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INTERPRETIVE SUMMARY 1 

Genetic Background of Methane Emission by Dutch Holstein Friesian cows measured 2 

with Infrared Sensors in Automatic Milking Systems  3 

Van Engelen et al. 4 

Methane is a greenhouse gas and is produced in the rumen of dairy cows during the digestion 5 

of feed. A study was carried out to investigate whether it would be possible to breed for lower 6 

methane emission by using methane measurements obtained from infrared sensors during 7 

automatic milking. Part of the variation in the sensor measured methane was due to the 8 

genetic background of the cow. This indicates that measurements obtained from infrared 9 

sensors during automatic milking can be used to select for lower methane emission by dairy 10 

cows during breeding.    11 
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ABSTRACT 25 

 26 

International environmental agreements have led to the need to reduce methane emission by 27 

dairy cows. Reduction could be achieved through selective breeding. The aim of this study 28 

was to quantify the genetic variation of methane emission by Dutch Holstein Friesian cows 29 

measured using infrared sensors installed in automatic milking systems (AMS). 30 

Measurements of methane (CH4) and carbon dioxide (CO2) on 1508 Dutch Holstein Friesian 31 

cows located on 11 commercial dairy farms were available. Phenotypes per AMS visit were 32 

the mean of CH4 (CH4mean), mean of CO2 (CO2mean), CH4mean divided by CO2mean 33 

(Ratiomean), and their log10-transformations CH4log, CO2log, and Ratiolog. The 34 

repeatabilities of the log10-transformated methane phenotypes were 0.27 for CH4log, 0.31 for 35 

CO2log, and 0.14 for Ratiolog. The heritabilities of these phenotypes were 0.11 for CH4log, 36 

0.12 for CO2log, and 0.03 for Ratiolog. These results indicate that measurements taken using 37 

infrared sensors in AMS are repeatable and heritable and, thus, could be used for selection for 38 

lower CH4 emission. Furthermore, it is important to account for farm, AMS, day of 39 

measurement, time of day, and lactation stage when estimating genetic parameters for 40 

methane phenotypes. Selection based on CH4log instead of Ratiolog would be expected to 41 

give a greater reduction of CH4 emission by dairy cows.  42 

 43 

Keywords: methane emission, dairy cow, AMS, non-dispersive infrared sensor 44 

 45 

INTRODUCTION 46 

 47 

Agriculture contributes 24% of the total global greenhouse gas emissions (IPCC, 2014). The 48 

single largest pollution source within agriculture is enteric fermentation, i.e., the breakdown 49 
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of feed in the rumen that results in the production of methane (CH4) (Gerber et al., 2013). 50 

Approximately 8% of the worldwide agricultural greenhouse gas emissions originate from 51 

enteric CH4 emissions by dairy cows (FAOSTAT, 2012;FAO, 2014), showing the impact of 52 

dairy production on global warming. In December 2015, agreements were made in Paris 53 

between 195 countries to tackle climate change and keep global warming firmly below 2°C 54 

(UNCCC, 2015). These agreements have further emphasized the importance of the reduction 55 

of CH4 emission by dairy cows. 56 

Reduction of CH4 emission by dairy cows can be achieved through a combination of 57 

mitigation strategies comprising dietary, microbial, management, and breeding strategies 58 

(Cottle et al., 2011;Hristov et al., 2013). Selective breeding has the advantage of giving a 59 

cumulative, permanent, and long-term reduction of CH4 emission. An example of breeding for 60 

reduced CH4 is the reduction of 13% of CH4 per kg of milk in Dutch dairy cattle that has been 61 

realized from 1990 to 2010 by selection for higher milk production (Vellinga et al., 2011). A 62 

further reduction of CH4 emission through selective breeding is wanted and requires 63 

quantification of possible genetic variation in CH4 emission. 64 

To quantify possible genetic variation in CH4 emission, CH4 emission needs to be measured 65 

on large numbers of individual cows. One of the measurement methods could be infrared 66 

sensors installed in automatic milking systems (AMS). The infrared sensor samples the breath 67 

of the cows present in the AMS and measures CH4 and carbon dioxide (CO2) concentration 68 

continuously. An advantage of this system is that cows visit the AMS several times per day 69 

and these repeated visits ensure repeated measurements of the same cow over the day and 70 

over time (Garnsworthy et al., 2012a). Furthermore, sensors can easily be moved from one 71 

AMS to another and, thus, provide the opportunity to measure individual CH4 emission on 72 

large numbers of cows.  73 
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Previous studies have shown that CH4 measurements based on infrared sensors in AMS are 74 

repeatable. Lassen et al. (2012) summarized CH4 measurements per AMS visit by taking the 75 

mean of CH4, the mean of CO2 and the mean of the ratio between CH4 and CO2. 76 

Repeatabilities ranged between 0.22 and 0.46 for 50 Holstein cows and 43 Jersey cows. Bell 77 

et al. (2014b) found a repeatability of 0.74 for mean of CH4 per AMS visit for 36 Holstein-78 

