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A B S T R A C T

This paper provides synthesis methods for large-scale semantic image segmentation datasets of agricultural
scenes with the objective to bridge the gap between state-of-the art computer vision performance and that of
computer vision in the agricultural robotics domain. We propose a novel methodology to generate renders of
random meshes of plants based on empirical measurements, including the automated generation per-pixel class
and depth labels for multiple plant parts. A running example is given of Capsicum annuum (sweet or bell pepper)
in a high-tech greenhouse. A synthetic dataset of 10,500 images was rendered through Blender, using scenes
with 42 procedurally generated plant models with randomised plant parameters. These parameters were based
on 21 empirically measured plant properties at 115 positions on 15 plant stems. Fruit models were obtained by
3D scanning and plant part textures were gathered photographically. As reference dataset for modelling and
evaluate segmentation performance, 750 empirical images of 50 plants were collected in a greenhouse from
multiple angles and distances using image acquisition hardware of a sweet pepper harvest robot prototype. We
hypothesised high similarity between synthetic images and empirical images, which we showed by analysing
and comparing both sets qualitatively and quantitatively. The sets and models are publicly released with the
intention to allow performance comparisons between agricultural computer vision methods, to obtain feedback
for modelling improvements and to gain further validations on usability of synthetic bootstrapping and empirical
fine-tuning. Finally, we provide a brief perspective on our hypothesis that related synthetic dataset boot-
strapping and empirical fine-tuning can be used for improved learning.

1. Introduction

1.1. Research aim

In recent years the need of robotisation in agriculture has been
growing notably to keep up with the increasing demand of productivity
and quality of food production whilst decreasing the pressure on re-
sources required (Bac et al., 2014). Although mechanisation has been
an ongoing human effort for centuries, the next leap forward to achieve
these higher goals is by adding a degree of artificial intelligence to
harvesting and crop management systems to enable increased se-
lectivity, precision and robustness.

We identified one of the main current bottlenecks for introducing
robotics in agriculture as the computer vision performance. In the past
decade, the general field of computer vision made significant progress
in object localisation and consecutively was successfully applied in
many domains. However, this performance has not been matched for

sensing solutions in agriculture (Gongal et al., 2015; Nasir et al., 2012).
We argue that one of the main reasons is the absence of detailed and
large annotated agricultural datasets that current state-of-the-art
methods require, but are infeasible to obtain manually.

Accordingly, to contribute to solving this bottleneck and move the
field forward, we provide a method for artificial agricultural data
synthesis. We hypothesise it is possible with this approach to generate
synthetic images highly similar to empirical images. Specifically, this
paper introduces a method for the generation of large-scale semantic
segmentation datasets on a plant-part level of realistic agriculture
scenes, including automated per-pixel class and depth labeling. One
purpose of such synthetic dataset would be to bootstrap or pre-train
computer vision models, which are fine-tuned thereafter on a smaller
empirical image dataset (Dittrich et al., 2014; Kondaveeti, 2016). Our
methodology is designed to be extended to other plants, but for re-
ference a running example is given for a Capsicum annuum species, also
known as sweet (or bell) pepper. An empirical photographic dataset
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was gathered and partially annotated to (i) use as reference for mod-
elling and (ii) to verify the performance of any computer vision method
that used the synthetic data for bootstrapping and applied to the em-
pirical images.

In the following sections we report on the methodology for the data
synthesis, with the requirement of similarity with the empirical dataset.
The method starts with the modelling of a structural plant model using
empirical plant parameter measurements and images. This model was
used for generating randomised mesh instances of plants, which were
imported into render software to mimic scenes of a commercial agri-
cultural environment. To synthesise color and per-pixel label and depth
data, these scenes were rendered with similar characteristics as the
hardware used in a harvesting robot prototype.

In the results section, examples are given for both the synthetic and
empirical datasets. Although subjectively these sets are comparable, the
sets were analysed for differences in distributions of colors per class to
verify our first hypothesis of similarity. To test our second hypothesis
that the datasets can be used for improved learning, 5 experiments were
performed using a basic semantic segmentation deep learning network.
However, the scope of this paper was primarily on the synthetic image
generation methodology. Therefore we discussed the machine learning
part briefly to give future perspective on our follow-up companion
paper. In that paper we will more extensively discuss the impact of
synthetic data for semantic segmentation of plant parts and the re-
quirements. At the end of this paper we discussed the challenges and
limitations of this approach for realistic data generation and its po-
tential use for computer vision. We conclude the paper by making the
used scripts, models and datasets publicly available. The objective of
this release is to (i) enable comparison of state-of-the-art computer vi-
sion methods for this domain, (ii) further validate the approach of
synthetic modelling and empirical fine-tuning and (iii) gain community
feedback on modelling deficiencies and improvements.

1.2. Research context

In the domain of agriculture, progress in image classification per-
formance has been lagging behind state-of-the-art results in other do-
mains (Gongal et al., 2015; Nasir et al., 2012). Although some progress
in high level object detection or localisation have lately been accom-
plished (Sa et al., 2016), lower level detailed object part recognition in
scenes reflecting realistic structural object complexity, remains un-
solved. The challenges of computer vision in the agricultural domain
come from the high amount of variation within object classes and
changing environment conditions, throughout the day and seasons (e.g.
light, growth stages). To overcome this variability, large annotated and
detailed datasets are needed for capture all different situations. Al-
though collecting image data can be automated (van der Heijden et al.,
2012), it remains required and time consuming to manually annotate.

