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CHPTERII

Introduction

During the past several years there has been a sudden and intense interest
in the use of artificial intelligence methods. Artificial Intelligence,
sometime called machine intelligence, involves programming computers
so that they will respond to situations in apparently the same way as
humans [BOWS89]. Since most human decisions are qualitative in nature
rather than quantitative, it is possible to allow computers to make

decisions based on logic and reasoning rather than on numbers alone.



High technique tools are obligatory in production and management of oil
reservoirs in today’s highly competitive environment. These tools form the
foundation for cost reduction of exploration, production, and management
of oil resources. Today, geologists and petroleum engineers are using new
technologies from different disciplines to solve their problems. Normally,
petroleum procedures utilize and employ advance computers in the work
place, incorporating sophisticated simulation models in decision making
processes, and digital control and monitoring of equipment that were
regarded as state of the art only a few years ago [MA95]. These tools are
furnishing engineers and scientists with the groundwork upon which

intelligent methodologies can be developed.

Economic successes of reservoir management and development method
depend very much on reliable reservoir characterizations. One of the major
factors that invariably impacts production is that almost all reservoirs
show some degree of heterogeneity. Heterogeneity in an oil reservoir is
known as the non-uniform, non-liner special distribution of rock
properties. However, lack of sufficient data to correctly predict the
distribution of the formation make characterizations of a heterogeneous

reservoir a complex problem [AMA90].



Therefore, accurate reservoir description plays a critical role in realistically
predicting the performance of a complex reservoir. Well log, which is a
measurement of the reflection of the electric or radioactive waves, presents
measures of wide range of physical properties. Generally, it is very
common that most, if not all, the wells in the reservoir are geophysically
logged. One major use of well logs is to derive formation properties, e.g.,
identification of geological facies (the term facies means the general

appearance or aspect of a rock) [HNKE9%4].

Professionals in the petroleum industry make important decisions to
handle various tasks based on their previous experience. Quite often, the
logic they follow in such situations is not precise. Different experts follow
different logic, and even the same expert may not always use the same
logic when re-examining a previous problem. Due to the above factor, it is
highly desired to develop tools that provide a systematic way to perform
the required tasks. An important goal is to automate the process as much
as possible in order to rely less on human expertise. Conventional
computing methods, however, have been unable to achieve this goal

satisfactorily.

Even though geologists use their past experience to perform facies

identification from well logs, this task is quite challenging and can be



handled only by skilled experts. Moreover, the required expertise usually
varies depending on the physical location. Given these factors,
constructing computer programs (expert systems) that perform such tasks
automatically or semi-automatically is highly desirable. Nevertheless,
such systems are hard to build by conventional means mainly because it is
usually difficult for experts to explain their decisions in a precise manner,
and consequently, it is hard to turn their expertise into a computer-
executable form. Given the fact that a huge amount of historical data of
well log interpretation (cases that were previously processed) is routinely
kept, machine learning techniques have high potential to assist in
overcoming this problem. Because of these characteristics, the formation
facies predication from well log interpretation in geology is ideally suited
for the utilization of machine learning techniques. In this thesis, we will
study how the decision tree learning (DTL) approach can be used to learn

and predict geological facies from well logs data.

1.2 Problem Definition

Reservoirs show different degrees of heterogeneity, which make the

identification and recognition of various facies a very complex problem.



However, these facies usually influence the hydrocarbon movement,
distribution, and management therefore the identification of these facies
seems to be a must [ABKM94]. Generally, it is very common that most if
not all wells in a reservoir are geophysically logged. Identifying facies from
well logs is manually done; however, this process is tedious and time-
consuming. Therefore, utilizing machine learning techniques to identify
facies based on these well log data seems to be a significant approach. The
operations of this new method shall not require extensive knowledge of

geology or the need for an expert geologist.

In this thesis, we are going to construct a decision tree (DT) based on a
machine learning technique (MLT) to help in identifying geological
formation facies from well logs. The DT is not going to be constructed
manually, but will be built from examples. Figure 1.1 shows the abstract

view of how this DT is constructed.

- w NﬁyllA
Engine

Figure 1.1: An abstract view of how DT is constructed.




The main input to the DT will be gamma rays log, bulk density log,
neutron porosity log, and depth indicator and the output will be one of the

geological facies shown in Table 1.1.

FACIES NAME DESCRIPTION
SRR Slope, shallow (upper slope) or

@ Slope, deeper (lower slope).
B Barrier undifferentiated.

Lagoon or deep lagoon.

B Lithocodium-Coral and equivalent complex.
Open algal platform deposits.

B Deeper open platform deposits.

" Table 1.1: A list of the facies to be predicted.

Figure 1.2 shows the abstract view of the input and the output to the DT.

Facies

IE> Classes

Figure 1.2: An abstract view of the input and the output to the DT.




1.3 Objective of This Study

The main goal of this study is to determine how well the DT approach can
recognize facies from well logs. The objectives of this study are first, to
identify ranges of well log values that could provide a diagnostic tool for
facies identification. Second, to select cored wells having a complete suite
of logs to provide a more comprehensive comparison between the result
from geologist analysis and the DT technique using well logs as input. In
our work, we intend to show how Decision Trees as MLT can be used to
solve this quite complicated problem. We will discuss the importance of this
new approach to geologists and petroleum engineers and the advantages that this
computing process has over other conventional methods. The mechanics by which
this technique achieves its objective will also be discussed. A real experimental
implementation on real field data with its results will be fully discussed. In
addition, we will show how the new approach of facies identification is reliable,
efficient, and more economical than the conventional method. Thus this technique
would assist geologists to make critical decisions about their geological models

without requiring much geological experience.



1.4 Motivation

The motivation of this thesis is centered on the following points:

e Investigating whether or not formation facies predication from well logs
data is feasible using the decision tree learning approach. Previous
work had considered the use of neural networks to solve similar
problems [Ali94,GE97]. No one explored the use of decision tree
learning techniques to solve this complex problem.

e Using the current manual process to solve this problem is tedious
and time consuming. We believe that this tool would help the geologist
considerably in predicting facies, and save a significant amount of time in
geological formation analysis. In addition, with relatively less need for core
measurement information, this tool will cut cost as well as time in the
process of facies identification.

¢ Following the current conventional process to solve this problem is
highly repetitive and needs to be done for every single well. Such
redundancy can be avoided by automating this procedure. The
constructed DT facies model has the automation characteristic to

escape the duplication of efforts done by the geologist.



1.5 Thesis Organization

In Chapter 2, we present basic background on geology and petroleum
engineering that is needed for this thesis. Chapter 3 highlights the
fundamental concepts of Decision Tree construction methodology.
Literature review of machine learning techniques in petroleum industry is
highlighted in Chapter 4. The main three chapters of this thesis are
Chapters 5, 6, and 7. Chapter 5 contains the core material of this thesis
where implementation, building, and testing of DT facies-model are
presented. The six steps that had been carried out to build an effective DT
model are fully discussed in this Chapter. In Chapter 6, we show that the
constructed DT model is general enough by conducting ten different tests.
In each of these tests, we use different wells to test the general performance
of the DT model. Finally, Chapter 7 contains the discussion and the

conclusions of this thesis, our major contributions, and future work.
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Geology Background

2.1 Introduction

To exploit a reservoir, the geological model must accurately define the
depositional environment and the effects of diagenesis on the pore
network. Current methods for establishing the geological model of a field
usually require subjective, qualitative interpretation of geological and
petro-physical data. Hydrocarbon reservoirs are heterogeneous and non-
uniform. However, these non-uniform and heterogeneous systems are

made of multiple homogeneous groups (facies) [Ali94].

10



The variation of porosity and permeability corresponds to lithologic
(facies) variation and this in itself fundamentally controls reservoir
behavior. Hence, reliable reservoir characterization leads into economic
success of reservoir management and development. However, one of the
major obstacles that impact production is that most reservoirs show some
degree of heterogeneity. Heterogeneity in a hydrocarbon reservoir is
known as the non-uniform, non-liner special distribution of rock
properties. Therefore, accurate reservoir description plays a critical role in
effectively estimating the performance of a complex reservoir [CT90].
Generally, highly accurate prediction of facies could be achieved through
core analysis. However, this process is very tedious and costly. Prediction
can also be based on well logs. This approach may be less accurate, but it is
considerably more economical since most if not all the wells in the

reservoir are geophysically logged.

2.2 Coring and Core Analysis

Coring and core analysis are integral part of formation evaluation that provide vital
information that is not available from either log measurement or productivity tests.
Coring simply means that a column sample is taken from the reservoir formation
(Figure 2.1). Core information includes detailed lithology, macroscopic definition

of the heterogeneity of the reservoir rock, and capillary pressure data defining fluid

11



distribution in the reservoir rock system [ADD90]. It also includes information on
the multiphase fluid flow properties of the reservoir rock. Core analysis is a very
important part of an overall reservoir evaluation program. It provides direct
evaluation of reservoir properties and also furnishes a basis for calibrating other
evaluation tools such as well logs. It can be used as an effective mean for
determining reservoir facies. It is more qualitative than logs in describing the
reservoir but only a small number of wells are cored whereas all wells are logged.
This is because coring and core analyses are very hard and expensive processes.
However, early plans for reservoir development should provide for coring a
reasonable number of wells [BMA95]. These well locations should be selected to

provide representative coverage of the whole reservoir.

Core
Sample

Figure 2.1: A core sample taken out from the formation

12



2.2.1 Obtaining Cores

A core is a sample of rock from the well section, generally obtained by drilling
into the formation with a hollow section drill pipe and drill bit. There is a
facility to retain the drilled rock as cylindrical sample (Figure 2.2) with the
dimensions of the internal cross-sectional area of the cutting bit and the length
of the hollow section. With conventional equipment, this results in cores up to

10 meters in length and 11cm in diameter.

It is frequently found that variation in drilling conditions and in formation rock
character prevent 100% recovery of the core. In addition, the core may also be
recovered in a broken condition. In general, two partially conflicting objectives
must be met when obtaining core samples [CT85]. First, a careful on-site
examination for hydrocarbon traces is desirable (e.g. gas bubbling or oil
seeping, and so on), in case an open whole drill stem test is possible and
desirable. Second, it is desirable to keep the condition of core unchanged as
much as possible prior to laboratory evaluation. We must emphasize that the

process of obtaining a core in its best condition is a very delicate and costly job

Figure 2.2: Cylindrical shape core sample
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2.2.2 Cores for Special Core Analysis

The selection of a core for special core analysis is frequently a rather loose
arrangement resulting from a reservoir-engineering request to the well-site
geologist to reserve some representative pieces. While this approach may be
inevitable with exploration wells, it should be possible to be more explicit
during development drilling when reservoir zonation may be better understood.
It is necessary to preserve samples from all significant reservoir flow intervals

and these intervals must span permeability ranges [ABKM94].

It is necessary to specify the basis for facies recognition, the amount of samples
required and the conditions for preservation, transportation and storage. In case
of doubt, it is preferable to preserve too much rather than too little, and the
geologist can always inspect the preserved core in the more controlled

laboratory environment.

2.2.3 Core Preservation

The objective of core preservation is to retain the wettability condition of a
recovered core sample, and to prevent change in petrophysical character.

Exposure to air can result in oxidation of hydrocarbons or evaporation of core
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fluids with subsequent wettability change. Retention of reservoir fluids (either
oil or water) should maintain wetting character, so the core may be stored
anaerobically under fluid in sealed containers. The core plug may be wiped

clean, wrapped in a plastic seal and foil and stored in dry ice [MA9S5].

Usually only samples for special core analysis are stored and transported under
these special conditions. The core for routine analysis, following visual
inspection at the well site, is placed in boxes, marked for identification, without
special care for wettability change or drying of core fluids. It is not really
known whether this has any effect on the state of core fill/replacement minerals

recorded in subsequent geological analysis.

2.2.4 Geological Studies

The purpose of a geological core study is to provide a basis for dividing the
reservoir into facies and to recognize the geometry, continuity and
characteristics of the various facies. The main areas of study involve
recognition of the lithology and sedimentology of the reservoir and its vertical
sequence of rock types and grain size. This is achieved by visual observation
and the result recorded as a core log. The recognition of depositional and post

depositional features is achieved by core description and by microscopic
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observation of thin sections from cores. In addition, the fossil assemblages also
provide indication of transport energy regimes (palynofacies analysis) which

help support sedimentological interpretations.

