermediate or meta-model. For example, do we count Enumerations in Java

as classes? Enumerations are relatively new to Java (added in 1.5) and the issue was not

addressed before. Finally, ambiguity caused by preference in the implementation details.

For example, do we count calls to library functions such as printf() in the coupling set of a

method? The implementer may choose to ignore these calls, for simplicity.

2.3.3. Addressing Metrics Ambiguity

In order to properly eliminate ambiguity in metrics definitions, the sources of ambiguity

need to be properly addressed. We can argue that ambiguity at the definition and

implementation levels can be eliminated to a long extent by abstracting and binding the

\definitions to a well-defined, formally defined meta-model of the measured artifacts.

However, there would still be some room left for ambiguity at the layer translating

between the programming language and the meta-model, for example. This could still be

19
mitigated with a language-specific translation algorithm, such as the model proposed

in[16]. Another approach to eliminating sources of ambiguity can be achieved with a

reference-implementation of the metric definition. However, this would be more

expensive in terms of effort and still does not resolve language specific features unless the

implementation is given in every targeted language.

2.3.4. Metrics Reusability and Extensibility

We can simplify metrics definitions by allowing reuse of existing properly defined

metrics which can also help reduce metrics ambiguity. Reusability of metrics is also

essential to performance optimizing the implementation as it would allow, for example, a

progressive evaluation of the metric values. Additionally, the reusability of metrics

definition opens more room for extensibility, thus enabling researchers to derive and

examine new metrics more conveniently.

20

CHAPTER 3

FORMALIZATION OF

METRICS DEFINITIONS

To address the common issue of the ambiguity of software metrics definitions, researchers

attempted to clarify metrics definitions by putting them in a precise form that can be

computed consistently among tools and researchers. This idea of using a standard form to

represent metrics definitions can also help to promote reusability of metrics among

different tools; making it easier to introduce new metrics and compare different results

and variations.

An important element of metrics definitions, which is often overlooked, is enabling

reusability of intermediate values or metrics variables. This can be very useful in many

aspects such as improving the performance of metrics computation, ease of definition for

complicated metrics, and abstracting the definitions of new metrics.

In this chapter, we look at the different proposed approaches to standardize and formalize

metrics definitions, and we compare the most recent and mature attempts.

21

3.1. ABSTRACTING METRICS DEFINITIONS USING

INTERMEDIATE META-MODELS

Virtually all modern metrics formalization attempts address the problem of metrics

ambiguity by abstracting their definitions to target a higher level of abstraction than the

actual source or program. This layer of abstraction acts as the common ground upon

which metrics of the same category rely. In this approach, metrics definitions are

formulated such that they do not rely on specific language or platform, nor do they

become ambiguous by ignoring platform differences. This intermediate layer that contains

standard abstractions of language and design artifacts is generally referred to as a meta-

model.

Essentially, there are two types of meta-models used in software metrics: models that

abstract the artifact to be measures, and models that represent data gathered. The first

category is more essential to a metrics definition language since it allows precise

formulations of metrics definitions based on an agreed-upon model. The other category

captures issues related to metrics data storage, classification and interpretation. It is also

important when addressing metrics computation and performance issues. We briefly

overview the different approaches related to both categories.

3.1.1. Meta-models of Metrics Data

The first category, meta-models that represent metrics data, is usually represented in the

form of a relational database which is considered the most common form of data storage.

22
Kitchenham et al. In [17], a relational meta-model for representing and storing meta-data

needed to compute software metrics and intermediate values of their computation.

Another similar relational model can be found in [18] and a discussion on improving the

performance of metrics calculations in the relational models is presented in [19]. While

these models do not attribute to software metrics definition representation, they constitute

a major part of a comprehensive metrics measurement framework, as discussed in Chapter

4.

3.1.2. Meta-models of Software Artifacts

This category includes meta-models used to abstract software artifacts with the purpose of

utilizing the intermediate model for formalizing metrics definitions. Lanza and Ducasse

introduced a language-independent meta-model for metrics definitions, shown in Figure

2, [20], a language-independent meta-model for metrics definitions was introduced (see

Figure 2). This approach limits metric definition to attributes of the meta-model objects

and should not be tied to a specific language representation. Another meta-model that

captures object-oriented elements, called ODEM, was proposed by Reißing [21], and was

later used for metrics definitions by El-Wakil et al. [22]. A third model was proposed by

Abreu in [23] which was called the GOODLY. The author aimed to use this model to

capture metrics definitions for his metrics suite, MOOD [23].

23

Figure 2 - Design Meta-model described by Lanza and Ducasse [20]

However, a recent study, at time of this research, by McQuillan and Power has found that

using these meta-models to be limiting and inadequate to formalizing software metrics

definitions. For example, a number of meta-models fail to provide the ability to describe

key object-oriented metrics suites such as the C&K suite [24, 25]. The authors also

evaluated several specialized, internal meta-models that are used in commercial and open

source integrated development environments (IDE’s) of Java. These models are typically

used for syntactical and semantical validation against compiler errors, in addition to

supporting software refactoring utilities. They include the meta-models used in Eclipse

[26] and NetBeans as examples [27]..However, they were found to be limited because

they are rather tied to the internal implementation of both IDE’s and can make the task of

adapting other programming languages or IDE’s more challenging. Still, the meta-model

of Eclipse was later used by McQuillan and Powerthe researchers in [25] as the source of

24
parsing and for computing values of the selected intermediate meta-model in order to

streamline the proof-of-concept implementation.

The UML meta-model can also be used for metrics definitions, however, it lacks essential

relationships with the source code making it difficult to implement some of the

fundamental metrics which require code access. [24] However, this does not prevent

attempts to extend the UML meta-model to cover some essential code properties. This

UML meta-model is currently used by the commercial tool SDMetrics for representing

design metrics [28].

Based on the surveyed literature, the most complete and successful meta-model for

abstracting language and design appears to be the Dagstuhl Middle Meta-model (DMM).

This meta-model was originally developed for facilitating interoperability across reverse-

engineering applications. Hence, it was designed to captures most of code and design

relationships. The model is elegantly divided into two parts: entities that represent static

elements of the program organized in a class hierarchy with relationships among the

entities. The relationships are further organized in an inheritance hierarchy that captures

the “is-a” inclusion relationship and vice-versa. For example, classes are associated with

their methods using the “IsMethodOf” relationship, and both classes and methods entities

are of the type “ModelElements”. The “IsMethodOf” relationship is a subset of the

“IsPartOf” relationship. Also, when looking up elements with the relationship “Is-Part-

Of”, the relationships “IsMethodOf”, “IsFieldOf” and “IsEnumerationLiteralOf” are also

included in the search.

25
The DMM model can be used to capture in details both object-oriented and procedural

languages elements and their relationships [29]. The following figures illustrate the

essential components of the DMM meta-model entities and relationship.

Figure 3 - The Dagstuhl Middle Meta-model Entities Hierarchy

26

Figure 4 - Relationships of the DMM Meta-model

27

3.2. METRICS DEFINITIONS FORMALIZATION

This section reviews several attempts that have been made toward formalizing software

metrics definitions.

3.2.1. Early Attempts

Several attempts to formalize software metrics definitions can be traced to as early as

1991 [30], in which formal definitions for few metrics were suggested such as SIZE OF

SOFTWARE. The model was based on software refinement tree model.

Cogan and Hunter proposed introduced an attribute grammar based approach [31]. The

main idea was to attach measurement attributes to language definitions in the same way

semantic properties of programming languages are defined. This formal approach is

language bound, making it very precise, and enables reusability of metrics variable

through inheritance of attributes. Figure 5 shows an example of this approach attempting

to compute the McCabe’s complexity measure.

Figure 5 - Formal Definition of the McCabe Metric using Attribute Grammar

28

3.2.2. Metrics Meta-models

El-Wakil et al. used the ODEM meta-model [21] and XQuery to represent metrics

evaluation formulas [22]. Their approach loads the meta-model into and XML DOM tree

then processes the tree using XQuery to come up with metrics values. However, their

approach was limited to a few metrics because the inherent limitations in the used model,

ODEM, did not capture all relationships. In fact it only focuses on design relationships.

Baroni and Abreu [10, 32] suggested an approach for formalizing software metrics

definitions based on the Object Constraint Language (OCL), the GOODLY meta-model

and UML. GOODLY originally appeared in [23]. As an example, the authors applied the

for formalizing CORBA components metrics in [33]. Debnath et al. [34] has done an

independent work, yet similar the work of Baroni and Abreu’s [32], that uses OCL and

UML can be found in [34]. However both attempts suffer from model limitation since

their meta-models were only intended for capturing design relationships.

3.2.3. Using the Dagstuhl Middle Meta-model

McQuillan and Power attempted to implement and extend the earlier work of Baroni et al.

[32] based on the DMM meta-model. They provided a full definition of C&K metrics

suite as an example in [25]. As a prototype, they implemented a tool for executing OCL

queries on Java code, that uses the DMM to calculate defined metrics [35]. A discussion

of the advantages and limitation of the OCL approach can be found in [36] and [37]. But

in general, OCL was meant to describe language constraints and therefore is not efficient

29
in performing simple tasks. Also they did not address reusability of metrics definitions,

although their model can be extended to support it.

Lincke and Löwe [38] presented a framework for software metrics definitions based on an

abstract meta-model. The model is further expanded and generalized in [16]. Lincke and

Löwe idea is to abstract the grammar of different languages (the front end) into a single

syntactic and semantic model, hence eliminating the need to refer to the original

languages. All grammar and semantics attributes are therefore stored and represented in a

common form referred to as the Common Model, which can refer to one of the widely

used meta-models such as DMM. This approach is essential to situations where mixed

language usage is necessary (e.g. Web applications). This approach addresses the

translation between programming language syntax and the common model by defining the

grammar needed for the transformation per each language.

The approach is language bound and elements are defined in a grammar language form.

