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CHAPTER 1 

Introduction 

1.1 Overview 

 High performance is always the design target in industrial control applications. Many 

control strategies were proposed and aimed to realize this goal. Among them a model 

based control strategy called the ‘Internal Model Control’ (IMC) is very popular and 

continues to enjoy widespread popularity in industrial control applications due to its fine 

disturbance rejection capabilities and robustness [2,13,21,25,40,46,61,65]. 
 The IMC structure is composed of the explicit model of the plant and a stable feed-

forward controller. The IMC controller guarantees the internal stability of the closed-loop 

and parameters of the controller can be tuned online easily without disturbing stability of 

the system. Most of the industrial processes are open-loop stable. If the plant is unstable 

then using standard robust control techniques the plant is stabilized and the internal model 

controller is designed for the overall closed-loop system [11, 58, 66]. The incorporation of 

the inverse of plant model in the feed-forward path can be implemented to achieve 

asymptotic tracking in IMC structure [14].   

 Internal model control (IMC) is a powerful controller design strategy for linear 

systems described by transfer function models. For open-loop, stable systems, the IMC 

approach provide a very simple parameterization of all stabilizing controllers. The IMC 

factorization procedure provides valuable insights into the inherent control limitations 
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presented by particular models. Due to the IMC structure, integral action is included 

implicitly in the controller. Moreover, plant/model mismatch can be addressed via the 

design of a robustness filter. Unfortunately, virtually all real processes are nonlinear. Some 

are sufficiently linear in the region of operation so that conventional PID controllers 

provide adequate performance. But, for highly nonlinear processes, conventional feedback 

controllers must be detuned significantly to ensure stability. Therefore, performance is 

often severely degraded. Model based control strategies for nonlinear processes usually 

require local linearization and linear controller design based on the linearized model. This 

approach, however, may not be successful when the process is highly nonlinear or deviates 

significantly from the operating point around which the model is linearized. For batch and 

semi-batch processes, it is difficult to define an operating point for linearization. If 

reasonably accurate nonlinear models are available for processes, control strategies in 

which the nonlinear process model serves as the basis for the controller design can be 

expected to yield significantly improved performance [25, 40]. 

  Most often, the IMC controllers are designed for the linearized models and then 

implemented on the true nonlinear plants. The discrepancy in the model and the true plant 

gives rise to the poor performance of the closed-loop system, whenever the system is 

excited by a signal away from the selected operating point for the linearization of the plant 

[42]. Recent advances in the nonlinear control theory and practice have shown that 

properly designed nonlinear controllers give better performance for wide range of 

operation [62]. An explicit model of the system is necessary for designing the IMC 

controller as well. Due to the inherent complexity of nonlinear systems, the development 
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of a general nonlinear extension of IMC has serious difficulties. Except for simple single-

input single-output systems, the IMC factorization procedure has no well-defined nonlinear 

analog [32]. Also, very few tools exist for the design and analysis of robust nonlinear 

controllers. Furthermore, linear IMC is based on transfer function models, while nonlinear 

systems are usually described by nonlinear state-space models. Despite these difficulties, 

the linear IMC scheme has been extended to its non-linear version by different approaches 

[2,4,6,8,9,18,25,26,30,46,49,50,52,59]. 

 For nonlinear plants, the IMC structure can be extended to nonlinear models [18, 27]. 

As the IMC design involves a stable and causal approximation of the inverse of the plant, 

in general however, the inversion of nonlinear models is more involved and analytical 

solutions may not exists such that solutions have to be found numerically. The tracking of 

the reference signals is a requirement in many applications [17]. To accomplish tracking, 

the IMC structure requires the inverse of the plant. The determination of inverse of large 

class of nonlinear plants poses difficulties due to lack of a general modeling framework for 

nonlinear plants.  

 The identification and digital control of linear systems is largely based on the linear 

difference equation model which relates sampled output signals to sampled inputs. 

Numerous parameter estimation routines and controller synthesis procedures have been 

developed based on this description which provides a concise representation of both the 

process and the feedback controller [22]. When the system is nonlinear, however, the 

traditional system descriptions are based on the functional series such as the Volterra or 

Weiner series [41]. Whilst these provide an adequate representation for a wide class of 
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nonlinear systems, several hundred parameters are often required to characterize even 

simple nonlinear systems. The excessive computational effort required to estimate the 

unknown parameters, the difficulty of interpreting the results and the necessity to use 

special input signals are further disadvantages of functional series methods. The usefulness 

of these system descriptions for identification and control purposes is therefore limited and 

alternative representations are required. In the field of nonlinear modeling, the nonlinear 

autoregressive moving average with exogenous inputs (NARMAX) representation [36] has 

attracted considerable interest both in theory and applications. The NARMAX model 

yields an input-output representation of a non-linear system where the current output is 

obtained by means of a non-linear functional expansion of lagged inputs, outputs and noise 

terms. Depending on how the functional expansion is represented and parameterized, 

different model structures are derived. In particular, polynomial models have been 

extensively used, because they are linear-in-the-parameters models and the polynomial 

terms are often amenable to a direct physical interpretation. Furthermore, the 

Hammerstein, Weiner, bilinear and several other well-known linear and nonlinear models 

sets are special classes of the NARMAX model. However designing controllers based on 

NARMAX models which represent a wide class of nonlinear plants is difficult because 

they lack a maneuverable structure [48].  

 To improve robustness, the effects of process model mismatch in the IMC structure 

should be minimized. In addition, control performance and the controller simplicity are 

also important for practical applications. Recently proposed control-oriented model for a 

class of nonlinear plants called U-model [69], simplifies the computation of the 
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approximate inverse system of the nonlinear plant numerically. Originally, finding of the 

inverse model is converted to the computation of the zeros of the nonlinear plant. The 

problem can be solved using well-established numerical techniques such as the Newton-

Raphson method [10].   

 In this thesis, the use of, control-oriented model called the U-model, in the IMC 

structure for stable single input single output (SISO) nonlinear dynamic plants is proposed. 

We introduce the learning rate parameter in the inverse finding computational algorithm 

called the Newton-Raphson algorithm to improve the convergence and stability properties. 

Adaptive inverse control is used to further improve the tracking properties of the closed-

loop system. A new IMC structure wherein the model of the plant is replaced by the plant 

delay is introduced. Adaptive IMC strategy based on U-model for nonlinear dynamic 

plants is proposed. Computation of the inverse of U-model for nonlinear dynamic plants 

using the secant method is proposed. 

 

1.2 Problem Statement 

 In this thesis, the problem of tracking of an input reference signal incase of stable 

single input single output (SISO) nonlinear dynamic plants is considered. The NARMAX 

(non-linear autoregressive moving average with exogenous inputs) representation of such 

plants is given as: 

            )](),....,(),(),....,1(),(),....,1([)( ntetentutuntytyfty −−−−−=                (1.1)   

where )(ty and )(tu  are the output and input signals of the plant respectively at discrete  
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time instant t , n  is the order of the plant, [.]f  is a nonlinear function and )(te  represents 

the error due to measurement, noise, model mismatch, uncertain dynamics, plant variation 

etc. The objective is to synthesize )(tu  such that )(ty  tracks the desired input reference 

signal )(tr , while the plant parameters are unknown or time varying. A perfect 

control/tracking is possible without feedback, if the control scheme is developed based on 

the exact model of the process. In practice, however, process-model mismatch is common, 

the process model may not be invertible and the system is often affected by unknown 

disturbances. 

 

1.3 Objectives of the Thesis 

The objectives of this thesis are the following: 

1. To develop an internal model control (IMC) strategy based on the control-oriented 

model called the U-model for stable SISO nonlinear dynamic plants. 

2. To introduce a learning rate parameter in the Newton-Raphson algorithm used to 

compute the inverse of U-model of stable SISO nonlinear dynamic plants in the 

proposed IMC strategy. 

3. Simulating the developed IMC strategy to test its effectiveness to control the following 

nonlinear plants: 

i Hammerstein model 

ii Laboratory scale liquid level system 
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iii Continuous stirred tank reactor 

4. Real time implementation of the developed IMC strategy to control the speed of brush 

DC motor. 

5. To compare the developed IMC strategy with an existing technique discussed in [37] 

for control of SISO nonlinear plants. 

6. To achieve fine tracking using the adaptive inverse controller in the IMC structure. 

7. To develop a new IMC structure wherein the model of the plant to be controlled is 

replaced by the plant delay. 

8. Simulating the developed IMC structure involving the plant delay to control the 

following nonlinear plants: 

i Hammerstein model 

ii Laboratory scale liquid level system  

iii Continuous stirred tank reactor 

9. To develop an adaptive IMC strategy based on U-model for stable nonlinear dynamic 

plants. 

10. Real time implementation of the developed adaptive IMC strategy based on U-model 

for position tracking of a single-link robot manipulator driven by a brush dc motor. 

