A Novel Electric Insulation String Structure with High-Voltage Insulation and Wireless Power Transfer Capabilities

Cheng Zhang, Member, IEEE, Deyan Lin, Member, IEEE, Niang Tang, and S. Y. R. Hui, Fellow, IEEE

Abstract—High-voltage insulation strings are commonly used to hold high-voltage electric cables and electrically isolate them from the grounded transmission tower. In this paper, a novel concept of an electric insulation string with (i) high-voltage insulation (HVI) and (ii) wireless power transfer (WPT) capabilities is presented. Based on the concept of the domino-resonator WPT system, this new structure consists of coil-resonators embedded inside totally sealed insulation discs, which are then connected in series to form the new insulation string structure with the simultaneous HVI and WPT functions. This structure allows energy harvested from the a.c. magnetic field around the high-voltage cable to be transmitted wirelessly to power an online monitoring system in high-voltage transmission tower continuously, thereby reducing the storage requirements of the battery. The design and analysis of this new WPT structure based on the dimensions of commercially available high-voltage insulation rod are included. Practical measurements obtained from a hardware prototype of about 25W have been obtained to confirm the WPT capability of the proposal. An energy efficiency over 60% has been achieved for a transmission distance of 1.1 m over a wide range of load.

Index Terms— wireless power transfer, High-voltage insulation string, magnetic resonance

I. INTRODUCTION

The dawn of the Smart Grid and Internet of Things eras has prompted active research in recent years to set up online monitoring systems for power transmission systems. Such monitoring systems are particularly important and critical to some regions such as China which suffered several large-scale blackouts in recent years due to heavy snow storms in central and northern China [1] and typhoons in southern China [2]. The 2008 power blackout in China [1] has resulted in a total financial loss exceeding RMB 100 billion (approx. US$ 15 billion) [7]. The seriousness of the power blackout problems in China is reflected in our literature review using IEEE Xplore that the majority of recent publications (since 2008) related to online monitoring research of power transmission towers actually came from China. Online monitoring systems for power transmission towers and cables cover a range of monitoring services such as electric parameters (e.g. voltage, current, phase angle and power) [3], mechanical parameters (e.g. tower structure [4], cable galloping, ice/snow thickness [5]-[7] and wind-induced mechanical vibration of transmission tower [8]), thermal parameters (e.g. cable temperature) [4] and weather information (e.g. wind speed, temperature and lightning and pollution level) [7],[9]-[10] as well as anti-theft monitoring [11]. With increasing requirements for online monitoring, there is a need for providing reliable power supply to power the monitoring instruments. In the past, solar power was the dominant power source. However, with several years of practical installations, power companies such as Guangdong Power have concluded that solar power is not the optimal solution for several reasons. Firstly, there are prolonged periods of rainy and cloudy days that make solar power alone unsuitable from a reliability point of view. Secondly, solar energy harvesting is only possible during day time when the weather is good, meaning that the size of the battery storage has to be large. In view of the increasing demand for powering online monitoring systems for power transmission towers and transmission lines, this project focuses on:

(i) “Reliable and continuous” energy harvesting from the HV transmission lines;

(ii) “High-efficiency wireless power transfer (WPT)” between any two points that require large creepage distance for HV insulation reasons.

A literature review conducted for this project indicates that energy harvesting can be achieved via photovoltaic (PV), wind, electric field and magnetic field for power transmission systems. So far, very limited work has been reported on techniques for transferring power over the creepage distance...
(typically from tens of centimeters to a few meters) in HV power transmission towers and cables. The only exception seems to be the microwave technique mentioned in [12], in which microwave repeaters are used to transmit power harvested from the power cables from one point to another. Therefore, technology for safe and efficient power transfer over long creepage distance in HV power transmission systems is a largely unchartered research area.