Friesian cows. These repeatabilities illustrate that infrared sensors in AMS could provide the 79 

repeatable measurements on individual cows that are needed to quantify possible genetic 80 

variation in CH4 emission. 81 

These CH4 phenotypes can be influenced by farm conditions (Bell et al., 2014a), hour of the 82 

day (Garnsworthy et al., 2012b), and week of lactation (Lassen et al., 2016); therefore, these 83 

effects were studied. Farm conditions can impact CH4 emission via the differences in feed 84 

regimes between farms (Bell et al., 2014a;Hammond et al., 2016). Hour of the day can 85 

influence CH4 emission as cow behavior, time after feeding, and ambient conditions change 86 

throughout the day (Garnsworthy et al., 2012b;Lassen et al., 2012;Bell et al., 2014b). Week of 87 

lactation can affect CH4 emission as the amount and composition of feed varies throughout 88 

lactation (Garnsworthy et al., 2012b;Bell et al., 2014a;Lassen and Løvendahl, 2016). 89 

Repeated measurements obtained from infrared sensors can be used to estimate the variation 90 

in CH4 emission between cows. Lassen and Løvendahl (2016) found genetic variation in CH4 91 

emission that was summarized in several phenotypes. The heritabilities ranged between 0.16 92 

and 0.21, providing support for the use of CH4 concentrations measured using infrared sensors 93 

in AMS to decrease CH4 emission through selective breeding.    94 

The aim of this study was to quantify the genetic variation of CH4 emission by Dutch dairy 95 

cows measured using infrared sensors installed in AMS. The dataset comprised of CH4 and 96 

CO2 measurements taken with infrared sensors on Dutch Holstein Friesian cows located on 97 
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commercial dairy farms. Measurements were summarized into different CH4 phenotypes per 98 

AMS visit and repeatability and heritability were calculated for these phenotypes.  99 

 100 

MATERIALS AND METHODS 101 

 102 

Ethical Statement 103 

This research was accredited by the animal experimentation committee of Wageningen 104 

University and Research and the central committee animal trials under application number 105 

2013085 and trial code 2013097.  106 

Methane Sensor 107 

Methane phenotypes were measured using sensors. These sensors were tested in climate 108 

respiration chambers (CRC) before they were installed on commercial farms. In this test, CH4 109 

emissions of 20 individual Holstein Friesian cows were recorded in CRC for 3 consecutive 110 

days and, simultaneously, by the sensor. In the CRC, CH4 and CO2 were measured every 12.5 111 

min as described by Heetkamp et al. (2015). The sensors were gas analyzers (SenseAir LPL 112 

CH4/CO2, Rise Acreo, Stockholm, Sweden) that were installed in line with the cow’s nostrils 113 

when standing and facing forward. Air was drawn through the instrument at 1 l/min; CH4 and 114 

CO2 concentrations were measured continuously using a non-dispersive infrared (NDIR) 115 

technique, and logged twice per second. Phenotypes were defined as follows: CH4 production 116 

(l/d) from CRC; CH4 concentration (ppm) from sensor; and CH4:CO2 ratio from sensor.   117 

Data 118 

CH4 and CO2 concentrations (ppm) were measured on 1508 primiparous and multiparous 119 

dairy cows from 11 commercial farms in the Netherlands. On nine of these farms, cows were 120 

fed in the morning, whereas on one farm cows were fed in the evening. In addition, some 121 

farms had automatic feed pushers that compiled the feed continuously during the day, and one 122 
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farm had an automatic feeder that fed the cows freshly mixed feed up to 30 times a day. 123 

Furthermore, cows on some farms could graze during the day whereas cows on other farms 124 

were kept indoors. More than 85% of the cows were at least 7/8 Holstein Friesian. 125 

Measurements were taken during milking in automatic milking systems (AMS; Lely 126 

Astronaut A4, Lely Industries NV, Maassluis, the Netherlands) using NDIR sensors. A total 127 

of four sensors were used to collect all data by installing them consecutively in different 128 

AMS. Measurements were taken in a total of 23 AMS, one to four AMS per farm, between 129 

November 2013 and March 2016. The data from these sensors were linked to the data from 130 

the AMS to obtain the identification numbers (ID) of the cows and, subsequently, additional 131 

animal information, such as week of lactation. The data of the sensors were aligned to the 132 

