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Chapter 1

Introduction

1.1 Motivation

With the advent of technology, the use of electronic devices has increased substan-

tially during recent years. These devices are used in several applications to ease

our life. The applications range from daily use of home appliances to some high

performance scientific devices in modern labs. In many situations, the use of some

of these devices must be restricted, to a limited group of people, for a number of

reasons. For example, you will not allow anyone to access your computer and change

the data without your permission. Similarly, it would be a big problem if anyone

can access your bank account from an ATM. Some kind of key must be there so that

only you, and not any stranger, can access the door or the account.

The most commonly used, and the earliest, technique is that of passwords. Pass-

1
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words are very effective in the authentication of users. The user is required to type

in his password on some kind of a keypad. If the password is correct the user is

allowed access to the facility, otherwise the system rejects the user. There are sev-

eral problems with the use of passwords. The passwords can be forgotten and even

worse can be ‘stolen’. To make it robust, cards were introduced in conjunction with

passwords. The system can only be used for access by the person in possession of a

card. Again, this poses several problems as the card can be lost, stolen or damaged

or even duplicated. To avoid these troubles, systems based on biometrics started to

gain more popularity and acceptance.

Biometrics is the way of getting a person’s physical or behavioural characteristics

or traits which can be used for authentication. Obviously, these features must be

unique in order for the system to work. Biometrics help us avoid the problems

discussed above. In fact, in biometrics-based systems, you are an identity by yourself.

You are not dependent upon passwords and cards that can be lost and stolen. Several

biometric systems exist today. They use different methods for authentication. Some

typical biometrics used today include:

• Fingerprints

• Voice

• Face

• Hand Geometry
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• Eyes Geometry

• Iris

• Ear Geometry

• Pattern of vein structure

– in Retina

– on the back of the hand

• Writing style

• Odor

• Gait

• DNA, etc.

The systems based on the above mentioned features have been shown to be

very effective and efficient. Obviously, each has its own weakness which prevents

it from being chosen as the best solution. For example, fingerprints are the most

developed of these and achieve very good recognition accuracy but require human

involvement (contact). This makes fingerprints non-user-friendly and unsuitable for

many applications that prohibit human interaction with the system. Similarly, iris

patterns have proved to be excellent features for human recognition, but the process

of getting a good iris image is complex and expensive. If we look through the
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list given above we find that most of these biometrics require some kind of subject

involvement. Only biometrics based on facial features are capable of avoiding subject

involvement. The face image can be easily captured by a camera remotely and non-

invasively. The resulting image can be processed further to detect the exact face

region and extract facial features. The importance of face recognition is further

highlighted when we know that it can be used in fighting crimes. Surveillance

cameras capturing images can be used to “keep an eye” on abnormal activities

going around sensitive areas. The face images captured by these cameras at some

crime scene can then be used to search through a database.

The face recognition problem can be defined as the process of identifying an

individual from his/her face image. This face image can be captured by a camera

or can be extracted from a video. Face recognition is a difficult process. This is

mainly due to the similarities in face shapes of different people and the variations

in face images of the same person. The image of a face is prone to change due to a

number of factors like noise, illumination, viewpoint, age, expressions, occlusion etc.

All these make face recognition a difficult task. In the past 30 years, the field of face

recognition has witnessed major developments. The main reason for such expansion

is the need for such systems for different commercial security applications. In spite

of this advancement, the recognition systems have faced certain limitations in their

effectiveness. Most systems will work only in a certain defined set of conditions.

Two problems that are still greatly unsolved: the viewpoint or pose variations, and
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illumination effects on face images. So it can be safely said that most face recognition

systems lack robustness to different challenging conditions, and are still far away

from human capabilities and from reaching maturity and widespread acceptance.

1.2 Objectives of the Research

The objective of this research is to design a face recognition system that is:

insensitive to pose variations, rotation, translation, and efficient in terms of

computational complexity.

1.3 Contributions of the Thesis

In this thesis, a multiscale principal component analysis face recognition system is

developed. The Wavelet transform is used for this purpose. It is shown that a par-

ticular set of subband images exists which is sufficient for robust face recognition. In

addition, the problems of pose, including translation, rotation, and scale invariance

are also tackled.

The main contributions of the thesis are:

• the development of a pose invariant technique for face recognition using the

eyes images and Principal Component Analysis. (Sec. 5.3)

• the development of a class-dependent PCA for face recognition using the
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method of Least-Squares. (Sec. 5.5)

• the development of a face and eyes detection method using Active Contour

Models and Wavelet decomposition. (Sec. 4.3 & 4.4)

• the development of a technique for choosing the best wavelet decomposi-

tion for face images. (Sec. 6.6)

• the development of a new multiscale PCA technique for face recognition.

(Sec. 6.7)

• the development of a new Eyes database to be used for face recognition

using only the eyes, which will be made available to the research community

everywhere. (Sec. 4.6)

1.4 Thesis Outline

The rest of the thesis is organized as follows. In chapter 2, a thorough literature

review of the face and eyes detection and face recognition problems is given. All

related technical material is explained in chapter 3. In chapter 4, the proposed meth-

ods for face and eyes detection are discussed and experimental results are presented.

Face Recognition methods are discussed in chapter 5 followed by the proposed mul-

tiscale method for face recognition in chapter 6. In the end, chapter 7, a conclusion

and future work directions are outlined.



Chapter 2

Background

Trying to imitate the best face recognition system of all, obviously the human brain,

a number of studies were conducted in psychophysics. These studies aimed at un-

derstanding the way human brain works in image recognition. These studies in

psychophysics suggest that humans use both holistic and local feature information

for face recognition [3, 4]. If the local features are dominant enough to recognize a

person, the holistic information may not be used. In machine recognition systems

both approaches have been implemented. All face recognition methods obviously,

before any recognition, first require that the facial structure is properly identified in

the image.

7
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2.1 Face Detection Research

Face detection from a single image continue to be a challenging task because of the

variability in the pose, illumination, texture, and scale. Expressions, occlusions and

size of the image also affect the detection process. Much work has been carried on

face detection. A typical face detection algorithm must identify and locate faces in

an image regardless of their position, scale, size, rotation, and illumination.

Several techniques have been used for this purpose. The earliest of these are

the knowledge-based methods. In these, the human knowledge of face is translated

into rules. The computer then uses these rules to find a face in an image. The

most famous and the earliest work is the one by Yang and Huang [5]. They used

a hierarchical rule-based method for face detection. In this method, a multiscale

hierarchy of an image is calculated and a set of rules is applied on these images.

Based on this work, Kotropoulos and Pitas [6] proposed their method that uses

a projection method for facial feature location. The candidates gathered through

projection, are then validated by applying some rules. In knowledge-based methods,

human knowledge can not be translated into well-defined rules. Moreover most of

these techniques can only work on frontal faces.

Techniques related to feature-based methods try to find those features that are

invariant to common face image conditions like pose, illumination and size. Sirohey

[7] proposed a localization method to segment a face from a cluttered background
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for face identification. The method uses an edge map and heuristics so that only

face edges are preserved. Instead of using edges, Chetrivikov [8] used blobs and

streaks. The eyes, nose, and cheekbones were represented by blobs while the edges

of eyes and lips were represented by lines. The image was then scanned to find

occurrences of a combination of these particulars to a face image. Graf et al [9]

developed a method that finds facial features from two binary images with the help

of connected components. These binary images were constructed from processed

gray-level images.

Based on random graph matching and local feature detectors, Leung et al [10]

developed a probabilistic method for face detection. Their motivation is to formulate

the face localization problem as a search problem in which the goal is to find the

arrangement of certain facial features that is most likely to be a face pattern. Han

et al [11] developed a face detection technique that uses eyes and eyebrows. They

defined eye-analogue-segments as edges on the contours of eyes. The pixels at which

the intensity value changes significantly were called eye-analogue-pixels and were

used to generate segments that are helpful in the search for face regions.

Takacs et al [12] developed iconic filter banks, which are based on a biologically

motivated image representation, for detecting facial landmarks. The filter banks are

implemented via selforganizing feature maps (SOFM). The proposed method was a

generic technique for object detection. However, before detection, an object (such as

eye and mouth) model has to be trained. For an object with different orientations,
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different models may be required. Human faces can be extracted from an image by

using texture information as well. The work carried by Augusteijn and Skufca [13] for

texture classification of human faces can be used to detect faces in complex images.

The texture are computed using second order statistical features (SGLD)[14]. Dai

et al [15] also applied the SGLD model to face detection. Color information was also

incorporated with the face-texture model. Using the face texture model, Dai et al

designed a scanning scheme for face detection in color scenes in which the orange-

like parts including the face areas are enhanced. One advantage of this approach

was that it could detect faces which were not upright or had special features such

as beard and glasses.

Human skin colour is an important feature that was also used for face detec-

tion. A large number of methods are available that use skin colour information for

face detection. Several studies have shown that the main difference in skin colours

of different people lies in the intensity. The chrominance remains nearly the same

[9, 16, 17]. Saxe et al[18] proposed an iterative skin identification method based

on histogram intersection in the HSV colour space. Two histograms, an image his-

togram and the other control histogram (of a particular patch of skin) are calculated.

Histogram intersection is used to compare the two histograms to decide upon a patch

as a skin region or not. McKenna et al [19] presented an adaptive colour mixture

model to track faces under varying illumination conditions. Instead of relying on

a skin color model based on color constancy, they used a stochastic model to esti-
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mate the object’s color distribution online and adapt it to accommodate changes in

the viewing and lighting conditions. Their results showed that they can track faces

within a range of illumination conditions. However, this method cannot be applied

to detect faces from a single image. Sobottka and Pitas [20] proposed a method

for face localization and facial feature extraction using shape and color. Skin-like

regions are extracted by colour segmentation in the HSV space. Connected compo-

nents are then determined by region growing at a coarse resolution. A best fit ellipse

is computed using geometric moments for each region. Connected components that

are well approximated by an ellipse are then selected as face candidates.

In contrast to non-parametric methods, Gaussian density functions [21, 22] and

mixture of Gaussians [23, 24, 25] have also been used to model skin regions. The

Expectation Maximization (EM) algorithm is usually used to estimate the parame-

ters of Gaussian mixture models [23, 24]. Hawkins’ statistical test on the normality

of the estimated Gaussian mixture models is performed and McLachlan’s bootstrap

method was used to test the number of components in a mixture. Their experimen-

tal results show that the estimated Gaussian mixture model fits skin images from a

large database.

In template matching, a frontal face image template is predefined in the system.

This template is then matched with an input image. The match is calculated as the

correlation between the template and the input image. Some template matching

techniques do not use such predefined template. Such techniques cannot handle
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effectively the problems of scale, pose, and shape. Sakai et al [26] attempted to

detect frontal faces by using subtemplates of eyes, nose, lips etc. They calculated

the correlation between a particular subtemplate and the image. This signaled the

region of interest. Once the region of interest is known other subtemplates are used

to verify the presence of a face.

Craw et al [27] used Sobel operators to extract the face boundary. This extracted

boundary is matched to a predefined template. After the head contour has been

located, other detailed features of the eyes, and nose are located. A more advanced

hierarchical template matching method for face detection was also proposed by Miao

et al. [28]. First the input image is rotated from −20 degrees to 20 degrees in steps

of 5◦, in order to handle rotated faces. A multiresolution image hierarchy is then

formed and edges are extracted using the Laplacian operator. The face template

consists of the edges produced by six facial components: two eyebrows, two eyes,

one nose, and one mouth.

Finally, heuristics were also applied to determine the existence of a face. Their

experimental results show better results in images containing a single face (frontal

or rotated) than in images with multiple faces. The work of Yuille et al [29] in

modeling facial features using deformable models is the first to tackle the modeling

problem. In this approach, facial features are described by parameterized templates.

An energy function is defined to link edges, peaks, and valleys in the input image

to corresponding parameters in the template. The best fit of the elastic model is
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found by minimizing an energy function of the parameters. One drawback of this

approach is that the deformable template must be initialized in the proximity of the

object of interest. A face detection method based on the use of snakes, also known

as active contour models, was proposed in [30]. The input image is first blurred by

a filter, and the edges enhanced by using morphological operations. A snake is then

initiated for this processed image which then deforms to get the face boundary. The

basic theory of snakes is similar to the deformable templates by Yuille. Lam and

Yan [31] and Yuen et al. [2] employed a snake model for detecting face boundary.

