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Abstract 
 

In recent years, there has been an increasing interest in alternative fuel vehicles (AFVs), such as 

electric vehicles (EVs), fuel cell vehicles (FCVs) and compressed natural gas (CNG) vehicles, as a 

promising option for mitigating global warming and reducing energy consumption. Most studies in 

this area have been conducted on only a few types of powertrains, e.g. EVs and gasoline vehicles; 

to fill this gap, this study will cover FCVs, CNGs, hybrid electric vehicles, diesel hybrid electric 

vehicles and liquefied petroleum gas (LPG) vehicles. Moreover, most of the papers focus on the 

use phase of those vehicles and disregard the manufacturing part, which is energy and emission 

intensive. The indirect effects of emissions production include severe health problems such as 

chronic asthma or even mortality. Automakers and policy makers need to investigate the lifecycle 

emissions of vehicles in different regions. It is crucial to decide if governments should invite EV 

production into their country, or whether it would be more appropriate to import vehicles. This 

research is novel because it includes energy security aspects, uses multiple scenario analysis, and 

investigates FCVs and various stages of AFV’s lifecycle in different regions. The objective of the 

thesis is to systematically assess the sustainability of AFVs. Firstly, the economic pillar of 

sustainability is being investigated by carrying out optimisation. The optimal AFV portfolio, based 
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on different scenarios to sustain energy security in light of gas and petroleum restrictions until 

2030, is being calculated. The Polish market is considered as a case for demonstrating the optimal 

model. Secondly, environmental and social pillar of sustainability is explored. Life cycle 

assessment (LCA) has been applied to this research in order to quantify greenhouse gas (GHG) and 

non-GHG emissions and health impacts of air pollution connected with AFVs. We assessed air 

pollution from vehicles in Japan, China, and the United Kingdom (UK) and additionally health 

impact for Poland. 

This research help automakers and policymakers recognise investment possibilities and it provides 

numerical findings for multiple stakeholders such as governments, energy, and automotive 

companies. The findings from scenario analysis can be used to create government policies and 

proposals, which was already studied in conventional studies. The results from LCA are crucial for 

strategic decision making on investment in EVs.  

Chapter 1 presents the background and subject of the research, previous studies deliverables, 

originality, motivation, and objective of the study. In Chapter 2 methods of the thesis are briefly 

described. Chapter 3 provides qualitative analysis of AFV and insights into automotive industry 

and energy sectors of the case studied country. The results from interviews suggest that 

environmental issues are neglected in Poland; the price of the vehicle is the most important reason 

influencing the purchase. Moreover, the introduction of incentive system for AFVs for both 

companies and private entities might spur the sales of the cars again.  

Chapter 4 elucidates the optimization model, and constraints, variables, and results for vehicle 

portfolio analysis. The results indicate that it is crucial to introduce all types of powertrains to 

achieve both economic and energy security objectives. The projected diffusion of FCVs will be 

more pronounced than that in previous studies, owing to the expected rapid decline in the cost of 
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both infrastructure and purchase price of cars.  

Case study for shale gas revolution and vehicle portfolio analysis is illustrated in Chapter 5. The 

results of this study suggest that due to shale gas revolution and decrease of gas prices, the 

portfolio of AFVs improves. Moreover, the results show that increased use of shale gas engenders 

the high consumption of water. Even though shale gas might improve the AFV portfolio the 

drawbacks of high water consumption and safety threads might hinder the positive aspects of 

implementing it in a long run. Water safety measures such as water recycling, reusing and disposal; 

technology choice; establishing the plants in low-density areas; are crucial while considering 

investment in shale gas. 

Chapter 6 explains the LCA method, scenarios, and data used in the calculations for two case 

scenarios. Government and automotive companies can use created a model to make crucial 

decisions while setting up the location of the production plant. The results of the LCA simulations 

are provided in Chapter 7. Results for the LCA: GHG and non-GHG emissions indicate that EVs 

do not necessarily decrease pollutant emissions. Only in the UK the environmental cost of GHG 

and non-GHG emissions for EVs is lower than for GVs. EVs are more environmentally intensive 

than GVs.  The substantial difference between those two is attributed to battery manufacturing EVs 

produce less CO2 during use phase, but other emissions are still high. However, a high decrease of 

the cost is projected in the Technological Advancement Scenario, especially for China. The results 

of the second case study LCA: Health effects imply that the total cost of health issues is lower 

when import of EVs is from the nearby countries, which generate electricity from clean energy 

resources or when it is produced in a low emission country locally. Surprisingly, maritime 

transportation accounts for a substantial portion of the total emissions, because ships use diesel oil. 

That is why one of the recommendations is to switch from diesel oil ferries to LNG ships. 

Moreover, in 2025, the monetary cost of health diseases drops dramatically due to significant 
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technology improvements such as increases in energy efficiency and production, increase in the 

share of renewable sources in the electricity mix, stricter air emission standards. Finally, 

conclusions and limitation of the study are presented in Chapter 8. 
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Abstract 

In recent years, there has been an increasing interest in alternative fuel vehicles (AFVs), such 

as electric vehicles (EVs), fuel cell vehicles (FCVs) and compressed natural gas (CNG) 

vehicles, as a promising option for mitigating global warming and reducing energy 

consumption. Most studies in this area have been conducted on only a few types of 

powertrains, e.g. EVs and gasoline vehicles; to fill this gap, this study will cover FCVs, 

CNGs, hybrid electric vehicles, diesel hybrid electric vehicles and liquefied petroleum gas 

(LPG) vehicles. Moreover, most of the papers focus on the use phase of those vehicles and 

disregard the manufacturing part, which is energy and emission intensive. The indirect effects 

of emissions production include severe health problems such as chronic asthma or even 

mortality. Automakers and policy makers need to investigate the lifecycle emissions of 

vehicles in different regions. It is crucial to decide if governments should invite EV 

production into their country, or whether it would be more appropriate to import vehicles. 