AMS visits as both were recorded on different devices. The alignment between these devices 133 

was based on the pattern of AMS visits, i.e., duration and order of AMS visits and the time 134 

between the AMS visits. This pattern was aligned in such a way that CH4 and CO2 135 

concentrations were highest during AMS visits and lowest in between AMS visits. After 136 

alignment, the ID of the cows were used to link sensor data to data from the cooperative cattle 137 

improvement organization CRV (Arnhem, the Netherlands) to obtain the pedigree. The 138 

pedigree was traced back two generations, resulting in 4,214 animals in the pedigree. 139 

Data Editing 140 

Data from the sensors and AMS were edited based on several conditions. The first condition 141 

was that only data from days with sensor measurements for at least 30% of the day were kept. 142 

Days with less than 30% data were mostly without data or the data present were fragmentary 143 

and these days were, therefore, discarded. The number of days with measurements ranged 144 

from ten up to 81 per AMS. The second condition was that AMS visits should last at least 90 145 

seconds and AMS visits shorter than 90 seconds were removed from the dataset. Removing 146 

AMS visits shorter than 90 seconds ensured that most AMS visits that did not result in a 147 
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milking, and would, thus, not provide a steady measurement, were removed from the dataset. 148 

The third condition was that the ID of the cow visiting the AMS should be known. AMS visits 149 

without cow ID were removed from the dataset, as these could not be linked to the pedigree. 150 

The fourth condition was that week of lactation of the cow visiting the AMS should be known 151 

and cows should be between one and 60 weeks in lactation. The fifth condition was that AMS 152 

visits with missing CH4 phenotypes (see phenotypes) or missing model effects (see model 1) 153 

were removed from the dataset. The sixth and last condition was that each cow should have at 154 

least four AMS visits. After editing, a total of 129,900 AMS visits on 1,508 dairy cows that 155 

had on average 86 AMS visits (range: 4-295 AMS visits) were available for analysis. The 156 

number of cows ranged between 62 and 224 per farm.  157 

AMS visits that had a standardized residual effect >3.5 based on model 1 for CH4mean, 158 

CH4log, CO2mean, CO2log, Ratiomean or Ratiolog were considered outliers and were 159 

removed. After removal of the outliers, the dataset consisted of 123,369 AMS visits from 160 

1,508 dairy cows. This dataset was used to estimate the variance components and genetic 161 

parameters.   162 

Phenotypes 163 

The CH4 and CO2 measurements were summarized per AMS visit into six phenotypes. To 164 

correct for the background levels of CH4 and CO2 in the barn, offsets for CH4 and CO2 were 165 

calculated per AMS visit. The background levels of CH4 were assumed to be 0 ppm and the 166 

offset for CH4 was the mean of the 10 lowest values for CH4 in a specific AMS visit. As the 167 

background levels of CO2 were assumed to be 400 ppm, the offset for CO2 was the mean of 168 

the lowest 10 values for CO2 minus 400. The CH4 offset was subtracted from the individual 169 

(twice per second) CH4 measurements during a specific AMS visit and the CO2 offset was 170 

subtracted from the individual CO2 measurements. After adjustment for the offsets, the 171 

methane phenotypes were calculated. The first phenotype is the mean of CH4 per AMS visit 172 
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(CH4mean). The second phenotype is the mean of CO2 per AMS visit (CO2mean). The third 173 

phenotype is based on the ratio (CH4/CO2) per AMS visit and is calculated as the mean of 174 

CH4 divided by the mean CO2 per AMS visit (Ratiomean). The residuals of the traits based 175 

on model 1 were not normally distributed. For example, the residuals of CH4mean showed a 176 

thicker and longer right tail (Kurtosis=3.24). Therefore, phenotypes were log10-transformated 177 

and after transformation residuals became normally distributed (Kurtosis of log10-transformed 178 

CH4mean=0.55). These log10-transformations resulted in the fourth phenotype CH4log 179 

(log10(CH4mean)), fifth phenotype CO2log (log10(CO2mean)), and sixth phenotype Ratiolog 180 

(log10(Ratiomean)). Furthermore, milk yield in kg per AMS visit was included as a general 181 

trait.  182 

Data Analysis 183 

Variance components of the phenotypes were estimated with ASReml 4.1 (Gilmour et al., 184 

2015) using the following model: 185 

Yijklm = mu + DayAMSi + Lactationweekj + Hour*Farmk + Animall + Permanentm + eijklm 186 

 (model 1) 187 

Where Yijklm is the dependent variable (CH4mean, CO2mean, Ratiomean, CH4log, CO2log, 188 

Ratiolog or milk yield); mu is the mean; DayAMSi is the combined effect of day of 189 

measurement, farm of measurement, AMS of measurement and sensor of measurement (991 190 

levels); Lactationweekj is the fixed effect of week of lactation (60 levels); Hour*Farmk is the 191 

fixed interaction of hour of the day (24 levels) and farm of measurement (11 levels); Animall 192 

is the random additive genetic effect of animal (~ N (0, Aσ2
Animal)) with additive genetic 193 

relationship matrix A and additive genetic variance σ2
Animal; Permanentm is the random 194 

permanent environmental effect (~ N (0, Iσ2
Permanent)) with identity matrix I and permanent 195 

environmental variance σ2
Permanent; and eijklm is the random error effect (~ N(0, Iσ2