11. To develop an algorithm to compute the inverse of U-model of stable SISO nonlinear 

dynamic plants in IMC strategy using Secant method. 
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1.4 Thesis Organization 

 The remainder of this thesis is organized as follows: In chapter 2, literature review in 

the areas of internal model control, system modeling, adaptive control, neural networks is 

presented. In chapter 3, the control strategies, the U-model concept, the incorporation of 

the inverse system in the internal model control structure, the computation of the inverse of 

nonlinear plants using Newton-Raphson method is described and the computer simulation 

results for different nonlinear plants are presented. A comparison of the developed IMC 

strategy with an existing technique for control of nonlinear plants is given. In chapter 4, 

fine tracking technique in the IMC structure is presented and a new IMC structure based on 

U-model is proposed. In chapter 5, adaptive IMC strategy based on U-model is presented 

and real time experimental results are illustrated. In chapter 6, the computation of the 

inverse of nonlinear plants using Secant method in the IMC structure is discussed and 

simulation results are presented. Conclusions and recommendations for future research are 

given in chapter 7. 
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CHAPTER 2 

Literature Review 

2.1 Literature Review 

 In 1982, Garcia C.E. and Morari M. [21] first defined the internal model control 

(IMC) structure for single-input single-output (SISO), discrete-time systems. Several new 

stability theorems for IMC were proved and it was concluded that the IMC structure allows 

a rational design procedure where in the first step the controller is selected to give perfect 

control. In the second step a filter is introduced which makes the system robust to a 

specified model-plant mismatch.  

 Leontaritis I.J. and Billings S.A. [36] in 1985 derived the recursive input-output 

models for both deterministic and stochastic nonlinear multivariable discrete-time systems. 

The models were derived based on assumptions that the system is finitely realizable and the 

linearized system has maximum possible order around the equilibrium point. It was shown 

that the recursive nonlinear input-output models are valid only in some restricted region of 

operation around the equilibrium point. This work was extended to create prediction error 

input-output models for multivariable nonlinear stochastic systems and these models were 

referred to as NARMAX models. 

         Economou C.G. et al. [18] in 1986 developed a nonlinear IMC by employing an  

approximate inverse of the model, using local linear approximation. A first step towards a 
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practical approach to the synthesis of nonlinear feedback controllers was attempted. 

 Calvet J. and Arkun Y. [9] in 1988 used an IMC scheme to implement their    state-

space linearization approach for non-linear system with disturbances. This method requires 

state feedback. A systematic procedure was given to structure the control system in the 

presence of measured and unmeasured disturbances and a technique to reconstruct the 

control signal to eliminate the nonlinear/linear mismatch due to constraints was introduced.  

 Kravaris C. [31] discussed the SISO nonlinear processes and their control with 

nonlinear static state feedback and developed the concept of placing poles at the process 

zeros to nonlinear systems. It was shown that the class of input/output linearizing state 

feedback laws places poles at the process zeros in a nonlinear process which will lead to 

natural stability condition for input/output linearizing state feedback. 

 Alvarez J. et al. [4] in 1989 proposed a tracking and regulation scheme for discrete 

time non-linear systems. The scheme allows to track a specified trajectory with a dynamics 

specified by a tracking reference model and it was shown that the effect of disturbances on 

the process output can also be eliminated, with a dynamics imposed by a regulation model. 

 Billings S.A. and Chen S. [7] derived parameter estimation algorithms, based on an 

extended model, a global data model and a threshold model formulation for identifying 

severely nonlinear systems. It was shown that in each case an integrated structure 

determination and parameter estimation algorithm based on an orthogonal decomposition 

of the regression matrix can be derived to provide procedures for identifying parsimonious 

models of unknown systems with complex structure. 
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 Sales K.R. and Billings S.A. [53] in 1990 introduced a minimum-variance self-tuning 

algorithm based on the NARMAX model. It was shown that the NARMAX based 

controller is more generally applicable and using NARMAX structure is a more practical 

approach than using functional series or block structured models. Performance analysis of 

the controller was discussed in terms of a cumulative loss function and high-order 

correlation functions of the system input, output and residual sequences. 

 Kravaris C. and Daoutidis P. [32] addressed the problem of synthesizing nonlinear 

state feedback controllers for second-order nonminimum phase nonlinear systems. A class 

of control laws were developed that make the closed loop system equivalent, under an 

appropriate coordinate transformation, to a nonlinear first order all-pass in series with a 

linear first order lag. 

 Hunt K.J. and Sbarbaro D. [26] in 1991 proposed a novel technique of directly using 

artificial neural networks for the adaptive control of nonlinear systems. The use of 

nonlinear function inverses was investigated and IMC was used as the control structure. 

 Henson M.A. and Seborg D.E. [25] employed a non-linear filter to derive a non-

linear IMC for SISO systems. The controller was designed to provide nominal 

performance, and a nonlinear filter added to make the controller implementable and to 

account for plant-model mismatch. The new approach eliminated the assumption of full 

state feedback inherent in most input-output linearization schemes. 

 Kulkarni B.D. et al. [34] proposed a methodology based on the similarity between the 

model and its inverse, for designing a nonlinear IMC controller for SISO systems. 
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 Zhu Q.M. et al. [68] introduced an adaptive nonlinear control scheme which was 

based on the use of the Hammerstein model, such that the resulting control algorithm is a 

nonlinear form of generalized predictive control. The key contribution was the use of a 

novel, one-step simple root solving procedure for the Hammerstein model being a 

fundamental part of the overall tuning algorithm. 

 In 1996, Datta A. and Ochoa J. [13] combined adaptation with an internal model 

control structure to obtain an adaptive internal model control scheme possessing theoretical 

provable guarantees of stability. The adaptive IMC scheme was designed for open-loop 

stable plants using the traditional certainty equivalence approach of adaptive control and it 

was shown that using a series–parallel identification model, for a stable plant, one can 

adapt the internal model on-line and guarantee stability and asymptotic performance in the 

ideal case. 

 Kalkkuhl J. and Liceaga-Castro E. [29] presented a two-degrees of freedom output 

feedback controller for nonlinear SISO systems where the plant to be controlled was 

represented by a discrete-time input-output (NARX) model. As a difference to conventional 

internal model control the approach was based on geometric methods and a modification of 

the control structure suitable for unstable plants was also given. 

 In 1997, Brown M.D. et al. [8] proposed a nonlinear internal model control based on 

local model networks which represents nonlinear dynamical systems by a set of locally 

valid sub-models across the operating range. 

         Choi C.-H. and Kim H.-C. [11] proposed a robust adaptive controller based on the 
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 IMC structure for stable plants. A stable high order model for the stable plants using the 

RLS algorithm and its stable reduced order model is calculated using the ordered real Schur 

form method. The stable adaptive IMC controller is designed for the reduced order model 

and is augmented by the low-pass filter such that the closed loop stability for the higher 

order model is ensured. 

 Patwardhan S.C. and Madhavan K.P. [46] in 1998 proposed a non linear IMC 

controller that can handle a larger class of non-linear system, including the singular systems 

that exhibit change in the sign of the steady sate gain. The construction of the model 

inverse was achieved through inversion of successive quadratic approximation of the non-

linear model operator. The controller synthesis problem was formulated as minimization of 

2-norm of single step prediction error.  

 Harnefors L. and Nee H.-P. [24] applied the IMC method to control the current of ac 

machine. The result is synchronous-frame proportional integral controllers, the parameters 

of which are expressed directly in certain machine parameters and the desired closed-loop 

bandwidth which simplifies the control design procedure. 

 Yamada K. [66] proposed a design method for anti-windup servo control based on 

IMC structure by using the idea of internal perturbed model control and considered the 

reason that the error offset appears in internal model control with input saturation. 

 Datta A. and Xing L. [15] developed a systematic theory for the design and analysis 

of adaptive internal model control schemes. The ubiquitous certainty equivalence principle 

of adaptive control is used to combine a robust adaptive law with robust internal model 
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controllers to obtain adaptive internal model control schemes with provable guarantees of 

stability and robustness. 

 Wang Q.G. et al. [60] proposed a modified internal model control scheme with 

simplified design and implementation. The key is to select  an appropriate desired closed 

loop transfer function and design controller of low order form such that the closed loop 

transfer function is equal to the product of the controller and the plant transfer function. 

 Kambhampati C. et al. [30] used recurrent neural networks within the IMC strategy 

for control of nonlinear plants. It was shown how an inverse controller can be produced 

from a neural network model of the model, without the need to train an additional network 

to perform the inverse control. 

 In 1999, Artemis T. et al. [5] proposed an inverse model based real-time control for 

nonlinear model. The feedback controller is designed using the IMC structure, especially 

modified to handle systems described by ordinary differential and algebraic equations. The 

IMC controller is obtained using optimal control theory. 

 Xing L. and Datta A. [35] proposed a continuous time decentralized adaptive model 

controller for the control of NN ×  multi-input multi-output system with unknown 

parameters. By treating the MIMO system as an interconnection of N single-input single-

output linear subsystems with weak interactions, robust adaptive internal model controllers 

are designed for each isolated subsystem. 

 Hu Q. and Rangaiah G.P. [49] proposed an adaptive internal model control for a class 

of minimum-phase input-output linearizable non-linear systems with parameter uncertainty. 
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The IMC for non-linear systems was developed directly from the input-output linearization. 

The parameter adaptation for the IMC is based on process and model outputs and the state 

variables predicted by the model only. 

 Suzuki R. et al. [57] proposed a two-degrees-of-freedom control design method by 

combining with the IMC design which constructed the compensator using the inverse 

system as a feed forward part and the LQ control.  

 Silva G.J. and Datta A. [55] considered the design and analysis of a discrete-time 2H  

optimal robust adaptive controller based on the IMC structure. The certainty equivalence 

principle of adaptive control is used to combine a discrete-time robust adaptive law with a 

discrete-time 2H  internal model controller to obtain a discrete-time adaptive 2H  internal 

model control scheme with provable guarantees of stability and robustness. 