Synthetic image dataset generation methods are emerging as an
important tool in the computer vision community to automatically
create annotated training data for bootstrapping machine learning
models (Dittrich et al., 2014; Kondaveeti, 2016). Consecutively, such
models can be fine-tuned by and applied to empirical image data. Re-
cent examples showing improved object recognition performance can
be found in multiple domains, e.g. urban scene segmentation (Ros et al.,
2016), 3D human pose estimation from depth images (Shotton et al.,
2013) and multi-modal magnetic resonance imaging for pathological
cases (Cordier et al., 2016).

Previous work on methods for plant architecture modelling have
been also successful for synthetic plant image generation. For example,
OpenAlea (Pradal et al., 2015, 2017) is able to generate anatomical and
functional plant models and furthermore can be used to simulate
images with a virtual camera. Other approaches such as ElonSim
(Benoit et al., 2014) provide a simulator of plant growth, specifically
root systems, and a simulator of the image acquisition to generate
synthetic images including ground truth. The simulator uses plant and

camera parameters. Furthermore, recently a method was created for
automatic model based synthetic dataset generation for crop and weeds
detection on a per-pixel level (Cicco et al., 2016), though no plant parts
could be differentiated.

The required level of labeling detail depends on the task and in turn
determines how much annotation effort is needed. One approach is to
only label images on a high level using a single class or a few keywords
per image in order to classify an image globally or give a shortlist of
objects in the image (Everingham et al., 2015). This can be partially
automated through combined image and label retrieval using context
from search engines (Fergus et al., 2005). For other datasets like Im-
ageNet or PASCAL VOC, manual annotation was performed using
crowd sourcing (Everingham et al., 2010; Russell et al., 2008). A second
approach is to weakly label the data with bounding boxes around ob-
jects or their parts (Papandreou et al., 2015). However, some computer
vision tasks require a per pixel level labeling of the image, also known
as semantic segmentation. Specifically for agriculture, per-pixel seg-
mentations are required for localisation in robotics for harvesting (Bac
et al., 2013), disease detection (Polder et al., 2014) and phenotyping
(van der Heijden et al., 2012). For example in harvest robotics, obstacle
maps on the plant part level resolution improves successful motion
planning (Bac et al., 2014, 2016). Registered depth images can provide
an additional dimension for motion control (Barth et al., 2016).

With the advent of state-of-the-art machine learning methods for
computer vision, most notably convolutional neural networks for image
classification and segmentation, the training dataset size requirement
has been further increased (Najafabadi et al., 2015). Such learning
models can have up to 1011 free parameters (Dean et al., 2012), which
depend upon a large number of distinct data samples for the optimi-
sation to converge properly without overfitting to occur (Trask et al.,
2015). Without access to large datasets, domains such as agriculture
previously used traditional computer vision methods using manual
feature crafting (Bolón-Canedo et al., 2013) whilst capturing a limited
subset of the variability. Our aim is to facilitate the agricultural com-
puter vision domain with the benefits of state-of-the-art machine
learning, e.g. the supervised hierarchical feature representation
learning and the performance increase that comes with large datasets
(LeCun et al., 2015).

2. Materials and methods

In Fig. 1 our method to obtain the synthetic and empirical datasets
is shown in a flowchart. Empirical data was a cornerstone for two ob-
jectives. First, it was used as a reference to create both a realistic model
and conditions to render the synthetic dataset. Second, to provide fine-
tuning data and a verification test set for computer vision methods that
use the synthetic dataset for bootstrapping. This section provides some
intermediate results as prerequisite for consecutive methods; the final
results of the synthetic and empirical datasets are reported on in Section
3.

2.1. Empirical reference dataset and scans

The empirical photographic image dataset was acquired using
imaging hardware of a sweet pepper harvest robot prototype, consisting
of a uEye SE industrial camera (UI-5250RE-C-HQ PoE Rev.2, GigE,
Germany) with resolution of 1600x1200 pixels and a lens with focal
length of 4.16mm (CMFA0420ND, Lensagon, Germany). The scene was
illuminated with a matrix of white LEDs, flashed for 50 μs, producing a
light level of approximately 200.000 lx at a distance of 50 cm from the
crop. The distribution of the light was highly centered with a sharp
falloff towards the edges in the field of view of the camera. By using the
flash, the global illumination was suppressed, although this resulted in
dark images.

From distances ranging from 50 cm to 10 cm (in 10 cm increments)
in front of the plant stems, images were captured from −45, 0 and 45
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degree orientations with the horizontal plane. Furthermore, the camera
was angled 20 degrees upwards as previous research suggested this
would reduce occlusions (Hemming et al., 2014). In total 50 incre-
mental positions of 20 cm along the row of plants were imaged in a
800×600 binned pixel resolution under two conditions; (i) facing to-
wards and (ii) away from the sun. The increment size of 20 cm along the
row was chosen to reflect the plant spacing in the greenhouse in order
to approximate one new plant in the field of view per image. Overall
weather conditions were clear and sunny with occasional clouds (cu-
mulus humilis). At the position of the camera, the average irradiance
was 6,000 lx under a clear sky and 5,000 lx when the sun was occluded
by a cloud. 3D meshes were obtained of 3 sweet pepper fruit, cultivar
Kaite (E20B.0073, Enza Zaden, the Netherlands) with a Spider 3D
scanner (Artec, Luxembourg) with a 3D point accuracy of 0.05mm.
Scanning was performed manually by covering all perspectives using a
rotating platform. Bottom occlusions were solved by using multiple
poses of the same fruit and merging the resulting meshes automatically
with Artec’s software package. A set of 10 leaves were flattened and
scanned using a consumer flatbed color scanner to obtain their shape,
color and texture. At the nodes of the plant, occasionally there were
cuts present where fruit were harvested. Frontal photographs were
taken to obtain textures for this plant part as well as for the stem.