A snake gives a good result in boundary detection if the initial position of the snake

contour is close to the target. Matsuno et al. [32] proposed a potential net to detect

human face. The precise location of the face is determined by horizontal and vertical

projections. Jeng et al. [33] adopted morphological operations and boost-filtering

to remove the effect of complex background. Several other face detection techniques

have also been developed with limited success. For details see [34] and [35].

2.2 Eyes Detection Research

The detected human face in a scene can be further processed to locate the exact

positions of the eyes. The position of eyes is important in the normalization process.

Normalization is a necessary step for a number of face recognition algorithms. In

normalization, the location of the eyes is used to rotate and scale face images. Several
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eyes detection algorithms have been developed in the literature. Most of these

assume that the location of face is known. Once the face boundary is known, the

rough eye windows can be located. Some algorithms use this information to increase

their performance accuracy. Various methods have been proposed to describe the

geometrical information of eye features, such as chain codes, fitting line segments,

autoregressive models, Fourier descriptors, active contour models, and deformable

templates to mention a few.

Yuille et al. [29] first proposed the use of a deformable template in locating

human eyes. In this method, an eye model is designed and the eye position is ob-

tained through a recursive process. However, this method is applicable only if the

initial position of the eye model is placed near the actual eye position. Moreover,

deformable template suffers from two limitations: first, it is computationally ex-

pensive and, second, the weighting factors for energy terms have to be determined

manually. Improper selection of the weighting factors results in inaccurate localiza-

tion. In view of these limitations, Lam et al. [36] introduced the concept of eye

corners to guide the recursive process and partially solved the problems. In [36],

Xie et al. [37], the corner detection algorithm was also adopted. The algorithm was

based on the edge image, however, a good edge image is hard to obtain when the

contrast of eye image is relatively low.

Some other methods have also been proposed using deformable templates to

extract eye features, for example [38, 39, 40]. Similar to the Lam et al. approach,
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(a) Eye images

(b) Non-eye images

Figure 2.1: Example of eyes detection by Feng and Yuen [1]

(a) Correct detection of eye images

(b) Wrong detection of eye images

Figure 2.2: Example of eyes detection using different variance projection functions
[2]
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Feng and Yuen [2] developed a variance projection function (VPF) for locating the

landmarks (corner points) of an eye. It was observed that some eye landmarks have

relatively high contrast, such as the boundary points between eye white and eye

ball. The located landmarks are then employed to guide the eye detection process.

Saber et al. [41] and Jeng et al. [33] proposed to use the facial features’ geometrical

structure to estimate the location of eye whereas the precise locations have not been

reported in their work. Feng and Yuen [1] proposed the use of an eye variance filter.

The exact location of eyes is found by convolving the face image with this filter.

The filter is formulated using some training images of the eyes. The technique does

not work well if the image scale is changed.

2.3 Face Recognition Research

Face recognition techniques can be broadly divided into two classes: feature based,

and holistic algorithms. The earliest systems for face recognition were feature-based.

They used local features like distance between different parts of the face, for example

distance between the two eyes, width of the head and the distance between eyes and

mouth [42, 43]. Similarly, the angles between these features were also calculated

to form feature vectors comprising these distances and angles. The first holistic

face representation technique that used the complete face image as input is the

eigenpictures approach developed by Sirovich and Kirby [44]. They used Principal



17

Component Analysis (PCA) also known as Karhunen-Loève (KL) transform for this

purpose. A great amount of work has been done in both categories of face recognition

techniques as witnessed during the last three decades. The above approaches are

discussed in more details in the following sections.

2.3.1 Holistic Face Recognition Algorithms

Using the method of eigenpictures proposed by [44], Turk and Pentland [45] devel-

oped a face recognition technique called eigenfaces. PCA uses second order statistics

of images and optimally minimizes the reconstruction error under the L2 norm as-

suming Gaussian distribution. PCA is not optimized for class separability. To cope

with pose variations and to utilize local feature information, view-based and modular

eigenspace methods have been proposed respectively as extensions to the eigenfaces

approach. In the view-based eigenspace method, for each different view of the indi-

viduals, an eigenspace is constructed. When a test image arrives, first its viewspace

is estimated, then classification is done in that viewspace. This method performs

better than the simple eigenface technique in which only one space is constructed

and the different views of individuals are disregarded.

In modular eigenspace method, an eigenspace is constructed for each of the

local facial features like eyes, nose, and lips. Combining local feature information

with eigenfaces improves recognition rate. Some of the work by Pentland [46] and

Sung [47] showed improved performance compared to simple PCA. Dual eigenface
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technique is another extension of the ordinary eigenface approach. In this method,

intra personal and extra personal differences are used to exploit the knowledge of

critical variations. A probabilistic similarity measure based on Bayes rule is used

for classification. When a test image arrives, it is subtracted from the face images

in the database, and the obtained differences are both projected onto the intra

personal and extra personal difference subspaces. The likelihoods in these subspaces

are estimated to derive the maximum a posteriori (MAP) similarity measure. This

method is found to result in superior performance compared to the eigenface method

[44].

Principal Component Analysis is best suited in extracting linear relations be-

tween variables in a given dataset. It can be shown that if the data statistics are

Gaussian, the PCA is the best method for dimension reduction [48, 49]. This is

because PCA is purely a second-order method. However, if this is not the case,

and the data statistics are, for example, mixture of Gaussians, then PCA does not

perform well. A Nonlinear Principal Component Analysis (NLPCA) technique is

used for such cases. The NLPCA has been functionally defined in [50] by a class of

autoassociative neural networks. They proposed a 3-hidden layer neural network.

The eigenfaces (PCA) technique has a major drawback as it does not consider

class information. Linear Discriminant Analysis (LDA) also known as Fisher Dis-

criminant Analysis (FDA) [51] takes this into account. LDA performs better when

the number of samples per class is large. On the other hand if the number of samples
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per class is very small, PCA is a better choice. More detailed comparison of PCA

and LDA can be found in Beveridge et al [52] and Martinez et al [53]. Another tech-

nique that uses higher order statistics and was shown to provide better recognition

performance [54] but at higher computational load is the Independent Component

Analysis (ICA).

PCA or the KL transform is the optimal linear transformation that is used

for dimension reduction. Only the subspace with largest variances is kept. This

means that it reduces the dimensionality of the dataset while maintaining those

characteristics of the dataset that contribute most of the variance. Unlike other

transforms such as the discrete cosine transform, the basis vectors are not fixed in

PCA. In image recognition PCA is shown to preserve most of the power in signals.

However it is very poor in discrimination, meaning that the class separability is not

good.

The other problem with PCA is its high computational load. To overcome the

problem of high computational cost, one can use only some portions of face instead

of using the complete face image as input to the eigenpicture technique. These can

contain images of portions like eyes, nose, lips etc. Experimental results show that

comparable performance can be achieved by using only eyes from a face image [55].

The other alternative is to use small size images for the faces. However, for some

methods that depend on feature localization on the face, small images will not work.

One such example is the graph matching method by Okada et al [56]. However for
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holistic face recognition, the image size can be very small. For example 12x11 for

the subspace LDA system [57], 14x10 for the Probabilistic Decision-Based Neural

Network (PDBNN) system [58], and 18x24 for human perception [59]. Zhao et al

[57] postulated that there exists a particular subspace for face representation. This

subspace is of fixed size. If any face representation exceeds this size there is not

much affect on the overall recognition. On the other hand, a face representation less

than the size of this subspace will degrade the system performance. Experiments

were conducted with images of different sizes to obtain different face subspaces. As

the SNR increases with decrease in image size, a better performance was observed

when smaller face images were used [60].

As discussed above, higher SNR might be one of the reasons behind better perfor-

mance, the experimental results verify that accurate feature location is also critical

for good recognition performance. We note that holistic methods require images

to be normalized according to some criteria based on the features location. The

method commonly used is to normalize face image with respect to the location of

eyes [60, 61]. In smaller images, the location error is slightly reduced hence result-

ing in some improvement in performance [58]. It should be noted here that very

small size images make the recognition task very difficult. The normalization of face

images is performed with respect to translation, in-plane rotation, and scale. This

type of normalization was mainly used in [62, 63, 45, 64], whereas in [65] the nor-

malization also included masking and affine warping to align the shape. In the work
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by Craw and Cameron [66], manually selected points were used to warp the input

images to the mean shape, yielding shape free images. Because of this difference,

PCA was shown to be a good classifier in [65] for the shape free representations, but

may or may not be as good for the simply normalized representations.

2.3.2 Feature-based Face Recognition

The use of the local features as discussed above is not new. A number of methods in

this category have been developed. These include methods based on the geometry of

local features [43, 42] as well as 1D and pseudo-2D HMM methods [67, 68]. One of

the most successful techniques is the Elastic Bunch Graph Matching (EBGM) system

[56, 69], which is based on the Dynamic Link Architecture (DLA) [70, 71]. Wavelets

also played a major role in face representation in these graph matching methods.

A typical local feature representation consists of wavelet coefficients for different

scales and rotations based on fixed wavelet bases. These locally estimated wavelet

coefficients are robust to illumination change, translation, distortion, rotation, and

scaling.

Compared to holistic approaches, feature-based methods are less sensitive to

variations in illumination and viewpoint and to inaccuracies in face localization.

However the feature extraction techniques needed for this type of approach are

still not reliable or accurate enough. For example, most eye localization techniques

assume some geometric and textural models and do not work if the eye is closed.
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2.3.3 Multiscale Techniques in Face Recognition

During the last few years we have witnessed a number of wavelet-based techniques

proposed for face recognition. The systems that have been discussed so far for

face recognition consider the input images at a single scale. This kind of single

scale representation is appropriate if the input image contains contributions at just

one scale. This is not true for face images as they are multiscale in nature. This

is also not true for most data we encounter [72] because of the events occurring

at different locations and with different localization in time and frequency. So,

to analyze properly such data, we must consider multiscale modelling. One such

example is [72] where multiscale PCA for modelling of data was used in multivariate

statistical process monitoring.

In the case of images, especially faces, multiscale PCA was attempted by Feng

et al. [73]. In [73], a primitive approach for face recognition was discussed. The

authors selected a subband image on the basis of experiments they performed on a

particular database. They claim that they could get best recognition rate using only

a particular subband image. Their claim lack generality and is based on experiments

on a single database. Another wavelet transform based identification system was

proposed in [74]. In this system, a three level wavelet decomposition is performed.

The scaling components at each level as well as the original image are used for

classification. The classifier used in this study is a kind of neural network with one-
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class-in-one-network structure. This means that each subnet is trained separately

and there is one subnet per class. Higher classification rates were obtained with

the proposed system compared to the standard eigenface method on ORL(ATT)

database.

Garcia et al. [75] have used a two level wavelet packet decomposition of images

to calculate a set of features. This decomposition is performed on the detected faces

from images. For this purpose, a face bounding box is found. For each subband, a

set of statistical features was calculated. These features include the means and the

variances of the subband images. The Bhattacharyya distance was used to classify

these feature vectors. An extension to their work is presented in [76] where they

proposed another technique to find the face bounding box. However, the technique

is highly dependent upon the nature of image and does not work if the images vary

from the conditions specified in the training.

Perlibakas [77] used a wavelet packet decomposed images with principal compo-

nent analysis. Their aim was to speed up the pca-based recognition process. They

showed that their technique only works if more than 650 images are present in a

certain database. Their results are based on a specific database they used and the

results can not be generalized. Their results show that they were unable to get

improvement in the recognition rate. In [78] a three level wavelet decomposition

was proposed and the resulting approximation subbands at each level are concate-

nated to produce a new data vector. PCA is then applied on this new data vector.
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Radial basis functions are used as the classifier of the system. The proposed system

achieves higher correct recognition rate than the standard eigenface method on the

ATT database.

A Discriminant waveletfaces approach was proposed in [79]. In that study, a three

level wavelet transform was applied on the original image and the resulting third

level approximation subband, waveletface, is used as the input of the system. LDA

is performed on this waveletface. For classification, the nearest feature plane (NFP)

and nearest feature space (NFS) classifiers are discussed. The proposed method was

tested on the IIS and ATT databases. From the experimental results, it was found

that discriminant waveletfaces combined with the NFS classifier achieve the highest

correct recognition rates. The technical literature available for the subject of face

recognition using multiscale techniques is still very limited as not much work has

been done in this field. Most of the work is based on trial and error with no proper

formulation. In view of this limited work, the proposed work of this thesis is to

build some formal structure to utilize the multiscale properties of face images. This

is discussed in detail in Chapter 6.