 In 2000, Ma Z. et al. [37] presented a nonlinear self-tuning controller, which is based 

on Hammerstein model. A class of nonlinear systems, which can be suitable modeled with 

a Hammerstein model, are effectively controlled by the proposed algorithm by combining a 

general self-tuning method with a feedforward compensation strategy. The nonlinear parts 

are accommodated in the control law design so that they are compensated effectively.  

 Tayebi A. and Zaremba M.B. [58] in 2000 proposed an iterative learning controller 

for repetitive SISO linear time invariant systems in an IMC structure. The iterative learning 

control part is introduced to iteratively improve the transient behavior of the control 

system, particularly in the presence of regular repetitive output disturbances. For a certain 

choice of the IMC and the iterative learning control filters, the condition of convergence to 
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zero of the tracking error is nothing but the robust performance condition for the IMC 

structure was shown. 

 Xie W.F. and Rad A.B. [65] presented a fuzzy adaptive internal model controller for 

open-loop stable plants. The control scheme consists of a dynamic model and a model-

based fuzzy controller. Fuzzy dynamic model which serves as the internal model is 

identified online by using the input and output measurement of the plant. Based on the 

identified fuzzy model, the fuzzy controller is designed. 

 Rivals I. and Personnaz L. [52] proposed a design procedure of neural internal model 

control systems based on a model reference controller for stable processes with delay. It 

was shown that the controller is obtained by cascading the inverse of the model which is 

deprived from its delay with a rallying model which imposes the regulation dynamic 

behavior and ensures the robustness of the stability. 

 In 2001, Hu Q. and Rangaiah G.P. [50] proposed an internal model control with 

feedback compensation, which consists of a nonlinear model control and an error feedback 

loop, to achieve disturbance attenuation and offset-free performance. The matching 

conditions for the uncertainties of nonlinear systems are not necessary, and the adjustable 

parameters can be easily be tuned to satisfy the particular specification. The underlying 

theoretical approach for the feedback compensation is the Lyapunov stability theory. 

 Alleyne A. and Tharayil M. [3] proposed a semi-active IMC for SISO linear time 

invariant systems that have a passive characteristic. The passivity of the open loop system 

is utilized to determine a controller that acts in a semi-active fashion for disturbance 
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rejection. The key idea is the combination of the internal model principle with a semi-

active actuation approach to supply disturbance attenuation without adding any power to 

the system. The disturbance itself effectively supplies the energy necessary for the control 

system to attenuate it.   

 Wang Q.G. et al. [61] proposed a scheme called partial internal model control 

(PIMC), which is capable of controlling both stable and unstable processes. In this scheme, 

a process model is expressed as the sum of the stable and the antistable parts and only the 

stable part of the process model is used as the internal model. The process stable part is 

cancelled by the internal model and the remaining antistable part is stabilized and 

controlled with a primary controller. 

 Abdullah A. et al. [1] in 2002 designed the servo controller for a dual-stage actuator 

in hard-disk drive using the IMC approach. The designed method provided robustness of 

the micro-actuator loop required to overcome the problem of uncertainties in the model of 

the micro-actuator. 

 Matausek M.R. et al. [39] presented an approach to the design and tuning of two 

degrees of freedom linear digital controllers wherein the controller structure is directly 

obtained from the model used and fewer  parameters are to be adjusted to obtain high 

closed –loop performance. 

 Alexander F. et al. [2] discussed the extension of the IMC scheme to local linear 

neuro-fuzzy models. It was shown that the well developed linear design techniques can  

easily be adapted to these type of models and the IMC structure can be converted into 
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standard control loop where the resulting controller is mainly a PI or PID controller and the 

IMC approach can be utilized to design and tune conventional controllers. 

 Bel Hadj Ali S. et al. [6] proposed the use of an artificial neural network in IMC both 

as process model and as controller, for a class of nonlinear systems with separable 

nonlinearity. It was shown that an IMC with a neural network controller, in which the 

linear part of the plant and its inverse are replaced by neural networks, cancels the effects 

of nonlinear dynamics and measured disturbances. 

 Shafiq M. and Riyaz S.H. [54] in 2003 proposed an adaptive IMC scheme based on 

adaptive finite impulse response filters, which can be designed for both minimum and non-

minimum phase systems in the same fashion. The internal model of the plant is estimated 

by the recursive least square algorithm and the inverse of the system by the least mean 

square. The closed loop is designed such that the system from the reference input to plant 

output can be approximately represented by a pure delay and the effect of process zeros on 

the output is compensated using the adaptive finite impulse response filters which avoid the 

cancellation of the non-cancelable zeros of the plant.  

 Wright R.A. and Kravaris C. [64] proposed a systematic approach for the synthesis of 

decoupling controllers in the presence of sensor and actuator dead-times. The method is in 

state-space and can be applied for both linear and nonlinear systems. The given system is 

put in lower block triangular form through rearranging and partitioning and the control law 

is derived that ensures that the closed-loop system is input-output linear and decoupled, 

with dead-times equal to the smallest ones that satisfy the feasibility conditions.  
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 Boubaker O. and Barbary J.P. [43] introduced SISO and MIMO variable structure 

controls of a class of nonlinear and time varying distributed parameter systems. Theoretical 

proof of distributed parameter systems convergence for SISO and MIMO distributed 

variable structure control laws was developed. 

 Gutman P.-O. [47] presented the concept of adaptive robust control of SISO linear 

time-invariant systems and is applicable in very general framework, such as nonlinear and 

multi-variable plants and for very general uncertainty structures. It was shown that the 

control is switched between robust controllers that are based on plant uncertainty sets that 

take into account not only the currently estimated plant model set but also the possible 

jumps and drifts that may occur until the next time the controller can be updated. 

 Miller D.E. [12] proposed an alternative approach to adaptive control, which yields a 

linear periodic controller. In this approach rather than estimating the plant or compensator 

parameters, the control signal is estimated during the estimation phase if the plant 

parameters were known and in the control phase a suitably scaled version of the estimate is 

applied. 

 Srinivas P. et al [56] designed a robust non-linear controller based on the input/output 

linearization and multi objective ∞HH /2  synthesis, for non-square multivariable nonlinear 

systems and are subject to parametric uncertainty. A nonlinear state feedback is synthesized 

that approximately linearizes the systems in an input/output sense by solving a convex 

optimization problem. It is shown that the procedure is applicable for minimum phase 

systems that are input/output linearizable. 
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 Mahmudov N.I. and Zorlu S. [38] studied the complete controllability of a semi-

linear stochastic system assuming controllability of the associated linear system. It was also 

shown that a nonlinear stochastic system is locally null controllable provided that the 

corresponding linearized system is controllable. 

 Zhang X. and Nair S.S. [67] developed analytical details for a robust adaptive control 

strategy that combines control and on-line adaptive learning for a class of nonlinear 

systems and derived the condition to guarantee stable learning for the strategy. The 

guidelines for design parameter selection were provided. 

 Sontag E.D. [19] showed, under suitable technical assumptions, that if a system 

adapts to a class of external signals, in the sense of regulation against disturbances or 

tracking signals then the system must necessarily contain a subsystem which is capable of 

generating all the signals and further showed that there is no prior requirement for the 

system to be partitioned into separate plant and controller components. 

 Hannah M. and Torres-Torriti M. [23] presented an approach to the construction of 

stabilizing feedback for strongly nonlinear systems. The approach is independent of the 

selection of a lyapunov type function, but requires the solution of a nonlinear programming 

satisficing problem stated in terms of the logarithmic coordinates of flows.  

 Piroddi L. and Spinelli W. [48] analyzed the problem of structure selection for 

polynomial NARX models, with focus on the simulation performance of the identified 

models and proposed a new algorithm which employs a combination of two factors namely 
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a pruning mechanism to keep the model dimension small during iterations, and a simulation 

error based criterion for regression selection. 

 Toivonen H.T. et al. [59] applied internal model control to design scheduled 

controllers based on linearized plant models obtained by velocity-based linearization. 

When the velocity–form linear parameter varying model is applied in the conventional IMC 

structure, the control system does provide elimination of steady state offsets. This problem 

is resolved by modifying the IMC structure in such a way that the elimination of steady 

state offsets is achieved subject to a condition on a tuning filter only.  

 In 2004, Kravaris C. et al. [33] developed a systematic method to arbitrarily assign 

the zero dynamics of a nonlinear system by constructing the requisite synthetic output 

maps. The proposed approach emphasized the algorithmic construction of minimum-phase 

synthetic output maps that induce stable zero dynamics for the original nonlinear system. 

These output maps are made statically equivalent to the original output maps and could be 

directly used for non-minimum phase compensation purposes. 

 Kaya I. [28] proposed a method based on relay auto-tuning of a plant to find 

parameters for its control using a Smith predictor. In this method a Smith predictor 

configuration is represented as its equivalent internal model controller (IMC) which 

provides the parameters of the PI or PID controller to be defined in terms of the desired 

closed-loop time constant, which can be adjusted by the operator and the parameters of the 

process model. 
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CHAPTER 3 

IMC strategy using U-model for Nonlinear 

Dynamic plants 

 In this chapter, concept of the control-oriented model called the U-model is 

presented. The use of this U-model in internal model control (IMC) structure for a wide 

class of nonlinear plants is proposed. The computation of the inverse of U-model using 

Newton-Raphson method is explained. Computer simulation and real-time experimental 

results are given to show the effectiveness of the proposed IMC strategy. A comparison of 

the proposed IMC strategy with nonlinear self-tuning controller discussed in [37] is 

presented.  