To dissolve ambiguity, the author defines complete mapping tied to the language (Java)

implementation to the meta-model (DMM). Then it precisely defines the metrics as a BNF

grammar with additional special attributes (e.g. for handling loops). While his approach

eliminates ambiguity, it is tied to a specific language binding. This method can be helpful

for generating metrics parsers, however, it requires specific language binding for each

programming languages, and generating a parser. The latter makes it difficult to address

reusability and dynamic change of pre-defined metrics, but it would be rather efficient.

30

3.2.4. Using XML in Metrics Definitions

The Extensible Markup Language (XML) is a widely-used standard language aimed at

facilitating data exchange across different systems and platforms [39]. Custom XML rules

can be specified with XML Schema documents, another standard format that is also based

on XML. Using XML Schema, the rules that XML documents have to follow can be

defined. Therefore, XML can be considered a generic standard for language specification.

XML power comes from its flexible hierarchal structure and its ability reuse existing

elements with virtually unlimited possible sets of associative relationships.

XML usage in software metrics research was proposed in a number of ways. The

application of XML to represent metrics data was suggested in [40]. The authors wrote a

protocol definition for metrics data exchange that is based on Web Services and XML and

called it the Simple Metric Data Exchange Format (SIMDEF). Their goal was to integrate

various sources of metrics results into a universal, single repository. The proposal was

focused on the exchange protocol and not the representation of metrics definitions.

Harrison [41] reported another approach along the same lines.

Margerison researched the use of XML to describe software metrics data in [42]. The

author outlined several benefits to using XML that include its flexibility and extensibility.

However, there has been no evidence of any progress besides the inception, at the time of

this research.

Metrics definitions were also written using XML. In the commercial metrics tool

SDMetrics [28] users can apply an XML-based language to define custom design metrics

31
that are based on predetermined relationships of the input design document. This

proprietary approach, however, is limited to XMI relationships (based on the UML meta-

model) and hence only covers design metrics.

3.3. COMPARISON BETWEEN METRICS

DEFINITION APPROACHES

The following table summarizes benefits and shortcomings of the approaches surveyed to

formalizing software metrics.

Table 3 – Comparison of Modern Approahces to Formalization of Software Metrics

OCL Queries (Baroni and Abreu 2002) [10, 32]

Query mechanism: OCL.

Meta-model: GOODLY.

Pros:

1. Application of OCL as a query language.

2. Object-oriented meta-model abstraction.

Cons:

1. Inadequate meta-model to cover most metrics.

2. Limited to be used with design models.

3. Does not enable evaluating some key metrics.

XQueries on XMI models (El-Wakil et al. 2005) [22]

Query mechanism: XQuery.

Meta-model: ODEM.

Pros:

1. Use of the XQuery and XML to represent

intermediate data.

2. Flexible design meta- model based on ODEM.

Cons:

32

1. Input is limited to design models.

2. Difficult to write queries that manipulate the

DOM tree of the meta- model.

3. Anticipated performance overhead due to

requirement to create the metrics intermediate

data in XML.

4. Does not address re-usability and performance.

OCL with DMM (McQuillan and Power 2006) [24, 25, 35-37]

Query mechanism: OCL.

Meta-model: DMM.

Pros:

1. Use of the OCL standard language.

2. Use of an open meta-model, DMM.

Cons:

1. Potential performance issues due to OCL

expression evaluation.

2. Does not have address extensibility, reusability of

definitions and performance.

DMM based Language Approach (Lincke and Löwe 2006) [16, 38]

Query mechanism:

generates special parsers.

Meta-model: DMM and UML

Pros:

1. Addresses ambiguity between languages and the

meta-model.

2. Easily incorporate multiple languages in the same

meta-model.

Cons:

1. More suitable for meta-model description rather

than actual metrics definitions.

2. Requires formal derivation of a language-specific

parsers to server model translation.

33

Software Metrics Definition Language (the proposed alternative)

Query mechanism:

Utilizes the concepts of standardized

queries and variables.

Meta-model: multiple meta-model

support, such as DMM, OCL and

others.

Pros:

1. Support a variety of meta-models and different

formulation and computation approaches.

2. Addresses problems of performance, ambiguity

and reusability.

Cons:

1. Ambiguity problems of definitions and

computations cannot be fully eliminated, e.g. due

to vagueness in definitions.

2. XML definitions of metrics could be verbose and

harder to read. Human readability could be

improved with alternative rendition of the

language that uses agile data exchange languages

such as JSON (JavaScript Object Notation).

34

CHAPTER 4

FRAMEWORK FOR REPRESENTATION

OF SOFTWARE METRICS DEFINITIONS

This chapter takes a closer look into the process of software metrics measurement to help

illustrate the goals, roles and contexts of each component of the proposed measurement

solution With this high-level take, we gain better understanding of the problem’s

requirements and leverage this knowledge to propose a framework for the general case

solution of software metrics definitions. We refer to this solution as the Framework for

Representation of Software Metrics Definitions.

4.1. METRICS MEASUREMENT PROCESS

The main objective of the measurement process is to come up with quantitative values

that represent intrinsic or derived attributes of the measured artifacts. These attributes can

then be used to define and assess quality attributes of the artifacts. Repeating this process

over the course of project development and to accommodate scalable with variation in

platforms and specifications, the measurement process needs to fulfill additional

requirements. Examples of these requirements include:

35
• Provide the ability to formally define metrics computation steps and input

requirements.

• Enable flexible metrics definitions, such as defining one metric in terms of other

related metrics.

• Process raw input and execute the computation steps.

• Store computed results into a metrics repository and enable exporting the results

in the appropriate formats.

• Produce consistent and deterministic results over multiple iterations.

• Satisfy performance constraints and optimize overhead with incremental

processing.

4.2. OBJECTIVES OF THE METRICS

MEASUREMENT FRAMEWORK

Taking the general requirements of the measurement framework, we can define the

following objectives for the Metrics Measurement Framework:

• Minimizing Computation Ambiguity: by specifying the computation details

based on a common meta-model. This fulfills the requirement of formalizing

computation and input requirements.

• Abstracting Metrics Definitions: metrics definition should be represented in

terms of a meta-model that abstracts design/source code into a general model. This

36
enables producing platform and language agnostic definitions that can be applied

to different artifact types. There would still be an ambiguity source during the

transformation from the measured artifact to the meta-model which can only be

resolved with formal conversion rules.

• Enabling Metrics Reuse: by allowing defining metrics in a recursive hierarchy of

definitions. This satisfies the flexibility and classification requirements.

• Extensibility of Metrics Definitions: additional metrics can be easily added based

on built-in meta-model variable and queries or user defined ones.

• Computation Optimization: using the concepts of intermediate repository of

values and metrics database (e.g. meta-model database) and support for

progressive and incremental evaluations.

4.3. ELEMENTS OF THE METRICS MEASUREMENT

FRAMEWORK

The Metrics Measurement Framework consists of the following components:

• Parser: the parser reads the input artifacts and feeds the meta-model database with

abstractions sufficient to perform metrics computations. Different types of parsers

could be used to accommodate input classes, targeted meta-models, and process

inputs at different degrees of scalability. For example, different parsers would be

37
needed for different programming languages and different development

architectures. Therefore parsers could be classified based on:

o Input type – e.g. a Java specific parser.

o Processing type – e.g. progressive processing, distributed processing, or

all-at-once processing.

o Output type – the parser needs to be designed with a certain meta-model in

mind or at least be able to answer specific queries on the input, e.g.

calculate the number of classes for the given Java package.

• Meta-Model Database: a relational database that stores meta-model

representations in a consistent and accessible way. To speed up metrics

computations, it could also be used to cache intermediate computations and partial

metric results. Taking the number of classes per implementation package and the

number of methods per class as an example, this can be represented with the

following Entity-Relationship diagram:

Figure 6 – Meta-model database example

38
In this example, the table PackageMetrics contains names of parsed packages and

the computed number of classes – the information fed from the source parser. The

second table contains another set of metrics at the class level. In this case, the

number of methods per class is stored. The relational link between the two tables

allows for slightly more complex computations that take advantage of this

association. For this example, to compute the Number of Methods per Package, a

simple relational query could be devised. Depending on the meta-model

requirements, this result could be cached for use in more complex calculations,

e.g. it could be added to the PackageMetrics table as an extra column.

• Metrics Definition: a document in a specific format that contains formal metrics

definitions and computation details. In the case of SMDL, which is XML based,

this represents definitions of the software metrics based on a certain meta-model

and the algorithm needed to perform the computation. An implementation specific

design could be made to either centralize or distribute metrics definitions across

several documents. For example, SMDL files are designed to be implementation

independent and could be used across different tools when the following is

supported;

o The project input type, e.g. the specific programming language

o The meta-model, e.g. the DMM model or OCL meta-models and their level

of coverage.

o SMDL queries, e.g. support for OCL based queries.

39
• Metrics Definition API: the programming interface to parse and process the

definition documents. For SMDL, this is the interface to read metrics definitions,

query about the meta-model requirements and access related metrics.

• Metrics Data Representation: once metrics values are computed, the system

presents the results in a suitable format. The final representation could be tabular

or visual, e.g. pie-charts and histograms. A typical capability would be the support

of exporting the results in formats that could be used in external analysis and data

mining applications, especially when armed with versioning support. For example,

when feeding the results to configuration management system, metrics changes

could be tracked over the course of a project and help identifying trends and

patterns and sources of change could be traced back to their origins.

• Metrics Tool: the application that drives the entire measurement process and

coordinates operation and access to the system components. Typically this is

comprised of the user interface, database access layers, and the application logic

associated with programming interfaces of the other components. Examples of

user functions are:

o Load and select metrics definition.

o Define and parse a source project.

o Compute metrics for the selected project.

o Setup of the metrics database.

o Metrics viewer and export capabilities.

40

4.4. THE METRICS MEASUREMENT FRAMEWORK

The following diagram sums up the main components of the Metrics Measurement

Framework, the relationships, and interfaces between the subcomponents. In the next

chapter we introduced the Software Metrics Definition Language which is based on ideas

presented in this framework.

