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Abstract
This paper presents stabilizing Model Predictive Controllers (MPC) in which prediction models are
inferred from experimental data of the inputs and outputs of the plant. Using a nonparametric machine
learning technique called LACKI, the estimated (possibly nonlinear) model function together with an
estimation of Hölder constant is provided. Based on these, a number of predictive controllers with
stability guaranteed by design are proposed. Firstly, the case when the prediction model is estimated off-
line is considered and robust stability and recursive feasibility is ensured by using tightened constraints
in the optimisation problem. This controller has been extended to the more interesting and complex case:
the online learning of the model, where the new data collected from feedback is added to enhance the
prediction model. An on-line learning MPC based on a double sequence of predictions is proposed.

Keywords: MPC; Data-based control; Machine learning; Input-to-state stability.

1. INTRODUCTION

Model-based control design, and particularly Model Predictive
Control (MPC), rely on the availability of an accurate descrip-
tion of the plant. When a model of the plant dynamics is un-
available a priori, machine learning methods can be employed
to devise such models automatically from observational data.

The objective of this paper is to design a predictive controller
based on such learning methods. Here, the learning method
should be flexible enough to learn rich classes of dynamical
systems, while at the same time, offer bounds on its predictive
performance.

The latter is important in the predictive control setting if one
wishes to give guarantees on the performance and feasibility of
the learning-based controller.

Motivated by these desiderata, previous work on learning-based
MPC Canale et al. (2014) has utilised Nonlinear Set Member-
ship (NSM) methods Sukharev (1978); Milanese and Novara
(2004) for learning. These methods are capable of learning any
Lipschitz continuous function with a known, given Lipschitz
constant and provide bounds around the predictions of the
learned model. In their data-based Nonlinear MPC (NMPC)
method, Canale et al. (2014) presuppose a bound on the worst-
case estimation error for the data set which they call the radius
of information. Assuming that a stabilizing nominal MPC for
the estimated prediction model has been designed, the authors
prove that this controller is robustly stable. However, to do
so, the authors not only need to assume that the bound on the
Lipschitz constant and the radius of information are known, but
they also assume that the nonlinear MPC optimization problem
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happens to be recursively feasible, in spite of the prediction
errors.

An alternative approach to learning-based MPC that is more
independent of the concrete learning paradigm was proposed
in Aswani et al. (2013). Here, the authors assumed that the true
model was given by a linear model plus a function to be learned.
The amplitude of the latter function had to be limited and small
since it was considered to be an exogenous disturbance for the
robust design of the linear robust MPC. The trained nonlinear
model only entered the cost function while the nominal linear
model was considered for the constraint satisfaction. Thus,
the resulting feasibility region is convex, which allows the
authors to derive robust stability provided that learning methods
are employed that provide bounds around their predictions.
Since the uncertainty must enclose the estimation error and
the mismatch between the linear and nonlinear dynamics, the
resulting design might be quite conservative Furthermore, the
stability proof relies on the convexity of the constraints of the
optimisation problem which cannot be extended to nonlinear
models where convexity may not hold, requiring appropriate
stability conditions.

In our paper, we improve on this existing state of affairs in
several ways. Firstly, we propose to utilise nonlinear prediction
models based on a recent improvement on NSM learning ap-
proach called LACKI Calliess (2016) which estimates Lipschitz
constants from the data while still offering worst-case pre-
diction error bounds. Secondly, we design our learning-based
NMPC approach in a manner that ensures robust stability and
recursive feasibility w.r.t. the estimation error. Thirdly, we also
consider the online learning setting where the learning model is
updated repeatedly during the runtime of the controller. Using
a similar idea to Aswani et al. (2013), two predicted trajectories
are entertained in the optimisation problem: one is based on
the offline learned model and guarantees the robust constraint
satisfaction while the second is calculated by the on-line learn-
ing method and it is used for the calculation of the cost func-
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tion. Since in our case the prediction models are nonlinear and
the resulting optimization problem is non-convex, the proof of
Aswani et al. (2013) cannot be used for our case. Instead, we
have derived input-to-state stability under mild assumptions on
the estimator.

The rest of the paper is structured as follows: Following this
introduction, a brief rehearsal of some of the learning methods
this work could build upon is provided, followed by an intro-
duction to the data-based control problem and a derivation of
our predictive controller.

In the first part of the remainder of the paper, the controller
is based on a fully trained learning model based on data that
has been collected offline. That is, the sample is collected
once, before control is attempted, on the basis of which the
model is trained, without further updates during the operation
of the controller. The LACKI method provides the estimated
prediction model together with an estimation of the Lipschitz
constant. Based on these ingredients and on the bound of the
worst-case estimation error, a NMPC is proposed such that
robust stability and recursive feasibility is ensured by design.

In the second part of the paper, we lift this assumption and the
case of online learning. Here the sample is repeatedly updated
during the runtime of the controller in order to learn a contin-
uously more accurate model of the plant and improve control
performance. The previous data-based MPC controller has been
extended to the online learning data-based NMPC, which al-
lows us to use a continuously updated prediction model which
provides better closed loop performance while robust stability
and recursive feasibility are still guaranteed. The proofs have
been omitted due to the lack of space. A preliminary version
of the proofs can be found in the technical report Limon et al.
(2017).