Mid-range WPT techniques have been proposed in the last decade. The magnetic resonance principle used recently in [13] was not new because Tesla used magnetic resonance in his early WPT experiments [25]. The limitation in [13] is that it adopts the Maximum Power Transfer Principle. For any circuit that operates with the Maximum Power Transfer Theorem via impedance matching with the source impedance, there is an inherent limitation that the energy efficiency of the system cannot be higher than 50%. For a transmission distance of about 2m and using coils with large diameters, the system energy efficiency in [13] is only 15%. This serious limitation has been explained in a review paper [14]. A pair of dipole coils have been adopted for WPT of 209W over 5 meters at an energy efficiency of 8% [26]. On the other hand, the wireless domino-resonator systems have been practically proven [15]-[18] to be a highly efficient way to transfer wireless power over a few meters. Unlike the proposal in [13], the wireless domino-resonator systems adopt the Maximum Energy Efficiency Principle and can achieve an overall system energy efficiency higher than 50%.

In this paper, the domino-resonator concept is incorporated into a new structure of electric insulation rod or string which offers the dual capabilities of high-voltage insulation and wireless power transfer. Coil-resonators are resonant tanks formed by connecting a coil (inductor) and a resonant capacitor. They can be embedded in HV insulation discs to form a new insulation string with high-voltage insulation (HVI) and wireless power transfer (WPT) capabilities. For the first time, coil-resonators are designed to fit into the interior space of commercially available high-voltage insulator rod with standard dimensions for high-voltage insulation. A hardware prototype with rated power of 25W has been constructed for practical evaluation so that the WPT capability of the insulation rod can be studied in a realistic manner. Experimental results show that an energy efficiency above 60% can be achieved for WPT for a transmission distance of 1.1m. This paper is an extended version of a short conference paper previously presented in [19]. The analysis points to a new design approach to operating the system within a high energy efficiency region in order to avoid problem arising from parametric tolerance. A full section on experimental verification is included.

II. REQUIREMENTS OF ONLINE MONITORING SYSTEM FOR POWER TRANSMISSION SYSTEMS

Previous online monitoring was powered by photovoltaic systems (PV) which have several limitations. Firstly, energy harvesting is limited to a few hours each day and is ineffective in prolonged period of cloudy or rainy weather. Secondly, the short duration of solar energy harvesting means that large battery storage is required. The failure to monitor faults in the prolonged snow storm period in 2008 exposed these fatal problems. Take a simple example. If a PV system can harvest an average of 6 hours of solar energy each day under normal situation, the battery needs to provide 450VAh to power an online monitoring equipment of 25W for the remaining 18 hours. Under the same normal situation, the proposed system harvests energy continuously from the magnetic field around the transmission cable and therefore theoretically does not need any battery storage. In practice, a small battery is needed so that the online monitoring system can wirelessly transmit fault signals and locations to the control center if abnormal situation occurs.

The new concept of this proposal can be illustrated with the aid of a practical transmission tower example shown in Fig.1. The magnetic field generated by the transmission cable (marked as ① in Fig.1) can be “continuously” harvested with a transformer and a power converter. The harvested energy can be stored in a supercapacitor and/or a rechargeable battery. Because energy can be harvested from the power cable continuously without any time constraint (such as day time only for PV panels), the storage capacity of the supercapacitor and/or battery can be much smaller than that for a solar power system. As the online monitoring system has to be mounted on the Transmission Tower (marked as ② in Fig.1) which is earthed, there is a considerable transmission distance between the energy-harvesting point ① and the energy-receiving point ②. According to IEC 60137 standard [20], the creepage distance depends on the voltage and the air pollution conditions as listed in Table I. Typical power requirements provided by a power company (Guangdong Power Grid Corporation, a subsidiary of China Southern Power Grid) are listed in Table II.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Creepage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>16 mm/kV</td>
</tr>
<tr>
<td>Medium pollution</td>
<td>20 mm/kV</td>
</tr>
<tr>
<td>Heavy pollution</td>
<td>25 mm/kV</td>
</tr>
<tr>
<td>Very Heavy Pollution</td>
<td>31 mm/kV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Creepage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>16 mm/kV</td>
</tr>
<tr>
<td>Medium pollution</td>
<td>20 mm/kV</td>
</tr>
<tr>
<td>Heavy pollution</td>
<td>25 mm/kV</td>
</tr>
<tr>
<td>Very Heavy Pollution</td>
<td>31 mm/kV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Creepage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>16 mm/kV</td>
</tr>
<tr>
<td>Medium pollution</td>
<td>20 mm/kV</td>
</tr>
<tr>
<td>Heavy pollution</td>
<td>25 mm/kV</td>
</tr>
<tr>
<td>Very Heavy Pollution</td>
<td>31 mm/kV</td>
</tr>
</tbody>
</table>