This research is novel because it includes energy security aspects, uses multiple scenario 

analysis, and investigates FCVs and various stages of AFV’s lifecycle in different regions. 

The objective of the thesis is to systematically assess the sustainability of AFVs. Firstly, the 

economic pillar of sustainability is being investigated by carrying out optimisation. The 

optimal AFV portfolio, based on different scenarios to sustain energy security in light of gas 

and petroleum restrictions until 2030, is being calculated. The Polish market is considered as 

a case for demonstrating the optimal model. Secondly, environmental and social pillar of 

sustainability is explored. Life cycle assessment (LCA) has been applied to this research in 

order to quantify greenhouse gas (GHG) and non-GHG emissions and health impacts of air 

pollution connected with AFVs. We assessed air pollution from vehicles in Japan, China, and 

the United Kingdom (UK) and additionally health impact for Poland. 
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This research help automakers and policymakers recognise investment possibilities and it 

provides numerical findings for multiple stakeholders such as governments, energy, and 

automotive companies. The findings from scenario analysis can be used to create government 

policies and proposals, which was already studied in conventional studies. The results from 

LCA are crucial for strategic decision making on investment in EVs.  

Chapter 1 presents the background and subject of the research, previous studies deliverables, 

originality, motivation, and objective of the study. In Chapter 2 methods of the thesis are 

briefly described. Chapter 3 provides qualitative analysis of AFV and insights into 

automotive industry and energy sectors of the case studied country. The results from 

interviews suggest that environmental issues are neglected in Poland; the price of the vehicle 

is the most important reason influencing the purchase. Moreover, the introduction of 

incentive system for AFVs for both companies and private entities might spur the sales of the 

cars again.  

Chapter 4 elucidates the optimization model, and constraints, variables, and results for 

vehicle portfolio analysis. The results indicate that it is crucial to introduce all types of 

powertrains to achieve both economic and energy security objectives. The projected diffusion 

of FCVs will be more pronounced than that in previous studies, owing to the expected rapid 

decline in the cost of both infrastructure and purchase price of cars.  

Case study for shale gas revolution and vehicle portfolio analysis is illustrated in Chapter 5. 

The results of this study suggest that due to shale gas revolution and decrease of gas prices, 

the portfolio of AFVs improves. Moreover, the results show that increased use of shale gas 

engenders the high consumption of water. Even though shale gas might improve the AFV 

portfolio the drawbacks of high water consumption and safety threads might hinder the 

positive aspects of implementing it in a long run. Water safety measures such as water 
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recycling, reusing and disposal; technology choice; establishing the plants in low-density 

areas; are crucial while considering investment in shale gas. 

Chapter 6 explains the LCA method, scenarios, and data used in the calculations for two case 

scenarios. Government and automotive companies can use created a model to make crucial 

decisions while setting up the location of the production plant. The results of the LCA 

simulations are provided in Chapter 7. Results for the LCA: GHG and non-GHG emissions 

indicate that EVs do not necessarily decrease pollutant emissions. Only in the UK the 

environmental cost of GHG and non-GHG emissions for EVs is lower than for GVs. EVs are 

more environmentally intensive than GVs.  The substantial difference between those two is 

attributed to battery manufacturing EVs produce less CO2 during use phase, but other 

emissions are still high. However, a high decrease of the cost is projected in the 

Technological Advancement Scenario, especially for China. The results of the second case 

study LCA: Health effects imply that the total cost of health issues is lower when import of 

EVs is from the nearby countries, which generate electricity from clean energy resources or 

when it is produced in a low emission country locally. Surprisingly, maritime transportation 

accounts for a substantial portion of the total emissions, because ships use diesel oil. That is 

why one of the recommendations is to switch from diesel oil ferries to LNG ships. Moreover, 

in 2025, the monetary cost of health diseases drops dramatically due to significant technology 

improvements such as increases in energy efficiency and production, increase in the share of 

renewable sources in the electricity mix, stricter air emission standards. Finally, conclusions 

and limitation of the study are presented in Chapter 8. 
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1. INTRODUCTION 

1.1. Research background  

The total global energy demand has almost doubled since 1980 and studies have estimated 

that approximately 20% of the global energy is consumed by the transportation sector (OECD 

and International Transport Forum (ITF) 2015).  

It has been suggested that the volatility of petroleum prices and rapid technological 

developments are making Alternative Fuel Vehicles (AFVs) an increasingly promising option 

for decreasing energy consumption, GHG emissions, diversifying energy portfolio and 

maintaining energy security (IEA, 2015). The Figure 1 below present the fast spread of AFVs 

in the future.  

Figure 1 Forecast of the spread of AFVs. 

a Source : (IEA, Energy Technology Perspectives 2015) 
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AFVs can be defined as vehicles operating exclusively on an alternative fuels (e.g. electricity 

or compressed natural gas (CNG)) or on a hybrid of alternative and traditional fuels (U.S. 