Error)) with 196 

identity matrix I and residual variance σ2
Error.  197 
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Measurement Period 198 

For analysis, all data available for each cow were used, ranging from 1 to 81 days per cow. To 199 

study the effect of length of measurement period a subset of the data was used consisting of 200 

data from one AMS on one farm during 50 consecutive days from December 2015 to 201 

February 2016. The measurement period lengths that were tested were 3, 5, 10, 20, and 30 202 

consecutive days. For each of these lengths, five individual datasets with that length in 203 

consecutive days were created by random sampling from the dataset of 50 days (e.g., five 204 

datasets containing 30 consecutive days). Datasets of the same measurement period length 205 

were sometimes partially overlapping. Repeatabilities were calculated for each measurement 206 

period dataset, and repeatabilities and their standard errors were averaged over the five 207 

datasets for each measurement period length.  208 

Genetic Parameters 209 

The repeatability was calculated as follows: 210 

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
σAnimal

2 +  σPermanent
2  

σAnimal
2  + σPermanent

2  + σError
2  211 

with additive genetic variance σ2
Animal, permanent environmental variance σ2

Permanent and 212 

residual variance σ2
Error. The heritability (h2) was calculated as follows:   213 

h2= 
σAnimal

2

σAnimal
2  + σPermanent

2  + σError
2  214 

We presented the descriptive statistics on all six phenotypes, but the genetic parameters of 215 

only the log10-transformed phenotypes were shown. As the residuals of the untransformed 216 

phenotypes were not normally distributed, this could affect the results found for these genetic 217 

parameters. Effects of the model parameters were presented on the untransformed phenotypes 218 

as these effects are then easier to interpret.  219 

The accuracy of the breeding value for CH4 emission for a cow was calculated as: ට
௠௛మ

(௠ିଵ)௧ାଵ
 220 
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where m is the number of repeated sensor measurements in an AMS, h2 is the heritability, and 221 

t is the repeatability. The accuracy of breeding value for CH4 for a bull with half-sib daughters 222 

was calculated as: ට
௡௫మ

(௡ିଵ)௫మାସ
   where n is the number of half-sib daughters and x is the 223 

accuracy of the breeding value of the daughters with 25 repeated sensor measurements each. 224 

 225 

RESULTS   226 

 227 

Methane Sensor Test 228 

During the test, the repeatabilities of CH4 production (l/d), CH4 concentration (ppm) and 229 

CH4:CO2 ratio were calculated using data averaged per cow per day. Repeatability of CH4 230 

production obtained from CRC measurements was 0.87 (s.e.=0.04), repeatability of CH4 231 

concentration obtained from sensor measurements was 0.90 (s.e.=0.04) and repeatability of 232 

CH4:CO2 ratio obtained from sensor measurements was 0.94 (s.e.=0.02). The correlation 233 

between CH4 production obtained from CRC and CH4 concentration obtained from sensor 234 

was 0.71 (s.e.=0.10). The correlation between CH4 production obtained from CRC and 235 

CH4:CO2 ratio obtained from sensor was 0.49 (s.e.=0.18).  236 

Descriptive Statistics 237 

Descriptive statistics on the six methane phenotypes and on milk production per AMS visit 238 

are represented in Table 1. After the log10-transformation, the means and standard deviations 239 

of CH4mean and CO2mean decreased, whereas the mean and standard deviation increased in 240 

an absolute sense for Ratiomean. A milk yield of 0 kg for 619 AMS visits illustrates that 241 

during these AMS visits the cows were not milked by the AMS. These AMS visits were still 242 

present in the dataset, despite removing AMS visits shorter than 90 seconds. We considered 243 

any AMS visit longer than 90 seconds suitable for CH4 and CO2 measurements, irrespective if 244 

the cow was being milked during that visit.  245 
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Effect of Hour of the Day on Methane Emission 246 

In general, the effect of hour of the day on CH4mean, as obtained from model 1, was lower 247 

during the night and higher during the day. This general pattern showed variation between 248 

farms, as demonstrated by farms A and B in Figure 1. Farm A showed two distinct peaks in 249 

CH4mean during the day: the first peak around 9 AM and the second peak around 8 PM. Farm 250 

B showed a strong increase in CH4mean during the day compared with the night. Both types 251 

of patterns were present in the dataset, but most farms had a pattern similar to that of farm A.  252 