TABLE I IEC 60137 STANDARD ON CREEPAGE DISTANCE FOR VOLTAGE > 1000V

TABLE II TYPICAL POWER REQUIREMENTS OF ONLINE MONITORING SYSTEMS
(COURTESY OF GUANGDONG POWER GRID CORPORATION)

<table>
<thead>
<tr>
<th>Component</th>
<th>Sleep mode</th>
<th>Active mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>2W</td>
<td>12W</td>
</tr>
<tr>
<td>Snow monitoring</td>
<td>1W</td>
<td>3.5W</td>
</tr>
<tr>
<td>Micro-meteorological monitor</td>
<td>1W</td>
<td>3W</td>
</tr>
<tr>
<td>Micro-processing unit</td>
<td>10mW</td>
<td>50mW</td>
</tr>
<tr>
<td>Total</td>
<td>4.01W</td>
<td>18.55W</td>
</tr>
</tbody>
</table>
Fig. 1 Energy harvesting point at the shielded cable: ① and Energy receiving point; ② at the tower structure. [Note: there is a large creepage distance between ① and ②]

Fig. 1 shows an example of rigid insulation strings holding the HV transmission lines to the Transmission Tower. For transmission distance of this magnitude, traditional 2-coil and 4-coil WPT techniques cannot achieve high efficiency because such efficiency is inversely proportional to the square of the transmission/insulation distance.

The new concept of WPT system for this HV application with large creepage distance is shown in Fig. 2. This concept consists of

(i) a magnetic field energy harvester with an energy storage element (such as supercapacitors and/or rechargeable batteries),
(ii) a dc-ac high-frequency power inverter driving a transmitter coil-resonator,
(iii) a novel insulation rod/string with embedded relay coil-resonators;
(iv) a high-frequency energy-receiving circuit with a receiver coil resonator.

In this study, the research focuses only on the new insulator string with embedded coil-resonators for WPT. The front-stage energy harvesting module and the high-frequency ac-dc converter in the receiver stage will be covered in future research.

The novel insulation string consists of a series of insulation discs. If the discs are linked with rigid insulation shaft, a rigid insulation string (also known as “insulation rod”) is formed. If the discs are linked with a flexible insulation shaft, the structure is called a flexible insulation string. The transmitter coil-resonator is arranged in such a way that it is placed close to and magnetically coupled to the coil-resonator in the first insulation disc on the transmitter side. Similarly, the last insulation disc of the insulation rod/string is placed close to the receiver’s coil-resonator for close magnetic coupling. The coil-resonators embedded in the discs between the transmitter module and receiver module are used as relay or repeater coil-resonators. The operation of the proposed insulation rod/string is based on the wireless domino-resonator systems [15][16], which offer good compromise of high energy efficiency and transmission distance for mid-range WPT applications.

III. ANALYSIS AND DESIGN OF AN INSULATION STRING WITH HVI AND WPT CAPABILITIES

A. Modeling of the Insulation String with Embedded Coil-Resonators

Fig. 3 shows a typical structure of stackable discs in the form of an insulation string. Each disc has an embedded coil connected in series with a capacitor, forming an inductive-capacitive (LC) resonant tank (called coil-resonators hereafter). The coil-resonator is totally enclosed inside the insulation disc so that it is not affected by dust and water. The resonant frequency of this resonant tank in each disc should be identical.