Notation and terminology

Let a, b be two column vectors and (a, b) denote the vector
[aT , bT ]T . Given two sets A,B, the Minkowski sum A ⊕ B
is defined as the set {a + b : a ∈ A, b ∈ B} and the
Pontryagin difference A 	 B is defined as the set {c : c +
b ∈ A, ∀b ∈ B}. The set of the integers contained in the
interval [a, b] with b ≥ a is denoted as Ia,b. A function
θ : R≥0 → R≥0 is a K-function if it is strictly increasing
and θ(0) = 0. If a K-function is such that lim

s→∞
θ(s) = ∞

then it is called a K∞-function. Remember, a pseudo-metric
dX(·, ·) : X2 → R on a space X is a symmetric, positive
mapping that adheres to the triangle-inequality. In contrast, to
full metrics, a pseudo-metric does not require definiteness. That
is, it is possible that dX(x, x′) = 0 even if x 6= x′. A mapping
f : X→ Y between pseudo-metric spaces (X, dX) and (Y, dY)
is Hölder continuous with Hölder constant L and exponent p
if dY(f(x), f(x′)) ≤ L dX(x, x′)p,∀x, x′ ∈ X. The smallest
Hölder constant of f will be denoted by L∗.

2. LEARNING WITH WORST-CASE PREDICTION
BOUNDS

In this work, we will design a controller whose prediction
model is inferred (i.e. learned) from data employing machine
learning (i.e. regression) techniques. As the controller is in-
tended to come with robustness guarantees, it is important that
the predictions of the learned model come with deterministic

worst-case prediction error bounds. This limits our choice of
learning methods to those for which such bounds are currently
known.

A class of learning rules, for which this is the case, and which
have been proposed in the context of control, are sometimes
referred to as Kinky Inference [Calliess (2014)] which en-
compass Lipschitz Interpolation [Sukharev (1978); Beliakov
(2006)] and Nonlinear Set Interpolation [Milanese and Novara
(2004)]. These methods will be briefly rehearsed next.

Setting. Let X, Y be two spaces endowed with (pseudo-)
metrics dX : X2 → R≥0, dY : Y2 → R≥0, respectively.
Spaces X,Y will be referred to as input space and output space,
respectively. It will be convenient to restrict our attention to
input and output spaces that are additive abelian groups and
which are translation-invariant with respect to their (pseudo)
metrics. That is, for the input space X, we assume dX(x +
x′, x′′ + x′) = d(x, x′′),∀x, x′, x′′ ∈ X.

For simplicity, throughout the remainder of this work, we will
assume the output space is the canonical Hilbert space Y = Rm
(m ∈ N) endowed with the dY(y, y′) = ‖y − y′‖∞ ,∀y, y′ ∈
Y.

Let f : X→ Y be a target or ground-truth function we desire to
learn. For our purposes, learning means regression. That is, we
utilise the data to construct a computable function that allows
us predict values of the target function at any given input.

Assume that, at time step n, we have access to a sample or
data set Dn := {

(
si, f̃i

)
| i = 1, . . . , Nn} containing Nn ∈ N

(possibly erroneous) sample vectors f̃i ∈ Y of target function
f at sample input si ∈ X. The sampled function values are
allowed to have interval-bounded observational error or noise
given by a bound e : X → Rm≥0. That is, all we know is
that f(si) ∈ Oi := [f

1
(si), f1(si)] × . . . × [f

d
(si), fd(si)]

where f
j
(si) := f̃i,j − ej(si), f(si) := f̃i,j + ej(si) and f̃i,j

denotes the jth component of vector f̃i. The interpretation of
these errors depends on the given application and this “noise”
may be deterministic or stochastic. For instance, in the context
of system identification, the sample might be based on noisy
measurements of velocities and it may be due to sensor noise
or may capture numerical approximation error, as well as input
uncertainty Calliess (2014).

Learning. It is our aim to learn target function f in the sense
that, combining prior knowledge about f with the observed data
Dn, we infer predictions f̂n(x) of f(x) at unobserved query
inputs x /∈ XDn

. Here, XDn
= {si|i = 1 . . . , Nn} refers to the

(not necessarily regular) grid of sample inputs. In our context,
the evaluation of f̂n is what we refer to as (inductive) inference
or prediction. The entire function f̂n that is learned to facilitate
predictions is referred to as the predictor.

A typical desideratum of a good predictor is that it is efficiently
computable and converges to the target (up to the observational
error given by e) in the limit of increasingly dense data sets.

In our context, we will understand a machine learning algo-
rithm to implement a computable function that maps a data set
Dn to a f̂n (and possibly an uncertainty estimate function v̂n).