2.2. Structural plant modelling

A plant can be modelled functionally, structurally, or both (Vos
et al., 2007, 2010). Functional plant models represent the interaction of
internal and external plant processes. On the other hand, structural
plant models focus solely on the physical appearance. When both types
of models are combined, the influences of processes on the plant
structure are taken into account. The scope of the current dataset was
purely structural, as only fixated images irrespective of other influences
were modelled.

Structurally, a plant consists of elements of various types and
shapes. Based on these elements, a plant architecture can be defined
globally or modularly. A global architecture is considered as a single
shape and such an architecture inhibits plant variability on a detailed

plant part level. In contrast, a modular plant architecture consists of the
combination of three types of information; (i) the decomposition in-
formation that describes which components a plant consist of, (ii) the
topological information that characterises the hierarchy and connection
of components with others and (iii) the geometrical information that
describes the sizes and poses of the components irrespective of other
plant parts (Godin, 2000). With this decomposition either a regular or a
multi-scale representation of a plant can be created. In the latter case
self-similarity at different levels in the plant hierarchy can occur. In our
approach, we created a regular structural modular plant model with a
multi-scale representation for side shoots of the plant. This enabled
detailed part modelling in which empirical measurements could be
included and variability could be expressed.

2.2.1. Decomposition of Capsicum annuum
We decomposed the sweet pepper plant in the following plant parts:

main stem section, nodes, sideshoot, leaf stem, leaf, peduncle, fruit and
flower. To facilitate robotic harvesting, our model focussed on the
generative stage of the crop only. At this stage most flowers have been
pollinated and only fruit remain. Therefore the flower was omitted from
the model.

2.2.2. Topology of Capsicum annuum
In Fig. 2 a typical section of a sweet pepper plant is shown, with a

node in the center. From this empirical situation, we defined our
hierarchy of plant components, as shown in Fig. 3a.

2.2.3. Geometry of Capsicum annuum
The geometry of a plant describes its parts in terms of dimensions

and poses irrespective of other parts. Similar to other approaches for
Capsicum annuum (Ballina-Gomez et al., 2013; IPGRI, 1995), 22 re-
levant plant parameters were identified that capture the geometry be-
tween plant parts. These parameters were measured in the early pro-
duction season (April) on 15 plants of the same cultivar as used for the
collection of the empirical image dataset and the scanned fruit and
leaves. The collection of the measures included length, width, diameter
and angles. Top view angles of plant parts were measured around the

Fig. 1. Methodological flowchart to obtain empirical
and synthetic datasets for agricultural plant scenes.
Empirical measurements feed information to the
plant and scene modelling processes. First a struc-
tural model of the plant was created using geome-
trical plant parameters. The structural model was
then used to create instances of polygonal plant
meshes that included a 3D mesh scans of fruit. The
meshes were imported to Blender, where color
images and leaf scans textured the model. Multiple
plant models were thereafter included in scenes
which mimiced the greenhouse architecture. Camera
and illumination properties were added as well. The
scenes were then rendered to obtain the sythetic
data. A subset of the empirical color images was
annotated intended for computer vision fine-tuning
and verification test material. Each box is described
in a section as referred by its top left number.
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stem, counter-clockwise starting from the anterior side of the plant
(hence perpendicular from the aisle towards the plant row) as depicted
in Fig. 3b. Side view angles were measured counter-clock-wise, per-
pendicular with the floor as reference plane as shown in Fig. 3c. Results
of the measurements are provided in Table 1 with the angular dis-
tributions plotted in Fig. 4.

2.3. Plant instance modelling

To model the plant and create object meshes, the commercial soft-
ware PlantFactory 2015 Studio (EON Software, 2016) on OSX 10.10
was used. Originally intended for realistic game and video production
modelling, it includes functionality to generate randomised plant in-
stances based on plant parameter distributions, which can be exported
as mesh models.

Randomised instances of sweet pepper plant meshes were generated
by a procedural algorithm within PlantFactory 2015. The structural
modular plant topology of Fig. 3a was used as a guideline. In Fig. 5 the
procedural structure of the algorithm is shown. Plant part parameters of
the obtained geometry from Section 2.2.3 were used. The metric
parameters were based on the averages and standard deviations. For the
angular values, their distributions were used as shown in Fig. 4, im-
ported to PlantFactory as a curve. Per plant, 40 stem parts were gen-
erated and vertically concatenated, resulting in a mesh of approxi-
mately 4m in height. Mesh instances were manually checked for the
occasional inconsistency when a fruit intersected with other meshes.
Those instances were replaced. Each mesh instance was exported in the
open Wavefront OBJ 3D model format. In Fig. 6 example meshes are
shown with 5 stem parts.

2.4. Textured modelling from polygon meshes

The randomly generated plant meshes were imported in the open-
source software Blender 2.77a (Foundation, 2016; Kent, 2015), which
for our purpose supports the composition, simulation and rendering of
3D scenes. To the polygon meshes color, texture, local mesh displace-
ment (bump mapping), glossiness and specularity properties were
added.

