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Abstract 
 

 

 

Pichia pastoris has become one of the most extensively used platform cell factories for 

recombinant protein and high-value added metabolite production. In the past recent years, 

important breakthroughs in the systems-level quantitative analysis of its physiology have been 

achieved. This wealth of information has allowed the development of genome-scale metabolic 

models, which make new approaches possible for host cell and bioprocess engineering. 

Previous to this work, three different genome-scale metabolic models were available for P. 

pastoris. Nevertheless, these models showed some inconsistencies regarding certain pathways, 

including the terminology for both metabolites and reactions and annotations. Furthermore, 

some P. pastoris specific metabolic traits were misrepresented. Therefore, in this study, a 

consensus genome-scale metabolic model has been developed, thereby integrating the prior 

models. In addition, a comprehensive revision of metabolic pathways was performed and 

several pathways were curated and updated according to the currently available literature. As 

a result, the new model, iMT1026, is able to more accurately reproduce experimental growth 

parameters using glucose as carbon source and different oxygen availability conditions. In 

order to expand the capabilities of the consensus model, new physiological datasets of cells 

growing on two of the most relevant substrates for this cell factory were generated. 

Specifically, a series of chemostat cultivations were performed to characterise the physiologic 

profile and macromolecular biomass composition of P. pastoris growing on glycerol and 

methanol as sole carbon sources. Also, macromolecular biomass composition was analysed, 

allowing us to incorporate new carbon-source specific stoichiometric biomass equations into 

the model, as well as to estimate the associated energetic parameters. Overall, a new version 

of the model (iMT1026 v3.0) was validated for these growing conditions. 
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In addition to the validation of iMT1026 v3.0 for a wider range of carbon sources and 

growth conditions, we have further tested its performance in two different applications, 

namely, the generation of reduced metabolic models suitable for 13C-based metabolic flux 

analysis and, assisting the interpretation of physiological growth parameters of redox-cofactor 

engineered strains. In particular, the genome-scale metabolic model has been reduced into a 

core model and used for 13C-based metabolic flux analysis of cells growing on glycerol at 

different growth rates. To our knowledge, this is the first study ever reported of 13C-MFA 

using glycerol as sole carbon source. Notably, flux analyses are highly consistent with 

pioneering 13C-based metabolic profiling studies of P. pastoris growing on glycerol. iMT1026 

v3.0 was also employed for assisting the interpretation of the physiological profiles obtained 

for redox-cofactor engineered strains. A recombinant strain producing an antibody fragment 

was engineered to overexpress a heterologous NADH kinase, aiming at increased NADPH 

regeneration rates. Notably, the redox-engineered strains showed an increase in recombinant 

protein production and altered macroscopic growing profiles. In silico analysis of the impact 

of NADH kinase overexpression using the iMT1026 model predicted possible metabolic 

changes associated to the redox cofactor imbalance that were in agreement with the observed 

physiological phenotypes.  

Overall, a refined tool for systems metabolic engineering is provided in the present 

study. Moreover, such tool has been validated for a wide range of environmental conditions 

and employed in two different applications, confirming its reliability. 
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Ressenya 
 

 

 

Pichia pastoris s’ha convertit en una de les plataformes cel·lulars més utilitzades per a la 

producció de proteïnes recombinants i metabòlits d’alt valor afegit. En els darrers anys s’han 

aconseguit fites importants en l’anàlisi quantitativa a nivell de sistemes de la seva fisiologia. 

Aquesta gran quantitat d’informació ha permès desenvolupar models metabòlics a escala 

genòmica, que permeten el desenvolupament de noves estratègies per l’enginyeria de soques 

i de bioprocés. Amb anterioritat a aquest estudi s’havien publicat tres models metabòlics a 

escala genòmica per a P. pastoris. No obstant això, aquests models presentaven algunes 

inconsistències en algunes vies metabòliques, en la nomenclatura de metabòlits i reaccions, 

així com les anotacions associades a certes vies. A més, algunes de les rutes metabòliques o 

característiques específiques de P. pastoris eren representades de forma errònia o incompleta. 

És per això que en aquest estudi es desenvolupa un model metabòlic a escala genòmica 

consens, que integra els models anteriors. A més, també es fa una revisió exhaustiva de 

diverses rutes metabòliques i nombroses vies es corregeixen i actualitzen d’acord amb les 

publicacions disponibles. Com a resultat, el nou model, iMT1026, pot reproduir amb més 

precisió els paràmetres de creixement experimentals de cèl·lules creixent en glucosa i diferents 

nivells de disponibilitat d’oxigen. Amb la voluntat d’expandir les capacitats del model, es 

generen noves dades fisiològiques fent servir dos dels substrats més importants per aquesta 

factoria cel·lular. Es realitzen unes series de cultius en continu per a la caracterització del perfil 

fisiològic de P. pastoris creixent en glicerol i metanol com a fonts úniques de substrat. A més, 

també es caracteritza la composició macromolecular de la biomassa. Posteriorment, 

s’incorporen en el model noves equacions de biomassa específiques per a cada font de carboni. 
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Aquestes noves dades experimentals han permès estimar els paràmetres energètics associats a 

les fonts de carboni i validar el model (iMT1026 v3.0) per aquestes condicions de creixement. 

Tot i la validació de iMT1026 v3.0 en un rang més ampli de condicions, en aquest 

treball es prova en dues aplicacions diferents: en l’anàlisi de fluxos metabòlics basat en 13C i 

com a eina de suport per a la interpretació de resultats en soques amb modificades en el 

metabolisme redox. Tot i que hi ha un únic estudi on s’analitza la relació entre fluxos 

metabòlics en cèl·lules creixent en glicerol, no es té constància de cap estudi d’anàlisi de fluxos 

metabòlics en aquesta font de carboni. Així doncs, es redueix el model metabòlic a escala 

genòmica a un model del metabolisme central i es fa servir per a l’anàlisi de fluxos metabòlics 

basats en 13C en cèl·lules creixent amb glicerol a diferents velocitats de creixement. Els 

resultats obtinguts són molt consistents amb els cultius previs en glicerol. També s’utilitza 

iMT1026v3.0 com a suport per a la interpretació del perfil fisiològic obtingut en soques amb 

el metabolisme redox modificat. Una soca que expressa un fragment d’anticòs es modifica 

genèticament mitjançant l’expressió d’una NADH quinasa, de manera que el balanç de 

cofactors redox queda pertorbat. Les soques generades mostren una producció de proteïna 

recombinant més elevada i una alteració en el perfil macroscòpic de creixement. Mitjançant 

l’anàlisi in silico dels perfils fisiològics resultants, es prediuen possibles canvis metabòlics 

associats a l’alteració del balanç de cofactors que estan d’acord amb el perfil macroscòpic 

observat. Així doncs, en línies generals, en aquest treball es desenvolupa una eina precisa per 

a l’enginyeria de sistemes metabòlics. A més, és validada en condicions vàries i s’utilitza en 

dues aplicacions diferents que demostren la seva fiabilitat.  
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1. General introduction 

The United Nations, in 1992 defined biotechnology in the Convention on Biological 

Diversity as any technological application that uses biological systems, living organisms, or 

derivatives thereof, to make or modify products or processes for specific use.  

Despite the definition was established 25 years ago, ancient human civilisations already 

performed the first biotechnological processes: microorganisms were used for beer, bread, 

cheese and yogurt production. These processes were at first rudimentary and discovered by 

chance. Initially, and for centuries, biotechnological products were just basic consumer goods. 

Nevertheless, more recently, advances in research and scientific discoveries allowed for the 

exploitation of microorganisms in a broad range of applications. For example, from the 

development of the acetone-butanol-ethanol process, citric acid production in Aspergillus niger, 

the antibiotic production in the first half of the 20th century, to the current production of 

drugs, vaccines and a wide variety of enzymes and valuable chemicals. Nowadays, 

biotechnology rests on the foundations stablished during the past century, with the discovery 

of the double helix of DNA, the capacity of genome sequencing, the development of DNA-

editing technologies that enabled the development of genetic engineering and the improved 

computational capacity and methods that facilitates processing large volumes of information.  

The application of these new knowledge and technologies boosted a rise in the field of 

biotechnology. In fact, this field is in an exponential growth with the implementation of new 

tools and processes that can replace conventional industrial processes. Generally, the concern 

on the environment protection made industries to overhaul the actual manufacturing 

processes, turning them into more environmentally-friendly, using renewable sources and 

evolving towards a bio-based industry. New discoveries in biological sciences and its 

implementation together with the reassessment of the industrial technologies, point to the key 

role of biotechnology on facing the new challenges in the present century that has been 

considered the biotechnology century. 
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1.1. YEAST BIOTECHNOLOGY: P. PASTORIS AS CELL FACTORY 

Yeast have been used for thousands of years for alcoholic fermentation of beverages 

and processing a variety of foods. The term yeast includes a wide diversity of species, 

nevertheless it is commonly associated to Saccharomyces cerevisiae that is the most common and 

extensively used yeast system. 

In industrial biotechnology, the productivity (space-time yield) is one of the major 

determinants for process profitability together with process simplicity and cheapness. When 

using organisms, the productivity is dependent on the specific growth and high turnover rates. 

Thus, organisms with higher growth rates would be a preferable choice for industrial 

processes [1]. Bacteria are the simplest organisms with higher growth and turnover rates and 

therefore the first option to choose in industrial processes. Nevertheless, their expression 

system has some limitations such as low stress tolerance and the inability of performing 

posttranslational modifications and consequently to properly express complex proteins [2]. 

Yeasts share some of the advantages with bacterial systems: they are unicellular organisms, 

easy to grow at high cell densities in cheap media and easy to genetically manipulate [3]. 

Moreover, unlike bacteria, yeasts are eukaryotic organisms and it confers them extended 

highly valuable capabilities for industrial applications. Together with mammalian cells, yeasts 

are able to perform posttranslational modifications (PTM) and secreting proteins, thus able 

of expressing complex proteins. Overall, yeasts are in between bacterial and mammalian 

platforms, thereupon share some advantages and disadvantages with these two other systems 

(Table 1-1). Despite there is not a universal platform of choice for biotechnological processes 

because it depends specifically on each particular case, yeasts are very versatile and well 

stablished platforms for multiple industrial applications such as the expression of recombinant 

proteins or the production of ethanol and other value-added chemicals. 

S. cerevisiae is known for growing in high sugar concentration environments and for its 

high capacity for producing ethanol. However, among the wide variety of yeasts species, there 

are a few of them valuable for other industrial applications with a reduced capacity on 

fermentative pathways [3,4]. These species are also called ‘non-conventional’ yeast and are 

able to grow in a variety of substrates with alternative metabolic routes, different regulatory 
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patterns and the ability to generate alternative products [5]. Pichia pastoris, one of the most 

prominent non-conventional yeast is studied in the present thesis.   

Table 1-1. Main characteristics of different industrial biological systems. 

 Advantages Disadvantages 

Bacteria 

High growth rates 

High product yields 

Cultivation at high cell densities 

Cheap cultivation media 

Easy to manipulate genetically 

Scalable processes 

Low stress tolerance 

Lack of posttranslational modifications 

No cellular compartments 

Yeast 

High growth rates 

High product yields 

Cultivation to high cell densities 

Cheap cultivation media 

Easy to manipulate genetically 

Scalable processes 

Posttranslational modifications 

Protein folding and secretion 

Compartmentalisation of the cell 

Glycosylation patterns different than 

mammalian 

Mammalian cells 

Posttranslational modifications 

Protein folding and secretion 

Compartmentalisation of the cell 

Expensive cultivation media 

Difficult to scale up processes 

 

P. pastoris was isolated in 1970s by Phillips Petroleum Company looking for yeasts 

capable to metabolise methanol. A decade later, P. pastoris was developed as heterologous 

protein production platform [6] taking advantage of the strong methanol inducible AOX 

promoter. In fact, it has become one of the most commonly used hosts for recombinant 

protein production [3,7] including biopharmaceuticals [8,9]. In the mid 1990s, Pichia was 

reassigned to the genus Komagataella [10]. Later, industrial P. pastoris strains were analysed and 

reclassified as Komagataella spp., that include two different strains (K. phaffi and K. pastoris) [11]. 

Since 1995, the number of heterologously expressed genes in this methylotrophic yeast has 

steadily increased [12]. P. pastoris has many engaging properties for recombinant protein 

production. One of the main advantages is the availability of well-established protocols and 
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techniques for its genetic manipulation [13–15] that enables strain engineering. As eukaryote 

has the capability of performing PTMs that makes it suitable for the expression and secretion 

of recombinant proteins, even those with intricate structure that require PTMs [16]. 

Moreover, there are a number of promoters available which are suitable for regulation with 

different carbon sources [17,18]. As most of the yeasts, P. pastoris is able to grow up to high 

cell densities and achieving high protein production yields [19,20]. Due to the increasing 

interest in using this advantageous methylotrophic yeast, several efforts have provided tools 

to better understand its operation, from physiological characterization to metabolic modelling. 

Furthermore, progress in synthetic biology together with its extensive use in recombinant 

protein production have also opened the door towards utilising P. pastoris as whole cell 

biocatalyst for non-native value-added metabolite production [21–23].  

1.1.1. Recombinant protein production 

Nowadays P. pastoris has become the most frequently used eukaryotic system for 

recombinant protein production [12]. The fact that secretes low amounts of endogenous 

proteins extremely facilitates de downstream process for protein purification, conferring to 

this production platform an enormous advantage among other alternative hosts [24]. 

Moreover, recombinant product titters are reported to be higher than other yeast species  [1,7] 

due to its particular secretory system. Furthermore, protein glycosylation patterns in P. pastoris 

have been extensively studied and reported to be much shorter than the hypermanosylated 

chains in S. cerevisiae [25–27]. The glycosylation pattern in recombinant proteins is important 

in order to ensure the proper protein activity and avoid antigenicity [28]. In addition, P. pastoris 

strains have been modified for producing human-like glycosylation patterns [29] allowing for 

the expression of biopharmaceuticals [30], including antibodies and antibody fragments both 

for therapeutic and immunodetection purposes [31,32].  

Bottlenecks on recombinant protein production 

Despite the advances and extensive use of P. pastoris on recombinant protein 

production, there are some bottlenecks that hamper the enhancement of recombinant protein 

production and the increase in production yields. During heterologous protein 
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overexpression, two main limitations have been identified: the protein folding and secretion 

pathway and the metabolic burden.  

Protein folding and secretion 

In yeast, folding and secretion processes are major limitations when secreting 

recombinant proteins (Fig. 1-1). In the folding and secretory pathway of all eukaryotic 

systems, the protein is translocated to the endoplasmic reticulum (ER), where takes place the 

major part of folding and PTMs. Protein folding is facilitated by ER specific proteins such as 

ATP-dependent chaperones and PDI (protein disulfide isomerases) that help disulfide bond 

formation [33]. Despite high expression levels of the target protein, in those cases 

overexpressing complex proteins that require disuphide bond formation and post-

Fig. 1-1. Bottlenecks encountered by recombinant proteins on their way through the secretory 
pathway in eukaryotic hosts. Reproduced from [35] with permission of Mary Ann Liebert, Inc. 

 



1. General introduction 

 
8   

  

translational modifications, the folding and secretion machinery is not able to properly fold 

and secrete the recombinant protein, and a fraction is retained intracellularly [34]. 

Consequently, misfolded or unfolded proteins accumulate leading to ER stress and the 

activation of the unfolded protein response (UPR) signalling pathway [35] that triggers 

misfolded proteins refolding or elimination via ER-associated degradation (ERAD). ATP-

dependent chaperones aid in protein folding; thus, several attempts of protein refolding are 

ATP expensive for the cell. In addition, complex proteins require a correct pairing of 

sulfhydryl groups for correct folding. The oxidized environment in ER favours disulphide 

bound formation, in addition, PDI oxidises the sulfhydryl groups for sulphide bound 

formation. ERO1 subsequently oxidises PDI, so it can be reused to further catalyse the 

disulphide bounds formation. At the same time, ERO1 is reoxidised transferring the electrons 

to O2 leading to the reactive oxygen species (ROS) production (Fig. 1-2). ROS detoxification 

is mediated by the oxidation of glutathione (GSH) to GSSG (oxidised gluthathione). Thus, 

glutathione reductase converts oxidised GSSG to reduced GSH at expenses of NADPH in 

order maintain the glutathione redox potential [36,37]. 

In addition, wrong sulfhydryl groups pairing leads to misfolded proteins. Therefore, 

reduced glutathione (GSH) assists in reducing the non-native disulphide bonds and PDI can 

oxidise anew the sulfhydryl group pairs. Thus, when misfolded proteins accumulate, a futile 

cycle in disulphide bond formation (with PDI) and breakage (with GSH) may increase the 

NADPH demand for GSH reoxidation. In addition, it implies the formation of additional 

ROS that will also lead in an extra demand of NADPH for its detoxification [38]. Therefore, 

when producing a complex protein, an additional supply of both ATP and NADPH is 

required for folding and secretion processes, contributing to the global metabolic burden.  

ERO1-red

ERO1-ox

PDI-ox

PDI-red

– SH  HS –

S – S

GSSG

GSH

NADPH

NADP+

O2

ROS
H2O2

GSH

GSSGNADPH

NADP+

Fig. 1-2. Oxidative disulphide bond formation in ER. Sulphydryl groups (–SH) are oxidised to form 
disulphide bounds (S–S) by protein disulphide isomerase (PDI). PDI is subsequently reoxidised by ERO1 that 
uses O2 for its reoxidation and generates reactive oxygen species (ROS) and H2O2. ROS are eliminated by 
glutathione (GSH) that is oxidised and requires NADPH for being regenerated. Disulphide bonds can be undone 

by GSH for further PDI folding attempts. 
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Once the protein is properly folded, it is subsequently glycosylated and passes the 

quality control in ER to further being transported through Golgi apparatus. After additional 

glycosylation steps, the protein can be secreted or transported to other organelles. Protein 

glycosylation is an additional resource-consuming step that could drain cell resources affecting 

its fitness. The last step of protein sorting and transport can also be a limitation in efficient 

protein secretion [35,39]. Failure in the process of sorting to the vacuoles leads to protein 

degradation and recycling [40]. In order to overcome this limitations, some strategies focusing 

at different levels of the secretory pathway can be applied (extensively reviewed in [41–43]). 

Thus, by overexpressing certain transcription factors, chaperones, foldases and other 

secretion enzymes, the secretion process may be debottlenecked and the recombinant protein 

production can be improved.  

Limitations in the energy and building block supply chain 

Since the early beginnings of the establishment of recombinant proteins expression 

processes, the existence of a metabolic burden consequence of the overexpression of 

recombinant proteins was reported: the expression of foreign DNA adds an additional load 

to the cell due to the drain of cell resources into the protein production instead of for its own 

cell metabolism [44]. When cell is not able to cope with this overload, not only several 

physiological changes may occur, but also a limitation in protein production would impair 

high production yields [45]. Indeed, heterologous protein overexpression has a major impact 

on cells and can alter its composition, flux distribution and even reduce its maximal growth 

rate [46]. Both in Schizosaccharomyces pombe and P. pastoris an increase in lipid content is observed 

in recombinant protein expressing strains that could be correlated with an increased demand 

of membranes for vesicles in the secretory pathway [47–49]. 

In order to elucidate the derived physiological changes of protein overexpression, 

several studies focused on the metabolic flux redistribution analysis in recombinant strains 

[47,49–51]. Overall, cell metabolism responds similarly, with an increase in the pentose 

phosphate pathway (PPP), that is the main source of NADPH in cytosol. In addition, flux to 

tricarboxylic acid (TCA) cycle also seems to be affected, but in diverse manner among 

different yeast species [52]. Therefore, energy supply would be also conditioned by the 

expression of the recombinant protein. In fact, the metabolic burden is caused both by the 
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increased demand in precursors for amino acids biosynthesis and the additional energetic 

requirements in protein synthesis, folding and secretion. Yeasts are usually cultivated in 

minimal media, consequently, amino acids have to be synthesized de novo. Therefore, there 

is an additional demand on ATP, NADPH and precursors in central carbon metabolism that 

have to be redirected to amino acid biosynthesis, leading to a deep impact in central carbon 

metabolism [52,53].  Moreover, protein biosynthesis is a very expensive process that requires 

GTP and ATP consumption for aminoacyl-tRNA charging [44]. Furthermore, as detailed 

above, protein folding and secretion are energy intensive processes, consuming ATP for 

chaperone binding, and NADPH to assist disulphide bond formation and alleviating ER 

oxidative stress. Hence, the metabolic burden is associated to the supply of the additional 

resources (energetic and building blocks) drained in the increased anabolic processes as well 

as in protein biosynthesis. 

Strategies for overcoming limitations on recombinant protein production 

In production processes, the detection of bottlenecks is a key point for facing the 

limitations in the employed system and basic for choosing the best strategies to improve 

productivities. There is not a universal strategy that could improve global yields and therefore 

it has to be case-specific. Nevertheless, one of the first steps to check is whether the 

production system is performing in stable and non-stressing conditions. Subsequently, several 

advanced strategies can be considered. Generally, strategies for improving protein production 

can be classified into process and genetic engineering strategies.  

Process engineering strategies 

This group of actions is mainly related to the modification of cultivation conditions. 

Choosing the most appropriate operational mode and feeding profile can significantly 

improve cell performance [19,54–56]. In addition, several strategies focus on alleviating the 

impact of the metabolic burden caused by the expression of the recombinant protein. Detailed 

studies on operational settings of cultivation, showed a strong influence of environmental 

conditions on the productivity in yeast cells [57,58]. The reduction of growth temperature has 

generally showed  an improvement in recombinant protein production [58]. Indeed, in P. 

pastoris, the reduction of the growth temperature from 30ºC to 20ºC resulted in a 3-fold 

increase in antibody fragment production [59]. Authors suggest that lower temperature might 
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reduce ER folding stress due to a higher protein stability and a reduction of protein 

denaturation, aggregation and subsequent refolding. Surprisingly, a reduction in oxygen 

availability is likewise a successful strategy to improve recombinant protein production in 

yeast [60–63]. Furthermore, another of these strategies, and specially implemented in P. 

pastoris, is the utilization of mixed substrates for improving the energy supply [64,65]. With 

co-substrate utilisation, one of the substrates is commonly used for yielding biomass, while 

the other can generate the energy and cofactor surplus to balance the metabolic burden. 

Several examples can be found in yeast literature about using substrate mixtures such as S. 

pombe grown on glycerol and acetate [66] and P. pastoris, on mixtures of sorbitol/methanol 

[46], glucose/methanol [49], or glycerol/methanol [67]. Similarly, supplementation of 

cultivation media with amino acids relieves consuming cell resources and energy in de novo 

amino acid biosynthesis and allows for an improved performance [52,53]. Besides, media can 

include limiting precursors required for the desired product: for example, hemin 

supplementation is able to improve the recombinant production of an heme peroxidase in P. 

pastoris [68]. 

A success case: hypoxic cultivation enhances recombinant protein production 

Among environmental strategies, cultivation in hypoxic conditions has centered the 

attention of Pichia community and comprehensive studies have focused on the physiological 

response of P. pastoris in reduced oxygen supply cultivations [69]. P. pastoris is a Crabtree-

negative yeast, nevertheless, in hypoxic conditions it turns its metabolism to 

respirofermentative. Thus, ethanol and other by-products such as arabitol are detected in 

oxygen limited conditions [69]. Similarly, S. cerevisiae produces ethanol and glycerol in hypoxic 

conditions for redox cofactor regeneration. Surprisingly, strains expressing an antibody 

fragment (Fab) grown in hypoxic conditions showed a 2-fold increase in productivity [62]  

Moreover, several physiological changes are reported in such conditions that may 

explain the increase in productivity. Biomass composition was clearly affected by different 

oxygen levels [48], particularly, important differences were appreciated in lipid profile [70]. 

These differences may influence membrane fluidity, and facilitate Fab secretion [71]. In 

addition, it has also been reported a strong impact on transcriptional profile and metabolic 

carbon flux redistribution [69]. Hypoxia induces stress to the cell and the activation of the 

1196303
Text Box
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UPR. With the overexpression of chaperones, and the protein folding machinery, the 

secretion of the target protein is enhanced. Furthermore, the flux through PPP is reduced and 

redirected to the glycolytic pathway. Variations in flux distribution are in correlation with the 

same pattern in transcriptional analysis, where an increase of transcriptional levels of glycolytic 

genes is reported [69]. Thus, as Fab is expressed under the control of the glycolytic 

constitutive GAP promoter, it seems plausible that the increased productivity would be 

attributable to the increased transcriptional levels of glycolytic genes.  

Genetic engineering strategies 

The other alternative for enhancing productivities is strain engineering to improve cell 

capabilities allowing for better performance. Rational strain design has evolved since the first 

strategies based on current knowledge of cell physiology and biochemical pathways. In P. 

pastoris as well as in other organisms, rational strategies for improving recombinant protein 

secretion or metabolite production have been developed together with analytical and 

computational methods. In a first generation of engineered strains, the biological information 

of cell physiology was used for rationally designing new strains. Thus, an example of first 

generation of strain engineering would be the amplification of the gene copy number [7,72]. 

Alternatively, the overexpression of chaperones, PDI, or the transcription factor HAC1 can 

also increase the productivity by overcoming limitations in protein folding and secretion 

[39,73,74].  

The second generation of rational strain engineering strategies include those targets 

inferred from –omics data (e.g. transcriptomics, proteomics, metabolomics, fluxomics) [75]. 

Basically, strains are further engineered for mimicking the observed physiological data in 

overexpressing strains [70,71]. Finally, third generation of rational strain engineering is a 

systems biology-based approach (Systems metabolic engineering or systems biotechnology as 

later discussed in section 1.2). Briefly, this strategy encompasses all the available information 

of an organism, integrating different layers of ‘-omics’ information to in silico predict gene 

targets that optimizes the selected objective (e.g. recombinant protein production, metabolite 

secretion, etc.) [75,76].  
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1.1.2. P. pastoris as platform factory for biorefining 

Citric acid, penicillin and ethanol were the first chemicals produced using 

microorganisms particularly its respective native producers (A. niger, Penicillium chrysogenum, S. 

cerevisiae). Originally such processes were optimized by random mutations using UV light or 

chemical mutant agents and the subsequent screening of mutants [77]. Later, progress in 

synthetic biology as well as wide experience in strain engineering have also opened the door 

towards using yeast and other organisms as whole cell biocatalyst and for both non-native 

value-added metabolite production. Finally, in the last decades, the development of 

bioinformatics and application of mathematical modelling strategies boosted the production 

of chemicals improving the traditional processes and enabling the production of new 

chemicals in novel cell factories [78]. Thus, with current technologies, a certain chemical can 

be produced by non-native hosts platforms and achieve greater performances.  

When developing a production process, choosing the production platform depends on 

various factors: whether the molecule of interest can be produced with any existing metabolic 

pathway and organism (Fig. 1-3), its potential toxicity for cell, the available substrate, and the 

metabolic networks of alternative platforms. Then, if the production of the target metabolite 

in the native organism is scalable, it will be a good starting point for testing the production. 

Otherwise, alternative platforms would be the best choice [79]. Hence, synthetic biology takes 

an important role for metabolic engineering of cell factories [80]. In this context, the 

knowledge in the physiology and metabolic capabilities of the host organism is also basic to 

determine the feasibility and expected yields of the production process. Therefore, studies on 

metabolic flux analysis give valuable information for designing and further improving the 

novel bioprocesses [81]. Yeast arose as excellent cell factories. Unlike bacteria, the 

compartmentalization of cellular metabolism allows for specifically directing reactions into 

compartments, avoiding unspecific reactions or undesired products [82]. In addition, the wide 

variety of yeasts allows for using a huge range of substrates, including inexpensive and 

renewable carbon feedstocks [83,84].  

Generally, production processes are in continuous reassessment in a design-build-test 

cycle. The producing strains are further improved by cell engineering methods. Traditionally, 
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adaptive evolution methods were used for overcoming product toxicity, growing cells in 

alternative conditions or improving the substrate uptake capacity of the producing strains [85]. 

More recently, the development of new promoters, and genetic engineering tools allowed for 

fine-tuning the overexpression of each enzyme in a pathway, taking into account reaction 

kinetics and pathway bottlenecks. As a result, more efficient and productive strains and 

processes are achieved [78] (Fig. 1-3).  