In this work we will expand on the basis of the following class
of predictors to perform learning as inference over unobserved
function values:
Definition 1. (Kinky Inference (KI) rule ). Let R∞ := R ∪
{−∞,∞} and X be some space endowed with a pseudo-metric
dX. Let B, B̄ : X → Y ⊆ Rm∞ denote lower- and upper
bound functions, that can be specified in advance and assume
B(x) ≤ B̄(x),∀x ∈ I ⊂ X component-wise. Furthermore, let
e denote a parameter that specifies a deterministic belief about
the true observational error bound e. Given sample set Dn, we
define the predictive functions f̂n : X → Y, v̂n : X → Rm≥0 to
perform inference over function values. For j = 1, . . . ,m, their
jth output components are given by:

f̂n,j(x) :=
1

2
min{ B̄j(x), un,j(x;L(n)

)
}

+
1

2
max{Bj(x), ln,j(x;L(n)

)
},

v̂n,j(x) :=
1

2
min{ B̄j(x), un,j

(
x;L(n)

)
}

− 1

2
max{Bj , ln,j

(
x;L(n)

)
}.

Here, un
(
·;L(n)

)
, ln
(
·;L(n)

)
: X → Rm are called ceiling

and floor functions, respectively. Their jth component func-
tions are given by
un,j

(
x;L(n)

)
:= min

i=1,...,Nn

f̃i,j + Lj(n) dp(x, si) + ej(x)

and
ln,j
(
x;L(n)

)
:= max

i=1,...,Nn

f̃i,j − Lj(n) dp(x, si)− ej(x),

respectively. Here p ∈ R, L(n) ∈ Rm,∀n ∈ N0 and functions
B, B̄, e : X → Rm∞ are parameters that have to be specified in
advance. To disable restrictions of boundedness, it is allowed
to specify the upper and lower bound functions to constants
∞ or −∞, respectively. Function f̂n is the predictor that is
to be utilised for predicting/inferring function values at unseen
inputs. Function v̂n(x) is meant to quantify the uncertainty of
prediction f̂n(x).

Note, that while generally L(n) is a vector, we will simplify our
exposition in the remainder of this paper by assuming that all its
components are equal or, equivalently, that it is a real number.

To provide an intuition, consider the following special case
where we have access to a noise-free sample Dn and suppose
the target f is a real-valued L∗ − p Hölder continuous func-
tion. Observing the noise-free sample point (si, fi) constrains
the set of function values f(x) to the set Si(x) = {φ ∈
Y| dY(φ, fi) ≤ L∗ dX(si, x)}. Considering a set of sample
points Dn, target value f(x) is constrained to lie in the in-
tersection S(x) = ∩Nn

i=1Si(x). It is easy to see that the floor
and ceiling functions are tight lower and upper bounds of S(x)
with S(x) := {φ ∈ Y|ln(x;L∗) ≤ φ ≤ un(x;L∗)}. In other
words, setting parameter L(n) to the best Hölder constant L∗

and bounds B = −∞, B̄ = +∞ yields a predictor f̂n(x)
that for every query x chooses the mid-point of the set S(x) of
those function values that can possibly be assumed by a Hölder
continuous function that interpolates the observed sample. Pre-
diction error v̂n(x) simply is the radius of the set.

For the case of p = 1, this approach is known as Lipschitz
interpolation Beliakov (2006); Zabinsky et al. (2003). Since a
set is utilised for interpolation, the approach is also known as
Nonlinear Set Interpolation Milanese and Novara (2004). Spec-

ification of B̄, B allows us to incorporate additional knowl-
edge and constrain our set S(x) further. For instance, when
learning friction models we might incorporate the knowledge
of dealing with negative functions by setting B̄ = 0, yielding
S(x) = {φ|φ ≤ 0} ∩Nn

i=1 Si(x).

When choosing L(n) to coincide with a Hölder constant of the
target function, one can give strong guarantees of convergence
to the target as on the tightness of the prediction bounds
[e.g. Calliess (2014)]. In case a Hölder constant is unknown
a priori, Milanese and Novara (2004) have proposed to utilise a
proxy regression model to estimate the constant from the data.
Unfortunately, as far as we can tell, all convergence guarantees
and uncertainty bounds are lost in the process. On the other
hand, ifL(n) was chosen to a very conservatively large constant
then the resulting predictor tends to overfit to the noise and
hence, exhibit poor prediction performance [Calliess (2016)].

As an alternative, Calliess (2014) has proposed to set

L(n) := max
i,j=1,...,Nn dX(si,sj)>0

∥∥∥f̃i − f̃j∥∥∥
∞
− 2ē

dX(si, sj)

where ē := supx |e(x)| is an upper bound on the (zero-mean)
noise. The resulting predictor, referred to as LACKI has been
investigated by Calliess (2016). For cases where ē is known the
authors derived parameter settings for the LACKI inference rule
for which the following prediction error bound was derived:

dY
(
f̂n(x), f(x)

)
∈
[
0, 2` rpx(n) + 2ē

]
. (1)

where rx(n) = mins∈Gn dX(x, s) is the distance of the query
input x to the input data and ` ∈ R, ` ≥ L∗ is any Hölder
constant of the target function f . Note, that while the prediction
error bound still depends on knowledge of a Hölder constant,
the predictor f̂n itself only depends on the empirical estimator.
Therefore, ` could be chosen conservatively large without caus-
ing the predictions to be prone to overfit to observational noise
Calliess (2016).