When many discs are connected in series as shown in Fig. 4, a new form of insulation string with HVI and WPT functions can be realized.

Consider a domino wireless power transfer system consisting of \(n \) coils as shown in Fig. 5. If we assume \(L_i \) is the self-inductance of the \(i^{th} \) coil, \(R_i \) is the coil resistance of the \(i^{th} \) coil, and \(M_{ij} \) is the mutual-inductance between the \(i^{th} \) coil and the \(j^{th} \) coil, then the system could be described in matrix equation (1).
If all the parameters in the matrix in equation (1) are known, for a given frequency \(f \), we can get the input impedance of the system by giving a certain input of \(U_{ij} \), calculating the input current \(I_{ij} \), and then,

\[
Z_f = \frac{U_{ij}}{I_{ij}}
\]

Hence, a set of impedance values at different frequencies can be obtained: \(Z_{f_1}, Z_{f_2}, \ldots, Z_{f_n} \), where \(f_i \) is one of the different frequencies, and \(Z_{f_i} \) is the input impedance at \(f_i \).

\[
(Z_{f_1}, Z_{f_2}, \ldots, Z_{f_n}) = f\left(L_1, L_2, \ldots, L_n, \right.
\]

\[
M_{12}, M_{23}, \ldots, M_{(n-1)n},
\]

\[
C_1, C_2, \ldots, C_n,
\]

\[
R_1, R_2, \ldots, R_n,
\]

\[
R_{load} \right)
\]

(3)

Since the coils in the domino system are identical to each other, the self-inductance of \(L_1 \) through \(L_n \) can be treated as a constant value, and it could be accurately calculated [22]. The coil resistance, \(R_i \), can be considered as identical and it can be measured at the operating resonant frequency of the coil-resonator. Such coil resistance can be considered as a constant value if the wireless power transfer system is operated around the resonant frequency. All the measured parameters or the nominal value of the resonators are shown in Table I. Meanwhile, we can treat the mutual inductances \(M_{12}, M_{23}, \ldots, M_{(n-1)n} \) as functions of distances between each coil pair, \(d_{12}, d_{23}, \ldots, d_{(n-1)n} \) [23], then equation (3) can be replaced by equation (4):

\[
(Z_{f_1}, Z_{f_2}, \ldots, Z_{f_{n}}) = f\left(L_1, L_2, \ldots, L_n, \right.
\]

\[
d_{12}, d_{23}, \ldots, d_{(n-1)n},
\]

\[
C_1, C_2, \ldots, C_n,
\]

\[
R_1, R_2, \ldots, R_n,
\]

\[
R_{load} \right)
\]

(4)

The energy efficiency of the insulation string with embedded coil-resonators is expressed as:

\[
\eta(f) = \frac{i_n^2(f)R_{load}}{i_n^2(f)R_{load} + \sum_{x=1}^{n}i_x^2(f)R_x}
\]

(5)

and the output power is:

\[
P_{out}(f) = i_n^2(f)R_{load}
\]

(6)

B. Design of Coil-Resonators Based on Practical Insulator Strings

The embeddable coil-resonators of the proposed insulation string with WPT and HVI capability should preferably be compatible with the dimensions of existing insulation strings commercially available. Fig.6 shows a practical example of a commercially available insulation string [24]. It consists of a series of insulation discs with large diameter separated by insulation discs with small diameter. The dimensions of the insulation string structure in this investigation are given in Table III, in which the distances between adjacent disc-x and disc-y with large diameters (labelled as “B” in Fig.6) are tabulated as \(d_{xy} \). The total distance of this example is 1.1 m and the diameter of the large disc is 0.2 m. The coil-resonators are embedded only in the insulation discs of large diameters.