Efficient growth on waste feedstocks: valorisation of glycerol 

At an industrial scale, reduced cost of raw materials are as important as high production 

yields for cost-effective processes [86,87]. In addition, in order to optimize the metabolite 

biosynthesis process to obtain high yields,  it is also important to select the most appropriate 

substrate [88]. In this context, glycerol is a by-product in the conventional biodiesel 

production process and therefore represents an attractive opportunity for revalorisation of an 

industrial waste stream, that is, for the development of a glycerol-based integrated biorefinery 

concept [89]. Indeed, glycerol is becoming an attractive carbon source in fermentation 

processes to produce highly added value compounds [90–92]. Furthermore, the reduction 

degree of glycerol (4.67) is different from that of glucose (4.0), and therefore higher yields of 

certain metabolites can be obtained from this compound [93]. Nonetheless, crude glycerol is 

far from being pure and contains several other compounds such as methanol [94]. Methanol 

is usually toxic for microbes with the exception of methylotrophic microorganisms. Thus, 

subsequent purification and refinement steps should be applied to the raw glycerol if it has to 

be used by non-methylotrophic organisms. On the other hand, methanol is also an 

increasingly interesting C1 compound as building block for value-added compound 

biosynthesis [95–97]. In this context, P. pastoris is able to efficiently use glycerol and/or 

methanol as energy and carbon sources [67,98,99]. In addition, the most extensively used 

promoters for heterologous gene expression in P. pastoris (namely, PGAP, constitutive, and 

Fig. 1-3. Workflow for developing new processes for producing chemicals 

Oxidative disulphide bound formation in ER. 
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PAOX, inducible) are directly associated with glycerol and methanol metabolism [7,19]. 

Therefore, P. pastoris appears as an organism of high potential for the development of the 

glycerol biorefinery concept. 

Glycerol uptake through specific transporters in S. cerevisie has a very limited efficiency 

(low affinity) [100], and therefore it cannot reach high growth rates. Indeed, due to the high 

interest in using glycerol, several efforts have recently been done for enhancing the glycerol 

uptake rate in S. cerevisiae [101,102]. Unlike S. cerevisiae, P. pastoris is able to grow in glycerol at 

high growth rates due to a more efficient glycerol transport [101]. Therefore, this confers a 

huge advantage when producing compounds easily derived from glycerol. Additionally, P. 

pastoris can tolerate and metabolize the residual methanol, can be easily genetically engineered 

and therefore would be an excellent platform to develop the biorefinery concept by the 

revalorisation of the waste glycerol generated in biodiesel production. 

Nevertheless, despite P. pastoris can efficiently grow in glycerol there are very few 

studies characterising the growth of P. pastoris growing on glycerol as single carbon source. 

Therefore, the analysis of the main physiological and growth parameters will be the main 

subject of chapters 4 and 5 of the present thesis. In addition, the expression of a recombinant 

protein growing while using glycerol as single carbon source will also be tested in chapter 6. 

1.2. SYSTEMS METABOLIC ENGINEERING 

Metabolic engineering was proposed as new field for metabolite production in 1991 

[103,104] and fully stablished in 1998 with the publication of Metabolic Engineering: Principles and 

Methodologies where it was defined as “the directed improvement of product formation or cellular properties 

through the modification of specific biochemical reaction(s) or the introduction of new one(s) with the use of 

recombinant DNA technology” [105]. Thus, metabolic engineering is a close discipline to genetic 

engineering for strain manipulation, however, the main difference lies on the conceptual 

design of such manipulation: while metabolic engineering aims at strain engineering to alter 

pathway distribution and rates, genetic engineering mainly focuses on the individual 

modification of genes or their derived proteins and enzymes [80]. Hence, an alternative 

definition that emphasises its main focus would be “the directed modulation of metabolic pathways 

using methods of recombinant technology for the purpose of overproducing fuels, chemicals and pharmaceutical 
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products” [80]. It is considered the seed of the systemic view of metabolic pathways and 

therefore preceding the application of systems biology approaches [81]. More recently, with 

the empowerment of computational tools and methods driven by bioinformatics and the 

development of high throughput techniques, systems biology emerged as a key field for 

integrating the multi-layer complexity of biological systems [106]. Meanwhile, genome 

sequencing also allowed for global systems analysis that counterweighted the classical 

molecular biology focused at single gene level [107]. Thereafter, advances in high-throughput 

techniques and bioinformatics have resulted in the development of systems-level analysis of 

the different biological layers also known as ‘–omics’ (Fig. 1-4): genes, transcripts, proteins, 

metabolites, fluxes, etc [75]. The availability of these comprehensive data allowed for the 

improved understanding of cell physiology and the design of the 2nd generation of engineered 

strains for the production of proteins or chemicals. 

 Systems biology is also applied for systematically cataloguing all components of the 

different biological levels and characterising the interactions among them that result into cell 

function [108]. The comprehensive information and interactions of cell components can be 

integrated into mathematical models to discover biological mechanisms and test hypothesis 

on the cell physiology and behaviour. Furthermore, the application of systems biology 

(systems biotechnology) through large-scale integrative models, allows the prediction of 

genetic targets for improved strains leading into the 3rd generation of rational strain design 

[109]. Hence, systems metabolic engineering is the field that integrates different systems 

biology layers aiming at rational strategies for genetic manipulating or modulating metabolic 

pathways thereby enhancing the productivities of the biological process of interest [110].  

1.2.1. Systems biology of P. pastoris 

Due to the growing interest in P. pastoris as cell factory, several efforts have been made 

to provide comprehensive information on its physiology. As in other organisms, several 

characterisation analyses have been performed including the different systems biology layers 

and provided an extensive body of knowledge that enabled further strain engineering and 

improving biotechnological processes.  
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Genomics. Currently, it is available the genome sequence of three P. pastoris strains. P. pastoris 

has been reclassified into the genus Komagataella, and the most commonly used industrial 

strains were splited in two species: K. phaffi and K. pastoris [111]. The genome of DSMZ 7382 

was the first published and corresponds to a K. pastoris strain [24]. Simultaneously, the genome 

sequence of GS115 strain (K. phaffi) was released [112]. Two years later, in 2011, a third strain, 

CBS7435 (K. phaffi, parental strain of GS115) was sequenced [113] and its sequence has been 

recently refined [114]. 

Transcriptomics. Several studies in P. pastoris provide information of gene expression in 

different conditions. For instance, an interesting study describe the effects of oxygen 

availability at different levels, including transcriptomics and compares the response to low 

oxygen availability with S. cerevisiae [69,115]. Alternatively, other studies focus on the variation 

in gene expression profile in different carbon sources [17,116], stress conditions, such as 

osmotic stress [57], or the heterologous protein expression [72,117]. 

Proteomics. Related to transcriptomics, proteomics also provides information on the 

regulation of the cell machinery in biological systems. Specifically, proteomics is used for 

describing the complete set of proteins expressed under certain conditions. Thus, a few 

number of studies have provided insight into the effect of temperature [59], the 

overexpression of recombinant proteins [118] and different carbon sources [116,119] on the 

proteome. 

Metabolomics. Metabolome indicates the intracellular amounts of metabolites and valuable 

information on enzyme kinetics. In addition, metabolic fingerprints (endo-metabolome) and 

footprints (exo-metabolome) give information about the metabolic response in different 

conditions [120]. Moreover, metabolomic studies aid in finding out thermodynamic feasibility 

of reactions, bottlenecks in pathways, redox cofactor balance, the energetic state of the cells 

[121] and additional information that enable and constrain flux calculations [122]. 

Methodologies for quenching, metabolite extraction and 13C-based metabolomics in P. pastoris 

have been developed [123–125] and applied in studies growing in glucose [126] and mixtures 

of glucose and methanol [127,128]. 
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Lipidomics. As the name indicates, lipidomics is the study of lipid profile and could be 

included as a specific branch of metabolomics. It provides useful information on biomass 

composition and lipid metabolism. As an example, the group of Prof. Daum performed 

several studies on the lipid profile of different cellular organelles and membranes of cells 

growing in different carbon sources [129–133]. Recently, the effect of hypoxia on lipidome in 

an strain expressing an antibody fragment was reported [70]. 

Fluxomics. This omics is the closest to metabolic phenotypes (Fig. 1-4), and, supported by 

stoichiometric metabolic networks, aims to calculate metabolite turnover rates as well as flux 

distribution through metabolic pathways [134]. Fluxomics, unlike some of the other omics, is 

strictly quantitative. In addition, is considered an integrative omics due to the fact that 

metabolic fluxes are the result of gene expression, protein concentration, enzyme kinetics and 

metabolite concentrations [135]. Therefore, with the application of different approaches, 

fluxomics has the goal of metabolic flux analysis (MFA). Fluxomics has become widely used 

to study cell physiology, and thus plenty of examples can be found for Pichia pastoris 

[51,67,98,116,136]. Due to the highly informative data derived from fluxomics, a large amount 

of quantification and estimation techniques have been developed in order to determine the 

behaviour of the metabolic network. Mainly, 13C-MFA and flux balance analysis (FBA) 

techniques are used for elucidating metabolic fluxes. Hence, in the following section an 

overview of these approaches is given. 

The complexity of biological systems cannot be described at a single –omic level. For 

instance, genome sequence only represents the capabilities of an organism, but does not 

provide information on the specific phenotype, the response to environmental and genetic 

perturbations, or the regulation mechanisms [76]. Therefore, the integration of multiple –omic 

layers would provide more accurate snapshots of the complexity of biological systems and 

would allow for more reliable modelling. In addition, by integrating transcriptional and 

metabolic regulation information more extensive models can be generated and will be able to 

more precisely predict phenotypes [137]. Towards this direction, comprehensive studies have 

already analysed at multi-layer scale the behaviour of P. pastoris in different oxygen availability 

conditions [69], suggested a new stoichiometry for methanol uptake metabolism [116] or 

described the effect of genetic perturbations on metabolism and recombinant protein 
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production [138]. Other microorganisms have likewise been studied using multiple –omic 

integrative approaches: in S. cerevisiae, the cellular mechanisms for galactose and arabinose 

fermentation were identified [110] and key metabolic properties were identified in 

Corynebacterium glutamicum for the overproduction of lysine [139]. A step forward in integration 

of multiple layers of information, is the incorporation of multi –omic levels in genome-scale 

metabolic models (GSMM). Although GSMM are already –omic integrative platforms (e.g. 

genomics, proteomics, fluxomics), they can be further extended with additional information 

such as transcriptomic or proteomic data as regulatory constrains [140] resulting in improved 

predictions of metabolic behaviour [141]. An example of how extensive can be the multiple 

omics integration can be found in [142], where a whole-cell computational model of the entire 

life cycle of Mycoplasma genitalium is presented.  

 

Fig. 1-4. Multiple layers in systems biology: high throughput of omics research. Figure taken from [75] 

(reproduced with permission of Elsevier) 
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The whole knowledge generated using the different –omic layers together with data 

integration and modelling, allows a better understanding of biological functions and 

phenotypes and enhances precision of the respective models. Therefore, provides solid 

foundations for both predicting and selecting targets for strain improvement, and together 

with synthetic biology, generating new and model-based 3rd generation of engineered strains. 

1.2.2. 13C-Metabolic flux analysis 

Whereas most–omics provide direct information of each biological level (e.g. genes, 

transcriptional levels, protein abundance, metabolite concentration), there is no available 

technique for directly measuring metabolic fluxes. Therefore fluxes have to be inferred from 

measurable quantities [143]. The developed protocols and strategies to this purpose are 

generally based on stable-isotopes, typically using 13C-labelled substrates (CLE, for carbon 

labelled experiments) and performing the experiments until reaching metabolic steady-state, 

at which both extracellular and intracellular fluxes are constant (i.e. chemostat cultivations). 

Nevertheless, due to both the length of time to reach isotopic steady state and the cost of the 

labelling, it is often the case that labelling experiments are discontinued before reaching steady 

state. Hence, correction methods for extrapolating the labelling pattern to that one in the 

steady state are commonly applied with good precision [144]. Alternatively, methods based 

on isotopically non-stationary CLE shorten labelling times and are able to resolve fluxes that 

are only resoluble it time-dependent information is available (e.g. fluxes related to reversible 

reactions or 1C substrates such as methanol) [144]. Nevertheless, the non-stationary 13C-MFA 

requires specific infrastructures, laborious experimental setups as well as more complex 

computational calculations [145]. In isotopic stationary 13C-MFA, two common strategies 

have been described for quantifying label distribution. The analysis of proteinogenic amino 

acids by means of NMR has been traditionally used, despite its large measurement errors, it is 

more informative [146]. However, nowadays the most commonly used strategy is the analysis 

of either the free intracellular metabolite enrichment or the proteinogenic aminoacids in by 

GC-MS or LC-MS/MS [143]. In this case measurement errors can be decreased down to < 

1% [146]. Approaches to use both types of measurements (NMR and GC-MS) at the same 

time have also been performed [147]. 
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In addition to the different options in the experimental setup and analysis, there are 

two major approaches for the numerical calculation of metabolic fluxes from the experimental 

enrichment patterns that can be classified as 13C-FBA and 13C-fluxomics. The first one 13C-

FBA, is based on the calculation of flux ratios in converging pathways [148]. The labelling 

patterns of proteinogenic amino acid allows for extracting the information of the labelling 

patterns of the respective precursors in the central carbon metabolism [149] and therefore 

stablishing up to 16 flux ratios when using 13C glucose [150]. Subsequently, these ratios are 

used as constrains for the FBA and absolute net-fluxes can be calculated [143]. Metabolic flux 

ratio (METAFoR) analysis was the first method of this kind applied to P. pastoris [67,151]. 

Nevertheless, this method has some limitations. On the one side, the number or flux ratios 

available limits the degrees of freedom of the model that can be solved. On the other side, 

when using 1C substrates (e.g. methanol) or substrates with a reduced number of carbon 

bonds, the obtained information available to solve de model is very limited [148]. The other 

approach for flux calculation is 13C-fluxomics. 13C-fluxomics relies on the simultaneous 

iterative fitting of metabolic fluxes and carbon labelling distribution to the measured data, that 

is extracellular fluxes and mass isotopomer – isotope isomers – distribution (MID), 

minimising differences between simulated and measured data [148]. One advantage of this 

method is that it enables either the estimation of absolute fluxes, as well as the degree of 

reversibility on certain reversible reactions or the flux distribution parallel pathways [135]. A 

stoichiometric model of the metabolic network including the carbon atom mapping 

transitions for all reactions is required for the calculations in the corresponding isotopomer 

balancing software [152]. Nevertheless, this approach has also some limitations regarding the 

large number of isotopomer balancing equations needed to be solved [153] (for each 

metabolite the number of isotopomer balances is 2n were n is the number of carbons). Hence, 

several approaches have been developed to reduce the calculation workload. One of those 

approaches introduces the term ‘cumomer’, representing the ‘cumulative isotopomer’. Briefly, 

instead of using each of the isotopomer balance equation, cumomer balance equations are 

used. Then isotopomer fractions are linearly transformed into ‘cumomer fractions’ meaning 

a certain sum of isotopomer fraction of a metabolite. The solution is found by iteratively 

solving a sequence of linear systems formed by the cumomer balances of increasing weight 

(for details see [154]). This approach notably simplified computation and enabled de 
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resolution of additional fluxes [154]. More recently, Antoniewicz and collaborators developed 

a novel framework based on elementary metabolite units (EMU) that further reduces de size 

of the computational problem without losing information. This algorithm is based on 

identifying the minimum amount of labelling information required for the isotopic 

simulations [153].  

Aside from the experimental setup, the analytical methods and flux estimation 

algorithms, the metabolic networks used also play a key role in flux determination. Simplified 

models of the central carbon metabolism have been widely employed for 13C-MFA. These 

models are based on the current biochemical knowledge of metabolic pathways at the time 

the calculations were done, usually before the publication of genome-scale metabolic models. 

In 13C-MFA, carbon atom transition maps are crucial for a reliable estimation of metabolic 

fluxes. Therefore, atom transitions are well known in central carbon metabolism [155]. 

However, extending the level of detail of a metabolic network including additional reactions 

towards a large-scale model, adds a potential source of error as an incorrectly assigned atom 

mapping would be critical for flux estimation. Ravikirthi and co-workers [156] reported an 

outstanding effort in mapping the whole atom transition genome-scale in an E. coli genome-

scale metabolic model. More recently, this model was used for 13C-MFA at genome scale [157] 

and authors reported similar flux distributions when comparing genome-scale and simplified 

models. Nevertheless, the major limitation in using 13C-MFA at genome-scale model is the 

increase in computation time associated with the higher number of variables. In addition, the 

robustness of the metabolic network with multiple parallel and alternative pathways 

dramatically impairs the procedure of flux identification. Thus, several authors suggest to 

simplify the genome-scale metabolic model by reducing its size to achieve core-scale models 

[157]. Until computational processing power is not increased, allowing a significant reduction 

in metabolic flux calculation time and improved analytical techniques are developed enabling 

to determine the complete labelling information available in all involved metabolites, 13C-

MFA at genome-scale level is still not a real option [158]. 

Due to the high interest in P. pastoris, cultivation and analysis methods [124,148] and 

an extensive body of knowledge, incuding fluxomics, is available describing the behavior of 

its metabolic network using different carbon sources and growth conditions. An extensive 
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review of 13C-MFA in P. pastoris with examples of alternative labelling strategies, analysis 

methods and calculation approaches can be found in [159] and references therein.  

1.2.3. Genome-scale metabolic models 

Genome-Scale metabolic models (GSMM) have become one of the most useful and 

widely employed tools in systems biology in the last fifteen years [160]. GSMM are extensive 

descriptions of all known metabolic reactions available in an organism inferred from the 

genome sequence [161]. This information is converted mathematically into a stoichiometric 

matrix correlating reactions and metabolites. The stoichiometry of the matrix, together with 

additional constrains such as lower or upper boundaries for each reaction flux, allow for 

performing flux balance analysis (FBA) and thus linking genotype to phenotype by calculating 

the (metabolic) behaviour under certain environmental conditions [75,162,163]. From a 

systems biology perspective, GSMM are a multi –omics tool. For their derivation, genome 

information is processed to find out transcribed genes encoding for metabolic proteins. 

Further, these proteins are associated to the reaction with the corresponding metabolites. By 

means of FBA or other mathematical algorithms, GSMM finally provide information on 

metabolic fluxes [164]. Hence, genome information is connected to transcriptome and 

proteome, leading to the description of a metabolic state of the cell with the corresponding 

metabolome and fluxome (Fig. 1-4).  

The initial core metabolic networks were based on the available knowledge of 

biochemical pathways [165–167]. Later, with the improved ability to sequence and annotate 

genomes, larger models (genome-scale) were developed relying on the identification of 

substrates and products for each enzyme encoded and annotated in the genome [168]. 

Advances in bioinformatics and biochemical databases enabled the automatization of 

metabolic network generation procedures [169]. Consequently, metabolic network 

reconstructions are attainable for any organism with an annotated genome [161]. Since the 

first genome-based metabolic model was presented [170], a huge number of models have been 

developed for a broad variety of species, from archaea and bacteria, to higher eukaryotes [171]. 

Despite the biological diversity, the same steps are required for GSMM development [172]. 

Briefly, the first step consists in extracting and processing the information of the genome to 

obtain the gene-protein-reaction relationship (GPR) and assemble the network into a draft 
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reconstruction. GPR associations can be performed automatically by computational 

algorithms [169], nevertheless the resulting associations should afterwards be revised and 

manually curated. Subsequently, the metabolic network is complemented with bibliographic 

information and experimental data such as biomass composition and physiological constrains. 

Finally, the GSMM has to be calibrated with experimental data and subsequently validated 

with new datasets (Fig. 1-5). Validation of a GSMM for different conditions requires the 

availability of extensive cultivation data information describing its physiology. In addition, a 

wide range of information on biomass composition enables building specific biomass 

equations to accurately describe cell growth in alternative conditions, such as different 

substrates [173]. Although several software platforms facilitate the network reconstruction 

process by automating some of the abovementioned steps, it is usually necessary and advisable 

to manually review and curate the resulting model [174].  

Although GSMMs have been widely used for predicting metabolic engineering targets 

to improve growth and production of chemicals or recombinant proteins [175–178], they have 

many other applications both for descriptive and predictive purposes. Nevertheless, the 

guidance for metabolic engineering is the most commonly used application. Since GSMMs 

allow to predict the phenotype of a microorganism in a range of conditions, including those 

derived from genetic modification [160,177], it makes GSMMs a powerful tool for the rational 

design of metabolic engineering strategies to enhance productivities or implementing new 

pathways [87,179]. Different algorithms have been developed for simulating gene knockout 

or under/overexpression in order to identify metabolic engineering targets [180]. Most of 

them showed successful results in the resulting improved strains for metabolite or 

recombinant protein production [138]. 

Fig. 1-5. Main genome-scale metabolic model development workflow. 
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GSMMs are also comprehensive databases of genes, proteins, metabolites and 

biochemical pathways that give information of the whole capabilities of the organism. 

Therefore, GSMMs can be used to assist in the interpretation of the experimental data. In 

addition, are suitable platforms to contextualise high-throughput data. Instead of analysing 

the variation in the expression of a single or a couple of genes, the increase in a certain flux, 

or the production of a metabolite, GSMMs enable to integrate high-throughput data and 

therefore, analyse a big pool of genes up/downregulated, correlations between fluxes or 

activation of different metabolic states that leads to the production of certain metabolites. 

This contextualisation enables a better biological interpretation of experimental data 

interconnecting pieces of information, even at different levels, to form a global relate [181]. 

Furthermore, it facilitates the discovery of network properties such as pathway redundancy, 

metabolites connectivity, the existence of loops, or novel alternative pathways and capabilities 

that remained ‘hidden’ in the genome [177]. Moreover, in silico methods allowed for the 

integration of multi –omics, including transcriptional regulation, and refined prediction 

accuracies [182]. The incorporation of multiple layers of information requires at the same time 

the development of metabolic modelling techniques able to integrate this multi-level data 

leading to GSMMs with a wider scope, depth and increased accuracy in precise and more 

realistic predictions of cellular metabolism [76,168]. Finally, GSMMs present structured and 

systematised information of metabolic pathways, therefore are extremely useful for comparing 

pathways and capabilities between organisms. When contrasting metabolic networks from 

different species, the conserved or missing pathways between species may allow to elucidate 

evolutionary relationship between organisms [178]. 

During model implementation, GSMM predictions are constantly evaluated. Thus, 

novel experimental data, including multi –omics information, can be used for refining models 

and to improve predictability [121]. Physiological data can be used for extending or 

constraining accordingly the capabilities of the model. In addition, novel literature discovering 

moonlight proteins [183],  identifying gene functions, characterising enzyme activities and 

organism-specific pathways can be used for further extend a GSMM [171]. Hence, GSMMs 

can be expanded in number of genes, reactions and metabolites resulting in an increase in 

network complexity. Moreover, another important measure for model refinement is the 

curation of large-scale derived bugs mainly associated to the automatic missannotation of 
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genes [184], wrong metabolite assignments [185] or protein functions [186]. In fact, a recent 

example showed how after the revision of redox cofactor specificity of the enzymes and thus 

in the reactions, and manually curating this cofactor assignment, GSMM can improve the 

simulated flux distribution [187]. In order to further extend models, biomass composition 

would be an additional target. It has been shown that the alteration of biomass composition 

has a deep impact on predictions, thus adopting condition-specific compositions would allow 

for more realistic flux distribution determination [173]. In addition, as explained before, the 

integration using multi –omics information, as well as the application of thermodynamic 

constrains to the network expands the model and enables improved reliability [188]. 

The main goal for GSMM developers is to achieve models able to very closely predict 

the in vivo flux distribution. Therefore, GSMMs are in continuous evolution, by the curation 

of erroneously included information, the incorporation of novel capabilities to make them 

more descriptive or providing improved predictions. In S. cerevisiae, new versions and updated 

models integrate previous versions and incorporate new features and information from novel 

literature. In fact, since the first GSMM published for S. cerevisiae [163] several alternative 

models were published and were eventually joined into a consensus metabolic model [189]. 

This consensus model was further revised, upgraded and expanded up to the 7th version 

[190–193]. Similarly, in other organisms, available models were integrated and successive 

releases continuously upgrade preexisting models [194,195]. 

In P. pastoris, the first metabolic models were limited to the central carbon metabolism 

and were mainly used for 13C-MFA [67,69,136,151]. In 2009, the genome of two different 

strains, DSMZ 70382 [24] and GS115 [112] was sequenced. More recently, a third strain 

(CBS7435) was also sequenced and annotated [113] showing some discrepancies with the 

previously reported sequences. Once the genomic data was available, two GSMMs were 

published simultaneously: iPP668 [196] corresponding to GS115 strain, and PpaMBEL1254 

[197] based on the DSMZ 70382 genome. Two years later, a third model (iLC915) became 

available, also based on the GS115 genome [198]. Moreover, other GSMMs derived by 

automatic application of reconstruction algorithms are also available [169,199]. P. pastoris’ 

GSMMs have been reported as potentially useful platforms for bioprocess design and 

optimization, as well as for strain metabolic engineering [121,200]. In fact, Nocon and co-
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workers [138] have already used PpaMBEL1254 to predict the effect of gene overexpression 

and deletion in mutants to enhance recombinant protein production. 
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2. Background, aims and outline 

2.1. Background  

 

This study has been carried out within the research group of Bioprocess Engineering 

and Applied Biocatalysis of the UAB. The group has a long-standing research programme in 

integrative industrial biotechnology, using the methylotrophic yeast Pichia pastoris as a cell 

factory for the production of recombinant proteins. The group has performed several 

quantitative physiology studies to expand the knowledge base of this cell factory as a basis for 

the rational design of metabolic engineering and process engineering strategies.  

Solà et al. [1] carried out the first series of physiological studies using 13C-isotopic tracer 

labelling experiments aimed at the metabolic profiling (metabolic flux ratio analysis) of central 

carbon metabolism of recombinant P. pastoris growing under different cultivation conditions, 

basically different carbon sources (glycerol, glucose and mixtures of glycerol and methanol) 

and growth rates. Later on, the availability of the P. pastoris genome sequence and subsequent 

development of omics techniques for P. pastoris allowed the research grout to perform several 

multilevel studies in a series of PhD thesis projects. Thus, following the initial studies by Aina 

Solà [2,3], the research group took part of the European project GENOPHYS, in which the 

effect of different environmental parameters such as oxygen availability, temperature and 

osmolarity on recombinant protein expression was systematically studied in cell factories, 

including P. pastoris. In this context, Kristin Baumann’s thesis focused on the transcriptional 

and proteomic analysis of P. pastoris growing on glucose as carbon source at different levels 

of oxygen availability [4,5], whereas parallel studies on the same series of experiments by Marc 

Carnicer applied 13C-based MFA and quantitative metabolomics [6,7]. Notably, he established 

new methodologies and protocols for metabolomics and combined analysis of 

transcriptomics, fluxomics and metabolomics datasets [6,8,9]. The combination of these two 

studies paved the path towards the systems-level analysis of P. pastoris and future 

implementation of systems metabolic engineering strategies for this cell factory [7]. Indeed, 

M. Carnicer showed a first attempt of integrating the multiple layers of physiological 
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information by incorporating different regulation levels (transcriptomic, metabolic and 

thermodynamic) for energetic parameter estimation in a precise and systematic manner [9]. 

In addition, Joel Jordà and Elena Cámara focused their studies on the adaptation of 

13C-based metabolic flux analysis and metabolomics and the use of transcriptomics to the case 

of growth on methanol as a carbon source, respectively. In particular, J. Jordà described the 

effects of the recombinant protein production on the central carbon metabolism by 

integrating multi-level datasets. J. Jordà characterised P. pastoris growing on mixtures of 

substrates: glycerol-methanol and glucose-methanol. He mainly used metabolomic and 

fluxomic data and applied thermodynamic constrains for metabolic fluxes calculation with 

special emphasis on the energetic and redox cofactor metabolism. E. Cármara performed 

transcriptomics analysis of a series of strains expressing different number of copies of the 

recombinant gene. 

Simplified models for central carbon metabolism were used in all those studies, 

representing a potential limitation, as important reactions enabling better calculation of fluxes 

could be missing. Meanwhile, the first genome-scale metabolic models for P. pastoris were 

published and thus a potential tool for integrating large-scale data became available. 

Nevertheless, initial studies using these genome-scale metabolic models showed clear 

limitations. 

Finally, these systems-level studies have provided a basis for the design of novel cell 

engineering strategies in P. pastoris. For instance, Núria Adelantado targeted the membrane 

lipid metabolism based on transcriptomic data from K. Baumann to engineer new strains 

showing enhanced capabilities to secrete a recombinant antibody fragment. In addition, 

integration of physiological information of P. pastoris under methanol growing conditions 

enabled E. Cámara to design novel strain and process engineering strategies. Nonetheless 

these strain improvement strategies have been designed on the basis of direct interpretation 

of –omics data. Therefore, in order to fully extract information from our increasing body of 

physiological datasets, subsequent steps for strain improvement should rely in both data 

integration and modelling, leading to a new generation of rational strain engineering, i.e. 

model-based strain engineering.  
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2.2. Aims and objectives 

 

The aim of the present study was the development of strategies for rational strain 

engineering based on systems metabolic engineering of P. pastoris. Genome-scale metabolic 

models are essential tools for this purpose. Thus, a major objective of this work was the 

development of a consensus GSMM for P. pastoris. In addition, we aimed to extend and 

validate the consensus GSMM for a reliable application in a broader range of growth 

conditions, such as alternative carbon sources. A second major objective was the 

demonstration of the model performance and applicability for systems metabolic engineering 

of P. pastoris.  
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2.3. Outline 

 

The aim of the thesis was the implementation of tools and strategies for systems 

metabolic engineering or P. pastoris based on genome-scale metabolic models. Although there 

three independent GSMMs were previously available for P. pastoris, initial steps towards their 

use manifested some weakness and limitations. Moreover, these models presented some 

discrepancies in certain pathways. Therefore, a consensus GSMM has been developed, as 

described in Chapter 3, thereby integrating the three previous versions and upgrading certain 

pathways.  This allowed for a more detailed and accurate representation of the metabolism of 

P. pastoris. The consensus GSMM, iMT1026, was initially validated for a recombinant P. pastoris 

growing on glucose as sole carbon source under different oxygen availability conditions, as 

well as on mixtures of glycerol and methanol. 