3. DATA-BASED PREDICTION MODEL

Let the manipulable inputs of the plant at sampling time step
k ∈ N be u(k) ∈ IRm and the controlled outputs be y(k) ∈
IRn. It is assumed that the output signal is measured and can
be used to describe the model of the system by means of the
following NARX model of the plant

y(k + 1) = g(x(k), u(k)) + e(k) (2)

where x(k) = (y(k), · · · , y(k − na), u(k − 1), · · · , u(k −
nb)) ∈ X := Y(na+1) × Unb ⊂ Rnx with nx = (na +
1)n+nbm, for some memory horizon lengths na, nb ∈ N. The
signal e(k) models output noise and is assumed to be confined
in a compact set E. For notational convenience, we sometimes
aggregate the inputs of g into a joint input ξ := (x, u) ∈ Ξ :=
X× U. So, we can write g : Ξ→ Y.

It is assumed that the origin is the equilibrium point of the
system (i.e. g(0, 0) = 0) where the plant must be stabilized.
Furthermore, the system is subject to constraints that must be
satisfied at each sampling time:

u(k) ∈ U, y(k) ∈ Y (3)
where U and Y are compact sets.
Assumption 1.



(1) The pseudo-metrics dX : X×X→ R≥0 and dY : Y×Y→
R≥0 are such that for x = (y1, · · · , yna+1, 0, · · · , 0), the
following condition holds

dX(x, 0) ≤ dY(y1, 0) + · · · dY(yna+1, 0).

(2) The function g(·), referred to as ground truth function, is
Hölder continuous. That is, there exists some Lg > 0 and
p ∈ (0, 1) such that

dY(g(x1, u), g(x2, u)) ≤ LgdX(x1, x2)p (4)
where dY stands for a pseudo-metric defined in the set of
outputs Y, and dX stands for a pseudo-metric defined in
the set of the states of the model function X = Y(na+1) ×
Unb. The lowest constant Lg that satisfies this condition is
called the Hölder constant, L∗g .

In this paper we assume that the prediction model will be
inferred from a set of pairs of input-output experimental data

D = {(y(j), u(j)) | j = 1, · · · , ND}.
This data may be extracted from some experiments or from
stored historical data of the plant.

Notice that the data set can be recast as Dg = {
(
ξ(j), y(j +

1)
)
j = j0, · · · , ND − 1}, where j0 = max(na + 1, nb).

We can define ΞD := {
(
ξ(j)

)
j = j0, · · · , ND − 1} and

YD := {
(
y(j)

)
j = j0, · · · , ND − 1} as the available inputs

and output samples of g available in the data.

If the required Hölder constant is not known a priori, it can
be estimated from the data set D with a noise-robust version
Calliess (2014, 2016) of Strongin’s method Strongin (1973).
This estimate, denoted by LD, can be utilised as a parameter in
the kinky inference method of Calliess (2014, 2016) to obtain a
predictor ĝ of the ground-truth g, yielding the output prediction:

ŷ(k + 1) = ĝ(x(k), u(k);LD). (5)

This estimated function will be used as the prediction model
in the design of a model-predictive controller that is presented
in the next section. Before, this is derived however, we will
conclude the present section with a brief discussion of the
necessity of requiring worst-case estimation bounds of the
learners in a stabilizing MPC setting.

3.1 Necessity of the worst case estimation error

In general, a nonlinear system, even in the case of no uncer-
tainty and no constraints, might not be globally asymptotically
stabilized, but only in a certain region. This is the case of the
systems that are subject to constraints on the inputs and/or the
states. These constraints can be inherent to the system to be
controlled or to the control law to be used.

Model-predictive control requires repeated optimisation of the
predicted control inputs subject to constraints. Therefore, in
order to give guarantees on the controller’s closed-loop perfor-
mance, we need to ensure recursive feasibility. That is, we need
to ensure that all constraints remain satisfiable during runtime,
or equivalently, to guarantee that the controlled system will not
leave the controllable region. However, since our controller will
be based not on the ground-truth dynamics g, but on the learned
model ĝ inferred from a sample of the ground-truth, recursive
feasibility can only be guaranteed if a bound on the discrepancy
between g and ĝ is known a priori and taken into account by the
controller.

In this paper it is assumed that a bound for the worst-case
estimation error is available.
Assumption 2. It is assumed that a bound on the error between
the estimated output and the real output is known. That is, there
exists an a priori prediction error bound µ > 0 with

dY(ĝ(x, u;LD), g(x, u) + e) ≤ µ (6)
for all x ∈ Yna+1 × Unb , u ∈ U and e ∈ E.
Remark 2. As explained above, if some upper bound `g of the
smallest Hölder constant Lg of mapping g is available then the
worst-case prediction error bound µ of the estimated model is
can be given (cf. Eq. 1) as per

µ = 2`gR
p
D + 2ē (7)

where RD = supξ∈Ξ infξ′∈ΞD
dX(ξ, ξ′) is the worst-case

distance of query inputs to sample inputs in the data and ē
is the bound of the noise, ē = supe∈E dY(e, 0). If the true
Hölder constant is not available, then the constant could be
estimated by means of a (probabilistic) validation technique
from experimental data (Alamo et al. (2015)).