 

3.1 Introduction to U-model 

The main difficulty for nonlinear control system design lies in the lack of a general 

modeling framework for nonlinear plants, which allows the synthesis of control input for 

the plant to be performed analytically and effectively. Several models like the NARMAX 

model, Hammerstein, Weiner, bilinear and several other well-known models for 

representing the nonlinear plants exists but the difficulty occurs when controlling a plant 

based on these models because of lack of a maneuverable structure.  
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 A newly parameterized model called the U-model is a control-oriented model used to 

represent a wide range of nonlinear discrete time dynamic plants [69]. It is more general 

compared to other parameterizing approaches and exhibits a polynomial structure in terms 

of the control term. The nonlinear algebraic equations obtained using the U-model are also 

polynomials, which are easier to solve to get the controller output whereas other models 

lead to complex non-linear algebraic equations. 

To obtain the U-model, consider single-input single-output (SISO) nonlinear 

dynamic plants with a NARMAX (nonlinear autoregressive moving average with 

exogenous inputs) representation of the form as follows: 

                         )](),....,(),(),....,1(),(),....,1([)( ntetentutuntytyfty −−−−−=                (3.1) 

where )(ty  and )(tu  are the output and input signals of the plant respectively at discrete 

time instant t, n is the order of the plant, (.)f  is a nonlinear function and )(te  represents 

the error due to measurement noise ,model mismatch, uncertain dynamics, plant variation. 

The U-model is obtained by expanding the nonlinear function (.)f  of equation 

(3.1) as a polynomial with respect to )1( −tu  as follows: 

                                      ∑
=

+−=
M

j

j
j tetutty

0
)()1()()( α                                   (3.2) 

where M  is the degree of model input )1( −tu , )(tjα  is a function of past inputs and 

outputs )(),....,1(),(),....,2( ntytyntutu −−−−  and errors ).(),......,( ntete −   

To apply linear control system design methodologies to the nonlinear model a further 

transformation is applied as follows: 
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                                                               )()( tUty =                                                  (3.3) 

where, ∑
=

+−=+−Φ=
M

j

j
j tetuttetutU

0
)()1()()()]1([)( α . 

The expression of equation (3.3) is defined as the U-model. 

3.1.1 Advantages of U-model 

1. The control-oriented U-model is more general than other parameterizing 

approaches, such as the polynomial NARMAX model, the Hammerstein model etc. 

2. The sampled data representation of many non-linear continuous time systems can 

be of the form as follows: 

∑
=

−=
M

j

j
j tutty

0
)1()()( α  

3. The U-model exhibits a polynomial structure in the current control u(t-1). 

4.  Due to its polynomial structure, the nonlinear algebraic equations, which need to be 

solved to obtain the output value of the controller, are also polynomials in u(t-1), 

unlike other models which lead to complex non-linear algebraic equations. 

 

3.2 Internal Model Control 

 One of the most popular control strategies in industrial process control is the Internal 

Model Control (IMC) strategy, because of its simple structure, fine disturbance rejection 

capabilities and robustness. This control strategy can be used for both linear and non-linear 

systems. The IMC design is lucid for the following reasons: 
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 It separates the tracking problem from the regulation problem. 

 The design of the controller is relatively straightforward. 

The IMC strategy is especially suitable for the design and implementation of the open-loop 

stable systems and many industrial processes happen to be intrinsically open-loop stable. 

The IMC has the general structure as shown in figure 3.1. 

 

Figure 3.1: IMC Structure 

 

In figure 3.1, )(tr  is the reference signal, )(td is an unknown disturbance affecting the 

system, (.)Cf  represents the controller, (.)Pf  and (.)Mf represents the process and its 

model respectively. The controller output )(tu  is fed to both the process and its model. The 

process output )(ty is compared with the output of the model )(tyM and the resulting signal 

)(td
∧

 represents the tracking error, which is given by 

                                                       )()()( tytytd M−=
∧

                                              (3.4) 
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If )(td  is zero, then )(td
∧

is a measure of the difference in behavior between the process and 

its model. If (.)(.) MP ff = , then )(td
∧

 is equal to the unknown disturbance. Thus, )(td
∧

may 

be regarded as the information that is missing in the model (.)Mf and can therefore be used 

to improve control effort. This is given by subtracting )(td
∧

 from the reference signal )(tr  

and the resulting control signal is given by 

                                                      )])()(([)( tdtrftu C

∧

−=                                         (3.5) 

The controller (.)Cf  is obtained using the Newton-Raphson algorithm discussed in section 

3.4 of this chapter. 

 If the model is exact representation of plant i.e. (.)(.) PM ff =  and the controller the 

inverse of the model i.e. 1(.)][(.) −= MC ff  ,then )(qqq LL ∆+ −−  can be regarded as the delay 

along the path from the input )(tU to the plant output )(ty , and Lq −   the delay along the 

path from the input )(tU  to the output of the model of the plant )(tyM , where 1−q  is the 

backward shift operator and )(q∆ represents the plant uncertainty, then from figure 3.1, we 

get 

                                                       )()]([)( tUqqqty LL ∆+= −−                       (3.6) 

                                                        )()()( LtUtUqty L
M −== −                 (3.7) 

                                                         )()()( tdtrtU
∧

−=                             (3.8) 

On substituting equation (3.6) and (3.7) in equation (3.4) we have 
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                                                       )()()( tUqqtd L∆= −
∧

                                           (3.9) 

Using equation (3.6), (3.8), and (3.9) and on further simplification the overall closed loop 

function for the system in figure 3.1 for 1=L , is obtained as follows: 

                                         )]()()[2()](1)[1()( 2 qqtrqtrty ∆+∆−−∆+−=               (3.10) 

If 1)( <<∆ q , in equation (3.10), then )1()( −≈ trty . This means approximate tracking 

objective is accomplished. 

 

3.2.1 Properties of Internal Model Control 

Property P1 (Dual Stability): Assume that the plant and the controller are input-output 

stable and that the model is a perfect representation of the plant. Then the closed-loop 

system is input-output stable. 

Property P2 (Perfect Control): Assume that the inverse of the operator describing the 

plant model exists, that this inverse is used as the controller, and that the closed-loop 

system is input-output stable with this controller. Then the control will be perfect. 

Property P3 (Zero Offset):Assume that the inverse of the steady state model operator 

exists, that the steady state controller operator is equal to this, and that the closed-loop 

system is input-output stable with this controller. Then offset free control is attained for 

asymptotically constant inputs. 
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3.3 Computation of Inverse of Nonlinear Plants using Newton- 

 Raphson Method 

Most widely used methods for solving the nonlinear equations is the Newton-

Raphson method because it is more rapidly convergent compared to other methods. In 

general the Newton-Raphson method has the form as follows: 

               
)(
)(

'1
n

n
nn xf

xf
xx −=+     ,  ,.....3,2,1=n  

where, )( nxf  is a nonlinear equation. 

 Consider figure 3.1, a general inverse controller using the U-model of equation (3.3) 

can be given as follows: 

                                                      )()()()( tytytrtU M+−=                                  (3.11) 

where )(tr is the reference signal, )(ty  and )(tyM are the system and plant model outputs 

respectively as shown in figure 3.1. The controller output )1( −tu  can be found using the 

Newton-Raphson algorithm recursively with )(tU  as a root solver. The algorithm is given 

as follows: 
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where the subscript i  is the iteration index.                                                                                       

The value of future unknown term )(te contained in )(tU  is set to zero and the terms 

)(),.....,1( ntete −−  are estimated at each sampling instant from equation (3.2) as follows: 

                                                       ∑
=

∧∧
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j
j tytutte

0
)()1()()1( α                       (3.13) 

where )(tj

∧

α  is an estimate of )(tjα , which is calculated using )(),.....,1( ntete −−
∧∧

. 

Substituting equation (3.13) in equation (3.12), results in an iterative formula for 

calculating the controller output as follows: 
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It may be possible that in equation (3.14),  

0
)1(

)]1()([
0 ≈

−

−∑
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∧
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tutd
K

j

j
jα

 

or there exists no real root of the polynomial. To deal with such problems [68] proposed an 

improved computation for the traditional Newton-Raphson algorithm. We incorporate a 

learning rate parameter 10 ≤< m   in equation (3.14) to decrease the rate of convergence 

and thereby increasing the stability of the system. The resulting equation is given as 

follows: 
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3.4 Simulation Results 

To show the effectiveness of the proposed IMC strategy, computer simulation results 

for control of nonlinear plants are given in this section. 