The environmental and depositional model of a reservoir is largely based on the
observations from individual cored wells but requires correlation of data
between wells and integration with other sources of information, in order to

provide insight into reservoir geometry and continuity.

2.3 Well logs

Well logs are measurements of the reflection of electric or radioactive waves that
have been generated by log devices. They can provide valuable information on
formations penetrated by the drill bit. Well logs and other types of logs can be
important tools for determining reservoir zonation [DBB95]. Electric and
radioactive logs can differentiate between sand and shale or between porous and
nonporous limestone (Figure 2.3). Well logs also show the net sand thickness,

which possesses permeability and contains recoverable hydrocarbon at each well.
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Figure 2.3: Well logs that are commonly used for reservoir and will be used in our study.

Generally, logs are available on all wells drilled in a reservoir and therefore, they
represent the most complete set of reservoir descriptive data. An expert geologist
should be consulted when analyzing logs for reservoir facies identification
[MBA95]. There are various types of well logs that are commonly used for

reservoir evaluation but the ones that initially interest us and will be used in our

study are the following (Table 2.1):
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WELL LOG DESCRIPTION

NAME
GR Gamma ray log to measure natural radioactivity.

ROBE Bulk density log to measure the electron density.

NPLE Neutron porosity limestone log, respond to
hydrogen in fluids.

Table 2.1: A list of the well logs that will be the essential input to DTL algorithm.

e Gamma ray (GR) log: Gamma ray log measures natural
radioactivities in cased holes in oil-based mud wells. It can differentiate
between shale and non-shale zone. Its natural radioactivity is greatest in
shale and least in carbonates and sandstone is slightly more radioactive

than carbonate one. (Figure 2.3).

e Bulk density (ROBE) log: This log is generally considered to be the
best porosity tool under most conditions. The density log is a contact
device containing a constant intensity gamma ray source and two gamma
ray detectors. The density log measures the electron density of the
formation and its contained fluids. Furthermore, the density of any

material is roughly proportional to its electron density. (Figure 2.3).
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e Neutron porosity limestone (NPLE) log: The neutron porosity tools
contain a constant intensity neutron source and a detector. Mostly
hydrogen atoms stop neutrons, so the intensity at the detector becomes
less, as hydrogen density becomes greater. Most reservoir rock material
contains little or no hydrogen, so the log responds to hydrogen in fluids
contained in the pores. In shale free sandstone or carbonate, the neutron

log can be a good porosity tool. (Figure 2.3).

2.4 Facies

Originally the term facies meant the general appearance or aspect of a rock. Today
facies is used in many ways. These include lithologic character, metamorphism,
biofacies, stratigraphic relations, structural form, and environmental influence.
The facies of interest to geologists, petroleum engineers, and to us in this study are
lithofacies and environmental facies. Lithofacies include the physical properties of
a rock such as color, mineral composition, bedding, etc. Recognition and mapping
environmental facies are important to reservoir engineers because the facies may
be thick, widespread and act as a single unit. For example, the term pro-delta
facies tells the engineer that although these rocks are probably of non-reservoir
quality, they can serve as cap rocks and source rocks but would be of no value as

receivers of water for reservoir maintenance [HNKE94]. In any depositional
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environment there are facies changes or variations reflecting non-uniform

conditions in either or all the source area.

Most reservoirs are deposited from water and are layered because of variations that
existed in the depositional environment. Slow moving water deposits mostly small
grain particles at a specific location, then when the water is moving much faster
relatively large particles will be deposited at the same place. This results in a
vertical series of dissimilar units [MAAN96]. Conditions will also vary from one
location to another at the same time. Many people think of reservoir formation
only in terms of net sand layers and impermeable streaks of sand or shale. This is
generally correct, but a smaller scale of different facies also exists within the net
sand layers. And although all of the net sand contains hydrocarbons and possesses
permeability, the degree of porosity and permeability can vary greatly. A reservoir
can be zoned based on well logs and core analysis data and it can be divided

vertically into zones or facies (Figure 2.4) [MAA94].

Figure 2.4: Reservoir can be zoned vertically into facies.
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2.4.1 Main advantages of facies identification

One of the key issues in the description and characterization of
heterogeneous formations is the distribution of various facies and their
properties. Therefore, to exploit a reservoir, the geological model must
accurately define the depositional environment and the effects of
diagenesis on the pore network [MMAA95]. Reservoir behavior is
fundamentally controlled by the variation of porosity and permeability.
However, the variation of these two most important proprieties of
reservoir formation rock corresponds to lithologic (facies) variation [GE97].
The following are some of the main reasons that make geologists and

engineers interested in facies identification:

o Qil saturation and productivity in any field highly depend on
facies and diagenetic modifiers that control connectivity,

heterogeneity geometries and dimensions of flow units.

e By identifying facies, you are indirectly estimating the porosity
and permeability of these zones, and this is a must for any

reservoir development, production, and management.
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e Understanding the field-wide relationships between depositional
facies, structural evolution and diagenetic overprint will be vital
to flow-unit correlation and permeability prediction in the

reservoir.

e The key to 3D reservoir characterization and modeling lies in
fully understanding the depositional framework and its

diagenetic evolution.

Figure 2.5 informally illustrates the importance of facies identification for

economic and successful reservoir description.



Figure 2.5: An abstract view to illustrate the importance of facies

2.5 Facies identification: Conventional approach

The task of estimating geological formation facies for a given reservoir has been
a very challenging and time-consuming problem for geologists. However, the
identification of these facies is a task that the geologist must do. There are

various types of well logs that can be used to help in identifying the general



reservoir characteristics. However, a highly experienced geologist who is
familiar with well logs must be consulted to identify the interdependence

between well logs and core on one hand and the facies on the other hand.

The three most commonly used well logs by geologists to identify the facies are
the gamma ray (GR), density (ROHE), and neutron porosity logs (NPLE) as
described in Section 2.3 [MA95]. These are the procedures followed by
geologists when describing facies from visual inspection of log-data curves

utilizing their past experience in doing so:

1. Identify which well logs from the drilled-well that will be used in the

identification of the facies.

2. Identify some wells that span the whole reservoir and have both the
selected-well-logs identified in step one, and also these wells which have

been cored.

3. Geologists rely on experience and memory of what facies exist, what
depositional environment exists; they examine the appearance of the log

curves in various depositional environments using graphical tools.

4. Geologists read the degree of fluctuation on each well log with correspond
to depth. They also inspect the degree of separation and closeness of the log

curves to one another, when drawn to the same scale.
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Figure 2.6: An illustration of Fluctuation, Separation,
and Closeness that are examined by geologists.

5. If the results read from the log curves and the core data relatively match,
then geologist is able to integrate what is seen on the logs to produce a

complete facies interruption.

6. This information goes into the geologist’s memory so that on other wells
where logs alone are available, the geologist can form as competent an

interpretation as was performed in wells where cores were also available.

7. In addition, geologists reason to a conclusion about facies description from
noisy, incomplete, and uncertain log data. Therefore, sometime geologists
apply log-to-facies correlation scenarios to select the most likely emerging

scenario.
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Although, the conventional approach that geologists follow to identify facies is
doable and gives a satisfactory result, this approach is tedious and time
consuming. This task is quite challenging and requires an expert geologist to
handle it. Moreover, the required expertise usually varies depending on the
physical location. Given the fact that abundance of historical data of well
log interpretation is usually kept, machine learning methods have high
potential to help in overcoming this problem. In Chapter 5 of this thesis,
we will study how the decision tree learning (DTL) approach can be

utilized to learn and predict geological facies from well-logs data.

26



CHPTER III

Machine Learning: An Overview

3.1 Learning From Examples: Popular Approaches

As mentioned in Chapter 2, our goal is to develop a classifier that
determines the type of facies at a given depth given well logs. One may
think of constructing such a classifier by manually writing a program for it.
For example, a classifier may be represented as nested if or case statements

so that new cases are matched against the conditions of these statements in
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order to make decisions. However, as the number of properties and the
number of previous cases get larger, the program becomes more expensive
and more difficult to construct. A promising approach to ease the
construction of such a classifier is to employ some learning mechanism
(Figure 3.1 & Figure 3.2) to automatically induce classifiers from actual

cases or examples that have been previously handled by the domain

experts.

Examples nj . D [Classiﬁer ]

Figure 3.1: Learning from example scenario

This scenario of extrapolating from the given training examples is useful in
real-world applications where it is difficult to manually turn human
expertise into a programmable form. For example, it may be hard for a
doctor to explicitly tell us what exactly the rules he/she follows to
diagnose a certain disease. On the other hand, it is relatively easy to collect
training data by gathering the doctor’s final decisions after examining
his/her patients. The conventional approach in expert systems research is
to ask the doctor about how he makes his decisions. His answer has then to

be encoded into a computer program, the expert system. In contrast, in the
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machine learning approach, we start by collecting a sufficient set of
examples, where each example consists of the symptoms of a patient and a
label that shows the doctor’s response. We then employ some learning
algorithm to automatically extract from these examples an appropriate
diagnosis rule (classifier) which simulates the rule used by the doctor.

This machine learning approach enjoys several advantages: (i) In problems
where knowledge is expert-dependent, one can simply learn from
examples handled by different experts, with the hope that this will average
the differences among different experts. (ii) Being able to construct
knowledge automatically makes the upgrading task easier since one can
rerun the learning system as more examples accumulate. Some learning

”

methods are indeed “incremen in nature. Figure 3.2 shows the

conceptual view of the training phase and performance phase.
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Figure 3.2: The conceptual view of the training phase and performance phase.

Classifiers induced on a training set (i.e. learn from examples) can be
represented in many forms. The common ones involve sets of
classification rules, neural networks, and decision trees. In this thesis, our
focus will be limited to the latter form of classifiers, i.e. decision trees.

However, we will briefly touch on the former two forms of classifiers here.

3.1.1 Classification Rules

In this thesis, we will restrict our attention to the task of learning

classification rules from previous cases or examples. Consider the simple
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task of deciding on a certain day whether to play soccer or not. Let us look
at how human would construct a decision rule for this task. First, he would
recall previous experiences regarding this task. Then, he would study
those experiences trying to detect the factors that led to the decision at each
experience. These factors or properties could involve the day outlook
(sunny, overcast, or rainy), the temperature, the rate of humidity, and
possibly whether it was windy or not. Table 3.1 shows two previous
experience with four properties of the weather along with the decision
made in each case. Based on the decisions made at such experiences, he

would then construct the desired rule that can be applied to make a

decision for future cases.

Outlook Temp (F) Humidity Windy? Class
Sunny 75 Normal True Play
Sunny 80 High True Don’t Play

Table 3.1: Two previous experiences each with 4 attributes and their

class

A classification rule for making a decision consists of a specification of the

values of one or more properties on the left-hand side and that decision on
the right hand side [Quin90]. One rule that can be derived from the

examples of Table 3.1 is
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IF (Outlook = sunny and Humidity = normal) THEN the decision is

to Play.

Learning classifiers as a set of rules is not easy because obtaining a small
and consistent set of rules to be used in classifying cases such that one rule

will match any single case is a difficult task [Quin90].

3.1.2 Neural Networks

The powerful operational capability of thinking, remembering, and
problem solving of the human brain encouraged scientists to attempt
simulation of its operation using computer models. Hence, the birth of
artificial neural networks (ANN) technology and the name “neural

networks.” Figure 3.3 shows the basic structure of an ANN.

Output layer.

w6

w5
wi b W4
X1 X2

Figure 3.3: The basic structure of an ANN
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An ANN is constructed from several artificial neurons, arranged in layers
and connected to each other with weights. Usually there are three layers in
a typical neural network: input units such as 4 and B that introduce
information from the environment to the network, hidden units such as C
and 2, and output units such as ‘E that carries the result. Each link has an
associated weight and some units have a bias. To process a case, the input
units are first assigned numbers between 0and 1 representing the attribute
values. The numbers of artificial neurons in the input and output layers
are predetermined by the application; however, the numbers of artificial

neurons in the hidden layer are determined by the NN training [MS97].

Referring to Figure 3.3, the processing element (PE) has several input paths
and usually combines their values by simple summation. This results in an
internal activation level of the PE. The combined inputs are transferred to
the output using a transfer function. The transfer function can be a
threshold function, which passes the information only if the combined
activity levels reach a certain value. Alternatively, the function could be a
continuous transfer function that regularly transfers the combined inputs.
The transferred value is generally passed directly to the output path of the

PE [MS97]. Since each connection has a corresponding weight, the signal
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in the input line to a PE is modified by this weight prior to being summed.