Figure 7 - Metrics Measurement Framework Architecture

41

CHAPTER 5

THE SOFTWARE METRICS

DEFINITION LANGUAGE

In the proposed software metrics measurement framework, models of metric definitions

need to fulfill the following requirements: (a) Allow formal expression of metrics

computation. (b) Define a meta-model that is derived extracted from source code, design

artifacts or pre-computed valued. (c) Enable customization of metrics definitions by either

reuse of existing metrics or the intermediate values. (d) Be extensible enough to

accommodate alternative meta-models and methods of computation. Optional features

include support for visualization expressions and data output representation. The

conceptual model of these requirements is illustrated in Figure 8.

In this chapter, we introduce an XML based markup language for representing software

metrics definitions designed to meet all requirements of the proposed framework. We will

refer to this language as the Software Metrics Definition Language.

The selection of XML as basis for this language is due to its power of expression,

flexibility, accessibility and universal support. In particular, hierarchal and relational

42
associations can both be expressed with standard XML notations, which is a key to

mimicking complex metrics relationships.

Multiple aspects of metrics data are captured in different sections. The language is divided

into four sections that capture different sets of information (details are shown in the

schema definition in Figure 2.

5.1. SMDL CONCEPTS

This section describes the main concepts used by the SMDL and how they fulfill their

design requirements.

5.1.1. Meta-Model Base

Metric definitions in SMDL are given in terms of expressions that are evaluated based on

a pre-defined meta-model which abstracts the artifact to be measured. Examples of meta-

models include the Dagstuhl Middle Meta-model and the UML meta-model. Expressions

differ in their representation according to the selected meta-model. For example, the UML

meta-model based metrics can be expressed in the form of OCL, the standard Object

Constraint Language. In SMDL, DMM based definition utilize mathematical expressions

and algorithms in the form of MathXML expressions. However, both approaches use the

same concepts for the evaluation process: intermediate variables and built-in queries.

43

5.1.2. Variables and Queries

Variables store values that are potential candidate for use in the evaluation of software

metric in SMDL. Variables are defined to be attached or scoped to a given meta-model

element, referred to as the scope of the variable. Queries in SMDL represent the approach

followed to retrieve data stored in the intermediate mete-model store or to verify the

correctness of a given hypotheses. The latter can also be referred to as Boolean queries.

5.1.3. Intermediate Storage / Meta-Model Database

Computed variables and results of metric queries are usually stored temporarily in special

database of intermediate values. This database aids in proving incremental evaluation of

metrics and preventing redundant computations. However such efficiency is not

achievable if the model is not aware of invalidation rules. The ideas behind intermediate

storage, incremental evaluation and invalidation rules are detailed in the following

sections.

5.1.4. Deep vs. Progressive Evaluation

There are three basic approaches to compute a particular software metric: complete or

deep evaluation, progressive evaluation, and re-computation. Re-computation and

invalidation rules are discussed in the next section.

Complete or deep evaluation refers to computing the value of the metrics through

complete evaluation of each metric dependent data then applying the metric formula. For

example, in order to evaluate the Depth of Inheritance (DIT) for a given class, the parser,

in a deep evaluation cycle, needs to look up all parents of the given class return their

44
summation. In this scenario the parser only focuses on the returned the final value of the

metric not considering the useful intermediate values that can speed up computing the

values for the rest of the classes. Hence, this approach can be very slow as the same

procedure would have to be followed for all other classes at hand. However, this approach

is evidently useful when dealing with a small subset of a large group of classes.

The second approach, the progressive evaluation, handles the matter incrementally. Given

the artifacts under evaluation in arbitrary order, this method would be able to compute the

final value of the metrics by passing by the artifacts only once. The computation is

organized in a form of pipeline of calculations where each the metric value can be

computed only partially. As a side-effect, the computation can result in queuing more

artifacts into the pipeline. The process continues until the metric value is fully computed

or the queue becomes empty.

The following highlights the algorithm followed in this approach:

Var queue = [];
Var metricValues = [];

Var queue = /* queue of artifacts at hand */

Foreach (artifact a in queue)

 If (metricValue[a] is marked “complete”)
 Continue;

 Var partialValue = …

 metricValue[a] += partialValue
 Foreach (metricValue in metricValues)

 If (metricValue is affected by a)

 Update metricValue;

 If (metricValue is complete)
 Mark metricValue “complete”

 If (new artifacts are needed to compute the metric)

45
In our example, we are interested in computing the value of DIT incrementally. A

progressive algorithm would pick the given class, look up and queue its direct parent, then

continue visiting each node, adding “one” each time another parent is found until the

pipeline becomes empty. This approach resembles the procedure followed in the famous

Depth First graph traversal algorithm and can be implemented using the Visitor design

pattern. A more elaborated version of this algorithm is highlighted in the following

example:

Var DIT = [];

Foreach (Class c in classesQueue)

 If (DIT[c].status = complete)

 Continue;

 if (c.hasParent)
 /* case 1: parent is complete */

 if (DIT[c.parent] != [] and

 DIT[c.parent].status = complete)

 DIT[c].val = DIT[c.parent] + 1
 DIT[c].status = complete

 Foreach (var value in DIT)

 If (value.status != complete and

 Value.parent = c)
 Value.val = DIT[c].val + 1

 /* case 2: parent is incomplete */

 Else if (DIT[c.parent] != [])
 DIT[c].val = DIT[c.parent] + 1

 Foreach (var value in DIT)

 If (value.status != complete and

 Value.parent = c)
 Value.val++

 /* case 3: parent is incomplete */

 Else if (c.parent != [])

 DIT[c] = 1
 classesQueue.enqueue(c.parent)

Progressive evaluation becomes particularly useful for evaluating metrics of a large group

of classes. The reason is that each time an artifact is “visited”, the parser can partially

compute the value for the current artifact as well as directly related ones. Therefore, for

46
each visit, metrics of several other artifacts get computed at the same time without having

to revisit the past artifacts. This results in a computational pipeline which can greatly

accelerate the overall evaluation process.

However, like any recursive algorithm, the stopping criteria should be clearly determined

in order to avoid infinite or unnecessary calculations. This would be usually determined

according to the metric and artifacts under evaluation. For example, the DIT metric can

add new classes which are outside the scope of the requested classes, e.g. library classes.

The added classes should be excluded from other calculations that do not add up to the

value of the metric. That is, while these additional classes are needed for computing

values of the rest of the inheritance tree, they should not interfere with the other metrics

and should be treated as extra classes.

One drawback to the progressive evaluation is that it requires extra storage for storing

intermediate values and the status of the evaluation. The algorithmic complexity is also

affected by the “look-ups” needed to ensure that all related metrics are being updated

accordingly. On the other hand the pipeline architecture followed is very useful when

operating in a parallel or distributed computing environment, with the exception of

synchronization overhead. With current rise of multi-core processors and distributed

computing, this approach appears more favorable.

5.1.5. Invalidation Rules

Invalidation rules represent actions that need to be undertaken in order to maintain

consistency of the computed results. In particular, they determine the values that should

47
be recomputed across the existing set of results in response to a change in a particular

element. For example, in the case of DIT, changing the parent class of a certain class

would imply invalidation of the values computed for: a) the class itself, and b) all direct

and indirect descendants. Metric values, when invalidated, are therefore required to be re-

evaluated. While for some cases small changes result in a minor re-calculations, it could

result of invalidating the whole set of metrics. Consider for instance the case of class A

with multiple children B1, B2, …. Bn. Changing the parent of A to C for example would

result in invalidation of all computed values of DIT resulting in a negative performance in

reaction to a small change. However, such scenarios deemed to have low probability (as

they require special organization) in practice and therefore would not overcome the

performance gain achieved through progressive computations.

5.1.6. Exceptions and Constraints

Alternative flows of the computation process can be expressed in the form of Exceptions

and Constrains. Exceptions refer to special computational cases. For example, the default

value for a metric when a certain input is not available. Constraints, on the other hand,

refer to pre-conditions that need to be met before in order to evaluate or to continue the

evaluation of a given metric. An example of exceptions would be the coupling value of a

given class when it references itself. In this case the evaluator should return a value that

does not affect the overall result (zero in this case). For certain metrics, the computation

shouldn’t proceed before satisfying a given expression, often the pre-condition. For

example, the Number of Public Methods, by definition, should skip methods not declared

48
with public visibility and increment the counter otherwise. Expressed in SMDL, this could

be written as:

…

 <exception condition="c = currentClass" value="0" />

 <condition condition="isPublic = false" action="continue" />

…

In this example, an Exception and a Condition are defined. Notice the OCL-like style of

expression. This tells the processing engine to evaluate both expressions whenever a new

input is encountered. In the case of the Exception, the metric value is assigned a special

value of 0 when the expression “c = currentClass” evaluates to True, thus setting the

metric value to zero for the class associated with the metric. Notice use of the following

attributes:

3. Condition: used to hold the OCL like expression to be evaluated.

4. Value: Exception specific attribute to define the return value.

5. Action: Condition specific attribute that contains the statement to be executed

when the condition is met.

5.2. SMDL ATTIBUTES

Attributes in SMDL are used to capture the following aspects of a given metric:

1. Metrics properties: the general attributes of the metric such as the name, the author

and version identifier.

49
2. Visualization attributes: specify how the metrics values can be visualized in the

most suitable formats, e.g. size metrics are often used with Treemap

representations.

3. Re-use attributes: determine dependencies on the other metrics and their

relationship with the computation. For example, metrics that depend on other

metrics or can make use of other metrics to speed up the computation can specify

their dependencies.

4. Grouping attributes: used to denote the classification groups the metric belongs to.

For instance, NPM (Number of Public Methods) can be associated with SIZE and

STATIC classes.

5. Conversion rules: results of metrics often need to be compared or aggregated with

metrics from different environments, e.g. across multiple programming languages,

which potentially follow different computational rules. Conversion rules define

transformations necessary to aggregate metrics from incompatible platforms. For

example, computing the RFC (Response for Class) metric is slightly different for

languages with multiple-inheritance support. Another example the way LOC

(Lines of Code) could be computed across languages with different white-space

and indentation requirements. The transformation rules could come in handy when

applied to multi-language projects, an increasingly common case.

6. Computational attributes: this is the heart of the metric definition which states how

the metric should be computed starting from a selected meta-model of the input.