For the leaves and the cuttings on the stem, where fruit were pre-
viously removed, the photocopies were used. For the other plant parts,
a color overlay was applied based on average colors from patches of
corresponding plant parts in the empirical data set. In order to simulate
fruit maturity levels, a color gradient from unripe green to ripe yellow
was projected on a noise texture. The gradient and noise parameters

were manually determined with reference to additional unripe to ripe
fruit images taken in the greenhouse. To simulate local leaf deforma-
tions (wobbles), a noise texture was used for bump displacement
mapping of the leaf meshes. The parameters of this displacement were
visually determined in comparison with the empirical image dataset.
The polygons of the stem parts were displaced with a flattened 3D scan
of the stem, processed with an edge filter to simulate their vertical
grooves. For each set of plant parts, light reflection was manually
modelled by adding glossiness and specularity modifiers. To add a
background, a partial cloudy sky was generated. The sun was modelled
as a light emitting sphere and was placed in the background with a lens
flare effect. To complete the scene, the vertical wire used in

Fig. 2. A section of a Capsicum Annuum plant with one node in the center from which all
plant parts grow. Plant parts are: (A) leaf, (B) fruit, (C) peduncle, (D) a node at a stem
section and (E) sideshoot or leaf stem.

Fig. 3. (a) Structural modular plant topology of Capsicum annuum, showing the hierarchy
and connection of plant elements. We considered the node as the central part of each
section of the plant. The node joins 2 stem sections and connects to (i) sideshoots, (ii) leaf
stems and leaves, (iii) peduncle and fruit. A side-shoot can have up to 3 leaves or new side
shoots at its end. This topology omits the flower, which has grown into a peduncle and
fruit. (b) Schematic top view of Capsicum annuum. An intersection is shown at the level of
an node of the plant. Parts are connected around the plant: (i) peduncle and fruit, (ii) leaf
stem with leaf, (iii) side shoot with leaf stem and leaf. Geometrical plant parameter
measures are depicted, as reported in Table 1. Angles F-1, S-1 and L-1 are measured
counter-clockwise starting from the anterior side of the plant in respect to the greenhouse
aisle. (c) Schematic side view of Capsicum annuum. Geometrical plant paramter measures
described in Table 1 are depicted. Angles L-2, L-3, S-3, S-4 and S-5 are measured per-
pendicular to the ground and counter-clockwise.
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horticultural practice to support the plant was modelled by applying a
white texture and bump map that curled around the stem.

2.5. Scene modelling

Using Blender, a scene was modelled that represented a part of a
Dutch commercial high-tech sweet pepper greenhouse (Bac et al., 2016)
by reproducing the plant growing architecture as a double row of
plants. In Fig. 7 a frontal and top perspective view of the scene is
shown. For each scene, 7 randomised plants were generated, imported
and positioned in a row with a 20 cm spacing in between. Similar to
horticultural practice, a second row of 6 random plants was added

20 cm behind the first, shifted 10 cm in parallel. Due to memory con-
straints, up to 13 plants could maximally be instanced in each scene. To
virtually collect data, a simulated camera and illumination were added
with similar optical properties as the hardware described in Section 2.1.
Blender allows to set the focal length and sensor size according to the
hardware manufacturer's specifications. The illumination intensity and
distribution was empirically matched with the reference color images
(see Fig. 8).

The simulated image acquisition hardware followed an arc path
upwards at a fixed distance of 40 cm from the center of the 4th plant in
the row of 7 plants. Along this path, 250 frame triggers were equally
spaced. The camera was placed under an angle of 20 degrees looking

Table 1
Geometrical Capsicuum annuum plant parameters per plant part that were measured in 15
plants at 115 node positions. Averages and standard deviations were used for modelling
in PlantFactory. Descriptive names are displayed in Figs. 3b and c.

Name Plant Part Measure Average (mm) SD (mm)

I-1 NODE Internode length 99 14
I-2 NODE Node width 16 2
L-4 LEAF Stem length 99 14
L-5 LEAF Leaf length 16 2
L-6 LEAF Leaf width 112 11
S-1 SIDESHOOT Length 48 30
S-6 SIDESHOOT Leaf stem length 97 12
S-7 SIDESHOOT Leaf length 123 16
S-8 SIDESHOOT Leaf width 102 12
P-1 PEDUNCLE Length 46 6
F-2 FRUIT Diameter 84 11
P-1 PLANT Stem diameter 9 1

Fig. 4. Angle distributions (number of occurences
per 0–360°) for Capsicum annuum plant parameters as
measured of 15 plants according the schematics in
Fig. 3b and c. P-2 measured the angle of the total
plant in the plane perpendicular to the plant rows.

Fig. 5. Procedural structure for plant instance generation as implemented in
PlantFactory. Each node represents a plant part for which another plant part is generated
for each arrow attached. Brackets imply a random choice was made between plant parts
included with indicated probabilities. The stem part grew another stem part n times.
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upwards, as also used when obtaining the empirical dataset in the
greenhouse.

To create multiple scenes per set of 7 plants, each plant was trans-
lated 1 position in the row until all 7 plants had once occupied the
center of the row at the location where the simulated data collection
occurred. The plants in the second back row also translated along.
Furthermore, 6 additional unique scenes were generated with 7 new
plants. Hence in total, 42 scenes were created (6 scenes, 7 positions per
scene).