In Chapter 4, iMT1026 capabilities were further expanded to accurately describe 

growth on glycerol and methanol as carbon sources. These carbon sources are of special 

interest due to its potential utilisation in revalorisation of waste feedstocks from biodiesel 

industry and in the context of glycerol-based biorefineries. For this purpose, a series of 

chemostat cultivations at different dilution rates were performed using glycerol and methanol 

as sole carbon sources. In addition, macromolecular biomass composition was analysed and 

used to define new specific biomass equations for the iMT1026 model. As a result, a new 

version of iMT1026 (v3.0) was developed and validated for glycerol- and methanol-grown 

cells. 

In order to provide a better insight on the metabolic phenotype of glycerol-grown cells, 

in Chapter 5, a series of 13C-labelling experiments were performed in chemostat cultures 

operated at different dilution rates. Moreover, iMT1026 v3.0 was used for generating a 

reduced model of the core metabolism of P. pastoris enabling 13C-based metabolic flux analysis 

with robust and consistent results. 

A second application of the GSMM is shown in Chapter 6. Based on previous studies 

of the group, process and metabolic engineering strategies were combined to enhance 

recombinant protein production. Thus, a heterologous NADH kinase encoding gene was 
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overexpressed in a P. pastoris strain expressing an antibody fragment. The redox-engineered 

strain was cultivated on glycerol and glucose as carbon sources. Moreover, cultivations on 

glucose were performed under normoxic and reduced (hypoxic) oxygen availabilities. The 

iMT1026 v3.0 model was used as a tool for interpretation of the physiological response to 

both the environmental and genetic perturbations. The integration of experimental and 

simulated data allowed a global (systems-level) interpretation of the metabolic impact of the 

genetic and environmental perturbations induced to the system. 

Finally, Chapter 7 summarises the major outcomes and conclusions of this work, 

namely the development and validation of the genome-scale metabolic model of P. pastoris 

and its exploitation in two systems metabolic engineering applications.   
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3. Generation of a consensus genome-scale metabolic 

model for P. pastoris 

3.1. INTRODUCTION 

The first metabolic network describing the central carbon metabolism of P. pastoris was 

used for 13C-based metabolic flux ratio (METAFoR) analyses.  Essentially,  the network 

included described the core metabolism (including methanol metabolism, glycolysis, pentose 

phosphate pathway, TCA cycle, and anaplerotic reactions such as the glyoxylate shunt) as well 

as amino amino biosynthetic pathways, linking proteinogenic amino acids to their precursors 

in central carbon metabolism [1,2]. This network was based in the well characterized S. 

cerevisiae metabolic network [3], incorporating the methanol assimilating reactions specific to 

methylotrophic yeast. Notably, the initial 13C-isotopic tracer experiments allowed validating 

the amino acid biosynthetic pathways of P. pastoris, being essentially equivalent to those 

described in S. cerevisiae [1]. Later studies used this metabolic network as a basis for formulating 

the central carbon metabolism model of P. pastoris and using it for 13C-MFA [4–7]. More 

recently, when the P. pastoris genome sequence became available [8–10], two GSMMs were 

developed and published in 2010: iPP668 [11] and PpaMBEL1254 [12]. Two years later, a 

third GSMM was released: iLC915 [13]. In addition to these three curated models, other 

GSMMs were published derived automatically from the genome sequence using automatic 

reconstruction algorithms [14,15]. Nevertheless, these automatically-generated models are not 

curated and thus will not be discussed in this chapter.  

Each one of the three currently available models is fully compartmentalised, but they 

differ in the number of reactions and metabolites. The first two models, iPP668 and 

PpaMBEL1254 have a comparable number of associated genes, reactions and metabolites, as 

well as similar metabolite and reaction identifications and nomenclature. On the other hand, 

iLC915 incorporates more P. pastoris’ specific gene-protein-reaction associations and hence, a 

larger number of genes; however, several extracellular and nuclear reactions are missing. In 
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general terms, these models cover the same metabolic processes, but iLC915 is more detailed. 

Nevertheless, there still exist some critical issues in these models, such as missing and 

divergent information or reactions that require manual revision and curation. These 

divergences may be explained due to the automatization of some of the reconstruction steps. 

Protein function is derived from the annotation in public databases, therefore, misannotations 

in reference databases may propagate errors leading to a wrong gene-protein-reaction relation 

[16]. In addition, some discrepancies in metabolite assignations and reaction stoichiometry are 

also found. Commonly, such differences depend on the reference database used for reaction 

stoichiometry definition [17]. Unfortunately, P. pastoris GSMMs apparently used different 

reference databases as template, thus, alternative stoichiometries hamper model comparison. 

Generally, gene annotations and metabolic reconstructions of non-conventional organisms is 

based on reference well stablished and extensively physiological characterised model 

organisms, such as S. cerevisiae. Therefore, particular characteristics of the non-conventional 

organism are misrepresented in both annotations and derived metabolic reconstructions [18].  

Similar to other organisms, such as S. cerevisiae, new versions and updated models 

integrate previous versions and incorporate new features and information from newly 

published literature. In the case of S. cerevisiae, despite the existence of other versions, a 

consensus metabolic model was developed [19] and it was further upgraded, being expanded 

and revised up to the 7th version [20–23].  

In this chapter, we compare the models of P. pastoris and provide an upgraded 

consensus version. As mentioned above two different strains were used to obtain these 

models. Nonetheless, there is a high degree of identity at the amino acid coding sequences 

level (93.7%) and functional annotation between the two genome sequences [12]. In addition, 

no differences were observed in reactions involved in metabolising the different carbon 

sources [24]. Therefore, a major objective of our study was to obtain a general model that can 

be applicable to both strains. Furthermore, a comprehensive analysis was performed on 

several pathways, comparing the three models and updating them with the newly published 

literature. Recent findings on P. pastoris physiology and metabolism enabled to complete 

sphingolipid biosynthesis metabolism and glycosylation pathways, as well as the oxidative 

phosphorylation electron transport chain. Furthermore, we included different biomass 
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compositions specific for each of the alternative carbon sources used. Finally, the model 

accuracy was tested in a variety of physiological conditions. 

3.2. MATERIALS AND METHODS 

3.2.1. Model merging 

For the model comparison (Fig. 3-1), an initial step of metabolite nomenclature 

unification was required. In PpaMBEL1254 only the identifier (ID) was available in the SBML 

file, i.e. neither the complete name of metabolites nor any association to a reference database 

was included. These metabolite IDs, were mostly the standard IDs most commonly used and 

therefore also included in both in BiGG [25] and The SEED [26] reference databases. After 

this first metabolite parsing and renaming step was done, MetaNetX [17] database was used 

in order crosslink information from KEGG [27], ChEBI [28] and MetaCyc [29]. This step not 

only allowed unifying metabolite names but also to include its molecular formula and charge 

at pH 7.2. 

Once all metabolite names were unified, PpaMBEL1254 and iPP668 were compared 

using ModelBorgifier [30], thereby obtaining a first pre-merged model. In a second step, this 

merged model was compared to iLC915, generating a first draft of the consensus model. Due 

to important differences in model structure between iLC915 and the other models, a manual 

comparison was necessary. This was performed by analyzing the structure of each of the 

remaining pathways or subsystems. Differences were resolved according to the available 

literature, comparing the reactions with those included in two latest versions of the consensus 

S. cerevisiae GSMMs [22,23] or in another recently published S. cerevisiae GSMM [31]. 

Divergences in gene assignments were resolved using P. pastoris or S. cerevisiae literature. The 

P. pastoris high quality sequence annotation [10] and the automatic reconstructions for P. 

pastoris [14,15] were also used to verify annotations and gene-reaction assignments from the 

previous models. Finally, pathway revamping and addition of new reactions was performed 

based on available yeast literature and metabolic pathways/reaction databases [25,29,32,33]. 

Eventually, the network was loaded into a convenient environment for debugging [34]. 

Thus, both COBRA [35] and RAVEN [36] toolboxes were used in order to ensure pathway 
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connectivity and biomass formation. Duplicated reactions in the final model were deleted and 

blocked reactions were connected (gap filling) to the network when few steps were required. 

In addition, the elemental mass balance of each reaction was checked and corrected when 

unbalanced. The final model (File S3-1 and S3-5) can also be obtained in SBML format from 

BIOMODELS database with accession number: MODEL1508040001 [37]. The SBML 

model was generated with the RAVEN toolbox [36] and validated with SBMLeditor [38]. 

3.2.2. Biomass and recombinant protein composition 

The biomass reaction is defined by the sum of biomass components, grouped in 

macromolecules (carbohydrates, proteins, lipids, DNA, RNA), essential cofactors and ATP 

consumption associated to growth. This equation was adapted depending on culture 

conditions or carbon source used in accordance to the available literature experimental data 

[39,40]. In addition, composition of each macromolecule type, such as lipid and carbohydrate, 

was updated and extensively detailed due to the recently published detailed information of the 

specific composition [41,42]. See File S3-2 for details in composition and calculations. 

The model was also tested for the expression of two different recombinant proteins 

under different growth conditions: i) the antibody fragment 2F5 (FAB), expressed 

constitutively under the GAP promoter [43] and, ii) a Rhizopus oryzae lipase (ROL), regulated 

by the methanol inducible AOX promoter [44]. The dataset from the FAB-producing strain 

was used for simulations in oxygen limiting growth conditions [4,5], whereas the dataset from 

the ROL producing strain was used in simulations for glycerol-methanol co-feeding 

experimental conditions [2,40]. Reactions for heterologous protein production were included 

considering different levels: DNA sequence, transcription and mRNA formation, as well as 

translation and protein formation. Similarly to PpaMBEL1254 and iLC915, a ratio of 

1:100:105 between recombinant DNA (gene copies), mRNA and heterologous protein was 

assumed, as described in [12]. These equations also include energetic requirements for 

polymer formation [45]. Details of DNA, RNA and amino acid composition of each protein, 

as well as equations for the biosynthesis of their components can be found in File S3-3. 
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3.2.3. Energy requirements 

Before the validation step, classic energetic parameters were estimated using 

experimental data. These parameters are the growth-associated maintenance energy (GAME) 

and non-growth-associated maintenance energy (NGAME). Both are represented as ATP 

consumption in the model. For the NGAME calculation, a classical approach was used [46]. 

For the glucose-limited cultivations, the glucose uptake rate (mmol glucose·gDCW-1·h-1) was 

represented against the specific growth rate using available data from [1,39,47,48]. The y-

intercept of the linear regression line to this data corresponds to the amount of glucose needed 

for maintenance by non-growing cells. Using this value and the model, the NGAME can be 

calculated by maximization of the ATP turnover per mmol of glucose for the case of no 

biomass growth. Using the obtained value as fixed value for the non-growth associated 

maintenance, GAME is determined by adjusting the ATP consumption coefficient in biomass 

equation to fit biomass-substrate yields using experimental data (including CO2 and O2 

constrains) from Carnicer et al. [39]. 

However, for the case of glycerol:methanol growth conditions NGAME was directly 

taken from the calculated values reported by Jordà et al. [40]. This was necessary due to the 

range of cultivation conditions considered and the insufficient experimental data available. 

Using these values, and similarly to the glucose-only growth condition, the GAME values for 

glycerol:methanol conditions were calculated by fitting the predicted values to the range of 

experimental biomass-substrate yields previously reported [40].  

3.2.4. Model analysis and validation 

Model analysis and validation were performed using both RAVEN [36] and COBRA 

[35] toolboxes as described below. 

Carbon assimilation capabilities were determined maximizing growth rate and arbitrarily 

constraining the carbon source influx to 10 mmol·gDCW-1·h-1 except were otherwise stated.  

Reaction essentiality was determined performing an additional set of simulations. The 

procedure consisted on sequentially deleting each reaction of the model, maximizing biomass 

production and calculating the ratio of the resulting growth rate over the wild type result 

(GRKO= growthKO/growthWT). The ratios obtained allowed to classify each reaction into three 
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categories: i) essential (GRKO = 0), ii) partially-essential (0 < GRKO < 1) iii) non-essential 

(GRKO = 1). 

Evaluation of the effect of oxygen limiting conditions on glucose cultures was 

performed constraining glucose and oxygen uptake rates to the measured values [5]. For the 

glycerol:methanol experimental conditions, only glycerol and methanol uptake rates were 

constrained to the experimental values [1] while O2 uptake rate was left unconstrained. In all 

these cases biomass, CO2 and by-products were left as unconstrained positive values and 

therefore appeared as calculated products were necessary. In all these cases biomass 

production was the maximized objective function. 

3.3. RESULTS AND DISCUSSION 

3.3.1. Model merging 

As described in Materials and Methods section and summarized in Fig. 3-1 the 

generation of the new model consists of several steps. In the first step of reconciliation, 

PpaMBEL1254 and iPP668 were automatically compared using modelBorgifier [30]. After 

the initial pairing step, 75% of the complete set of reactions was identified as identical (exact 

coincidence) reactions. This pre-merged model was compared with iLC915 resulting in a low 

number of identical or equivalent reactions (36% of the complete set). Nevertheless, a larger 

number of reactions were comparable. Those mainly differ in having different stoichiometric 

coefficients, being assigned to different compartments, decomposed in multi-step reactions, 

or using alternative names for metabolites (different synonyms, generic names or 

corresponding to enantiomer compounds).  

The iPP668 and PpaMBEL1254 models were the first models to be published, and 

they are more similar to each other than to iLC915. Approximately 83% of the reactions from 

PpaMBEL1254 are present in iPP668 and 89% of the reactions in iPP668 are shared with 

PpaMBEL1254. Overall, models iPP668 and PpaMBEL1254 have a 75% of reaction identity. 

Furthermore, similar nomenclature and abbreviations are used in these two models. In 

addition, model structure and detail are similar to iND750 [49], from S. cerevisiae, and those 

models in the BiGG database [25]. 
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The third published model, iLC915, has many differences with the previous two 

models. Its nomenclature and structure is KEGG-based [27]. Therefore, its metabolites are 

fully protonated and many pathways include the same number of steps described in KEGG. 

That is, many condensed or simplified metabolic branches in the other two models appear 

decomposed as multi-step reactions in iLC915. Such reaction differences among the models 

are one of the major reasons for the low pairing of iLC915 with the other two models and 

seem to be the result of the main database or model scaffold used as basis for model 

reconstruction. 

Fig. 3-1. Schematic overview of the major steps involved in the construction of P. pastoris GSMM 
iMT1026. The process of GSMMs integration started with the metabolite identification, unifying nomenclature 
and curation steps of iPP668, PpaMBEL1254 and iLC915. The continuation steps were performed on the resulting 
pre-merged model and subsequent drafts. Experimental data for model validation was taken from [2,5,39,40]. 
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3.3.2. Updated pathways 

As a result of the model comparison and merging step, some divergences in several 

pathways of the three existing models were evident. In addition, some of them were 

incomplete or misrepresented in all three models. Therefore, we engaged in a curation step 

according to the recently published literature and database information. Nevertheless, some 

difficulties in gene and pathway verification were found. The fact that new genomes are 

usually automatically annotated, at least in an initial step, and that enzyme activities or 

functions are inferred by homology, propagates errors from already annotated sequences to 

the new ones [16]. This issue arises when there is limited biological knowledge of the 

organism. Furthermore, not only genome annotations are based in other organisms and 

sequences, but GSMMs are also commonly developed from previous existing models. As a 

result, annotation errors or misrepresented pathways are also spread to the subsequent 

new/updated models. Moreover, as new GSMMs are mostly based in pre-existing 

reconstructions, few new metabolic reactions are often incorporated in the novel GSMMs 

versions. Consequently, the metabolic potential and biological diversity is often not fully 

reflected in the GSMMs and the total number of enzymatic activities present in the existing 

models remains far below from the complete catalogue of enzymatic steps described in the 

literature for each organism [50]. 

In the case of P. pastoris, the current annotation of its genome is rather limited [18], 

with most of all annotations being inferred by homology, mainly from S. cerevisiae. According 

to the best annotation available P. pastoris has 5040 protein-coding annotated genes of which 

only 3532 has been assigned an Ontology term and all but 21 annotations are automatically 

inferred [18]. Despite to the fact that P. pastoris and S. cerevisiae belong to the same family 

(Saccharomycetaceae), they present significant differences in their metabolic capabilities. Thus, 

besides P. pastoris well known additional pathways such as the methanol incorporation steps, 

other significant metabolic differences exist. More specifically, in this work, pathways such as 

sphingolipid biosynthesis, oxidative phosphorylation and glycosylation pathway, were adapted 

and redefined, as described below. 
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Fatty acid biosynthesis  

Due to the limited information on specific fatty acid (FA) metabolic pathways in P. 

pastoris, it was assumed that most of S. cerevisiae fatty acid pathways were identical in the P. 

pastoris case. According to Hiltunen and co-workers [51], the latest version of yeast consensus 

model [23] and iTO977 model of S. cerevisiae [31], fatty acid biosynthesis takes place both in 

mitochondria and cytosol by fatty acid synthase (FAS) type II and I, respectively [52]. FAS 

type II has individual enzymes for each reaction in fatty acid de novo biosynthesis and 

elongation. Despite it is well known that mitochondrial FAS type II synthetizes at least up to 

C8 fatty acid, some evidences suggest that this system can synthesize longer fatty acids [51,53]. 

While in S. cerevisiae 7th version of the consensus model [23] mitochondrial biosynthesis is up 

to C8, this model also include reactions for up to C18 biosynthesis. 

On the other hand, cytosolic FAS is a complex formed by Fas1p and Fas2p within 

which the successive elongation reactions take place and only the final acyl-CoA is released 

[54]. The final products of this cytosolic complex are considered to be C14 to C18 acyl-CoAs, 

mainly because they are the main fatty acids found in P. pastoris [41]. The biosynthesis takes 

place inside the complex in a number of four step cyclic reactions for each acetyl-CoA added.  

Different number of cycles results in a range FA (C14, C16 and C18 acyl-CoAs). In addition to 

de novo biosynthesis, P. pastoris also has fatty acid elongation enzymes, which are able to extend 

C12-14 fatty acids and generate very long chain fatty acids (up to C26).  

Activation of free fatty acids (FFA) was considered to take place in cytosol only for 

C14, C16 and C18 FFA, as well as their respective acyl-CoA hydrolysis. Finally, only acyl-CoA 

desaturations were included (that is not acyl-ACP or FFA) according to the pathway defined 

in S. cerevisiae [23]. 

Fatty acid oxidation  

Two different transport mechanisms are commonly described depending on the FA 

chain length [55–57], both being closely coupled to its activation to acyl-CoA [58–62]: on the 

one hand, a simple diffusion and further activation of medium-chain fatty acids (up to C12 

chain length) and, on the other hand, long and very long chain fatty acids are translocated as 

acyl-CoA concomitant with the corresponding ATP hydrolysis [63]. For the active transport 
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mechanism, the ATP has a cytosolic origin in ILC915, while in PpaMBEL1254 and iPP668 

the required ATP is peroxisomal. According to [64,65], peroxisomal ATP is only required for 

medium chain fatty acid activation, therefore long and very long chain fatty acids transport 

should be dependent on cytosolic ATP. 

Each cycle of β-oxidation is represented by 4 reactions. Nevertheless, for unsaturated 

fatty acid degradation, and due to its highly complex degradation steps which depend on the 

position of its double bounds [66,67], lumped reactions up to the generation of acetyl-CoA 

were taken from iPP668. However, the desaturation reaction of C18:3 to C18:2 was taken from 

iLC915. 

Sphingolipid metabolism 

General sphingolipid biosynthetic pathways in yeast are partially homologous to S. 

cerevisiae and they are extensively described in the literature [68,69]. Nevertheless, unlike S. 

cerevisiae, some yeasts such as P. pastoris, are able to produce glucosylceramides (GlcCer) from 

sphingolipid bases [70–73].  

None of the three models include GlcCer biosynthesis. Ternes and co-workers [74,75] 

identified the gene role in GlcCer pathway and described the fatty acid specific composition 

in GlcCer and other sphingolipids, as well as the main chain sphingoid bases in P. pastoris. 

Sphingoid bases can be derived from palmitoyl-CoA and stearoyl-CoA. However, only 

a 5% of the detected species correspond to the last one. In fact, Ternes and co-workers [75] 

characterized sphingolipid composition assuming all the species were formed with a 

palmitoyl-CoA derived sphingoid base. This sphingolipid composition is in agreement with 

other literature sources [41,76,77]. As palmitoyl-CoA bases represents around 95% of 

sphingoid bases, only palmitoyl-CoA derived ones are taken into account in this model. 

Glycosylation pathways 

Protein glycosylation pathways are not accurately described in previous models of P. 

pastoris. Only iLC915 partially included N-glycosylation, O-glycosylation and 

glycosylphosphatidylinositol-anchor (GPI-anchor) biosynthesis pathways. However, 

compartmentalization of several reactions of this pathway also required revision.  
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The first part of the N-glycosylation process is highly conserved among eukaryotes 

[78,79]. It takes place in the cytosol up to the addition of 5 mannose residues (Man) forming 

(Man)5(GlcNAc)2(PP-Dol)1 oligosaccharide. At this point, the oligosaccharide is transferred 

to the endoplasmic reticulum (ER), where up to 9 Man and 3 glucose residues (Glc) are further 

added [80]. In the second and less conserved part of the pathway, the dolichol diphosphate 

attachment to the protein is represented by a pseudo-reaction forming the compound 

(Glc)3(Man)9(GlcNAc)2(Asn)1 in which Asn represents an asparagine residue from the 

targeted protein. Once the oligosaccharide is attached to the Asn residue of the target protein, 

it is further modified by the removal of one Man. The resulting glycoprotein is transported to 

the Golgi Apparatus [81,82]. There, an heterogeneous pattern of glycosylation has been 

observed corresponding to the different heterologous proteins expressed in P. pastoris [83–

85]. As an example, differences in Man residues range from 6 to 18 [86–88] and even may 

include hypermanosylation [89]. Due to its complexity and variability, in this model an average 

glycan is assumed to consist of (Man)9(GlcNAc)2(Asn). The resulting oligosaccharide 

contributes to the formation of a mannan (Man polymer represented by 1 mannose residue 

polymer) and a chitin (N-Acetylglucosamine polymer). Both contribute to the biomass 

formation as a specific component of the carbohydrate fraction.  

Similarly to N-glycosylation in mannan formation, O-glycosylation is included 

assuming an average of 3 Man oligosaccharides [90–93]. O-glycosylation is also represented 

by a pseudo-reaction forming the compound (Man)1(Ser/Thr)1 in which Ser/Thr represents 

a serine or threonine residue of a protein.  

Finally, GPI-anchor biosynthesis was also reviewed and compartments reassigned 

according to Orlean and Menon [94]. 

Oxidative phosphorylation 

There are P. pastoris specific traits in respiratory chain that should be included in the 

GSMM. As an example, while complex I is not present in S. cerevisiae [95], it is described in P. 

pastoris [96,97]. None of the previous P. pastoris models include respiratory complex I and so, an 

important proton translocation step was missing. In general, two main traits of oxidative 
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phosphorylation were deeply analyzed: the proton stoichiometry and the complexes 

integrating the electron transport chain. 

In this model the mitochondrial intermembrane space has been included. Hence 

proton translocation is assumed to occur from the mitochondrial matrix to the 

intermembrane space. Thus, protons pumped out from the mitochondria do not merge with 

the high amount of protons from the cytosolic space. Regarding the electron transfer chain 

reactions, each of the previous P. pastoris models shows a different stoichiometry for proton 

translocation. After a review of the stoichiometry and relevant literature it was decided to 

apply a stoichiometry that satisfies the H+ balance of the metabolites’ charged formula and 

including complex I stoichiometry considerations proposed by Wikström and Hummer [98]. 

This includes the complex I translocating 4 H+ to the intermembrane space [98,99]. 

In the present model, reactions for non H+ translocating outer and inner mitochondrial 

membrane NAD(P)H dehydrogenases (cytoplasmic side and matrix side) were also included. 

While inner NADH dehydrogenase appears in all three models, outer NADH dehydrogenase 

was only present in iPP668 and PpaMBEL1254, despite both dehydrogenases have been 

previously reported [96,100,101]. We also included PAS_chr1-4_0299 putative NADPH 

dehydrogenase homologue to Kluyveromyces lactis [102,103] and also included in its metabolic 

reconstruction [104].  

On the other hand, complex III and IV are included in all three models, but several 

discrepancies exist on the details of the H+ balance due to the consideration of alternative 

metabolite’s molecular formulas or the result of using different criteria when considering 

chemical and translocated protons [105]. An additional trait for complex III equations is the 

complexity on the stoichiometric representation of Q-cycle [106,107]. Therefore, in this 

model stoichiometric coefficients of equations for complex III and IV reactions were chosen 

with special attention to the proton balance. The selected stoichiometry was of 2H+/2e- for 

complex III and 4H+/2e- for complex IV according to recent literature [99,106,107]. 

One additional characteristic of P. pastoris is the presence of an alternative oxidase that 

could bypass complex III and IV in the respiratory chain [95,108] which seems to be active only 

in certain growth conditions [95,100,109]. Although this oxidase was only included iLC915, 
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our consensus model also incorporates this reaction in the electron transport chain module. 

Finally, the stoichiometry for ATP synthase was maintained as in PpaMBEL1254 and iPP668 

(4H+/ATP, resulting in a final maximum theoretical stoichiometry of 2.5e-/ATP) as its H+ 

balance is in agreement with the available literature [110]. 

Other reviewed pathways 

Metabolization of some sugars was also updated. Some sugars such as starch, maltose 

or cellobiose were able to be assimilated in the previous models. However, Kurtzman [24] 

and Naumov and co-workers [111] characterized substrate assimilation in P. pastoris and 

reported no growth for these carbon sources. Consequently, reasons for their metabolization 

were revised and discarded reactions are detailed in File S3-4. L-rhamnose assimilation was 

only possible in PpaMBEL1254. However, the included metabolic steps for its metabolization 

were not typical of yeast species. Therefore reactions and genes associated to the 

metabolization of L-rhamnose were added as suggested in [112], similarly as also described 

for P. stipitis [113,114]. 

A full list of modifications from the original models, also including some additional 

pathways and subsystems not discussed above such as phosphatidylinositol synthesis or 

transport reactions, is provided in File S3-4. 

3.3.3. General characteristics of the model 

After following all the steps described above, an extended model is obtained that 

integrates previous P. pastoris’ GSMMs: iMT1026, which is provided in File S3-1, File S3-5 

and also available at BIOMODELS database (MODEL1508040001) [37]. The general 

characteristics of the resulting model are described in the following. 

In the first place, this model includes an increased number of gene-protein-reaction 

relationships as can be seen in  .  

Our final model incorporated 185 new reactions that didn’t appear in previous models 

and has 614 common reactions in all three models (Fig. 3-2). Reactions appearing in Fig. 3-2 

as common to two or all three different models include those reactions that have been taken 

directly from the previous model. Therefore, they do not include those reactions that are 
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either not the same but equivalent, have been decomposed in several reactions or are a 

combination of several other reactions. Thus, taking into account these multi-step, lumped or 

decomposed reactions, in the final model there are up to 721 equivalent reactions in common 

in all three models, 504 in two of the three models and 638 reactions in only one of the 

models, without any clear equivalence in any of the other two models.  

Table 3-1. Comparison of the main features of iMT1026 and previous P. pastoris GSMMs 

 iPP668 PpaMBEL1254 iLC915 iMT1026 

Genes 668 540 915 1026 

Metabolites a 1177 (684) 1058 (696) 1302 (899) 1689 (1018) 

Reactions 1354 1254 1423 2035 

Cytosolic 623 604 790 1059 

Mitochondrial 163 155 205 268 

Peroxisomal 66 66 64 102 

Extracellular 12 11 0 16 

Endoplasmic reticulum 15 7 34 41 

Golgi apparatus 4 8 4 13 

Vacuolar 3 6 12 9 

Nuclear 16 17 0 17 

Intercompartmental/Transport  452 328 314 510 

 a Total number of metabolites, with compartment, and unique metabolites (in brackets). 