50
Figure 8 shows the location of these attributes in the SMDL schema.

Figure 8 – Overview of the main SMDL elements

Metric Properties and Computation attributes are described in more details in the

following segments.

5.2.1. Metrics Properties

This part of the SMDL scheme is designed to capture properties of the software which are

not directly related to its evaluation rules yet are essential to applying the metric.

Examples include: the metric name, names of the author(s), the metric level, and the

evaluation scope (e.g. class, package, method, or application). Extensibility is supported

through a customizable key-value-attribute scheme where user-specific and tool-specific

attributes can be defined. Metrics are often grouped into smaller collections (according to

criteria related to origin and role) that are referred to as metrics suites or classes of

metrics.

51

5.2.2. Metrics Computation

This is the core of SMDL metrics definitions which expresses the steps necessary to

evaluate and arrive at the final values of the metric. Computation expressions make the

assumption that a values for the selected meta-model are available and accessible to the

computation engine. It defines metrics computations based on queries or variables. It

supports both source-level and design level computations using the power of DMM

representation.

Variables hold values which can be associated with queries, or they are provided directly

(pre-computed). For example, in Quality Assurance (QA) metrics, variables that store the

number of defects are of the direct type. Variables can also be grouped and based on other

variables in a hierarchy.

Queries are functions associated with the meta-model that return answers needed to arrive

at metrics results. The SMDL model supports three different mechanisms to computation

specification: OCL queries on the meta-model [36], grammar based [38] and direct

invocation of built-in queries. Built in queries are extensions of the DMM model relation

that normally return a set of values per query on a given element. Table 1 shows some of

the supported queries. An example is using Get_MethodsOf(Class c) to get all methods in

a class.

Variables and queries can be associated with conditions and exceptions that express flow

of control and special cases. Conditions are expressed in the form of “A rel B”, where rel

is any logical relation. It also supports nesting of conditions. Exceptions define what

52
happens to particular values, .e.g. “if x < 0, x = 0”. This can be useful at different levels

for many metrics. Grouping operations such as count, average, sum are also provided.

Figure 9 - SMDL Role in the Software Metrics Measurement Framework

53

5.3. SMDL APPLICATION PROGAMMING

INTERFACE (API)

This section describes the required functionality to be implemented in the Application

Programming Interface (API) of SMDL.

5.3.1. API Model Classes

The selected meta-model should be mapped to the parser’s language and include classes

that resemble the hierarchy structure given in the original meta-model in addition to the

domain classes of the parser. This hierarchy forms what can be referred to as the meta-

model space. For example, when implementing the SMDL API for dealing with the DMM

meta-model, the class hierarchy presented in Figure 3 has to be implemented in a manner

that preserves relationships and attributes of the model.

5.3.2. API Built-In Queries

In order to evaluate the metrics, the tool needs to be able to perform queries on the meta-

model. Table 4 highlights the basic built-in queries in SMDL required for retrieval of the

intermediate DMM values.

5.3.3. XMLMath

XML-Math is a flexible XML based language for representing and computing

mathematical expressions represented in XML format. It was developed in 2006 by Erik

van Zijst and represents a clear way of defining mathematical expressions in XML. The

language can represent most of mathematical operations, loops and conditions. The

54
following is an example of an expression written in XMLMath which returns the values

from 0 to 9 using the operator toString(notice the namespace attribute) [43]:

<expression xmlns="http://xmlmath.org/1.0">
 <toString>

 <for iterator="i">

 <start>

 <long value="0"/>
 </start>

 <end>

 <long value="10"/>

 </end>
 <do>

 <linkLong name="i"/>

 </do>

 </for>
 </toString>

</expression>

Expressions in SMDL are defined using XMLMath with a slight modification: variable

values (if not defined) are assumed to be evaluated from the intermediate meta-model

database.

The XMLMath defines the following data types which are also used by SMDL variables:

1. boolean

2. number, which includes: long and double

3. string

4. list

The list data type is of special importance since it can represent a list of elements in their

corresponding data types (e.g. set of integers or strings). In our implementation of SMDL,

we introduce another sub-type of the list of elements that defines mathematical sets,

55
referred to as set. This data type differs from an ordinary list in that it does not allow

repeated elements.

5.3.4. Meta-Model Evaluation and Initialization

A software metrics tool that follows the framework of SMDL would need to compute or

define ways to compute the corresponding meta-model elements. For DMM, the meta-

model evaluator comes in the following format, implementing several “built-in” meta-

model queries:

class DMMMetaModelEvaluater : MetaModelEvaluater

{

 /* retrieve that implement relations of the DMM model */

 StructuralElement[] Get_Accesses (BehaviouralElement b) { … }

 SourcePart[] Get_Contains (SourceObject so) { … }

 ModelObject[] Get_Declares (SourceObject so) { … }

 ModelObject[] Get_Defines (SourceObject so) { … }
 Comment[] Get_Describes (SourceObject so) { … }

 Value[] Get_HasValue (Variable v) { … }

 Package[] Get_Imports (Class c) { … }

 SourceFile[] Get_Includes (SourceFile sf { … })
 Class[] Get_InheritsFrom (Class c) { … }

 BehaviouralElement[] Get_Invokes (BehaviouralElement be) { … }

 …

}

The following table lists all required meta-model queries for the DMM model:

Table 4 – Built-in SMDL Queries based in the DMM Model

Return Type Query Desfription

StructuralElement[] Get_Accesses (BehaviouralElement

b)

Returns structural elements that

the given behavioral element

accesses.

SourcePart[] Get_Contains (SourceObject so) Returns SourcePart elements

56

Return Type Query Desfription

“Contained” in the given

SourceObject.

ModelObject[] Get_Declares (SourceObject so) Returns ModelObject’s that

are declared in the given

SourceObject.

ModelObject[] Get_Defines (SourceObject so) Returns ModelObject’s that

are defined in the given

SourceObject.

Comment[] Get_Describes (SourceObject so) Returns comments associated

with the given SourceObject.

Value[] Get_HasValue (Variable v) Returns a list of values of the

given Variable.

Package[] Get_Imports (Class c) Returns Package’s imported by

a given class.

SourceFile[] Get_Includes (SourceFile sf) Returns file’s included by a

given source file.

Class[] Get_InheritsFrom (Class c) Returns super-classes of a

given class.

BehaviouralElement[] Get_Invokes (BehaviouralElement

be)

Returns a list of behavioral

elements (e.g. methods)

invoked by a given element.

Invokes[] Get_ActualParameterOf

(ModelElement me)

Returns the actual parameters

list of a given element.

Type[] Get_DefinedlnTermsOf (Type t) Returns the type used in the

definition of a given type, e.g.

coupling through ADT.

EnumeratedType[] Get_EnumerationLiteralOf

(EnumeratedLiteral el)

Returns literals if a given

enumeration literals list.

Field[] Get_FieldsOf (StructuredType st) Returns fields of a given

structure.

57

Return Type Query Desfription

Method[] Get_MethodsOf (Class c) Returns the list of methods

declared within a class.

Type Get_TypeOf (Value v) Returns the Type of a given

Value object.

FormalParameter[] Get_ParameterOf

(BehaviouralElement)

Returns the list of parameters

defined in a given

BehavioralElement.

Type Get_ReturnTypeOf

(BehavioralElement be)

Returns the Type of a given

BehavioralElement.

Package[] Get_SubpackagesOf (Package p) Returns sub-packages of a

given Package.

In order to satisfy the performance goals, through progressive computation, the Visitor

design pattern has been used. Metric definitions represented in SMDL correspond to

objects that perform the actual evaluation for the metrics. In order to provide a full

incremental implementation, the software parser takes each artifact and passes its

information to metrics evaluators where they get called every time a software element is

ready for evaluation.

The following class, the AbstractVisitor, is a base-class for all the metrics evaluators. It

consists of metrics visiting methods that are called when the corresponding program

element is parsed. The class also contains helper methods for declaring and updating

values in the meta-model intermediate database. Metric evaluators implement the portions

necessary to compute values of the metrics following the visitor’s pattern event model.

58

class AbstractVisitor
{

 public abstract void visitPackage(string packageName);

 public abstract void visitClass (string className);

 public abstract void visitMethod (string methodName);
 public abstract void visitField (string fieldName);

 public abstract void visitValue (string valueName);

 public abstract void visitVariable (string variableName);

 public abstract void visitType (string TypeName);

 public abstract void visitEnumerationType (string

EnumerationTypeName);

 public abstract void visitStructuredType (string
StructuredTypeName);

 public abstract void visitFormalParameter (string

FormalParameterName);

 public abstract void visitRoutine (string RoutineName);
 public abstract void visitExecutableValue (string

ExecutableValueName);

 public abstract void visitCollectionType (string

CollectionTypeName);

 // fullElementName refers the the full qualified name of the object

 // (e.g. package.class.method.variable)
 public void declareVariable(string varType, string varScope, string

fullElementName)

 {

 // register the variable in the temp store and
 // associate it with the given scope

 Store.createVarvarType, varScope, fullElementName);

 }

 public string retrieveVariable(string varScope, string elementName)

 {

 return Store.getVarValue(varScope, fullElementName);

 }

 public string updateVariable(string varScope, string elementName,

string newValue)
 {

 return Store.setVarValue(varScope, elementName, newValue);

 }

 public boolean evaluateCondition(string condition, string operator,

string expectedValue)

 {

 return Store.evaluate(condition, operator, expectedValue);
 }

}

59
All element names represent full qualified names of the static elements. For example the

method C in class B of package A should be referred to as "A.B.C".

The parser algorithm therefore is as follows:

class Parser

{
 private AbstactVisitor visitor;

 void parse(Class c) {

 visitor.visitClass(c.name);

 /* visit methods of the given class */

 for (Method m : c.methods)

 {
 /* visit method parameters */

 for (FormalParameter p : m.parameters)

 visitor.visitFormalParameter(p.name);

 /* visit the actual method */

 visitor.visitMethod(m.name);

 /* visit variables used in the method */
 for (Variable v : m.variables)

 visitor.visitVariable(v.name);

 /* visit other classes accesed in this method */
 for (Type t : m.accesses)

 visitor.visitType(t.name);

 }

 /* visit fields of the given class */

 for (Field f : c.fields)

 {

 visitor.visitField(f.name);
 visitor.visitValue(f.value.name);

 }

 for (Method m : c.methods)

 visitor.vistiMethod(m.name);
 }

}

Therefore, the major role of SMDL under this incremental evaluation is to describe the

implementation algorithm of each visiting method in order to come up with the final

metric value.