2.3.4 Hybrid Techniques in Face Recognition

In Hybrid approaches, both holistic and local features are used. In [80], a modular

eigenfaces approach was proposed where both global eigenfaces and local eigen-

features are used. Note that the concept of eigenfaces can also be extended to
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eigenfeatures, such as eigeneyes, eigenmouths, etc. Using a limited set of images

(45 persons, two views per person, with different facial expressions such as neutral

vs. smiling), recognition performance as a function of the number of eigenvectors

was measured for eigenfaces only and for the combined representation. For lower-

order spaces, the eigenfeatures performed better than the eigenfaces [80]. When the

combined set was used, only slight improvement was observed.

The view that hybrid systems should be used for face recognition is supported by

many researchers and the psychology community [81]. In [82], it was suggested that

a hybrid of PCA and local feature analysis (LFA) can be used. LFA is an interesting

biologically inspired feature analysis method [82]. Its biological motivation comes

from the fact that, though a huge array of receptors (more than six million cones)

exist in the human retina, only a small fraction of these is active, corresponding

to natural objects that are statistically redundant [83]. From the activity of these

sparsely distributed receptors, the brain has to discover where and what objects

are in the field of view and recover their attributes. Consequently, one expects

to represent the natural objects in a subspace of lower dimensionality by finding

a suitable parameterization. For a limited class of objects such as faces which

are correctly aligned and scaled, this suggests that even lower dimensionality can

be expected [82]. One good example is the successful use of the truncated PCA

expansion to approximate the frontal face images in a linear subspace [44, 84].

Another method proposed by [85] that uses hybrid technique was based on recent
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advances in component-based recognition [86] and 3D morphable models [87, 88].

The basic idea of component-based methods [86] is to decompose a face into a set

of facial components such as mouth and eyes that are interconnected by a flexible

geometrical model. The motivation for using components is that changes in head

pose mainly lead to changes in the positions of facial components which could be

accounted for by the flexibility of the geometric model. However, a major drawback

of the system is that it needs a large number of training images taken from different

viewpoints and under different lighting conditions. To overcome this problem, the

3D morphable face model [88] was applied to generate arbitrary synthetic images

under varying pose and illumination. Only three face images (frontal, semiprofile,

profile) of a person are needed to compute the 3D face model. Once the 3D model

is constructed, synthetic images of different sizes are generated for training both the

detector and the classifier.

In this study we focus on finding a face recognition method on the basis of

frequency content of input images. This method will be pose, rotation, translation

and scale invariant.

2.4 Summary

In this chapter a detailed review of the literature was presented. We discussed the

methods and techniques of the major developments in the fields of face and eyes
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detection, and recognition. Special emphasis was given to the different techniques

of face recognition including the multiscale techniques. In the next chapter, we

will present some of the fundamental concepts necessary to discuss our proposed

algorithms. This will include a detailed explanation of the mathematical techniques

used in our research.



Chapter 3

Fundamental Concepts

3.1 Overview of Principal Component Analysis

(PCA)

Principal Component Analysis also known as the Karhunen-Loève transform is a

mathematical technique used for dimension reduction while preserving the com-

ponents that contribute most to the variations in the original data. This process

transforms a number of correlated variables into a smaller (or equal) number of un-

correlated variables. The first principal component contribute most to the variance

and is a strong indicator of the relation between variables. The following principal

components also indicate the dependency among the variables but are successively

of lesser importance.

28
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The process of PCA is explained in detail in the next section. In order to

have a good understanding of PCA we would briefly mention that the process of

PCA involves calculation of eigenvalues and eigenvectors of a covariance matrix.

These eigenvectors are the principal components of the data. If we arrange the

eigenvectors such that their corresponding eigenvalues are in descending order, the

first eigenvector will be the most significant. Similarly, the eigenvector corresponding

to the smallest eigenvalue will be least important. Since the technique is simply a

mathematical transform, we can recreate the original data from these eigenvectors.

In the process of recreating the data and if we do not consider some of the lesser

important components, the new generated data will be of reduced dimension. We

will lose some information, but such loss will not affect the total information content

of the data. Fig. 3.1 shows the energy information of eigenvectors of an example data

set. We can see that most of the energy is concentrated in the first few eigenvectors.

The field of pattern recognition usually involves high-dimensional data and it is

very difficult to extract similarities and patterns in such a data. PCA has found its

application in the field of pattern recognition because of two main reasons:

1. the ability to find patterns in high dimensional data

2. the ability to reduce the dimensionality of data with a minimal loss of infor-

mation.

The goal of such approach in pattern recognition is to represent a picture with as



30

Figure 3.1: Eigenvectors energy details

few eigenvectors as possible such that the mean-square error introduced by ignoring

the less significant eigenvectors is minimum. To achieve this, the covariance matrix

of the ensemble of pictures is used to find the eigenvectors. We call these eigenvectors

eigenfaces when working with face images.

3.1.1 Mathematical Description

A given N × N face image Xk can be represented as a vector xk in a number of

ways. The easiest and simplest method is to select the first row X1j of the image

and use it as the first N components of the vector xk. Similarly the second row

X2j will be concatenated to vector xk. In this manner we create vector xk which is

shown in equation 3.1.
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Note that in this method we are relating the far ends of each two successive

rows. These two ends do not have any correlation. This can affect the performance

of PCA because PCA looks for the correlation between adjacent elements of the

vector xk. In order to reduce this effect we tried another method called circular

sampling. In circular sampling, we start from the center of the image and select

pixels in a circular fashion. In this way we are able to formulate vector such that

there is always correlation between adjacent pixels. However, to be able to compare

our results to existing ones, we opted to use the raster scanning approach based on

the row by row concatination.

Lets say now that we are concerned with a set of M images, Xk, (k = 1, ...,M).

Each image is of size N × N . Each image Xk is expressed in the form of an N 2-

dimensional column vector xk as follows [89]:

xk = [xk1 xk2 . . . xkj . . . xkN2 ]′ (3.1)

The vectors xk where k = 1, ...,M can be seen as M observation vectors of a certain

random vector x. The covariance matrix of such random vector x is defined as:

Cx = E{(x−mx)(x−mx)
′} (3.2)

where

mx = E{x} (3.3)

is the mean vector, E is the expected value, and the prime(′) indicates transposition.

Equations (3.2) and (3.3) can be approximated from the M observations using the



32

following:

mx
∼= 1

M

M
∑

k=1

xk (3.4)

and

Cx
∼= 1

M

M
∑

k=1

(xk −mx)(xk −mx)
′ (3.5)

or equivalently

Cx
∼= 1

M

[

M
∑

k=1

xkx
′
k

]

−mxm
′
x (3.6)

Now, in order to find such a transformation we start by decomposing the covari-

ance matrix Cx using the Singular Value Decomposition. Starting with the mean

vector and the covariance matrix, PCA aims at obtaining a linear transformation

matrix A. This matrix can be used to transform the random vector x of dimension

N2 into a random vector y of dimension K << N 2. Let ei and λi be the eigen-

vector and corresponding eigenvalue of Cx, 1 ≤ i ≤ M . Then, it can be shown

that a transformation matrix whose rows are the eigenvectors of Cx can be used to

uncorrelate the elements of x.

A =

























e11 e12 . . . e1N2

e21 e22 . . . e2N2

...

eN21 eN22 . . . eN2N2

























(3.7)
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The new random vector y can hence be obtained using the following transform:

y = A(x−mx) (3.8)

Note that the covariance matrix of y is given by:

Cy = E{(y −my)(y −my)
′} (3.9)

we can also show that my = 0

my =E{y}

=E{A(x−mx)}

=AE{x} −Amx

=0 (3.10)

The substitution of equation (3.8) and (3.10) into equation (3.9) yields the following

expressions for Cy give

Cy =E{(Ax−Amx)(Ax−Amx)
′}

=E{A(x−mx)(x−mx)
′A′}

=AE{(x−mx)(x−mx)
′}A′

=ACxA
′ (3.11)

Since Cx is a real, symmetric matrix it is always possible to find a set of orthonormal

eigenvectors [90] and the matrix can be decomposed into factors Cx = A−1ΛA =

A′ΛA. Λ is the diagonal matrix composed of the eigenvalues of Cx.
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Hence equation (3.11) can be further simplified:

Cy =ACxA
′

=AA′ΛAA′

=IΛI

=Λ (3.12)

This shows that Cy is a diagonal matrix with elements equal to the eigenvalues of

Cx, that is

Cy =

























λ1 0

λ2

. . .

0 λN2

























(3.13)

This means that the elements of y are uncorrelated.

x can be reconstructed from y using the relation

x = A′y +mx (3.14)

If we formAK from onlyK eigenvectors corresponding to the largest eigenvalues,

the random vector y will be K-dimensional and x can be approximated as

x̂ = A′
Ky +mx (3.15)

As such, by selecting the number of eigenvectors (K), we can perform the dimen-

sionality reduction according to our requirements mentioned earlier.
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3.1.2 Reduced Computational Complexity

It can be seen that the size ofCx is too largeN 2×N2(N being the number of pixels in

an image), even for small images. This means that the computation of eigenvectors is

complicated (if N 2 > M). Sirovich and Kirby [44] proposed a decomposition method

to reduce the dimensionality of matrix Cx and hence the overall computational

complexity. According to this method,

Cx = E{(x−mx)
′(x−mx)} (3.16)

which results in Cx of size M ×M , where M is the number of observations of the

random vector x. According to the method proposed by Sirovich and Kirby the size

of the new transformation matrix A becomes M ×N 2.

A =

























e11 e12 . . . e1N2

e21 e22 . . . e2N2

...

eM1 eM2 . . . eMN2

























(3.17)

This result suggests that we can not use more than M eigenvectors for image rep-

resentation. Usually for any practical purpose database we do not need more than

M eigenvectors for good results. Often the task can be performed by much less

eigenvectors than M .
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3.2 Overview of Wavelet Theory

3.2.1 Introduction to the Wavelet Transform

The wavelet transform has been introduced in the literature as a transformation

over basis functions that have attractive properties in both time and frequency do-

mains. These basis functions are called wavelets. The wavelet transform is similar

to the Fourier transform in the sense that basis functions are localized in frequency.

In Fourier transform, we do not have temporal localization i.e the basis functions

have infinite length. While in wavelet transform we have temporal or spatial local-

ization, this means that wavelets are limited size functions. Figs. 3.2(a) and 3.2(b)

show the basis functions used for the Fourier transform and the wavelet transform,

respectively. In order to understand clearly the concept of temporal and spatial

localization see Fig. 3.3.

In the last years, wavelets have become very popular with the main reason being

the development of a good framework for wavelet bases construction and efficient

algorithms for the computation of such transform[91, 92].
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Figure 3.3: Windowing for Fourier and wavelet transforms
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The Continuous Wavelet Transform

The continuous wavelet transform of a square integrable function (finite energy

signal) s(t) is defined as [93]

C(a, b) =

∫

R

s(t)
1√
a
ψ

(

t− b

a

)

dt, a ∈ R+ − {0}, b ∈ R, s ∈ L2(R) (3.18)

where C(a, b) are the continuous wavelet transform coefficients. The function ψ(.)

is called the mother wavelet while a and b are the parameters to control respectively

the scale and position of the mother wavelet. The mother wavelet ψ(.) has to

satisfy the admissibilty criterion to ensure that it is a localized zero mean function.

Mathematically, the admissibility criterion is given as follows.

∫

R−

|ψ(s)|2
|s| ds =

∫

R+

|ψ(s)|2
|s| ds = Kψ < +∞ (3.19)

When the energy of the signal is finite, not all values of a decomposition are needed

to exactly reconstruct the original signal, provided that the wavelet used satisfies

admissibility criterion. In such cases, discrete analysis is sufficient and continuous

analysis becomes redundant.

The Discrete Wavelet Transform

Equation (3.18) can be discretized by restraining a and b to a discrete lattice (a =

2j, b = k2j, (j, k) ∈ Z2).
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The discrete wavelet transform of a square integrable function s(t) is defined as

C(j, k) =

∫

R

s(t)ψj,k(t)dt, (j, k) ∈ Z2, s ∈ L2(R) (3.20)

where C(j, k) are the discrete wavelet transform coefficient. ψj,k(t) are the wavelet

expansion functions or the wavelet basis functions. These are related to the original

mother wavelet function denoted as ψ(.) and are given as follows.