4. STABILIZING OFF-LINE LEARNING BASED NMPC

In this section, a model predictive controller based on predic-
tion model learned from off-line data of the plant is derived.
Since the prediction model is not accurate, the effect of the
estimation error on the predictions must be analyzed to be taken
into account in the design of the controller.

For this analysis, it is convenient to define the model of the plant
in a state-space description as follows (Canale et al. (2014)):

x(k + 1) = F (x(k), u(k)) + w(k) (8)

y(k) =Mx(k) (9)

where

F (x(k), u(k)) = (g(x(k), u(k)), y(k), · · · , y(k − na + 1),

u(k), · · · , u(k − nb + 1))

M = [In, 0, · · · , 0]

and w(k) = (e(k), 0, · · · , 0).

Based on the set of data obtained offline D and the estimated
Hölder constant LD, a model ĝ(x, u;LD,D) is obtained by
learning. Then we can forecast the evolution of the system
along a given prediction horizon N , for a given sequence of
future inputs u(k + j), j = 0, · · · , N − 1 at a certain state
x(k) = (y(k), · · · , y(k − na), u(k − 1), · · · , u(k − nb)).

The output forecasted at sampling time k + j based on the
information at k is denoted as ŷ(j|k). Given the regressive
nature of the dynamic model, the predicted state is given by

x̂(j|k) = (ŷ(j|k), · · · , ŷ(1|k), y(k), · · · , y(k + j − na),

u(k + j − 1), · · · , u(k + j − nb))
This predicted state is derived from the recursion

x̂(j + 1|k) = F̂ (x̂(j|k), u(k + j)) (10)
where



F̂ (x̂(j|k), u(k + j)) = (ĝ(x̂(j|k), u(k + j), LD),

ŷ(j|k), · · · , y(k), · · ·
, y(k + j − na + 1), · · ·
, u(k + j), · · · , u(k + j − nb + 1)).

This prediction model depends on the learned model ĝ and then
depends on the provided data set D and the estimated Hölder
constant LD, but this dependence is omitted for the sake of
clarity.

Since the estimated model differs from the true dynamics of the
system, there exists an error between the predicted state using
the approximate model and the real state for a given sequence of
future control inputs. Based on Assumption 2, the effect of the
estimation error on the predictions is analyzed in the following
lemma:
Lemma 3. Assume that at the sampling time k the state of the
plant is x(k) and a sequence of future control inputs u(k + i)
for i ∈ I0,N−1 is given.
Let x̂(j|k) and ŷ(j|k) be the predicted states and outputs
respectively derived from (10) for the given sequence of future
control inputs and the current state x(k), i.e. x̂(0|k) = x(k).
Assume that at sampling time k+1, the current output y(k+1)
is measured, and then the current state x(k+1) is known. Based
on these new measurements, an updated sequence of states and
outputs x̂(j|k + 1) and ŷ(j|k + 1) are predicted based on (10)
with x̂(0|k+ 1) = x(k+ 1) and the remaining sequence of the
given future control inputs.

Then the error between both predictions are such that

dY(ŷ(j − 1|k + 1), ŷ(j|k))≤ cj (11)

dX(x̂(j − 1|k + 1), x̂(j|k))≤ dj (12)
where cj ans dj can be calculated from the recursion

cj =LDd
p
j−1

dj+1 = dj + LDd
p
j

with c1 = d1 = µ and j ∈ I1,N .
Remark 4. It is easy to derive that for p = 1, the constants
cj and dj are directly calculated by the following formulas
dj = (1 + LD)j−1µ, and cj = LD(1 + LD)j−1µ.
Remark 5. It can be proved that the same result holds if the
error bound µ is replaced by the current value of the estimation
error dY(y(k + 1), ŷ(1|k)).

Based on the derived bounds on the prediction error, the prob-
lem of robust constraint satisfaction is analyzed next. Firstly,
the following balls are defined:

By(δ) = {y ∈ IRn : dY(y, 0) ≤ δ}
Bx(γ) = {x ∈ IRnx : dX(x, 0) ≤ γ}.

Then, the following set of tightened constraints is defined
Yj = Y	By(dj). (13)

This set is said to be tightened since Yj ⊆ Y and, for any output
y contained in the tightened set y ∈ Yj and for all perturbations
∆y ∈ By(dj) on the output, the perturbed output is contained
in the original set Y, i.e. y + ∆y ∈ Y. As will be shown later,
the set of tightened constraints will be useful to counteract the
effect of the estimation error in the predictions Limon et al.
(2002).

Therefore, the tightened set Yj yields sufficient conditions on
recursive robust constraint satisfaction (which can be utilised
in the statement of the optimisation problems of the proposed
controller later on):
Lemma 6. The sets Yj are such that for all y ∈ Yj and for all
∆y ∈ By(cj), y + ∆y ∈ Yj−1.

In order to ensure that the proposed controller is feasible,
the tightened set of constraints must be non-empty along the
prediction horizon. This is stated in the following assumption:
Assumption 3. The prediction horizon N and the estimation
error bound µ are such that the set YN−1 is non empty.