Energy Information Administration 2013). The AFVs investigated in this study are fuel cell 

vehicles (FCVs), hybrid electric vehicles (HEVs), diesel hybrid electric vehicles (DHEVs), 

electric vehicles (EVs) and CNG vehicles. Liquefied petroleum gas (LPG) vehicles and diesel 

vehicles (DV) are not generally considered to be AFVs. It is projected that between 2012 and 

2040, the total volume of road vehicles will double; however, research has consistently 

shown that the adoption of more efficient technologies and switching to alternative fuels will 

slow the increase in demand for fuel relative to past periods (IEA, 2015). The demand on 

transportation is projected to be rising and it triggers the increase in CO2 emissions. Road 

transport emissions will increase by around 70% between 2015 and 2050. Even though the 

energy efficiency and average CO2 intensity of transport decreases substantially in this time 

period, the heavy increase in transport demand impede the positive trend (OECD and 

International Transport Forum (ITF) 2017). Moreover, the world will be faces with fossil fuel 

depletion. Production of oil from existing conventional fields is forecasted to fall by almost 

two-thirds by 2040. There is a need to supply the oil from not yet developed or not yet found 

sources. Furthermore, investment in alternative energy is crucial to lower emissions, global 

warming and improve energy security (International Energy Agency (IEA) 2015a). 

Air pollution is one of the top greatest risk factors for human health. According to pundits, 

roughly 6.5 million premature deaths are the aftermath of air pollution (International Energy 

Agency 2016). The cost of the health problems originating from air pollution stood at $330-

940B in 2010 for European Union (EC (European Commission) 2013). Industry, power 

plants, households, transport, agriculture and waste treatment are human-made sources of air 

pollution (International Energy Agency 2016). Inefficient and poorly regulated fuel 

combustion, residential heating, vehicles exacerbate the impact of emissions (Romejko and 
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Nakano 2017). Those activities cause emissions e.g. sulfur oxides (SO2), particulate matter 

(PM) and nitrogen oxides (NOx). More than a quarter of total energy-related emissions of 

SO2 are made in China (International Energy Agency 2016). Transportation attributes to over 

50% of all energy-related emission of NOx. For instance, only in China, more than 1 million 

premature deaths were recorded due to outdoor air pollution caused by particulate matter.  

Various AFVs have been developed to reduce greenhouse gas (GHG) emissions, air pollution 

and move transport economies away from petroleum use. In addition to technological 

improvements, policy proposals are crucial to the market success of AFVs (Dong et al. 2014). 

Customers will not find AFVs attractive without an affordable price, easy access to spare 

parts and repair services and readily available fuel. Equally important, automakers, 

governments and energy producers will not invest in AFV infrastructure and technology 

without the anticipation of a sizeable market (Struben and Sterman 2008). According to 

Christensen (2011), manufacturers have developed many AFV prototypes but have produced 

only a few on a large scale. Orsato and Wells (2007) stated that large-scale production 

reaching 250,000 units per vehicle model is necessary to reduce the manufacturing cost and 

provide affordable products. Companies cannot invest in every technology and must, 

therefore, develop products most promising for the spread of AFVs. 

The environmental benefits of AFVs have attracted the interest of several institutions into 

further research and development (Mimuro and Takanashi 2014). Governments in the United 

States (US) and European Union (EU) are implementing incentive systems and long-term 

introduction plans for alternative fuel vehicles as one of the solutions to environmental 

problems (Hawkins et al. 2013; International Energy Agency (IEA) 2015b). 

Governments are willing to invite manufacturers to establish green production technologies 

and promote EVs in their countries with the goals of increasing investment, fighting 
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unemployment, promoting clean energy, decreasing energy dependency, creating an 

environment-friendly image, and meeting the conditions of international agreements on 

environmental issues. However, sometimes setting the green production technologies does 

not necessary results in environmental gains. In this study we consider environmental 

leakage, which happens when rich country imports dirty products from developing countries. 

This phenomenon leads to displacement of emissions abroad and often an increase in the 

global pollution (Fæhn and Bruvoll 2009).  

 

Figure 2 Research problem outline 

Fig. 2 presents research problems that have been identified in order to proceed with the study. 
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1.2. Literature review, motivation and research objectives 

There have been plenty of previous studies carried out on Alternative Fuel Vehicles and 

future energy trends. According to International Energy Agency, the total global energy 

demand has almost doubled since 1980 and it is forecasted, that if the current trends continue 

unchanged, it will grow more by 85% by 2050 (International Energy Agency 2015). 
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Table 1 Survey of conventional studies 

The conventional studies analysis was carried out and the results are presented in the Table  

1.  

The analysis of conventional studies shows that either the studies are focused only on one 

type of the AFVs e.g. EVs (Nakano and Chua 2011; Graham-rowe et al. 2012; Nanaki and 

Koroneos 2013; Yagcitekin et al. 2014; Yabe et al. 2015) or do not take into account buses or 

lorries. Moreover, in most of the papers, energy security is not investigated.  Numerous 

researches have studied LCA, however most of them focused only on one stage of vehicle life 

(Brady and O’Mahony 2011; Howey et al. 2011; Jochem et al. 2015). Many studies 

investigate GHG emission, but disregard non-GHG emissions and health impact of the 

vehicles (Elgowainy et al. 2009; Nealer and Hendrickson 2015). Furthermore, there have 

been no studies, which analyze the impact of the shale gas revolution on AFV’s portfolio and 

its implications. Plenty of studies did not presented a systematic and broader view of the 

problem. The detailed analysis of the conventional studies can be find in Chapter 3, 4, 5 and 

6. 