Thus, the summation value is called a weighted sum.

Several nonlinear functions are used to transfer the weighted sum of a PE.
The most commonly employed functions are sigmoid (f(x)= 1/1+e™)

and hyperbolic tangent function (tanh(x)=(e*- e™)/(e" + e™)).

The values of the network weights and the biases are learned through
repeated examination of the cases. The deviation of each output unit's
output from its correct value for the case is propagated back through the
network, where all relevant connection weights and unit biases are
adjusted, using gradient descent, to make the actual output closer to the

target [Murp97]. Training continues until the weights and biases stabilize.

NN may be considered strictly as “black box” classifiers. Decision trees
and symbolic rule classifier approaches produce classifiers in a symbolic
logical format that is intended to be meaningful to humans. Moreover, NN
requires a large amount of time to be trained. Cases are typically iterated
through the network thousands of times before the NN system converges

on a local minimum.



Furthermore, there is an important network design problem that remains
open: How many internal layers/units should a network have for a given
learning task? If this number is too large, the network will simply route
learn the training set and no induction will take place. On the other hand,
if it is too small, the network may never be able to converge on a solution
that is consistent with the set of cases. In addition there are many
parameters that a user needs to specify such as learning rate and the initial
connection weights. The reliance on many user-specified parameters as
well as the initial settings problem are factors that make decision tree
approach more practical than NN approach for industrial applications of

machine learning [Murp97].

3.2 Decision Trees

Let A be a set of attributes and Cbe a set of classes. A DT is a tree structure

with the following criteria:

e Each non-terminal node, called a decision node, is labeled with a
test involving one of the attributes in 4. The test has a finite

number of disjoint outcomes.

35



e Each outgoing branch from a non-terminal node corresponds to

one of the outcomes of the test at the node.

e Each terminal (leaf) node is labeled with one of the classes from

set C

A DT is used as a classifier by passing each example X that has A attributes
down through the tree beginning at the root (topmost) node. A test node
may contain a simple test of the form 4, > {where g is an attribute and £, is
threshold test. If the test is true, the example is sent down the “yes” branch
of the tree; otherwise it goes down the “no” branch. This process continues
until the example reaches a leaf node. Each leaf in the tree represents a
class (classification rule) [Quin96]. The conjunction of tests on the branches
from the root to that leaf constitutes the preconditions of that rule. Figure
3.4 shows a simple DT, which is a possible classifier for the soccer problem

described earlier in Table 3.1.
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Figure 3.4: A simple DT.

Many DT learning methods have been used for classification, most notably
C4.5 [Quin93] and CART. In this work, decision trees will be constructed

using the C4.5 package.

A DT represents only one approach to the concept learning problem. What

make DT preferable over other approaches are the following factors

[Quin9%6]:

1. A DT offers an efficient means for processing large data sets.
This is because the learning problem is being partitioned among

branches into sub-problems with smaller sets of training data.
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2. DT can be transferred into symbolic classification rules, as was
done in C4.5. These rules are symbolic since they are expressed
as simple high level conditions, and therefore, they are not

difficult for domain experts to understand.

3. Unlike NN, other than what is provided in the set of cases, as
parameters to the DT generation approach, no extra information

is required.

Looking at these factors, the DT learning approach has the potential for
being a powerful and flexible classification tool. However, one must be

aware of the following five criteria [Quin93].

1. The C4.5 algorithm should be exposed to the extremes of the data

to allow for optimum modeling.

2. The C4.5 should be disclosed to all significant variations in the
data to obtain a comprehensive view of the data. Therefore, the
training dataset that will be utilized for training C4.5 must

symbolize the major characteristics of the collected data.
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3. No duplication of training and testing data is allowed. This
means that none of the wells used in the training phase may

appear in the testing stage.

4. The number of the training and testing wells depends on the
complexity of the problem. This is to say that the amount of data
required is affected by factors such as the number of proprieties,
the number of classes, and the complexity of the classification
model. As these factors increase, more data will be required to

build a reliable model.

5. Selections of the attributes used to represent the cases have great impact

in the development of the DT model.

3.2.1 Basics of Decision Tree Learning

This section gives a quick overview of the process of DT construction. A DT is
induced on training set S, which consists of cases. Each case is completely
described by a set of attributes 4 = {a,, a,,..., a,} and a class belong to the set of

classes C = {c,, ¢;,..., cx}. The concept underlying a data set is the true mapping
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between the attribute set and the class label. A noise-free training set is one in

which all the cases are generated using the underlying concept.

The task of constructing a tree from the training set is called tree induction. Most
existing tree induction systems proceed in a greedy top-down fashion. Starting
with an empty tree and the entire training set, the following algorithm is applied

until no more splits are possible {Quin96].
e [f all the examples at the current node ¢ belong to class c;, create a leaf
node with class ¢; and return.

e Otherwise, score each one of the sets of possible splits of S, using a

goodness measure.

e Choose the best split s as the test at the current node, and create as

many child nodes as there are distinct outcomes of s .
e Label edges between the parent and child nodes with outcomes of s,

and partition the training data using s into the child nodes.

The algorithm is recursively applied on each subset S; of cases to generate a sub-

tree T;as illustrated in Figure 3.5.
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Figure 3.5: An illustration of recursive algorithm of DT.
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3.2.2 Attribute Selection

The tree generated by the top-down approach depends on the choice of tests at
each recursive call. From the same training data, many consistent DT (a tree that
matches the training set) can be constructed using a different choice of tests. Even
though these trees are indeed consistent with the training cases, some of them
might perform poorly when applied to unseen examples. In a tree building
process, any test that splits the set of cases S in a nontrivial way, such that at least
two of the subsets {S;} are not empty, will eventually result in a partition into
single-class subsets. However, the tree-building process is intended to build a tree

that reveals the structure of the domain, and therefore has predictive power

[Qunl96).

For that, we need a significant number of cases at each leaf. In other words, we
want a partition that has as few divisions as possible. Therefore, more compact
trees will be favored over larger trees. In fact, with compact trees, as more cases
are used to choose a test at each recursive call, the confidence in this choice

increases and so does the predictive power.

A DT building method is usually implemented in a non-backtracking, greedy
fashion. Once a test has been selected to partition the current set of cases, usually

on the basis of maximizing some local measure of progress, the choice is set and
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the consequences of alternative choices are not explored [Quin93]. With most data
sets, if attributes are selected randomly, classification performance of the
generated DT tends to be poorer than that of trees constructed with careful
attribute selection criteria. Obviously, we need a measure that indicates how good
choosing a certain test over another is. In the next section, two common

measurements are explained, namely, the information-gain and the gain-ratio.

3.2.2.1 The Information-Gain Criterion

One of the popular measures used to evaluate tests is the information-gain. The
information theory underlying this criterion states the following: the information
conveyed by a message depends on its probability and can be measured in bits as
minus the logarithm base 2 of that probability [Quin93]. For example, if there are
eight equally probable messages, the information conveyed by any one of them is
(-log, 1/8) or3 bits.

Let S be a set of cases and let freq(C, ,S) stand for the number of cases in S
that belong to class C;. And let the notation | S | to denote the number of cases in

the set S. For simplicity, we will consider a domain with two classes, P and N.

If we pick a case from the set S at random and say that it belongs to some class C,.
This message has probability freq(C,,S)/|S| and so the information it

conveys is
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-log,[freq(C,, S)/|s|1 bits. (3.1)

The expected information from this case is calculated by summing up the classes
in proportion to their frequencies yielding:

k
Info(S)=-X freq(C,,S)/|s| log,(freq(C,,S)/|S|) bits. (3.2)

i=1

This measure gives the average amount of information needed to classify a case in

S and is also known as the entropy of the set S.

Now let us assume that the set S has been partitioned based on a test X with n
outcomes. The expected information requirement can be found as the weighted

sum over the subsets as follows.

n
Info(s), = - X |S,|/|S| =x Info(s,). (3.3)

i=1

Therefore, the information-gain is

Info-gain(X) = Info(S) - Info(s,),. (3.4)

Information-gain measure indicates the information gained by partitioning S on the

test X. Therefore, the test that maximizes the information gain will be chosen.



3.2.2.2 The Gain-Ratio Criterion

One serious deficiency in the information gain measure is its bias favoring tests
with many outcomes. For example, consider a training set of cases from a
hypothetical medical-diagnosis domain. Let one of the attributes be the patient
identification, which is usually unique. If this attribute is to be used to partition,
we will end up with a large number of partitioned subsets, each of which contains
only one patient example. Since all of these one-case subsets necessarily contain
cases of a single class, Info(S), = 0, and the information gain from using this
attribute to partition the set of training cases becomes maximal. However, this
partitioning is useless for predicting new cases, especially if we have a large
number of cases with unique ID’s where it would be very costly to store the tree in

term of space [Quin97].

To correct this bias, the information-gain measure has to be adjusted by a kind of
normalization in which the apparent gain of attributes with many outcomes is
reduced. This is done by considering the outcome of the test to classify a case
instead of the class to which the case belongs. By analogy with the definition of

Info(S), we have

n
SplitInfo(X) = - X (|s,{/]|s| log, |S,|/]|S])- (3.5)

i=1

45



While the information-gain measures the information relevant to
classification that arises from partitioning the set S into n subsets, the
SplitInfo represents the potential information generated by the same

division [Quin93]. The gain-ratio is therefore

Gain-Ratio(X) = gain(X) / SplitInfo(X) (3.6)

The gain ratio measures the proportion of information generated by a
useful split, i.e., a split that seems to help classification. The test that

maximizes the ratio above is to be selected.

3.3 DT Size and Pruning

One of the main difficulties of inducing a recursive partitioning structure is
knowing when to stop splitting the training cases and growing the tree.
Obtaining the “right”-sized trees may be important for several reasons,
which depend on the size of the classification problem [Quin96]. The
critical issue is the relationship between the size of the tree and its accuracy
with respect to both the training and the testing phase. A large and
complex tree that had been constructed from training examples might fit or

sometime over-fit all cases in the training set leading to good accuracy with



respect to the training data. However, that tree might have poor or non-
acceptable performance with respect to the unseen test data. Therefore, a
simpler tree might have less accuracy with respect to training data but it

will be more general and it will have better performance with respect to

the unseen data [Quin93].

Pruning is one method most widely used for obtaining right size trees.
There are basically two ways in which the recursive partitioning method
can be modified to produce simpler trees: deciding not to divide a set of
training cases any further, or removing retrospectively some of the

structure built by recursive partitioning [Quin93].

The former approach, usually called stopping or pre-pruning, has the
attraction that time is not wasted assembling structure that is not used in
the final simplified tree. The typical approach is to look at the best way of
splitting a subset and to assess the split from the point of view of statistical
significance, information gain, error reduction, or any other criterion.
Breiman et al suggested the following procedure: build a complete tree, a
tree in which splitting no leaf node further will improve the accuracy on
the training data, and then remove sub-trees that are not contributing

significantly towards generalization accuracy. It is argued that this
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method is better than stop-splitting rules, because it can compensate, to

some extent, for the sub-optimality of greedy tree induction.

3.4 Evaluation of DT

Generalization performance means how well a DT is able to classify new
unseen cases. Naturally, one can always build a tree that achieves 100%
accuracy on the training set. Usually, however, we would like to know
how accurate a tree will be at classifying other, unseen examples drawn
from the same distribution as the training set. To estimate this accuracy, a
standard practice is to reserve a portion of the training data as a separate
test set, which is not used in building the tree. The accuracy of the tree on

this test set is then used as an estimate of the accuracy for unseen examples

[Quin%6, MS97].

3.5 The C4.5 software package

In this study, we are going to use C4.5 as the software package to build the
DT classifier. C4.5 is a commercially available software package released
by Quinlan. C4.5 requires a “filename.names” which will include the
domain’s classes and attributes. Also, C4.5 needs a “filename.data”

which will include all the examples from the training data set. This
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“filename.data” will be the input for C4.5 at the training phase. The
examples in “filename.data” will provide knowledge about the
domain in general. However, to provide information on an individual
example will require spelling out the variables for each example separated
by a comma, followed by the case-class, and then by a dot to indicate to
C4.5 the end of each example. A “filename.test” which will include

unseen examples from the testing data set is also needed by C4.5.