3.4.1 Control of Hammerstein Model  

Consider the following Hammerstein model 

                                             
)(2.0)()(1)(

)2(1.0)1()1(5.0)(
32 tutututx
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                     (3.16) 

The equivalent U-model of equation (3.16) is given by 
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Simulation results obtained using the proposed IMC strategy for the Hammerstein model 

are shown in figure 3.2 and figure 3.3. Figure 3.2 shows that the plant output converges to 
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the desired output and the peak overshoot is small. Figure 3.3 indicates that the control 

input is bounded. In this simulation 085.0=m  is selected. For the purpose of comparison, 

the results obtained using the pole placement controller discussed in [69] are shown in 

figure 3.4 and figure 3.5. Figure 3.4 shows that plant output converges to the desired output 

with a large peak overshoot. The control input is shown in figure 3.5. This means proposed 

controller is capable of reducing the peak overshoot. It can also be observed from figure 3.3 

and figure 3.5 that the control input synthesized using the proposed method is less active. 
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Figure 3.2: System response of Hammerstein model using proposed IMC strategy 
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Figure 3.3: Control signal for the Hammerstein model incase of proposed IMC strategy 
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 Figure 3.4: System response of Hammerstein model using pole Placement controller 
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Figure 3.5: Control signal for Hammerstein model incase of pole placement controller 
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3.4.2 Control of a Laboratory Scale Liquid Level system  

The proposed IMC strategy is applied to control a laboratory scale liquid level 

system represented by the following nonlinear model: 
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The equivalent U-model of equation (3.18) is given as follows: 

                                         )()1()()()( 10 tetuttty +−+= αα                                       (3.20) 

where 
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  (3.21) 

In this simulation a square signal is chosen to be the desired reference signal and the noise 

sequence is Gaussian. The output of the plant converges to the reference signal using the 

proposed IMC strategy as shown in figure 3.6. The corresponding control signal is shown 

in figure 3.7.The results obtained using the pole placement controller are depicted in figure 

3.8 and figure 3.9.A comparison of figures 3.6 and figure 3.8 shows the effectiveness of the 

proposed IMC strategy. 
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Figure 3.6: System response of laboratory scale liquid level system using IMC strategy 
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Figure 3.7: Control signal for the laboratory scale liquid level system in case of IMC strategy 
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 Figure 3.8: System response of liquid level system using pole placement controller 
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Figure 3.9: Control signal for liquid level system using pole placement controller 
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3.4.3 Control of Continuous Stirred Tank Reactor (CSTR) 

 In this section the simulation results of control of a continuous stirred tank reactor 

are discussed. The nonlinear model of the continuous stirred tank reactor when the 

sampling time is chosen as 0.05 seconds is as follows. 
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The equivalent U-model of equation (3.19) is given as follows: 
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The output response of the system using the proposed IMC strategy is as shown in figure 

3.10 and the corresponding control signal is shown in figure 3.11.For purpose of 

comparison the results obtained using the pole placement controller discussed in [69] are 

also presented in figure 3.12 and figure 3.13. It can be seen from the figures 3.10 and 3.12 

that the proposed IMC controller performs better tracking than the pole placement 

controller. 
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Figure 3.10: System response of CSTR using IMC strategy 
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Figure 3.11: Control signal for CSTR using IMC strategy 
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Figure 3.12: System response of CSTR using pole placement controller 

 

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

20

25

30

35

Time

C
on

tro
l

 

Figure 3.13: Control signal for CSTR using pole placement controller 
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3.4.4 Control of Hammerstein model with discrepancy in model and 

 plant parameters 

 In practice, the plant parameters may have some uncertainties and the model 

parameters may not be exactly equal to the plant parameters. We choose the parameters for 

the U-model to be different than the plant parameters. The parameters chosen for the U-

model and the controller design in this simulation are shown in equation (3.25) instead of 

the parameters given in equation (3.18). 

                                   

2375.0)(
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=
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                       (3.25) 

The response of the system using the proposed IMC scheme is shown in figure 3.14 and the 

corresponding control signal is shown in figure 3.15. The results obtained using the pole 

placement controller [69] are shown in figure 3.16 and figure 3.17. It can be seen that the 

proposed IMC scheme gives better tracking properties compare to the pole placement 

controller.  
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Figure 3.14: System response of the Hammerstein model using the proposed IMC scheme 
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Figure 3.15: Control signal for the Hammerstein model incase of proposed IMC scheme 
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Figure 3.16: System response of the Hammerstein model using the pole placement controller 
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Figure 3.17: Control signal for the Hammerstein model incase of pole placement controller 
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3.4.5 Control of Liquid Level system with discrepancy in model and plant 

 parameters 

In this simulation, the parameters chosen for the U-model of the plant and for the 

controller design are given in equation (3.26) which is different from that of the plant 

parameters given in equation (3.21).  
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     (3.26) 

The simulation results carried out using the proposed IMC strategy are  shown in figures 

3.18 and 3.19 and the results obtained by the pole placement controller discussed in [69], 

are shown in figures 3.20 and 3.21. It can be seen from the figures that proposed IMC 

scheme performs well compared to the pole placement controller. 
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Figure 3.18: System response of the liquid level system using the proposed IMC scheme 
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Figure 3.19: Control signal for liquid level system incase of proposed IMC scheme 
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Figure 3.20: System response of the liquid level system using the pole placement controller 
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Figure 3.21: Control signal for liquid level system incase of pole placement controller 
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3.4.6 Control of CSTR with discrepancy in model and plant parameters 

In this simulation, the parameters given in equation (3.27) are chosen for the U-model of 

the plant and for the controller design which are different from that of the plant parameters 

given in equation (3.24).  
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           (3.27) 

The simulation results obtained using the proposed IMC strategy are  shown in figures 3.22 

and 3.23 and the results obtained by the pole placement controller discussed in [69], are 

shown in figures 3.24 and 3.25.It is evident from the figures that the proposed IMC scheme 

performs better compared to the pole placement controller. 
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Figure 3.22: System response of CSTR using IMC scheme 
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Figure 3.23: Control signal for CSTR using IMC scheme 
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Figure 3.24: System response of CSTR using pole placement controller 
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Figure 3.25: Control signal for CSTR using pole placement controller 
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3.5 Real-Time Implementation 

The proposed IMC scheme is implemented in real-time to control the speed of a brush 

direct current motor as shown in figure 3.26. 

 

Figure 3.26: Speed Control of brush DC motor 

 

In this experiment, standard IBM PC-type Pentium III is used for the computation in real 

time. Data acquisition is accomplished by Advantech card PCI-1711 and the controller is 

implemented in Simulink real-time windows target environment. The sampling interval of 

0.01 seconds is selected. The brush DC motor (Crouzet 8285002) has a maximum speed of 

3200 revolution per minute, which can be achieved by exciting the motor by 24 volts DC. 

Speed is measured by using a tachometer, which provides a voltage proportional to the 

speed of the motor. Servo amplifier is used to provide variable voltage (control input) for  

the excitation of the motor.  
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The discrete-time model for the brush DC motor discussed in [51] is used in this 

experiment which is given as follows: 
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where )(tva  is the time-varying motor terminal voltage and )(trω  is the motor 

speed. ,,,,, 54321 KKKKK  and 6K  are constants expressed in terms of motor parameters. If 

sT  is taken as the sampling period, then ,,,,, 54321 KKKKK and 6K  are given as follows: 
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where 

 =aR  Armature resistance in ohms 

 =B  Viscous constant in N.m/k r/min                  
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 =TK  Torque constant in N.m/A 

 =v  Load torque constant in N.m.s2 

 =aL  Armature inductance in mH 

 =J  Rotor inertia in kg.m2 

 FT = Frictional constant in N.m 

 =EK  Voltage constant in V.s/rad      

The equivalent U-model of equation (3.28) is given as follows: 
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3.5.1 Speed control of DC motor with constant load  

In this experiment the load on the DC motor was kept constant and the proposed IMC 

strategy was applied to control the speed of the DC motor. The experimental results are 

shown in Figures 3.27 and 3.28. Figure 3.27 shows that the speed of the shaft of motor 

converges to the desired speed and Figure 3.28 shows control input to the plant which is 

bounded. 
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Figure 3.27: Speed control of DC motor with constant load 

 

0 5 10 15 20 25 30 35 40 45 50

-5

-4

-3

-2

-1

0

1

2

3

4

5

Time

C
on

tro
l

 

Figure 3.28: Control signal for speed control of DC motor with constant load 
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3.5.2 Speed control of DC motor with varying load  

When the load on the motor is varied, the dynamics of the motor changes. In order that the 

model represents the plant exactly the parameters of the model has to be updated for any 

change in the dynamics of the plant. To accomplish this, adaptive normalized least mean 

square filter is used. 