That is why, the originality of this study is that it considers energy security issues, resource 

restrictions, multiple scenario analysis and takes into account the impact of different stages of 

AFVs’ use on environment, and society in different regions.  

This research is motivated by the fact that, AFVs presents a promising option for future 

transportation systems. The motivation of this research is to improve the global energy, 

environment and production systems, while using AFVs and sustainable approach.  

In this study, two research questions are being investigated: 
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Question 1: What is the optimal portfolio of Alternative Fuel Vehicles? 

Question 2: Where should the production site of Alternative Fuel Vehicles take place?  

The objective of this study is to systematically assess the impact of AFVs on economy, 

environment and society by conducting optimisation and life cycle assessment simulation.  

This thesis contributes with insights from interdisciplinary research on Alternative Fuel 

Vehicles. These results can be used to advantage by automotive companies and national 

institutions for strategic decision making on transport, energy policy, investment, and for 

informing policies supporting introduction of AFVs (e.g. government subsidies or tax 

exemptions). This study would be also beneficial for potential shale gas investors, as it would 

provide numerical results on water usage. This could influence their decision on investing in 

shale gas production. Automakers and policy makers need to investigate the lifecycle 

emissions of vehicles in different regions. It is crucial to decide if governments should invite 

EV production into their country, or whether it would be more beneficial to import vehicles. 

The results might encourage switching to EVs, and in order to do that, governments can 

implement either subsidy or environmental tax deduction. For this purpose, governments 

need to create target for policy creation, which was already studied by (Nakano and Chua 

2011; Nonaka and Nakano 2011). 

1.3. Structure of research 

This paper consists of eight chapters. Chapter 1 presents the background and subject of the 

research, previous studies deliverables, originality, motivation, and objective of the study. In 

Chapter 2 methods of the thesis are briefly described. Chapter 3 provides qualitative analysis 

of AFV and insights into automotive industry and energy sectors of the case studied country.  
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Chapter 4 elucidates the optimization model, and constraints, variables and results for vehicle 

portfolio analysis. Case study for shale gas revolution and vehicle portfolio analysis is 

illustrated in Chapter 5. Chapter 6 explains the LCA method, scenarios and data used in the 

calculations for two case scenarios. The results of the LCA simulations are provided in 

Chapter 7. Finally, conclusions and limitation of the study are presented in Chapter 8. 

The detailed structure of the research is presented in the Fig 3. 

Figure 3 Research structure 
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1.4. Published papers 

Periodically published articles (original articles related to main thesis): 

1.K. Romejko, M. Nakano, Portfolio analysis of alternative fuel vehicles considering 

technological advancement, energy security and policy, Journal of Cleaner Production Vol. 

142 (2016) pp. 39–49. doi:10.1016/j.jclepro.2016.09.029. 

Impact Factor (JCR): 4.959 (2015) 

SCI: 1.721 

2.K. Romejko, M. Nakano, Life Cycle Analysis of Emissions from Electric and Gasoline 

Vehicles in Different Regions, International Journal of Automotive Technology Vol.11 No.4. 

(2017) 

Impact Factor (JCR):: 0.875 (2015) 

 

International conference papers (full-length papers with peer review): 

1.K. Romejko, M. Nakano, Introduction of Clean Energy Vehicles in Poland under energy 

security constraints, In: IFIP Advances in Information and Communication Technology: 

Advances in production management systems: innovative production management towards 

sustainable growth. Springer International Publishing, pp. 343-352, (2015). 

http://dx.doi.org/10.1007/978-3-319-22759-7_40. 

2.K. Romejko, M. Nakano, Impact of shale gas revolution on a portfolio of alternative fuel 

vehicles and water usage: case study on the Polish market, International Proceedings of 
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Chemical, Biological and Environmental Engineering Vol. 98 (2016) pp.53–60. 

doi:10.7763/IPCBEE. 

3.K. Romejko, M. Nakano, Health impact of Electric Vehicles considering environmental 

leakage. The case study on Japan, China, UK and Poland., In: IFIP Advances in Information 

and Communication Technology: Advances in production management systems: innovative 

production management towards sustainable growth. Springer International Publishing (to be 

published in September 2017) 
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2.  METHODS 

The research concerns market and data study, thus both qualitative methods and quantitative 

methods are being used. The research is based on three methods. In the beginning of the 

study, qualitative analysis is conducted. Secondly optimization is carried out. Finally, Life 

Cycle Analysis is performed.  

2.1. Qualitative analysis 

The first step is to qualitatively investigate the problem by intelligence gathering, analysis of 

literature, case studies, stakeholder analysis, statistical analysis and interviews with pundits. 

The stakeholder’s analysis was carried out by the use of Customer Value Chain Analysis 

(CVCA). Four, core stakeholders were identified i.e. government, manufacturers, energy 

companies and consumers. Taking into consideration the above, analysis of each of the 

stakeholders was conducted and interviews with those entities have been carried out. The 

purpose of Qualitative Analysis is to find causes that prevent popularity of AFVs.  

2.2. Optimisation 

Following that, qualitative findings were used and combined in quantitative analysis in order 

to analyze the development of AFVs by 2030. This study thus adopts optimisation model in 

quantitative analysis to uncover optimal portfolio of AFVs in 2030. 
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Qualitative analysis is computed from a systematic approach, including two parts: energy 

security constrains and economical efficiency. The model defines economical efficiency of 

the vehicle portfolio while considering oil and gas dependency rates. Fig. 4 presents an 

outline of the optimisation model. Three categories of vehicles are considered: passenger 

vehicles, buses and lorries. Moreover, 8 types of vehicles are taken into consideration based 

on engine platform variations (GV, DV, HEV, DHV, CNG, FCV, EV and LPG). The 

following model takes as input three groups of data: restriction values (gas and oil rates), 

vehicles characteristics (vehicle price, fuel consumption, average mileage, usage price, etc.) 

and other preconditions (energy prices, power supply composition, etc.). This data is input 

into the optimisation model and the output is the optimal volume of new vehicle sales of each 

AFV. Moreover, three costs are input into the model: infrastructure, vehicle and fuel; their 

sum creates a total AFV system cost.  