![Typical dimensions of a commercial insulation string](image)

TABLE III DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>(d_{12}) (m)</th>
<th>(d_{34}) (m)</th>
<th>(d_{45}) (m)</th>
<th>(d_{56}) (m)</th>
<th>(d_{67}) (m)</th>
<th>(d_{78}) (m)</th>
<th>(d_{89}) (m)</th>
<th>(d_{910}) (m)</th>
<th>(d_{1112}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.098</td>
<td>0.098</td>
<td>0.098</td>
<td>0.098</td>
<td>0.098</td>
<td>0.098</td>
<td>0.098</td>
<td>0.11</td>
</tr>
</tbody>
</table>
IV. Verification and Evaluation of the WPT Capability

A. Practical Insulations String with coil-resonators

Twelve coil-resonators are designed to fit into the dimensions of the insulation discs of large diameter (i.e. 200mm). The hardware setup is shown in Fig. 7. The energy efficiency of WPT system depends on the kQ product, where k is the coupling coefficient between adjacent magnetically coupled coils and Q is the quality factor of the coil. It is therefore necessary to use operating frequency high enough to achieve high Q factor within the capability of existing power electronics technology. The operating frequency is designed to be in the range from 300 kHz to 500 kHz, which is within existing capability of switched mode power supplies.

The parameters of the coil-resonator are tabulated in Table IV. Coils of such dimensions can be accommodated by existing insulation discs. The self-inductance is about 155 μH and the resonant capacitor is 1 nF. The targeted resonant frequency is about 400 kHz, at which the ac coil resistance is about 1.30 Ω and the Q factor is about 300. In order to improve the accuracy of the mathematical model, the actual capacitance values of the resonant capacitors and the separation distances between adjacent coil-resonators are measured and tabulated in Table V. These measured values are used to the computer-aided evaluation.

![Prototype of 12-coil insulator wireless power transfer system: (a) sketch; (b) real prototype](image)

Table IV Parameters of the Resonators

<table>
<thead>
<tr>
<th>Outer Radius of Windings</th>
<th>68mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Radius of Windings</td>
<td>88mm</td>
</tr>
<tr>
<td>Number of turns</td>
<td>24</td>
</tr>
<tr>
<td>Layer of the wire</td>
<td>2</td>
</tr>
<tr>
<td>Structure of the Litz wire</td>
<td>Φ0.1mm*120strans</td>
</tr>
<tr>
<td>Inductance (Calculated)</td>
<td>155.0 uH</td>
</tr>
<tr>
<td>Capacitance (Nominal value)</td>
<td>#1 through #12</td>
</tr>
<tr>
<td>Measured wire resistance (at 400 kHz)</td>
<td>1.30 Ohm</td>
</tr>
</tbody>
</table>

Table V Practical Parameters of the Resonant Capacitance & Separation Distances

<table>
<thead>
<tr>
<th>C_1 (µF)</th>
<th>C_2 (µF)</th>
<th>C_3 (µF)</th>
<th>C_4 (µF)</th>
<th>C_5 (µF)</th>
<th>C_6 (µF)</th>
<th>C_7 (µF)</th>
<th>C_8 (µF)</th>
<th>C_9 (µF)</th>
<th>C_{10} (µF)</th>
<th>C_{11} (µF)</th>
<th>C_{12} (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05</td>
<td>1.01</td>
<td>1.03</td>
<td>1.02</td>
<td>1.02</td>
<td>1.03</td>
<td>1.01</td>
<td>1.03</td>
<td>1.04</td>
<td>0.99</td>
<td>0.98</td>
<td>1.06</td>
</tr>
<tr>
<td>d_{12} (m)</td>
<td>d_{23} (m)</td>
<td>d_{34} (m)</td>
<td>d_{45} (m)</td>
<td>d_{56} (m)</td>
<td>d_{67} (m)</td>
<td>d_{78} (m)</td>
<td>d_{89} (m)</td>
<td>d_{910} (m)</td>
<td>d_{1011} (m)</td>
<td>d_{1112} (m)</td>
<td></td>
</tr>
<tr>
<td>0.113</td>
<td>0.099</td>
<td>0.095</td>
<td>0.098</td>
<td>0.100</td>
<td>0.096</td>
<td>0.096</td>
<td>0.098</td>
<td>0.095</td>
<td>0.085</td>
<td>0.117</td>
<td></td>
</tr>
</tbody>
</table>