2.6. Rendering

For each scene, render computations (color, class label and depth
label images) were run on the Odyssey supercomputer cluster sup-
ported by the Research Computing Group of the FAS Division of Science
at Harvard University. Each frame was assigned to a single computing
node with 16 cores, rendering one frame in 10min on average.

To obtain the per-pixel ground truth label images in which each
plant part was represented by a unique color encoding, the scene was
duplicated and the color mapping of each plant part was replaced by
primary or secondary colors. The background of this duplicate scene
was set to black. To avoid interaction of colors in the scene, which
would result in more colors than labels, the virtual camera was set to
only register a single direct ray of light without bounces. Unfortunately,
rendered edges between plant parts still interpolated colors. Therefore
the synthetic image labels were post-processed in the commercial image
processing software package Halcon 12 (MVTech, 2016) by removing
any interpolated color pixels and replacing them with the most frequent
neighbour color in a 3×3 patch If this convolution failed in case the
majority of the neighbouring pixels also had been interpolated, the
window was enlarged until all pixels were equal to one of the class
labels. Furthermore, the colors were replaced by grayscale values in a
single channel to finally reduce the label image size by 98%.

Ground truth depth images were rendered separately per frame by
using the mist environment variable in Blender. For each pixel in the
image, the light ray distance between the object and the camera’s
projection center was obtained. Hence encoded distances were not
equal to real world XYZ-coordinates, which could not be obtained due
to the absence of corresponding camera poses. The distance was en-
coded in image grayscale values, ranging from 0 to 255. In this image,
the distance in centimetres for each pixel zp could be recovered by the

function =
⎛

⎝
⎜

⎞

⎠
⎟

−
∗( )zp

I255 p
2 150

255

, where the intensity of a pixel Ip decreases from

the maximum intensity 255 with a factor based on the range of the mist
in the render, which was set at 150 cm. The depth images were also
rendered in a colorscale with high contrasts for intuitive viewing. The
resolution in depth of this ground truth is coarse, though an exact re-
presentation could be obtained if needed by exporting the scene’s Z-

buffer in Blender to the OpenEXR (Kainz et al., 2004) linear format.

2.7. Annotation

The empirical image set obtains in the greenhouse contains 750
images at a range of 5 distances. From the 150 images taken at 40 cm,
50 images were annotated using Photoshop CC (Adobe, 2016) by
manually outlining and coloring plant part classes. The suction cup of
the robot’s end-effector occluded the image and was labeled as back-
ground. Note that unlike its synthetic counter-part, ground truth in dark
areas of the images were hard to manually discern and annotate. Hence
only parts were annotated that could be clearly recognised. Average
manual annotation time was 30min per image.

2.8. Semantic segmentation

We gathered evidence for our hypothesis that synthetic boot-
strapping and fine-tuning with a small empirical dataset can be effec-
tive by running 5 experiments with a semantic segmentation deep
learning network, using the DeepLab framework (Papandreou et al.,
2015) based on Caffe (Jia et al., 2014).

Specifically we used the Deeplab VGG-16 Vanilla model
(Papandreou et al., 2015) with a receptive field of 128 pixels and a
stride of 8 pixels. The hyperparameters of the network were manually
optimised as suggested by Bengio (2012) and resulted in using Adaptive
Moment Estimation (ADAM) (Kingma and Ba, 2015) with

= = = −β β ε0.9, 0.999, 101 2
8 and a base learning rate of 0.00005 for

30,000 iterations with a batch size of 10.
For each experiment we changed the dataset composition (synthetic

or empirical images) for learning, fine-tuning or testing. The following
compositions were investigated. Brackets indicate image indexes used.

A Train: synthetic (1–8750). Test: synthetic (8851–8900).
This experiment was run to obtain a performance reference point of
the model when having access to a large and detailed annotated
dataset for this domain.

B Train: synthetic (1–8750). Test: empirical (41–50).
To determine to what extent a synthetically trained model can
generalise to a similar set in the same domain without fine-tuning.

C Train: empirical (1–30). Test: empirical (41–50).
As a reference to see if the model can learn using a small dataset,
using empirical data.

D Train: PASCAL VOC. Fine-tune: empirical (1–30). Test: empirical
(41–50).
To compare the effect of bootstrapping with a non-related dataset.

E Train: synthetic (1–8750). Fine-tune: empirical (1–30). Test: empirical
(41–50).
To assess the effect of bootstrapping with a related dataset.

Fig. 6. Perspective views of three meshes of randomly
generated Capsicum annuum instances with 5 stem
parts. Color encodes surface normals. (For inter-
pretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this
article.)
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For each experiment, overfitting was prevented by selecting the
optimal model by periodically checking the model’s performance on an
separate validation set. For the synthetic set, these were unique images
(8751–8800) from the 6th scene. For the empirical set, these were
images of unique plants (31–40).

2.8.1. Performance evaluation
To calculate the performance of our method and to enable equal

comparison of future methods, we used the Jaccard Index similarity

coefficient as an evaluation measure. This index is also known as the
intersection-over-union (IOU) (He and Garcia, 2009) and is widely used
for semantic segmentation evaluation (Everingham et al., 2010). The
measure is defined in Eq. (2), where the mean IOU per class equals the
intersection of the semantic segmentation and the ground truth divided
by their union. To derive the measure, a pixel-level confusion matrix C
was calculated first for each image I in dataset D:
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where S p( )gt
I is the ground truth label of pixel p in image I and S p( )ps

I is
the predicted label. This implies that Cij equal the number of predicted
pixels i with label j. The IOU can then be derived as an average for each
class L by:
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Hence Gi denotes the total number of pixels labeled with class i in
the ground truth and Pj the total number of pixels with prediction j in
the image.