Effect of Week of Lactation on Methane Emission 253 

The effect of week of lactation on CH4mean, as obtained from model 1, for the first 50 weeks 254 

of lactation is presented in Figure 2. The effect of week of lactation on CH4mean increased 255 

rapidly during the first 12 weeks of lactation. After this strong increase, the effect of week of 256 

lactation on CH4mean remained relatively constant until 35 weeks in lactation and decreased 257 

gradually thereafter. Between weeks 12 and 35, the effect of lactation week accounted for 3-258 

7% of the variation in the mean of CH4mean. 259 

Genetic Parameters for Methane Emission 260 

Repeatabilities and heritabilities of the log10-transformated methane phenotypes and milk 261 

production are presented in Table 2. The repeatabilities ranged between 0.14 and 0.31 for the 262 

methane phenotypes, were similar for CH4log and CO2log, and were lower for Ratiolog. The 263 

heritabilities were lower than the repeatabilities and ranged between 0.03 and 0.12 for the 264 

methane phenotypes. Heritabilities were similar for CH4log and CO2log, and were lower for 265 

Ratiolog. Milk yield per AMS visit had a higher repeatability (0.45) and heritability (0.17) 266 

than the methane phenotypes. Standard errors of the repeatabilities and heritabilities were 267 

between 0.005 and 0.03.  268 

The accuracy of the breeding value for CH4 emission expressed as CH4log for a cow based on 269 

25 repeated sensor measurements in an AMS was 0.61. For a bull with 25 daughters, where 270 
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each daughter has 25 repeated sensor measurements, the accuracy of the breeding value for 271 

CH4 emission was 0.85. 272 

Effect of Measurement Period  273 

The average repeatabilities and standard error of each measurement period length are 274 

presented in Table 3. All three methane phenotypes showed higher repeatabilities in 275 

measurement periods longer than 5 days compared with shorter measurement periods. 276 

Measurement periods longer than 10 days did not lead to further improvements of the 277 

repeatabilities. Standard errors decreased with increasing measurement period length, but the 278 

largest decrease occurred with the increase in measurement period from 3 to 5 days. 279 

Furthermore, repeatabilities of the measurement period of 10 days were not significantly 280 

different from the repeatabilities of the dataset with all observations from that specific AMS.  281 

 282 

DISCUSSION 283 

 284 

The aim of this study was to quantify the genetic variation in methane phenotypes measured 285 

with NDIR sensors in AMS. Methane phenotypes based on sensor measurements of CH4 and 286 

CO2 on Dutch dairy cows were both repeatable and heritable. The repeatabilities of these 287 

phenotypes ranged between 0.14 and 0.31. The heritabilities of these phenotypes ranged 288 

between 0.03 and 0.12, indicating that there is genetic variation in these phenotypes. 289 

Methane Sensor Test 290 

High repeatability of CH4 production obtained from CRC measurements and of CH4 291 

concentration obtained from sensors agree with the literature (Bell et al., 2014b;Donoghue et 292 

al., 2016). The high repeatabilities found in the present study demonstrate high consistency 293 

between subsequent measurements on the same animal, implying high precision of 294 

measurement and suggesting consistent differences between animals. High repeatabilities and 295 
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moderate correlations demonstrate the potential of the sensor method for the collection of 296 

phenotypes on CH4 emission for large numbers of individual animals. Repeatabilities are 297 

expected to be lower when installed in AMS because of more variable conditions on the farm. 298 

This limitation is most likely compensated by the ability to perform large-scale collection of 299 

data on commercial dairy farms. This facilitates repeated measures on a single animal and 300 

recording large numbers of animals, both contributing to the accuracy of estimated breeding 301 

values. 302 

Methane Phenotypes 303 

Phenotypes used in this study were measured in parts per million (ppm). In the literature 304 

concentration measurements (in ppm) have been transformed to CH4 production (g/day) using 305 

a dilution factor or using CO2 production (Madsen et al., 2010;Garnsworthy et al., 306 

2012a;Lassen and Løvendahl, 2016). These transformations, however, are based on several 307 

assumptions, like a constant CO2 production of a cow throughout the day, that may not always 308 

be met. The CH4 production that is obtained after transformation is affected by the accuracy 309 

of these assumptions. For breeding, absolute values are not needed, as it focusses on the 310 

relative differences between animals to select the best animals.  311 

Phenotypes similar to those used in our study were also used in other studies (e.g. Madsen et 312 

al. 2010; Lassen et al. 2012; Bell et al. 2014b). The absolute values of such similar 313 

phenotypes, however, have not been published except for Ratiomean, i.e., the mean of the 314 

ratio between CH4 and CO2. We included Ratiomean in our study because it was reported in 315 

other studies and can be used to quantify methane production (Madsen et al., 2010). The 316 

absolute value of Ratiomean in our study was considerably higher than the one reported by 317 