We will now consider a small example, intended to illustrate the input to
and the output of C4.5. The “Labor-neg” is an example that records the
outcome of Canadian contract negotiations in 1987-1988. The first step is to
define the classes and attributes by preparing a file 1labor -neg.names, shown
in Figure 3.6. The file specifies the classes (in this example, good and bad), then
the name and description of each attribute. Some attributes, such as “duration”
and “wage increase first year”, have numeric values and are described
Just as continuous; others, such as “pension” and “vacation”, have a small

set of possible values that are listed explicitly in any order [Quni93].
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|Classes

foennnn-

good, bad.

| Attributes

| oeeeeeaee

duration: continuous

wage increase first year: continuous

wage increase second year: continuous

wage increase third year: continuous

cost of living adjustment: none, tcf, tc
working hours: continuous
pension: none, ret_allw, empl_contr
standby pay: continuous

shift differential: continuous
education allowance: yes, no
statutory holidays: continuous
vacation: below average, average, generous
longterm disability assistance: ves, no
contribution to dental plan: none, half, full
bereavement assistance: yes, no
contribution to health plan: none, half, full

Figure 3.6: File defining labor-neg classes and attributes (Labor -neg.names)

While Figure 3.7 is a snapshot of the 1abor-neg.data that will be used

as input to the C4.5 at the training phase to construct a DT model.
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Figure 3.7: A snapshot of the labor-neg.data.
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Also C4.5 needs a “filename.test” which will contain the examples from
the test data set. In this example, Figure 3.8 shows a sample of the labor-
neqg. test that will be used as input to the C4.5 at the testing phase to test the

general performance of the DT model [Quni93].

one, ?,none, ?, ?,yes, 11, average, no, none, no, none, bad

none, 38, empl_contr,?,?,yes, 12, ?,yes, none, yes, full,bad
tc,39,empl_contr,?,?,?,12,average, ?, ?,yves, ?,bad

tcf, 40,none, ?,?,?,11,below average,?,?,ves, ?,bad

none, 40,none, ?,3,?,10,below average, no,none, ?,none,bad
?2,40,?2,?,2,n0,10,below average,no,half,?,half,bad

none, 40,?,?2,5,?,11, average, ?, full,yes, full, good

tcf,38,?,2,2,2,?,?,yes,half, ?,half,good

none, 38,?,14 5.,?,11,below average,yves,?,?, full,good

one,40,ret_allw,?,?,?,11,average,yes, full, ves, full,good
e 2,2,2,2,?2,11,?,yes, full, ?,?,good

cf,.,empl contr,?,?,yes, ?,?,yes, half, yes, ?,good
tcf,35,2,?,2,7,13, generous,....Yes full, good

none, 40, empl_contr,?,6,?,11,average, yes, full, ?,full, good

none, 38, empl_contr, 10, 6 9 .11, generous, yes, ?, ?, full, good

0,2,40,2,?2,2,2,12, average,.,half ves,half, good

.0,2,35,?2,2,14,?,9,generous, yes, full, yes, full, good
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Figure 3.8: A snapshot of the labor-neg.test.

The output of the decision tree generator in this example appears in Figure 3.9.
After a preamble recording the options used, it shows the constructed DT as well
as the simplified DT after pruning. It also shows evaluation results on the

training and the testing data before and after pruning.
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C4.5 [release 5] decision tree generator Sat Sep 19 19:21:10 1998

Options:
File stem <labor-neg>
Trees evaluated on unseen cases

Read 40 cases (16 attributes) from labor-neg.data
Decision Tree:

wage increase first year <= 2.5 :

| working hours <= 36 : good (2.0/1.0)

| working hours > 36 :

| | contribution to health plan = none: bad (5.1)
| | contribution to health plan = half: good (0.4/0.1)
| | contribution to health plan = full: bad (3.8)
wage increase first year > 2.5 :

| statutory holidays > 10 : good (21.2)

| statutory holidays <= 10 :

| | wage increase first year <= 4 : bad (4.5/0.5)
| i wage increase first year > 4 : good (3.0)

Simplified Decision Tree:

wage increase first year <= 2.5 : bad (11.3/2.8)

wage increase first year > 2.5 :

| statutory holidays > 10 : good (21.2/1.3)

| statutory holidays <= 10 :

| i wage increase first year <= 4 : bad (4.5/1.7)
i | wage increase first year > 4 : good (3.0/1.1)

Tree saved

Evaluation on training data (40 items):

Before Pruning After Pruning
Size Errors Size Errors Estimate
12 1( 2.5%) 7 1( 2.5%) (17.4%) <<

Evaluation on test data (17 items):

Before Pruning After Pruning
Size Errors Size Errors Estimate
12 3(17.6%) 7 3(17.6%) (17.4%) <<

(a) (b) <-classified as
10 1 (a): class good
2 4 (b): class bad

Figure 3.9: The output of C4.5 on labor-neg data.
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C4.5 implements and supports all the features that had been discussed in this

chapter such as pruning of decision trees, Information-gain, and gain ratio. In

addition, the following are some of the other features that are C4.5 supports

[Quni93]:

Accounting for unavailable values: It is an unfortunate fact of life that data
often has missing attribute values. This might occur because the value is not
relevant to particular case, was not recorded when the data was collected, or
could not be decipher by the person responsible for putting the data into
machine-readable form. Such a situation can be handle by either a significant
proportion of available data must be discarded or the algorithms must be
amended to cope with missing attribute values. In most situations the former
course is unacceptable as it weakens the ability to find patterns. C4.5 handles
such case by replacing a question mark for the missing values and treating only

that value for that specific example as ignored attribute [Quni93].

Handling different data type input: The input attributes for C4.5 may have

either discrete values such as days_of_the_week (Sat, Sun, Mon,...) or

they may have continues values such as age [Quni93].
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¢ Rule derivation: C4.5 also has the capability to produce rule classifier
that is usually about as accurate as a pruned tree, but more easily

understood by human [Quin93].
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CHPTER IV

Literature Review

4.1 Introduction

A handful of articles reporting the use of some machine learning techniques in the
petroleum industry has appeared in SPE (Society of Petroleumm Engineers)
conferences and related proceedings and publications in the last few years. Some
of the articles discuses the use of MLT as a means to analyze formation

lithology from well logs while others center on the use of MLT as a
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methodology to pick a reservoir model to be used in conventional well test

interpretation studies [MAA94].

Notably, however, the reported work is limited to the use of feed-forward neural
networks. It is well known that NN suffer the important shortcoming that they are
not comprehensible by humans and can only be used as a “black box.” The use of
other symbolic machine learning techniques (particularly those based on decision
tree learning), which are expected to be more suitable for the intended task, has
never been investigated. The following sections highlight a sample of problems in

the petroleum industry that have been dealt with using artificial neural networks.

4.2 Permeability Prediction/Estimation

Conventionally, core analysis and well test data interpretations are the
most reliable way of acquiring permeability values of a formation.
Dependency of rock permeability on parameters that can be measured by
well logs (which are much less costly compared to core analysis) has
remained one of the most fundamental research areas in petroleum
engineering. It has not been possible to capture such dependency
satisfactorily by means of conventional computing. Mohaghegh et. al.
[MAAN96] suggested the use of neural networks to capture such

dependency. Training a three-layer feed-forward neural networks using
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geophysical well log data, they have been successful in
predicting/estimating the permeability of a highly heterogeneous

formation in West Virginia [MBA95].

4.3 Hydraulic Fracturing

Successful prediction of well performance after fracturing is very
important for any company, since it can reduce the cost by not performing
fracturing on wells that will not show any improvement. Two and three-
dimensional models are frequently used for fractal design and monitoring
[MBAD96]. Use of these models, however, requires detailed information
about rock mechanics and reservoir characteristics, which may be difficult

to obtain due to heterogeneties and excessive costs.

Basic well information such as reservoir thickness, porosity, depth, tabular
design, initial open flow, offset production, flow tests is usually readily
available with no extra costs. This information, however, is generally not
usable as engineering data for hydraulic fracture design and post-fracture
well performance prediction. Mohaghegh et. al. [MAAN96, MA95]
followed a hybrid, neuro-genetic approach to optimize fracture design and

predict well performance from abundant historical information in a close
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geographical area with multiple and varied hydraulic fracture. Their
method accepts available data on each well, which includes basic well
information and production history, and (as reported in [MBAD96,
MHA96]) provides engineers with a detailed optimum hydraulic design,

along with the expected post-fracture deliverability [MHA96].

4.4 Estimating PVT Properties of Crude Oil

The importance of PVT properties such as bubble point pressure, solution
gas-oil ratio, and oil formation volume factor makes their accurate
determination necessary for reservoir performance calculations. Gharbi
and Elsharkaway [GE97] present neural network based models for the
prediction of these PVT properties. They give a comparative study that
suggests that the results predicted by their neural network models are

superior to those predicted by other correlation methods [GE97].

4.5 Zone Identification in a Complex Reservoir

One of the key issues in the description and characterization of
heterogeneous formations is the distribution of various zones and their

properties. White et. al. [WMMAU95] presented a study in which several
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artificial neural networks were designed and developed for facies
identification in a heterogeneous formation from geophysical well logs in
Granny Creek Field in West Virginia. Well log data, on a substantial
number of wells in this reservoir together with core analysis results from
few wells, were utilized to train the networks for zone recognition.
According to the reported results, the prediction performance indicated
that neural networks could be a useful tool for accurately identifying the

zones in the complex reservoir [MA A94, WMMA95].
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CHAPTER YV

Formation Facies Identification Using Decision Tree
Learning

5.1 Introduction

Almost all reservoirs show different degrees of heterogeneity, which make
the identification and predication of various geological facies a very
complex problem. However, the identification of these facies is a task that
the geologists must do since these facies usually influence the hydrocarbon
movement, distribution, and management. Observing similarities in well
log trace thickness, shapes, and vertical position in geological sequences,

expert geologists are often able to predict facies with fair accuracy. They



are also able to give at least tentative geologic interpretation to their
findings. Other data besides well log traces are sometimes used to
improve the quality of prediction, but traces contain a large amount of

information and are used extensively for this purpose [Well88].

The manual approach in facies prediction, even though proven to be
doable, is tedious and very time consuming. Therefore, it is highly
desirable to reproduce the human reasoning that will be used to identify
geological facies from well logs using some automated machine learning

approach.

In this thesis, we are going to introduce DTL approach to help geologists
identify geological formation from well logs. The DTL method attempts to
emulate the manual process done by an expert geologist. Operations of
this method shall not require extensive knowledge of geology or an
experienced geologist. The main input to the DTL algorithm (DTLA) will
be well logs, cored data at the training phase only, and other computed or
inferred data such as the geologists’ knowledge about the reservoir. The
output of the developed DT model will be the geological facies as shown in

Tablel.1.
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In general terms, we have divided the process in this project into the
following three phases:

1. Data capturing and preparation phase.

2. DT model development phase.

3. Testing and verification phase.

Figure 5.1 illustrates the abstract view of this process.

Data < Data PData Data

ldentitication C olfcetron Franstormation classtfication

Lramine Lunine ' . Desclopine 7o

Fost

D1 Noded \orilication \naly zine

Figure 5.1: An abstract view of the project process
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5.2 Data capturing phase

Data collection and interpretation play a very substantial role in the
development of DT models to predict formation facies from well log
responses. This process requires the integration of several disciplines such
as geophysics, structural geology, and log interpretation. The generally
low-cored cover leads to an approach, which uses hole logs data to obtain
detailed facies information from uncored sections and wells. Therefore, a
database of various types of well logs is accessible as a common practice
for automatic lithology determination from these well logs. However, the
quality of a DT facies-model not only relies on the quantitative data
available, but also on the quality of this data [MS97]. Therefore, the
performance and the accuracy of the developed DT facies-model adheres
directly and very much to the accuracy of the input data presented at the
outgrowth stage. The DT facies-model quality thus appears to be
complexly controlled by both the “data capturing and interpretation”
phase and the “development, training, and tuning” phase. Development
of the DT facies-model requires various procedures and coordination with
other groups. The following are several series of steps needed to be
completed in the first phase of this thesis; Figure 5.2 pictures the

conceptual view of this process:
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. Identify which well logs to be used as an input to the DTLA.