3. Results

A synthetic image dataset of 10,500 images was generated using 6
unique scenes and an empirical dataset of 750 images was obtained. A
pixel-level ground truth segmentation of 8 classes was created auto-
matically for all images in the synthetic dataset and manually for 50
images in the empirical dataset. This section first provides example
images of both sets after which the sets will be compared on differences
in color, class and spatial distribution to verify to what extent the re-
quirement of similarity was met for our first hypothesis. To answer the
second hypothesis that such datasets for agriculture are a valid and
valuable tool for computer vision learning methods, results of the 5
experiments will be presented.

3.1. Datasets description

In Fig. 9, examples of real and synthetic images are shown with their
corresponding ground truths. The datasets and the source material can
be found at: https://doi.org/10.4121/uuid:884958f5-b868-46e1-b3d8-
a0b5d91b02c0

3.1.1. Datasets comparison
Results of the comparisons between the synthetic and empirical

datasets are presented in this section. First, pixel frequencies of classes
and their spatial distributions between both sets were compared be-
cause such distributions reflect if the structure of the object we intended
to model was similar. In Fig. 10 the pixel class frequencies are shown
for both datasets. To investigate their spatial distribution, the normal-
ised per class pixel label distributions are shown in Fig. 11.

Property distributions within classes themselves was another com-
parative perspective, for example color distributions. Some computer
vision and learning methods are sensitive to object color, affecting the
generalisation of the method to new images with different color dis-
tributions. In Fig. 12 the color spectrum for each plant part in both sets
are shown.

The spectra were obtained by transforming the color images to hue,
saturation and value (HSV) colorspace. The hue channel in this image
represented for each pixel which color on the visible spectrum was
present, irregardless of illumination and saturation intensity. Due to the
heterogeneous illumination distribution in the images, the dark edges
of the image were overrepresented with colors in the end of the

Fig. 7. Front and top perspective views of a sweet pepper crop scene in Blender, without
textures. The camera plus illumination (blue, 3) and their path (red, 2) were placed in
front of 2 rows of plants (green, 1). The position of each plant on the floor plane is
indicated with a dot (orange, 4). Grid spacing is 20 cm. Note that leaves are rectangular;
though during render time the shape of the leaf was refined by applying an opacity map.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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spectrum. For this reason, we focussed the color analysis on a 300x300
pixel patch in the well illuminated middle of the image.

Intensity was another dimension of interest. With an average in-
tensity of 37 and standard deviation of 12, comparison of differences
between plant parts was coarse. Instead we investigated the average
spatial intensity distribution over all images in each set as shown in
Fig. 13. This enabled us to verify the similarity of the simulated illu-
mination heterogeneity with the empirical set.

3.2. Semantic segmentation results

IOU results for experiment A through E are shown in Fig. 14, se-
parated by class. Segmentation results for the best performing network
on synthetic data (A) and empirical data (E) are shown in Fig. 15.

4. Discussion

In this paper we aimed to help the computer vision performance in
agriculture towards a state-of-the-art level required for the next gen-
eration robotics, e.g. for harvesting, disease detection and phenotyping.
Our conjecture of the cause of the low performance in this domain was
the unavailability of detailed large annotated label data sets, necessary
for most novel machine learning approaches. Recently, generating and
training on synthetic image datasets has proven to be a popular and
effective solution in other domains.

To extend such an approach to the domain of agriculture, we have
described a novel methodology to generate synthetic images of plants.
Although the modelling can be time consuming itself, it facilitates the
generation of large-scale and more detailed datasets under a broader set
of conditions, e.g. different illumination conditions, perspectives or
sensors. This would otherwise not be feasible to obtain due to the re-
quired large annotation effort. Our approach is generic and applicable
to any crop with a consistent modular plant architecture after obtaining
an accurate and exhaustive definition of the corresponding plant
parameters (Vos et al., 2010, 2007).

Our dataset is an important contribution for the availability of a
variety of datasets in the computer vision community so that methods
can verify their robustness and generalisation. Currently the focus in
the research community is on tuning and validation using type re-
stricted datasets, e.g. human or urban scenes. Our datasets provide a
use-case for detailed hierarchical part recognition in bio-related fields.

In this paper we presented a modelling example of a single point in
time for a single variety of Capsicum annuum. However, our metho-
dology for generating plant models is extendable to include plant
parameters for plants under multiple stages of growth. The pipeline

allows to interpolate between seasonal plant parameters to generate
plants in different growth stages. However, this would require more
empirical measurements and there is a trade-off between modelling
accuracy over the season and the accuracy that is desired from the
application. For our purpose of using machine learning, we assumed a
single point in time for modelling would already be sufficient to im-
prove synthetic based learning.

As we did not have depth data in our empirical dataset, it was not
possible to test any hypothesis regarding machine learning that made
use of the synthetic depth data. We added the methodology for gen-
erating depth data for future research and as an example for the com-
munity how to obtain such data.

In the following subsections we zoom in on our hypotheses (i) that
stated that we can create synthetic images similar to empirical images
by discussing to what extent our requirement of similarity was met and
(ii) that a synthetically bootstrapped model can be used for improved
learning when only fine-tuned on a small annotated empirical dataset.