 Adaptive filters are used for plant modeling, for plant inverse modeling and to do 

plant disturbance canceling. The form of adaptive filter comprises a tapped delay line, 

variable weights whose input signals are the signals at the delay-line taps, a summer to add 

the weighted signals, and an adaptation process that automatically seeks an optimal 

impulse response by adjusting the weights. In addition to the usual input signals, another 

input signal, the desired response, must be supplied during the adaptation process to 

generate the error signal. The same input is applied to the adaptive filter as to the unknown 

system to be modeled. The output of the unknown system provides the desired response for 

the adaptive filter. The weights of the adaptive filter are adjusted by an automatic 

algorithm to minimize the mean square error. When the weights converge and the error 

becomes small, the impulse response of the adaptive filter will closely match a sampled 

version of the impulse response of the unknown system. The LMS adaptive Filter 

implements an adaptive FIR filter using the stochastic gradient algorithm known as the 

normalized Least Mean-Square (LMS) algorithm given as follows: 

( ) ( 1) ( )Hy n n u nω
∧

= −  

( ) ( ) ( )e n d n y n= −  
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a u n u n

ω ω µ
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where 

n  is the current algorithm iteration 

)(nu  The buffered input samples at step n  

( )nω
∧

 The vector of filter tap estimates at step n  

( )y n   The filtered output at step n  

( )e n  The estimation error at step n  

( )d n  The desired response at step n  

µ      The adaptation step size 

 The Simulink block diagram for controlling the speed of the dc motor with varying 

load is as shown in figure 3.29 wherein adaptive normalized least mean square filter is used 

for updating the parameters of the U-model of the plant and a similar filter is used to update 

the parameters of the controller. The experimental results obtained for the speed control of 

DC motor while the load on the motor is varying are shown in figures 3.30 and 3.31.Figure 

3.30 shows the desired speed, the output of the motor and the output of the model of the 

motor. It can be seen from the figures that the speed of the motor converges to the desired 

speed while the load on the motor is varied and the control signal is bounded. 
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Figure 3.30: Speed control of DC motor with varying load 
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Figure 3.31: Control signal for DC motor with varying load 
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3.6 Comparison of developed IMC strategy with Nonlinear Self-

 Tuning Controller 

A nonlinear self-tuning controller discussed in [37] is compared with the developed IMC 

strategy and computer simulation results are presented in this section. 

The following nonlinear Hammerstein model is considered for the purpose of comparison 

)()()()(

)2()1()1()(
3

2
2

1

10

tuktuktutx

txbtxbtayty

++=

−+−+−=
       

where        

 5.0,2.0,1.0,2.0,3.0 2110 ====−= kkbba                

The simulation results obtained using the nonlinear self-tuning controller is shown in 

figures 3.32, 3.33, & 3.34, and that obtained using the proposed IMC strategy is shown in 

figures 3.35, 3.36. It is evident from the figures 3.32 and 3.35 that the proposed IMC 

strategy performs better in tracking the reference signal compared to the nonlinear self-

tuning controller. 
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Figure 3.32: System response using nonlinear self-tuning controller 
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Figure 3.33: Control signal using nonlinear self-tuning controller 
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Figure 3.34: Parameter estimates for nonlinear self-tuning controller 
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Figure 3.35: System response using IMC strategy 
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Figure 3.36: Control signal using IMC strategy
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CHAPTER 4 

 Fine tracking in IMC and a new IMC structure 

based on U-model 

 In this chapter, we propose fine tracking in IMC using adaptive inverse controller 

based on the IMC strategy presented in chapter3. A new IMC structure is also proposed 

wherein the model of the plant to be controlled is replaced by the plant delay.  

 

4.1 Fine-Tracking using Adaptive Inverse Controller 

To improve the tracking properties in IMC structure a fine tracking technique is proposed.  

 

Figure 4.1: Fine Tracking in IMC using adaptive inverse controller 

 

∑  

( )e t

Lz −  

Plant

U-model 

Controller

NLMS 
Adaptive 

filter 

∑

∑  

∑
+

+
+ 

+- 

- 

-

+

( )Py t  ( )r t  

( )My t  

( )y t

ε  

∑

)(td
∧

 



62 

 

 In this technique a normalized least mean square filter is used as an adaptive inverse 

controller as shown in figure 4.1.The computation of the inverse of the U-model of the 

plant is done using the Newton-Raphson algorithm as discussed in chapter 3. The tracking 

error ε   between the output ( )y t of the plant to be controlled and the input reference signal 

( )r t  is fed to the adaptive normalized least mean square filter along with the desired 

reference signal ( )r t  as shown in figure 4.1.The filtered output of the normalized least 

mean square adaptive filter which represents the information missing in the control signal 

is added to the controller output to improve tracking. 

 

4.2 Simulation Results 

In this section, simulation results of nonlinear plants using the proposed fine tracking 

technique are presented. To show the effectiveness of the proposed fine tracking technique, 

a comparison of the tracking error obtained using the fine tracking and that obtained 

without using the fine tracking technique is given. 

 4.2.1 Fine Tracking in Hammerstein Model    

The Hammerstein model and its equivalent U-model discussed in section 3.4.1 are used in 

this simulation. The tracking error obtained using the fine tracking technique is shown in 

figure 4.2 and tracking error obtained without using the fine tracking technique is shown in 

figure 4.3.A comparison of the error plots shows that using the proposed fine tracking 

technique the tracking error is minimized. 
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Figure 4.2: Tracking Error in Hammerstein model using fine tracking 
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Figure 4.3: Tracking error in Hammerstein model without using fine tracking 
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4.2.2 Fine-Tracking in Laboratory Scale Liquid Level system 

 The laboratory scale liquid level system and its equivalent U-model discussed in 

section 3.4.2 are chosen in this simulation. The plots of the tracking error with and without 

using the fine tracking technique are as shown in figures 4.4 and 4.5 respectively.  

 

4.2.3 Fine-Tracking in continuous stirred tank reactor (CSTR) 

 In this simulation, the CSTR and its equivalent U-model discussed in section 3.4.3 is 

chosen. The plots of the tracking error with and without using the fine tracking technique 

are shown in figures 4.6 and 4.7 respectively. It can be seen from the error plots that the 

fine tracking technique reduces the tracking error significantly.  
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Figure 4.4: Error plot for liquid level system using fine tracking 
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Figure 4.5: Error plot for liquid level system without using fine tracking 
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Figure 4.6: Error plot for CSTR using fine tracking 
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Figure 4.7: Error plot for CSTR without using fine tracking 
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4.3 A new IMC structure based on U-model 

 A new IMC structure based on U-model is proposed. Consider the general   IMC 

structure shown in figure 4.8. As the controller performs the inverse computation of the 

 

Figure 4.8: General IMC Structure 
 

U-model, the controller and the U-model of the nonlinear plant together contribute a delay 

Lq − as shown by the dotted line in figure 4.8.Hence the U-model of the nonlinear plant can 

be replaced by a delay which leads to a new IMC structure as illustrated in figure 4.9. 

 

Figure 4.9: Proposed IMC structure based on U-model 
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  In the proposed IMC structure shown in figure 4.9, the value of the delay is chosen 

such that it is greater than the plant delay. The computation of the inverse of the plant is 

done using the Newton-Raphson method based on the U-model of the plant known apriori.  

In figure 4.9, )(tr  is the reference signal, )(td is an unknown disturbance affecting the 

system, (.)Cf  represents the controller, (.)Pf  represents the process to be controlled. The 

signal )(td
∧

 represents the tracking error, which is given by 

                                                       )()()( tytytd D −=
∧

                                              (4.1) 

If )(td  is zero in and the controller the inverse of the plant i.e. 1(.)][(.) −= PC ff  , then 

)(qqq LL ∆+ −−  can be regarded as the delay along the path from the input )(tU to the plant 

output )(ty , where )(q∆ represents the plant uncertainty, then from figure 4.9, we get 

                                                       )()]([)( tUqqqty LL ∆+= −−                       (4.2) 

                                                        )()()( LtUtUqty L
D −== −                 (4.3) 

                                                         )()()( tdtrtU
∧

−=                             (4.4) 

On substituting equation (4.2) and (4.3) in equation (4.1) we have 

                                                      )()]([)()( tUqqqtUqtd LLL ∆+−= −−−
∧

                  (4.5) 

Using equation (4.2), (4.4), and (4.5) and on further simplification the overall closed loop 

function for the system in figure 4.9 for  1=L , is obtained as follows:                                          

                              )]()()[2()](1)[1()( 2 qqtrqtrty ∆+∆−+∆+−=                      (4.6) 
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If 1)( <<∆ q , in equation (4.6), then )1()( −≈ trty . This means approximate tracking 

objective is accomplished. 

 

4.4 Simulation Results 

In this section, simulation results obtained using the proposed IMC structure for three 

nonlinear plants are presented. 

4.4.1 Hammerstein model 

The simulation for the Hammerstein model discussed in section 3.4.1 is performed using 

the proposed new IMC structure. Figure 4.10, shows the response of the Hammerstein 

model and the corresponding control signal is shown in figure 4.11.The IMC scheme 

proposed in chapter 3 is used to find the inverse of the nonlinear plant. The learning rate 

1.0=m  is chosen in this simulation. 
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 Figure 4.10: System response of Hammerstein model using proposed IMC structure 
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Figure 4.11: Control signal for Hammerstein model using proposed IMC structure 
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4.4.2 Laboratory scale liquid level system 

The model of laboratory scale liquid level system discussed in 3.4.2 is selected in this 

simulation. The system response and the corresponding control signal are shown in figures 

4.12 and 4.13 respectively. 

 

4.4.3 Continuous stirred tank reactor (CSTR) 

 In this simulation the proposed IMC structure is applied to the CSTR model 

discussed in section 3.4.3 for tracking of the reference signal. The learning rate 3.0=m  is 

selected. The response of the system and the corresponding control signal is shown in 

figures 4.14 and 4.15 respectively. 
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Figure 4.12: System response of liquid level system using proposed IMC structure 
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Figure 4.13: Control signal for liquid level system using proposed IMC structure 
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Figure 4.14: System response of the CSTR using proposed IMC structure 
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Figure 4.15: Control signal for the CSTR using proposed IMC structure 
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CHAPTER 5 

Adaptive IMC based on U-model for Nonlinear 

Dynamic plants 

5.1 Introduction 

 Model-based controllers are often essential for effective control of nonlinear 

processes. Performance and robustness of these controllers are affected by the inevitable 

modeling errors. In practical applications, models used in the model-based controllers will 

have uncertainties in parameters and/or unmodeled dynamics. Parameter adaptation is a 

technique to robustify the model-based controllers. 