Fig. 3-2. Reactions from PpaMBEL1254, iPP668 and iLC915 included in iMT1026 model 
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3.3.4. Maintenance and growth-associated ATP calculations 

As described in Materials and Methods, data from [1,39,47,48] was used to calculate the 

NGAME. As an initial step, a value of 32 mol ATP/ mol glucose, obtained by maximizing 

the ATP turnover using 1 mmol/(gDCW·h) of glucose. The y-intercept from a representation 

of glucose uptake rate versus growth rate was 0.0878 mmol glucose/(gDCW·h) which 

corresponds to 2.81 mmol ATP/(gDCW·h) using the glucose-ATP conversion factor 

obtained in the initial step. This calculated glucose NGAME value is similar to the 2.3 mmol 

ATP/(gDCW·h), previously proposed by [11] for glucose, and close to the NGAME 

estimated for Pichia (Scheffersomyces) stipitis also growing in glucose [115].  

On the other hand, GAME for glucose was estimated by fitting the calculated biomass-

substrate yields to experimental data. This way a value of 72 mmol ATP/gDCW was obtained. 

This amount of ATP associated to cell growth is also similar to 70.5 mmol ATP/gDCW 

calculated previously for P. pastoris [13] and close to the experimentally calculated values for 

S. cerevisiae of 62-71 mmol ATP/gDCW [116,117], and to the 69.2 mmol ATP/gDCW, in silico 

estimated [118]. 

For the case of the glycerol and methanol co-feeding cultivations, ATP maintenance values 

calculated by Jordà and co-workers [40] were used as NGAME as available data was 

insufficient for a new determination. These values range from 4.5 to 5.7 mmol ATP/gDCW 

and are similar to 6 mmol ATP/gDCW, proposed in iLC915 [13]. For the different conditions 

tested, specific GAMEs were calculated by fitting the simulations to experimental data from 

[40]. These experimental data show that the ratio of the glycerol or methanol uptake rates 

with the growth rate is different for each pair of glycerol:methanol feeding conditions (80:20, 

60:40 and 40:60, % w/w at 0.05 and 0.16 h-1growth rates), therefore a specific GAME was 

calculated for each case. The obtained values ranged within the 69.8 and 125.6 mmol 

ATP/gDCW interval. These GAME values increase with the fraction of methanol in the 

mixed feeding and are in agreement with those calculated by Caspeta and co-workers [13], 

who estimated a maximum GAME for methanol as sole carbon source of 150 mmol 

ATP/gDCW.  
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3.3.5. Carbon source assimilation 

The model agreement with P. pastoris utilization of different carbon sources was tested 

and compared to experimental data [24,111]. A total of 47 carbon sources were evaluated 

(Table 3-2) using an in silico minimal medium, with ammonium, phosphate and biotin. The 

model successfully predicts carbon assimilation for all sources tested. 

Table 3-2. Evaluation of the substrate assimilation capabilities in P. pastoris. 

+, carbon assimilation and growth; -, no carbon assimilation; v, variable growth/non-growth experiments observed.  
a Experimental data from [24,119]. 
b Described in [120]. 
c Described in [121]. 

3.3.6. Reaction essentiality 

An interesting trait of the obtained GSMMs is the identification of those reactions 

critical or essential for biomass growth (essential reactions). Simulations to determine reaction 

essentiality were performed for glucose in normoxia, limited oxygen and hypoxia conditions 

and also for mixtures of glycerol and methanol at different growth rates. No significant 

difference in reaction essentiality was observed in all the conditions tested. Thus, similar 

patterns of distribution of essential reactions in each pathway are observed for all the cases. 

The results, grouped into major metabolic pathways, are summarized in Fig. 3-3 (and Fig. 

Substrate Experimental a In silico Substrate Experimental a In silico 

D-glucose + + Erythrol - - 

DL-lactate + + Galactitol - - 

Mannitol + + Galactose - - 

Ethanol + + Hexadecane - - 

Glycerol + + myo-Inositol - - 

L-Rhamnose + + Inulin - - 

Methanol + + Lactose - - 

Succinate + + L-Arabitol - - 

Trehalose + + L-Arabinose - - 

Sorbitol + + L-Sorbose - - 

Citrate v + L-Tryptophan - - 

D-Xylose - / + b + Maltose - - 

Xylitol - / + c + Meleziose - - 

5-keto-D-gluconate - - Melibiose - - 

Arbutin - - Methyl- -D-glucoside - - 

Cellobiose - - N-acetylglucosamine - - 

D-arabinose - - Raffinose - - 

D-Galacturonate - - Ribitol - - 

D-gluconate - - Saccharate - - 

D-glucono-1,5-lactone - - Salicin - - 

D-Glucosamine - - Soluble starch - - 

D-Glucuronate - - Sucrose - - 

D-Ribose - -    
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S3-1). From a global point of view, essential reactions represent a 15-16% of the total 

reactions, while 76-79% of the reactions are classified as non-essential. The remaining 6-9% 

are partially-essential and its deletion causes a decrease in growth rate. 

 

The results show that there are 312 condition independent essential reactions, which 

are essential in all the performed simulations. These essential reactions can be grouped in 

three main groups: in the first group, most of them are associated with lipid metabolism 

(40%), in the second group most reactions belong to the amino acid metabolism (18.6%) 

while the third group mostly includes cofactor related essential reactions as a 14.1% of all 

common essential reactions. Similarly to other GSMM models, such as S. cerevisiae, extending 

the model and including more detailed biomass composition results in an increase of essential 

reactions directly linked to the biomass related metabolites. Nevertheless, this essentiality 

could be overestimated in silico, due to the fact that in vivo systems are able to replace de missing 

species with other similar biomass components.  

  

A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Aminoacid Metabolism (319)

Glucolysis/Gluconeogenesis (23)

Pentose Phosphate Pathway (16)

Fatty Acid and Lipid Metabolism (498)

TCA, Glyoxylate and Pyruvate Metabolism (70)

Nucleotide Metabolism (158)

Vitamin and Cofactor Metabolism (163)

Other Sugar and C-sources Metabolism (64)

B

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Aminoacid Metabolism (319)

Glucolysis/Gluconeogenesis (23)

Pentose Phosphate Pathway (16)

Fatty Acid and Lipid Metabolism (498)

TCA, Glyoxylate and Pyruvate Metabolism (70)

Nucleotide Metabolism (158)

Vitamin and Cofactor Metabolism (163)

Other Sugar and C-sources Metabolism (64)

Fig. 3-3. Summary of reaction essentiality results for glucose simulations grouped into major 
pathways. FBA was performed by optimizing biomass production and sequentially constraining to 0 each reaction 
in the corresponding simulations. The resulting growth rate was compared with the wild type one. Metabolic 
reactions were classified in three categories according to the relative growth rate obtained: Essential (E), partially-
essential (PE) and non-essential (NE). X axis represent the fraction of each type of reactions in each category of 
E (in red), PE (in blue) and NE (in green). Reactions are distributed in 8 major subsystems (Y axis). Numbers 
between brackets indicate number of reactions in each group. Equivalent figures for oxygen limiting conditions 

and glycerol:methanol simulations can be found in Fig. S3-1. 
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3.3.7. Model validation 

An additional step of model validation was performed by comparing the model 

predicted values with an additional set of experimental data including diverse combinations 

of glucose, glycerol and methanol chemostats [5,40].  

For the glucose chemostats, simulations with different oxygen availabilities, growth 

rates and CO2 production were successfully predicted with errors lower than 6% for both 

FAB expressing and non-expressing strains (Fig. 3-4 A-C). According to the available 

experimental data [5,39], when the oxygen availability decreases ethanol and other metabolites 

are secreted. The present model is also able to predict by-product formation when oxygen-

limited conditions are simulated. However, the model predicts a slightly higher production of 

ethanol and none of the other by-products, such as arabitol or pyruvate. However, when 

ethanol secretion flux is constrained to the experimentally measured value, arabitol secretion 

is also predicted (Fig. 3-4 C). In addition to arabitol, pyruvate is also secreted in the in silico 

predictions when both ethanol and arabitol are constrained to the experimental values. This 

discrepancy of the model to directly predict arabitol or pyruvate secretion if no additional 

constraint is imposed points to additional regulatory constraints other than those strictly 

stoichiometric. In addition, different cofactor utilization by combinations of isoenzymes 

[122,123], and their impact on NAD(P)+/NAD(P)H regeneration, could be one of the key 

factors for the production of those alternative products [124,125]. Constraining the model 

with additional 13C-labelling data [126] as well as studying the impact of cofactor perturbation 

and analyzing these cofactor demands for cell growth, as done in other organisms [127] would 

be interesting approaches to consider in future studies. 

For the second dataset, (glycerol:methanol mixtures), specific growth rate, together 

with specific O2 consumption and CO2 production rates were predicted within a 11% of 

deviation, as shown Fig. 3-4 E-G. Similarly to the above described glucose tests, arabitol was 

only produced when ethanol was constrained to the experimental values; otherwise, ethanol 

is the preferred product of the stoichiometric model. As in the previous glucose case these 

results point to another possible level of regulation for arabitol production not included in 

the model, as without it ethanol production appears as the most efficient way to regenerate 

NAD+ for maximum biomass production. 
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In order to compare the accuracy of our model with the previous existing models a set 

of simulations were performed for glucose and glycerol:methanol cultivations (APPENDIX I-

B). The same constrains were set to all the models and growth rate, CO2 production and O2 

consumption (only in the glycerol:methanol simulations) were compared to the experimental 

Fig. 3-4. Results of the model validation. Graphs with (A) growth rate (B) CO2 and (C) D-arabitol production 
predictions simulating glucose chemostats at different oxygen conditions with and without recombinant protein 
production [5,39] with glucose, O2 and ethanol fluxes constrained to the experimental values. (D) Growth rate (E) 
CO2 production and (F) O2 consumption predictions simulating different glycerol:methanol chemostats [2,40]. 
White and black bars correspond to experimental and predicted data respectively.* Not determined in [2]. 
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values [5,40]. As shown in APPENDIX I-B, iMT1026 can predict the evaluated macroscopic 

cultivation parameters more accurately, i.e. with smaller deviations from experimental data 

Table S3-1. Moreover, our model is also able to describe byproduct secretion under 

respirofermentative conditions. 

3.4. CONCLUSIONS 

In summary, a consensus GSMM of the yeast P. pastoris integrating the three preexisting 

models has been obtained. Importantly, the new GSMM, iMT1026, is more complete and 

includes a comprehensive revision and upgrading of several metabolic processes (e.g. fatty 

acid and sphingolipid metabolism, protein glycosylation and energy metabolism) based on 

new information emerged from recent literature. Furthermore, the new GSMM has been 

validated using different sets of experimental data corresponding to a wider range of 

physiological states than previous GSMMs. From our point of view this GSMM improves the 

capabilities in terms of accuracy of predictions/simulations in relation to previous models. 

Overall, we provide an improved tool to the P. pastoris community for the physiological 

analysis and understanding of this yeast. It is expected that on-going efforts in the functional 

(re)annotation of the P. pastoris genome will allow for further improvements of its GSMMs by 

all the P. pastoris community. In a more wide perspective, it also has to be pointed out the 

importance of curating and manually revising new GSMMs of non-model organisms that are 

based on GSMM scaffolds from related model organisms. Despite the comprehensiveness of 

these scaffolds, an exhaustive analysis of specific metabolic traits of the non-model organism 

is still essential to construct a GSMM describes/predicts its metabolic phenotype accurately. 
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APPENDIX I-A 

 

Additional information discussed in the main text can be found attached as Supporting 

Information Files in the published article corresponding to this chapter: 

Tomàs-Gamisans, M., Ferrer, P., Albiol, J., 2016. Integration and Validation of the 

Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein 

Glycosylation Pathways, Lipid and Energy Metabolism. PLoS One 11, e0148031. 

 File S3-1. iMT1026 model. Pichia pastoris GSMM model in xlsx format for use in the 

RAVEN toolbox. 

 File S3-2. Biomass composition. Details on biomass composition for cultivations 

on glucose and glycerol:methanol mixtures. 

 File S3-3. Recombinant protein composition. DNA, RNA and amino acid 

compositions for the FAB and ROL recombinant proteins expressed in P. pastoris and 

tested in the model. 

 File S3-4. Reaction changes. List of modified, added and excluded reactions in 

iMT1026. 

 File S3-5. iMT1026 model in SBML format. Pichia pastoris GSMM model in SBML 

format generated with the RAVEN toolbox. 

This Appendix I-A contains the reaction essentiality analysis in different cultivation 

conditions (Fig. S3-1) in addition to Fig. 3-3 that summarises the glucose-case under 

normoxic conditions. 
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A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Aminoacid Metabolism (319)

Glucolysis/Gluconeogenesis (23)

Pentose Phosphate Pathway (16)

Fatty Acid and Lipid Metabolism (498)

TCA, Glyoxylate and Pyruvate Metabolism (70)

Nucleotide Metabolism (158)

Vitamin and Cofactor Metabolism (163)

Other Sugar and C-sources Metabolism (64)

B
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Aminoacid Metabolism (319)

Glucolysis/Gluconeogenesis (23)
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Fatty Acid and Lipid Metabolism (498)

TCA, Glyoxylate and Pyruvate Metabolism (70)

Nucleotide Metabolism (158)

Vitamin and Cofactor Metabolism (163)

Other Sugar and C-sources Metabolism (64)

Fig. S3-1. Reaction essentiality analysis in different cultivation conditions. FBA was performed 
optimizing biomass production and sequentially constraining to 0 each reaction in the corresponding 
simulations. The resulting growth rate was compared with the wild type growth and reactions were classified in 
three categories according to the relative growth rate obtained: essential (E), partially essential (PE) and non-
essential (NE). Reactions are grouped in 8 major pathways or global subsystems (Y axis). In brackets, the 
number of reactions included in each subsystem. X axis represent the fraction of each type of reactions in each 
category of E (in red), PE (in blue) and NE (in green). Reaction essentiality was evaluated with glucose 
chemostats with different oxygen conditions and glycerol:methanol mixtures chemostats: (A) Glucose and 
normoxia; (B) Glucose and limited oxygen; (C) Glucose and hypoxia; (D) Glycerol:methanol (80:20 w/w) at 
µ=0.05 h-1; (E) Glycerol:methanol (60:40 w/w) at µ=0.05 h-1; (F) Glycerol:methanol (40:60 w/w) at µ=0.05 h-

1; (G) Glycerol:methanol (80:20 w/w) at µ=0.16 h-1; (H) Glycerol:methanol (60:40 w/w) at µ=0.05 h-1; (I) 
Glycerol:methanol (40:60 w/w) at µ=0.05 h-1. 
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Fig. S3-1. Continued 
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APPENDIX I-B  

GSMM performance comparison 

 

Models were compared by flux balance analysis performing a maximization of biomass 

production (x) under the constraints of the experimental variables as described below. 

Simulation parameters 

Glucose – O2 levels 

Glucose and oxygen uptake rates were constrained according to Carnicer et al. [1]. 

Ethanol production was also constrained for O2-limited and hypoxic cases. Only the wild type 

(wt) strain was evaluated. Biomass growth and CO2 production were calculated by the model. 

Glycerol:methanol mixtures 

Only glycerol and methanol uptake rates were constrained for the glycerol and 

methanol cases according to Jordà et al. [2]. When arabitol is experimentally produced, its 

measured production rate is set as lower bound for arabitol secretion only for models 

iMT1026 and iLC915. The other two models, iPP668 and PpaMBEL1254, are not able to 

generate arabitol. 

Simulation results 

Glucose – O2 levels 

By setting the normoxic conditions in iLC915, some flux loops occur which were 

avoided using the following strategy. Reactions involving bidirectional formation of DNA[m], 

DNA[c], RNA[c] and RNA[m] by a single nucleotide were set to 0. Otherwise reactions such 

as Diphosphate[c] + DNA[c] <=> dATP[c] could occur without energetic costs. Ethanol is 

also produced in these conditions. First constrain set of constrains for iLC915 that enable 

proper growth with glucose (instructions for COBRA Toolbox [3]): 

iLC915b=changeRxnBounds(iLC915E,{'r66','r910','r1104','r239','r111','r106','r490','r791','r24

3','r252','r253','r307','r308','r404','r405','r1320','r639','r640','r641','r642','r649','r650','r651','r65

2','r645','r646','r643','r644','r653','r654','r655','r656','r534'},0,'b'). 
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When simulating oxygen restricted conditions, none of the previous models predict arabitol 

secretion when ethanol production is constrained, and iMT1026 is the only one that predicts 

this by-product secretion. 

Glycerol:methanol mixtures 

In order to compare the performance of the models using mixtures of 

glycerol:methanol as carbon sources, the experimental data corresponding to the strain P. 

pastoris X-33 pGAPZA_ROL expressesing a Rhizopus oryzae lipase were used. Due to the fact 

that none of the other models incorporate ROL production equations, the simulation using 

iMT1026 with no ROL production was also performed. Comparing iMT1026 expressing 

ROL and iMT1026 without the ROL expression, similar values were observed in the evaluated 

fluxes. Thus, to compare the accuracy of the model using these experimental data, iMT1026 

was used setting the expression of ROL to zero. iLC915 has also to be constrained, for the 

above explained reasons, for the simulation of glycerol:methanol feeding conditions 

(instructions for COBRA Toolbox [3]): 

A 

B 

Fig. S3-2. Comparison of predicted values for each model with experimental data on glucose. 
Graphs with (A) growth rate (B) CO2 production predictions simulating glucose chemostats at different 
oxygen conditions with and without recombinant protein production with glucose, O2 and ethanol fluxes 
constrained to the experimental values. 
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PpaMBEL1254 has also to be modified. Reaction for O2 diffusion to peroxisomes has 

to be added in order to enable growth and assimilation of methanol. Thus, results showed 

represent the modified PpaMBEL1254, otherwise no growth was possible.  

Fig. S3-3. Comparison of predicted values for each model with experimental data on mixtures of glycerol 
and methanol. Graphs with (A) Growth rate (B) O2 consumption and (C) CO2 production predictions simulating 

different glycerol:methanol chemostats. * Not determined experimentally. 

iLC915=changeRxnBounds(iLC915E,{'r639','r640','r641','r642','r649','r650','r651','r65

2','r645','r646','r643','r644','r653','r654','r655','r656'},0,'b') 
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Model evaluation 

For evaluating and comparing all the models, a statistical parameter (eq. 1) was 

calculated for all the predicted variables: biomass formation and CO2 production in the 

glucose and different O2 levels case; and biomass formation, O2 consumption and CO2 

production in the glycerol:methanol simulations. 

1

𝑛
∙ ∑

√(𝑣𝑠𝑖
−𝑣𝑒𝑖

)
2

𝑣𝑒𝑖

%𝑛
𝑖=1                                           (𝑒𝑞 1) 

Where 𝑣𝑠𝑖
 is the resulting flux from the simulation for the variable 𝑖 and 𝑣𝑒𝑖

 is the 

experimental flux for this variable. The total number of predicted and compared fluxes with 

the experimental values is  𝑛 and equals to 21. 

Table S3-1. Comparison of deviations from experimental values. Calculations were performed 

according to (eq. 1). 

 iMT1026_ROL iMT1026 iPP668 PpaMBEL1254 iLC915 

Glucose  2.71% 32.73% 15.66% 18.30% 

Glycerol:methanol 6.90% 7.27% 48.93% 26.40% 25.14% 

OVERALL  6.08% 44.70% 23.60% 23.36% 
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4. Benchmarking iMT1026 for growth on methanol or 

glycerol as sole carbon sources  

4.1. INTRODUCTION 

In the first chapter of the thesis, the development of iMT1026, a consensus genome-

scale metabolic model for P. pastoris, is described. This model is an integrative and upgraded 

version of the previously existing models, validated for P. pastoris growing on glucose under 

different levels of oxygen availability and expressing an antibody fragment using data 

previously published by our research group [1,2]. Furthermore, iMT1026 was also validated 

for growth on mixtures of glycerol and methanol at low and high growth rate [3]. As described 

in the ‘General introduction’, industrial bioprocesses are tending to be eco-friendlier, reusing 

waste streams for novel applications. In this context, glycerol is one of the main by-products 

in biodiesel synthesis and can be used as carbon source for certain organisms. Thus, 

developing a glycerol-based biorefinery would allow for glycerol revalorisation, for the 

production of value-added chemicals, and to improve the viability of biodiesel as alternative 

biofuel [4]. Commonly, glycerol can be transformed into 1,3-propanediol, succinate, 

dihydroxyacetone, cell lipids and other value-added products [5,6]. Moreover, due to the 

residual content of methanol in the crude glycerol [7,8], P. pastoris, as methylotrophic yeast, 

is an ideal choice for bioprocesses using this carbon source. In fact, glycerol from biodiesel 

production has already been used as carbon source in P. pastoris [9,10].  

Production of chemicals is typically associated to (systems) metabolic engineering 

strategies for strain engineering in order to enhance production yields. In this context, 

metabolic models are usually adapted and validated for the specific substrates used in each 

particular application.  Despite the potential of glycerol as carbon source, only a few 

physiological studies of P. pastoris growing in glycerol as single carbon source can be found 

[11,12].  Validation of GSMMs for different conditions requires the availability of extensive 

cultivation data information describing its physiology. In addition, a wide range of information 
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on biomass composition enables building specific biomass equations to accurately describe 

cell growth in each case [13]. Given the impact of biomass composition on the model 

predictive accuracy in a context-dependent manner [13], iMT1026 model was still not suitable 

for describing growth on glycerol or methanol as single carbon sources. This is because 

biomass composition equations take a major role on prediction reliability, and small changes 

in that composition, or using an inadequate biomass equation, may rend model calculations 

inaccurate [13]. Hence, GSMMs are in continuous evolution (e.g. for Saccharomyces 

cerevisiae [14]) usually involving error-fixing steps related to poor or wrong gene annotation 

[15], or extending GSMM capabilities for a broader range of cultivation conditions.  

In this work, we expand the iMT1026 model capabilities by implementing the capacity 

to accurately describe P. pastoris growth phenotype when using glycerol or methanol as sole 

carbon sources.  

A series of chemostat cultures were performed at a wide range of growth rates using 

glycerol or methanol as sole carbon sources in order to provide comprehensive physiological 

datasets needed to upgrade the model. This included analysis of the elemental and 

macromolecular biomass composition for each tested growth condition. This allowed to 

introduce new biomass reaction equations to the metabolic model specific for growth on 

glycerol or methanol. Furthermore, the new version of the model (v3.0) was validated for 

growth on these two substrates within the tested growth rate range. This way, a tool for further 

developing the glycerol-based biorefinery concept in P. pastoris is provided. 

. 
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4.2. MATERIALS AND METHODS 

4.2.1. Strain and cultivation conditions 

Pichia pastoris wildtype X-33 (Invitrogen) was cultivated in carbon-source limiting 

chemostat cultures at a range of dilution rates. Continuous cultures were performed at a 

working volume of 1 L in a 2-L benchtop bioreactor Biostat B (Sartorius AG, Göttingen, 

Germany) for glycerol cultures, and in a Biostat B+ (Sartorius AG, Göttingen, Germany) for 

methanol cultivations. Two independent chemostat series were performed for each carbon 

source of increasing dilution rates (D) of 0.035, 0.050, 0.065, 0.100, 0.130 and 0.160 h-1 for 

glycerol and 0.035, 0.050, 0.065, 0.080, 0.100 and 0.130 h-1 for methanol. For pre-culture, 150 

mL of YPG media (2% (w/v) peptone, 1% (w/ v) yeast extract, and 2% (w/v) glycerol) in 1-

L shake flasks were inoculated with a cryostock at an initial OD600 of 0.15 – 0.30 and incubated 

at 150 rpm and 25C (Infors HT Multitron, Bottmingen, Switzerland) for approximately 24 

h. Cells were centrifuged and resuspended in sterile demineralised water and used to inoculate 

the bioreactor for the batch phase. Once the batch phase was concluded, chemostat phase 

was initiated at the specific growth rate by appropriately setting the corresponding inlet flow 

and enabling outlet flow to keep the reactor volume constant to 1 L. Both for batch and 

chemostat culture, stirring was set to 700 rpm, aeration rate to 1 vvm, temperature was 

maintained at 25C and pH 5.0 automatically controlled with 15% ammonia. The off-gases 

were cooled dawn in a condenser at 4°C and further desiccated in two silica gel columns. For 

the glycerol cultures, off-gas CO2 and O2 fractions were analysed through BCP-CO2 and BCP-

O2 Sensors (BlueSens gas sensor GmbH, Herten, Germany). On the other hand, methanol 

off-gas composition was analysed by means of a mass spectrometer OmnistarTM 300 02 

(Balzers Instruments, Balzers, Liechtenstein). Each dilution rate was kept for at least 5 

residence times, and 3 culture samples were taken along the last volume change.  

Batch medium composition was previously described by Baumann et al. [16]. 

Chemostat medium composition was also taken from [16], except that glucose was replaced 

by glycerol or methanol as carbon source. Thus, briefly chemostat medium contained per liter: 

50 g carbon source (glycerol or methanol), 0.9 g citric acid, 4.35 g (NH4)2HPO4, 0.01 g CaCl2 

· 2H2O, 1.7 g KCl, 0.65 g MgSO4 · 7H2O, 1 mL Biotin (0.2 g L-1), and 1.6mL PTM1 trace 
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salts stock solution (prepared as described previously [16]). pH was adjusted to 5.0 with 25% 

HCl. 

4.2.2. Analytical methods 

Extracellular metabolite quantification 

Glycerol, methanol, arabitol, succinate, acetate and ethanol were analysed by HPLC. 

Triplicate samples (2 mL each) were centrifuged at 12,000 rpm for 2 min (Minispin, 

Eppendorf, Hamburg, Germany). The supernatant was collected and filtered through 0.45 

µm nitrocellulose membrane filters (Millipore). Duplicate samples were analysed by HPLC 

(HP 1050 liquid chromatograph, Dionex Corporation, Sunnyvale, CA, USA) using an ICSep 

ICE COREGEL 87H3 column (Transgenomic Inc., Omaha, NE, USA). The mobile phase 

was 8 mM sulphuric acid. Injection volume was 20 µL. Data was quantified by Chromeleon 

6.80 Software (Dionex Corporation, Sunnyvale, CA, USA). Average relative standard 

deviation (RSD) of the analysis was about 1%. 

Biomass quantification 

Biomass in culture broth was monitored during cultivation by measuring the optical 

density at 600 nm. Dry cell weight (DCW) was quantified accordingly to the method described 

in Jordà et al. (2012). Biomass concentration was determined in triplicate. Biomass 

concentration average RSD was about 2%. 

Biomass composition analysis 

Both for the glycerol and methanol cultivations, biomass composition was analysed at 

the following growth rates: 0.035, 0.065, 0.100 h-1. Additionally, for the glycerol cultivations, 

biomass analyses were also carried out at 0.160 h-1. 

Elemental analysis.  

C, H, N, S were analysed by combustion at 1200C and subsequent gas 

chromatography in a Flash 2000 Elemental Analyzer (ThermoFisher Scientific, USA). Oxygen 

was determined through an oxygen-specific pyrolysis at 1060C. Ash content was determined 

by subtraction of the C, H, N, O, S fractions as remaining component. 
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Amino acid analysis.  

15 mg of lyophilised biomass were hydrolysed with 6M HCl for 24 h at 105C. Then, 

deionised water (MiliQ) was added up to complete 50 mL. Filtered aliquots were vacuum 

dried and finally resuspended in water. Samples were then derivatised wit 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate according to AccQ-Tag method (Waters, Milford, USA). 

Derivatised amino acids were analysed with a Waters 2487 (Waters, Milford, USA) UV 

detector at 254 nm in a gradient system HPLC Waters 600 (Waters, Milford, USA). 

Biomass samples for the determination of total protein, carbohydrates, DNA and RNA 

content were prepared and analysed as described in Carnicer et al. [2].  

4.2.3. Statistical analysis 

Standard reconciliation procedures [18,19] were applied to elemental composition and 

major macromolecular components (proteins, carbohydrates, DNA and RNA). The resulting 

biomass elemental composition was subsequently used to check chemostat cultivation data 

reconciliation and consistency [20]. Both for biomass macromolecular and elemental 

composition and for chemostat data, statistical consistency test was passed with a confidence 

level of 95%. Consequently, there was no evidence for gross measurement errors. 

Global macromolecular, amino acid and lipid composition data was analysed with 

statistical tests available in Microsoft Excel. 2-tailed Student’s t-Test was used to determine 

statistically significant differences in biomass composition between carbon source and growth 

rates. 

4.2.4. Modelling 

Pichia pastoris iMT1026 v2.0 [21] updated at BioModels database [22] ID: 

MODEL1508040001 (File S4-1) was used as starting model for further updating. The model 

was edited incorporating new biomass equations using standard scripts from COBRA 

Toolbox v2.0.6 [23]. File S4-3 includes the COBRA commands necessary to add these new 

equations into the existing model. All simulations were carried out with the COBRA Toolbox 

v2.0.6 under Matlab 2014 (Mathworks, USA) with SBML toolbox v4.1.0 [24] and libSBML 

library v5.12.0 [25]. Flux balance analysis (FBA) with linear optimization was used to predict 
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metabolic phenotypes by setting the appropriate flux constraints. To test model accuracy, 

biomass production was constrained to growth rate and the absolute value of substrate uptake 

rate was minimised. iMT1026 v3.0 was validated in SBML format and submitted to BioModels 

database with the ID: MODEL1612130000. This model is also available in File S4-2. 