60
As an example, consider the following expression which can be used for computing the

number of public methods in a given class. The metric query can be written in SMDL as

(dmmQuery refers to a meta-model query that implements the DMM model):

<dmmQuery>

 <description>Compute the number of methods in a given class
 </description>

 <visitor scope="class">

 <variable name="numMethods" type="long" scope="class" />

 </visitor>
 <visitor scope="method">

 <condition expression="isPublic = false" action="continue" />

 <math:expression>

 <linkLong name="numMethods"/>
 <add datatype="long">

 <long value="1"/>

 </add>

 </linkLong>
 </math:expression>

 </visitor>

</dmmQuery>

This expression would declare a variable called "methodCount" in the scope of the current

class. The declared variable is therefore used in an XMLMath expression to update the

value of the variable after each visit.

This SMDL representation is essentially equivalent to the following code (which would

be generated during the actual parsing of the metric definition). Notice that the Adapter

design pattern is applied here through the VisitorAdapter class in order to avoid

implementing all methods of the AbstractVisitor:

class ConcreteVisitor : VisitorAdapter

{

 public abstract void visitClass (string className)

 {
 declareVariable("long", "class", className+".numMethods");

 }

 public abstract void visitMethod (string methodName)

 {
 if (evaluateCondition("isPublic", "equals", "true"))

61
 {

 long temp = Long.parse(retrieveVariable("class",
methodName+".numMethods"));

 updateVariable("class", methodName+".numMethods", temp

+ 1);

 }

 }

}

Invalidation criteria can also be described in SMDL as in the following example:

<dmmQuery>
 <visitor scope="class">

 <variable name="numMethods" type="long" scope="class" />

 </visitor>

 <visitor scope="method">
 <condition expression="isPublic = false" action="continue" />

 <invalidationCriteria affectedElement="Method"

condition="isPublic = True" scope=”class” />

 <math:expression>
 <linkLong name="numMethods"/>

 <add datatype="long">

 <long value="1"/>

 </add>
 </linkLong>

 </math:expression>

 </visitor>

</dmmQuery>

The variable "numMethods" is declared under the scope of the current class in the

temporary store. When methods of the given class are being evaluated, the current value is

retrieved and incremented before writing back to the store. This example invalidates all

elements of type “Method” which satisfy the condition “isPublic = true” within the scope

of the “class”.

62

5.4. SMDL DEFINITION SCHEME

The following section describes the contents of the various elements of the SMDL

language.

The SMDL Root Element

XSD Schema Code

<xs:element name="smdl" >
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="metric">
 <xs:complexType>
 <xs:all>
 <xs:element name="acronym" type="xs:string"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element minOccurs="0" name="description" type="xs:string"/>
 <xs:element minOccurs="0" maxOccurs="1" name="customProperties">
 <xs:complexType>
 <xs:attribute name="attribute" type="xs:string" use="optional"/>
 <xs:attribute name="value" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" name="conversionRules">
 <xs:complexType>
 <xs:attribute name="sourcePlatform" type="xs:string"/>
 <xs:attribute name="targetPlatform" type="xs:string"/>
 <xs:attribute name="forumula"/>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" name="authority">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="authors">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="date" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="yearPublished" type="xs:date"/>
 <xs:element name="sourceName" type="xs:string"/>
 </xs:sequence>

63
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" name="computation" type="computation"/>
 <xs:element minOccurs="0" maxOccurs="1" name="reusedMetrics">
 <xs:complexType>
 <xs:attribute name="metricName"/>
 <xs:attribute name="variableID"/>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" name="visualization" type="visualizationRules"/>
 </xs:all>
 <xs:attribute name="metricClass" type="xs:string"/>
 <xs:attribute name="metricSuite" type="xs:string"/>
 <xs:attribute name="scope">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="package"/>
 <xs:enumeration value="class"/>
 <xs:enumeration value="method"/>
 <xs:enumeration value="variable"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="intermediateVariable" type="computation"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="version" type="xs:decimal" use="required"/>
 </xs:complexType>
</xs:element>

Child Elements
 Name Type Min

Occurs
Max Occurs

metric metric (1) unbounded
intermediateVariable intermediateVariable (1) (1)

Computation DataType

XSD Schema Code

<xs:complexType name="computation" >

64
 <xs:all>
 <xs:element minOccurs="0" name="dmmQuery">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="unit" type="xs:string"/>
 <xs:element maxOccurs="unbounded" name="visitor" type="visitor"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" name="oclQuery">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="oclQueryVariable">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="query" type="xs:string"/>
 <xs:element name="variableID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="mainOclQuery" type="xs:string"/>
 <xs:element name="scope">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="class"/>
 <xs:enumeration value="package"/>
 <xs:enumeration value="method"/>
 <xs:enumeration value="field"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:all>
 <xs:attribute name="variableID" type="xs:string"/>
 <xs:attribute name="variableType">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="double"/>
 <xs:enumeration value="long"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="set"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

Child Elements
 Name Type Min Occurs Max

Occurs
dmmQuery dmmQuery 0 (1)
oclQuery oclQuery 0 (1)

Child Attributes

65
 Name Type Default

Value
Use

variableID variableID (Optional)
variableType variableType (Optional)

Visitor DataType

XSD Schema Code:

<xs:complexType name="visitor" >
 <xs:all>
 <xs:element minOccurs="0" maxOccurs="1" name="condition">
 <xs:complexType>
 <xs:attribute name="expression" type="xs:string" use="required"/>
 <xs:attribute name="action" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="skip"/>
 <xs:enumeration value="stop"/>
 <xs:enumeration value="continue"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

66
 <xs:element minOccurs="0" maxOccurs="1" name="exception">
 <xs:complexType>
 <xs:attribute name="expression" type="xs:string" use="required"/>
 <xs:attribute name="returnValue" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="aggregationAction">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="operator" type="xs:string"/>
 <xs:sequence/>
 </xs:sequence>
 <xs:attribute name="level">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="package-leve"/>
 <xs:enumeration value="class-level"/>
 <xs:enumeration value="method-level"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="action">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="sum"/>
 <xs:enumeration value="multiply"/>
 <xs:enumeration value="average"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="1" ref="ns0:expression"/>
 <xs:element minOccurs="0" maxOccurs="1" name="variable">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="long"/>
 <xs:enumeration value="double"/>
 <xs:enumeration value="string"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="set"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="scope">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="package"/>
 <xs:enumeration value="class"/>
 <xs:enumeration value="method"/>
 <xs:enumeration value="attribute"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="1" name="invalidationCriteria">
 <xs:complexType>

67
 <xs:attribute name="affectedElement" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Method"/>
 <xs:enumeration value="Class"/>
 <xs:enumeration value="Package"/>
 <xs:enumeration value="Field"/>
 <xs:enumeration value="Attribute"/>
 <xs:enumeration value="Parameter"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="variableName" type="xs:string" use="required"/>
 <xs:attribute name="condition" type="xs:string" use="required"/>
 <xs:attribute name="scope" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Method"/>
 <xs:enumeration value="Class"/>
 <xs:enumeration value="Package"/>
 <xs:enumeration value="Field"/>
 <xs:enumeration value="Attribute"/>
 <xs:enumeration value="Parameter"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:all>
 <xs:attribute name="scope">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Package"/>
 <xs:enumeration value="Class"/>
 <xs:enumeration value="Method "/>
 <xs:enumeration value="Field "/>
 <xs:enumeration value="Value "/>
 <xs:enumeration value="Variable"/>
 <xs:enumeration value="Type"/>
 <xs:enumeration value="EnumerationType "/>
 <xs:enumeration value="StructuredType"/>
 <xs:enumeration value="FormalParameter"/>
 <xs:enumeration value="Routine "/>
 <xs:enumeration value="ExecutableValue"/>
 <xs:enumeration value="CollectionType"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="variableName" type="xs:string"/>
</xs:complexType>

Child Elements
 Name Type Min

Occurs
Max
Occurs

condition condition 0 1
exception exception 0 1
aggregationAction aggregationAction (1) (1)
expression tns:expression 0 1

68
variable variable 0 1
invalidationCriteria invalidationCriteria 0 1

Child Attributes
 Name Type Default Value Use

scope scope (Optional)
variableName variableName (Optional)

VisualizationRules DataType

XSD Schema Code

<xs:complexType name="visualizationRules" >
 <xs:choice>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="graph">
 <xs:complexType>
 <xs:choice>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="dimentionalProperty"
type="xs:string"/>
 </xs:choice>
 <xs:attribute name="graphType" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="table">
 <xs:complexType>
 <xs:attribute name="organizeBy"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name="visualizationForm">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Package"/>
 <xs:enumeration value="Class"/>
 <xs:enumeration value="Method "/>
 <xs:enumeration value="Field "/>
 <xs:enumeration value="Value "/>
 <xs:enumeration value="Variable"/>
 <xs:enumeration value="Type"/>
 <xs:enumeration value="EnumerationType "/>
 <xs:enumeration value="StructuredType"/>
 <xs:enumeration value="FormalParameter"/>
 <xs:enumeration value="Routine "/>
 <xs:enumeration value="ExecutableValue"/>
 <xs:enumeration value="CollectionType"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

69
 Child Elements
 Name Type Min Occurs Max Occurs

graph graph 0 unbounded
table table 0 unbounded

 Child Attributes
 Name Type Default

Value
Use

visualizationForm visualizationForm (Optional)

Figure 10 - Portions of the SMDL schema definition (ver. 1.0)

70

CHAPTER 6

APPLYING SMDL

This chapter presents sample definitions of software metrics utilizing the SMDL

language. It also includes an overview of the prototype implementation.

6.1. SAMPLE DEFINITIONS IN SDML

To show case the application of SMDL, we present a number of metric definitions written

in SMDL. Selected metrics include the popular suite of C&K OO design metrics,

surveyed in section 2.1.1.