 

Figure 4 Optimisation model outline 
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2.3. Life Cycle Assessment 

Life cycle assessment is a tool that has been used in most of the recent studies on the 

assessment and comparison of vehicles(Samaras and Meisterling 2008; Nonaka and Nakano 

2010; Ou et al. 2010; Brady and O’Mahony 2011; Faria et al. 2013). Life cycle assessment 

can identify the environmental impact of a product. 

LCA is used three times in this study. Firstly, it is used to assess the impact of shale gas 

revolution. The outline of the model is presented in Fig 5. 

 

Figure 5 LCA model outline for shale gas revolution 

The results from optimization for the second case study are input into the LCA. The model 

includes water consumption of shale gas on different stages of production for two scenarios. 

This model is used in Chapter 4. 

Secondly, LCA is used to quantify air pollution from EVs and GVs during their lifecycle 

under two technology scenarios.  Three stages are considered i.e. manufacturing, use and 

end-of-life, the outline of the LCA is presented in Fig 6. This LCA model is used in Section 

6.1 
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 Figure 6 Outline of the LCA for air pollution. 
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Figure 7 Outline of the LCA for health effects. 

Thirdly, LCA is employed to quantify health impact of EVs and is presented in the Fig.7. 

This LCA considers four stages i.e. manufacturing, transportation, use and end-of-life. The 

import, export and transportation part of the model are presented in the Fig.8. 
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Figure 8 Outline of the LCA for health issues.  
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3. QUALITATIVE ANALYSIS 

3.1. Chapter introduction 

Along with increasing crude oil prices, a high pressure is put all over the world for the 

proliferation of AFV (AFVs), to reduce not only CO2 emissions, but also energy 

consumption in the automotive sector to provide apt energy security. The transportation 

sector accounts for approximately 20% of total worldwide energy consumption (International 

Energy Agency (IEA) 2012). Throughout the years, there have been various types of AFVs 

developed in order to reduce greenhouse gas emissions and move our economy away from 

petroleum in transportation.  

Despite abundance of the choice, Poland is still lagging behind with sales of AFVs. In 2011, 

there were only 897 hybrid vehicles registered (Polish Automotive Industry Association 

2013). When it comes to ensuring energy security, the situation does not look bright too. 

98.2% of Poland’s crude oil consumption and 72.4% of Poland’s natural gas consumption are 

being satisfied from import supplies (International Energy Agency (IEA) 2014). Transport 

sector itself is responsible for over 60% of crude oil consumption in Poland (International 

Energy Agency (IEA) 2013).  

There have been plenty of studies carried out on the AFVs portfolio and future energy trends. 

The scopes of them were gathered in the Table 1.  

Nonaka (Nonaka and Nakano 2011) researched carbon taxation by using LCA and have 

conducted life cycle cost analysis of AFV cars in order to create a carbon taxation aiming at 

encouraging customers to choose lower CO2 emission AFVs. However, the analysis was 
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focusing only on assessment of passenger cars, excluding bus and trucks in the research. 

Most of the conventional studies do not include those types of vehicles.  

The objective of S. Chua’s research (Nakano and Chua 2011) under the title: “Design of 

Taxation to Promote Electric Vehicles in Singapore”, was to conduct LCA to reach decisions 

that will have a minimum or no impact to the environment. Nonetheless, this paper examines 

only EVs and other AFV cars are not taken into consideration. 

Only, Arimori’s research (Arimori and Nakano 2012) incorporated data concerning bus and 

trucks. However, far too little attention has been paid to that type of vehicles and results show 

that those cars have little impact on the final results. In order to construct an optimal portfolio 

passenger cars, trucks and buses has to be included in the research. What is more, various 

types of fuel type engines should be also examined in pursuance of a high quality research. 

There is a necessity for introduction of all range of AFV also in trucks and buses and there 

influence on fuel consumption cannot be disregarded. In addition to that, most of the 

researches are mainly focusing on CO2 emissions, forgetting energy security issues. 

Arimori’s research however, does include oil restriction, but is not taking into consideration 

gas restriction. Moreover, it is written in Japanese. 

Table 2 Conventional studies on AFVs 

Research Passenger 
Vehicle 

All types 
of AFVs 

Oil 
restriction 

Gas 
restriction 

Truck& 
Bus 

IEA (2012) X X X     
Y. Arimori (2012) X X X 

	
X 

H.Choi (2010) 
	 	

X 
	 	S. T. Chua (2013) 

	 	
X 

	 	This research X   X X X 
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In the case of European countries like Poland, gas is an important source of energy, also in 

terms of automotive usage. Thus, the model should not be created without incorporating gas 

restrictions. In line with the above, the originality of this study is, that it includes gas security 

restrictions due to huge LPG market in Poland and possible proliferation of CNG vehicles in 

the future.  

Section 3.2 explains the methodology and Section 3.3 describes results of qualitative 

analysis.  