4.2.5. Energetic parameters calculation 

ATP requirement for cellular maintenance was determined by the following energetic 

parameters estimation procedure. These requirements were divided into growth-associated 

maintenance-energy (GAME) and non-growth associated maintenance-energy (NGAME). 

For NGAME calculation, the substrate uptake rate was represented against the growth rate 

(µ) according to Pirt’s equation [26]. In the y-intercept of this linear regression, ATP turnover 

was maximised (µ = 0). These ATP values (for glycerol and methanol) are set as lower bounds 

in ‘ATPM’ reaction, representing NGAME. 

Using the obtained values for NGAME, GAME was determined by adjusting ATP 

stoichiometric coefficient in the corresponding biomass equation to fit biomass-substrate 

yields according to the experimental data. These simulations were carried out by maximising 

the biomass production in a FBA, constraining the substrate uptake rate according to the 

experimental data. 

4.3. RESULTS AND DISCUSSION 

4.3.1. Physiological macroscopic parameters 

P. pastoris X-33 strain was cultivated in carbon-limited chemostat cultures at different 

dilution rates to characterise its physiology using different carbon sources. This information 

was used to estimate the energetic parameters and to calibrate the model for such carbon 

sources. Glycerol cultivations were carried out at different dilution rates (D): 0.035, 0.050, 

0.065, 0.100, 0.130 and 0.160 h-1. At 0.160 h-1 the inflowing gas was supplied with an air:O2 

mixture (92.5:7.5) due to the higher O2 demand and cell concentration. Due to this operational 

limitation, no higher dilution rates were tested, despite P. pastoris has been reported to grow 

at higher growth rates [27]. Methanol limiting chemostats were run at 0.035, 0.050, 0.065, 
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0.080, 0.100 and 0.130 h-1. At 0.130 h-1 bioreactor washed out. Biomass concentration, CO2 

production and O2 consumption continuously decreased, and methanol accumulated. 

According to a chemostat washout kinetics [28], maximum growth rate on methanol was 

estimated to be between 0.11 and 0.12 h-1, which is in agreement with previously reported 

values [29]. 

Based on the chemostat data, specific productivities and yields were calculated for each 

condition (Table 4-1). In both glycerol and methanol cultivation series, main growth 

parameters show a linear correlation with growth rate (µ). Regarding biomass yields (YXS),  

there is a slight decrease at lower growth rates on both carbon sources, similarly as reported 

by Van Dijken et al. [30] and Rebnegger et al. [31]. These points at a carbon redirection 

towards biomass production occurring at higher growth rates at expenses to of CO2 

production, as reflected in the respiratory quotient (RQ). As shown in Table 4-1, there is a 

modest decrease (< 10 %) of RQ at higher growth rates, especially in the glycerol case in 

relation to the lower growth rates. Despite this apparent correlation, there are no statistically 

significant differences within the tested range, and average YXS and RQ can be calculated for 

the abovementioned range of growth rates. Average YXS in methanol is 0.40 gX · gS
-1 and is in 

accordance with yields previously reported for P. pastoris and other yeast [32]. This value is 

considerably lower than 0.67 gX · gS
-1, the average Yxs for glycerol. The YXS for glycerol ranged 

between 0.62 – 0.71 gX · gS
-1 ,  similar to yields on this substrate reported for different Pichia 

species and other yeasts [33]. 

4.3.2. Macromolecular and elemental biomass composition 

Growth rate dependent stoichiometry 

To investigate the potential impact of growth rate on biomass composition, samples of 

the cultures were taken for analysis of the biomass elemental and macromolecular 

composition at different dilution rates. In particular, we analysed the biomass composition at 

four different growth rates for glycerol (µ = 0.035, 0.065, 0.100 and 0.160 h-1) and three for 

methanol (µ = 0.035, 0.065 and 0.100 h-1). The experimental datasets and the calculated 

(reconciled) biomass composition are summarised in Fig. 4-1 (and Table S4-2 for full details). 
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Notably, the protein and RNA fractions positively correlate with growth rate in both 

glycerol- and methanol-fed cultivation series. This increment on protein and RNA with 

increasing growth rates is at expenses of carbohydrate content. This trade-off between RNA-

protein and carbohydrate content has been widely reported in yeast species [34,35], including 

in P. pastoris [3]. The increase in protein fraction is consistent with the measured changes in 

the elemental composition: the nitrogen content is also higher at high growth rates (Table 

S4-1). Nonetheless, only the correlation of RNA and growth rate is statistically significant. 

This stoichiometric dependence of biomass components on growth can be described on the 

basis of the growth rate hypothesis (GRH). Essentially, GRH attributes this shift to the tight 

control of the expensive protein synthesis system [36]. At higher growth rates, cells need a 

higher ribosomal content to maintain the enzymatic machinery. The ribosomes are reported 

to consist of 53% RNA and 47% protein in Aspergillus niger [37]. Thus, the increase in ribosome 

levels has a deep impact in overall cell protein and RNA content.   

Carbon source effects on biomass composition 

Besides the impact of the specific growth rate on biomass composition described 

above, other factors like the carbon source are also known to have a significant influence [3]. 

In our case, the effect of the carbon source can be appreciated in Fig. 4-1: cells grown on 

methanol show a significantly higher protein fraction than those grown on glycerol. Jordà et 

al. [3] cultivated P. pastoris in chemostats using different ratios of glycerol:methanol mixtures 

as carbon source. The corresponding biomass composition analyses showed that protein 

content increased at higher methanol/glycerol ratios. Similarly, P. pastoris cells growing on a 

glucose:methanol mix in a chemostat show higher protein content than when growing on 

glucose as a sole carbon source under analogous conditions [17]. Consequently, the increase 

in cell protein content seems to be directly related to methanol-utilisation, and more 

specifically, to the amount of enzymes needed  for methanol assimilation [38]. In fact, genes 

encoding for the methanol utilisation pathway such as the alcohol oxidase (AOX) and 

dihydroxyacetone synthase (DHAS), two major enzymes involved in the initial steps of 

methanol metabolism, are highly induced in the presence of methanol [38]. They are reported 

to account for up to 10-20% of total protein in methylotrophic yeasts [30,39]. 
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 On the other hand, amino acid composition analysis of the cell proteome showed no 

significant differences when comparing growth rates of cells grown each substrate Table 

S4-2. Nevertheless, the amino acid composition of biomass differed significantly for some 

amino acids when comparing glycerol versus methanol grown cells (Table S4-2).  In addition, 

the subset of amino acids showing significant differences of relative abundances in methanol-

grown cells (compared to the glycerol condition) was compared to the amino acid 

composition of enzymes related to the methanol metabolisation pathway (Fig. 4-2). This 

analysis clearly reveals how the amino acid composition of the methanol metabolisation 

enzymes affects the overall cell amino acid composition with respect to glycerol. Therefore, 

the higher protein fraction in biomass composition in methanol appears to be related to the 

increased content of methanol-assimilating enzymes. 

In terms of cell total lipid fraction, no statistically significant differences are found 

across the series of methanol biomass samples collected at different growth rates. Conversely, 

the cell lipid fraction shows a statistically significant positive correlation (P-value < 0.05) with 

the growth rate of glycerol-grown cells. In addition, the lipid content in glycerol-grown cells 

is on average 1.25-fold higher than in methanol-grown cells. Regarding the lipid composition 

Fig. 4-1. Comparison of the reconciled macromolecular composition of glycerol and 
methanol cultures at different growth rates. 
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profile, there are significant differences depending on the carbon source (Fig. 4-3, and 

additional details in Table S4-3). Specifically, these differences are found in triacylglycerols 

(TAG), free fatty acids (FFA) and phosphatidic acid (PA). There is a higher content of TAG 

and PA at expenses of FFA in glycerol-grown cells, whereas in methanol-grown cells, FFA is 

the major lipid fraction and TAG and PA are present only in trace amounts. Both TAG and 

PA are lipid molecules with a glycerol backbone. Therefore, these differences seem to reflect 

the lower synthesis cost of TAG and PA from glycerol.  

When formulating a biomass equation for glycerol and methanol growth conditions, 

despite that certain biomass components appear to be correlated with biomass specific growth 

rate, statistical analyses do not show significant differences associated with growth rate. In 

contrast, statistically significant differences are found when comparing average glycerol and 

methanol biomass compositions. Consequently, new biomass equations have been formulated 

Fig. 4-2 Comparison of average amino acid profiles from glycerol and methanol cultures in relation to 
amino acid abundance in the most abundant proteins in methanol metabolisation. Amino acid 
abundance is presented as mol/mol %. Glycerol and methanol represent the average amino acid composition 
of glycerol and methanol cultivations respectively. Other variables correspond to the most abundant proteins 
in the presence of methanol: alcohol oxidase (AOX1), dihydroxyacetone synthase (DAS1), formate 
dehydrogenase (FDH1), formaldehyde dehydrogenase (FLD), catalase (CTA1). Glx and Asx represent the pair 

of Asp/Asn and Glu/Gln respectively. 
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for growth on glycerol and methanol incorporating protein, lipid and macromolecular 

composition equations specific to each carbon source growth condition.  

4.3.3. Energetic parameters estimation  

Prior to model validation, energetic parameters have to be estimated in order to assure 

accurate predictions of cell performance. These parameters are the growth associated and the 

non-growth associated maintenance energy (GAME and NGAME, respectively).  NGAME, 

values differed significantly for glycerol and methanol growth conditions. On the one hand, 

growth on glycerol showed a NGAME of 2.51 mmol ATP · gDCW
-1 · h-1, which is similar to 

the corresponding value previously calculated for glucose growth conditions, 2.81 mmol ATP 

· gDCW
-1 · h-1 [21,40]. In contrast, the NGAME calculated for methanol growth is 0.44 mmol 

ATP · gDCW
-1 · h-1, i.e. much lower compared to the corresponding values calculated for the 

other carbon sources.  

For GAME estimation for growth on glycerol, physiological parameters corresponding 

to the µ = 0.035 h-1 condition were not considered, as a metabolic shift seems to change the 

phenotypic profile at this (and lower) growth rates [31]. This can be directly inferred from the 

specific CO2 production rate (qCO2) and specific O2 consumption rate (qO2) observed at this 

growth rate, which do not follow the same linear trend as in the rest of measured range (Fig. 

4-4). Hence, taking into account this consideration, GAME for glycerol was estimated to be 

70.66 mmol ATP · gDCW
-1, that is, 2.4-fold lower than for methanol (166.77 mmol ATP ·gDCW 

-1). As mentioned above, there is an important change in protein composition in methanol-

Fig. 4-3. Average lipid profile for biomass grown on glycerol (black) and methanol (gray). Triacylglycerols 
(TAG), free fatty acids (FFA), sterols (STE), cardiolipin (CAR), phosphatidic acid (PA), phosphatidylcholine (PC) 
and phosphatidylinositol / phosphatidylserine (PI/PS). Detailed composition of lipids can be found in Table S4-1 
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grown cells compared to glycerol growth due to the high levels of enzymes associated to 

methanol metabolisation. The metabolic overload resulting from the maintenance of this cell 

machinery could be one of the reasons for the higher GAME besides the fact that growth on 

highly reduced substrates like methanol (reduction degree (RD) of 6) is known to be usually 

less efficient (higher energy dissipation and lower biomass yields) compared to glycerol (RD 

4.67) or glucose (RD 4) [41]. When compared to glucose culture conditions, GAME for 

glycerol growth is very similar to the 72 mmol ATP · gDCW
-1 calculated for glucose growth in 

the previous chapter [21]. 

Fig. 4-4 Evaluation of simulated and experimental macroscopic variables for the growth in glycerol and 
methanol. For each carbon source, the growth rate was constrained and the absolute value of substrate uptake 

rate was minimised. (A) Chemostats on glycerol; (B) Chemostats on methanol. qS,glycerol/methanol (●), qCO2
 (◼), qO2

 

(▼); predicted qS,glycerol/methanol (dashed line), predicted qCO2
 (continuous line), predicted qO2

 (dotted line). 
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4.3.4. Model validation 

The updated model, iMT1026 v3.0 (File S4-2) and available at BioModels Database 

with model ID MODEL1612130000), integrating the new specific biomass equations for 

growth on glycerol and methanol as sole carbon sources, was used to estimate the main 

macroscopic growth parameters as described in the Experimental procedures section. The 

version 3.0 of iMT1026 accurately predicts macroscopic growth parameters within the range 

of tested growth rates for both carbon sources (Fig. 4-4). In comparison to iMT1026 v2.0, 

this new version improves the accuracy in the main macroscopic parameters prediction for 

glycerol- or methanol-grown biomass (Fig. S4-1). 

Despite the great overall performance, model deviates from the experimental data by 

overestimating qO2 and qCO2 in the case of glycerol growth at 0.035 h-1 (Fig. 4-4). P. pastoris 

has been reported to reduce maintenance energy requirements at very low growth rates 

associated with metabolic adaptations and changes in gene expression [31,40]. In order to take 

into account this lower maintenance energy requirement, a series of additional simulations 

were carried out by constraining the NGAME at values lower than 2.90 mmol ATP gDCW
-1 · 

h-1 (i.e. the default value set for glycerol-grown cells) and maximising growth at a given 

substrate uptake rate. As a result, iMT1026 v3.0 is also able to accurately predict the main 

macroscopic growth parameters for glycerol growth at 0.035 h-1 when NGAME is lowered 

(Fig. S4-2). In particular, values between 1 and 1.5 mmol ATP gDCW
-1 · h-1 allow the best 

accuracy in predicting the experimental data at 0.035h-1, as shown in Figure S2 According to 

these calculations, there is between a 2 to 3-fold reduction of NGAME at the lower growth 

rate range. Notably, these results are in agreement with Rebnegger et al. [31], who reported 3-

fold reduction of the maintenance requirements at low growth rates. 
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4.4. CONCLUSIONS 

In this study, we analysed the performance of P. pastoris growing in chemostat cultures 

using glycerol or methanol as single carbon source over a wide range of growth rates. The 

observed biomass composition changes in terms of protein and RNA content as a function 

of growth rate further support the growth-rate effect hypothesis on biomass composition, i.e. 

for both carbon sources, higher content of protein and RNA was observed at higher growth 

rates. Moreover, biomass composition also showed a strong dependence on carbon source, 

as protein content in biomass was higher in methanol-grown cells. In addition, the carbon 

source has a significant impact on lipid and amino acid profiles. 

Overall, the information gathered on biomass composition at different growth rates 

and carbon sources allowed to calculate average biomass compositions for glycerol- and 

methanol-grown biomass. This allowed us to extend the iMT1026 model with new biomass 

equations for growth on glycerol or methanol as sole carbon sources. Energetic maintenance 

requirements were estimated for the first time in P. pastoris in both carbon sources. 

Furthermore, the model was validated for the range of growth rates tested and it accurately 

described the experimental physiological data. Minor discrepancies between experimental data 

and simulations were found for glycerol at lower growth rates, where a non-linear behaviour 

of growth parameteres has been reported due to a metabolic shift on metabolism that enables 

P. pastoris to reduce its maintenance energy requirements.  Such discrepancies can be easily 

taken into account by decreasing the value of maintenance energy requirements included in 

the model.  

In summary, the third version of iMT1026, v3.0, consensus model for P. pastoris 

provides to the scientific community an improved metabolic engineering and analysis tool 

with expanded capabilities for predicting the metabolic phenotype in a broader range of 

conditions as well as an improved tool for future design of model-based metabolic engineering 

of the P. pastoris cell factory. 
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APPENDIX II 

 

In this appendix, supplementary details on biomass composition are provided. Table 

S4-1 to Table S4-3show specific information on biomass composition for all the conditions 

tested. These include the reconciled macromolecular and elemental composition (Table 

S4-1), amino acid composition (Table S4-2) and lipid profile of each condition (Table S4-3). 

These tables also include the averaged compositions for glycerol and methanol used for 

building the new biomass equations in iMT1026 v3.0 and detailed in File S4-3.  

As a result, new glycerol and methanol specific biomass equations were incorporated 

into the model. This allowed enhancing model accuracy when experimental data of the 

corresponding glycerol and methanol chemostats is simulated (Fig. S4-1). 

The reduction of maintenance energy requirements allowed predicting macroscopic 

growth parameters using iMT1026 v3.0 (Fig. S4-2). 
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Table S4-1 
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Table S4-2 
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5. 13C-based MFA of P. pastoris growing on glycerol 

5.1. INTRODUCTION 

The first metabolic networks for 13C-labelling experiments (CLE) were based on the 

pre-existing knowledge on biochemical pathways that included the amino acid biosynthesis 

pathways [1]. These central carbon metabolism networks have been extensively used with only 

minor modifications that improved the experimental datasets adjustment in flux estimations 

[2]. Early studies reported negligible fluxes in certain parts of the network, such as glyoxylate 

pathway or malic enzyme, in the tested conditions [3]. Subsequent studies, omitted such 

reactions and pathways in the respective 13C-MFA [4,5]. Despite there is no clear evidence 

of large fluxes in glyoxylate pathway in P. pastoris, the default omission of certain pathways 

may lead to inaccurate flux estimation under novel untested conditions. In addition, traditional 

metabolic models are simplifications of the whole metabolic network, therefore, even with 

the addition of particular reactions that improve flux estimation, Jordà et al. [4] reported a 

redox cofactor imbalance which could be due to the incomplete network in which key 

reactions that would fully balance redox cofactors would be missing or erroneously assigned 

using the incorrect cofactor. 

In GSMM, the complete metabolic network is represented, thus at a glance, GSMM 

would be an alternative for 13C-MFA avoiding missing reactions. Nevertheless, large-scale 13C-

MFA have significant drawbacks. One of the inconveniences is the requirement for an 

accurate atom transition mapping. Although there are databases including the reaction atom 

mapping of biological pathways, GSMM-specific reactions would require the additional effort 

to accurately annotate atom transitions. Another important hindrance is the huge number of 

variables that impacts computation complexity. Finally, a major handicap is the inability to 

resolve all fluxes due to the robustness and redundancy of metabolic pathways which include  

parallel and alternative pathways as well as compartmentalization [6]. Until more powerful 

computational methods are developed, GSMM are not a practical alternative to core models. 

Gopalakrishnan and Maranas [7] used a GSMM for 13C-MFA. However, they conclude that 

reducing GSMM to a similar size than the currently used core metabolism models used in 13C-

MFA would be a feasible alternative instead of full GSMM. Reduced models would have more 
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complete biomass equation as well as alternative pathways that would allow better adjustments 

in flux distribution. In this regard, algorithms for reducing GSMM to core models have been 

developed [8]. Briefly, by protecting relevant reactions and applying phenotypic constrains in 

simulations the algorithm successively eliminates reactions until a minimal model that fulfills 

the phenotypic constrains is obtained. This method has been employed in E. coli and reported 

to produce equivalent predictions for flux distribution than the original GSMM [9]. 

First 13C-MFA studies in P. pastoris used biosynthetically directed fractional (BDF) 13C-

labeling of proteinogenic amino acids with 2D-NMR that enabled the analysis of metabolic 

flux ratios (METAFoR analysis) [10]. This method relies on the identification of conserved 

C-C bounds. Therefore, the information derived of certain substrates with a low number of 

carbon bounds is limited. Alternatively, further studies in our research group employed non-

stationary CLE [2,11] and were coherent with equivalent studies using 13C-labelling data of 

proteinogenic amino acids and METAFoR analysis [12]. In addition, the latter method 

allowed the determination of flux distributions through an extended network and include flux 

reversibility in certain parts of the network. Between these two approaches for flux 

determination, is the analysis of proteinogenic amino acids with subsequent iterative fitting of 

fluxes to the measured MIDs and cell exchange fluxes. Despite this method does not allow 

the resolution achieved in non-stationary CLE, it is expected to improve the resolved fluxes 

in comparison to METAFoR analysis. Thus, in this chapter, the genome-scale metabolic 

model is reduced to a glycerol-specifc core model. This reduced model is further used for 13C-

MFA of P. pastoris growing on glycerol as carbon source at different growth rates.  
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5.2. MATERIAL AND METHODS 

5.2.1. Strain and cultivation conditions  

Pichia pastoris X-33 strain was used throughout this study. Duplicate carbon limited 

chemostat cultivations were performed using a Sartorius 0.5-L bioreactor (Sartorius AG, 

Göttingen, Germany) at dilution rates (D) of 0.05, 0.10 and 0.16 h-1 with a working volume 

of 0.3 L maintained by a gravimetrically controlled peristaltic pump. Chemostat cultivations 

were performed for at least 5 residence times (τ). 

Batch and chemostat media were adapted from Baumann et al. [14] and diluted to 

achieve an approximately final biomass of 6 g/L when the steady state is reached. Thus, 

briefly, batch medium contained: 9.98 g/L glycerol, 0.46 g/L citric acid, 3.15 g/L 

(NH4)2HPO4, 0.006 g/L CaCl2 · 2H2O, 0.225 g/L KCl, 0.125 g/L MgSO4 · 7H2O, 0.5 mL 

Biotin (0.2 g/L), 1.15 mL PTM1 trace salts stock solution (prepared as described in Baumann 

et al., 2008). pH was adjusted to 5.0 with 25% HCl. Chemostat medium contained: 10 g/L 

glycerol, 0.818 g/L citric acid, 4.35 g/L (NH4)2HPO4, 0.01 g/L CaCl2 · 2H2O, 1.7 g/L KCl, 

0.65 g/L MgSO4 · 7H2O, 1.0 mL Biotin (0.2 g/L), 1.6 mL PTM1 trace salts stock solution. 

An Inoculum was cultivated overnight at 30ºC, 150 rpm in a 0.5 L shake flask 

containing 75 mL of basal medium with glycerol and supplemented with biotin (1% yeast 

nitrogen base, 4 · 10-5 % biotin, 1% glycerol). Bioreactor was inoculated an initial OD600 of 

0.3 – 0.5. Once glycerol is completely depleted, continuous cultivations were started by 

initiating the feeding at the corresponding flow rate. The aeration rate was set to 1 vvm with 

sterile atmospheric air and the off-gas O2 and CO2 concentrations were measured a Prima 

Pro Process Mass Spectrometer (Thermo Fischer Scientific). Cultivation conditions were set 

to stirring rate of 500 rpm, pH 5.0 controlled by automatic addition of 15% ammonia and the 

temperature was maintained at 25ºC. 

5.2.2. Labelling experiment and biomass harvest 

After a minimum of 5τ of continuous cultivations with non-labelled glycerol, the feed 

was switched to the labelled medium. Labelled feed medium composition was the same than 

unlabeled feed medium composition, replacing glycerol for 20% [1,3-13C]glycerol (CortecNet) 
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and 80% unlabeled glycerol. Labelled medium was feed for at least 2τ. 50 – 100 mL of biomass 

were collected and centrifuged 15 min at 16000g. The supernatant was discarded and pellets 

were frozen with liquid N2 and stored at -80ºC for further extraction and analysis of 

proteinogenic amino acids. 

5.2.3. Analytical methods 

Cell density and dry cell weight 

Cell density was monitored by optical density at 600 nm. Dry cell weight (DCW) was 

measured in duplicate by gravimetric methods. A known volume of sample (5 to 10 mL) was 

filtered throughout a dried pre-weighted 0.45 μm polyether sulfone filters (Frisenette, Knebel, 

Denmark) and washed with distilled water. Filters were dried in a microwave oven at 150 W 

for 20 min and cooled down in a desiccator for at least 2 h and finally weighted. For external 

metabolite analysis, samples were taken along the cultivation, filtered through a 0.22 μm 

syringe filters and stored at -20ºC until subsequent analysis. Glycerol, was the only and main 

peak detected in HPLC analyses performed as described in [15]. 

5.2.4. Proteinogenic amino acid MID determination 

Amino acid extraction, derivatization and GC-MS analysis 

Isotope distribution of the proteinogenic amino acid was determined as described by 

Knudsen [16]. Briefly, 5 mg of biomass pellets were hydrolyzed with 6 M hydrochloric acid at 

105ºC for 16h. Once at room temperature, samples were dried for 3h under a stream of 

nitrogen. Samples were redissolved in water and filtered through a Strata SCX columns and 

washed with 50% ethanol to remove all the impurities. Samples were eluted with 1 N NaOH 

and additionally with the elution solution [16]. Two types of derivatives were prepared for 

GC-MS analysis: N-ethoxycarbonyl-amino ethyl-esters (ECF) and N-dimethyl-amino-

methylene-methyl-esters (DMFDMA) following the accurate protocol described by Knudsen 

[16]. Derivatised amino acid samples were analyzed in a GC-MS Agilent 6890 gas 

chromatograph coupled to an Agilent 5973 quadruple MS accordingly to the specified settings 

[16]. GC/MS Translator (Agilent) was used to convert the row files into readable for Agilent 

MassHunter Qualitative Analysis.  
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MID correction for natural isotopes and washout kinetics  

MID are uncorrected for naturally labelled atoms other than carbon backbone [17,18]. 

OpenFlux [13] was used for correcting the MID of each amino acid according to the expected 

fragmentation ions obtained in GC-MS analysis [19]. In addition, biomass was harvested after 

2 τ and thus, the fraction of labelled biomass (Xlabelled) at the steady state was calculated 

according to a first-order wash-out kinetics [20]: Xlabelled = 1 – e-t/θ, where t is the labelling 

time and θ the residence time of the chemostat. 

5.2.5. Statistical analysis 

Chemostat cultivation data was checked for consistency and standard reconciliation 

procedures were applied [21]. Biomass molecular formula was set according to the growth 

rate and values reported in Chapter 4 of the present thesis. In all the cultivation sets, statistical 

consistency test was passed with a confidence level of 95%. Consequently, there was no 

evidence of gross measurement errors. 

5.2.6. Core model generation 

In order to obtain a complete network of the central carbon metabolism of P. pastoris, 

including all the relevant reactions a core model was generated by reducing iMT1026 v3.0 

using NetworkReducer [8] with CellNetAnalyser 2016.1[22] under Matlab 2011. A detailed 

procedure and commands for model reduction can be found in File S5-1. Default glycerol 

growing flux constrains were set and glycerol was set as the only possible carbon source. 

Maximal growth rate in the reduced network is constrained to be 99.9% of the maximal 

growth rate for the iMT1026 v3.0 (here PpaGS, meaning ‘P. pastoris Genome-Scale’) 

corresponding to the glycerol chemostat cultivations in Chapter 4. In a first step, 46 reactions 

of the central carbon metabolism were protected (File S5-1) and PpaGS is reduced to a pruned 

model (PpaPruned). Subsequently, PpaPruned is further reduced to PpaCore by a compressing 

procedure with a new set of 56 protected reactions (File S5-1). Due to numerical reasons the 

‘cof’ metabolite was removed from biomass equation. The resulting PpaCore was tested for 

growth in glycerol and the same maximal growth rates obtained in PpaGS were achieved for 

a constrained uptake of glycerol. 
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5.2.7. 13C-Metabolic flux analysis (13C-MFA) 

Flux calculations were performed with OpenFLUX [13] under Matlab 2011 using 

FMINCON from Matlab’s optimization toolbox. Previously to perform MFA, PpaCore was 

adapted to OpenFLUX requirements in three steps: (1) reversible reactions were expressed as 

two paired of irreversible reactions; (2) reactions mapping label distribution in the measured 

proteinogenic amino acids were added according to the appropriate compartmentalization [1]; 

(3) carbon atom transition equations were added according to previous P. pastoris models [5] 

and databases [23]. In order to avoid biased solutions, O2, reduction equivalents, energetic 

cofactors and additional non-carbon-balanceable metabolites were defined as excluded 

metabolites. Moreover, those reactions in PpaCore that uniquely contained excluded 

metabolites were also removed from the final model for 13C-metabolic flux calculations. The 

resulting model (Table S5-1) was used for 13C-MFA. MIDs showed an average deviation 

below 5% and the model was fitted to the experimental data by the least squares method 

detailed in [24] using the glycerol uptake rate and specific biomass generation rates as 

constrains. The parameter estimation procedure was repeated 100 times. Subsequently, the 

solution cluster with lower residual error was used for sensitivity analysis using the non-linear 

approach developed by Antoniewicz et al. [25]. Sensitivity analysis was performed in order to 

find the lower and upper confidence interval boundaries of calculated fluxes at a 95% 

confidence level [13]. Default configuration settings were used for the sensitivity analysis. Due 

to the impossibility to determine individually forward and reverse fluxes in certain pairs of 

reversible reactions, only the net fluxes were calculated and submitted to the sensitivity 

analysis for those forward/reverse reaction pairs. 13C flux fitting to MID was performed for 

each experimental replicate and subsequently averaged.  