. Identify key wells that will be employed in the development of a
DT facies-model.

. Create a database by gathering well logs, core data, and
computing various petrophysical variables that will be used in
building the estimation model. Well logs data usually is
downloaded from a common well log database.

. Preprocess and transform the data to place it in the right formats
for DTLA.

. Partition the data into either training data set or testing data set.

Tdentity well Tous to be [dentity Key wells to be

sed used

3 -3
2,
N

N
Create database by
Dovwnload data
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Forat

Classity data

; ) )
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Figure 5.2: An abstract view of data capturing process
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5.2.1 Determining relevant well-logs

A key activity in the life of a well is the acquisition and good interpretation
of well logs data. Different service companies in general supply data
obtained at the well site (wireline logs, cores, cuttings, drilling logs, etc.) to
the client (geologists and engineers). In other words, the “raw data
signals” have to be processed and converted into formation response
signals. These steps are performed separately somewhere else, either by
the service company supplying the data or by conventional petro-physical
analysis systems. Generally, logs are available on all wells drilled into the
reservoir. Therefore, they represent the most complete set of reservoir

descriptive data [Boom95].

There are tens of various types of well logs that are commonly used for
reservoir evaluation. Foretelling which logs would be most substantial for
facies description seems to be unrealizable for our case study. It is not
known before approaching a problem like this which logs are going to
respond to the desired facies to be identified. Thus, not only the quality of
data provides a test of how well DTL technology can perform an

interpretation of the data, but also for a sound prediction of the facies to be
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made between wells, there must be data commonality between all the

wells.

In our project, with the assistance of an expert geologist, we
distinguishably identify well logs (Table 2.1) to be the most collective and
interesting ones for our study. Henceforth, whenever we refer to “essential
variables” we mean the three well logs in Table 2.1 plus the depth indictor.
As will be demonstrated in our case study, using only these essential
variables as input to DTLA does not lead to satisfactory results. Therefore,
additional variables will be added to enhance the discrimination between
facies. For example, DEN_m_POR is an additional variable that represents
the difference between the density log (ROHE) and porosity log (PNLE)
after normalization. These additional variables will be explained in detail

later in Section 5.5.

5.2.2 Key-wells identification

Following the naming of the essential well logs that will be used as
fundamental input to DTLA; key wells need to be selected to prepare
petro-physical database for facies detection. Singling out these wells

followed basically four criteria:

66



1. Representative wells must cover all the existing facies of interest
in the field as defined by regional geology.

2. The elected wells must have been cored to allow a comprehensive
comparison between the result from geologist analysis and the
outcome of the developed DT facies-model.

3. These wells must have a modern logging suite containing at least
GR, ROBE, and NPLE.

4. Not only must these wells possess both the well log suite and

have been cored, but they must also span the entire reservoir.

A substantial number of wells in the reservoir used in our experimental
work were available with complete suite of well log data. Core analysis
results were also obtainable for quite a few wells. A set of sixteen wells
was picked to train, develop, and test the DT facies-model. Table 5.1 shows

the selected wells with their associated region within the field.

REGION WELLS
Regl X0050, X0091, X0101, X0141
Reg2 X0206, X0238, X0246, X0271, X0291, X0301, X0341,
X0386, X0441, X0461, X0486, X0526

Table 5.1: A list of the wells and their associated regions that have been used in this project.
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Thirteen wells from the sixteen are utilized for training. The input to the
C4.5 will be examples that consist of well logs as their attributes and
previously determined facies as their classes. The facies are determined at
the laboratory using the core samples that had been taken form the wells.
Based on the geologist suggestion, we hold on the data from the other
three wells to test the DT facies-model constructed at the training phase.
These three wells also have the well log data with earlier determined facies
from core analysis data. This allows us to compare the results found by the

DT facies-model against the core analysis result.

5.3 Data preparation phase
In our study, it has been found that data preparation is a remarkably
significant phase to be carefully carried out. The data preparation stage

contains two major steps:

1. Data editing and depth matching: physo-geologists and possibly well
log analysts do these tasks. At this step, log data are examined for
spurious reading and edited where possible. Depth matching is known
to be fundamental to maximize the correlation between predicted and
observed data. This is particularly important for the core data because

of its central role in defining the relationships between the data used to

68



predict facies and the core analysis data. Although we do not perform
this step, we must make sure that the quality of the process has been
followed correctly. For example, in our data, there was one case where
well X0091 had some large GR values which very much indicates to us
that there is some noisy data that had not been caught by the data

editing process.

2. DP4FP (data preparation for facies prediction): This is a C language
program that has been written by us to carry out some data
groundwork for DTLA. The objectives of this program are as

follows:

¢ Downloading data: Download the well log data from the well log
database (Model 204 MVS database). For each of the selected key
wells, data are downloaded and stored in a stand-alone flat file
named with the same name as the well name.

¢ Reading and merging data: Core analysis is done as a separate
job at the laboratory. Therefore the core analysis results, which
include the facies identified from the core, are stored exclusively
from the well log data. Table 5.2 is a sample of the output file

that contains the core analysis results. This file consists of the well
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name, the depth interval at which the core had been completed,

and the associated facies that have been found from the core.

Well name Core’s depth intereal  Tacies identified

X0091 4320 .. 4390 ss
4391 .. 4435 sS
4436 .. 4488 LG
5412 .. 5440 DOP

X0101 4110 .. 4173 Ss
4174 .. 4255 BB
4256 .. 4365 SS
5170 .. 5310 OAP

Table 5.2: A sample of the output file that contains the core
analysis results.

It is the responsibility of DP4FP program to read and process both the core
analysis output-file, on one hand and the set of all well-logs-data flat files,
on the other hand. These files are merged into a single output database
that is used later as a source to originate both the training and the testing

data sets. The depth interval read from the core analysis file is processed

70



and outputted at foot-by-foot measurement to match that of well logs

output files.

5.4 Data transformation

The main objective of this step is to pull out the data and to transform it
and put it in the right format for C4.5 algorithm. Data will be presented to
C4.5 as cases and there will be one case for every data point, i.e., for every
one-foot depth in the format shown in Section 3.5 . Each case is concerned
with the values of the well logs and the core-facies measured at that

specific point of depth.

5.5 Computing and adding additional variables:

In some domains, a classifier can not easily capture the relationship
between variables and classes. Therefore, for a classifier to recognize a
pattern between the variables and the classes, additional variables are
passed to it as well. In our case, such auxiliary variables could be
inaugurated for example by computing the derivative of some logs, taking
the average over certain depth intervals, or the difference between two of

the essential parameters.
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One of the most significant tasks that DP4FP performs is to compute
additional parameters out of the essential ones. We found, as will be seen
from the cases studied, that the DTLA (C4.5) can not recognize the various
facies satisfactorily if only GR, ROHE, PNLE, and depth indicators are
provided as input. Therefore to avoid this problem, for every data point
we invented and introduced new variables. These new variables that were
added either had been computed from the essential ones or symbolize

some kind of known geological facts about the reservoir.

Note that these additional variables can not be haphazardly guessed at or
added. A wrong addition of variables might lead into a construction of a
more confused tree that will produce less accurate predictions. The course
of discovering and deciding on these variables has consumed a large
portion of the DT facies-model development time, because for every
additional variable used as an input to C4.5; one must do the following

tasks:

1. Modify DP4FP to compute this new parameter and then run it to
construct both the training and testing data sets to output this

computed variable into these data sets.
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2. Run C4.5 and check how this variable influences the final size

and the accuracy of the assembled DT.

3. Test the produced DT on the test dataset (unseen examples) and

compare its results with and without the addition of this variable.

4. Decide whether to encompass that variable as an input
parameter or declare it as an “ignored ” one. Ignored input
variables to C4.5 are not used to build the DT model, which
means that the variable will have zero contribution in the final

classifier.

Table 5.3 lists the substantial additional variables that were computed or
added to help C4.5 captures the main relation between the input and the

output.
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ADDED

VARIABLT

NAMT
GR_bd

GR_ad
ROHE_bd
ROHE _ad
PNLE_bd
PNLE_bd
GR_m_DEN
GR_m_POR
DEN_m_POR
OAP_or_DOP
Pos_lico
Region

GRM

DENM

PORM

DESCRIPTION

GR[previousdepth] ~ GR[current depth]
GR[nextdepth ] - GR|currentdepth]
ROHE[previous depth] - ROHE|[current depth]
ROHE[nextdepth ] — ROHE[current depth]
PNLE|[previous depth] - PNLE[current depth]
PNLE[nextdepth ] - PNLE[current depth]
Difference between GR and ROHE after normalization
Difference between GR and PNLE after normalization
Difference between ROHE and PNLE after normalization
Possibility that this is OAP or DOP area

Possibility that this is LICO area

Sector the whole field into three regions

Cal. mean of the GR for estimated vertical interval.

Cal. mean of the ROHE for estimated vertical interval.

Cal. mean of the PNLE for estimated vertical interval.

Table 5.3: A List of the substantial new variables that had been computed or added
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5.6 Training phase

After the collection and the transformation of the data, two subsets should
be extracted from it, the learning subset and the validation one. The
learning subset is utilized to train C4.5 to construct the DT facie-model.
The collection of training data was based on the five criteria that have been

mentioned in Section 3.2.

1. Data collected for thirteen wells (X0050, X0091, X0141, X0238, X0246,
X0271, X0291, X0301, X0341, X0386, X0441, X0461, and X0486) were
utilized for the system training. In this process, the C4.5 was
provided with log data and additional computed parameters as the
input. It was also provided with the definition of the various facies

found from the core.

2. Data is presented to C4.5 as one training record per one-foot of

depth. These records are formatted as shown in Table 5.4.
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Depth | Essential Variables | Added Variables Class
El | E2 | E3 [ A1 | A2 | A3 | A4 A,
5000 [2325]3.22]0254[086)|0.03/122| 3 N [ SS
5000 2325322 10254 (0.86(003)|122]| 3 N | SS
6119 |3467|244 | 031 ([059)0.04[145] 1 Y | DOP
6120 |35.01 2340289 062]0.04|139] 1 Y | DOP

Table 5.4: A sample of input data used to train C4.5

3. At this point, the C4.5 builds a DT model that is hoped to be capable
of predicting the output from a given set of input for unseen

examples.

During this phase, one must bear in mind the fact that the simpler the
constructed DT, the better the generalization. Therefore, a revisit and
tuning of the input data seems to be a must. As you will see from the cases
studied, the tuning and the massaging of the input data can be achieved by
deciding on the right set of input variables. The main objective of the
variable selection is to obtain a DT model that has a better performance

based on the selected input parameters.
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5.7 Model Verification Phase

The main objective of this step is to evaluate the performance of the DT
model over new unseen data or wells. However, this phase is very
important to determine whether further training data needs to be collected
to build the DT model or maybe a different way of training needs to be

done. The testing phase is conducted as follows:

1. The data collected from three wells (X0101, X0206, and X0526) were
utilized for testing the DT model. The geologist suggested these three
wells to be retained to test the accuracy and the performance of the

developed DT model.

2. In this phase the C4.5 was provided with only log data and additional

computed parameters when available.

3. Although core-facies definitions were accessible for all the examples in
the test data set, no definition of the various facies were provided to the
constructed DT model. At this stage no updating to the constructed DT
model is done. The facies predicted by the DT model is compared
against the core-facies. Table 5.5 shows a snapshot of some data for

well X0101 that has been used in testing phase.
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Depth | Essential Variables | Added Variables
El | E2 | E3 | Al | A2 | A3 | A4 A,
4612 | 33,53 | 522 1 0.314 [ 099 {007 151 | 2 N
4613 | 23.25|3.22 10331 {0890.06 149 2 N
5877 | 26331402 023 [074]0.05/135| 3 Y
5878 | 26.55 | 3.98 | 0.30 [0.73]0.06 {159 3 Y

Table 5.5: A snapshot of some data for well X0101 that has been
used in testing phase

4. Just as in the training phase, data was presented to C4.5 for every one-

foot depth.

5. The DT model tests one testing record at a time. For each record, it will

try to predict the facies from the given set of input parameters.