ψj,k(t) = 2j/2ψ(2jt− k) (3.21)

where j and k are the dilation and translation parameters respectively.

Inverse Wavelet Transform

Under the admissibility conditions, the inverse wavelet transform exists and is given

respectively for both continuous and discrete cases below:

s(t) =
1

Kψ

∫

R+

∫

R

C(a, b)
1√
a
ψ

(

t− b

a

)

da db

a2
(3.22)

where Kψ is a constant depending on ψ.

s(t) =
∑

j∈Z

∑

k∈Z

C(j, k)ψj,k(t) (3.23)

Typically some more constraints are imposed on ψ to ensure that the transform

is non-redundant, complete and constitutes a multiresolution representation of the

original signal. This leads to an efficient real-space implementation of the transform
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using quadrature mirror filters. A combination of low and highpass filters is used.

The low and highpass filters at the decomposition level are shown in Fig. 3.4.

Lo_D

Hi_D 2

2

s

F

G

cA1

cD1

lowpass
downsample approx coefs

highpass
downsample detail coefs

X

2

Convolve with filter X

keep the even indexed elements

Figure 3.4: Wavelet decomposition

The downsampling of the signal components performed during the decomposition

phase introduces a distortion called aliasing. It turns out that by carefully choosing

filters for the decomposition and reconstruction phases that are closely related (but

not identical), we can cancel out the effects of aliasing. These low and highpass

decomposition filters along with their associated reconstruction filters are called

quadrature mirror filters. Mathematically, let F0 and F1 be quadrature mirror filters

(QMF). Then, for any finite energy signal x,

||y0||2 + ||y1||2 = ||x||2 (3.24)

where y0 is a decimated version of the signal x filtered with F0 so y0 is defined by

x0 = F0(x) and y0(n) = x0(2n), and similarly, y1 is defined by x1 = F1(x) and

y1(n) = x1(2n). This property ensures a perfect reconstruction of the associated

two-channel filter banks scheme (See [94])
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The extension to the 2-D case is usually performed by applying a separable

filterbank on the image. Typically a lowpass filter and a highpass filter are used.

The convolution with the lowpass filter results in the approximation image and the

convolution with highpass filter in a specific direction results in so-called details

images. See Fig. 3.5 for explanation.
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Figure 3.5: Two-dimensional wavelet transform

3.2.2 The Discrete Wavelet Decomposition

In the Wavelet decomposition, the image is split into an approximation and details

images as shown in Fig. 3.6. The approximation image is then split itself into a

second level approximation and details. For a n-level decomposition, the signal is
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decomposed in the following way:

CAn = [Hx ∗ [Hy ∗ CAn−1]↓2,1]↓1,2 (3.25)

CD(v)
n = [Hx ∗ [Gy ∗ CAn−1]↓2,1]↓1,2 (3.26)

CD(h)
n = [Gx ∗ [Hy ∗ CAn−1]↓2,1]↓1,2 (3.27)

CD(d)
n = [Hx ∗ [Gy ∗ CAn−1]↓2,1]↓1,2 (3.28)

where ∗ denotes the convolution operator, ↓ 2, 1 the subsampling along the rows,

and ↓ 1, 2 is the subsampling along columns. CA0 is the original image. CAn is

obtained by lowpass filtering and is the approximation image at scale n. The details

images CD
(h)
n , CD

(v)
n , CD

(d)
n are obtained by bandpass filtering in a specific direction

and thus contain directional detail information at scale n. The original image is thus

represented by a set of subimages at several scales.

Figure 3.6: Two-dimensional, two-level wavelet decomposition tree
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3.2.3 Generalized Wavelet Decomposition:Wavelet Packets

The wavelet packet approach is a generalization to the wavelet decomposition that

offers a richer range of possibilities for signal analysis. In wavelet analysis, a signal

is split into an approximation and a detail. The approximation is then itself split

into a second-level approximation and detail, and the process is repeated. In wavelet

packet analysis, the details as well as the approximations can be split (the complete

binary tree for one-dimensional three-level wavelet packet decomposition is shown

in Fig. 3.7). Wavelet packets can be used to generate numerous expansions of a

given signal. The most efficient representation of the given signal is then found

according to an entropy-based criterion (other criteria have also been proposed).

An example of such a two-dimensional wavelet packet tree decomposition is shown

in Fig. 3.8. The naming convention of nodes in Figs. 3.7 and 3.8 is (level, node

number at that level). This is especially useful as the number of decomposition

levels increases.

Figure 3.7: One-dimensional wavelet packet decomposition
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Figure 3.8: An example of a two-dimensional wavelet packet decomposition

3.2.4 Wavelet Decomposition for Images

The wavelet decomposed images in different subbands are usually represented in a

peculiar manner. Fig. 3.9 shows a one-level and two-level wavelet decomposition of

images. Fig. 3.12 shows an example of a two-level wavelet decomposition of image

given in Fig. 3.11. The result of a full two-level wavelet packet decomposition

of images is shown in Fig. 3.10. Fig. 3.13 shows a three-level wavelet packet

representation of image given in Fig. 3.11.

3.3 The Multiscale Principal Component

Analysis (MPCA)

All images are characterized by different frequency spectra; the information content

is present in different frequency bands. The current systems that have been devel-
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(a) One-level representa-
tion

(b) Two-level representa-
tion

Figure 3.9: Wavelet decomposed image representation

Figure 3.10: Two-dimensional wavelet packet image representation
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Figure 3.11: An example image

Figure 3.12: Two-level image wavelet decomposition example
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Figure 3.13: Three-level image wavelet packet decomposition example

oped work only on single scale, i.e., they do not utilize information from different

frequency bands, instead, only the finest scale is used. This finest scale is defined

by the sampling frequency of the data. Thus they miss the important information

that can only be extracted by inspection at different scales.

Multiscale PCA (MPCA), as the name suggests, uses multiscale components of

the input variables (data). That is, the system not only uses the original data at

the finest scale but also considers it at different scales. For multiscale representation

wavelets are very useful. For the MPCA, first the input data is represented into

different scales using the Wavelet decomposition. The information at each scale is

then sent as an input to a PCA system which de-correlates the data and provides

a lower dimensional representation. Hence MPCA combines the ability of PCA to

extract correlation or relationship between the variables (image pixels in our case),

with that of orthonormal wavelets to separate deterministic features from stochastic
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processes.

In pattern recognition systems, this representation can be used in a number

of ways. As discussed earlier, the decomposed images can be used independently

for training and recognition. The multiscale decomposition of images at each level

gives one approximation image and three details images. We can either select the

approximation images of all faces to train the system or use the detail images. The

alternative approach is to find those scales that are important for recognition then

combine these in an efficient manner to form an enhanced recognition system. The

important scales are those that give the best recognition rates and hence play an

important role in the overall recognition performance. The question is, obviously,

how do we choose such scales. In chapter 6, we propose a new technique to obtain

such selection.

3.4 Overview of Active Contour Models (Snakes)

Active Contour Models are also called snakes because they appear to slither across

images. The Active Contour Models(ACM) belong to the general category of de-

formable models that use energy minimisation. From any starting point, the snake

deforms into alignment with the nearest salient features of an image. These features

in an image correspond to the local minima in the energy generated by processing

the image [95, 96].
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More precisely we can explain snake as a parametric contour(x) that deforms

over a series of iterations. The x depends on two parameters

x(s, t)















s = space(curve) parameter

t = time(iteration) parameter

The shape of the contour is influenced by the forces listed below:

• internal forces

• external forces and

• image forces

The total energy of the snake model at a particular iteration (x(s)) is given by the

sum of the energy for the individual snake elements [95]

Esnake =

∫ 1

0

Eelement(x(s))ds (3.29)

The equation above can be written in terms of the three basic energy functionals:

Esnake =

∫ 1

0

Eintern(x(s))ds+

∫ 1

0

Eextern(x(s))ds+

∫ 1

0

Eimage(x(s))ds (3.30)

The internal, external and image energy functionals are briefly explained below.

3.4.1 Internal Energy

The internal energy of a snake element is defined as

Eintern(x) = α(s)|xs(s)|2 + β(s)|xss(s)|2 (3.31)
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This energy contains a first-order term controlled by α(s), and a second-order term

controlled by β(s). The first-order term makes the snake contract like an elastic band

by introducing tension; the second-order term makes it resist bending by producing

stiffness.

3.4.2 External Energy

In the absence of external forces, an active contour model simply collapses to a point

like a strip of infinitely elastic material. We can use both manual and automatic

supervision to control attraction and repulsion forces that drive active contour mod-

els to or from specified features. For example, a spring-like atractive force can be

generated between a snake element and a point in an image using the following

external energy term

Eextern(x) = k|i− x|2

In order to make part of an image repel active contour model we use

Eextern(x) =
k

|i− x|2

3.4.3 Image Energy

The potential(image) energy P generated by processing an image I(x, y) produces

a force that can be used to drive snakes towards features of interest. Three different

potential(image) energy functionals are described below. These attract snakes to
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lines, edges and terminations.

P = wlineEline + wedgeEedge + wtermEterm

Here w’s are the weights for each of the energy terms.

The simplest potential energy that can be used to attract snakes towards lines

is the image intensity I(x).

Eline =

∫ 1

0

I(x)ds

The edges can be found by using a gradient-based energy functional as given

below

Eedge = −
∫ 1

0

∣

∣

∣

∣

∂I

∂x

∣

∣

∣

∣

ds

The ends of line segments, and therefore corners, can be found using an energy

term based on the curvature of lines in a slightly smoothed image C(x, y) = Gσ(x, y)∗

I(x, y). If the gradient direction is given by θ = tan−1(Cy/Cx) then the unit vectors

along, and perpendicular to, the image gradient are given by:

Tangent: n =









cosθ

sinθ









Normal: n⊥ =









−sinθ

cosθ









The curvature of a contour in C(x, y) can be written:

Eterm =

∫ 1

0

∂θ

∂n⊥

ds
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This energy formula provides a simple means for attracting snakes towards corners

and terminations. Below (Fig. 3.14)we give an example showing a snake converging

iteratively to the desired edges.

3.5 Summary

In this chapter, we discussed all of the mathematical techniques and tools that

will be used in the thesis. A detailed mathematical explanation of the method of

principal component analysis was first discussed, followed by a detailed explanation

of Wavelet transform. In the end, the active contour models (snakes) technique for

curve deformation was explained. In the next chapter, we will discuss a number of

newly developed techniques for face and eyes detection.

Iterative Deformation of ACM

Figure 3.14: Iterative Deformation of ACM



Chapter 4

Proposed Face and Eyes Detection

Techniques

4.1 Introduction

A robust face recognition system must be able to handle the different variations in

the input face images. The input images can vary in size, orientation, etc. This

brings in the importance of the process of normalization. Such a process normally

involves the rotation of images to straighten them, and rescaling to a particular size.

This can be done only when the faces have been detected from the input images

and the eyes are localized. As such, before any normalization, the eyes need to be

detected from the face image. The flowchart of Fig. 4.1 explains the process we

are proposing to create the normalized images. Here it should be mentioned that

53
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the process of face and eyes detection is generally dependent upon the type of input

images. In order to achieve robustness, we used three different databases. In the

next section, we will discuss some distinctive properties of these databases.

Detect &
Extract Face

Localize Eyes

Database

Normalize
Image

Store New
Database

Figure 4.1: Flowchart showing the normalization process

4.2 Description of the Databases

We performed our experiments on three different databases. In Table 4.1, the names

of these popular databases are listed.

Name Classes Images per class
ATT (ORL) [97, 98] 40 10

Yale [99] 15 11
AR [100] 126 30

Table 4.1: The face databases

In the ‘ATT Database of Faces’, (formerly ‘The ORL Database of Faces’) [97, 98],
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we have images with medium-degree variations. By medium-degree variations we

mean the images are with different expressions, slight rotations, and moderately

varying illumination conditions. For some subjects, the images were taken at dif-

ferent times, varying the lighting and facial expressions (open / closed eyes, smiling

/ not smiling) and facial details (glasses / no glasses). All the images were taken

against a dark homogeneous background with the subjects in an upright, frontal po-

sition (with tolerance for some side movement). The ATT face database is different

from the other two databases, Yale and AR, in the sense that the images contain

only the face region. Since all the images in the database are of the same size, it is

obvious that some of the original face images must have been resized to develop the

database. It is apparent in this database that we do not need to detect the faces.