5.2.8. Calculation of redox cofactor regeneration rates and energy 

requirements 

Rates for redox cofactor regeneration and ATP synthesis were derived from the 

determined fluxes. Once the solution of the metabolic system was found, estimated fluxes 

were further used for calculating the remaining reaction fluxes that contained excluded 

metabolites. Redox cofactor balance was checked and any surplus of reduction equivalents 

(NADH both cytosolic and mitochondrial) was considered a source of electrons to be 
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transferred to the electron transport chain (ECT). Therefore, assuming the complete electron 

transfer from the reduction equivalents to ETC and taking into account the oxygen 

requirements for biomass synthesis (included in the full biomass equation), the oxygen uptake 

rate could be calculated and compared to the experimental values. In addition, since the model 

includes the complete ETC with proton translocation to the mitochondrial intermembrane 

space and the consecutive reaction for ATP synthesis [26], the theoretical maximal ATP 

generation rate can be estimated. This way, the total ATP generation can be taken later into 

account for calculating the energetic parameters. Essentially, two parameters were determined: 

growth and non-growth associated maintenance energy (GAME and NGAME respectively) 

according to Pirt’s equation [27] and calculating the linear regression between ATP generation 

and growth rates [28]. The y-intercept would correspond to the NGAME ( = 0.0 h-1) and 

the slope to GAME. Those values can be later compared to those obtained using the complete 

PpaGS model. 

5.3. RESULTS AND DISCUSSION 

5.3.1. Macroscopic growth parameter characterisation 

Despite the rising interest on using glycerol for microbial cultivations, there is limited 

information on the physiology of P. pastoris growing on such carbon source. In Chapter 4, a 

series of cultivations were performed at different growth rates using glycerol as sole carbon 

source. In this initial work, a macroscopic landscape is provided by analysing the effects of 

growth rate on biomass composition and its growth profile which are both described in more 

detail. Thus, in this chapter, a series of chemostat cultivation were performed at three different 

dilution rates that were already tested in previous experiments [1] as well as in in Chapter 4: 

0.05, 0.10 and 0.16 h-1. 

As in previous experiments, cultivation of P. pastoris using glycerol as sole carbon source 

showed no by-product secretion or accumulation. In addition, glycerol can be considered as 

completely consumed in the reactor, as its measurement in the broth samples was below the 

detection limit of the analytical method. All the measured external macroscopic fluxes showed 

a clear correlation with the growth rate (R2 > 0.99), that is in agreement with results in Chapter 
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4 where a linear range for the macroscopic cell’s variables growing on glycerol is established 

between 0.05 and 0.16 h-1. 

In this new set of cultivations at different growth rates using glycerol as carbon source, 

biomass yields were calculated. YXS ranges between 0.70 – 0.72 gX · gS
-1 (Table 5-1). These 

values are in the upper range of YXS calculated for glycerol in Chapter 4 (0.62 – 0.71 gX · gS
-1) 

and are in agreement with biomass yields on glycerol for different yeast species [29]. Similarly, 

average RQ (0.58  0.2) is close to 0.63  0.03, the average RQ calculated in Chapter 4 for 

glycerol-grown cells. Therefore, despite reducing the carbon source concentration in the 

feeding media, cells showed similar macroscopic profile and thus cultivations were performed 

in comparable conditions.  

Table 5-1. Reconciled macroscopic growth parameters for glycerol cultivations at different 
growth rates. 

DSP 0.05 0.10 0.16 

Dexp 0.046 ± 0.006 0.098 ± 0.009 0.166 ± 0.006 

qS -0.72 ± 0.11 -1.45 ± 0.13 -2.52 ± 0.14 

qX 1.62 ± 0.21 3.43 ± 0.31 5.89 ± 0.23 
qCO2

 0.55 ± 0.12 0.93 ± 0.07 1.65 ± 0.18 
qO2

 -0.90 ± 0.18 -1.66 ± 0.14 -2.89 ± 0.25 

YXS 0.70 ± 0.02 0.73 ± 2e-3 0.72 ± 0.01 

RQ 0.60 ± 0.02 0.56 ± 0.01 0.57 ± 0.01 
DSP (h-1) corresponds to the set point dilution rate and Dexp (h-1), the measured experimental D. 
qS, qO2

 and qCO2
 are expressed in mmol · gDCW

-1· h-1. Units for qX are Cmmol · gDCW
-1· h-1. 

YXS represents biomass yield (gX · gS
-1) 

RQ is respiratory quotient. 

5.3.2. Reduction of P. pastoris genome-scale model 

iMT1026 v3.0 was used for generating a derived central carbon metabolism model in 

two reduction steps, generating PpaPruned and PpaCore. The main model characteristics are 

summarized in Table 5-2. In order to avoid infeasibilities due to numerical tolerance 

constrains, ‘cof’ metabolite corresponding to cofactors in biomass equation was removed. 

‘COF’ reaction has stoichiometric coefficients of the order of 1e-6 that can be lower than the 

minimal calculation tolerance. By removing COF, no significant impact on flux distribution 

nor predictability capacity was observed. In the first step of reduction, 46 reactions were 

protected including the main equivalent reactions in previous P. pastoris central carbon 
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metabolism model [5] and additional transport reactions due to the compartmentalization of 

the model. Protected phenotypes were stablished in order to ensure the accuracy of the 

predictions, thus, for a given glycerol uptake rate, the 99.9% of the maximal predicted growth 

rate, obtained using the original model, was used as a constraint. As reported in Chapter 4, no 

by-product generation was detected when growing in glycerol-limited chemostats. None of 

the by-product formation reactions were protected and consequently none of them were 

present in PpaPruned. Initially, the genome scale metabolic model contained 2237 reactions 

and 1881 metabolites (175 external). As a result of the network reduction the number of 

reactions and metabolites was considerably reduced (495 reactions and 513 metabolites). The 

degrees of freedom (dof) are also strongly reduced (from 485 to 4). This reduction could be 

due to the fact that the pruned model only takes into account growth in glycerol with no by-

product generation. In the subsequent step, we further reduced PpaPruned applying a loss-free 

network compression [8], where linear and transport reactions were lumped and several other 

reactions were also grouped. As a result, PpaCore was generated and included 77 reactions with 

102 metabolites with no further reduction in degrees of freedom. In addition, the maximal 

predicted growth rate was maintained as in the original model. 

Table 5-2. Main properties of P. pastoris models used and generated in this study. 

 
iMT1026 v3.0 PpaPruned PpaCore Openflux PpaCore 

# reactions 2237 495 77 120 

# internal metabolites 1706 513 102 100 

# external metabolites 175 9 9 9 

degrees of freedom 485 4 4 - 

μmax 0.0940 0.0939 0.0939 - 

 

In addition, the amino acid biosynthetic pathways included in the reduced model were 

checked and compared to those present in previous models of the central carbon metabolism. 

In addition, such pathways were verified based on available databases [23] to ensure a proper 

carbon atom mapping. Hence, amino acid carbon atom transitions were adapted from 

previous models [4,5,30]. 
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5.3.3. 13C-Metabolic flux analysis on glycerol-grown cells 

The generated model was implemented in OpenFLUX code for 13C-MFA 

determination employing the experimental MIDs corrected both for the naturally labelled 

atoms other than carbon backbone and extrapolating the MID to the steady state using a first 

order washout kinetics (Table S5-2). Furthermore, the metabolic fluxes were estimated 

independently for each experimental replicate and subsequently averaged. Despite an optimal 

flux value is obtained at the end of the calculations, here results are presented as the 95% 

confidence interval (CI) in order to provide a more informative description of the results 

taking into account the true uncertainty of estimated fluxes [25]. On one hand, the expression 

as mean of the optimal value ± SEM, would provide an overview of changes in the estimated 

fluxes, but it would not indicate the real uncertainty of the measurement due to the asimetry 

of the interval. Thus, if similar flux distributions were predicted between replicates, it would 

provide poor information on the confidence of the estimated fluxes. Then, in this chapter 

results will be expressed as confidence interval boundaries. 

To our knowledge, there is only a single study analysing the metabolic flux distribution 

of glycerol-grown yeasts with 13C-labelling experiments [1]. Although this previous study 

performed only a metabolic flux ratio analysis (METFoR) and thus no specific flux estimation 

values were provided, comparable flux ratio results were obtained in our case when analysing 

flux ratios in converging pathways with the resulting estimated fluxes. One of the conclusions 

by Solà et al. [1] was that the activity through glyoxylate cycle was very low. This observation 

was based on the available carbon labelling evidence (or better the lack of contrary evidence) 

as well as on previous studies in S. cerevisiae and P. stipitis grown in glucose, in which the 

glyoxylate pathway was almost inactive [31]. In addition Solà et al. [1] measured the activity of 

isocitrate lyase (ICL) and showed similar activities for both in glucose and glycerol chemostats. 

Since glucose is known to repress the glyoxylate pathway in S. cerevisiae [32] and measured 

activities of ICL in P. pastoris were similar for glucose and glycerol, it was assumed that the 

flux through glyoxylate cycle was negligible. This consideration has been assumed in 

subsequent studies [5,11,30,33,34] by omitting the glyoxylate pathway from the metabolic 

network for MFA. As shown in Fig. 5-1, the activity through glyoxylate cycle found in the 

present results is very low, almost negligible, and thus confirms the previous assumptions by 

Solà et al. [1]. A second observation was that the fraction of mitochondrial pyruvate derived 
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from malate was also very low or negligible, thus indicating that the malic enzyme is likewise 

almost inactive. Our calculations are in agreement to this observation and very low fluxes are 

estimated for malic enzyme. However, for the lowest dilution rate tested, the relative flux 

through the malic enzyme reaction is predicted to be higher than at the other dilution rates 

and accounting for less than 20% of the contribution to the mitochondrial pyruvate node. 

Flux ratios between gluconeogenesis and pentose phosphate pathway cannot be assessed in 

glycerol nor mixtures of glycerol and methanol cultivations using biosynthetically directed 

fractional 13C labelling of proteinogenic amino acids [1,3]. Nevertheless, when applying 13C-

constrained metabolic flux analysis, fluxes through the oxidative branch of the pentose 

phosphate pathway (PPP) can be estimated [4]. Similarly to previous cultivations on mixtures 

of glycerol and methanol [4], our results indicate that the flux through the oxidative branch 

of PPP is almost negligible (Fig. 5-1). Thus, the majority of NADPH generated in cytosol 

would be produced in other reactions, such as the glycerol uptake pathway. Flux directionality 

in non-oxidative branch of PPP could only be determined for D = 0.05 h-1 within the 95% 

CI. In the other two conditions tested, estimated CI includes both reaction directions as 

feasible Fig. 5-1. This uncertainty on PPP was previously described and attributed to the 

operation of PPP reactions close to the thermodynamic equilibrium and thus bidirectionally 

feasible [2]. 

The resulting core model included several mitochondrial transporters that in addition 

act as redox shuttles [35]. Nevertheless, the malate/aspartate shuttle appears to be the major 

redox and C4 intermediate metabolite transporter Fig. 5-1, while the flux through other 

transporters is estimated to be very low, almost negligible.  

5.3.4. Impact of dilution rate on metabolic flux distribution 

Although the flux through the oxidative branch of PPP is very low, and could be 

considered as negligible, the upper bound of the CI of the relative flux through the oxidative 

part of PPP appears to increase with the growth rate. Hence, while cultivations at 0.05 are 

estimated to have a relative flux between 0 and 0.2, those at 0.10 and 0.16 h-1 showed a CI 

upper bound of 6.7 and 13.9 respectively. Thus, it would suggest that at higher growth rates 

the relative flux through the oxidative branch of PPP may be higher than in lower growth 

rates. Consequently, the upper bounds for the non-oxidative part of the PPP are also increased 
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at higher growth rates. As detailed in Chapter 4, the growth rate hypothesis (GRH) describes 

a positive correlation between the growth rate and the RNA and protein content [36–38]. 

Moreover, the analysis performed of the RNA content of cells growing on glycerol at different 

growth rates also depicts this positive correlation. Considering that major precursors for 

nucleic acids biosynthesis are generated in the pentose phosphate pathway [39], an additional 

demand of RNA would require an increase in PPP activity. Thus, the estimated increase in 

relative flux in the oxidative branch of PPP at high growth rates would supply the additional 

demand for RNA precursors. Therefore, an additional evidence for the GRH is provided that 

is in agreement with results described in the previous chapter. 

The split ratio between gluconeogenesis-PPP and lower glycolysis at the glyceraldehyde 

3-phosphate node is then altered with the growth rate. As a result of the increase in the relative 

flux though gluconeogenesis and PPP at higher growth rates, there is a reduction of relative 

flux through the lower glycolysis part and consequently to the TCA cycle (Fig. 5-1). Similar 

results were reported by Jordà et al. [4] in chemostat cultivations using mixtures of glycerol 

and methanol as carbon sources at low and high dilution rates (0.05 and 0.16 h-1). Among the 

different mixtures of glycerol and methanol tested, a comparison with the condition with 

lower methanol:glycerol ratio (20:80, w%) can be performed. Authors estimated invariant 

absolute fluxes through TCA cycle (citrate synthase reaction). However, the substrate uptake 

rate is much higher in the highest growth rate. Therefore, the relative flux through citrate 

synthase reaction to the substrate uptake rate is significantly reduced at the high growth rate 

which agrees with our results. In addition, the relative flux through the malate/-ketoglutarate 

transporter is correlated with the growth rate. The upper bound of the CI is increasing with 

the dilution rate, and the relative flux for D=0.16 h-1 would be the highest possible with 

respect to the other conditions. These results are also in agreement to those described by Solà 

et al. [1]. There, authors described that at higher growth rates the cytosolic-mitocondrial 

exchange flux of oxaloacetate was largely unidirectional from the cytosol to the mitochondria. 

Therefore, an increase in malate/-ketoglutarate exchange supports the observed 

unidirectional transport of oxaloacetate into the mitochondria, since malate is subsequently 

reduced to oxaloacetate in mitochondria. 
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Fig. 5-1. Metabolic flux distribution estimated for Pichia pastoris growing on glycerol at different dilution 
rates: 0.05 h-1 (top), 0.10 h-1 (middle) and 0.16 h-1 (bottom). Results are expressed as the 95% confidence interval 
of the estimated fluxes relative to the glycerol uptake rate in mmol glycerol · gDCW

-1 · h-1. Lower and upper bounds 
of CI correspond to the maximum and minimum CI bounds between the replicates. Flux directionality assumption 
was represented by arrows; therefore, negative fluxes describe opposite direction. 
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5.3.5. Redox cofactor regeneration and energy metabolism  

Redox cofactors were excluded from the metabolic flux calculation in order to avoid 

biased solutions. Consequently, estimated fluxes are derived exclusively from the adjustment 

of MIDs to the metabolic carbon stoichiometry with no interference of other additional 

metabolites. Once the metabolic fluxes were estimated, a calculation of both oxygen and 

cofactor regeneration was performed in order to check whether the estimated solution 

implicitly satisfies the electron balance. Initially, the estimated flux distribution solution 

predicted an excess of cytosolic NADH that could not be oxidised. Cells have redox shuttles 

that are able to transport NADH indirectly from cytosol to mitochondria [40]. One of these 

redox shuttles is the malate-aspartate shuttle (Fig. 5-2). In this particular case, despite being 

present in PpaCore, the exact specific activity of the mitochondrial shuttle cannot be calculated 

as no carbon rearrangement takes place. Consequently, only the net flux in the shuttle system 

can be calculated (i.e. difference between the cytosolic and mitochondrial flux). Therefore 

scaled fluxes in both compartments would result in identical flux distributions, but with 

additional amounts of NADH translocated to the mitochondria. With regards to the inability 

to predict scaled up fluxes in redox shuttles employing the currently used constrains, an 

additional flux fitting was performed by adding the cytosolic NAD(H) balance to the 

stoichiometric matrix for flux estimation. As a result, identical flux distributions were obtained 

for reactions other than the mitochondrial redox shuttle. Moreover, the increase in flux of 

mitochondrial redox shuttle in the new calculation corresponds exactly to the quantified 

excess of cytosolic NADH. Correspondingly, the theoretical oxygen consumption rates were 

calculated assuming that all the NADH excess is consumed in the ETC. Oxygen requirements 

included in the biomass equation were also taken into account and constrained in the ETC 

calculations. Thus, for each growth rate, the theoretically calculated oxygen requirements 

account over 97% of the experimentally determined oxygen consumption rates. Therefore, 

metabolic fluxes and calculated variables are highly consistent with the experimental data. 

With the global electron balance and metabolic flux distribution, maximal ATP 

generation rates were also calculated. Thus, as described in the 5.2.8 section in Materials and 

methods, growth associated and non-associated maintenance energy could be calculated. The 

y-intersection in the regression of maximal ATP generation rates with the growth rate is 1.22 

± 0.48 mmol ATP · gDCW
-1 · h-1 and corresponds to the NGAME. Despite the difference, this 
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value is comparable with the 2.51 reported in the previous chapter for cultivations on glycerol. 

In addition, GAME was estimated to be 88.8 ± 4.1 mmol ATP · gDCW
-1, that is higher but 

comparable to the 70.7 mmol ATP · gDCW
-1 calculated in the previous chapter, given that only 

3 different growth rates are available. 

It is worth to mention that the oxidative branch of PPP is usually considered the major 

source of cytosolic NADPH [11,41]. Nevertheless, the predicted flux through this pathway in 

this case is very low, almost negligible, similarly than previous results on mixtures of glycerol 

and methanol [4]. Therefore, Jordà et al. already suggested that alternative reactions must 

supply the required cytosolic NADPH, otherwise a NADPH imbalance was observed. 

GSMM contains all the feasible reactions producing NADPH in cytosol. As a result of 

automatic model reduction, PpaCore contained the NADPH-dependent glycerol uptake 

pathway, although previous core models proposed NADH-dependent glycerol uptake. 

Therefore, from our point of view it is sensible to assume that in glycerol-grown cells, the 

glycerol uptake pathway uses de NADPH-dependent variant and this way it would be the 

major source for cytosolic NADPH formation. This way it will provide sufficient NADPH 

to fulfil the global NADPH requirements. 

Fig. 5-2. The malate-aspartate shuttle, exchanging cytosolic NADH for mitochondrial 
NAD+ . Figure from [40] (reproduced with permission of Oxford University Press). 
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5.4. CONCLUSIONS 

In order to get a better insight on the impact of growth rate on cell physiology, we 

extended the analysis performed in Chapter 4 to an additional level of detail by determining 

the metabolic fluxes distribution. Thus, a series of chemostat cultivations were performed and 

showed comparable results to those in previous chapter, with a similar growth profile and 

comparable results for energetic parameters. 

The analysis of the labelling pattern in proteinogenic amino acids in steady state CLE 

allowed for the estimation of metabolic fluxes within an acceptable confidence range. 

Nevertheless, only net fluxes in bidirectional reactions can be determined in our case using 

this method, and alternative strategies such as non-stationary CLE should be used for 

identifying each of the directional fluxes [42]. The resulting metabolic flux distributions 

showed appreciable differences between the low and high growth rates. Furthermore, 

similarities in flux distribution found with previously obtained data [1] allowed for validating 

such data with alternative methods. In addition, results are comparable with 13C-MFA based 

on cultivations under mixtures of glycerol and methanol (80:20 w%) at high and low growth 

rates. Furthermore, the used methodology enabled to resolve additional parts of the network 

in comparison to the METAFoR analysis. Moreover, the observed variations in flux 

distribution are in agreement to the results in Chapter 4, in which evidences for the growth 

rate hypothesis are provided. Thus, the described increase in RNA fraction at high growth 

rates would correlate with higher relative fluxes through the pentose phosphate pathway, the 

precursor supply for ribonucleic acids. The estimated flux distributions were checked and 

validated for the electron balance. Calculations based on the NADH generation rates and the 

electron transport chain accurately predicted the experimental measured oxygen uptake rate. 

In this work, we provide an alternative central carbon metabolism derived from the 

genome-scale metabolic model of P. pastoris that successfully enables the determination of 

metabolic fluxes. Previously used metabolic models were developed from the available 

knowledge in biochemical pathways. Thus, central carbon metabolism could be 

underrepresented and relevant reactions could be missing or misrepresented. Therefore, the 

generation of core models from GSMMs ensures a proper representation of case-specific 

biomass equation. In addition, these core models may include additional reactions that would 
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be significant for metabolic flux estimation. The generated model obtained from the full 

genome-scale model included redox cofactor balances. Although cofactors were not used in 

metabolic flux adjustment, the obtained flux distribution satisfied electron and reduction 

equivalents balance. Finally, we demonstrate the feasibility of using core models obtained 

from the reduction of GSMM for 13C-MFA. On the one hand, these models contain extended 

information of the metabolic network than ‘classical’ core metabolic models do. And, on the 

other hand, these models are more suitable to be used than whole genome-scale models. 

GSMM contain a huge number of variables, degrees of freedom and alternatives that require 

large computational times and amounts of experimental information to be solved, which are 

unfeasible for routine 13C-MFA experiments. 
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APPENDIX III 

 

File S5-1. Contains the original (PpaGS), reduced (PpaPruned) and compressed model 

(PpaCore) in Cell Net Analyzer format [1]. In addition, the instructions followed for generating 

the reduced model are also included and described as in [2]. PpaGS model is derived from the 

original iMT1026 v3.0, but due to numerical tolerance constrains in model reduction, the 

‘cof_c’ metabolite was removed from the specific biomass equation describing growth on 

glycerol. 

Table S5-1. Reduced stoichiometric model used for 13C-MFA. Reactions in PpaCore that contained exclusively 
metabolites from the ‘excluded metabolites’ list, were omitted in the OpenFLUX model and subsequent metabolic 
flux adjustment. The following representation of the reactions and atom transition are in OpenFLUX [3] format. 
‘RxnID’ corresponds to the ID of each reaction; ‘rxnEq’ refers to the equation of the reaction; ‘rxnCTrans’ 
represents the carbon atom transition of each reaction; ‘rxnType’ is the reaction classification according to 
OpenFLUX specifications [3]. 

RxnID rxnEq rxnCTrans rxnType 

v1 glyc_e = glyc_c  abc = abc F 
v2 glyc_c + atp_c + 1 nadp_c =  dhap_c + 2 h_c + 

adp_c + 1 nadph_c 
abc + X + X =cba + X + X + X  F 

v3 g6p_c = f6p_c  abcdef = abcdef FR 
v4 f6p_c = g6p_c abcdef = abcdef R 
v5 f6p_c + atp_c = fdp_c + h_c + adp_c abcdef + X = abcdef + X + X  FR 
v6 fdp_c + h2o_c = f6p_c + pi_c  abcdef + X = abcdef + X  R 
v7 fdp_c = dhap_c + g3p_c  abcdef = cba + def  FR 
v8 dhap_c + g3p_c = fdp_c abc + def = cbadef  R 
v9 dhap_c = g3p_c  abc = cba FR 
v10 g3p_c = dhap_c abc = cba R 
v11 g3p_c + pi_c + nad_c = 13dpg_c + h_c + nadh_c abc + X + X = abc + X + X F 
v12 13dpg_c + adp_c = 3pg_c + atp_c abc + X = abc + X F 
v13 3pg_c = 2pg_c  abc = abc F 
v14 2pg_c = pep_c + h2o_c abc = abc + X F 
v15 pep_c + h_c + adp_c = pyr_c + atp_c abc + X + X= abc + X  F 
v16 pyr_c + hco3_c + atp_c = oaa_c + h_c + pi_c + 

adp_c  
abc + d + X = abcd + X + X + X F 

v17 pyr_c + 1 h_c = pyr_m + 1 h_m abc + X = abc + X F 
v18 1 g6p_c + 1 h2o_c + nadp_c + nadp_c  = co2_c + 

ru5p_D_c + h_c + h_c + nadph_c + nadph_c 
abcdef + X + X + X = a + bcdef + X 
+ X + X + X 

F 

v19 ru5p_D_c = xu5p_D_c  abcde = abcde FR 
v20 xu5p_D_c = ru5p_D_c abcde = abcde R 
v21 r5p_c = ru5p_D_c  abcde = abcde FR 
v22 ru5p_D_c = r5p_c  abcde = abcde R 
v23 xu5p_D_c + e4p_c = f6p_c + g3p_c  abcde + fghi = abfghi + cde FR 
v24 f6p_c + g3p_c = xu5p_D_c + e4p_c abfghi + cde = abcde + fghi  R 
v25 r5p_c + xu5p_D_c = g3p_c + s7p_c  abcde + fghij = cde + abfghij FR 
v26 g3p_c + s7p_c = r5p_c + xu5p_D_c cde + abfghij = abcde + fghij R 
v27 g3p_c + s7p_c = f6p_c + e4p_c  abc + defghij = defabc + ghij FR 
v28 f6p_c + e4p_c = g3p_c + s7p_c defabc + ghij = abc + defghij R 
v29 pyr_m + h_m + thmpp_m = co2_m + 

2_Hydroxyethyl_ThPP_m  
abc + X + X = a + bc F 
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v30 1 2_Hydroxyethyl_ThPP_m + coa_m + 1 lpam_m = 
accoa_m + dhlam_m + 1 thmpp_m 

ab + X + X = ab + X + X F 

v31 accoa_m + oaa_m + h2o_m= cit_m + h_m + coa_m ab + cdef + X= fedbac + X + X  F 
v32 cit_m = icit_m  abcdef = abcdef F 
v33 icit_m + nad_m = co2_m + akg_m + nadh_m  abcdef + X = f + abcde + X F 
v34 akg_m + h_m + lpam_m = co2_m + sdhlam_m  abcde + X + X = a + bcde F 
v35 sdhlam_m + coa_m = succoa_m + dhlam_m  abcd + X = abcd + X F 
v36 succoa_m + pi_m + adp_m = succ_m + atp_m + 

coa_m 
abcd + X + X = abcd + X + X F 

v37 succ_m + fad_m = 0.5 fum_m + 0.5 fum_m + 
fadh2_m 

abcd + X = 0.5 abcd + 0.5 dcba + X F 

v38 fum_m + h2o_m = mal_L_m  abcd + X = abcd F 
v39 mal_L_m + nad_m= oaa_m + h_m + nadh_m abcd + X = abcd + X + X F 
v40 mal_L_m + nadp_m = pyr_m + co2_m + nadph_m  abcd + X = abc + d + X  F 
v41 accoa_x + oaa_x + h2o_x  = cit_x + coa_x + h_x ab + cdef + X = fedbac + X + X  F 
v42 1 cit_x + succ_x = succ_c + 1 icit_x  abcdef + ghij = ghij + abcdef F 
v43 icit_x = glx_x + 0.5 succ_x + 0.5 succ_x abcdef = ab + 0.5 edcf + 0.5 fcde F 
v44 accoa_x + glx_x + h2o_x = mal_L_x + h_x + coa_x ab + cd + X = cdba + X + X F 
v45 oaa_c + h_c + nadh_c = mal_L_c + nad_c abcd + X + X = abcd + X  F 
v46 ac_x + coa_x + atp_x= accoa_x + ppi_x + amp_x  ab + X + X = ab + X + X F 
v47 oaa_c + h_c = oaa_m + h_m  abcd + X = abcd + X F 
v48 mal_L_c + succ_m = mal_L_m + succ_c  abcd + efgh = abcd + efgh FR 
v49 mal_L_m + succ_c = mal_L_c + succ_m  abcd + efgh = abcd + efgh R 
v50 mal_L_c + akg_m = akg_c + mal_L_m  abcd + efghi = efghi + abcd F 
v51 cit_c = cit_x  abcdef = abcdef FR 
v52 cit_x = cit_c abcdef = abcdef R 
v53 mal_L_x = mal_L_c  abcd = abcd FR 
v54 mal_L_c = mal_L_x abcd = abcd R 
v55 glu_L_c + asp_L_m = glu_L_m + asp_L_c  abcde + fghi = abcde + fghi F 
v56 glu_L_m + oaa_m = akg_m + asp_L_m abcde + fghi = abcde + fghi FR 
v57 akg_m + asp_L_m = glu_L_m + oaa_m  abcde + fghi = abcde + fghi R 
v58 mal_L_m + cit_c = mal_L_c + cit_m  abcd + efghij = abcd + efghij FR 
v59 mal_L_c + cit_m = mal_L_m + cit_c abcd + efghij = abcd + efghij R 
v60 oaa_c + mal_L_x = mal_L_c + oaa_x  abcd + efgh = efgh + abcd FR 
v61 mal_L_c + oaa_x = oaa_c + mal_L_x abcd + efgh = efgh + abcd R 
v62 akg_c + asp_L_c = glu_L_c + oaa_c  abcde + fghi = abcde + fghi FR 
v63 glu_L_c + oaa_c = akg_c + asp_L_c abcde + fghi = abcde + fghi R 
v64 co2_m = co2_c  a = a F 
v65 co2_c + h2o_c = hco3_c + h_c  a + X = a + X FR 
v66 hco3_c + h_c = co2_c + h2o_c a + X = a + X R 
v67 co2_c = co2_e a = a F 
v68 352.2735 h2o_c + 0.82747 h2o_m + 2.4843 pyr_m 

+ 3.331 2_Hydroxyethyl_ThPP_m + 16.665 akg_c + 
1.0393 o2_c + 400.9972 atp_c + 1.0273 atp_m + 
8.3136 nad_c + 2.0324 nad_m + 2.7626 nadph_m + 
40.1303 nadph_c + 1.7889 r5p_c + 1.4687 pyr_c + 
2.4637 pep_c + 5.4843 accoa_m + 0.22139 ppi_x + 
0.22139 amp_x + 0.58824 q6_m + 1.5463 oaa_x + 
0.22139 h_x + 5.6454 hco3_c + 1.2319 cit_m + 
7.0936 asp_L_c + 31.3156 nh4_e + 1.27 pi_e + 
2.2397 f6p_c + 0.085146 dhap_c + 8.8503 g6p_c + 
3.4521 3pg_c + 1.2319 e4p_c + 0.22139 so4_e = 
328.7142 h_c + 419.6639 pi_c + 0.61675 h_m + 
2.2716 pi_m + 8.929 co2_c + 0.22139 h2o_x + 
3.331 thmpp_m + 4.2415 co2_m + 7.0936 glu_L_c 
+ 400.9972 adp_c + 1.0273 adp_m + 8.3136 
nadh_c + 40.1303 nadp_c + 2.7626 nadp_m + 
2.0324 nadh_m + 5.4843 coa_m + 2.364 mal_L_c + 
0.22139 atp_x + 0.22139 ac_x + 1.874 akg_m + 
0.58824 q6h2_m + 1.5463 mal_L_x + 32.8139 h_e 
+ 0.20062 g3p_c + 1.2319 cit_c + 5.0482 
biomass_c  

 
B 

v69 biomass_c = biomass_e  
 

B 
v70 pyr_m = ALA abc = abc S 
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v71 SER + THF = GLY + MTHF abc + X = ab + c S 
v72 pyr_m + pyr_m = KVAL + CO2 abc + def = abefc + d S 
v73 KVAL = VAL abcde = abcde S 
v74 KVAL + accoa_m = CO2 + LEU abcde + fg = a + fgbcde S 
v75 pyr_m + oaa_c = ILE + CO2 abc + defg = debfgc + a S 
v76 akg_m = PRO abcde = abcde S 
v77 oaa_c = THR abcd = abcd S 
v78 3pg_c =SER abc = abc S 
v79 oaa_c = ASX abcd = abcd SF 
v80 oaa_m = ASX abcd = abcd SF 
v81 pep_c + e4p_c = SKM abc + defg = abcdefg S 
v82 SKM + pep_c = CHOR abcdefg + hij = abcdefghij S 
v83 CHOR = CO2 + PHE abcdefghij = a + hijgfedcb S 
v84 akg_m + accoa_m = LYS + CO2 abcde + fg = fgbcde + a S 
v85 akg_c = GLX abcde = abcde SF 
v86 akg_m = GLX abcde = abcde SF 

    
    

## excludedMetabolites ## simulatedMDVs 
# atp_c # ALA#011 

# nadp_c # ALA#111 
# h_c # GLY#01 
# adp_c # GLY#11 
# nadph_c # VAL#01111 
# h2o_c # VAL#11000 
# pi_c # LEU#011111 
# nad_c # ILE#011111 
# nadh_c # PRO#01111 
# h_m # ASX#0100 
# thmpp_m # ASX#0111 
# coa_m # ASX#1111 
# lpam_m # GLX#01111 
# dhlam_m # GLX#11000 
# h2o_m # GLX#11111 
# nadp_m # PHE#011111111 
# nadph_m # PHE#110000000 
# pi_m # LYS#011111 
# adp_m   
# atp_m ## inputSubstrates 
# fad_m # glyc_e 

# fadh2_m   
# nad_m   
# nadh_m   
# h2o_x   
# coa_x   
# h_x   
# atp_x   
# ppi_x   
# amp_x   
# h2o_e   
# o2_e   
# o2_m   
# o2_c   
# q6h2_m   
# q6_m   
# h_i   
# mlthf_c   
# methf_c   
# glyc_e   
# nh4_e   
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# pi_e   
# so4_e   
# co2_e   
# h_e   
# biomass_e   

 

Table S5-2. Corrected MIDs for each experimental replicate and corresponding analysed peaks from each 
corresponding derivatisation method. MID of those isotopomers analysed by both derivatised methods were 
averaged. ECF ion cluster and DMFDMA ion cluster columns represent the m = 0 ion analysed for each 

isotopomer according to [4]. 