Then the optimization problem PN (x(k), LD,D) of the pro-
posed predictive controller is the following

min
u

VN (x(k),u) =

N−1∑
i=0

`(ŷ(i|k), u(i)) + Vf (x̂(N |k))

s.t. x̂(0|k) = x(k) (14)

x̂(j + 1|k) = F̂ (x̂(j|k), u(j)), j ∈ I0,N−1 (15)

ŷ(j|k) = Mx̂(j|k) (16)

u(j) ∈ U (17)

ŷ(j|k) ∈ Yj (18)

x̂(N |k) ∈ Xf (19)

We require the ingredients of this optimization problem to meet
the following assumption:
Assumption 4.

(1) The stage cost function `(y, u) is a continuous positive
definite function for all y ∈ Y and u ∈ U such that
`(y, u) ≥ αy(‖y‖) for a certain K function αy .

(2) There exists a local control law u = κf (x), a function Vf
and a pair of sets Ω, Xf ⊆ IRnx such that:
(a) For all x ∈ Ω the following conditions hold:

F̂ (x, κf (x))∈Ω	Bx(dN )

κf (x)∈U
Mx ∈ YN−1;

(b) Xf = Ω	Bx(dN );
(c) Vf is a continuous positive definite function such that

αf (‖x‖) ≤ Vf (x)≤ βf (‖x‖)
Vf (F̂ (x, κf (x)))− Vf (x)≤−`(Mx, κf (x))

for all x ∈ Xf .

The following theorem presents the main result of this paper:
Theorem 7. Assume that Assumptions 2, 3 and 4 hold for the
optimization problem PN (·). Let κN (x) be the control law
derived from the solution of PN (x) applied using a receding
horizon policy. Then, for any feasible initial state x(0), the
system controlled by the control law u(k) = κN (x(k)) is input-
to-state stable w.r.t the estimation error and the constraints are
always satisfied, i.e. y(k) ∈ Y,∀k.

4.1 Relaxation by means of soft constraints

Our previous results were based upon knowledge of the a priori
prediction bound µ. If learning is done with the LACKI method



and bounds on the Hölder constant and observational errors are
given then µ could be chosen as per (7). In practice however,
cases may arise where the necessary bounds may be difficult
or even impossible to know beforehand. In this case it is worth
remarking that theorem 7 holds as long as the uncertainty of the
closed loop trajectory is such that

dY(y(k + 1), ĝ(x(k), u(k), LD)) ≤ µ̂.

If this is not the case, as was previously discussed, the satis-
faction of the hard constraints cannot be ensured in general.
A sensible solution to avoid feasibility problems is to relax
the constraints by considering soft constraints and design the
stabilizing ingredients Xf and Vf as proposed in Assumption 4
using the estimated bound µ̂.

The resulting optimization problem is the following:

min
u,v

N−1∑
i=0

(
`(ŷ(i|k), u(i)) + αvi

)
+ Vf (x̂(N |k))

s.t. x̂(0|k) = x(k) (20)

x̂(j + 1|k) = F̂ (x̂(j|k), u(j)), j ∈ I0,N−1 (21)

ŷ(j|k) = Mx̂(j|k) (22)

u(j) ∈ U (23)

ŷ(j|k) ∈ Yj ⊕By(vj) (24)

vj ≥ 0 (25)

x̂(N |k) ∈ Xf (26)

Using the results on the exact penalty functions Luenberger
(1984), for a sufficiently large value of α, the derived con-
troller guarantees the robust constraint satisfaction when pos-
sible while the constraints are relaxed when they cannot be
fulfilled. The stability of the proposed controller can be derived
from Theorem 7 as long as the uncertainty of the closed loop
trajectory is such that dY(y(k + 1), ĝ(x(k), u(k), LD)) ≤ µ̂.
If this is not the case then the recursive feasibility of the
terminal constraint cannot be ensured in the case that the model
mismatch is larger than expected. This issue can be relaxed
taking into account that the terminal constraint can be removed
if the terminal cost function is weighted by an appropriate
positive constant λ > 0 Limon et al. (2006); Rawlings and
Mayne (2009). The new optimization control problem is the
following

min
u,v

N−1∑
i=0

(
`(ŷ(i|k), u(i)) + αvi

)
+ λVf (x̂(N |k))

s.t. x̂(0|k) = x(k) (27)

x̂(j + 1|k) = F̂ (x̂(j|k), u(j)), j ∈ I0,N−1 (28)

ŷ(j|k) = Mx̂(j|k) (29)

u(j) ∈ U (30)

ŷ(j|k) ∈ Yj ⊕By(vj) (31)

vj ≥ 0 (32)

The resulting control law would be recursively feasible, but the
stability of the closed-loop system would be potentially ensured
only in a (potentially not small) neighborhood of the origin
Limon et al. (2006).