Once all the examples in the test dataset are examined, we start evaluating
the final results of the DT model. This is done by co;nparing the predicted
facies from the DT model with the facies known from the core at foot-by-
foot basis. The goal of the evaluation is to achieve a DT model'’s error that
is relatively small and acceptable. A close study of facies that have been
mismatched and where these mismatches occur could benefit us in doing

the following tasks:
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¢ Adding additional input variables such as incorporating some kind of
known geological facts about the reservoir and presenting these facts as
input parameters to C4.5. This helps in building a DT model that makes

better predictions at the testing phase.

e Removing variables with little or no influence on the outcome.

This is done with the main objective in mind, which is to achieve the best
facies predication. Again, this is consummated in a way such that the last
measured error in the DT model, over the test data, is relatively low and
reasonable. An iterative process by going between the training phase and

testing phase is necessary to fulfill this goal.

5.8 Case study

This thesis details experiments done on a real oil reservoir field. The
formation in this field is coarsening upward skeletal limestone that ranges
from 390 to 450 feet in thickness. The lower one-half to two-thirds of the
section is dominated by mudstones grading upwards into mudstones to

wackestones and finally into wackestones to packstones. The field is a
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massive fossilized carbonate structure, which owes its origin to the

activities of a multitude of marine organisms.

A distinct advantage in petroleum geology is the ability to predict
sedimentary facies. To reduce the possibility of an undetected facies
between any two studied wells, the wells should be sufficiently closely
spaced. Sample spacing of the cored section should also be as close as
practically possible. The data presented in this study have been gathered
from 16 wells, thirteen of which are used for training and the other three
wells, for testing. Both core and logs data were obtained for all the sixteen

wells.

The wells that had been utilized for training were X0050, X0091, X0141,
X0238, X0246, X0271, X0291, X0301, X0341, X0386, X0441, X0461, and
X0486, while X0101, X0206, and X0526 were used for model verification as
suggested by geologist. The above mentioned information holds true for all
the following six-step case study unless stated otherwise. 2667 examples

were utilized for training and 681 unseen examples were used for testing.
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5.8.1 Case Study: Initial Step

Gamma ray, bulk density, and the neutron porosity logs are the most
commonly used well logs by geologists to identify geological facies. A
highly experienced geologist who is familiar with well logs is usually
consulted to identify the association between these three well logs and the
core result, on one hand, and the facies, on the other hand. The goal of the
first step of this case study was to explore whether using only these
essential logs (Table 2.1) as input to C4.5 can lead to good predication of
geological facies. The input to the C4.5 was only the essential well log

variables as shown in Table 5.6.

Essential input parameters

GR ROHE NPLE DEPIND

Table 5.6: Input to the C4.5 for step 1.

Table 5.7 summarizes the evaluation of the training and the testing results

of the initial step.
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Betore pruning Atter pruning

Results

Training

6.7

Festing

663 336 345 | 50.7 | 493 | 353 328 | 48.2
Table 5.7: A summary of training and testing results for stepl.

Table 5.8 shows for each facies how many of a specific facies occurs and
how closely it has been predicted. For example, there are 123 cases of type
LG facies and 90 of them were classified correctly. Whereas, 30 cases were
misclassified as SS and 3 were misclassified as BB. The larger the values on
the diagonal of that matrix the better the predication and we prefer the
distribution of the wrongly classified facies to be as close to the diagonal as

possible.

- DOP

LICO OAP

-
SS
BB 9 86 18 0
.G, 30 3 90 0

LICO 38 12 6 82
OADP 15 1 0 20
DOP 1 2 0 26

Table 5.8: Confusion matrix for the test data evaluation in step 1.

N W|OIOIO|IO

olR|~|ololo

The results of this experiment indicated to us that using the DT model that

had been assembled using only the essential input variables at the training
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phase is insufficient to recognize the facies for the test wells. To alleviate
this problem, we thought of introducing additional input variables to be

passed to the DTLA. This led us to the next step in our case study.

5.8.2 Case study: Step Two

In the conventional approach, the geologist visually and manually inspects
well log curves and depends on past experiences to describe facies. In this
process, the geologist does not inspect these curves based on foot-by-foot
approach. However, they bear in mind and inspect these curves interval-
by-interval. To somehow mimic the geologist in doing so, we had to think
of a way that can tell the DTLA the values of GR, ROHE, and PNLE for a
certain interval above and below the current point. For example, let us
assume that the current example that had been passed to DTLA is at a
depth of 405 feet and that the essential input to C4.5 for that example is the
record 405, 26, 3.0, and 0.25 that correspond to DEPIND, GR, ROHE, and
PNLE, respectively. Then if we assume further that the interval we would
like to assemble consists of five points above and five points below the
current point, we add two new variables that are GR_da and GR_db that

are calculated as shown in Figure 5.3.
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GR_da:

Total_value = 0.0;

FOR I=currentdepth +1 TO current depth + interval size DO
Val = abs( GR[curent_depth] — GR[I] );
Total_value = Total_value + val;

END_FOR

GR_da = GR[current_dpeth] - Total_value/ interval size;

GR_db:

Total_value = 0.0;

FOR I = current depth - interval size TO currentdepth -1 DO
Val = abs( GR[curent_depth] — GR[I] );
Total_value = Total_value + val;

END_FOR

GR_db = GR[current_dpeth] - Total_value / interval size;

Figure 5.3: Calculating GR_da and GR_db.

The same procedure is used to calculate ROHE_da, ROHE_db, PNLE_da,

and PNLE_db. Training and testing in the same data used in the initial

step, we started examining the introduction of these new six computed

(GR_da, GR_db, ROHE_da, ROHE_db, NPLE_da, NPLE_db) variables.

Our findings were as follows:



e We noted that the degree of change in the Neutron Porosity
Limestone (NPLE) log was very minimal. Therefore, there was
no real contribution to the outcome from using NPLE_db and
NPLE_da.

e Also, the experiment showed that when including ROHE_ad as
input to C4.5 the size of the constructed DT was larger with very
or no contribution to final result. Therefore only ROHE_db was
considered between the two computed parameters from the
ROHE log.

e Both GR_da and GR_db had some benefit and helped in reducing

both the size and the error of the built DT.

The inputs to the C4.5 were the essential well log variables and some

computed new parameters as shown in Table 5.9.

Essential input variables Computed added variables

DEPIND GR ROHE NPLE GR_da GR_db ROHE_db

Table 5.9: Input to the C4.5 for step 2.

Tables 5.10, 5.11, and 5.12 illustrate the findings and the results of this step

for both the training and the testing phase.
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Betore pruning, After pruning,
Results i Error
size cases cases % size cases cases %

fraining

423 2591 76 28 | 379 | 2597 88 3.3

[esting

423 371 310 | 455|379 | 372 309 | 454
Table 5.10: A summary of training and testing results for step2.

Initial step bestresult | Current step best result Gain
Tree size | Error % Tree size Error % Tree size | Error
reduction %
493 482 379 454 114 2.8

Table 5.11: Comparison between the Initial step and the current step.

LICO OAP DOP

Table 5.12: Confusion matrix for the test data evaluation for step 2.

The evaluations of the constructed DT model over the unseen test
examples showed accuracy of around 55 %. This is not a satisfying result
and more work needs to be done to achieve better performance. After

talking with the geologists, we knew that it is not practical that well logs be
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examined and inspected independently of each other. This in itself led us

to the next step in the study case.

5.8.3 Case study: Step Three

In this step we introduced the following three input computed variables:

Variable name Description
GR_m_DEN GR|current depth] - ROHE[current depth]
GR_m_POR GR|current depth] - NPLE[current depth]
DEN_m_POR ROHE [current depth] - NPLE[current depth]

Table 5.13: Three new computed variables for step 3
The aim of introducing these three variables was again to mimic what the
geologists do when they inspect GR, ROHE, and NPLE well log curves
simultaneously. Geologists not only examine the degree of fluctuation on
the well log curves, but also, they overlook the degree of separation and
closeness of these well log curves to each other’s when drawn to the same

scale (Figure 5.4).
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GR ROHE

__*
Fluctuation
___4
Separation
Closeness

Figure 54: An illustration of Fluctuation, Separation, and
Closeness that are examined by geologist.

Our experiment with the above stated variables showed the following:

e The GR_m_POR and DEN_m_POR parameters contributed nothing

or very little to the final outcome of the DT model.

e However, when GR_m_DEN was used as additional input to

DTLA, a little bit more accurate DT model was constructed.

e Therefore we decided to include only GR_m_DEN as additional

input to DTLA.
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The inputs to the C4.5 were the essential well log variables and some

computed new parameters as shown in Table 5.14.

Computed added variables

DEPIND

Essential input variables
GR

ROHE

NPLE

GR_m_DEN

GR_da

GR_db

ROHE_db

Table 5.14: Input to the C4.5 for step 3.

After deciding on the above-mentioned input parameters for C4.5 we

performed training over the same examples from the initial step of case

study. Tables 5.15, 5.16, and 5.17 illustrate the findings and the results of

this step.

Betore pruning

Atter pruning

AU Tree | Correct | Missed | Error | Tree | Correct | Missed | Error
size | cages cases % size cases cases %
[raining
445 | 2590 77 29 | 401 2585 82 3.1
Festing
445 380 301 442 | 401 387 394 43.2
Table 5.15: A summary of training and testing results for step3.
Initial step best result | Current step best result Gain
Tree size Error % Tree size Error % Tree size Error %
reduction
493 482 401 43.2 92 5.0

89

Table 5.16: Comparison between the Initial step and the current ste};.



We notice in this step that the tree size has slightly increased over the
previous step (Step2). However, the accuracy had little improvement,
around 2.5 % from the previous step and by accumulative of 5.0 % from

the Initial step.

LICO

OAP

Dor

SS 72 32 78 6 0 0

BB 11 81 15 6 0 0

LG 28 1 94 0 0 0
LICO 33 15 8 82 1 0
OAD 3 1 3 21 42 4
DOr 2 0 0 21 5 16

Table 5.17: Confusion matrix for the test data evaluation for step3.

The accuracy of DT model is still around 57 percent, which is not yet
satisfactory. However, the gain in the outcome thus far over the initial
step’s result indicated to us that we are on the right track. Thus far we had
not included any geologist’s known facts about the reservoir that could be
used when doing the evaluation to recognize formation facies. For
example, a fact such as a specific facie might not ever occur above certain
depth indicators. The understanding and use of these known facts led us

to the next step in the study case.
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5.8.4 Case study: Step Four

Geologists usually possess a general knowledge about their reservoirs.
And they use this knowledge as well-known facts to help them evaluate
their reservoirs. For example, geologists would use the fact that if facies
OAP or DOP presents in the studied well, then these two facies most likely

would occur at 85 percent or more from the top of the formation.

Top of the
fomﬁon :-\ e oy '.% Spet, ‘.\ ‘_‘- %0 ’\ s '.- o ﬂ...‘-:.'--.ﬂ--_:-}'_--.}-_'-}'.:.\-' :" o Ss
.'{-'.'-?.'-'-‘.7-*-‘.'-‘-'.‘--.'--.-'::-'-‘.'-'-':-'.‘.'-:'.'n':::'.‘.'-?.'-'::-'.'.‘-'-'.'-?"-‘"-'."'-'.'-'-':-'-'}'-'.'-_-
T T e oD T OO OO DTS LG
Around 86% from o
the top of the g OAP
formation e DOP
Bottom of the
formation

Figure 5.5: An illustration of the fact that OAP and DOP facies might always
occur at depth that is a round 85 % or more from top of the formation.

To capture this kind of knowledge, we presented these facts as input
variables to the DTLA. For example, a new variable had been added

which is OAP_or_DOP. This variable will stand for the possibility that the
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specific point-of-depth for this case is of type OAP or DOP facies. A value

of “Y” or “N” is set for OAP_oxr_DOP based on the following criteria:

Y For all the examples occurring at 85 %
or more from top of the formation

OAP_or_DOP =
Otherwise
N
Top formation
OAP_or_DOP N
85 % or more from top formation
OAP_or_DOP Y
Bottom formation

Figure 5.6: An estimated location of OAP and DOP facies from the top of the formation.

The aim of this step was to cross-examine the ability of capturing the

geologist’s wisdom about the reservoir and to present it as an input
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variable to the DTLA. Tables 5.18, 5.19, 5.20, and 5.21 illustrate the results

of adding two new parameters of this type.

Essential input variables

DEPIND GR ROHE i NPLE
Computed added variables

OAP_or DOP | Pos lico | GRm DEN | GRda | GR. db | ROHE db

Table 5.18: Input to C4.5 for step 4.