Some sample images from this database are shown in Fig. 4.2. In contrast, the

Yale and AR databases are comprised of face and shoulder images with a uniform

background. The background only varies due to the different lighting effects. The

AR Database [100] contains over 4,000 color images corresponding to 126 people’s

faces (70 men and 56 women). The images feature frontal view faces with different

facial expressions, illumination conditions, and occlusions (sun glasses and scarf).

The pictures were taken under strictly controlled conditions. No restrictions on wear

(clothes, glasses, etc.), make-up, hair style, etc., were imposed on the participants.

Each person participated in two sessions, separated by two weeks (14 days) time.

The same pictures were taken in both sessions. The images in the Yale database
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[99] were also taken with different facial expressions or configurations: center-light,

w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy, surprised,

and wink. Some sample images from these databases are shown in Fig. 4.3 and 4.4.

Figure 4.2: Sample images from the ATT face database

Due to the above dissimilarities, the face and eyes detection process for the ATT

face database is not the same as for the other two databases. In the sections that

follow, we will explain the eyes detection process for the ATT face database followed

by the face and eyes detection for the Yale and AR databases. The normalization

procedure is the same for all these databases and is discussed at the end.

4.3 The Proposed Face Detection Method

The Yale and AR databases are different from the ATT face database. The images

in these databases consist of the face and shoulder regions. In order to perform face
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Figure 4.3: Sample images from the Yale database

Figure 4.4: Sample images from the AR database
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recognition, and other related tasks, we need only the face regions. Our intention

was to build new database from these databases. The new database will consist of

only the face regions. An example of the detected face region is shown in Fig. 4.5.

Figure 4.5: Example: detected face

The process that we developed for face detection is shown in the flowchart of

Fig. 4.6, and the whole process is described in Alg. 4.1.

Face detection is performed by looking for the face boundary points and using

such information to extract the face region from the whole image. The Active

Contour Model (ACM) technique also known as the Snakes technique is used for face

boundary extraction. This technique is applicable because of the near uniformity

in the background of the images. The background in the Yale and AR databases

is completely uniform, while in some images for the Yale database, it is affected by

shadowing. The ACM technique can not be used if the image background is not
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Read Image

Define Circular
Contour of radius = r
at the image center

Calculate
Convex  Hull

Database

Store New
Database

r=min(rows,
columns)

Extract Image
Area

Deform
Contour

Figure 4.6: Flowchart: face detection

Algorithm 4.1 Face Detection

1: ReadImage I
2: m = rows(I)
3: n = columns(I)
4: Center (cm, cn) = (m/2, n/2)
5: radius = min(m,n)
6: InitializeContour (x, y)= Circle(radius, cm, cn)
7: for i = 1 to k do
8: (x, y) = DeformContour(x, y)
9: end for

10: (x, y) = ConvexHull(x, y)
11: ExtractImageArea I(x, y)
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uniform. The process proposed for face detection is described below:

1. Define an Active Contour Model around the face region. This requires a rough

estimate of the location of face in an image. This method is unapplicable if

we do not, roughly, know the face position. This is the only disadvantage

of the method. On the other hand, the ACM is able to detect faces in any

orientation. For the Yale and AR databases, we know that the subject’s head

will be approximately at the center of image. Width and height of the image

are first calculated and the minimum of both is then determined. Such value

can then be used as the diameter of the initial ACM circle. Note that it is not

necessary to start with a circle. We can define the ACM starting point with

any shape. Since the human face is of elliptical shape, it is better to define

the ACM with an ellipse. This will help converge the snake more accurately

and more quickly around the face. We can select an elliptical shape ACM

only when we know the orientation of face. Fig. 4.8 shows an elliptical shape

defined by the ACM. Since we do not know the orientation of the faces a

priori, we can not use the elliptical shape ACM. As such, the ACM in our case

is initialized with a circle. An example is shown in Fig. 4.9.

2. Start the snake convergence. The algorithm then searchs for the nearest edges

to fit upon. As discussed in Sec. 3.4, the shape of the ACM is guided by the

potential energy calculated using the image intensity values. This helps the
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curve fitting around the face boundary. Since the process is iterative, it takes

the snake a number of iterations to deform and fit on the face boundary. Fig.

4.10 shows the ACM after convergence.

3. Extract the face region defined by the calculated boundary. It was observed

that in some cases the boundary is not smooth. There are some concavities

in the detected face boundary. (See for example Fig. 4.7). This results in the

loss of some of the parts of the face. Our experiments show that this is mainly

due to the variations in the illumination. In some cases, the high intensity

light is reflected from the face making it similar to the white background. The

boundary of the face disappears and results in a false face boundary. The

solution we propose to this problem is to determine the convex hull for the

face boundary. A convex hull of an image region is the smallest convex set

containing the image. Some examples of the detected face boundaries and

their corresponding convex hull are shown in Fig. 4.11.

4. Form an image from the extracted face region. The convex hull of the detected

face boundary is used to define a new image consisting of only the face region.

The dimensions of this new image are selected to enclose the whole face defined

by the convex hull. It should be noted that the ACM technique can detect

faces in any orientation. Some examples for the detection of rotated faces are

shown in Fig. 4.11.
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Figure 4.7: Example image boundary detection with concavities

Figure 4.8: Active Contour Model when initialized as an ellipse
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Figure 4.9: Active Contour Model when initialized as a circle

Figure 4.10: Final position of the ACM
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Figure 4.11: Detected face boundaries and their convex hulls

Once the ACM is complete, the next stage of eyes detection from the face images

is initiated. The proposed methods for the detection of the eyes are discussed in the

next section.

Experimental Results

The AR database consists of the face and shoulder images. We used 600 images

from the AR database (310 for men and 290 for women). A face was assumed to

be detected accurately only if the whole face area was captured within the bound-

ary. This consists of the main facial features like eyes, mouth, and nose. The face

detection accuracy that we achieved using the proposed technique was quite satis-
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factory reaching 98.33%. In a limited number of cases, the boundary of the faces

was not well-detected because of the varying illuminations. At some points the face

boundary disappeared because of the same shade of background and skin.

4.4 The Proposed Eyes Detection Methods

4.4.1 Method 1: Template Matching

Two techniques have been proposed for detecting the eyes from face images: the

first one is based on template matching and the second is based on wavelets. Faces

with on-the-plane rotation can easily be detected with the technique discussed in the

previous section. Eyes detection algorithms from such images are expected to work

with rotated images. The requirement, obviously, complicates the process of eyes

detection. The eyes detection technique proposed in this section has been developed

to work with face images, however with minor change it can accomodate faces only

images such as the case of the ATT database. The proposed algorithm for eyes

detection is outlined in Alg. 4.2 and explained below.

It is very rare to get a face image upside down in real life. Keeping this fact

in mind, we put a restriction on our algorithm to work only with images that are

rotated within a range of 180◦ i.e. from 90◦ clockwise to 90◦ counterclockwise as

shown in Fig. 4.12. To simplify the process, we first rotate the input image to make

it approximately straight.
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Algorithm 4.2 Eyes Detection

1: Input detected face image I
2: m′ = rows(I)
3: n′ = columns(I)
4: Generate binary mask M from I
5: Find Principal Components (v1, v2) of M
6: Rotate I to make the major PC, v1 horizontal
7: I ′ = Top 60% of I
8: Divide I ′ into two parts I ′L and I ′R
9: Load L and R, the left and right eye templates

10: Resize Templates

m′
T = mT ×

m′

m

n′T = nT ×
n′

n

11: Calculate correlations CL between L and I ′L, and CR between R and I ′R
12: Left eye center = Location where CL is maximum
13: Right eye center = Location where CR is maximum

+90-90

Figure 4.12: Range of possible rotations
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For every input face image, we create a binary mask. This mask is created by

setting all points within the detected face boundary to white and the other pixels to

black. An example is shown in Fig. 4.13. This mask is of elliptical shape as human

faces are elliptic.

Figure 4.13: Binary mask for pose estimation

From this mask image, we can easily predict the direction of the first two principal

components. The principal components for a typical face mask are shown in Fig.

4.14. The minor axis is approximately in the direction of eyes while the major axis

is perpendicular to it. We can use this information to rotate the original image such

that it becomes straight. Once the image is straightened, it is easy to detect the

eyes.

Two separate templates are used representing the left and right eyes. These

templates are shown in Fig. 4.15. These templates were obtained from the test

images and can be used with any database. The search area is significantly reduced

by selecting the upper 60% area of the face and further dividing it into two parts -

left and right. As such, the search can be carried out in parallel for both the left

and right eyes. Here, we have assumed that the size of the face images is m rows ×
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n columns. If the input face is of different size, then we resize the templates. For

example, if the input face image is of size m′ × n′, the eye templates are resized to

m′
T = mT ×

m′

m

n′T = nT ×
n′

n

where mT and nT are the dimensions of the eye templates.

The correlations between each of the eye templates and the corresponding upper

face region are calculated. The region giving the highest correlation is declared as

the eye region. Some examples of detected eyes are shown in Fig. 4.16. Note that

this technique is not very accurate with subjects wearing glasses.

Figure 4.14: Principal components of the binary image

Figure 4.15: Left and right eyes templates (20× 35) pixels
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Figure 4.16: Examples: deteced eyes

Experimental Results

For the 600 images (1200 eyes) from the AR database, the detection accuracy was

about 87.33%. Fig. 4.17 shows the histogram for the error in distances of detected

eyes center. This error is simply the differnce between actual eye center and the

detected eye center. The threshold for correct detection of eyes center considerd

here is 15 pixels. If the distance between the detected eye center and the original

eye center is greater than this threshold, we do not consider it an eye center.

4.4.2 Method 2: Wavelet-based Eyes Detection

As stated earlier, we do not need face detection when using the ATT database. As

such, we discuss here a technique that detects directly the eyes. The flowchart in

Fig. 4.18 outlines the overall process for the ATT database.
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Figure 4.17: Distribution of error in detected eyes centers

First-level Wavelet
Transform

ATT Face
Database

Select
Horizontal

Details Image

Calculate
Threshold

Convert to binary

Search for eyes
and locate centers

Figure 4.18: Flowchart for eyes detection process (ATT)
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We propose here to detect the facial features by first converting the input image

into a binary image. A threshold is needed for such conversion. We are looking

for an appropriate threshold that will consider all prominent features in the input

image and highlight these in the binary image. A good binary image representation

can be obtained if the features that need to be detected are of high contrast in the

input image. As such we need first to transform the input image into a high contrast

image. This can be performed using the Wavelet decomposition. Fig. 4.19 shows a

one-level wavelet decomposition of an input image. The facial features are of high

contrast in the horizontal detail image. As such, we can conclude that the horizontal

detail image is a good candidate as binary representation of the original image. The

filters used here for the wavelet decomposition are found to be very effective in facial

feature detection. These filters, proposed by [101], are given below:

H(z) = 0.853 + 0.377(z + z−1)− 0.111(z2 + z−2)

− 0.024(z3 + z−3) + 0.038(z4 + z−4)

(4.1)

G(z) = −z−1H(z−1) (4.2)

where H(z) and G(z) are the lowpass and highpass filters, respectively. The hor-

izontal details image are obtained when we apply high-pass filter in the vertical

direction, and a low-pass filter in the horizontal direction. The reason for selecting

this particular detail image is obvious as most of the facial features are in horizontal

direction. First level decomposition gives a good detail image with prominent edges
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that are useful specially for the facial feature extraction. The proposed threshold is

obtained as the average of the highest and the lowest gray level of the detail image.

The resulting binary image, shown in Fig. 4.20, consists of only high intensity points

mainly showing the boundaries of eyes, mouth, nose etc. Some other edges are also

visible depending upon the quality of the original image. A morphological opening

operation is performed to remove these points at the border and some isolated points

to get the final binary image as shown in Fig. 4.20.

Approximation Detail−Horizontal

Detail−Vertical Detail−Diagonal

Figure 4.19: One-level wavelet decomposition

Figure 4.20: Binary Image after applying threshold, removing border points, and
morphological operations
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It is obvious that the position of the eyes can now be determined if we search for

non-black points both row-wise and column-wise. This way, we separate both eyes

regions and estimate the centers by calculating the centroid of these eyes regions.

Once the centers of eyes are known in the binary image, we can map the centers in

the original image as well. Some results are shown in Fig. 4.21. This completes the

eyes detection stage for the ATT database.