5. STABILIZING ON-LINE LEARNING BASED NMPC

Throughout the evolution of the controlled system, new pairs
of input-output data could potentially be added to the data set,
yielding to an enhanced estimation of the Hölder constant. This
update could be done at each sampling time or every certain
number of sampling times. This is the base of the LACKI
method proposed in Calliess (2016), which allows us to get
estimations of the Hölder constant that are refined at each
update stage, providing an enhanced estimation of the ground-
truth function.

Let D(k) denote the set of all data compiled until the sampling
time k and let L(k) be the estimated Hölder constant for that set
provided by the LACKI algorithm. Similarly to Aswani et al.
(2013), we will use two different prediction models:

• The initial or off-line learning model:
x̂(k + 1) = F̂ (x(k), u(k), L0,D0)

This model is derived off-line from the historical data
D0 := D(0) available before closing the loop (i.e. at time
k = 0) and it is assumed that a guaranteed bound on the
estimation error is available. The prior model is utilised to
provide guaranteed estimations of the real plant and it will
be used to ensure robust constraint satisfaction.
• The updated or on-line learning model:

x̂(k + 1) = F̂ (x(k), u(k), L(k),D(k))

This model may provide a probably more accurate esti-
mation of the real plant, but no guarantee of the estimation
error is given. Subsequently, this model will be used to
enhance the closed-loop behavior of the controlled plant
using the updated predictions to derive the control law.

Based on these prediction models, the following optimization
problem PuN (x;L0,D0, L(k),D(k)) is proposed:

min
u,L

N−1∑
i=0

`(ŷu(i|k), u(i)) + Vf (x̂u(N |k))

s.t. x̂u(0|k) = x(k)

x̂u(j + 1|k) = F̂ (x̂u(j|k), u(j), L(k),D(k)), j ∈ I0,N−1

ŷu(j|k) = Mx̂u(j|k)

x̂s(j + 1|k) = F̂ (x̂s(j|k), u(j), L0,D0), j ∈ I0,N−1

ŷs(j|k) = Mx̂s(j|k)

u(j) ∈ U

ŷs(j|k) ∈ Yj

x̂s(N |k) ∈ Xf

In order to derive the robust stability of the proposed controller,
the following assumption on the estimation method is required
Assumption 5. There exists a certain time instant k∗ such that

ĝ(x, u, L(k),D(k)) ∈ ĝ(x, u, L0,D0)⊕B(µ)

or equivalently,
dY(ĝ(x, u, L(k),D(k)), ĝ(x, u, L0,D0)) ≤ µ

for all x,u.

Notice that from this assumption we have that
dX(F̂ (x, u, L(k),D(k)), F̂ (x, u, L0,D0)) ≤ µ



It can be proved that the LACKI method satisfies this assump-
tion.

Based on this assumption, the following lemma can be derived:
Lemma 8. Assume that Assumption 5 holds and that at the
sampling time k ≥ k∗ and consider that the state of the plant
is x(k) and the sequence of future control inputs is known.
Let x̂s(j|k) and ŷs(j|k) be the predicted states and outputs
respectively corresponding to the given sequence of future
control inputs using the guaranteed prior model.
Assume that at sampling time k+1, the states and the outputs of
the plant are predicted for the remaining sequence of the given
future control inputs taking into account the measured output
y(k + 1). Let x̂s(j|k + 1) and ŷs(j|k + 1) be the sequences
of states and outputs predicted with the prior model and let
x̂u(j|k + 1) and ŷu(j|k + 1) be the predicted sequences using
the updated model at k + 1.

Then the errors between both predictions are such that

dX(x̂u(j − 1|k + 1), x̂s(j|k))≤ dj (33)
where dj is as defined in Lemma 3.

Based on this lemma, we are ready to state the closed-loop
stability of the proposed controller
Theorem 9. Consider that Assumptions 3, 4 and 5 hold. Let
κuN (x) be the control law derived from the solution of PuN (x)
applied using a receding horizon policy. Then for all feasi-
ble x(0), the system controlled by the control law u(k) =
κuN (x(k)) is input-to-state stable w.r.t to the estimation error
of the LACKI model and the constraints are satisfied along the
time, i.e. y(k) ∈ Y.

6. AN ILLUSTRATION

Most of the theoretical derivations thus far were concerned with
robust MPC design in a manner such that the controller and
its guarantees can be connected to learning methods such as
LACKI. When using such a learning method for identifying
the dynamics of the underlying plant, we expect our adaptive
controller to improve its performance the more data becomes
available. To illustrate this behaviour, as well as the viability
of our approach in general, we will now attend to a simple
example:

We simulated the discrete-time version of a torque-actuated
single-pendulum with continuous-time dynamics ẋ = a(x) +
b(x)u where a(x) := − gl sin(x1) − r

ml2x2 and b(x) = 1
ml2 .

Here, x1 = q, x2 = q̇ ∈ R are joint angle position and velocity,
r = 0.01 denotes a friction coefficient, g = 9.81 is acceleration
due to gravity l = 1 is the length and m = 0.1 the mass of the
pendulum.