Betore pruning

Atter pruning

IUStIICEE Tree | Correct | Missed | Error | Tree | Correct Error
size cases cases % size cases %
Training
299 2611 56 2.1 261 2604 24
Testing
299 429 252 37.0 | 261 427 37.3
Table 5.19: A summary of training and testing results for step 4.
Initial step best result Current step best result Gain
Tree size Error % Tree size Error % Tree size Error %
reduction node | reduction
493 48.2 299 37.0 194 112

Table 5.20: Comparison between the Initial step and the current step.

The tree size has reduced dramatically from the previous step (Step3).

And the accuracy had improved by around 6.2 percent from the previous

step and by an accumulative 11.2 percent from the Initial step.
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LICO

OAP

Dor

5S 41 93 5 0 0
BB 10 90 10 3 0 0
1.G, 31 1 91 0 0 0
LICO 3 27 3 105 1 0
OAD 0 0 1 5 65 3
pDOP 1 0 0 0 16 27

Table 5.21: Confusion matrix for the test data evaluation for step 4.

At this stage, the over all accuracy of the DT model is around 63 percent,
which is not yet satisfactory. However, we knew from the beginning that
even the geologists, when studying their field, prefer to sector the reservoir
into multiple regions based on the characteristics of each section of the
field. Thus far we had not used this fact, aiming that maybe DTLA can
recognize the entire field as just one object. To make use of this

knowledge, we started our next step.

5.8.5 Case study: Step Five

Most of the time a reservoir can not be studied in its entirety as one region.
This is true if the reservoir under consideration is huge and highly
heterogeneous. The field that we are working with is a very large and
heterogeneous oil field. Therefore, we had sectored our field into three

regions and associated each well with one of the three regions. We have



introduced to the DTLA a new input variable which is “region” with the

following values:
1  For all examples from wells associated
with region one.
region =
2  Otherwise

Table 5.22 shows the set of input variables for DTLA at this step.

Essential input variables
DEPIND ' GR ROHE l NPLE
l
Computed added variables
region | OAP_or_DOP | Pos_lico | GR_m_DEN | GR_da | GR_db | ROHE_db

Table 5.22: Input to C4.5 for step 5.

Tables 5.23, 5.24, and 5.25 illustrate the findings and the results of this step

after deciding on the above-mentioned input variables for C4.5.
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Results

Training

Iesting

Betore pruning

Atter pruning,

Error | Tree | Correct | Missed | Error
% size cases cases %
1.3 177 | 2618 49 1.8
141 | 177 590 91 134

Table 5.23: A summary of training and testing results for step S.

Initial step best result | Current step best result Gain
Treesize | Error % | Tree size Error % Tree size Error %
reduction | reduction
node
493 48.2 177 134 316 34.8

Table 5.24: Comparison between the Initial step and the current step.

We notice in this step that the tree size was reduced even further from the

previous step (Step4). The accuracy had improved dramatically,

approximately 23.6 % from the previous step and by the accumulative 34.8

% from the initial step.

LICO

OAP

DOP

Table 5.25: Confusion matrix for the test data evaluation for step 5.

The over all accuracy of the DT model at this stage is around 87 percent,

which is indeed a satisfactory one. Most of the large values fall on the



diagonal of the matrix. The values in bold-face in the matrix indicate that
this is acceptable error, i.e. since confusing these two facies do not have
real consequence on the geologists” and the engineers’ final decisions on
maintaining their reservoir. Therefore, we can think that the accuracy of

this DT model is around 90 % and this is considered an excellent result.

5.8.6 Case Study: Step Six

In this step we utilized an existing locally written program that reads
through the data once and estimates breakinig points between facies.
Utilizing this predication of braking points, we took the estimated interval

between every two consecutive breaking points and did the following:

1. We introduced three new variables which are GRM, ROHEM,

NPLEM.

2. These variables are calcualted for every estimated interval “i ” as

follow :

GRM[I] = the mean of GR for all the examples of interval “i”
ROHEM[I] = the mean of ROHE for all the examples of interval “i”

NPLEM]I] = the mean of NPLE for all the examples of interval “i”
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The final inputs to the C4.5 for this step is as shown in Table 5.26.

Essential input variables
DEPIND GR ROHE NPLE
, Computed added variables
OAP_or_DOP Pos_lico | GR_m_DEN GR_da GR_db ROHE_db
GRM ROHEM NPLEM Tegion

Table 5.26: Final input to C4.5 for the final step.

Tables 5.27, 5.28, and 5.29 illustrate the findings and the results of this step.

Betore pruninge After prunine
hnl O

USTIICO Tree | Correct | Missed | Error | Tree | Correct | Missed | Error
size cases cases % size cases cases %
Iraining
95 2659 8 0.3 91 2657 10 0.4
Testing
95 621 60 8.8 91 621 60 8.8
Table 5.27: A summary of training and testing results for step 6.
Initial step best result | Current step best result Gain
Tree size | Error % | Tree size Error % Treesize | Error %
reduction | reduction
node
493 48.2 95 8.8 398 394

Table 5.28: Comparison between the Initial step and the current step.




The tree size was reduced even further from the previous step (Step5). -
And the accuracy had improved little by around 4.6 % over the previous

step and by accumulative of 39.4 percent from the initial step.

LICO OAP

Table 5.29: Confusion matrix for the test data evaluation for step 6

The overall accuracy of the DT model at this stage is around 91.2 percent.
Again the values in bold-face in the matrix indicate that these are
acceptable error and this will bring the final accuracy of this DT model to
around 93 percent accurate and this is considered an excellent result. For
final and full detail of the output of the C4.5 for the case study, see

Appendix A.



CHAPTER VI

Verification of the Final DT Model

6.1 Introduction

The data presented in the previous six steps of the case study that we
discussed and carried out in Chapter 5 have been gathered from 16 wells.
For all the six steps, the thirteen wells that had been utilized for training
were X0050, X0091, X0141, X0238, X0246, X0271, X0291, X0301, X0341,

X0386, X0441, X0461, and X0486, while X0101, X0206, and X0526 were used
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for model testing as suggested by a geologist. However, to further test and
verify the generalization and the quality of the DT model, we decided to
do a cross-validation-like procedure. This procedure involves doing the

following tasks:

e In every distinct verification test, we randomly picked thirteen wells to

be utilized for training the DTLA.

e We use the remaining three wells for testing the DT model that had

been built at the training phase.

e In all the tests that were conducted, the DT model was supposed to
predict the same facies that were predicted in the previous case study

(Table 1.1).

e In all the tests, we fixed the set of variables that would be used as an
input to the C4.5. The final set of variables that evolved from the
previous steps in the case study is used as standard inputs to the C4.5

(Table 6.1).
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Essential input variables

GRM ROHEM - NPLEM region
Table 6.1: The standard set of input needed to develop DT model.

The main objective of these tests was to prove that the process used to
develop the DT model was general enough. Another aim of this
experiment was to show that the final set of input variables that we came
up with was crucial to train the DTLA to mature the effectiveness of the DT

model in predicting the facies.

6.2 Summary of the ten different tests

Tables 6.2, 6.3, and 6.4 summarize the findings of the ten different tests
conducted to prove the generalization performance of our DT model. Table
6.2 lists the testing wells that had been used for every test, while Table 6.3
presents the evaluation results of DT model with respect to the unseen
data before and after pruning for each test. Table 6.4 is an average
calculation of how many of a specific facies occured and how closely it has

been predicted.
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TEST NUMBER TESTED WELLS
1 X0091, X0386, and X0461.
2 X0141, X0291, and X0486.
3 X0206, X0246, and X0486.
4 X0050, X0461, and X0486.
5 X0141, X0441, and X0526.
6 X0101, X0291, and X0461.
7 X0206, X0271, and X0341.
8 X0091, X0238, and X0441.
9 X0050, X0246, and X0271.

10 X0101, X0246, and X0461.

Table 6.2: A list of the tested wells for each test.

Test Before pruning After pruning

©EThi 1S3 Tree size | Misclassified | Error | Tree | Misclassified | Error
examples % size examples %
1 87 87 12.8 77 91 13.4
2 105 64 9.7 97 64 9.7
3 121 85 13.0 113 84 12.9
4 91 74 10.6 83 74 10.6
5 95 124 17.1 89 140 19.3
6 103 54 8.1 103 54 8.1
7 87 115 18.6 77 115 18.6
8 111 123 17.5 95 121 17.2
9 109 113 17.9 87 114 18.0
10 105 88 13.4 89 87 13.2
Average 101.4 92.7 13.87 | 91.0 94.4 14.1

Table 6.3: The evaluation results of DT model with respect to the unseen
data before and after pruning for each test.
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The average accuracy of the DT model for the ten tests is around 86.35 %,
which is a satisfactory result. And as can be seen from Table 6.4, most of
the large values fall on the diagonal of the matrix. The values in bold-face
in the Table indicate that these are acceptable error and this will bring the
final average accuracy of the DT model to around 89.0 % accurate and this

is an excellent result.

Table 6.4: The average confusion matrix for the test data evaluation.
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CHPTER VII

Summary and Conclusion

7.1 Summary

The main goal of this study was to examine how effective the DTL
technique could be used as a tool for geological facies recognition from
well logs. Although, the conventional manual approach that the geologist
follows to identify facies is doable and gives a satisfactory accuracy, this
approach is tedious and time consuming. This task is quite challenging
and requires a highly experienced geologist to handle it. And given the

fact that abundance of historical data of well log interpretation is usually
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kept, we had considered machine learning methods as an alternative
approach to solve such a problem. Therefore, we had developed a DT
model using the C4.5 software package to explore the effectiveness of
predicting formation facies from well log responses in a real field. The
facies of the reservoir indicated a high degree of heterogeneity in the
formation. Both core and logs data were obtained for sixteen wells.
Thirteen wells were utilized to train and construct the DT model, while
three wells were segregated at the beginning of this study as indicated by
the geologist for the purpose of testing the constructed DT model. The
essential input variables for C4.5 were gamma rays, bulk density, and

neutron porosity logs together with the depth indictor.

We conducted a six-step case study in this thesis. The initial step was to
explore whether using only the above three essential logs (Table 2.1) as
input to C4.5 can lead to good prediction of formation facies. Our
evaluation of the test-data results indicated that using only the essential

input variables could not satisfactorily predict the facies. To alleviate this
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problem, we introduced additional input variables to the DTLA. These
new input variables are inferred from the essential ones. In the other five
steps we examined and imprinted how the gradual introduction of these
variables helped the DTLA to capture more patterns about the input and
made it more accurate in making the right decision. This success, however,

is subjected to the following conditions:

e Enough key-wells with good core cover must be chosen to define
all the facies to be encountered in the field. The input to the C4.5
must contain the full range of facies types in reasonable quantity.

e Relatively complete sets of high quality logs must be used.

e Careful data preparation is vital to the success of this technique.
7.2 Conclusions and major contribution

The following are some of the conclusions that were reached in this study
and few humble contributions:
e This study established the fact that a formation facies prediction from

well-logs data is feasible using the decision tree learning approach. All
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previous work had investigated the use of neural networks in this kind
of problem. No one had explored the use of decision tree learning
technique to solve such a complicated problem.

We proved that the use of the essential well log variables alone (Table
2.1) did not lead into good construction of a DT model that is effectively
capable to predict formation facies from the essential well logs.

We progressively identified and examined new input variables that are
inferred from the essential ones. With the introduction of these new
additional variables to C4.5, we gradually alleviate the problem stated
above.

We finally identified and came to the conclusion that the set of input
variables shown in Table 6.1 is the final standard input for C4.5. Such
an input set led into production of an effective DT facies model.

We built a DT model that has an average accuracy of 86.35 % with tree
size of approximately one hundred nodes. Taking into consideration the

“acceptable error”, which is an error that does not have any
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consequence in the geologist decision, then the final average accuracy of
the DT model was around 89 %.

We conducted 10 different tests to prove the generality of the DT
model. In each of these tests, we randomly picked three wells to test the
general performance of the DT model, whereas the rest of the wells
were used in the training phase.

We captured the geologist's knowledge and known facts about the
reservoir and presented them as input parameters to C4.5.