Figure 4.21: Successful detection of eyes

Experimental Results

For the 400 images (800 eyes) from the ATT database the detection accuracy

achieved is 85.75%. The threshold for correct detection of eyes center that we

considerd is same as discussed earlier in section 4.4.1 (15 pixels). We consider a

detected eye center as a success if the distance between it and the actual center is

smaller than such a threshold.

Template Matching Wavelet-based
AR database (1200 eyes) 87.33% 92.33%
ATT database (800 eyes) 82% 85.75%

Table 4.2: Summary of Eyes Detection Results
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4.5 The Problems of Pose and Normalization

In our work, we have tackled the pose problem only for on-the-plane rotations.

Experimental results suggest that even a slightly rotated face image degrades system

performance tremendously when given as an input. This make it very important

to remove any rotation effects from the input image. An algorithm for solving the

problem of on-the-plane pose rotation is proposed below.

Algorithm 4.3 Pose Invariance

1: Find eyes centers L(mL, nL) and R(mR, nR).
2: Define line segment T between centers L and R.
3: Find angle, θ, between T and horizontal.
4: if θ ≤ 90◦ then
5: rotate image anticlockwise by θ degrees
6: else
7: rotate image clockwise by θ degrees
8: end if

Once we have the centers of eyes we normalize each image such that the line

between the two centers is horizontal, as shown in Fig. 4.22. The rotation is

performed in clockwise or counterclockwise manner depending upon the alignment

of the eye centers. The rotation is performed with respect to the center of the image.

Interpolation is needed for calculation of the resulting rotated image pixel values.

Here, we have used the nearest-neighbour interpolation method.
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4.6 Creation of the Eyes Database

Let the distance between centers of eyes be d. After rotating the whole image, we

use this distance (d) to extract a “useful area”. Based on extensive experimental

results, we found that the optimal size of the eyes region should be 1.8d wide by

0.6d high. The details are shown in Fig. 4.23. The figure shows that, using these

distances, we are able to cover very well the area containing eyes and the eyebrows.

This is done with all images which are then resized to standard 30 × 75 images.

Some samples from the resulting database are shown in Fig. 4.24.

Figure 4.22: Rotating the image

4.7 Summary

In this chapter, a face detection technique based on the ACM is presented followed

by two different techniques for eyes detection. These include template-matching

and a wavelet-based technique. Wavelet-based technique performed better than the

template-matching. The eyes centers are very useful in performing image normal-

ization. After presenting the two eyes-detection techniques, image normalization is
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0.25d

0.35d0.4d

Figure 4.23: Extraction of eyes area

Figure 4.24: Eyes database samples
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discussed. In the end, the process for creating an eyes database is explained and

some database samples are shown. Such database will be made available to the

research community worldwide.



Chapter 5

Face and Eyes Recognition using

PCA

5.1 Introduction

In this chapter, the classical eigenface technique is used for face recognition. Face

recognition is performed to evaluate the performance of our proposed pose invariant

and illumination invariant techniques. In addition, the eigeneyes technique-a variant

of eigenfaces which uses eyes as input images, is also implemented to compare the

face recognition results with those of the eyes recognition. In the end, the method

of least-squares is proposed as an improvement to the classical eigenfaces technique.

78
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5.2 System Description-Face Recognition

using Eigenfeatures

This process involves the use of principal component analysis (PCA). We divide the

face images database into two sets, a training set and a testing set. The training

set is comprised of a particular number of images from each class. The remaining

images are used for testing. Before training, we compute a mean image from these

training images and subtract it from all images. An example mean image for the

ATT face database is shown in Fig. 5.1. The mean is removed in order to simplify the

implementation of PCA. In the process of PCA, we first convert the two dimensional

images into vectors by concatinating the rows. Let xi denote the ith image in vector

form of dimension N × 1, then the estimated mean image (for a database of M

images), shown in Fig. 5.1, is calculated as:

mx =
1

M

M
∑

i=1

xi (5.1)

Let ei and λi be, respectively the eigenvector and corresponding eigenvalue of

Cx-the estimated covariance matrix given by:

Cx =
1

M

[

M
∑

i=1

xix
′
i

]

−mxm
′
x (5.2)

Then a transformation matrix A, whose rows are the eigenvectors of Cx can be

used to project an image into the eigenspace formed by the eigenvectors ei’s. This

transformation is y = A(x−mx). In this transformation, dimension reduction of
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images is performed while preserving the components that contribute most to the

variance in the original data. We can select an arbitrary number of significant eigen-

vectors for projecting an image into the eigenspace. As the number of eigenvectors

increases, a better representation of the image is achieved. Usually the number of

images used for training (M) is less than the number of pixels (N) in an image.

In order to simplify the expensive process of eigenvectors calculation dimensional-

ity reduction of Cx matrix is performed. The overall recognition rate for the PCA

decomposition is usually displayed as a function of the number of eigenvectors. It

can be seen easily that the recognition rate improves as we increase the number of

eigenvectors to form eigenspace (see Figs. 5.5, 5.7). We call the eigenvectors of faces

the eigenfaces and those of eyes the eigeneyes.

Figure 5.1: Mean eye image for the ATT eyes database

In our work, the Eigeneyes are found by applying PCA on the eyes database.

This is what creates the eigenspace. The process of finding the eigeneyes is the

training stage of system. Once the system is trained, we test it on a number of

images. Obviously, these test images are not used in the training process. These

test images (after removing mean) are projected onto the eigenspace. Similarly

all training images in the database are projected onto the eigenspace. We then

compute the distance between the projection of the unknown (test) image and all
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the projections of the training images from database. The class which gives the

minimum distance is declared as the class of the unknown test image. Euclidean

distance metric is used in this case. The first four eigenfaces and eigeneyes can be

seen in Fig. 5.3 and 5.2, respectively. The whole process is described in schematic

form in Fig. 5.4.

Figure 5.2: The first four eigenfaces (Yale)

Figure 5.3: The first four eigeneyes (ATT)

The main goal of this chapter is to analyze the performance of PCA using whole

faces and using eyes alone. Different configurations and setups will be discussed

in addition to a discussion of pose invariance. Please note that all experiments of

face and eyes recognition were performed with a set of four training and six testing

images.
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Figure 5.4: Schematic diagram (eyes recognition using PCA)

5.3 Recognition using Face Images

In the experiments that follow we will be using face images for recognition purposes.

The experiment with eyes will be discussed in the next section. The result given

in Fig. 5.5 shows the recognition rate as a function of the number of eigenvectors.

The recognition rate saturates after some specific number of eigenvectors. This is

because most of the energy is contained in the first few eigenvectors. Fig. 5.6 shows

an example of the calculated eigenvectors energy for the ATT database.

The results for the ATT database are shown in Fig. 5.5. These correspond to a

system that was trained using four images per subject. For testing, six images per

subject were used. The four images selected for the training purpose were fixed for

all classes. Images in all classes are arranged in a particular manner. This means

that the set of conditions for an image at a particular position, in a class, will be

the same for all images at that position in other classes. So for the result shown



83

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90
Recognition Rate for the ATT face database

No. of Eigenvectors

R
ec

og
ni

tio
n 

R
at

e 
(%

)

ATT database

Figure 5.5: Recognition rate, simple PCA (ATT database)

Figure 5.6: Eigenvectors energy details
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above, the set of conditions for the four images selected for training are same.

More representations were also obtained using the leave-one-out technique to

increase the number of datasets. This increases the statistical significance of the

results. In this technique, we select different combinations of the training and testing

sets. For example, in the ATT database there are 10 images per class. If we select,

four images per class for training then there will be 10!
4!(10−4)!

= 210 possible number

of sets. As an example some of the possible sets are given in Table 5.1.

Training Sets Testing Sets
1, 2, 3, 4 5, 6, 7, 8, 9, 10
2, 3, 4, 5 1, 6, 7, 8, 9, 10
3, 4, 5, 6 1, 2, 7, 8, 9, 10
4, 5, 6, 7 1, 2, 3, 8, 9, 10
5, 6, 7, 8 1, 2, 3, 4, 9, 10

Table 5.1: Examples of different combinations of images for training and testing

The result shown in Fig. 5.7 is obtained using 20 different training sets on the

basis of the leave-one-out technique. This result is statistically more meaningful

then that of Fig. 5.5.

The importance of this technique is highlighted by this result. We can see that

by using the first four images for training we got a maximum recognition accuracy

of about 82%. When the leave-one-out technique was used the recognition accuracy

shoots toward 90%. This shows that it is wrong to consider only one dataset for

training any system. To get a better and more realistic view of a system, the leave-

one-out technique should be used.
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Figure 5.7: Recognition rate, leave-one-out PCA (ATT database)

5.3.1 Pose Invariance

The most common and serious problem faced by any face recognition system is that

of pose variations. Sometimes the face images input to a face recognition system are

tilted or rotated. By this we mean that the face in the input image is not straight.

While in some cases the size of faces in input images is different. These variations

affect badly the performance of face recognition systems. The PCA-based system

discussed in the last section is also prone to such changes. We therefore propose

techniques to handle these variations. In what follows, we analyze the performance

of a PCA-based system for such conditions and propose our techniques to counter

these problems.
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Effect of Rotation

We will now discuss the effects of different orientations of face images on the recogni-

tion accuracy. We first explain the experimental setup. The training set is comprised

of straightened frontal face images while the test set is comprised of rotated face

images. In total, 13 test image sets were considered in these experiments. Fig. 5.9

shows that the original image (shown in Fig. 5.8) is rotated in 13 different degrees.

These range from −60◦ to 60◦ with steps of 10◦.

Figure 5.8: Original frontal face image

Figure 5.9: Twelve rotated versions of the frontal face image

It is obvious that as the rotation angle increases, the recognition accuracy drops.

The smallest value of recognition rate occurs for greatest rotation. We see now the

need for our proposed algorithm. We can improve the performance of PCA-based
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system significantly if the input rotated face images are converted to frontal face

images using our techniques discussed in Sec. 4.4.1 and 4.5.

To check the performance and accuracy of PCA-based system we performed

experiments by supplying these rotated images to the system. The recognition rate

results are shown in Fig. 5.10. As expected, the recognition rate drops sharply with

the increase in angle difference. For sake of clarity results are shown only for angles

−10◦ to −60◦. The results for the other angles can be inferred from the graph. They

will be similar to their counterparts with oppositie signs. This shows how bad is the

affect of even a small change in the angle on the performance of PCA-based system.

The PCA-based system completely fails when rotated images are provided as input.

This highlights the need for our proposed algorithms in Sec. 4.4 and 4.5.

Effect of Scale

The next important property that can affect the recognition accuracy is image scale.

In real systems we can have input images with different scales and resolutions. It

can be deduced that images with low scale will result in degraded performance.

A number of experiments were performed to study the effect of different scales on

recognition.

The system was trained with original scale frontal face images. Testing was

performed with scaled images. Five new databases of scaled images were created

from the original ATT frontal face database for the testing purpose. The images
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were scaled down to 50% with steps of 10%. Fig. 5.11 shows same face image at

five different scales.

Figure 5.11: ATT face image example with five different scales

It should be noted here that the input images to our system must be of same size

as training images. This requires that we resize the scaled images before processing

them for recognition. The resized versions of the images are also shown in Fig. 5.12.

The degradation in images is easily visible for higher downscaling.

Figure 5.12: ATT face image example with five different scales, resized to same size
(scale decreasing from left to right, top to bottom)

The recognition results are shown in Fig. 5.13. We observe that there is not

much difference in the recognition accuracy with change in scale. Note that the plot

limits are decreased to have a closer view of the recognition rate values. This result

is obtained when six images were used for training and four images for testing.
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5.4 Recognition using Eyes Images

Many techniques have been developed that vary in terms of complexity and efficiency

for face recognition [102]. Most of the face recognition systems have a drawback of

long training and recognition times. Some face recognition techniques developed

use the complete face image [45] while others perform operations on local features

like eyes, nose, mouth etc [43, 42]. It has been observed experimentally that good

recognition rate can also be achieved using only local facial features. Face features

change over time. There are also other possibilities like facial hairs and beard that

can affect the recognition process. Unlike the complete face, eyes do not change

significantly with time. So it is a good idea to use eyes for face recognition. It helps

in reducing complexity and improving efficiency (smaller data size).