The control input u ∈ [−.5, .5] applies a torque to the joint that
corresponds to joint-angle acceleration. The pendulum could
be controlled by application of a torque u to its pivotal point.
q = 0 encodes the pendulum pointing downward and q = π
denotes the position in which the pendulum is upward. Given an
initial configuration x0 = [0, 0] we desired to steer the state to
a terminal configuration ξ = [π, 0]. The bounds on the control
inputs were set so that the controller cannot lift up the pendulum
directly to the goal position but has to plan ahead to perform
a swing up. To convert the system to a discrete-time system,
we chose a first-order Euler approximation with sample time
∆ = 0.1[sec.].

As a first test of the viability of nonlinear MPC in this setting,
we designed an MPC controller as per Eq. 27-32 but where
the dynamics F̂ were set to coincide with the true dynamics.
Furthermore, we chose a prediction horizon of N = 5 time
steps and, and tuned the parameters of V and λ via linearisation
around the equilibrium point. To solve the nonlinear optimi-
sation problem in each step of the receding horizon control
process, we employed the DIRECT global optimisation method
[Jones et al. (1991)] with a computational budget of 2000
function evaluations. The resulting trajectory is depicted in Fig.
1(a). As can be seen from the plots, the controller was capable
of performing the swing up and stabilising the pendulum in the
up-right position (up to some jitter). We explain the remaining
jitter to be an artefact of the optimisation method failing to find
the global optima within the given budget.

As a first test of our learning-based MPC, we next modified the
MPC, substituting the true dynamics with a LACKI predictor f̂n
trained on a data set on an even-spaced grid such that that train-
ing inputs had a distance of RDn

= maxi,j ‖si − sj‖∞ = 0.6.
We then repeated the simulation with this learning-based con-
roller, LACKI-MPC, controlling the torques. The resulting tra-
jectories are depicted in Fig.1(b). As can be seen, the controller
again managed to perform the swing-up and stabilisation. How-
ever, this time, most-likely due to the model inaccuracies of the
trained LACKI predictor, the pendulum had to swing-back and
forth repeatedly until the swing up succeeded.

To illustrate the benefit of additional data, we once more re-
peated the experiment in the same setup but where LACKI was
given more training data. In this second run of LACKI-MPC,
the LACKI learner was trained on a finer grid with RDn

=
0.4. As can be seen in Fig. 1(c), the controller managed to
achieve the swing-up quicker. And, the closed-loop behaviour
very closely mimicked the characteristics of those of the plant
controlled by the MPC with access to the true dynamics (as per
Fig. 1(a)).

7. CONCLUSIONS

In this paper, a new learning-based MPC control approach was
proposed. Here control actions were based on a sequence of
nonlinear MPC optimisation problems whose prediction mod-
els were learned on the basis of input-output observations of
the underlying plant. Several assumptions were discussed un-
der which input-to-state stability of the resulting closed-loop
dynamics can be proven. In contrast to some of the earlier work
going in the same direction as ours, our analysis also gives
guarantees on recursive feasibility of unrestricted (but typically
continuous) nonlinear dynamics without having to make model
assumptions that in effect limit the constraints to be convex. A
crucial requirement for our guarantees to hold was that worst-
case bounds around the predictions of the trained learning mod-
els could be given. Providing an example of such a learning
method, we considered to employ LACKI to this end [Calliess
(2014, 2016)], a recently developed extension to NSM and
Lipschitz interpolation methods [Sukharev (1978); Milanese
and Novara (2004)] that had previously been proposed to be
utilised in learning-based MPC [Canale et al. (2014)]. To illus-
trate the viability of our ideas, simulations of a torque actuated
pendulum were provided. Here the learning-based MPC proved
capable of learning how to swing up and stabilise in the pres-
ence of sufficient learning experience.



(a) MPC based on true model. (b) LACKI-MPC with some data. (c) LACKI-MPC with more data.

Figure 1. Simulations of a single pendulum. Left: Controlled by a nonlinear MPC knowing the true nonlinear dynamics. Centre:
The trajectories resulting from utilising our MPC controller with soft constraints based on a coarse LACKI model trained on
offline data. Right: LACKI-MPC based on a refined model.

7.1 Future work.

While the theoretical results are encouraging, a lot of avenues of
further investigation remain open. For instance, we have found
that in our simulations, especially in higher-dimensional sys-
tems, the performance of the controller appeared to be sensitive
to the computational budget and chosen nonlinear optimisation
algorithm. This is especially true since the NSM and LACKI
methods are not smooth. Future work will investigate alter-
native optimisation algorithms that are more suitable for such
function classes. From the other end, we will investigate the
utilisation of smooth regression methods such as neuronal net-
works or Gaussian processes [Rasmussen and Williams (2006);
Kocijan and Murray-Smith (2005)] within the learning-based
MPC. While we already have conducted first experiments in
that regard that are encouraging, we yet have to investigate in
how far these learning approaches can be proven to meet the as-
sumptions required to connect to our theory. We will also study
more carefully the on-line methods as well as techniques to
reduce the conservativeness of the proposed approaches. Other
directions are to investigate the addition of learning-oriented
cost terms into the MPC objective function [e.g. similar in
spirit to Alpcan (2011) ] that facilitate exploration or explic-
itly encourage exploitation, giving preference to trajectories
that traverse better-explored regions of state-control space over
more uncertain ones.
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