4.1. Synthetic and empirical set similiarity

At the beginning of this paper we posed that the synthetic images
should be similar to the empirical images. We can both qualitatively
and qualitatively observe the differences between sets. The former is
subjective and it must be noted that human perceptual evaluation of
images often employs sensory completion to make up for differences or
absences (McNamara, 2001). Nonetheless it is valuable to compare the
sets in this regard because it provides clues for objective comparison
and possible improvements.

4.1.1. Qualitative comparison
When visually compared we noted slight differences in color. This

can be explained by the manual color tuning process in which it was
hard to find colors close to the empirical situation, given that only the
result of the illumination interaction effects of the materials, the light
source and the environment could be observed. Future research should
include methods for automated color optimisation. Also obtaining a
calibrated color ground truth is recommended in combination with
proper camera color calibration.

Another difference was the greater perceived variance of shapes and
poses in the empirical set. This was the result of excluding part shape
variance, e.g. not taking into account an exhaustive set of leaf curls and
poses or local side-shoot deformations. Hence, the plant parameters
were not adequately capturing all the variation. In forthcoming re-
search we suggest to include also intra plant part pose variations and
deformations.
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Fig. 8. Average IOU over the validation set per class per iteration in validation set of synthetic bootstrapping (left) and empirical fine-tuning (right). Dashed vertical lines indicate at
which iteration the model was fixated before training stabilized or overfitted. (For interprestation of the references to colour in this figure, the reader is referred to the web version of this
article.)
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4.1.2. Quantitative comparison
Superordinate image similarity measures were previously not well

defined in literature. However, studies of individual measures like color
histogram comparison (Swain and Ballard, 1991) or shape measures
(Mehtre et al., 1997) have been performed. In this paper, the similarity
requirement was also not quantified in a single measure. Instead we

looked at: (i) label set distributions, (ii) label image position distribu-
tions, (iii) part color spectra and (iv) illumination intensity distributions
to gain a more quantitative insight into the similarity between sets.

i Within a dataset, label frequencies are often highly unbalanced
(Caesar et al., 2015), resulting in neglected classes in some type of

Fig. 9. Three examples of the synthetic and empirical color images and their corresponding ground truth labels. The first three rows contain column pairs of (i) synthetic ground truth
depth labels, (ii) class labels and (iii) color images. The last two rows contain column pairs of (i) real images and (ii) ground truth class labels. Note the depth label has an arbitrary
colorscale for intuitive viewing. Class labels: background, leaves, peppers, peduncles, stems, shoots and leaf stems, wires and cuts. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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computer vision approaches. To counter that effect, object occur-
rence statistics can be used for normalisation (Chawla, 2010). In
Fig. 10 we observe an unbalance within and between the sets. The
latter can partially be explained by the methodological difference in
obtaining the ground truth in both cases. For the synthetic dataset,
the labels of all pixels in the color image were computable irre-
gardless of illumination. For the empirical dataset, a subjective de-
cision on the label in the dark edge areas was often not possible.

ii In Fig. 11 we compared the plant part spatial distribution in the
images between sets. Overall, the sparsity in the empirical set is
notable and was due to the small size of the annotated set. In the
synthetic set, we note 3 vertical hotspots of stem+wire classes
whereas in the empirical set the spatial variance of these classes was
higher. This can be explained by a more regular plant distance in the
synthetic set, due to the fact that our model did not take intra-plant
properties into account.
The distributions of the peppers between sets was similar, e.g. a hot
spot in the center of both distributions and less to the left and right
explained by the particular occlusions resulting from the chosen
scanning path. Closely correlated with peppers are the peduncles,
however the peduncle distributions were hard to compare due to
their sparsity.
Lastly, there was a difference between leaf class distributions. Whilst
empirically more centered, in the synthetic set there was a higher
occurrence at the top of the image. This can be explained by im-
proper modelling the shapes and poses of the leaves, resulting in a
discrepancy of silhouettes when viewed from a 20 degree upward
angle.

iii Evaluating Fig. 12, we observe plant part color similarities but also
differences in our sets.

Fig. 10. Percentage of ground truth pixels per class, compared between real and synthetic
datasets.

Fig. 11. Per class normalised pixel label distributions for the emperical and synthetic
dataset. Each image was obtained by summation of class masks of all images in the set,
divided by the maximum resulting pixel value.

Fig. 12. Color distribution per plant part of synthetic and empirical images. The vertical
axis shows the percentage of plant part color averaged over the image set. The horizontal
axis shows the hue value in HSV colorspace. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Leaves: The proportion of the left spectrum of the leaf class was
similar, though the synthetic leaves should contain relatively less
greens. The purple spectrum on the right of this class can be ex-
plained by the outward position of some leaves, leading to under-
exposure and therefore taking on the purple global background il-
lumination color.
Peppers: The pepper colors seem far off at first, though the green
peak height might be caused by the improper modelling of the
percentage of green (50%) and yellow peppers (50%). In the em-
pirical set, more ripe fruit were present because a part of the crop
was selected in the greenhouse with abundance of yellow peppers to
increase the spatial density of robot harvest trials. Irregardless of
this ripeness imbalance, the color of the ripe peppers in the synthetic
set needs to be adjusted towards the yellow end of the spectrum.
Peduncles, stems and shoots: All were modelled too green and
lack yellows.
Wires: The synthetic wire color distribution shows a peak in green.
By inspecting the data this was likely the result by the rendering a
color interpolation at the edges of the wire class and background
stem class. Furthermore, a relative large part of the wire pixels were
edge pixels and these pixels were included in the ground truth of the
wire class. A thicker synthetic wire might increase color similarity.