One of the features of IMC is that it requires an explicit model of the plant to be used as 

part of the controller. When the plant itself happens to be unknown, or the plant parameters 

vary with time, no such model is directly available a priori, and identification techniques 

are to be applied to come up with an appropriate plant model online. The goal of system 

identification is to develop a mathematical model to describe the relation between the input 

and the output of the unknown system. In recent years artificial neural network (ANN) has 

gained a wide attention in control applications [16, 20, 63]. The ANN structure such as the 

radial basis function provides a nonlinear mapping between the inputs and outputs of a 

plant without the knowledge of any predetermined model. These characteristics of ANN 

make the system robust and insensitive to noise, parameter variations, load changes etc.
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  In this chapter, we propose an adaptive IMC scheme wherein the internal model the 

“U-model” for the unknown plant is identified on-line using radial basis nonlinear moving 

average filter. The parameters of this nonlinear filter are learned using the normalized least 

mean square algorithm. The computation of the inverse of the identified U-model is 

performed online using the Newton-Raphson method. 

 

5.2 System Identification 

 System identification is a modeling problem. Given a black box system, the system 

identification technique helps to develop a mathematical model to describe the relation 

between the input and the output of the unknown system. If the system under consideration 

is memoryless, the implication is that the output of this system is a function of present 

input only and bears no relation to past input. In this situation, the system identification 

problem becomes a function approximation problem. If the system to be identified is a 

dynamic system, then the present input ( )u t  alone is not sufficient to determine the 

output ( )y t . Instead, ( )y t  will be the function of both ( )u t  and a present state vector ( )x t . 

The state vector can be regarded as a summary of all the input in the past. Unfortunately, 

for many systems, only the input and outputs are observable. In this situation, previous 

outputs within a time window may be regarded as a generalized state vector. To derive the 

mapping from ( )u t  and ( )x t  to ( )y t , a sufficient amount of training data is to be gathered 

and then develop a mapping ( ) ( ( ), ( ))y t u t x tϕ=  using a linear model or a nonlinear model 

such as an artificial neural network structure. Such training process is conducted using 
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online learning. This is illustrated in figure 5.1, where the error )(te  is fed    back to the 

model to update model parametersθ . 

 

Figure 5.1: Illustration of online dynamic system identification. 

  
With online learning, the mathematical dynamic model receives the same inputs as the 

unknown system, and produces an output )(ty
∧

 to approximate the true output )(ty .The 

difference between these two quantities will then be fed back to update the mathematical 

model.  

 

5.2.1 Function Approximation 

 Assume a set of training samples{ }( ( ), ( ))u i y i , where ( )u i  is the input vector and 

( )y i  is the output vector. The purpose of function approximation is to identify a mapping 

from x  to y , that is, 

∑
( )e t  ( )y t

)(ty
∧

( )u t  

( ( ), ( ); )u t x tϕ θ

UNKNOWN 

SYSTEM 
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( )y uϕ=  

such that the expected sum of square approximation error { }2( )E y uϕ−  is minimized. 

Neural network structure such as the radial basis function is suitable to realize the ( )uϕ   

function. 

5.2.2 Radial Basis Function 

A radial basis function has the general form of ( )0 ( )f x m f r− = .Such a function is 

symmetric with respect to a center point 0x .Radial basis function can be used to 

approximate a given function. Given a set of points { }( );1x k k K≤ ≤  and the values of an 

unknown function ( )F x  evaluated on these K  points { }( ) ( ( ));1d k F x k k K= ≤ ≤ , the 

radial basis function approximates ( )F x  in the form  

( )∑
=

∧

−=
C

i
iii mxwxF

1
/)( σϕ  

which is a weighted linear combination of a family of radial basis functions such that the 

sum of square approximation error at these sets of training samples, 

2

1
( ) ( ( ))

K

k
d k F x k

∧

=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑  

is minimized.  

The Gaussian radial basis function is most commonly used in the neural network. Its 

profile function is 
2

2

( )
r

r e σ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠Φ = . This leads to the radial basis function 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= 2

2

exp)(
σ
µx

xZ . In this case, the width parameter is the same as the standard 

deviation of the Gaussian function. 

 

5.3 Proposed adaptive IMC based on U-model for nonlinear 

 dynamic plants  

 In order to implement the IMC based controllers, the plant must be known apriori so 

that the “internal model” can be designed. When the plant itself is unknown, the IMC 

based controllers cannot be designed. In this case, we propose to retain the same general 

IMC structure as shown in figure 5.2, and identify the plant online using the radial basis 

non-linear moving average filter.  

 

Figure 5.2: Adaptive IMC based on U-model 
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In fact this scheme is equivalent to the single layer radial basis neural networks. The model 

for the radial basis nonlinear filter is chosen as follows: 

            1 21( ) ( 1) ( ( 1)) ( ( 2)) ......... ( ( ))nMy t a u t b u t b u t b u t n
∧ ∧ ∧

= − + Φ − + Φ − + + Φ −      (5.1) 

where the parameter 1a  is selected in advance and the parameters nbbb
∧∧∧

,......, 21  are 

estimated using the normalized least mean square algorithm.Φ  can be any function used in 

neural networks. Here we use the Gaussian radial basis function, as it is more suitable and 

have been successfully used for several algorithms developed for such type of neural 

networks. Radial basis neural networks have the universal approximation capabilities [44, 

45].This property ensures that radial basis networks will have at least the same capabilities 

as the well known multilayer networks with sigmoidal nonlinearities. 

 

5.4 Controller Design for the proposed adaptive IMC scheme 

The equivalent U-model for the radial basis nonlinear filter of equation (5.1) is given as 

follows: 

                                                 0 1( ) ( ) ( ) ( 1)My t t t u tα α= + −                                        (5.2) 

where 

 1 20 ( ) ( ( 1)) ( ( 2)) ........ ( ( ))nt b u t b u t b u t nα
∧ ∧ ∧

= Φ − + Φ − + + Φ −  

 ( ) 11 at =α  
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The controller output )1( −tu  shown in figure 5.2, can be found using the Newton-

Raphson algorithm recursively with )(tU  as a root solver as follows:     

                      

)1()1(0

0
1

)1(/)]1()([

)()1()(
)1()1(

−=−=

=
+

∑

∑

−−

−−
−−=−

tutu

K

j

j
j

K

j

j
ij

ii

j
i

j

tdututd

tUtut
tutu

α

α
         (5.3) 

where the subscript i  is the iteration index.   

Using the U-model of equation (5.2) which is linear with respect to the control term  

)1( −tu  in equation (5.3), the controller has the simplified form as follows: 

                                                       
)(

)()(
)1(

1

0

t
ttU

tu
α

α−
=−                                          (5.4) 

As shown in figure 5.2, the output of the controller ( )u t  is fed to both the unknown plant 

and the radial basis nonlinear moving average filter. The mismatch error ε  input to the 

filter is the difference between the output of the plant ( )Py t  and the output of the radial 

basis nonlinear moving average filter ( )My t  .The filter parameters are updated using 

normalized least mean square algorithm such that the error ε  is minimized. A copy of the 

filter parameters which are the parameters of the U-model is fed to the controller online 

and the controller calculates the inverse of the unknown plant using the Newton-Raphson 

method based on the U-model of the plant. If the plant to be controlled is unstable then it is 

first stabilized using any known robust control techniques and then the controller scheme 

proposed here can be applied considering the entire stabilized system as an unknown plant 

to achieve tracking of the input reference signal. 
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5.5 Real Time Implementation 

The proposed adaptive IMC scheme using the U-model based on the dynamic neural 

network modeling is implemented for load position tracking in a nonlinear 

electromechanical system consisting of a brush dc motor driving a one-link robot 

manipulator as shown in figure 5.3. 

 

 

Figure 5.3: Brush dc motor turning a robotic load 

 

In this experiment the unstable nonlinear system is first stabilized and then the U-model of 

the stabilized system is identified using the radial basis nonlinear moving average filter 
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with four parameters. Standard IBM PC-type Pentium III is used for the computation in 

real time. Data acquisition is accomplished by Advantech card PCI-1711 and the controller 

is implemented in Simulink real-time windows target environment. The sampling interval 

of 0.001 seconds is selected. The brush DC motor (Crouzet 8285002) has a maximum 

speed of 3200 revolution per minute, which can be achieved by exciting the motor by 24 

volts DC. Position of the one link robot manipulator is measured by using a potentiometer, 

which provides a voltage proportional to the angular position of the shaft attached to the 

motor. Servo amplifier is used to provide variable voltage (control input) for the excitation 

of the motor. The Simulink block diagram used in the experiment is shown in figure 

5.4.The experimental results are shown in figure 5.5, 5.6, 5.7 and 5.8 to illustrate the 

performance of the proposed adaptive IMC scheme. It can be seen from figure 4.6, that 

good load position tracking is achieved despite parametric uncertainty throughout the 

entire electromechanical system. 
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Figure 5.5: Position tracking of one link robot manipulator 
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Figure 5.6: Control signal for position tracking of one link robot manipulator 
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Figure 5.7: Plot of mismatch between the plant and the identified U-model 
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Figure 5.8: Estimation of parameters of U-model 
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CHAPTER 6 

Inverse computation of U-model using Secant 

method 

 In this chapter, we propose the use of Secant method for computation of the inverse 

of U-model for nonlinear dynamic plants in the IMC structure. The advantage of using the 

Secant method is that it mimics Newton-Raphson’s method but avoids the calculation of 

derivatives. 