3.2. Methodology 

In the beginning of the study, intelligence gathering was conducted and research objective 

and questions were formulated: Why AFVs are not popular in Poland and what policy should 

be introduced to change the situation? The purpose of Qualitative Analysis is to find causes 

that prevent popularity of AFVs. Data, potential problems and opportunities were identified 

in this chapter through collection and analysis of literature, case studies, survey researches, 

statistical analysis, stakeholder analysis and interviews with pundits. In order to achieve 

economic goals, a qualitative analysis of both the automotive and energy sector in Poland 

was carried out. Firstly, stakeholder analysis was carried out by using Customer Value Chain 

Analysis (CVCA). CVCA is a tool that enables to identify relevant stakeholders, their 

relationships with each other, and their role in the product’s life cycle [10]. Later interviews 

with stakeholders were conducted. By using this methodology research questions were 

verified.  

Qualitative findings were used and combined in quantitative analysis in order to analyse the 

development of the AFV market in Poland in the following Chapter 4.  
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The whole thesis concerns policy, market and data study, which is why both qualitative and 

quantitative methods are used. The study is conducted in line with the Fig.9.  

 

Figure 9 Research process 

3.3. Stakeholder analysis, interviews, statistical and literature analysis 

3.3.1. Stakeholder analysis 

Fig. 10 presents the analysis of stakeholders and their relationship that was carried out with 

CVCA. Four main stakeholders were identified: consumer, car manufacturer, government 

and energy company. The most important stakeholder is government. It receives TAX from 

other stakeholders and its role is to provide subsidies and policy support.  

 

Figure 10 CVCA analysis 
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3.3.2. Results of interviews 

The first interviewee is an expert from Department of Innovation and Industry from Ministry 

of Economy. He believes that when it comes to terms with governmental stakeholder it is the 

Ministry of Finance is reluctant on creating an incentive system, rejecting proposals in order 

to protect the yearly budget. Forgetting that those aids can bring income from other sources. 

The interviewee believes that change in policy is essential to change the situation. His 

recommendations include i.e. establishing new scrap incentive system based on the previous 

experience in Germany. Unless the government introduces aid for customers to buy AFVs, 

the number of sales will still stand at a minor level. Furthermore, new tax system is crucial to 

change the situation. The next stakeholders considered in this interview are automakers. 

Automakers aim at collaborating with local government, which is more willing to achieve 

aforementioned goals. Low sales means less investment from other countries and less people 

employed. Moreover, the pundit confirmed the fact that individuals do not wish to buy AFVs 

because of high prices and prefer to buy used cars, or just cheaper makes. Confusing car tax 

policy means that buyers postpone their decision on a purchase of a new vehicle.  

 Another interviewee is Sales Managing Director in Automotive Company in Poland. 

He stated that government and its policy discourage buyers from purchasing new cars, 

favoring more affordable non-efficient ones. Furthermore, European policy created an easy 

access to affordable used cars from Germany. There are numerous problems concerning 

consumers. Poles are not concerned with environmental issues. There is low affordability of 

AFVs in Poland. Consumers tend to buy cheaper, not environmental friendly cars. Used cars 

are changed into LPG-driven vehicles or are using non-efficient diesel engines, which are 

cheap but not powerful. Polish people have very little knowledge of AFVs. Poles do not 

know about hybrid and technologies. There is a need to educate consumers, giving them a 
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fresh and realistic view of AFVs. Since people travel for long distances and use cars for many 

years, AFVs seem like a good investment if people know that they should take into 

consideration life cycle cost of a vehicle and not only the initial cost. From the pundit point of 

view automakers expect a higher volume of vehicle sales in Poland. High demand on new 

vehicles, close proximity of component factories, low turnover of employees and cost of 

employees are the factors that influence decision on establishing a new vehicle plant. 

Moreover, the drop in price, could give customers incentive to purchase a AFV. The Tables 3 

and 4 sum up the results of interviews with stakeholders. 

Table 3 Government view on AFVs problems 

Government  Issues Possible 
measures 

Government  Protect budget New scrap 
incentive system 

Automakers 

Low sales = low 
investment; poor 

collaboration with 
government 

Collaboration 
with local 

government 

Consumers 
High price of AFVs, 

purchase of used cars; Tax reduction 
incentives 

Confusing tax policy 

Table 4 Automakers view on AFVs problems 

Automakers  Issues Possible measures 

Government  
Easy access to used cars from Germany 

AFVs subsidies  
Policy and rules discourage purchase of new car 

Automakers A higher volume of sales is expected 

Higher demand on 
vehicles; 

Proximity of factories; 
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Consumers 

Low affordability of AFVs; Price drop of AFVs; 

Consumers not concerned with environmental 
issues;  Education of consumers 

Consumers using non-efficient diesel engines 

	Little knowledge on AFVs; 		

Furthermore, Prius price analysis was conducted as shown in Table 5 and was approved by 

the second interviewee. Price of Prius in Poland is very high, that is why I have examined the 

reason behind that. The results prove that the premium consists most of the taxes applied by 

Polish government and not market premium of a Japanese producer. The parameter 1.0 

amounts to 2 1700 00YPY.  