Lassen et al. (2012), i.e., 0.17 vs. 0.065. The reason for this difference is unclear as the 318 

absolute values of the underlying traits to Ratiomean, i.e., CH4mean and CO2mean, were not 319 

reported by Lassen et al. (2012). Breeding, however, does not depend on absolute values, and, 320 
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therefore, it is expected that the difference in absolute value of Ratiolog compared with the 321 

literature would not affect the direction of selection if Ratiolog would be used for selection.  322 

Milk Yield 323 

Selective breeding for milk yield has led to substantial genetic progress over time. Heritability 324 

for milk yield per AMS visit in our study was 0.17 (s.e.=0.03). This heritability is slightly 325 

lower than the heritability of 0.24 reported (Mulder et al., 2004) for milk yield per day 326 

recorded in AMS. The heritability of CH4log was 0.11 (s.e.=0.02), which is comparable with 327 

the heritability of milk yield per AMS visit. This indicates that there is potential for a 328 

reduction in methane emission through selective breeding when using sensor measurements in 329 

AMS.   330 

Effect of DayAMS 331 

The DayAMS effect that was used in the model includes the effects of the day, farm, AMS, 332 

and sensor of measurement. These effects could not be disentangled in our study, because 333 

most measurements took place on one farm at a time, with a single sensor installed per AMS. 334 

To study the impact of the DayAMS effect on the methane phenotypes, an additional analysis 335 

was performed in which DayAMS was included in model 1 as a random effect instead of as a 336 

fixed effect. This analysis showed that the percentage of total variation that was explained by 337 

the DayAMS effect was 56% for CH4log, 27% for CO2log, and 82% for Ratiolog. These 338 

results indicate that the phenotypes were largely influenced by the DayAMS effect, and 339 

illustrates that accounting for the effects of day of measurement, farm, AMS, and sensor is 340 

important when analyzing methane phenotypes. Farm conditions that are known to influence 341 

CH4 measurements are season, air flow, and barn management (Wu et al., 2016). The large 342 

effect of DayAMS agrees with the other studies that acknowledge the impact of farm of 343 

measurement and farm conditions on methane measurements (Bell et al., 2014a;Hammond et 344 

al., 2016).  345 
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Effect of Hour of the Day on Methane Emission 346 

Hour of the day had a significant effect in our analysis with a p-value below 0.001 when 347 

DayAMS was included in model 1 as random. The size of the effect is relatively small 348 

compared with the effect of DayAMS. This is in line with previous studies that reported 349 

diurnal variation in methane emission, mainly driven by the time of feeding of the cows 350 

(Garnsworthy et al., 2012b;Lassen et al., 2012;Bell et al., 2014b). To deal with the rather 351 

different feeding strategies of the 11 farms in our study (see material and methods), a farm by 352 

hour of the day interaction was included in the model instead of a single hour of the day 353 

effect. Not only the moment of feeding differed between the farms, but also the amount of 354 

times the cows were fed and the possibility of grazing. These diverse strategies resulted in 355 

hour of the day effects per farm that were different for each farm. Therefore, inclusion of the 356 

interaction between hour of the day and farm instead of a single hour of the day effect into the 357 

model was preferred to deal with these diverse feeding strategies.  358 

Effect of Week of Lactation on Methane Emission 359 

Week of lactation had a significant effect in the model with a p-value below 0.001 when 360 

DayAMS was included in model 1 as random. The size of the effect is relatively small 361 

compared with the effect of DayAMS. As feed composition and intake usually changes 362 

throughout lactation, week of lactation can affect CH4 emission (Garnsworthy et al., 363 

2012b;Bell et al., 2014a;Lassen and Løvendahl, 2016). Previous studies also reported effects 364 

of lactation stage on methane emission measured in AMS (Garnsworthy et al., 2012b;Bell et 365 

al., 2014a;Lassen and Løvendahl, 2016). Similar to our study, these studies found an increase 366 

in methane emissions during the first weeks of lactation. The highest level of methane 367 

emission was found at around 10 weeks of lactation by Lassen and Løvendahl (2016), at 20 368 

weeks of lactation by Garnsworthy et al. (2012b), and at 12 weeks of lactation in our study. 369 

After the initial increase in methane emission per week of lactation, either a stable level of 370 
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methane emission until 50 weeks in lactation was reported (Bell et al., 2014a), or a decrease 371 

in methane emission per week of lactation was reported (Garnsworthy et al., 2012b;Lassen 372 

and Løvendahl, 2016). The extent of this decrease varied between 20% of the peak methane 373 

emission at 50 weeks of lactation (Garnsworthy et al., 2012b) and 80% of the peak methane 374 

emission at 44 weeks of lactation (Lassen and Løvendahl, 2016). In our study, methane 375 

emission decreased with about 33% of the peak methane emission at 50 weeks of lactation. 376 