B. Computer-aided Analysis with Practical Verification

i) Computed and Experimental Input Impedance and Input Phase Angle

In order to check the accuracy of the mathematical model described in the last section, the input impedance and the input phase angle of the insulation string prototype are measured with steps of 1 kHz increment from 300 kHz to 500 kHz, when the last coil-resonator is loaded with a fixed resistive load R_{load} of 10 Ω. As multiple coil-resonator system is a high-order system with multiple resonant points, 200 sets measurements from 300 kHz to 500 kHz are captured with a high-speed digital oscilloscope and transferred to a computer for analysis. Fig.8 shows the simulated and experimental results of the impedance (Z_{exp} and Z_{sim}) over the specific frequency range. The corresponding simulated and measured phase angle between input voltage and current are shown in Fig.9. These results indicate that the overall impedance has a transitional change from being capacitive-resistive (below 380 kHz) to resistive (at around 380 kHz to 400 kHz) and then inductive-resistive (above 400 kHz) as the frequency increases from 300 kHz to 500 kHz. These measurements show that the resonant frequency of the overall system is within 380 kHz to 400 kHz, which is close to the targeted frequency of 400 kHz. The good agreements between the experimental and simulated results confirm the validity of the mathematical model. This provides the confidence that the mathematical model can be used to optimize the system operating conditions.
ii) Computed and Experimental Energy Efficiency

Computer analysis can be used to explore the relationships among the energy efficiency, operating frequency and load resistance for optimal operation in a 3-dimensional (3-D) manner. In the practical setup, a high-frequency power source is used to drive the transmitter coil, while the last resonator is loaded with a resistor. Because no power converter is involved in the process, the energy efficiency is calculated from the ratio of the load power and the input power to the transmitter coil. Under an excitation voltage of 28V, such 3-D plot is shown in Fig. 10(a). This result shows that energy efficiency exceeding 60% is possible for transmitting over 25W over an overall transmission distance of 1.1 m based on the proposal insulation string structure with large insulation discs embedded with coil-resonators. In order to examine the details of this result, the energy efficiency of the prototype is included in a 2-D contour plot as shown in Fig. 10(b). This computed result indicates that high energy efficiency can be achieved for this prototype over a wide load resistance range with the frequency range of 380 kHz and 400 kHz. For example, if an operating frequency of 393 kHz is selected, high energy efficiency can be achieved for a load resistance range from about 8 Ω to 50 Ω.

For a load resistance of 50 Ω, the computed and measured energy efficiency curves over a frequency range from 340 kHz to 440 kHz are plotted in Fig.11. The good agreement between the computed and practical measurement confirm that (i) the accuracy of the mathematical model is acceptable and (ii) energy efficiency exceeding 60% is practically feasible for a transmission distance of 1.1 m.
The variation of the energy efficiency as a function of the distance (or number of insulation discs) has been evaluated. The load is placed at each insulated disc from the second to the last coil-resonator in a 12-coil WPT system (with a total distance of 1.1 m between the transmitter coil-resonator to the last receiver coil-resonator). The energy efficiency curve is plotted in Fig. 15. It can be seen that the energy efficiency varies from about 90% to about 60% in this practical prototype. One extra test has also been conducted in a 12-coil system with the 6th coil open-circuited (i.e, the transmission distance between the 5th and 7th coil-resonator is now doubled). This special energy efficiency is included in Fig. 12. It is noted that wireless power can still be transmitted to the load, but the energy efficiency will drop from about 60% to about 20%.