Table 5 Prius price analysis 

Item Value 

Market price of Prius in Japan 1 

Cost of Prius in Japan without TAX (8%) 0.95 

Transport cost 0.01 

Customs - 10% 1.06 

Excise TAX - 18,6% 1.25 

TAX in Poland - 23% 1.54 

Cost of Prius in Poland according to calculations 1.54 

Market price of Prius in Poland 1.57 

Market price of Prius in USA 1.13 
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3.3.2. Statistical, literature analysis and discussions 

Current	Status	of	the	Automotive	Industry	in	Poland	

 Automotive is of great importance to the Polish economy. It is estimated that in 2010 

the value of exports of Polish automotive industry (vehicles and parts) exceeded 17 billion 

euro  (Polish Automotive Industry Association 2015). Already 16% of Polish exports come 

from the automotive industry (Polish Automotive Industry Association 2013). 

According to GUS data, in automotive areas of Polish automotive sector 381,500 people were 

employed in 2011, close to two-thirds of which (228,700) in trade and services, and more 

than one third (152,800) in manufacturing (Central Statistical Office (GUS)). The last figure 

is accompanied by five positions in industries around automotive. Participation of 

involvement of Polish automotive industry in GDP creation is steadily growing and in 2013 it 

amounted to around 6% (PWC 2015). However, in recent years there have been cuts in the 

sector due to the crisis, which is another problem that Polish people will face in next years to 

come. 

What is more, if we look closely at the data concerning car park in 2012 in Table [1] we can 

easily notice other concerns. There is an obvious issue with obsolete cars and low purchase of 

new cars, especially by individuals. As a result, 15 years is a statistical age of a vehicle 

registered in our country (Polish Automotive Industry Association 2013). That is why more 

than 98% of cars produced in Poland in 2010 were exported (Polish Automotive Industry 

Association 2013).  The economic climate in recent years did not encourage customers to buy 

new cars.  

The main problems are drops both in car sales and production. In 2012, Polish manufacturers 

produced 540,000 passenger cars, 27.1% less than in 2011. Poland recorded drops in sales of 
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cars in both individual and companies purchase. In recent years there have been cuts in the 

sector due to the aftermaths of the economic difficulties of the past 5 years that have strongly 

affected EU consumers’ demand for new vehicles. Data indicate that in 2012 the Polish 

authorities registered 312,096 new passenger cars and LCVs – less by 8,025 (2.5%) than the 

year before (Central Statistical Office 2014).  

Table 6 Registered car data for 2012 

Characteristics Values 

Number of cars 17,2 m 

Average age of a car 15,5 y 

New cars registered 270 584 unit 

Used cars registered 1,5 m 

Average age of used imported car 10,2 y 

Average life of a car used by the 
company 4 y 

Percentage of petrol fuelled cars 61% 

Percentage of diesel fuelled cars 22% 

Percentage of LPG fuelled cars 14,37% 

Percentage of cars fuelled by other 
sources ~1% 

Percentage of HEV cars ~0.3% 

a Based on: (Polish Automotive Industry Association 2013; Central Statistical Office 2014) 

 As a result of those trends, the international role of Poland as an automotive manufacturer 

has been on decline. The automotive sector is also one of the most important areas of 

Poland’s economy in terms of its role in foreign trade. As global manufacturing capacity 
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increases, automakers have to address excess production seriously. The global automotive 

market is predicted to be overbuilt by 20-30% by 2016 (KPMG 2015). That are other 

problems that Polish people will face now and in next years to come, which are drops in 

production, cuts in working force, preferring locating FDI in other countries than Poland. In 

order to change the situation, demand on cars has to be at least stable or has to be increased. 

Manufacturers locate their investment when local demand is high and they have perspectives 

in the future and at present there is none of the above available. That is why increasing sales 

or even maintaining them is crucial problem and by conducting my research I can estimate 

consumer preference and utility functions and later combine them with future scenarios that 

can support policy makers while making their decision on applying policy to increase car 

sales in Poland. 

On the other hand there is an opportunity for introduction of AFV in Poland since domestic 

coal reserves are of vital importance for the Polish economy. However, the situation for 

import of oil and gas is undoubtedly different than it is for coal. That is why Poland should 

treat introduction of AFV as an opportunity to become more independent from fuel imports 

and as a way of spurring automotive industry in Poland.  

Polish government has recently showed first signs of interest towards AFVs and is 

considering this area as a future investment. Domestic coal reserves are of vital importance 

for the Polish economy. However, the situation for the importation of oil and gas is 

undoubtedly different than it is for coal. That is why Poland should treat the introduction of 

AFVs as an opportunity to become more independent from fuel imports, and as a way of 

spurring automotive industry in Poland. 
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Roots	of	low	car	sales	

In Poland, the average person earns 17 8204 USD a year, less than the OECD average of 29 

016 USD a year, in Japan, the average person earns 27 323 USD a year (OECD 2017). 

Therefore the first problem recognized while doing the analysis is the affordability of AFV in 

Poland. 

Every year there is around 1.5mln cars registered, but only 270 584 of them are new cars 

(Polish Automotive Industry Association 2013). The share of new cars registrations stands at 

only 18%. In 2012, there were 153 905 new cars bought by companies and 116 679 

purchased by individuals. Therefore the ratio is 57% in favour for business, the structure and 

numbers of cars sold for entities are visible in Fig.11. 
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Figure 11 Number of cars sold for business activity in Poland in 2012. 

a Based on: : (Central Statistical Office (GUS); Polish Automotive Industry Association 

2015) 

Except for different power purchase price, there are other roots of the problem that cause low 

volume of new cars sold. Easy access to cheap, used cars from Germany is definitely highly 

influencing the decision to switch to older cars.  