Fig. 13. Average illumination intensity distribution over all images in the emprical (left) and the synthetic (right) sets, with an average pixel intensity of 37 and 38 respectively. In the
images shown here, the intensity of both images was doubled to increase contrast for the reader. (For interpretation of the referencens to color, the reader is referred to the web version of
this article.)

Fig. 14. Average IOU per class over the test set for experiments A through E.

Fig. 15. Segmentation results for synthetic test set from experiment A (top row) and empirical test set from experiment E (bottom row). Color images (left), classification segmentation
(middle) and ground truth (right) are shown in each row. Class labels: background, leaves, peppers, peduncles, stems, shoots and leaf stems, wires and cuts.
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Cuts: Although the cuts were textured with a photograph, the ab-
sence of color calibration most likely resulted in the difference we
observe in this class.

iv When looking at the average illumination intensity distribution over
all images in each set (Fig. 13) we observe a comparable hetero-
genous illumination distribution with a strong vignetting effect. This
was caused by (i) an interaction of illumination hardware that fo-
cussed a centered beam on the scene and (ii) the lens type which had
a default vignet. The average intensity of these images was similar.

For aspects discussed under both (i) and (ii), these differences might
also be caused due to the empirical set measurement only consisting
from frontal, −45 and +45 degree views, whereas the synthetic set
included also intermediate waypoints that furthermore moved verti-
cally per next frame, as depicted in Fig. 7.

Although the differences discussed in i-iv could be valuable for
improving the similarity between image sets, their combined impact
can only be evaluated in the perspective of a specific task performance,
e.g. machine learning. In the context of computer vision, we can state
that image sets are sufficiently similar when they in any manner can be
used for improved recognition. Therefore we evaluated the similarity
also in the context of the task of segmentation in Section 4.2, where we
quantitatively compare the IOU performance of the 5 experiments.

4.2. Bootstrapping and segmentation

Although differences between the image sets exist, experiments A
through E indicated that bootstrapping with related synthetic data
improved the learning performance compared to solely training on a
small empirical dataset or bootstrapping with non-related data. From
each experiment, we concluded the following:

A The model trained and tested using the synthetic dataset provided a
baseline performance on the task when having access to a large
amount of detailed annotated data.

B Without any fine-tuning, the synthetically bootstrapped model did
not generalise well to empirical data.

C Using only a small empirical dataset for training, the model learned
to differentiate plant parts to a certain extent. However, this pri-
marily holds for the classes background, leaves and peppers, with an
average IOU of 0.68. We observe that the model learns the most
frequent classes that were also most discriminative in color, e.g.
black, dark green and yellow correspondingly. The other classes that
were infrequent and overlapped in color with the frequent classes
were segmented poorly, with an average IOU of 0.05.

D When bootstrapping with an non-related dataset (PASCAL VOC) and
fine-tuning with empirical data, performance on empirical test
images was increased over the previous experiments (B,C).

E When bootstrapping with our synthetic related dataset and fine-
tuning with empirical data, the best performance was achieved
testing on empirical images.

From the results we conclude that the increase in performance using
synthetic data bootstrapping compared to the other approaches might
be caused by the increased training sample number with high similarity
that was made available to the CNN.

In the experiments we observed a correlation between class fre-
quency and class performance, suggesting the model had a bias for class
availability. Future efforts should be focussed on coping with this bias,
for example using normalisation during the computation of the loss.

Our experiments and their conclusions are indicative because we
could not prove there does not exist a different convolutional model
architecture, hyper-parameter combination or initialisation per ex-
periment that would have a better performance. However, the results
present a starting point to determine how synthetic data can be used to
improve segmentation performance.

Although plant part segmentation in reconstructed 3D models has
previously been achieved in smaller plants (Golbach et al., 2016;
Paproki et al., 2011), segmenting multiple plant parts from single 2D
images previously remained unsolved. For plant robotics and pheno-
typing, the requirement of plant part localisation is currently a bottle-
neck (Minervini et al., 2015). Our results show a promising method for
meeting this requirement when observing the final segmentations
qualitatively.

Our work contributes to image segmentation challenges in the plant
domain. In agricultural applications, our approach of segmenting in-
dividual plant parts in high detail will enable a large range of possibi-
lities. For example, from leaf volume estimations in vineyards to a all
kinds of phenotyping applications to determine plant parameters from
images.

4.3. Conclusion

A new method for generating synthetic data sets for agricultural
computer vision was presented. Based on empirical data, a sweet
pepper plant model was created, randomised plant instances were
generated and rendered to mimic realistic greenhouse conditions. Our
hypothesis that with this approach we can create a synthetic image
dataset similar to empirical images holds perceptually and qualita-
tively, though quantitatively there were differences in class and color
distributions. However, we also stated that the requirement of simi-
larity on the task, e.g. pre-training models for image segmentation. Our
hypothesis that bootstrapping a convolutional neural network that fine-
tunes on a small empirical dataset outperforms other methods of
training has been confirmed by our experiments. Segmentation results
show a promising next step for semantic part localisation in agriculture.
Future efforts should be aimed in further optimising the network ar-
chitectures, focussing on the performance of the infrequent classes. The
datasets and their source material are publicly released and can be
found at: https://doi.org/10.4121/uuid:884958f5-b868-46e1-b3d8-
a0b5d91b02c0
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