The experiments that were performed for faces were also performed for the eyes

database. This eyes database was created from the ATT face database using our

technique discussed in Sec. 4.6. The results show that using only the eyes, we are

able to get comparable recognition rate. The reduction in recognition accuracy is

much less than the reduction in image size. We are using only 22% of the original

image size, and are still able to get a recognition rate of 75.13%. This reduction

in size resulted in a much less computational complexity of our system. We were

able to reduce the computational complexity of PCA-based system by 5.45 times.

Fig. 5.16 shows the computational complexity as a function of the number of image
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pixels i.e. NlogN , where N is the number of image pixels.

Our proposed LS-PCA technique (discussed in the next section), when applied

to the eyes also outperforms the simple PCA technique, giving 81.25% recognition

accuracy. In fact we are able to get better results than the best ever reported result

in literature for eyes by [55]. The results for the simple PCA are shown in Fig. 5.14

while those for LS-PCA are shown in Fig. 5.15. In Fig. 5.21 the result for LS-PCA

using eyes is compared with the traditional PCA results using both face and eyes.

5.5 The Proposed Method of Least-Squares PCA

5.5.1 Introduction

In practice, a number of training images are given for each class (person). PCA

does not take into account this information as it assumes that all images represent

different persons. To take into account class information, we propose a new method

based on the least squares estimate of the unknown image projection to improve

classification. In this method, the process requires a model that relates the unknown

image to the images in each class. This can be done with the help of one or more

coefficients. The image obtained by using these coefficients is called the fitted image.

To avoid the complexity that occurs due to the large size of images, we use the

projections of the images onto the eigenspace. The difference between the projection

of the unknown image vector (x) of dimension K×1 and the projection of the fitted
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Figure 5.16: Reduction in computational complexity when using eyes

image vector (x̂) is defined as error (ε), also called residual.

ε = x− x̂ (5.3)

Note that x and x̂ are in vector form. The least squares method minimizes the

summed square of residuals to obtain the coefficient estimates.

5.5.2 Analytical Formulation

Lets say we decide on using k training images per class, then we need k coefficients

(α1, α2, ..., αk). These can be found using the following equation:
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x = α1x1 + α2x2 + ...+ αkxk + ε (5.4)

x = [x1x2...xk]
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α2
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αk

























+ ε

x = Xcα+ ε

Here Xc is a matrix, unique for each class, formed by the projections of k images

for that class and ε is the error vector. The LS estimate of the coefficient vector, α̂,

can be found by:

Xc
TXcα̂ = Xc

Tx

α̂ = (Xc
TXc)

−1
Xc

Tx

This α̂ is used to find x̂ given in equation (5.3) as:

x̂ = Xcα̂ (5.5)

The estimated projection vectors (x̂) are calculated for all classes for the given test

image. After that we evaluate the euclidean distance between the test projection

vector and estimated projection vectors. The class of the estimated image that gives
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minimum distance is said to be the class of the unknown image. The schematic of

the LS-PCA technique is shown in Fig. 5.17.

Figure 5.17: Schematic diagram (face recognition using LS-PCA)

5.5.3 Experimental Results

The LS-PCA technique has an advantage over classical PCA technique as it incor-

porates class information. This results in an increase in the recognition accuracy of

the system. As seen earlier, the more the number of eigenvectors used, the better the

result. The result is shown in Fig. 5.18. Note that we are using the leave-one-out

method for finding the results. The face recognition results for the previous PCA

technique are compared with the new LS-PCA results in Fig. 5.19. It can be ob-

served from the two curves (see Fig. 5.19) that simple PCA technique performance

is better than the LS-PCA when we use less than 10 eigenvectors. After that the

LS-PCA performs better. We investigated and found that this behaviour occurs
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Figure 5.18: Recognition rate, leave-One-Out LSPCA (ATT database)

because of two reasons.

1. Number of images used for comparison

2. Number of Eigenvectors

By number of images used for comparison, we mean that in simple PCA we compare

the unknown test image with six images from a class. This results in a higher

probability of matching the correct class. While in LS-PCA we are comparing the

unknown test image with only one image per class. This deprivation is overcome by

using more eigenvectors and thus getting a better estimate of the unknown image.
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Figure 5.19: Comparison between PCA and LS-PCA results for face images (ATT
database)

The LS-PCA when applied over eyes images also give improved performance.

The results of simple PCA are compared with the results of LS-PCA in Fig. 5.20

and 5.21

5.6 Summary

In this chapter, we presented two new methods for person identification, one using

the face image, and the other using eyes. It was shown that the eyes are good candi-

dates for robust person identification. This followed a discussion of pose variations,

including rotation and scale, on face recognition. Some methods were proposed to

counter the problems posed by these variations. In the end, the proposed technique

of Least Squares PCA was explained. This technique improves the traditional PCA
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eyes images (ATT database)
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Figure 5.21: LS-PCA eyes results compared to traditional PCA results
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by incorporating class information.



Chapter 6

Face Recognition using Multiscale

Analysis

6.1 Introduction

The face recognition technique based on PCA (chapter 5) analyzes the input image

at only one scale i.e. the finest(original) scale. In multiscale techniques for face

recognition, the input images are analyzed at a number of scales. First the input

image is decomposed into different subimages using a particular technique. These

subimages correspond to different frequency bands hence they are called subband

images. These subband images are then used as input to a combined face recognition

system. In multiscale face recognition systems, we are able to analyze images at

different scales hence improved performance is achieved. We call such approach the

101
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Multiscale PCA (MPCA) approach.

6.2 MPCA System Description

The multiscale decomposition of images can be performed in a number of ways. We

are using here the wavelet packet analysis in order to perform such decomposition

of input images. The wavelet packet decomposition of images has already been

discussed in Sec. 3.2. A simple schematic diagram of the process is shown in Fig.

6.1. In the training stage, each input image is first decomposed into several subband

images. Then, from the corresponding subband images of all the training images

we form a library. This means if our image decomposition results in N images,

we will have N separate libraries. In the testing stage, the input images are first

decomposed and each subband image is projected onto the corresponding library

that was created during the training stage.

6.3 Experimental Setup

In this section, we will discuss several experiments performed to investigate the

multiscale behaviour of images. These experiments were the basis of important

findings used later in Sec. 6.5.

The framework for multiscale analysis of images has already been discussed in

sections 3.2 and 6.2. Here we use such framework to discuss the experiments that
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Figure 6.1: MPCA schematic diagram

we performed using subband images. The system developed earlier (chapter 5) is

also be used here. The only difference is that instead of supplying simple images

as input, we are now supplying the decomposed subband images. There are several

parameters involved when we speak about multiscale analysis of an image. First

of all, we must select a particular wavelet; in other words, a set of lowpass and

highpass filters. Once such filters are selected, we have to determine the level of

decomposition and the type of orientation.

Recall that our main objective is to use multiscale information from images to

enhance recognition accuracy. This requires a thorough investigation of the multi-

scale properties of images. To look into the multiscale characteristics of images, we
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performed numerous experiments varying the parameters mentioned above. The re-

sults were recorded and analyzed to draw a number of conclusions. The experiments

were performed to see the effect of following parameters:

• Types of filters (wavelets),

• Orientations,

• Levels, and

• Resolution.

We give below a brief description of the specific experiments we carried.

a. Wavelets(filters) used: db1, db2, db3, db4, db7, db8, db9, db10, and a

pair of filters from the literature. These wavelet filters basically differ in their

lengths. The filter length for db1 is two, db2 is four and so on.

b. Orientations: All possible orientations were considered, i.e. Approxima-

tions, Horizontal Details, Vertical Details, and Diagonal Details.

c. Levels: One to Four levels.

d. Databases: The ATT, Yale, and AR databases.

e. Resolutions: Original and their half resolution images of the above men-

tioned databases were used.
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The experiments required that we create new databases with the above specifica-

tions. All possible combinations of the above mentioned parameters were considered.

For example a database of all ‘horizontal details’ images at ‘level four’ was created

when ‘half resolution ’ ‘Yale database’ was decomposed using ‘db4’ wavelet. For

sake of simplicity we will define a naming convention to call these databases.

<database name><resolution>DB<no. of tr images per

class> <wavelet name> lvl<level number> <orientation> where the terms in

< > are described in Table 6.1 below. Using the convention our example database

may be written as YalehalfDB5db4 lvl4 h.

Term Description Possible Values
<database name> Name of one of the three

main databases
ATT, Yale, and AR

<resolution> the possible image resolu-
tion selected

half, and full

<no. of tr

images per class>

The number of images per
class used for training the
system

4, 5, and 6 (ATT), 5,
and 7 (Yale), 4 (AR)

<wavelet name> Name of the wavelet used for
decomposition

db1-db4 (ATT), db1-
db4, db7-db9 (Yale),
db1 (AR)

<level number> The decomposition level 1-4
<orientation> Type of orientation a (=approximation),

h (=horizontal de-
tails), v (=vertical
details), d (=diago-
nal details)

Table 6.1: Deatils: Database naming convention

One important issue which should be mentioned here is that both wavelet anal-

ysis and wavelet packet analysis were used for the experiments. The wavelet packet
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analysis is used to determine the best decomposition tree (Sec. 6.6). For now,

when we mean by wavelet decomposition the dyadic wavelet analysis in which only

approximation image is decomposed at subsequent levels.

We now discuss our results to understand the effect of changing the different

parameters. Some useful information on the databases used is reiterated below in

Table 6.2.

Name Classes Images per class Training Images Test Images
ATT 40 10 6 4
Yale 15 11 7/5 4/6
AR 60 10 4 6

Table 6.2: Databases information

6.4 Variations in Recognition Rate: Effects of Fil-

ter length, Orientations, Levels, and Image

Resolution

6.4.1 Effect of different Filter lengths

For the ATT database, four wavelets (filter sets) were used in the decomposition

(db1-db4). The resulting images were supplied to our system described in Sec. 5.2.

The results presented in Fig. 6.2 and 6.3 show how the recognition accuracy varies

with the change in filter length for the full and half resolution images respectively. In
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each graph the recognition rate is plotted against different orientations. Moreover,

each graph shows results for all four wavelets for a particular level.
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Figure 6.2: Effect of filter lengths on recognition rate (ATT, full resolution)

For levels 1 and 2, the recognition rate drops when the filter length is increased.

The best recognition rate is achieved for the level 4 decomposition using the ‘db1’

wavelet. The results for all the details highlight the importance of ‘db1’ wavelet

which means a filter length of 2. The details images show the edges of an image

in different orientations. All edges in a face image span only small number of pixel

positions or in other words their thickness is just a few number of pixels. If we use a

longer filter to detect edges, the result gives a blurred image with ill-defined edges.

While a small filter performs better because it is more likely to detect sharp edges

(See Fig. 6.4 for comparison). This explains the reason why we are getting good
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Figure 6.3: Effect of filter lengths on recognition rate (ATT, half resolution)

recognition results for subband images generated using small length filters.

Similar results are obtained for the other databases. For example the recognition

rates for Yale database when different length filters were used are shown in Fig. 6.5

and 6.6.

In summary, we observed consistently that the highest recognition rate is obtained

for level 4 decomposition with the ‘db1’ wavelet.

6.4.2 Effect of Orientations

It can be seen in Figs. 6.7-6.10 that the best recognition results are obtained for

the approximation images. Though it appears from the results in Figs. 6.7 and
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(a) Edges using
db1 wavelet

(b) Edges using
db4 wavelet

Figure 6.4: Comparison of the edges extracted using different wavelets
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Figure 6.5: Effect of filter lengths on recognition rate (Yale, half resolution)
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Figure 6.6: Effect of filter lengths on recognition rate (Yale, full resolution)

6.8 that details images also have a significant impact on the recognition accuracy,

the effect is much appreciated from the results of Yale database in Figs. 6.9 and

6.10. For the Yale database, we observe that the details play a significant role in

recognition with best results for the horizontal details. The horizontal details give

better results because of the fact that most human facial features are present in

the horizontal direction. For the ATT database, the details also play a significant

role but only at higher-level decomposition. As mentioned earlier in Sec. 4.1, the

ATT database was scaled to make the dimensions of all face images identical. The

process of resizing an image involves lowpass filtering and interpolation. When we

try to resize an image to a larger one, we are actually adding some pixels and this

requires interpolation to fill in such pixel values. This affects image information,
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mostly in the frequency domain. The problem is severe when the new image size

is not in integer multiples of the original image size. The edges, which correspond

to higher frequencies, in image are also affected badly. On the other hand, if the

image is reduced in size we may still need to use interpolation but after lowpass

filtering. The lowpass filtering is performed to reduce the effect of aliasing. The

frequency content of the original image is again disturbed. Whatever may be the

interpolation, nearest neighbour, bilinear, bicubic, the image information is affected.