Our experience with the design and the development of the DT model
showed that it is fundamental to have enough data to train the DTLA
properly in order to achieve acceptable results. We believe that we
should have at least three times the amount of data we had in order to
achieve comfortable and free training and testing for this specific
problem. We also believe that the high non-uniformity of the wells and

the limited amount of data made the training and testing quite complex.
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e We believe that not only would this tool help the geologist in predicting
facies, but also it would save a considerable amount of time of
geological formation analysis. And with relatively less need for core
measurement information, this tool will cut on cost as well as in time in
the process of facies evaluation.

e We have done all of our works using real-world data from a real oil
field.

e Figure 7.1 summarized the results of the six steps for the case study. It
also illustrates how the progressive addition of the new variables
helped in maturing the DT model to achieve better results. In addition,
for this specific case study, it shows the reverse relationship between
the size of the constructed tree and the accuracy of the DT model. As

the accuracy of the DT model improved the size of the DT is reduced.
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Figure 7.1: A summary of the results of the six-step case study

111



e Figure 7.2 summarized the results of the ten different tests.
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Figure 7.2: A summary of the results of the ten different tests

7.3 Future work

Although this study established the fact that formation facies prediction

from well logs data is attainable using the decision tree learning approach
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with an average accuracy of 89 %, this was only an initial study to evaluate

the potentiality of this methodology. The following items are worth

investigation for building conceivably more accurate DT models:

e There is a need for investigating the introduction of more essential
variables than the three ones that we used in this study. For example, a
resistivity well log, which is the recording of the resistance of formation
water to natural or induced electrical current, might be a very useful log
to be used in facies prediction.

e All of our training was done with less than 2800 examples. This may be
considered a modest amount of data for such a complicated problem. A
collection of more data at the training phase is needed for building a
more precise DT model that is capable to have better accuracy.

e The “majority voting” approach is a well-known methodology that can
be used to achieve better results when the domain of the problem is a
complicated one. In this study we did not utilize this powerful concept

and such utilization may be worth investigating.
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e Several authors have recently noted that C4.5’s performance is weaker
in domains with a preponderance of continuous attributes than for
learning tasks that have mainly discrete attributes. However, there is a
new release with improved use of continuous attributes in C4.5. Since
most of the attributes used in this problem are of a continuous type,
training and testing in such a release might positively help the final
outcome and be worth questioning.

o We captured the geologist’s knowledge and the known facts about the
reservoir and we presented them as input variables to the DTLA. For
example, variables OAP_or_DOP had been added to stand for the
possibility that the specific point-of-depth for a case is of type OAP or
DOP facies. A value of “Y” or “N” is set for OAP_or_DOP based on the

following criteria:

Y For all the examples occurring at 85 %

or more from the top of the formation
OAP_or_ DOP =

N Otherwise
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However, OAP_or_DOP might occur in some wells at 80 % or more
from the top of the formation and in other wells at 90 % or more.
Therefore, OAP_or_DOP might be better evaluated based on something

like this:

0.0 For all the examples occurring between
0 to 80 % from the top of the formation.

For all the examples occurring between

05 81 to 8 % from the top of the
OAP_or DOP = formation.

0.75 For all the examples occurring between
78 to 8 % from the top of the
formation.

1.0 Otherwise

e Combining both neural networks with decision trees for general decision-
making operations may be advisable.
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Keywords

Core
Facies

Rydrocarbon

Formation
Limestone
Lithologic
Permeability
Porosity

Well log

A column sample taken from the reservoir formation.
The general appearance or aspect of rock.
0il and gas.

A bed or deposit composed throughout of substantially
the same kind of rock.

Sedimentary rock rich in calcium carbonate that
sometimes serves as a reservoir rock for petroleum.

Characteristics of a 1rock in terms of mineral
composition, structure, and so forth.

Measurement of the ease with which fluids can flow
through a porous rock.

Measurement of the opening or space within a rock
usually filled with fluid.

A measurement of the reflection of the electric or

radiocactive waves that have been generated by log
devices.
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Appendix A

C4.5 [release 5] decision tree generator Sun Sep 20 12:03:56 1998

Options:
File stem <finalout>
Trees evaluated on unseen cases

Read 2663 cases (23 attributes) from finalout.data
Decision Tree:

ap_or_dop = y:
gre_bd <= 0.543599 :
| gre_ad <= -8.44684 :
| greM <= 12.9077 : DOP (4.0/1.0)
| greM > 12.9077 : OAP (3.0/1.0)
gre_ad > -8.44684 :
| gre_ad <= -6.45468 :
| dep <= 5410 : OAP (5.0)
| dep > 5410 : DOP (4.0)
gre_ad > -6.45468 :
| porM <= 0.2969 : OAP (199.0/1.0)
porM > 0.2969 :
| dep > 5438
| dep <= 5438 :
| | den > 2.224 : OAP (30.0)
| | den <= 2.224 :
|
]

DOP (4.0)

|
|
|
I
|
| | | dep <= 5398 : DOP (2.0)
|

|

I

|

|

I

|

|

|

|

|

I

|

I

|

| | i I dep > 5398 : OAP (2.0)
gre_bd > 0.543599 :

i den_bd > 0.05696 : SS (3.0)
i den_bd <= 0.05696 :

] gre > 17.226 : SS (3.0/1.0)

| gre <= 17.226 :

| greM > 11.7614 : OAP (17.0)

| greM <= 11.7614 :

| denM > 2.32411 : OAP (11.0)
| denM <= 2.32411 :

| porM <= 0.2394 : OAP (4.0)
| porM > 0.2394 :

| | gre_ad <= 2.1926 :
|

|

I

|

I

|

[

|

|

| | den_bd > 0.00268 : 0OAP (5.0)

| ] den_bd <= 0.00268 :

i | i gre_ad <= 1.82784 : DOP (10.0/1.0)
I | | gre_ad > 1.82784 : OAP (2.0)

| gre_ad > 2.1926 :

| | gre_ad > 4.34745 : DOP (103.0/2.0)

| | gre_ad <= 4.34745 :

| | | dep <= 5364 : DOP (13.0)

[ |

o
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
|
I
|
|
|
[
|
|
|
|
|
|
i | dep > 5364 : OAP (5.0/1.0)
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orM <= (.259818
11.437 :

greM <= 8.04775 :

porM <= 0.227111 :

ap_or_dop = n:
region = 0: LICO (0.0)
region = 1: SS (560.0)
region = 2: LICO (0.0)
region = 3:
| pos_lico = y:
| denM > 2.37631 : BB (35.0)
denM <= 2.37631 :
| dep <= 5152 :
| greM <= 8.2851 : LICO (10.0)
| greM > 8.2851 : BB (12.0)
dep > 5152 :
i greM <= 14.548 :
| } greM <= 12.1575 :
| | | greM <= 10.7086 : LICO (345.0/1.0)
| } | greM > 10.7086 :
| i | | greM <= 10.844 : OAP (7.0)
| | } ] greM > 10.844 : LICO (107.0)
| | greM > 12.1575 :
| | | greM <= 12.3513 : OAP (7.0)
| | i greM > 12.3513 : LICO (32.0)
| greM > 14.548 :
| | greM <= 16.5215 : OAP (10.0)
I ] greM > 16.5215 : LICO (12.0)
n:
reM <= 12.1575 :

denM > 2.32512 : BB (182.0)
denM <= 2.32512 :

| dep <= 5087 : BB (70.0)
| dep > 5087 : LG (11.0)

porM > 0.227111 :

reM > 8.04775 :

denM <= 2.29543 : BB (68.0/1.0)
denM > 2.29543 : LICO (12.0)
porM <= (0.194438 : BB (56.0)

porM > 0.194438 :
greM > 10.8155 :

BB (24.0/1.0)

greM <= 10.8155 :

den_bd > 0.05992 : LG (43.0)
den_bd <= 0.05992 :
| dep <= 4968 : BB (12.0)
dep > 4968 :
| dep > 5201 : BB (7.0)
dep <= 5201 :
| dep > 5109 : LG (60.0)
dep <= 5109 :

| denM > 2.32973:LG (16.0)
| denM <= 2.32973 :

| | denM>2.29543:BB(50.0)
[ |denM <= 2.29543 :[S1]
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I | greM > 11.437 :

] | } dep <= 5113 : BB (12.0)
| i | dep > 5113 : LICO (24.0)
| porM > 0.259818 :

| | dep <= 5156 : LG (4.0)

I | dep > 5156 : LICO (25.0)
greM > 12.1575 :

| dep <= 5190 : LG (376.0)

| dep > 5190 :

| | dep <= 5236 : LICO (8.0)

| | dep > 5236 : OAP (6.0)

Subtree [S1]

porM <= 0.214 : BB (4.0)
porM > 0.214 : LG (27.0)

Simplified Decision Tree:

oap_or_dop = y:
| gre_bd <= 0.543599 :
| | porM <= 0.2969 : OAP (208.0/5.0)
porM > 0.2969 :
| dep > 5438 : DOP (9.0/1.3)
| dep <= 5438 :
| | den > 2.224 : OAP (32.0/2.6)
| | den <= 2.224 :
| | | dep <= 5398 : DOP (2.0/1.0)
| | | dep > 5398 : OAP (2.0/1.0)
re_bd > 0.543599 :
den_bd > 0.05696 : SS (3.0/1.1)
den_bd <= 0.05696 :
gre > 17.226 : SS (3.0/2.1)
gre <= 17.226 :
| greM > 11.7614 : OAP (17.0/1.3)
greM <= 11.7614 :
| denM > 2.32411 : OAP (11.0/1.3)
denM <= 2.32411 :
porM <= 0.2394 : OAP (4.0/1.2)
porM > 0.2394 :
| gre_ad <= 2.1926 :
| | den_bd > 0.00268 : OAP (5.0/1.2)
| | den_bd <= 0.00268 :
| } I gre_ad <= 1.82784 : DOP (10.0/2.4)
| I | gre_ad > 1.82784 : OAP (2.0/1.0)
i gre_ad > 2.1926 :
| | gre_ad > 4.34745 : DOP (103.0/3.8)
| | gre_ad <= 4.34745 :
| ] | dep <= 5364 : DOP (13.0/1.3)
| | | dep > 5364 : OAP (5.0/2.3)
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ap_or_dop = n:
region = 0: LICO (0.0)
region = 1: SS (560.0/1.4)
region = 2: LICO (0.0)
region = 3:
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pos_lico = y:

denM > 2.37631 : BB (35.0/1.4)
denM <= 2.37631
| dep <= 5152
] greM <= 8.2851 : LICO (10.0/1.3)
| greM > 8.2851 : BB (12.0/1.3)
dep > 5152 :

| greM <= 14.548 :

| greM <= 12.1575 :

| greM > 10.7086 :

greM > 12.1575 :
| greM <= 12.3513 : OAP (7.0/1.3)
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| greM > 12.3513 : LICO (32.0/1.4)

porM <= 0.194438 : BB (56.0/1.4)

] greM <= 10.7086 : LICO (345.0/2.6)

| | greM <= 10.844 : OAP (7.0/1.3)
| | greM > 10.844 : LICO (107.0/1.4)

| denM > 2.32512 : BB (182.0/1.4)

BB (70.0/1.4)
| | dep > 5087 : LG (11.0/1.3)

| denM <= 2.29543 : BB (68.0/2.6)
| denM > 2.29543 : LICO (12.0/1.3)

| greM > .0.8155 : BB (24.0/2.5)
i dep > 5201 : BB (7.0/1.3)
} dep > 5109 : LG (60.0/1.4)

|denM > 2.32973 : LG (35.0/1.4)

| | denM > 2.29543:BB (53.0/1.4)
| | denM <= 2.29543

| | | porM <= 0.214:BB (13.0/1.3)
| | | porM > 0.214: LG (51.0/1.4)



dep > 5236

OAP (6.0/1.2)

Tree saved

Bvaluation on training data (2663 items):

Before Pruning

After Pruning

Errors Size Errors Estimate
107 11( 0.4%) 95 12( 0.5%) ( 2.8%) <<
Evaluation on test data (681 items):
Before Pruning After Pruning
Size Errors Size Errors Estimate
107 63( 9.3%) 95 63( 9.3%) ( 2.8%) <<
(a) (b) (c) (4) (e) (f) <-classified as
188 (a): class SS
95 18 (b): class BB
5 118 (c): class LG
1 24 114 (d) : class LICO
3 67 4 (e) : class OAP
1 7 36 (f): class DOP
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IMAGE EVALUATION
TEST TARGET (QA—3)
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