 

6.1 Secant Method 

If (.)f  is a function in '' x  whose roots are to be evaluated. Then the Newton-Raphson’s 

iteration defines 1+nx  in terms of nx  via the formula 

                                                  1 '

( )
( )

n
n n

n

f xx x
f x+ = −                                             (6.1) 

In the Secant method, we replace ' ( )nf x  in equation 6.1 by an approximation that is easily 

computed. Since the derivative is defined by 

( ) ( )'( ) lim
0

f x h f xf x
hh

+ −
=

→
 

For small value of h, ' ( ) ( )( ) f x h f xf x
h

+ −
≈
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In particular, if nxx =  and nn xxh −= −1 , then 

                                             
nn

nn
n xx

xfxf
xf

−
−

≈
−

−

1

1' )()(
)(                                     (6.2) 

Substituting equation (6.2) in equation (6.1), the result defines the Secant method 

                                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
−

−
+ )()(

)(
1

1
1

nn

nn
nnn xfxf

xx
xfxx                           (6.3) 

 

6.2 Computation of Inverse of Nonlinear Plants using Secant 

 Method 

 

Figure 6.1: Inverse computation of U-model using Secant method 

 

Consider figure 6.1, a general inverse controller using the U-model of equation (3.3) can be 

given as follows: 
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                                                      )()()()( tytytrtU M+−=                                   (6.4) 

where )(tr is the reference signal, )(ty  and )(tyM are the system and plant model outputs 

respectively as shown in figure 6.1. The controller output )1( −tu  can be found using the 

Newton-Raphson algorithm (discussed in Chapter 3) recursively with )(tU  as a root solver 

as follows:                                 
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0
1
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                            [ ]
[ ]

( 1) ( 1)

( 1) ( )
( 1)

( 1) / ( 1) jj
i

i

u t u t

u t U t
u t m

d u t du t
− = −

Φ − −
= − −

Φ − −
                   (6.6) 

where 

[ ]
0

( 1) ( ) ( 1)
K

j
j

j

u t t u tα
∧

=

Φ − = −∑  

The derivative in the denominator of equation (6.6) can be replaced by an approximation 

as follows: 

                                      [ ] [ ] [ ]( 1) ( 1) ( 2)
( 1) ( 1) ( 2)

d u t u t u t
du t u t u t
Φ − Φ − −Φ −

=
− − − −

                  (6.7) 

Substituting equation (6.7) in equation (6.6), the result defines the computation of the 

controller output )1( −tu  using the Secant algorithm as follows: 

    
[ ]( )( )

[ ] [ ]1

( 1) ( 1)

( 1) ( ) ( 1) ( 2)
( 1) ( 1)

( 1) ( 2)
jj
i

i i

u t u t

u t U t u t u t
u t u t m

u t u t+

− = −

Φ − − − − −
− = − −

Φ − −Φ −
   (6.8) 
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where the subscript ''i  in equation (6.8) is the iteration index and 10 ≤< m  is the learning 

rate parameter. 

 

6.3 Simulation Results 

Simulation results obtained with the proposed IMC scheme using secant method for 

control of Hammerstein model given in equation (3.16) are shown in figures 6.2 and 6.3.In 

this simulation the learning rate 07.0=m  is selected and the noise is Gaussian. It can be 

seen from the figures that the response of the system tracks the reference signal and the 

control signal is bounded. 
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Figure 6.2: System response of Hammerstein model using IMC with secant method 
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Figure 6.3: Control signal for Hammerstein model using IMC with secant method
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CHAPTER 7 

Conclusions and Recommendations   

This chapter concludes the thesis by presenting the conclusions, summary and 

recommendations for extending the work carried out in this thesis. 

 

7.1 Conclusions 

 In this thesis, an internal model control (IMC) strategy using the control oriented 

model called the U-model discussed in [69] is designed to achieve tracking of the input 

reference signal for stable single input single output nonlinear dynamic plants. The 

Newton-Raphson algorithm is used to compute the inverse of the U-model. A learning rate 

parameter is introduced in this algorithm which decreases the rate of convergence of the 

algorithm and increase the stability of the overall closed loop system. To test the efficiency 

of the developed IMC strategy simulations for different nonlinear plants is performed and a 

comparison of these simulation results with the results obtained using the pole placement 

controller presented in [69], clearly reveals that the developed IMC strategy performs well. 

To match the real time situations wherein the parameters of the model may not be exactly 

the same as that of the plant due to uncertainty in the plant parameters, the parameters of 

the U-model are chosen to be different from that of the plant and the controller is designed 

based of this U-model. Simulations are performed for different processes and the results 

obtained show that the developed IMC strategy performs far better than the pole placement 
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controller technique given in [69].Real time implementation of the developed IMC strategy 

is done to control the speed of the brush dc motor. Two cases are considered in this 

experiment, one wherein a constant load is acting on the motor and the one wherein the 

load acting on the motor is varying. In case of the varying load acting on the motor, an 

adaptive normalized least mean square filter is used to update the parameters of the U-

model as well as the parameters of the controller. The results obtained in both the cases are 

in good agreement with the expected results. The proposed IMC strategy is compared with 

the nonlinear self-tuning controller discussed in [37] and simulation results reveal that the 

proposed IMC strategy performs better. 

 A fine tracking technique is proposed to minimize the tracking error in the developed 

IMC strategy. Simulations are carried out for nonlinear processes and a comparison of the 

tracking errors obtained with and without using the proposed fine tracking technique show 

that the tracking error is reduced by using the fine tracking technique. 

 A new IMC structure is developed wherein the model of the plant is replaced with a 

delay in the general IMC structure. The inverse computation of the plant is carried out 

based on the U-model of the plant using the Newton-Raphson method. To test the 

efficiency of the developed IMC structure simulations are performed and the results 

obtained are in good agreement with the desired results. 

 An adaptive IMC strategy based on U-model is developed to achieve tracking of the 

reference input signal when the plant in unknown. In this strategy, the U-model of the plant 

is identified online using the radial basis non-linear moving average filter and the 

controller is designed online based on this U-model. The parameters of the U-model are 
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identified using the normalized least mean algorithm. Real time implementation of the 

developed adaptive IMC strategy is done for position tracking of a one-link robot arm 

manipulator driven by a brush dc motor to show the effectiveness of the proposed adaptive 

IMC. The experimental results obtained are as expected. 

The secant method is used to compute the inverse of the stable single-input single-output 

nonlinear dynamic plants in the IMC structure. Simulations are performed based on the 

developed strategy. 

 

7.2 Summary 

The contribution of this thesis can be summarized as follows: 

• An internal model control (IMC) strategy was developed using the U-model 

discussed in [69] to control a wide class of single input single output nonlinear 

dynamic plants 

• A learning rate parameter was introduced in the Newton-Raphson algorithm used to 

compute the inverse of U-model in the developed IMC strategy to decrease the rate of 

convergence of the algorithm and thereby increasing the stability of the overall closed 

loop system 

• To test the efficiency of the developed IMC strategy, simulations are carried out for 

different nonlinear processes and a comparison of these simulation results with the 

results obtained by using the technique given in [69], revealed that the developed 

IMC strategy performs well. 
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• Real time implementation of the developed IMC strategy is done for controlling the 

speed of the brush dc motor with constant as well as varying load and the results 

obtained are in good agreement with the desired results. 

• To minimize the tracking error in the IMC strategy a fine tracking technique is 

developed and simulations for nonlinear plants are carried out to test its efficiency. 

The results illustrate that the tracking error is reduced significantly using the 

developed fine tracking technique. 

• A new IMC structure is developed which do away the use of explicit model of the 

plant in the general IMC structure and the U-model of the plant is used only in the 

synthesis of the control signal. 

• Simulations for different nonlinear plants are done using the developed new IMC 

structure and the results obtained are as expected. 

• An adaptive IMC strategy based on U-model is developed to achieve tracking in 

nonlinear dynamic unknown plants. 

• Real time implementation of the adaptive IMC strategy based on U-model is done to 

achieve position tracking of one-link robot manipulator driven by a brush dc motor. 

The results obtained reveal the effectiveness of the developed adaptive IMC strategy. 

• An IMC strategy based on U-model of the plant using the secant method for 

computation of the inverse of the nonlinear dynamic plants is developed and 

simulation results are presented. 
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7.3 Recommendations for future research work  

Following are the recommendations for possible research that can be carried out in future 

based on the work presented in this thesis: 

• Extension of the developed IMC strategy using U-model to multi-input multi-output 

nonlinear dynamic plants. 

• To develop a technique to find the exact value of the learning rate parameter 

introduced in the Newton-Raphson algorithm used for computation of the inverse of 

nonlinear dynamic plants. 

• To extend the developed IMC strategy to be suitable to control the known plants 

wherein the U-model of the plants is non-minimum phase. 

• Extension of the developed adaptive IMC strategy based on U-model to multi-input 

multi-output nonlinear dynamic plants. 
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