The pattern found in our study is comparable with the patterns found in literature and the 377 

found differences in patterns might be explained by many different factors such as the used 378 

phenotypes. Our study used CH4mean in ppm as phenotype whereas the other studies used 379 

methane in g/day that was either from the integral area under the peaks of methane emission 380 

(Garnsworthy et al., 2012b) or by the ratio between CH4 and CO2 in relation to heat-381 

producing units (Lassen and Løvendahl, 2016). Based on the results of our study and of the 382 

literature, inclusion of lactation stage into the model to analyze methane emission is 383 

recommended.  384 

Repeatabilities of Methane Phenotypes 385 

Selective breeding requires a repeatable phenotype for methane emission and methane 386 

phenotypes measured in AMS using infrared sensors could be suitable phenotypes. In this 387 

study, repeatabilities of the log10-transformed methane phenotypes ranged between 0.14 and 388 

0.31. Other studies have reported repeatabilities of CH4 measured in AMS that ranged 389 

between 0.34 for the mean of CH4 and 0.86 for the mean of CO2 (Lassen et al., 2012;Bell et 390 

al., 2014b). In general, the repeatabilities found in other studies were higher than the 391 

repeatabilities found in our study. Both studies of Lassen and Bell used a model that corrects 392 

for diet effects and this might explain the higher repeatabilities found in these studies 393 

compared with our study. Repeatabilities found in our study and other studies do confirm that 394 

methane measurements by infrared sensors in AMS provide repeatable phenotypes. 395 
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Effect of Measurement Period 396 

Measurement period has influenced the repeatabilities found in our study, and other studies 397 

have chosen different measurement periods. Bell et al. (2014b) measured CH4 and CO2 for a 398 

35-day period whereas Lassen et al. (2012) measured for a 3-day period. The results obtained 399 

from our study indicate that repeatabilities (and their standard errors) remained stable in 400 

measurement periods of at least 10 consecutive days. In other words, the value of additional 401 

repeated measurements beyond 10 days of measurements on the same individual was close to 402 

zero. Although Lassen et al. (2012) used a shorter measurement period than our study, their 403 

reported standard errors are small (s.e.=0.003 – 0.006). This indicates that the repeatability 404 

reported will likely not be affected by increasing the measurement period.  405 

Genetic Parameters for Methane Emission 406 

The heritabilities of the log10-transformed phenotypes in this study were 0.11 for CH4log, 0.12 407 

for CO2log, and 0.03 for Ratiolog. Lassen and Løvendahl (2016) measured methane using 408 

infrared sensors in AMS on 3,121 Holstein cows and calculated heritabilities of methane 409 

emission. Methane emission calculated using the ratio between CH4 and CO2 (in ppm) gave a 410 

heritability of 0.16 and both CH4 in g/day and CH4 in g/kg fat and protein corrected milk gave 411 

a heritability of 0.21. These heritabilities were slightly higher compared with the heritabilities 412 

of CH4log and CO2log in our study. The heritability of Ratiolog of our study is considerably 413 

lower compared with the other heritabilities. Lassen et al. (2012) used the ratio between CH4 414 

and CO2 to create a more stable phenotype that was less influenced by the position of the head 415 

of the cow to the sensor. In our study, however, we found that Ratiolog had relatively more 416 

total variation and less genetic variation than CH4log and CO2log. Therefore, based on the 417 

results of our study, the use of CH4log for selection instead of Ratiolog would be expected to 418 

give a greater reduction of methane emission by dairy cows.  419 
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The heritability of the phenotypes showed that there is genetic variation present in CH4 and 420 

CO2 measured using infrared sensors in AMS, indicating that these phenotypes could be used 421 

in selective breeding. The reduction in methane emission that could be achieved through 422 

selective breeding depends on the genetic variance of methane emission, the intensity of 423 

selection, the accuracy of selection, and the relationship between methane emission and the 424 

other breeding goal traits. The accuracies of breeding values for methane emission for cows 425 

and bulls were 0.61 and 0.85, respectively. This illustrates that fairly accurate estimates of 426 

breeding values for selective breeding can be obtained based on repeated methane 427 

measurements on a limited number of daughters per bull.   428 

 429 

CONCLUSIONS 430 

 431 

CH4log, CO2log, and Ratiolog were all repeatable and heritable, but Ratiolog had a lower 432 

repeatability and heritability than the other two traits. It is recommended to measure CH4 and 433 