6.1.1. Depth of Inheritance
<metric>

 <acronym>DIT</acronym>

 <title>Depth of Inheritance</title>

 <authority>
 <authors name="C&K" date="1994" />

 </authority>

 <computation>

 <dmmQuery>
 <unit>Class</unit>

 <visitor scope="class" variable=”c”>

 <variable name="DIT" type="list" scope="class" />

 <invalidationCriteria affectedElement="Class"
variableName=”parent” condition="parent eq null" scope="Package" />

 <variable name="isVisited" type="long" scope="class" />

 <math:expression>
 <linkLong name="dit"/>

 <add datatype="long">

71
 <long value="1"/>

 </add>
 </linkLong>

 </math:expression>

 </visitor>

 </dmmQuery>

 </computation>

 </metric>

6.1.2. Weighted Method per Class (WMC)
<metric>

 <acronym>WMC</acronym>

 <title> Weighted Method per Class </title>
 <authority>

 <authors name="C&K" date="1994" />

 </authority>

 <computation>
 <dmmQuery>

 <visitor scope="class">

 <variable name="numMethods" type="long" scope="class"

/>
 </visitor>

 <visitor scope="method">

 <math:expression>

 <linkLong name="numMethods"/>
 <add datatype="long">

 <long value="1"/>

 </add>

 </linkLong>
 </math:expression>

 </visitor>

 </dmmQuery>

 </computation>
 </metric>

6.1.3. Response for Class (RFC)
<metric>

 <acronym>RFC</acronym>
 <title> Response for Class </title>

 <authority>

 <authors name="C&K" date="1994" />

 </authority>
 <computation>

 <dmmQuery>

 <visitor scope="class">

 <variable name="responseSet" type="list" scope="class"
/>

 </visitor>

 <visitor scope="method" variableName=”methodSignature”>

 <math:expression>
 <linkLong name="responseSet"/>

72
 <add datatype="set">

 <lingString name=”
methodSignature” />

 </add>

 </linkLong>

 </math:expression>
 </visitor>

 </dmmQuery>

 </computation>

 </metric>

6.1.4. Number of Children (NOC)
<metric>

 <acronym>NOC</acronym>

 <title> Number of Children </title>
 <authority>

 <authors name="C&K" date="1994" />

 </authority>

 <computation>
 <dmmQuery>

 <visitor scope="class">

 <variable name="responseSet" type="list" scope="class"

/>
 </visitor>

 <visitor scope="method" variableName=”m”>

 <math:expression>

 <linkList name="responseSet"/>
 <add datatype="string">

 <lingString name=”m” />

 </add>

 </linkLong>
 </math:expression>

 </visitor>

 <visitor scope="formalParameter" variableName=”p”>
 <math:expression>

 <linkLong name="responseSet"/>

 <add datatype="string">

 <lingString name=”p” />
 </add>

 </linkLong>

 </math:expression>

 </visitor>

 <visitor scope="variables" variableName=”v”>

 <math:expression>

 <linkLong name="responseSet"/>
 <add datatype="string">

 <lingString name=”v” />

 </add>

 </linkLong>
 </math:expression>

 </visitor>

 </dmmQuery>

73
 </computation>

 </metric>

6.1.5. Coupling Between Objects (CBO)
<metric>

 <acronym>NOC</acronym>

 <title> Number of Chikdren </title>
 <authority>

 <authors name="C&K" date="1994" />

 </authority>

 <computation>
 <dmmQuery>

 <visitor scope="class">

 <variable name="responseSet" type="list" scope="class"

/>
 </visitor>

 <visitor scope="method" variableName=”m”>

 <math:expression>

 <linkList name="responseSet"/>
 <add datatype="string">

 <lingString name=”m” />

 </add>

 </linkLong>
 </math:expression>

 </visitor>

 <visitor scope="formalParameter" variableName=”p”>
 <math:expression>

 <linkLong name="responseSet"/>

 <add datatype="string">

 <lingString name=”p” />
 </add>

 </linkLong>

 </math:expression>

 </visitor>

 <visitor scope="variables" variableName=”v”>

 <math:expression>

 <linkLong name="responseSet"/>
 <add datatype="string">

 <lingString name=”v” />

 </add>

 </linkLong>
 </math:expression>

 </visitor>

 </dmmQuery>

 </computation>
 </metric>

6.1.6. Lack of Cohesion in Methods (LCOM)
<metric>

 <acronym>LCOM</acronym>
 <title> Lack Of Cohesion Method </title>

74
 <authority>

 <authors name="C&K" date="1994" />
 </authority>

 <computation>

 <dmmQuery>

 <visitor scope="class">
 <variable name="lcom" type="long" scope="class" />

 <variable name="methodInvokes" type="set" scope="class"

/>
 <math:expression>

 <intersect>

 <linkList name=" methodInvokes"/>

 <add datatype="long">
 <linkString name=”m” />

 </add>

 </linkList>

 </intersect>
 </math:expression>

 </visitor>

 <visitor scope="variables" variableName=”v”>
 <math:expression>

 <linkSet name="methodInvokes "/>

 <add datatype="long">

 <linklong>1</linkLong>
 </add>

 </linkSet>

 </math:expression>

 </visitor>
 </dmmQuery>

 </computation>

 </metric>

6.2. PROTOTYPE IMPLEMENTATION

As a proof of concept of the proposed in this work, a metrics computation tool called

SMDL Metrics Calculator was implemented. The Java-based tool is capable of parsing

SMDL files. It uses Java bytecode parsers to read and analyze metrics of java classes

based on SMDL definitions. The tool makes use of some of the more advanced SMDL

concepts such as progressive and parallel metrics computation.

75

6.3. CODE PARSING

The source code parser used in SMDL Metrics Calculator utilizes BCEL (Byte Code

Engineering Library) [44], an open-source Java parser written by Apache group. It was

chosen due in part to its powerful capabilities of processing Java bytecode. Additionally,

the use of the Visitor design pattern in the framework, for handling progressive parsing,

enables a more declarative approach to metric computation definitions that is consistent

with the declarative nature of SMDL and satisfies performance requirements of

progressive evaluations.

6.3.1. SMDL Parser and Editor

The SMDL Metrics Calculator contains an SMDL definitions’ parser and a visual editor.

The parser uses XML parsing libraries written by Altova XMLSpy [45] in Java which

enables reading SMDL files and generating the necessary data objects that precisely

represent the file contents. Objects are then used for the computation of the software

metrics according to the SMDL definitions.

The visual editor for SMDL was built using Jaxe, the Java XML editor. Jaxe provices and

user interface for editing XML files using a predefined configuration files. A Jaxe

configuration file for SMDL was created. Launching Jaxe with the configuration file, the

user is prompted to create and edit SMDL documents. Using this editor, the user can

insert, edit and update SMDL elements while maintaining compliance with SMDL

specifications. The following figures show screenshots of using the editor.

76

Figure 11 - Screenshot of Jaxe Editing the SMDL Schema

77

78

Figure 12 Screenshots of Creating an SMDL Document

6.3.2. SMDL Calculator

As an implementation example, the C&K metrics suite was selected for the prototype. In

particular, parsers and calculators for the following metrics were implemented in our

prototype:

Table 5: Selected Metrics for Prototype Implementation

Metric Description

WMC Weighted methods per class

DIT Depth of Inheritance Tree

NOC Number of Children

79

CBO Coupling between object classes

RFC Response for a Class

LCOM Lack of cohesion in methods

CA Afferent couplings

NPM Number of public methods

Figure 10 shows a snapshot of the Metrics Calculator application which displays metrics

results after applying the tool on selected Java classes:

80

Figure 13 Screenshot of SMDL Metrics Calculator

The tool is designed to be simple to use. Upon selection of the Java classes of interest,

which are .class files, the tool computes and presents the defined metrics. Results are

presented in a tabular format for each of the selected classes. Partial results are also

included for classes associated with the selected classes, such as aggregations and

inheritance relationships.

81

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1. CONCLUSION

In this research, we presented a novel approach to representing software metrics

definitions that enables reusability, extensibility and accuracy of metrics definitions. The

proposed Software Metrics Definition Language, SMDL, is an XML based meta-

definition language that can be applied to represent metrics definitions. We have shown

that using SMDL can simplify metrics definitions by enabling reusability of previous

definitions and definition elements. Another advantage to the end users of the language is

metrics customization capabilities. We have also implemented a prototype, a proof-of-

concept, as a start to motivate adoption of the new approach and demonstrate some of its

capabilities.

7.2. CONTRIBUTION

Following is a list of contributions achieved in this research.

• Surveying and comparing the different methods of formalizing software metrics

definitions and proposing a more comprehensive, flexible alternative.

82
• Proposing a framework for software metrics measurement and data collection that

abstracts the main component of a complete measurement solution.

• Providing a prototype implementation to demonstrate the proposed approach as a

proof of concept.

• Discussion of performance considerations and challenges in metrics evaluation

schemes.

• Addressing shortcomings of the alternative approaches to software metrics

definitions. The proposed language tackles the important challenges of metrics

definitions and can be beneficial to the software engineering research community.

7.3. FUTURE WORKS

Formalizing metrics definitions is only a part of the measurement process. In this work,

we focused on the representation of the metrics definitions against a standard meta-model.

The bigger picture is more complicated and there is room for improvement in areas such

as:

• Measurement Data: completing the framework by introducing a language for

representing software metrics measurement data. There is already some research in

this area which can be integrated into this framework.

• Metrics Data Analysis: Software metrics data interpretation and classification

mechanisms which can be used for quality measures and indicators.

83
• Performance Considerations: Introducing optimizations of metrics computations

though caching or other techniques depending on some heuristics. This can benefit

from database query optimization techniques. Results can help build more

practical tools that are seamlessly integrated into the development effort.

• Advanced Computation: Enabling more complex forms of metrics computations

such as comparative metrics (e.g. similarity, stability …).

• Design Metrics: Expanding the meta-model to include all design artifacts such as

state diagrams, sequence diagrams, and use cases, in order to allow more general

forms of design metrics.