![Fig. 12 Energy efficiency with different coil discs at operating frequency of 393 kHz with a load resistance of 50 Ohm (with one extra measured point of energy efficiency when the 6th coil of a 12-coil WPT system open-circuited)](image)

iii) Computed and Measured Output Power

The output power as a function of the operating frequency and load resistance has also been computed as shown in a 3-D plot in Fig. 13(a). The phenomenon of frequency splitting can be observed. In order to make it easy to design the operating range, the output power is displayed in a 2-D plane against the color scale in Fig. 13(b), in which the load resistance range from 8 Ω to 45 Ω is highlighted in a solid line at 393 kHz.

Practical tests have been conducted with the prototype operating along the load resistance range from 8 Ω to 45 Ω at 393 kHz. The experimental and simulated output power are plotted in Fig. 14. It is noted that the practical output power is slightly less than the predicted one. At high-frequency operation, some inductive effect exists in the ceramic resistor. Such parasitic inductance increases the effective impedance of the output load and reduces the output power. However, the overall trend of the actual power is consistent with the predicted curve. The corresponding energy efficiency results over this load range are shown in Fig. 15. These results confirm that an energy efficiency exceeding 60% is possible over a wide load range.

![Fig. 13 Computed output power as a function of the operating frequency and load resistance (Input voltage: 28V): (a) Computed output power in 3-D plot; (b) Computed output power in 2-D contour plot. [Note: The bold line illustrates the load resistance range under consideration in Fig.14 and Fig.15)](image)

![Fig. 14 Experimental output power over a range of load resistance at an operating frequency of 393 kHz and an input voltage of 28.3V. [Note: Parasitic inductance in the load resistor at 393 kHz is not considered in the simulation)](image)
Fig. 15 Experimental energy efficiency over a range of load resistance at an operating frequency of 393 kHz and an input voltage of 28.3V

C. Practical Demonstration of Powering Online Monitoring Camera

The wireless power transfer prototype has been used to drive an IP camera (Brand: WIRYTH) as shown in Fig. 16. An ac power source of 20V at 393 kHz is used to drive the insulation string WPT system. A simple ac/dc converter and a buck converter are used to maintain the output voltage to 5V DC to fit the requirement of the IP camera. The normal operating current of the IP camera is 300mA and the maximum current is 1300 mA @5V input when the camera is rotating. A video of the live demonstration is included in the attached video file.

Fig. 16 The diagram of the insulator wireless power transfer system

V. SIMULATION STUDY OF ELECTRIC FIELD DISTRIBUTION

While the main theme of this study focuses on the WPT capabilities of this proposed idea, a finite-element simulation study has been conducted to evaluate the electric field distribution of the proposed insulation string with and without the embedded coil-resonators. Finite element analysis (FEA) is carried out on a 110 kV insulator prototype. The dimension of the prototype is based on that of a commercially available 110 kV composite insulator which has 12 pieces of large sheds. The parameters of a practical 110kV composite insulator (Fig.17) listed in TABLE VI are used in the finite-element simulation.

Fig. 17 3-D structure (left) and 2-D Finite-element model (right) of the insulator string

Table VI Parameters of the 110kV Composite Insulator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of the large sheds</td>
<td>190mm</td>
</tr>
<tr>
<td>Spacing of the large sheds(average)</td>
<td>100mm</td>
</tr>
<tr>
<td>No. of the large sheds</td>
<td>12</td>
</tr>
<tr>
<td>Minimum arcing distance</td>
<td>1100mm</td>
</tr>
<tr>
<td>Minimum nominal creepage distance</td>
<td>2710mm</td>
</tr>
</tbody>
</table>

Fig.18 Simulated electric field distributions of the insulation strings: (a) with and (b) without embedded coil-resonators.
VI. CONCLUSIONS

This paper presents a novel concept of using a high-voltage insulation string structure with embedded coil-resonators for wireless power application. This idea is proposed for an industrial application of wireless power transfer for powering online monitoring system in high-voltage transmission networks. The WPT aspects of this idea have been studied with the help of a computer-aided analysis and practically verified. It has been found that over 25W can be practically transferred over an overall transmission distance of 1.1 m at an energy efficiency exceeding 60%. This amount of power is sufficient to meet the typical power requirement of 25W in many existing online monitoring systems. This paper contains the first set of experimental results for this online monitoring application. A finite-element simulation on the electric field distribution has been conducted. The simulated results suggest no special problem in its high-voltage insulation capability. Further research is being conducted to evaluate the WPT capability in a high-voltage environment.