 0.05A 0.05B 0.10A 0.10B 0.16A 0.16B 
ECF ion 
cluster 

DMFDMA ion 
cluster 

ALA#011 

0.753 0.745 0.731 0.751 0.748 0.753 

116 99 0.235 0.245 0.256 0.246 0.249 0.235 

0.012 0.010 0.013 0.003 0.006 0.012 

ALA#111 

0.725 0.706 0.700 0.725 0.702 0.700 

- 158 
0.121 0.138 0.133 0.122 0.119 0.128 

0.150 0.154 0.161 0.150 0.167 0.165 

0.004 0.002 0.006 0.004 0.012 0.008 

GLY#01 
0.968 0.972 0.977 0.975 0.969 0.971 

- 85 
0.032 0.028 0.023 0.025 0.031 0.029 

GLY#11 

0.780 0.772 0.781 0.775 0.771 0.762 

175 144 0.215 0.229 0.220 0.220 0.222 0.215 

0.005 0.000 0.000 0.005 0.008 0.022 

VAL#01111 

0.628 0.612 0.616 0.620 0.613 0.626 

144 127 

0.320 0.331 0.330 0.329 0.335 0.325 

0.050 0.051 0.051 0.048 0.047 0.047 

0.002 0.004 0.003 0.003 0.004 0.002 

0.000 0.002 0.000 0.000 0.001 0.000 

VAL#11000 

0.793 0.774 0.779 0.775 0.771 0.772 

- 143 0.203 0.216 0.220 0.212 0.223 0.217 

0.004 0.010 0.001 0.014 0.006 0.011 

LEU#011111 

0.530 0.514 0.504 0.515 0.511 0.515 

158 - 

0.369 0.380 0.385 0.381 0.376 0.380 

0.091 0.096 0.100 0.095 0.111 0.094 

0.009 0.010 0.010 0.009 0.002 0.010 

0.000 0.000 0.000 0.000 0.000 0.001 

0.000 0.000 0.000 0.000 0.000 0.000 

ILE#011111 

0.575 0.559 0.563 0.562 0.573 0.570 

158 - 

0.314 0.326 0.322 0.321 0.327 0.325 

0.096 0.099 0.099 0.101 0.095 0.095 

0.014 0.015 0.016 0.016 0.005 0.009 

0.000 0.001 0.000 0.000 0.000 0.002 

0.000 0.000 0.000 0.000 0.000 0.000 

PRO#01111 

0.648 0.630 0.637 0.637 0.618 0.622 

142 - 

0.302 0.316 0.310 0.311 0.327 0.316 

0.048 0.051 0.050 0.049 0.053 0.056 

0.002 0.002 0.002 0.002 0.002 0.005 

0.000 0.000 0.000 0.000 0.000 0.000 

ASX#0100 
0.894 0.884 0.886 0.876 0.888 0.898 

 115 
0.106 0.116 0.114 0.124 0.112 0.102 

ASX#0111 

0.702 0.691 0.690 0.697 0.682 0.699 

188 - 
0.227 0.236 0.235 0.230 0.244 0.231 

0.069 0.071 0.073 0.071 0.072 0.068 

0.002 0.003 0.003 0.002 0.002 0.002 
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ASX#1111 

0.631 0.616 0.630 0.599 0.626 0.638 

- 216 

0.242 0.243 0.216 0.221 0.211 0.221 

0.106 0.122 0.125 0.130 0.130 0.121 

0.019 0.020 0.021 0.032 0.031 0.019 

0.001 0.000 0.009 0.018 0.001 0.001 

GLX#01111 

0.584 0.565 0.565 0.790 0.579 0.589 

202 - 

0.355 0.351 0.367 0.179 0.357 0.350 

0.058 0.087 0.065 0.030 0.060 0.058 

0.003 0.004 0.003 0.003 0.004 0.003 

0.000 0.000 0.000 0.000 0.000 0.000 

GLX#11000 

0.736 0.732 0.734 0.734 0.726 0.745 

- 143 0.244 0.247 0.249 0.249 0.259 0.248 

0.021 0.021 0.017 0.016 0.015 0.007 

GLX#11111 

0.499 0.487 0.503 0.517 0.492 0.515 

- 230 

0.360 0.366 0.354 0.349 0.346 0.352 

0.120 0.123 0.122 0.113 0.128 0.113 

0.019 0.022 0.019 0.019 0.032 0.015 

0.002 0.002 0.002 0.002 0.002 0.002 

0.000 0.000 0.000 0.000 0.000 0.003 

PHE#01111111 

0.422 0.399 0.411 0.416 0.398 0.427 

192 175 

0.305 0.322 0.314 0.312 0.319 0.308 

0.172 0.177 0.178 0.177 0.179 0.172 

0.077 0.095 0.078 0.076 0.078 0.076 

0.018 0.006 0.017 0.017 0.020 0.016 

0.005 0.001 0.002 0.002 0.004 0.002 

0.000 0.000 0.000 0.000 0.001 0.000 

0.000 0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 0.000 

PHE#1100000 

0.740 0.747 0.754 0.741 0.756 0.753 

- 143 0.225 0.232 0.231 0.229 0.228 0.230 

0.035 0.021 0.015 0.030 0.016 0.016 

LYS#01111 

0.533 0.512 0.508 0.512 0.481 0.516 

156 - 

0.374 0.376 0.375 0.377 0.389 0.370 

0.085 0.099 0.101 0.099 0.117 0.102 

0.008 0.012 0.014 0.012 0.015 0.011 

0.000 0.001 0.002 0.001 0.000 0.001 

0.001 0.000 0.000 0.000 0.000 0.000 
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6. Redox engineering by ectopic overexpression of 

NADH kinase in recombinant Pichia pastoris  

6.1. INTRODUCTION 

Despite P. pastoris has been extensively used for recombinant production, there are still 

some limitations to overcome to further increase productivities. High-level expression and 

secretion of heterologous proteins has been reported to cause a metabolic burden that could 

significantly impact on energy metabolism and alter the central carbon metabolism flux 

distribution [1,2]. Producing strains may not cope with the additional demand of ATP, 

NADPH and precursors for de novo biosynthesis of amino acids, thereby leading to a 

suboptimal cell fitness and reduced production yields [3]. In addition, the folding and 

secretion processes of complex proteins is very resource-intensive, particularly of NADPH, 

which is required for disulphide bound formation and alleviating ER oxidative stress [4]. Thus, 

overproduction of recombinant proteins would result in imbalanced redox cofactor and, 

specifically, a reduction in NADPH availability. Such alterations in redox cofactor balance 

have a strong impact on cell metabolism [5]. Therefore, strain engineering strategies targeting 

redox metabolism have been successfully applied to improve E. coli [6,7], S. cerevisiae [8,9] and 

P. pastoris [10] strains for a range of different applications. 

NADPH availability is tightly related to biomass yields and recombinant protein 

production yields [11]. Driouch et al. [12] reported that Aspergillus niger strains overproducing 

recombinant proteins show higher fluxes through the oxidative branch of pentose phosphate 

pathway, which is the main cytosolic NADPH generation pathway. Also,  Nocon et al. [13] 

overexpressed genes coding for enzymes of the oxidative branch of pentose phosphate 

pathway, obtaining higher productivities in heterologous protein secretion. Indeed, a 

preceding study identified several metabolic engineering targets for improving recombinant 

protein production using a genome-scale metabolic model [14]. Interestingly, about the 50% 

of the identified targets pointed towards NADPH supply reactions [15].  
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Based on the key metabolic role of NADPH on protein synthesis and secretion and 

previous studies pointing at the positive effects that its increased supply appears to have on 

recombinant protein, we have investigated the impact of the overexpression of a heterologous 

NADH kinase on a P. pastoris strain producing an antibody fragment (Fab). Previous studies 

in our research group reported an increase of Fab specific productivity under reduced oxygen 

availability conditions [16]. In addition, the reduced oxygen availability for electron transport 

chain leads to higher NADH/NAD+ ratios under hypoxic conditions [17].  This is 

concomitant with a shift to a respiro-fermentative metabolism, as reflected in the generation 

of ethanol and arabitol for cofactor reoxidation [18]. In this context, we postulate that the 

NADH excess found under hypoxic conditions could be a potential source of electrons for 

NADPH production and, therefore, the effects of the NADH kinase overexpression might 

be enhanced under hypoxia in comparison to the reference normoxic condition. In order to 

test our hypothesis, redox-engineered strains were grown on glycerol and glucose under 

normoxic conditions as well as on glucose under hypoxic conditions. Overall, we aimed to 

investigate the combined effect of a process strategy (hypoxic conditions) and metabolic 

engineering strategy to improve recombinant protein production. 

Moreover, we have used the genome-scale metabolic model to evaluate the 

experimental physiological datasets obtained in chemostat cultivations and assisting the 

metabolic interpretation of the observed macroscopic changes. 
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6.2. MATERIALS AND METHODS 

6.2.1. Strain generation  

A Pichia pastoris X-33-derived strain expressing multiple copies of the genes encoding 

the human antigen-binding fragment (Fab) 2F5 under the transcriptional control of the 

constitutive GAP promoter and with the α-mating factor secretion signal sequence from 

Saccharomyces cerevisiae [19] was used in this study. 

S. cerevisiae POS5 gene, encoding for the mitochondrial NADH kinase Pos5p [20,21] 

was codon optimised for heterologous expression in P. pastoris and synthetised by Geneart 

(ThermoFischer Scientific), cloned into a pPUZZLE vector [22] under the control of GAP 

promoter, thereby generating vector pPUZZLE_mPOS5 (Fig. 6-1). Similarly, an analogous 

construction, pPUZZLE_cPOS5, was constructed expressing a 5’-truncated POS5 excluding 

the first 48 bp coding for the N-terminal 16 amino acids, allowing for cytosolic Pos5p 

localisation. Escherichia coli DH5α was used for plasmid propagation. 

P. pastoris X-33/2F5 strain transformation and recombinant clone isolation were 

performed as by described [22]. The presence of insert was confirmed by colony PCR [23] 

using the primer pairs described in  Table S6-1. 

Fig. 6-1. Plasmid maps for pPUZZLE_mPOS5 and pPUZZLE_cPOS5. In red, the restriction enzymes 
used: SbfI and SfiI for cloning mPOS5 and cPOS5; AscI for plasmid linearization; BglII for plasmid ligation 
verification. pPUZZLE contains the kanMX gene encoding for kanamycin resistance (E. coli) and geneticin 

G418 resistance (P. pastoris). 
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6.2.2. Clone screening at small scale 

A set of 12 recombinant clones for each strain construct were screened for growth and 

Fab 2F5 production in baffled shake flasks with glucose minimal medium as described by 

Baumann et al. [22]. 

6.2.3. Chemostat cultivations 

Two independent series of carbon-limited chemostat cultivations were performed for 

each strain in three different growing conditions: using glycerol as carbon source, glucose 

under normoxic conditions (100% air in the inlet gas composition) and glucose under hypoxic 

conditions (25:75 of air:N2 in the inlet gas composition). Cultivations were performed at a 

working volume of 1-L in a 2-L bench-top Biostat B (B. Braun Biotech International) 

bioreactor. Operational conditions were set to 25°C, 700 rpm, 1 vvm inlet gas flow, 0.2 bar 

overpressure, 0.1 h-1 dilution rate (D) and pH 5.0 by addition of 15% (v/v) NH4. Samples 

were taken at 3rd, 4th and 5th residence times for cell density monitoring and ELISA, HPLC 

and DCW analysis. The off-gases were cooled dawn in a condenser at 4ºC and further 

desiccated in two silica gel columns. The off-gas O2 and CO2 concentrations were measured 

by BCP-O2 (zirconium dioxide) and BCP-CO2 (infrared) BlueSens Gas Analyser (Herten, 

Germany), respectively.  

For reactor inoculation, strains were cultivated in 1-L baffled Erlenmeyer flask 

containing 150 mL YPG broth (1% w/v yeast extract, 2% w/v peptone, 1% w/v glycerol) 

and antibiotic (100 µg·L-1 zeocin for control strain or 500 µg·L-1 geneticin G418 for NADH 

kinase recombinant clones) at an optical density (OD600) between 0.15 and 0.30. Pre-cultures 

were incubated at 25°C under 130 rpm for 16-24 h.  

Batch medium content was previously described [16]. Briefly, it contained: 40 g·L-1 

glycerol, 1.8 g·L-1 citric acid, 12.6 g·L-1 (NH4)2HPO4, 0.5 g·L-1 MgSO4.7H2O, 0.9 g·L-1 KCl, 

0.02 g·L-1 CaCl2.2H2O, 4.6 mL·L-1 trace salts stock solution, 2 mL·L-1 of biotin solution (0.2 

g·L-1) and 250 µL·L-1 of Glanapon 2000 antifoam (Bussetti, Vienna). Chemostat medium was 

also adapted from [16]. Briefly, media contained: 50 g·L-1 carbon source – glycerol, glucose –

, 0.92 g·L-1 monohydrate citric acid; 4.35 g·L-1 (NH4)2HPO4; 0.65 g·L-1 MgSO4.7H20; 1.7 g·L-

1 KCl; 0,01 g·L-1 CaCl2.2H20; 1.6 mL trace salt solution, 1 mL biotin solution (0,2 g·L-1) and 
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200 µL·L-1 Glanapon antifoam. Trace salt solution was composed of: 6.0 g·L-1 CuSO4.5H2O; 

0.08 g·L-1 NaI; 3.36 g·L-1 MnSO4.H2O; 0.2 g·L-1 Na2MoO4.2H2O; 0.02 g·L-1 H3BO3; 0.82 g·L-

1 CoCl2.6H2O; 20 g·L-1 ZnCl2; 65 g·L-1 FeSO4.7H2O and 5.0 mL H2SO4 (95-98% w/w). Media 

pH was set to 5.0 with 6 N HCl.  

6.2.4. Analytical methods 

Biomass concentration 

Cell density was monitored by optical density in a DR3900 spectrophotometer (Hach, 

Bizcaia, Spain) at 600 nm. Dry cell weight (DCW) was measured by gravimetric methods. 

From 2 to 10 mL of sample were filtered in Glass Fibre Prefilters (Merk Millipore), previously 

pre-weighted after drying at 105°C for 24 h. Each filter was washed twice with 10 mL of 

distillated water; died at 105°C for 24 h, cooled in desiccator and weighted.  

Fermentation products analysis 

Citric acid, glucose, glycerol, arabitol, succinic acid, acetic acid and ethanol were 

analyzed by HPLC in an UltiMate 3000 Liquid Chromatography Systems (Dionex) using an 

ICSep ICE-COREGEL 87H3 (Transgenomic) ion exchange column and a Waters 2410 

(Waters) refraction index detector. 6 mM sulphuric acid was used as continuous phase at 0.5 

mL/min flow and 20 μL sample injection volume. Data were analysed in CROMELEON 

software (Dionex). 

Quantification of Fab 

Fab 2F5 was quantified by ELISA in 96-well Immuno Plates (Nunc, Thermo Scientific) 

as described by Gasser and co-workers [19]. Briefly, plates were subjected to an overnight 

pre-coating of Fab specific Anti-Human IgG (I5260, Sigma) primary antibody in PBS buffer 

(1:1000). Then, plates were washed three times with PBS 1% Tween 20 and samples and Fab 

standard (Bethyl Inc.) were diluted in PBS buffer containing 10% (w/v) BSA (Sigma) and 

0.1% (v/v) Tween 80. Plates were incubated for 2 h, washed again with PBS 1% Tween 20 

three times and incubated for 1 h after addition of Anti-Human Kappa Light Chains (bound)-

Alkaline Phosphatase (Sigma) secondary antibody. Plates were washed with PBS 1% Tween 

20 three times, treated with pNPP phosphatase substrate (Sigma) and the absorbance was 

measured at 405 nm using a Multiskan™ FC Microplate reader (Thermo Scientific).  
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ddPCR (droplet digital PCR) analysis for recombinant POS5 gene copy 

determination  

Genomic DNA was purified by Wizard Genomic DNA Purification Kit (Promega), 

according to manufacturer instructions, and quantified in NanoDrop 2000 

Spectrophotometer (Thermo Scientific). 0,5 µg DNA were digested by EcoRI and BamHI 

FastDigest Enzymes (Thermo Scientific) to result in DNA fragments lower than 5 kb and 

purified with Wizard® SV Gel and PCR Clean-Up System (Promega). Reaction conditions 

(1X Supermix ddPCR TaqMan, 300 nM of each primer, 200 nM of each probe and 0.02 

ng·μL-1 digested genomic DNA) and operational conditions were performed as suggested by 

Biorad and optimised to P. pastoris by [24]. The annealing temperature was set to 57°C, after 

temperature gradient determination. Primers used in for ddPCR are described in (Table S6-1). 

NADPH/NADP+ ratio determination 

Samples for NADPH and NADP+ quantification were taken and rapidly quenched 

with cold 60% v/v methanol [25,26]. The solutions were centrifuged and washed twice with 

quenching solution as described in Ortmayr et al. [25] (4000 g, -10C, 10 min in a Centrifuge 

5804 R, Eppendorf). Finally, pellets were stored at -80C. NADPH and NADP+ 

concentrations were determined using EnzyChromTM NADP+/NADPH Assay Kit (BioAssay 

Systems) and the optical densities were measured by means of a Multiskan™ FC Microplate 

reader (Thermo Scientific) at a wavelength of 595 nm. 

6.2.5. Statistical analysis 

Chemostat cultivation data was checked for consistency and standard reconciliation 

procedures were applied [27]. In all the cultivation sets, statistical consistency test was passed 

with a confidence level of 95%. Consequently, there was no evidence of gross measurement 

errors. A statistical comparison of the macroscopic growth profiles of the different strains 

was performed by the Microsoft Excel 2-tailed Student’s t-Test. 

6.2.6. Metabolic Modelling 

iMT1026 v3.0 metabolic model of P. pastoris [28] (developed in Chapter 4) was used in 

the COBRA Toolbox v2.0.6 under Matlab 2014 (Mathworks, USA) with SBML toolbox 
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v4.1.0 [29] and libSBML library v5.12.0 [30]. The prediction of flux redistribution due to Fab 

overexpression was performed employing Flux Scanning based on Enforced Objective 

Function (FSEOF) [31] by maximizing the biomass production at a constrained range of Fab 

secretion (0 – 0.12 mg·gDCW
-1·h-1). Particularly, redox cofactor turnover rates were calculated 

using the flux-sum analysis [32] on each resulting flux distribution. A cytosolic NADH kinase 

reaction was incorporated into the model (not the mitochondrial reaction, iMT1026 v3.0 

already contained the endogenous NADH kinase reaction). The perturbation of the NADH 

kinase activity on flux distribution was calculated with Minimization of Metabolic Adjustment 

(MOMA) [33] performing a series of simulations enforcing a minimal flux through the NADH 

kinase reaction (cytosolic or mitochondrial) constraining the uptake of carbon source to the 

control strain experimental values in the case of normoxia (glycerol and glucose), and 

additionally constraining the oxygen uptake rate for the simulations in hypoxic conditions. 

The resulting flux distributions at different NADH kinase reaction fluxes (0 – 2 mmol·gDCW
-

1·h-1) were compared against the control strain (X-33/2F5). 

6.3. RESULTS 

6.3.1. Cytosolic and mitochondrial overexpression of POS5 and its effect on 

recombinant Fab secretion in shake flask cultures 

The codon optimised POS5 gene, either containing or not its native mitochondrial 

signal peptide, was integrated into a P. pastoris X-33 strain expressing a 2F5 antibody fragment 

under the control of the glycolytic GAP promoter, aiming for the co-overxpression of NADH 

kinase in the mitochondria (mPOS5) or in the cytosol (cPOS5), respectively. Individual clones 

of each co-overexpressing strain were verified for integration of mPOS5 or cPOS5 prior to 

the screening in baffled shake flasks. 

Series of twelve verified clones overexpressing one of the POS5 forms were used in a 

first small scale screening in shake flasks in triplicate experiments. Product titters and biomass 

were measured by ELISA and dry cell weight quantification, respectively to check the effect 

of co-expression of mPOS5 or cPOS5 on recombinant Fab secretion. The average Fab yields 

were normalised to those obtained from the reference strain X-33/2F5. The results of these 

preliminary screening experiments are shown in Fig. 6-2A. The overall picture of the co-
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expression of the two POS5 gene forms demonstrated a largely unchanged protein secretion 

capacity. cPOS5 clones showed two distinct populations: one with the same behaviour of the 

control strain (FC = 1.07 ± 0.21) and another with overproducing clones (FC = 2.34 ± 0.52). 

A plausible explanation for the observed clonal variation would be that isolated transformants 

differ in the dosage of the co-expressed cPOS5 gene. In order to test this hypothesis, the 

relative recombinant POS5 gene dosage was determined by droplet digital PCR (ddPCR) for 

a representative clone population, one giving a clear increased Fab yield and the other no 

significant effect on product yield compared to the reference strain. 

6.3.2. Physiological characterization of the co-overexpressing POS5 strains 

growing in chemostat cultures 

Strains X-33/FAB (reference), mPOS5 (mitochondrial expression of POS5), cPOS5 

and 2cPOS5 (cytosolic expression with one and two copies of POS5 respectively) were 

cultivated in carbon-limited chemostat cultures using glycerol or glucose as carbon source as 

well as two different oxygen availability conditions (normoxia and hypoxia) when using 

glucose to study the effects of cofactor perturbation on cell physiology and Fab production 

in different environmental conditions. Since Pos5p catalyses a NADPH-generating reaction, 

it may alter redox cofactor balance. In order to check whether POS5 overexpression has an 

impact on the redox cofactor balance, the NADPH/NADP+ ratios were measured and 

calculated for all strains under the tested growth conditions (Fig. 6-3). The reference strain 

X-33/2F5 showed the lowest ratios in all the three conditions. Strains co-overexpressing 

mPOS5 and cPOS5 had comparable NADPH/NADP+ values to the reference strain when 
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Fig. 6-2. Representation of the results of clone screening and selection. (A) Specific Fab production was 
measured and normalised to the reference strain X-33/2F5; (B) A representative clone of each population 

was analysed for determining POS5 gene copy number. 
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growing on glycerol, whereas this value was 2-fold higher in the 2cPOS5 strain. Co-

overexpression of POS5 had a higher impact in cells growing on glucose, as shown in Fig. 

6-3B and Fig. 6-3C. Both cPOS5 and mPOS5 strains showed a moderate increase in 

NADPH/NADP+ ratios of about a 20% and 30% compared to the reference strain, 

respectively. As observed in glycerol-grown cells, the 2cPOS5 strain had a higher fold change 

in the NADPH/NADP+ ratio during growth in glucose. When the oxygen supply was 

reduced, a similar response pattern was observed, but NADPH/NADP+ ratios were 

comparatively higher for all four strains Fig. 6-3C. Such increase in the NADPH/NADP+ 

ratio observed in hypoxic conditions may be a consequence of the excess or accumulation of 

NADH observed under these conditions [17], which is generally converted to ethanol or other 

by-products such as arabitol [16,34]. Thus, an increased availability of NADH would allow 

higher conversions to NADPH and consequently increasing NADPH/NADP+ ratio. 

Fig. 6-3. Representation of NADPH/NADP+ molar ratios in all the strains for growth on glicerol, glucose 
in normoxic conditions and hypoxic conditions. 

These cofactor balance alterations due to POS5 overexpression had a further impact 

on the physiological growth profile of the mutant strains (). Although such impact was not 

significant in all cases, some tendencies can be appreciated (Fig. 6-5). The specific oxygen 

uptake rate (qO2) showed a tendency to increase with the overexpression of POS5 in all growth 

conditions for both cytosolic- and mitochondrial-directed expression. Notably, 2cPOS5 

generally showed higher qO2
 than the other strains. These results would reflect an increased 

activity of the respiratory chain due to the additional demand of ATP that is consumed in the 

NADH kinase reaction, as discussed in section ‘6.4.3. In silico biological interpretation’ and 

‘6.5.3 Energy metabolism and by-product secretion’. Similarly, the specific CO2 production 

rate (qCO2) increased with the NADH kinase activity. Specifically, qCO2 was between 5% and 

20% higher for all redox-engineered strains in normoxic conditions, showing the 2cPOS5 
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strain the highest qCO2 in glucose. However, while cPOS5 and 2cPOS5 strains had the 

tendency of increasing qCO2 both in normoxic and hypoxic conditions, mPOS5 showed 

reduced qCO2 compared to the reference strain (Fig. 6-5). The variation in CO2 specific 

production rates would be at expenses of biomass yields (YXS), which show the opposite 

pattern: a statistically significant reduction for 2cPOS5 and an increase in mPOS5 in hypoxic 

conditions (Table S6-2). 

As expected, by-product formation was detected only under respiro-fermentative 

conditions attained under hypoxia. Notably, redox-engineered strains had some significant 

alterations in the production profiles of these metabolites (Fig. 6-5C). In particular, while 

both cPOS5 and 2cPOS5 showed similar or higher arabitol and ethanol specific production 

rates, ethanol formation decreased in mPOS5 compared to the reference strain.  