• Concurrency of and Computation Pipeline: Providing detailed analysis of

performance overhead for computing software metrics and discussing potential

way of parallelizing the computation process.

• Visualization: Enhancement to the visualization description of the metrics

definition to support common metrics visualization hierarchies.

84

APPENDICES

85

APPENDIX A. THE SOFTWARE METRICS

DEFINITION LANGUAGE SCHEMA

The following is source code for the current version of the SMDL Schema.

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema xmlns:ns0="http://xmlmath.org/1.0"

attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import schemaLocation=".\XMLMath 1.0.xsd"

namespace="http://xmlmath.org/1.0" />

 <xs:element name="smdl">
 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="metric">

 <xs:complexType>
 <xs:all>

 <xs:element name="acronym" type="xs:string" />

 <xs:element name="title" type="xs:string" />

 <xs:element minOccurs="0" name="description"
type="xs:string" />

 <xs:element minOccurs="0" maxOccurs="1"

name="customProperties">

 <xs:complexType>
 <xs:attribute name="attribute" type="xs:string"

use="optional" />

 <xs:attribute name="value" type="xs:string"

use="required" />
 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="conversionRules">

 <xs:complexType>
 <xs:attribute name="sourcePlatform" type="xs:string" />

 <xs:attribute name="targetPlatform" type="xs:string" />

 <xs:attribute name="forumula" />

 </xs:complexType>
 </xs:element>

 <xs:element minOccurs="0" name="authority">

 <xs:complexType>

 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="authors">

 <xs:complexType>

 <xs:attribute name="name" type="xs:string" />

 <xs:attribute name="date" type="xs:string" />

86
 </xs:complexType>

 </xs:element>
 <xs:element name="yearPublished" type="xs:date" />

 <xs:element name="sourceName" type="xs:string" />

 </xs:sequence>

 </xs:complexType>
 </xs:element>

 <xs:element minOccurs="0" name="computation"

type="computation" />

 <xs:element minOccurs="0" maxOccurs="1"
name="reusedMetrics">

 <xs:complexType>

 <xs:attribute name="metricName" />

 <xs:attribute name="variableID" />
 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="visualization"

type="visualizationRules" />
 </xs:all>

 <xs:attribute name="metricClass" type="xs:string" />

 <xs:attribute name="metricSuite" type="xs:string" />

 <xs:attribute name="scope">
 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="package" />

 <xs:enumeration value="class" />
 <xs:enumeration value="method" />

 <xs:enumeration value="variable" />

 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:choice maxOccurs="unbounded">
 <xs:element name="intermediateVariable" type="computation" />

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="version" type="xs:decimal" use="required" />
 </xs:complexType>

 </xs:element>

 <xs:complexType name="computation">

 <xs:all>
 <xs:element minOccurs="0" name="dmmQuery">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="description" type="xs:string" />
 <xs:element name="unit" type="xs:string" />

 <xs:element maxOccurs="unbounded" name="visitor"

type="visitor" />

 </xs:sequence>
 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="oclQuery">

 <xs:complexType>
 <xs:sequence>

87
 <xs:element minOccurs="0" maxOccurs="unbounded"

name="oclQueryVariable">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="query" type="xs:string" />

 <xs:element name="variableID" type="xs:string" />
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="mainOclQuery" type="xs:string" />
 <xs:element name="scope">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="class" />
 <xs:enumeration value="package" />

 <xs:enumeration value="method" />

 <xs:enumeration value="field" />

 </xs:restriction>
 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>
 </xs:element>

 </xs:all>

 <xs:attribute name="variableID" type="xs:string" />

 <xs:attribute name="variableType">
 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="double" />

 <xs:enumeration value="long" />
 <xs:enumeration value="list" />

 <xs:enumeration value="set" />

 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="visitor">

 <xs:all>
 <xs:element minOccurs="0" maxOccurs="1" name="condition">

 <xs:complexType>

 <xs:attribute name="expression" type="xs:string" use="required"

/>
 <xs:attribute name="action" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="skip" />
 <xs:enumeration value="stop" />

 <xs:enumeration value="continue" />

 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" maxOccurs="1" name="exception">
 <xs:complexType>

88
 <xs:attribute name="expression" type="xs:string" use="required"

/>
 <xs:attribute name="returnValue" type="xs:string"

use="required" />

 </xs:complexType>

 </xs:element>
 <xs:element name="aggregationAction">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="type" type="xs:string" />
 <xs:element name="operator" type="xs:string" />

 <xs:sequence />

 </xs:sequence>

 <xs:attribute name="level">
 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="package-leve" />

 <xs:enumeration value="class-level" />
 <xs:enumeration value="method-level" />

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>
 <xs:attribute name="action">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="sum" />
 <xs:enumeration value="multiply" />

 <xs:enumeration value="average" />

 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" maxOccurs="1" ref="ns0:expression" />
 <xs:element minOccurs="0" maxOccurs="1" name="variable">

 <xs:complexType>

 <xs:attribute name="name" type="xs:string" />

 <xs:attribute name="type">
 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="long" />

 <xs:enumeration value="double" />
 <xs:enumeration value="string" />

 <xs:enumeration value="list" />

 <xs:enumeration value="set" />

 </xs:restriction>
 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="scope">

 <xs:simpleType>
 <xs:restriction base="xs:string">

 <xs:enumeration value="package" />

 <xs:enumeration value="class" />

 <xs:enumeration value="method" />
 <xs:enumeration value="attribute" />

89
 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" maxOccurs="1"
name="invalidationCriteria">

 <xs:complexType>

 <xs:attribute name="affectedElement" use="required">

 <xs:simpleType>
 <xs:restriction base="xs:string">

 <xs:enumeration value="Method" />

 <xs:enumeration value="Class" />

 <xs:enumeration value="Package" />
 <xs:enumeration value="Field" />

 <xs:enumeration value="Attribute" />

 <xs:enumeration value="Parameter" />

 </xs:restriction>
 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="variableName" type="xs:string"

use="required" />
 <xs:attribute name="condition" type="xs:string" use="required"

/>

 <xs:attribute name="scope" use="required">

 <xs:simpleType>
 <xs:restriction base="xs:string">

 <xs:enumeration value="Method" />

 <xs:enumeration value="Class" />

 <xs:enumeration value="Package" />
 <xs:enumeration value="Field" />

 <xs:enumeration value="Attribute" />

 <xs:enumeration value="Parameter" />

 </xs:restriction>
 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>
 </xs:all>

 <xs:attribute name="scope">

 <xs:simpleType>

 <xs:restriction base="xs:string">
 <xs:enumeration value="Package" />

 <xs:enumeration value="Class" />

 <xs:enumeration value="Method " />

 <xs:enumeration value="Field " />
 <xs:enumeration value="Value " />

 <xs:enumeration value="Variable" />

 <xs:enumeration value="Type" />

 <xs:enumeration value="EnumerationType " />
 <xs:enumeration value="StructuredType" />

 <xs:enumeration value="FormalParameter" />

 <xs:enumeration value="Routine " />

 <xs:enumeration value="ExecutableValue" />
 <xs:enumeration value="CollectionType" />

90
 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>

 <xs:attribute name="variableName" type="xs:string" />

 </xs:complexType>

 <xs:complexType name="visualizationRules">
 <xs:choice>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="graph">

 <xs:complexType>

 <xs:choice>
 <xs:element minOccurs="0" maxOccurs="unbounded"

name="dimentionalProperty" type="xs:string" />

 </xs:choice>

 <xs:attribute name="graphType" type="xs:string" />
 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="table">

 <xs:complexType>
 <xs:attribute name="organizeBy" />

 </xs:complexType>

 </xs:element>

 </xs:choice>
 <xs:attribute name="visualizationForm">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Package" />
 <xs:enumeration value="Class" />

 <xs:enumeration value="Method " />

 <xs:enumeration value="Field " />

 <xs:enumeration value="Value " />
 <xs:enumeration value="Variable" />

 <xs:enumeration value="Type" />

 <xs:enumeration value="EnumerationType " />

 <xs:enumeration value="StructuredType" />
 <xs:enumeration value="FormalParameter" />

 <xs:enumeration value="Routine " />

 <xs:enumeration value="ExecutableValue" />

 <xs:enumeration value="CollectionType" />
 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>
</xs:schema>

91

REFERENCES

[1] N. E. Fenton, Software Metrics: A Rigorous Approach. London: Chapman & Hall,

Ltd., 1991.

[2] D. Troy and S. Zweben, "Measuring the Quality of Structured Design," The Journal

of Systems and Software, vol. 2, pp. 113-120, 1981.

[3] S. a. C. K. Chidamber, "Towards a Metrics Suite for Object-Oriented Design," in

Proceedings of the Conference on Object Oriented Programming Systems,

Languages, and Applications (OOPSLA '91), 1991, pp. 97-211.

[4] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design,"

IEEE Transactions on Software Engineering vol. 20, pp. 476-493, 1994.

[5] V. Basili, L. Briand, and W. Melo, "A Validation of Object-Oriented Design Metrics

as Quality Indicators," IEEE Transactions on Software Engineering, vol. 22, 1996.

[6] V. Laing and C. Coleman, "Principal Components of Orthogonal Object-Oriented

Metrics," NASA 2001.

[7] M. Alshayeb and W. Li, "An empirical validation of object-oriented metrics in two

different iterative software processes," Transactions on Software Engineering, vol.

29, 2003.

[8] W. Li, "Another metric suite for object-oriented programming," The Journal of

Systems and Software, pp. 155-162, 1998.

92
[9] F. B. e. Abreu, "Design Quality Metrics for Object-Oriented Software Systems,"

ERCIM News, 1995

[10] A. L. Baroni and F. B. Abreu, "An OCL-Based Formalization of the MOOSE Metric

Suite," in Proceedings of the 7th International ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering Darmstadt, Germany, 2003.

[11] E. M. Kim, S. Kusumoto, T. Kikuno, and O. B. Chang, "Heuristics for Computing

Attribute Values of C++ Program Complexity Metrics," in The 20th Conference on

Computer Software and Applications 1996, p. 104.