ACKNOWLEDGMENT:

S.Y.R. Hui and C. Zhang are grateful to the University of Hong Kong for its financial support for the US provisional patent application [21]. This work is supported by the Hong Kong Research Grant Council under the Project: 17255916. The practical power requirements of online monitoring systems are provided by Guangdong Power.

REFERENCES

Xinbo Huang, Wenjing Li, Ye Zhang, “Research of transmission line tower anti-theft monitoring technique based on video difference analysis”, 8th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 2012, pp. 1-4

C. Park; S. Lee; Gyu-Hyeong Cho; Chun T. Rim "Innovative 5-m-Off-Distance Inductive Power Transfer Systems With Optimally Shaped Dipole Coils", IEEE Trans on Power Electronics, 2015, Volume: 30, Issue: 2 Pages: 817 - 827

Cheng Zhang (S’13–M’16) was born in China, in 1990. He received the B.Eng. degree (first class Hons.) in electronic and communication engineering from the City University of Hong Kong, Kowloon, Hong Kong, in 2012, and the Ph.D. degree in electronic and electrical engineering from the University of Hong Kong, Hong Kong, in 2016. He was a senior research assistant in the department of electrical and electronic engineering, the University of Hong Kong from 2016 to 2017. He is currently a post-doctoral research associate in the research laboratory of electronics (RLE) at Massachusetts Institute of Technology. His current research interests include high frequency AC-DC power conversions and designs and optimizations for wireless power transfer applications.

Deyan Lin (M’09) received the B.Sc. and M.A.Sc. degrees from Huazhong University of Science and Technology in 1995 and 2004, respectively, and the Ph.D. degree from the City University of Hong Kong in 2012. He is currently a professor with the School of Automation, Wuhan University of Technology, Wuhan, and was a Post-doctoral Fellow with the Department of Electrical and Electronic Engineering, The University of Hong Kong. From 1995 to 1999, he was a Teaching Assistant in the Electrical Engineering Department at Jianghan University, Wuhan, where he became a Lecturer in 1999. From 2008 to 2009, he was a Senior Research Assistant with the City University of Hong Kong. His current research interests include wireless power transfer, memristors, modeling and control of gas-discharge lamps and light-emitting diode technology.

Niang Tang was born in Hunan, China in 1984. He received his B.S. degree and M.S. degree in electrical engineering in 2006 and 2009 respectively from Changsha University of Science and Technology, Changsha, China. He received his Ph.D. degree in electrical engineering in 2013 from North China Electric Power University, Beijing, China. Now, he is working with Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, China. His research interests are in the area of power electronics and power quality.

He currently holds the Philip Wong Wilson Wong Chair Professorship at the University of Hong Kong, Pokfulam, Hong Kong, and a part-time Chair Professorship at Imperial College London. He has published over 300 technical papers, including more than 230 refereed journal publications. Over 60 of his patents have been adopted by industry. He is an Associate Editor of the IEEE TRANSACTIONS ON POWER ELECTRONICS and IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, and an Editor of the IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS. His inventions on wireless charging platform technology underpin key dimensions of Qi, the world’s first wireless power standard, with freedom of positioning and localized charging features for wireless charging of consumer electronics. Dr. Hui in November 2010 received the IEEE Rudolf Chope R&D Award from the IEEE Industrial Electronics Society and the IET Achievement Medal (The Crompton Medal). He also received the 2015 IEEE William E. Newell Power Electronics Award. He is a Fellow of the Australian Academy of Technology & Engineering and a Fellow of the Royal Academy of Engineering, U.K.