Glycerol - NormoxiaGlucose - Normoxia Glucose - Hypoxia

FC
 q

P
,F

ab

0.0

0.5

1.0

1.5

2.0

Arabitol Ethanol

q P
 ar

ab
ito

l, 
et

ha
no

l (
m

m
ol

 · 
g D

C
W

-1
·h

-1
)

0.0

0.2

0.4

0.6

0.8

1.0

Glycerol - NormoxiaGlucose - Normoxia Glucose - Hypoxia

q C
O

2(m
m

ol
 · 

g D
C

W
-1

·h
-1

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Glycerol - NormoxiaGlucose - Normoxia Glucose - Hypoxia

q O
2(m

m
ol

 · 
g D

C
W

-1
·h

-1
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0A B

C D

mPOS5 

X33_Fab cPOS5 2cPOS5 mPOS5 
Fig. 6-5. Main macroscopic growth parameters for all strains and chemostat cultivation conditions. 
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Fig. 6-4. Graphical representation of the predicted metabolic flux redistribution when 
overexpressing the NADH kinase in the cytosol (A-C) or mitochondria (D-F) growing in glycerol 
(A, D), glucose under normoxic conditions (B, E) and glucose under hypoxia (C, F).   
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POS5 overexpression also had a clear impact on Fab production (Fig. 6-5D). When 

growing on glycerol, only 2cPOS5 improved significantly Fab productivity (qP,Fab) with respect 

to the reference strain. However, all three redox-engineered strains showed significantly 

enhanced qP,Fab when growing on glucose under normoxic conditions, being 2cPOS5 the 

strain with the best performance (1.55-fold increase compared to the reference strain). In 

oxygen limiting conditions, although mPOS5 showed a decrease in productivity, the cytosolic 

POS5 overexpressing strains improved up to 1.8-fold Fab production. 

6.3.3. In silico biological interpretation 

One of the applications of genome-scale metabolic models (GSMM) is to assist 

interpretation of biological data to reinforce or discard hypothesis. We used the iMT1026 v3.0 

genome-scale metabolic model for P. pastoris (Chapter 4), that is, the third version of its 

consensus model [28].  

The effect of Fab overproduction on flux distribution was tested by performing a series 

of simulations successively increasing Fab production constrains (employing FSEOF). 

NADPH turnover ratios were calculated for the resulting predicted fluxes. A clear correlation 

between Fab production and this cofactor turnover was obtained due to the increased demand 

of amino acid biosynthesis for Fab production (Fig. S6-1). 

The metabolic impact of POS5 overexpression was also modelled by constraining 

successively increasing fluxes through the specific NADH kinase reaction (cytosolic or 

mitochondrial), and using MOMA for assessing the new distribution. As a result, metabolic 

fluxes through some pathways are predicted to be up or downshifted concomitantly with an 

increased flux through NADH kinase reaction. Mitochondrial- or cytosolic-directed Pos5p 

overexpression impacts differently on metabolic flux distribution, as it is affecting different 

compartmentalised NAD(P)H pools. For example, cytosolic Pos5p overexpression supplies 

an important fraction of NADPH under glucose growing conditions, (Fig. 6-4B, C) and, 

consequently, the flux through the oxidative branch of the pentose phosphate pathway 

decreased. In contrast, mitochondrial NADPH kinase overexpression would not be able to 

supply enough cytosolic NADPH and therefore the flux of the NADPH generating reactions 

of the pentose phosphate pathway is enhanced (Fig. 6-4D, E). Another important predicted 
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difference between cytosolic and mitochondrial Pos5p overexpression is the increased activity 

of TCA cycle when the cytosolic NADPH kinase is overexpressed, while mitochondrial 

overexpression is predicted to cause a decreased flux through this pathway. However, some 

predicted changes are common between both cPOS5 and mPOS5 strains: in both cases, there 

is an increase of the activity of the oxidative phosphorylation that supplies the additional ATP 

demanded in the NADPH kinase reaction. The increased electron transfer to the respiratory 

chain is predicted to be through NADH oxidation in mPOS5 but, for cPOS5, succinate 

oxidation to fumarate would be the additional electron supply. Overall, an increase of oxygen 

consumption, CO2 production, by-product formation as well as Fab production is predicted 

for all the conditions tested in simulations for the cPOS5 strain. Similarly, an increase of 

qO2and qCO2 during growth on glycerol and glucose-normoxia is predicted for mPOS5, 

whereas no significant changes are predicted in terms of by-product formation or Fab 

production for this strain. Conversely, mitochondrial overexpression of NADH kinase leads 

to a reduction in CO2, ethanol and Fab production in hypoxic conditions, coherent with the 

experimentally observed behaviour. 

6.4. DISCUSSION 

6.4.1. Increased NADPH availability enhances recombinant protein production 

Several studies have addressed the impact of heterologous protein expression on 

metabolism and cell physiology of P. pastoris [1] and how environmental conditions can 

modulate the product yields [18,35]. Heyland et al. [11] postulated and Nocon et al. [13,14] 

and provided strong envidences that increasing flux through the PPP allows supplying 

additional NADPH, thereby compensating the extra demand caused by biosynthetic 

processes involved in heterologous protein production. In fact, our in silico simulations 

indicate an increase of Fab production correlates with higher NADPH turnover rates. Redox-

engineered strains are able to generate additional NADPH compared to the reference X-

33/2F5 strain, resulting in increased NADPH/NADP+ ratios. In addition, increased POS5 

gene dosage has a clear effect, likely yielding higher NADH kinase enzymatic activities and, 

subsequently, higher NADPH/NADP+ ratios in the 2cPOS5 strain. Furthermore, NADPH 

availability appears to be positively correlated to Fab productivity. The 2cPOS5 strain has the 
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highest NADPH/NADP+ ratios and hence enhanced specific Fab production rates under all 

tested conditions. Higher NADPH/NADP+ ratios may reflect more NADPH available for 

cellular processes, not only biosynthesis of recombinant protein, but also for its potential use 

in protein folding and ER oxidative stress response processes [12]. Therefore, although POS5 

overexpression leads to a drain in cell energy resources (ATP consumption), it ensures non-

limiting supply NADPH, which has been demonstrated to allow for increased recombinant 

protein production yields [13]. Our in silico calculations show increased Fab secretion  when 

NADH kinase is overexpressed in the cytosol. This may indicate that Fab biosynthesis could 

compensate the cofactor perturbation (boosted NADPH levels) by draining such NADPH 

excess, thereby restoring the redox cofactor balance. 

6.4.2. Metabolic impact of POS5 overexpression 

Our results strongly suggest that Pos5p NADH kinase overexpression perturbs 

cofactor balance. This is further reflected in the differences observed in growth profiles of 

POS5 overexpressing strains compared to the reference strain, pointing to an impact in the 

distribution of fluxes through the cell’s metabolic network. Previous studies in other yeast and 

fungi have reported that the overexpression of NADH kinases has a strong effect on 

metabolic flux distribution [36–38], as also predicted by the simulations performed with 

iMT1026 v3.0. Noteworthy, the impermeability of organelle membranes to NAD(P)H leads 

to cofactor reoxidation in the same compartment where they are reduced [39]. Thus, different 

effects of the cofactor perturbation are expected in cPOS5 and mPOS5 strains. POS5 

overexpression provides a  source of NADPH in addition to the oxidative branch of the 

pentose phosphate pathway (PPP), which is the main cytosolic NADPH-generating pathway 

in yeast [40]. As extra NADPH is supplied by the NADH kinase, flux through the oxidative 

branch of the PPP is predicted to decrease, as observed when POS5 is cytosollicaly 

overexpressed in S. cerevisiae [37]. Indeed, in S. cerevisiae NADPH inhibits ZWF1, the first step 

in oxidative pentose phosphate pathway [41]. Therefore, the increased levels of NADPH in 

cPOS5 (and 2cPOS5), would be coherent with the predicted reduction of flux through the 

oxidative branch of the PPP. Conversely, mitochondrial overexpression of POS5 would result 

in an increased flux through the PPP. Despite the production of additional mitochondrial 

NADPH, the impermeability of mitochondrial membrane to redox cofactors would force 
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cytosolic NADPH generation pathways to supply the required NADPH for compartment-

specific biosynthetic processes. The correlation between the flux through the oxidative branch 

of the pentose phosphate pathway and biomass yields has been widely reported [40,42]. 

Accordingly, the predicted flux increase and decrease through the PPP as a consequence of 

mPOS5 and cPOS5 overexpression, respectively, are in agreement with the biomass yields 

observed in chemostat cultivations: an increase of YXS yield in mPOS5 and a reduction in 

cPOS5 strains (Table S6-1). Similarly, in other species, while mitochondrial POS5 

overexpressing strains show an increase in YXS [5,36,38], the cytosolic overexpression of the 

NADH kinase results in reduced biomass yields. It is noteworthy to mention that the scaled 

reduced costs of Fab production over biomass generation are narrow (1.01  10-4) and, 

therefore, differences in biomass yields are mainly consequence of POS5 overexpression and 

the concomitant redistribution of metabolic fluxes, rather than increased Fab yields. 

6.4.3. Energy metabolism and by-product secretion 

Redox cofactor balance and energy metabolism are very closely linked in the respiratory 

chain. Thus, a perturbation in redox cofactor levels would lead a metabolic flux redistribution 

to restore the energy supply capacity of the cells. In addition to the redox cofactor imbalance 

created by a surplus of NADPH, NADH kinase is ATP and NADH consuming. According 

to the performed simulations, higher fluxes in oxidative phosphorylation would compensate 

this ATP drain. These predictions are also in agreement with the increased oxygen 

consumption rates of the mutant strains during the chemostat cultivations. Nevertheless, in 

the cPOS5 strain, part of the cytosolic NADH generated is consumed and cannot be neither 

used for biosynthetic purposes nor transported by mitochondrial redox shuttles to further 

deliver its electrons into the respiratory chain. Despite the higher TCA cycle activity and 

consequent increase in mitochondrial NADH generation, it would not provide enough 

reducing power for the electron transport chain and a reduction in the NADH electron 

transfer as well as an increase in alternative electron delivery mechanisms (i.e. succinate 

oxidation to fumarate) are predicted for cPOS5. Since the NADH demand is located in 

mitochondria in mPOS5, the compensation of the drain would rely on flux readjustments in 

mitochondrially-located reactions. In this case, an activation of the malic enzyme as well as an 

increase in the anaplerotic feed of TCA cycle intermediates would supply the additional 
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NADH enabling increased electron transference to the respiratory chain. As in S. cerevisiae and 

A. nidulans, we do not observe a reduction in biomass yields [36,37]. 

When growing in hypoxic conditions, the additional supply of ATP required by Pos5p 

is limited due to the restricted oxygen availability that constrains the respiratory chain. We 

predict that when cPOS5 cells grow under hypoxia, the ATP drain caused by Pos5p activity 

cannot be restored at all, leading to a decrease of cell fitness and increased hypoxic effects. 

Accordingly, experimental data shows an increase of by-product formation when cPOS5 is 

overexpressed. Conversely, despite the oxygen limitations, mPOS5 would be able to 

compensate the drained ATP by supplying additional NADH to the respiratory chain and 

increasing ATP production. This strain, similarly to A. nidulans, is able to overcome the ATP 

drain and increase biomass yields, even under hypoxic conditions [36]. Although P. pastoris is 

commonly classified as Crabtree negative yeast, it can produce certain amount of ethanol and 

other by-products [42], particularly under hypoxic conditions [18]. By-product formation is a 

consequence of limitations in carbon catabolisation capacity in TCA cycle and oxidative 

phosphorylation that leads to an excess of reduced NAD(P)H that the cell is not able to 

reoxidise by the respirative pathway [42,43]. mPOS5 showed a decrease in ethanol secretion 

due to the reduction in available mitochondrial NADH, while arabitol production remained 

comparable to the reference X-33/2F5 strain. The cPOS5 strains showed increased arabitol 

and ethanol production both in experimental data and simulations. In hypoxic conditions, 

increased NADH kinase levels would convert the excess of NADH to NADPH (as reflected 

in the experimentally determined increased NADPH/NADP+ ratio); this NADPH surplus 

would be subsequently reoxidised through the generation of arabitol. In addition, simulations 

indicate an increase in TCA cycle flux leading to enhanced NADH generation. Due to the 

reduced capacity of oxidative phosphorylation caused by oxygen restriction, the additional 

NADH generated has to be reoxidised forming ethanol, coherent with the experimental 

observation. 

6.5. CONCLUSIONS 

In this study, the S. cerevisiae POS5 NADH kinase was overexpressed in P. pastoris, either 

directed to the cytosol or to the mitochondria. The physiological characterisation of these 
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strains in chemostat cultivations showed a clear effect of POS5 overexpression on redox 

cofactor balance. Indeed, POS5 overexpression increased NADPH/NADP+ ratio in all the 

strains and conditions tested. Furthermore, the strain containing two copies of POS5 

integrated in the cell’s genome (2cPOS5) showed the highest increase in NADPH/NADP+ 

ratios in comparison to the reference strain. This strongly supports a positive correlation 

between POS5 gene dosage and NADPH availability. Moreover, this correlation is also 

appreciable when comparing the strain performance: 2cPOS5 showed the greatest fold change 

increase in Fab productivity. These results are also in agreement with the performed 

simulations, in which we predict a positive correlation between NADPH turnover and Fab 

production as well as increased Fab productivities when flux through the cytosolic NADH 

kinase reaction is increased.  

The differentiated behaviour of mPOS5 and cPOS5 strains indicates the complexity of 

cell metabolism with organelle membranes impermeable to redox cofactors and highlights the 

importance of directing enzymes to the appropriate compartment when designing metabolic 

engineering strategies.  

As a result of POS5 overexpression, metabolic fluxes through the central carbon 

metabolism redistribute. Notably, redox engineered strains showed higher oxygen 

requirements concomitant with increased oxidative phosphorylation in order to replenish the 

ATP pools drained in the reaction catalysed by the NADH kinase. Consequently, these strains, 

particularly cPOS5, are more sensitive to O2 (i.e. show a lower threshold for the onset of 

respirofermentative metabolism) and showed more extreme/drastic hypoxic effects 

(increased by-product formation). In fact, the effects of NADH kinase overexpression are 

boosted under hypoxic conditions, and redox-engineered strains show higher 

NADPH/NADP+ ratios and Fab productivities. Both in silico flux distributions and 

macroscopic growth parameters agreed in increased demand of oxygen, CO2 and by-product 

generation profiles, as well as Fab productivities, revealing iMT1026 v3.0 as a useful tool for 

assessing consistently the interpretation of the cultivation results.  

Overall, we demonstrated the impact of redox cofactor perturbation in cell metabolism 

and provided further evidence of NADPH metabolism as key cell engineering target for 

improved recombinant protein production.  



6. Redox engineering by ectopic overexpression of a NADH kinase  in recombinant P. pastoris 

 
142   

  

6.6. REFERENCES 

1  Jordà, J. et al. (2012) Metabolic flux profiling of recombinant 
protein secreting Pichia pastoris growing on glucose:methanol 
mixtures. Microb. Cell Fact. 11, 57 

2  Glick, B.R. (1995) Metabolic load and heterologous gene 
expression. Biotechnol. Adv. 13, 247–261 

3  Wu, G. et al. (2016) Metabolic Burden: Cornerstones in Synthetic 
Biology and Metabolic Engineering Applications. Trends 
Biotechnol. 34, 652–664 

4  Delic, M. et al. (2012) Oxidative protein folding and unfolded 
protein response elicit differing redox regulation in endoplasmic 
reticulum and cytosol of yeast. Free Radic. Biol. Med. 52, 2000–12 

5  Hou, J. et al. (2009) Metabolic impact of redox cofactor 
perturbations in Saccharomyces cerevisiae. Metab. Eng. 11, 253–61 

6  Lee, H.C. et al. (2010) High NADPH/NADP+ ratio improves 
thymidine production by a metabolically engineered Escherichia 
coli strain. J. Biotechnol. 149, 24–32 

7  Siedler, S. et al. (2011) Increased NADPH availability in 
Escherichia coli: Improvement of the product per glucose ratio in 
reductive whole-cell biotransformation. Appl. Microbiol. Biotechnol. 
92, 929–937 

8  Kim, S. and Hahn, J.S. (2015) Efficient production of 2,3-
butanediol in Saccharomyces cerevisiae by eliminating ethanol 
and glycerol production and redox rebalancing. Metab. Eng. 31, 
94–101 

9  Geertman, J.M.A. et al. (2006) Physiological and genetic 
engineering of cytosolic redox metabolism in Saccharomyces 
cerevisiae for improved glycerol production. Metab. Eng. 8, 532–
542 

10  Krainer, F.W. et al. (2012) Recombinant protein expression in 
Pichia pastoris strains with an engineered methanol utilization 
pathway. Microb. Cell Fact. 11, 22 

11  Heyland, J. et al. (2010) Quantitative physiology of Pichia pastoris 
during glucose-limited high-cell density fed-batch cultivation for 
recombinant protein production. Biotechnol. Bioeng. 107, 357–68 

12  Driouch, H. et al. (2012) Integration of in vivo and in silico 
metabolic fluxes for improvement of recombinant protein 
production. Metab. Eng. 14, 47–58 

13  Nocon, J. et al. (2016) Increasing pentose phosphate pathway 
flux enhances recombinant protein production in Pichia pastoris. 
Appl. Microbiol. Biotechnol. 100, 5955–5963 

14  Nocon, J. et al. (2014) Model based engineering of Pichia pastoris 
central metabolism enhances recombinant protein production. 
Metab. Eng. 24, 129–138 

15  Mattanovich, D. et al. (2016) Industrial Microorganisms: Pichia 
pastoris. In Industrial Biotechnology pp. 687–714, Wiley-VCH Verlag 
GmbH & Co. KGaA 

16  Baumann, K. et al. (2008) Hypoxic fed-batch cultivation of Pichia 
pastoris increases specific and volumetric productivity of 
recombinant proteins. Biotechnol. Bioeng. 100, 177–183 

17  Carnicer, M. (2012) , Systematic metabolic analysis of 
recombinant Pichia pastoris under different oxygen conditions. , 
Universitat Autònoma de Barcelona 

18  Baumann, K. et al. (2010) A multi-level study of recombinant 
Pichia pastoris in different oxygen conditions. BMC Syst. Biol. 4, 
141 

19  Gasser, B. et al. (2006) Engineering of Pichia pastoris for improved 
production of antibody fragments. Biotechnol. Bioeng. 94, 353–361 

20  Outten, C.E. and Culotta, V.C. (2003) A novel NADH kinase is 
the mitochondrial source of NADPH in Saccharomyces cerevisiae. 
EMBO J. 22, 2015–24 

21  Strand, M.K. et al. (2003) POS5 Gene of Saccharomyces cerevisiae 
Encodes a Mitochondrial NADH Kinase Required for Stability 
of Mitochondrial DNA. Eukaryot. Cell 2, 809–820 

22  Baumann, K. et al. (2011) Protein trafficking, ergosterol 
biosynthesis and membrane physics impact recombinant protein 
secretion in Pichia pastoris. Microb. Cell Fact. 10, 93 

23  Murray Lab, T. 01-Dec-(2012) , Colony PCR. . [Online]. 
Available: 
http://labs.mcb.harvard.edu/murray/colony_pcr.html 

24  Cámara, E. et al. (2016) Droplet digital PCR-aided screening and 

characterization of Pichia pastoris multiple gene copy strains. 
Biotechnol. Bioeng. 113, 1542–1551 

25  Ortmayr, K. et al. (2014) Sample preparation workflow for the 
liquid chromatography tandem mass spectrometry based analysis 
of nicotinamide adenine dinucleotide phosphate cofactors in 
yeast. J. Sep. Sci. 37, 2185–2191 

26  Carnicer, M. et al. (2012) Development of quantitative 
metabolomics for Pichia pastoris. Metabolomics 8, 284–298 

27  Noorman, H.J. et al. (2000) Classification, error detection, and 
reconciliation of process information in complex biochemical 
systems. Biotechnol. Bioeng. 49, 364–376 

28  Tomàs-Gamisans, M. et al. (2016) Integration and Validation of 
the Genome-Scale Metabolic Models of Pichia pastoris: A 
Comprehensive Update of Protein Glycosylation Pathways, 
Lipid and Energy Metabolism. PLoS One 11, e0148031 

29  Keating, S.M. et al. (2006) SBMLToolbox: An SBML toolbox for 
MATLAB users. Bioinformatics 22, 1275–1277 

30  Bornstein, B.J. et al. (2008) LibSBML: An API library for SBML. 
Bioinformatics 24, 880–881 

31  Choi, H.S. et al. (2010) In Silico Identification of Gene 
Amplification Targets for Improvement of Lycopene Production. 
Appl. Environ. Microbiol. 76, 3097–3105 

32  Chung, B. and Lee, D.-Y. (2009) Flux-sum analysis: a metabolite-
centric approach for understanding the metabolic network. BMC 
Syst. Biol. 3, 117 

33  Segrè, D. et al. (2002) Analysis of optimality in natural and 
perturbed metabolic networks. Proc. Natl. Acad. Sci. U. S. A. 99, 
15112–15117 

34  Carnicer, M. et al. (2009) Macromolecular and elemental 
composition analysis and extracellular metabolite balances of 
Pichia pastoris growing at different oxygen levels. Microb. Cell Fact. 
8, 65 

35  Dragosits, M. et al. (2009) The effect of temperature on the 
proteome of recombinant Pichia pastoris. J. Proteome Res. 8, 1380–
1392 

36  Panagiotou, G. et al. (2009) Overexpression of a novel 
endogenous NADH kinase in Aspergillus nidulans enhances 
growth. Metab. Eng. 11, 31–39 

37  Hou, J. et al. (2009) Impact of overexpressing NADH kinase on 
glucose and xylose metabolism in recombinant xylose-utilizing 
Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82, 909–19 

38  Qiao, K. et al. (2017) Lipid production in Yarrowia lipolytica is 
maximized by engineering cytosolic redox metabolism. Nat. 
Biotechnol. 35,  

39  Bakker, B.M. et al. (2001) Stoichiometry and compartmentation 
of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. 
Rev. 25, 15–37 

40  Blank, L.M. et al. (2005) Metabolic-flux and network analysis in 
fourteen hemiascomycetous yeasts. FEMS Yeast Res. 5, 545–58 

41  Llobell, A. et al. (1988) Glutathione reductase directly mediates 
the stimulation of yeast glucose-6-phosphate dehydrogenase by 
GSSG. Biochem. J. 249, 293–296 

42  Heyland, J. et al. (2011) Carbon metabolism limits recombinant 
protein production in Pichia pastoris. Biotechnol. Bioeng. 108, 1942–
53 

43  Vemuri, G.N. et al. (2007) Increasing NADH oxidation reduces 
overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. 
Sci. U. S. A. 104, 2402–7 



Developing strategies for systems metabolic engineering of Pichia pastoris  

 
  143 

 

APPENDIX IV 

 Table S6-1. List of primers used in this study 

Primer name Sequence (5’-3’) Tm (°C) 

POS5-F a,b ATCCGCGCCTGCAGGAATGTTTGTTAGAGTTAAGTTGAACAAGCCAGTTAA 67 

POS5_cyt-F a,b ATCCGCGCCTGCAGGAATAATGTCCACTTTGGACTCCCATTCCTTGAA 68 

POS5-R a,b ATGACTAGGCCGAGGCGGCCTTAGTCGTTGTCAGTCTGTCTC 68 

POS5_int-R a,b AGCAACACCGTCAGCAGTAG  

POS5_amp-F c GGAGTGTCACTTGAAGAA 38.6 

POS5_amp-R c CGTCAGCAGTAGTTCTAG 36.6 

POS5 probe c ACTCCAACTCCTCCATCGTTACTCA (5’: 6-Fam / 3’: BHQ-1) 57.1 

a Primer used for cloning POS5 into pPUZZLE. 
b Primer used for clone verification 
c Primer used for gene copy number determination 
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Fig. S6-1. Representation of NADPH pool turnover in relation to Fab productivity. A series of FSEOF 
simulations were performed by increasing the Fab productivity. A sum-flux analysis of NADPH was performed 
for each simulation and resulting NADPH turnovers are plotted into the graph. 
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Table S6-2 
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7. General conclusions 

The high interest in P. pastoris as a platform for recombinant protein and metabolite 

production has boosted the body of knowledge of its physiology over the past 10 years. 

Previously to this study, systematic work at different levels has been performed for a better 

understanding of this cell factory. With the rise of systems biology genome-scale metabolic 

models have become indispensable tools for rational strain engineering and contextualising 

biological data. Indeed, three GSMMs of P. pastoris were available at the onset of this study. 

Nevertheless, such models showed some weaknesses and discrepancies in certain metabolic 

pathways. Consequently, the need for developing a reliable model was of utmost relevance 

(or essential) for further development of systems metabolic engineering strategies for P. 

pastoris.  

Therefore, a consensus GSMM has been developed, integrating and upgrading the 

previously available models. Following the validation of the model in a broader range of 

conditions than in prior models, we have demonstrated that the new model, iMT1026, 

shows improved capabilities and accuracy in predictions of physiological parameters 

compared to previous models. 

Aiming at extending the applicability range of iMT1026 in biotechnologically relevant 

conditions, novel physiological datasets of cells growing on methanol and glycerol as sole 

carbon sources have been generated in a systematic and comprehensive manner. Notably, a 

detailed characterisation of macromolecular composition of biomass grown on such carbon 

sources has been performed. Several differences have been identified when comparing 

biomass compositions of cells grown on glycerol or methanol. One of the major spotted 

differences has been the higher protein content under methanolic growth conditions, 

probably due to the high expression levels of the methanol metabolic machinery. In 

addition, the lipid profile was strongly affected by the carbon source, in agreement with 

previous studies. Overall, these analyses have enabled the formulation of new carbon 
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source-specific biomass equations. Furthermore, energetic parameters have been estimated 

for first time and using different methods, for P. pastoris growth on glycerol and methanol, 

and compared to those obtained for glucose-grown cells. As a result, the iMT1026 v3.0 

upgrading can describe cells grown in glycerol and methanol more accurately than the 

previous version. 

Due to the potentiality of glycerol as carbon source for industrial biotechnological 

processes, a 13C-based metabolic flux analysis (13C-MFA) of P. pastoris growing on this 

carbon source has been performed for first time. Despite central carbon metabolism models 

have been widely used for 13C-MFA, they are typically directly derived from the generic 

knowledge of biochemical pathways of model organisms (e.g. S. cerevisiae) and, therefore, 

these models could misrepresent the core metabolism of our organism of interest. In this 

study, iMT1026 v3.0 has been systematically reduced to a 77-reaction core model and 

subsequently used for 13C-MFA. Notably, the estimated metabolic flux distributions in 

glycerol-grown cells are in agreement with pioneering 13C-isotopic labelling experiments of 

our group in which alternative analytical techniques were employed for METAFoR analysis. 

Notably, flux distributions have been validated in terms of redox cofactor and electron 

balances, showing a great accuracy in the calculated oxygen uptake rate when compared to 

the experimentally measured values. Energetic parameter estimation using the calculated 

fluxes has also provided similar values to those estimated using the complete iMT1026 v3.0.  

Moreover, the setup of 13C-MFA for growth on glycerol has allowed performing a 

systematic study of the impact of the specific growth rate on the central carbon metabolism 

of cells growing on this carbon source. As a result, some significant differences have been 

appreciated in metabolic flux profiles. Specifically, an increase in the flux through the 

pentose phosphate pathway has been observed at higher growth rates. Since precursors for 

nucleotide biosynthesis are generated in the PPP, these results are in agreement with the 

growth rate hypothesis, which postulates a correlation between RNA content and growth 

rate Indeed, biomass compositional analyses also showed this correlation, providing further 

evidences for the growth rate hypothesis. 

Finally, we have further proved the capabilities of this genome-scale metabolic model 

in another application, i.e for assisting in the interpretation of biological data. We have been 
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able to introduce a redox cofactor perturbation by overexpressing a recombinant NADH 

kinase to a Fab producing strain. As a result, increased Fab productivities have been 

obtained, especially when process engineering strategies have been also combined (i.e. 

cultivation under hypoxic conditions). These results strongly support NADPH regeneration 

rates as a key factor for metabolic engineering of P. pastoris for improved recombinant 

protein production. Furthermore, experimental datasets and their subsequent in silico 

biological interpretation have allowed us to postulate a metabolic interpretation for the 

observed macroscopic physiological changes, thereby revealing iMT1026 v3.0 as a useful 

tool for assessing consistently the interpretation of both genetic and environmental 

perturbations/modifications of our biological system. 

Overall, the present study provides a consensus genome-scale metabolic model for P. 

pastoris with extended capabilities and greater accuracy than previous models, thus providing 

an improved tool for systems metabolic engineering of P. pastoris. Furthermore, its use in 

two different applications demonstrates its reliability, consistency and potential capabilities. 
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