[12] "Software Quality Metrics for Object Oriented System Environments," National

Aeronautics and Space Administration, June 1995 1995.

[13] M. Sarker, "An overview of Object Oriented Design Metrics," in Department of

Computer Science. vol. MS Sweden: Umeå University, 2005.

[14] C. Jones, "Strengths and Weaknesses Of Software Metrics," 2006.

[15] N. I. Churcher and M. J. Shepperd, "Comments on 'A metrics suite for object-oriented

design'," IEEE Transactions on Software Engineering, vol. 21, 1995.

[16] D. Strein, R. Lincke, J. Lundberg, and W. Löwe, "An Extensible Metamodel for

Program Analysis," IEEE Transactions on Software Engineering vol. 33, 2007.

[17] B. A. Kitchenham, R. T. Hughes, and S. G. Linkman, "Modeling Software

Measurement Data," IEEE Transactions on Software Engineering vol. 27, pp. 788-

804, 2001.

[18] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, "A Relational Approach to Software

Metrics," in Proceedings of the 2004 ACM symposium on Applied computing Nicosia,

Cyprus, 2004, pp. 1536-1540.

93
[19] D. Beyer, C. Lewerentz, and A. Noack, "Efficient relational calculation for software

analysis," IEEE Transactions on Software Engineering, vol. 31, 2005.

[20] M. Lanza and S. Ducasse, "Beyond Language Independent Object-Oriented Metrics:

Model Independent," in Proceedings of the 6th International Workshop on

Quantitative Approaches in Object-Oriented Software Engineering, 2002, pp. 77-84.

[21] R. Reißing, "Towards a Model for Object-Oriented Design Measurement " in 5th

International ECOOP Workshop on Quantitative Approaches in Object-Oriented

Software Engineering, 2001.

[22] M. M. El-Wakil, A. El-Bastawisi, M. B. Riad, and A. A. Fahmy, "A novel approach

to formalize and collect Object-Oriented Design-Metrics," in 9th International

Conference on Empirical Assessment in Software Engineering (EASE 2005), 2005.

[23] F. B. e. Abreu, L. Ochoa, and M. Goulão, "The GOODLY Design Language for

MOOD Metrics Collection," INESC 1997.

[24] J. A. McQuillan and J. F. Power, "Some observations on the application of software

metrics to UML models," in Model Size Metrics Workshop of the ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems

Genoa, Italy, 2006.

[25] J. A. McQuillan and J. F. Power, "Towards re-usable metric definitions at the meta-

level," in PhD Workshop of the 20th European Conference on Object-Oriented

Programming Nantes, France, 2006.

[26] "Eclipse Homepage.," in http://www.eclipse.org/: The Eclipse Foundation, 2007.

[27] "NetBeans Homepage.," in http://www.netbeans.org/: Sun Microsystems, 2007.

[28] SDMetrics, "SDMetrics User Manual," 2006.

http://www.eclipse.org/:�
http://www.netbeans.org/:�

94
[29] T. Lethbridge, S. Tichelaar, and E. Plödereder, "The Dagstuhl Middle Metamodel: A

Schema For Reverse Engineering," Electronic Notes in Theoretical Computer

Science, vol. 94, pp. 7-18, 2004.

[30] L. O. Ejiogu, "TM: a systematic methodology of software metrics," ACM SIGPLAN

Notices, vol. 26, pp. 124-132, 1991.

[31] B. I. Cogan and R. B. Hunter, "Language-based Approaches to Software

Measurement," in Proceedings of the 3rd International Software Metrics Symposium,

1996., Berlin, Germany, 1996.

[32] A. L. Baroni and F. B. e. Abreu, "Formalizing Object-Oriented Design Metrics upon

the UML Meta-Model," in 16th Brazilian Symposium on Software Engineering,

Gramado, Brazil, 2002.

[33] M. Goulão and F. B. e. Abreu, "Formal Definition of Metrics Upon the CORBA

Component Model," in Proceedings of the First International Conference on

Software Architectures, Erfurt, Germany, 2005.

[34] N. Debnath, D. Riesco, G. Montejano, R. Uzal, L. Baigorria, A. Dasso, and A. Funes,

"A technique based on the OMG metamodel and OCL for the definition of object-

oriented metrics applied to UML models," in The 3rd ACS/IEEE International

Conference on Computer Systems and Applications, 2005.

[35] J. A. McQuillan and J. F. Power, "A definition of the Chidamber and Kemerer

metrics suite for the Unified Modeling Language," Department of Computer Science,

NUI Maynooth, Co. Kildare, Ireland, Technical Report October 2006 2006.

[36] J. A. McQuillan and J. F. Power, "Experiences of using the Dagstuhl Middle

Metamodel for defining software metrics," in Proceedings of the 4th International

95
Conference on Principles and Practices of Programming in Java, Mannheim,

Germany, 2006, pp. 194-198.

[37] J. A. McQuillan and J. F. Power, "On the application of software metrics to UML

models," in Satellite Events at the MoDELS 2006 Conference, 2006.

[38] R. Lincke and W. Löwe, "Foundations for Defining Software Metrics," in 3rd

International Workshop on Metamodels, Schemas, Grammars, and Ontologies for

Reverse Engineering (ATEM), 2006.

[39] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, "Extensible

Markup Language (XML) 1.0 (Fourth Edition) - Origin and Goals," World Wide

Web Consortium, 2006.

[40] M. Auer, "Measuring the Whole Software Process: A Simple Metric Data Exchange

Format and Protocol," in Proceedings of 6th ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering Mlaga, 2002.

[41] W. Harrison, "A flexible method for maintaining software metrics data: a universal,"

The Journal of Systems & Software, vol. 72, pp. 225-234, 2004.

[42] D. Margerison, "Outline proposal for adopting a generic standard for storing metrics

information," 2004.

[43] E. v. Zijst, "XMLMath - XML-Based Mathematical Expression Evaluator.," in

http://www.xmlmath.org/, 2006.

[44] "BCEL Homepage.," in http://jakarta.apache.org/bcel/, 2007.

[45] "Altova XMLSpy Homepage.," in http://www.altova.com/, 2007.

http://www.xmlmath.org/�
http://jakarta.apache.org/bcel/�
http://www.altova.com/�

96

VITA

Personal Data:

Name: Yasser Elsayed Mohamed Shaaban

Nationality: Egyptian.

Contact:

Current Address: 1301 1st Ave, Seattle 98101, WA, United States
Phone: (+1) 4252337587

Permanent address: 32 Neaam St, Muharram Bek, Alexandria, Egypt

Email: yasser.shaaban@hotmail.com

Yasser Elsayed Mohamed Shaaban was born in 1983 in Alexandria, Egypt. He received

his Bachelor of Science in Software Engineering, with first honors, from King Fahd

University of Petroleum and Minerals (KFUPM) in June 2006. He then joined the

Information and Computer Science Department at KFUPM as a Research Assistant while

pursuing his Master's degree in Computer Science. During the course of his graduate

studies, he took advanced computer science and software engineering courses such as

Principles of Software Engineering, Advanced Artificial Intelligence, Pattern Recognition,

Computer Security, Advanced Computer Algorithms, and Advanced High Performance

Computing. During his course of study, he participated in software projects inside and

outside the university in various areas from enterprise applications to data mining and

parallel computing. His research interests are in software engineering, parallel

programming and streaming algorithms.

mailto:yasser.shaaban@hotmail.com�

	ACKNOWLEDGMENT
	TABLE OF CONTENS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	ABSTRACT (ARABIC)
	INTRODUCTION
	PROBLEM DEFINITION
	RESEARCH GOALS
	RELATED WORK
	THESIS STRUCTURE

	SOFTWARE METRICS DEFINITIONS
	COMMON SOFTWARE METRICS SUITES
	Chidamber and Kemerer Metrics Suite
	Li’s Metrics Suite
	MOOD Metrics Suite
	Kim’s Metrics Suite
	Other Object Oriented Metrics

	CLASSIFICATION OF Software Metrics
	Classification based on Paradigm
	Classification based on Usage

	Issues in Metrics Definitions
	Examples of Ambiguity in Metrics Definitions
	Sources of Metrics Ambiguity
	Addressing Metrics Ambiguity
	Metrics Reusability and Extensibility

	FORMALIZATION OF METRICS DEFINITIONS
	Abstracting Metrics Definitions USING INTERMEDIATE Meta-models
	Meta-models of Metrics Data
	Meta-models of Software Artifacts

	Metrics Definitions Formalization
	Early Attempts
	Metrics Meta-models
	Using the Dagstuhl Middle Meta-model
	Using XML in Metrics Definitions

	Comparison Between Metrics Definition Approaches

	FRAMEWORK FOR REPRESENTATION OF SOFTWARE METRICS DEFINITIONS
	Metrics MEasurement PROCESS
	Objectives of the Metrics Measurement Framework
	Elements of the Metrics Measurement Framework
	the Metrics Measurement Framework

	THE SOFTWARE METRICS DEFINITION LANGUAGE
	SMDL Concepts
	Meta-Model Base
	Variables and Queries
	Intermediate Storage / Meta-Model Database
	Deep vs. Progressive Evaluation
	Invalidation Rules
	Exceptions and Constraints

	SMDL Attibutes
	Metrics Properties
	Metrics Computation

	SMDL Application Progamming Interface (API)
	API Model Classes
	API Built-In Queries
	XMLMath
	Meta-Model Evaluation and Initialization

	SMDL DEFINITION SCHEME

	APPLYING SMDL
	SAMPLE DEFINITIONS IN SDML
	Depth of Inheritance
	Weighted Method per Class (WMC)
	Response for Class (RFC)
	Number of Children (NOC)
	Coupling Between Objects (CBO)
	Lack of Cohesion in Methods (LCOM)

	Prototype Implementation
	Code Parsing
	SMDL Parser and Editor
	SMDL Calculator

	CONCLUSION AND FUTURE WORK
	CONCLUSION
	CONTRIBUTION
	FUTURE WORKS

	APPENDICES
	APPENDIX A. THE SOFTWARE METRICS DEFINITION LANGUAGE SCHEMA
	REFERENCES
	VITA