CO2 on at least 10 consecutive days to maximize repeatabilities of the methane phenotypes. It 434 

is important to account for farm, AMS, day of measurement, time of day, and lactation stage 435 

when estimating genetic parameters for methane phenotypes. The use of CH4log for selection 436 

instead of Ratiolog would be expected to give a greater reduction of methane emission by 437 

dairy cows.  438 
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Table 1. Descriptive statistics of phenotypes on methane (CH4) and carbon dioxide (CO2) 515 

measured with non-dispersive infrared (NDIR) sensors in automatic milking systems (AMS) 516 

on 1,508 Dutch dairy cows (123,369 AMS visits) 517 

Trait Mean SD1 Minimum Maximum 

CH4mean (ppm) 254 230 11 2073 

CH4log (ppm)2 2.25 0.37 1.04 3.32 

CO2mean (ppm) 1443 681 408 9054 

CO2log (ppm)2 3.11 0.20 2.61 3.96 

Ratiomean 0.17 0.12 0.01 0.87 

Ratiolog2 -0.87 0.27 -1.92 -0.06 

Milk (kg)3 10.8 3.4 0.00 36.50 

1 Standard deviation. 518 

2 Log10-transformed phenotypes. 519 

3 Milk production per AMS visit. 520 

  521 
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Table 2. Repeatabilities and heritabilities of phenotypes on methane (CH4) and carbon 522 

dioxide (CO2) measured with non-dispersive infrared (NDIR)  sensors in automatic milking 523 

systems (AMS) on 1,508 Dutch dairy cows (123,369 AMS visits)1 524 

Trait repeatability heritability 

CH4log (ppm)2 0.27 (0.008) 0.11 (0.02) 

CO2log (ppm)2 0.31 (0.009) 0.12 (0.02) 

Ratiolog2 0.14 (0.005) 0.03 (0.01) 

Milk (kg)3 0.45 (0.010) 0.17 (0.03) 

1 This table contains the repeatability (repeatability = σ2
Animal + σ2

Permanent  / σ2
Animal + σ2

Permanent 525 

+ σ2
Error) and the heritability (heritability = σ2

Animal / σ2
Animal + σ2

Permanent + σ2
Error) with their 526 

respective standard errors in parentheses.    527 

2 Log10-transformed phenotypes. 528 

3Milk production per AMS visit. 529 

  530 
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Table 3. The average repeatability of phenotypes on methane (CH4) and carbon dioxide 531 

(CO2) measured with non-dispersive infrared (NDIR) sensors in automatic milking systems 532 

(AMS) on Dutch dairy cows over different measurement period lengths1,2  533 

Measurement period N CH4log3 CO2log3 Ratiolog3 

Total AMS period 8,851 0.19 (0.029) 0.16 (0.026) 0.19 (0.026) 

3 days 376 0.12 (0.075) 0.12 (0.062) 0.14 (0.079) 

5 days 650 0.15 (0.055) 0.12 (0.044) 0.15 (0.054) 

10 days 1,295 0.22 (0.049) 0.17 (0.043) 0.22 (0.048) 

20 days 2,567 0.23 (0.040) 0.18 (0.034) 0.23 (0.038) 

30 days 3,827 0.23 (0.037) 0.18 (0.031) 0.22 (0.034) 

50 days 6,296 0.22 (0.032) 0.16 (0.026) 0.21 (0.030) 

1Per measurement period length 5 random samples were taken from the dataset of 50 534 

consecutive days, and numbers reported are the average over these 5 random samples. Total 535 

AMS period consists of all data from the one AMS (73 days) of which the dataset of 50 536 

consecutive days was obtained.  537 

2 The table contains the measurement period in days, the average number of AMS visit per 538 

measurement period (N), and the average repeatability per methane phenotype  (repeatability 539 

= σ2
Animal + σ2

Permanent  / σ2
Animal + σ2

Permanent + σ2
Error) with their respective average standard 540 

error (s.e.) in parentheses. 541 

3Log10-transformed phenotypes. 542 

  543 
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Figure 1. Effect of hour of the day on CH4mean (ppm) measured with non-dispersive infrared 544 

(NDIR)  sensors in automatic milking systems (AMS) on 1,508 Dutch dairy cows. The figure 545 

shows two representative farms (A = 5,554 AMS visits; B = 20,458 AMS visits). The effect 546 

of hour 4 was set to zero for both farms to enable comparison and the other effects are 547 

expressed relative to hour 4. 548 

 549 

Figure 2. Effect of week of lactation on CH4mean (ppm) measured with non-dispersive 550 

infrared (NDIR)  sensors in automatic milking systems (AMS) on 1,508 Dutch dairy cows 551 

(123,369 AMS visits). The effect of week 4 of lactation was set to zero and the other effects 552 

are expressed relative to week 4. 553 

 554 

  555 
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Van Engelen et al., Figure 1 556 

 557 
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Van Engelen et al., Figure 2 560 

 561 

 562 

 563 

-20

-15

-10

-5

0

5

10

15

20

0 10 20 30 40 50

E
ff

ec
t 

on
 C

H
4m

ea
n

 (
pp

m
)

Week of lactation (weeks)