This change in frequency content is the main cause for the results obtained on the

ATT database. It can be seen that the recognition rates drop dramatically for the

details at lower levels (1 and 2) specially. This behaviour points toward the lack of

significant edges in the images.
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Figure 6.7: Effect of orientation on recognition rate (ATT, half resolution)
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Figure 6.8: Effect of orientation on recognition rate (ATT, full resolution)

6.4.3 Effect of Levels

With increase in decomposition level, the resulting subband image size is reduced.

With a decrease in image size the total information content of the image is also

reduced. Logically this decrease in information should result in a decrease in recog-

nition accuracy. The results in Figs. 6.11-6.14 show otherwise. The recognition rate

is increasing as we go from level 1 to level 4 (clearer on detail images). To support

our claim and to check this strange behaviour we looked at the entropies of these

images. The average entropies of the subband images for different levels are shown

in Fig. 6.15. The figure shows that the average entropy increases with increase in
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Figure 6.9: Effect of orientation on recognition rate (Yale, half resolution)
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Figure 6.10: Effect of orientation on recognition rate (Yale, full resolution)
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decomposition level hence the increase in recognition rate.
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Figure 6.11: Effect of levels on recognition rate (ATT, half resolution)

6.5 Effect of Change in Resolution

The results provided in previous sections are quite self-explanatory and highlight

some very important behaviours of images in multiscale environment. They helped

us find which of the subbands and at what level is important in the sense of high

recognition accuracy.

We found that the results of the same database are different among different

resolutions. This meant that the recognition rates are dependent upon the image

resolution. We looked into this matter in more detail and found that this behaviour
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Figure 6.12: Effect of levels on recognition rate (ATT, full resolution)
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Figure 6.13: Effect of levels on recognition rate (Yale, half resolution)
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Figure 6.14: Effect of levels on recognition rate (Yale, full resolution)

Figure 6.15: Average entropy as a function of subband images at different levels
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is actually connected to the decomposition level. If we look carefully, we find that

the recognition rates at level 1 for the half-resolution databases are similar to those

at level 2 of full-resolution. Similarly the results at level 2 and 3 of half-resolution

correspond to those at level 3 and 4 respectively of full-resolution. The results do

not match exactly but the differences are negligible. For example compare Figs. 6.3

and 6.2. Similarly compare Figs. 6.5 and 6.6 for the Yale database. This behaviour

is explained in the following section.

6.5.1 Explanation of the Resolution effect and Nyquist cri-

terion

The form of the results discussed earlier points towards an important aspect; the

change in resolution is actually affecting the frequency content of the image. Actu-

ally the size of the frequency band is altered. When we decrease the image size we

are actually removing some finer details. Hence the frequency band is reduced or in

other words some high frequency components are removed.

If we consider an image in its original form with maximum frequency fmax then

according to the Nyquist sampling theorem, the sampling frequency should be

fs ≥ 2fmax

or in other words if our sampling frequency is fs, the maximum frequency that
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can be present in our image will be equal or less than fs/2 i.e.

fmax ≤
fs
2

This is the upper bound on fmax. So in wavelet domain, we get the division of

bands as shown in Fig. 6.16. This is because wavelet transform bisects the available

bandwidth.

We can easily deduce from here that if the size of the image is changed or in other

words if the image resolution is altered, the frequency content is also altered. This

helped us explain why the level m half resolution images are behaving as level m+1

in full resolution images. When we halved the image size we actually restricted the

maximum frequency to fmax/2. Hence the ‘good’ subbands that were previously at

level m are now at level m− 1. This can be explained easier using a mathematical

formulation.

6.5.2 Mathematical Description

For the purpose of analytical formulation, we will use the wavelet packet decompo-

sition instead of the simple wavelet decomposition.

Lets say that we have an image I of size N × N with a sampling frequency of

fs and a maximum frequency fmax. The wavelet packet decomposition with the

different frequency bands is shown in Fig. 6.17. The relation between fs and fmax
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Figure 6.16: Division of bands in wavelet transform

is given below

fmax ≤
fs
2

fs ≥ 2fmax

Lets say that the important subbands or more generally the important frequency

band for image I turn out to be from fs/a to fs/b with the later having a higher

value (a > b ≥ 2). We now have a new image, resized(downsampled) version of the

original I, say I ′. The size of I ′ is N ′ ×N ′ and a maximum frequency of

f ′max =
N ′

N
fmax

Similarly the new sampling frequency can be deduced to be

f ′s ≥ 2f ′max

f ′s ≥ 2
N ′

N
fmax
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From here we get a relation between the new sampling frequency f ′
s and the original

image sampling frequency fs.

f ′s = 2
N ′

N
fmax

f ′s =
N ′

N
fs

fs =
N

N ′
f ′s

This will help us in determining the “good” frequency band for the new resized

image. Obviously the range will remain as from fs/a to fs/b. If we replace fs with

the value in terms of f ′s we get

N

N ′

f ′s
a
→ N

N ′

f ′s
b

(6.1)

We can now either perform bandpass filtering or find the level number to perform

wavelet decomposition.

6.6 The Proposed Model for Subband Image se-

lection

Recall that, given an image, our aim is to find important subbands for face recogni-

tion. With all the previous discussion, we showed that there are some subbands that

are really important and play an important role in face recognition. But are these

subbands same for all images? Are these subbands same for the images from differ-

ent databases? In fact, we want to know whether the subbands that are important
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Figure 6.17: Two-level wavelet packet frequency division

for an image from, say, database A are also important for database B. Obviously,

the size will matter but for simplicity lets suppose that the two databases have face

images of the same size.

In order to find this we performed experiments on two different databases. These

were the Yale and AR databases. Full wavelet packet decomposition of the images

from these databases was performed up to level 4. Each image was decomposed

into 256 subband images. Then each of the 256 images was used for recognition,

resulting in 256 recognition accuracy values. These values are shown graphically

in Fig. 6.18 and 6.19 to highlight the importance of some subbands. As can be

seen from the colour bar, darker colour stress higher recognition rate. It can be

seen that the pattern for the two databases is almost similar and the variations are

negligible. Based on this, we can further strengthen our conclusion that for face

images, there are some specific frequency bands that are more useful for recognition.

These bands remain the same no matter what the resolution of face images is. The
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only restriction is that no operation is performed which would change the frequency

content of the images. Knowledge of these bands and the resolution of image can

guide us to determine the wavelet decomposition level that should be used to select

the appropriate subband images for recognition.

To progress further and in order to propose a generalized model, we selected

the results of the AR database. From the results, we can see that the important

subbands lie in region which is highlighted in Fig. 6.20. We can see that for the AR

database images the important subbands lie in this region. The range is different for

the horizontal and vertical details directions. For the horizontal details it spans the

frequency band of 0− 0.3125fs while for the vertical the span is larger 0− 0.3438fs,

this is because of the size of the image. The size of the images used for the experiment

is 282 × 244. Note that the width of these bands is 0.0625fs. Since we know the

resolution (size) of the images, we can now relate these important subbands to any

other image. The mathematical description presented in Sec. 6.5.2 can be used to

find the important subbands for a new image of size K × L. Using Eq. 6.1 we find

the new bands as follows:
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Figure 6.18: Recognition rates at the 4th level wavelet packet decomposition(Yale
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Figure 6.20: Important subbands highlighted, AR
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So, given any input image, we just put the size of that image in the above

equations and find the important subbands for face recognition. For images smaller

than 176 in horizontal and 168 in vertical direction, the important band size in the



125

respective direction will be larger than the total bandwidth of the image. So we use

the whole dimension for such cases.

In the next section we propose a new face recognition system using the concept

of frequency bands mentioned above.

6.7 The Proposed MPCA Face Recognition Sys-

tem

The fact that we can determine important subbands of an image from the image

properties is very helpful in getting a good face recognition system. Instead of using

the whole image, we can decompose it and use only the selected subbands. Using

this information, we propose a new MPCA-based face recognition system. The

flowchart of such face recognition system is shown in Fig. 6.21.

As explained in the figure, we perform PCA on the selected subbands and the

individual results for these subbands are combined on the basis of majority voting.

Note that the subbands are selected dynamically based on the criterion discussed

in previous section. This can be written in the form of an algorithm as given below

(Alg. 6.4).
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Figure 6.21: Proposed MPCA system schematic diagram

Algorithm 6.4 Proposed MPCA Face Recognition

1: ReadImage I
2: SI = WaveletPacketDec(I)
3: R = FindImageReso(I)
4: IS = CalculateImpSubbands(R)
5: ISI = SelectImpSubbandImages(SI, IS)
6: RR = PCA(ISI)
7: Decision= MajorityVote(RR)
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6.7.1 Simulation Results

The algorithm presented above, was implemented and numerous experiments were

performed on different databases. The results for the AR database are shown in

Figs. 6.22 and 6.23. Fig. 6.22 shows the face recognition results for the simple PCA

while those for the proposed MPCA are shown in Fig. 6.23. Both these graphs are

superimposed on each other to highlight the superior performance of the proposed

MPCA in Fig. 6.24. It is visible that we are able to increase the recognition accuracy

by about 5%. It can also be observed that the maximum recognition rate is achieved

much quicker for MPCA as compared to the simple PCA technique. Note that for all

the graphs shown below we have used three images for training and seven for testing

purpose. Note that this technique also has an advantage of a lower computational

load. This is because of the fact that we are using a small part of the image instead

of using the whole image. For example, in the case of AR database, we are using

only 38 subband images as shown in Fig. 6.20. These 38 subband images comprise

only 14.84% of the original image and gives very satisfactory results.

6.8 Summary

In this chapter, we presented results of the numerous experiments that were per-

formed to explore the multiscale nature of face images. Important conclusions were

drawn from these results which were then used to develop a model for optimal multi-
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scale representation of face images. We then used this model to propose a multiscale

face recognition model. The performance of this system was shown to outperform

traditional PCA.



Chapter 7

Conclusions and Future Work

7.1 Summary of Results

In this thesis we developed a number of techniques to perform robust face recogni-

tion. We developed a framework for face recognition using the multiscale properties

of images. The experiments performed to explore the multiscale properties of face

images suggest that there exist a particular set of subband images that are use-

ful in face recognition. We state that these subband images span some particular

frequency bands which are the same for all face images. We were able to get recog-

nition accuracy much better (5% improvement) than the traditional face recognition

system of PCA for the AR database. Since we are using only a fraction of the total

image size (14.84% of the original), our technique has an added advantage of low

computational complexity.
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In addition to the above, which we consider as our major contribution, we also

proposed new methods for face/eyes detection, and face recognition. The techniques

developed for face and eyes detection can actually be applied to several other prob-

lems like face tracking, human-machine interface, emotion identification etc. The

Least-Square PCA based face recognition system proposed in this thesis was shown

to outperform the classical PCA. This method when used for eyes recognition re-

sulted in improved performance. We were able to achieve an improvement of 8% for

face images and 6% for eyes. This method can also work with other facial structures

such as nose, ears, and will surely give a better performance.

7.2 Future Work

We developed the model for determining the important subbands for face recognition

based on experimental results. We found that the model is a function of input image

resolution. A possible extension to the work is to develop a mathematical version

of this model. This will require extensive study of the relation between the image

resolution and the face recognition technique used.

The thesis presented a translation, and rotation invariant system for face recogni-

tion. This was made possible by preprocessing the input images. Such preprocessing

stage can be formulated as a mathematical transformation which can be embedded

into the proposed rotation and translation invariant system. This will be helpful
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when joined with our multiscale face recognition system.

We can further improve the results of multiscale face recognition by performing

some kind of classifier combination. Instead of handling subband images separately,

and then combining the results, we can combine the information from these subbands

to form one common feature vector that represents our input image or use another

strategy to combine the recognition results from different subbands, such as the

bagging technique.

7.3 Conclusions

Modern face recognition systems are capable of high recognition accuracy. The

problem with such systems is that they are vulnerable to pose and scale problems.

We proposed some techniques in this thesis to alleviate these problems and make

our system rotation and scale invariant. This resulted in significant improvement in

performance of face recognition system. Moreover, we showed that by using only a

fraction of total image size, and considering the multiscale properties of face images,

we were able to develop a robust face recognition system with low computational

load.
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