Current	Status	of	the	Energy	Sector	in	Poland	

 Energy security issues are becoming another preeminent topic, especially after 

considering recent political developments in the Russian-Ukrainian dispute. Energy resources 

security is a crucial concern for a developing country. Energy security definitions have 

already been researched by plenty of pundits. The most widely used definition of energy 

security is provided by International Energy Agency. It defines energy security as ‘the 

uninterrupted physical availability at a price which is affordable, while respecting 

environment[al] concerns’ (International Energy Agency (IEA) 2012). 

However, the conception of energy security varies depending on the role of a given actor in 

the system (e.g. energy distributor). 

Poland is mainly an energy importer and a consumer of Russian energy supplies, that's why 

for the purpose of this research, an application of consumer-oriented definition is needed. A 

country is vulnerable to interruptions in the physical availability of energy supplies or to 

unforeseen price hikes when state dependents on imports for a considerable share of its 

energy supply. Those circumstances are perceived as ‘energy dependency’. 
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According to Balmaceda (Sharples 2012), the definition of energy dependency is as follows: 

1.more than one-third of a country’s total energy supply comes from foreign sources;  

2. more than 50% of a country’s annual consumption of a single major energy source 

comes from foreign sources 

3. a country depends on a single external provider for more than 60% of its imports of a 

major energy source for that country or more than 45% of its consumption of that energy 

source. 

Energy	policy	in	Poland	

Polish energy policy’s issues are described in a document under the title: “Energy Policy of 

Poland until 2030”, which was prepared by Ministry of Economy and adopted by the Council 

of Ministers on 10 November 2009 (Ministry of Economy 2009a) .  

This resolution presents the strategy of the Polish state, which aims to address the most 

important challenges that the power industry must face, both in the short and in the long run, 

until 2030 (Ministry of Economy 2009a).  

Within the document, primary directions of Polish energy policy have been set. The ones that 

are important to this research have been listed below: 

- to improve energy efficiency; 

- to enhance security of fuel and energy supplies; 

- to diversify the electricity generation structure by introducing nuclear energy; 

- to develop the use of renewable energy sources, including biofuels. 
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The main objective of energy policy in the field of improving security of fuels and energy 

supplies is to ensure energy security by: 

1.Enhancing the diversification level of crude oil, gas and liquid fuels supply sources, 

understood as obtaining crude oil and gas from various regions of the world, from 

different suppliers, using alternative transport routes; 

2.Building crude oil and liquid fuels storage facilities of capacity, which ensures continuity of 

supplies, particularly in crisis. 

The measures set in order to achieve those objectives are plentiful, e.g.: building a terminal 

for receiving liquefied natual gas (LNG), diversification of supplies by building a 

transmission system for natural gas supplies from the north, west, and south, as well as 

building connections to primarily meet the requirement of supply sources diversification; 

appropriate tariff policy encouraging investment in gas pipeline infrastructure; building 

infrastructure to allow transport of crude oil from other regions of the world, inter alia from 

the Caspian Sea region within the Euro-Asian Oil Transportation Corridor project; lifting 

barriers to development of fuel infrastructure and supporting investment projects in 

infrastructure with the use of European funds; ensuring fuel transport by sea. 

It is not stated however, how much should energy security be improved. The progress in the 

energy policy implementation will be monitored in particular on the basis of indicators set by 

various ministries. 

Maximum share of total natural gas and crude oil imports from a single direction in the 

domestic consumption of both those resources has to fall down by 15% till 2030 from the 

2007 level. There is no benchmark stating how much should energy security increase, only 

indicators stated above are directly connected with energy security issues.  
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Energy	mix	in	Poland	

Concurrently, the dominant source of primary energy is coal, followed by oil, natural gas, and 

minor share of renewables. Nuclear energy is not being produced now in Poland 

(International Energy Agency (IEA) 2013).  

In 2009, 94.0% of Poland’s crude oil imports came from Russian suppliers. The remaining 

portions of crude oil were imported mainly from Algeria (around 2% of the total), the United 

Kingdom and Norway (around 1% of the total). During the same time period, 82% of gas 

imports came from Russia, 11% from Germany and small part from Belarus and Ukraine 

(Ministry of Economy 2009b). 

Maintaining an energy structure mix with coal as a main source of supply results in 

substantial emissions of air pollution, lower efficiency and higher prices of energy. It is 

important to note that Polish GDP growth was almost always higher than the average EU one 

in last decade, however we managed to decrease greenhouse gas emission. Moreover, Polish 

economy is expected to be growing in next years to come as well and in spite of projected 

11% increase in demand for final energy between 2006 and 2020, there is a significant, 15% 

decrease projected in CO2 emissions (Ministry of Economy 2009b).  

  According to governmental policy stated in “Energy Policy of Poland until 2030: Projection 

of Demand for Fuels and Energy until 2030” (Ministry of Economy 2009b), the share of hard 

coal in demand for primary energy is supposed to be decreased in favour of renewable 

energy. The objectives of the EU targets for renewable energy will require the gross 

electricity production from renewable energy source at the level of about 18.8% of the total 

production in 2030. Gas demand is projected to rise by 18% in 2020 and by 43% in 2030 

compared with 2010 (International Energy Agency (IEA) 2011). Table 7 shows the changes 
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in the generation of net electricity by fuels till 2030 (Ministry of Economy 2009b). It is 

forecasted that the net electricity production will moderately rise from the level of ca.140 

TWh (2008) to more than 201 TWh (2030) (Sadowski and Romancza 2013). 

Table 7 Generation of net electricity divided by fuels [TWh] 

 

a Based on: (Ministry of Economy 2009b) 

The energy from wind power plants will have the largest share 8.2% of the forecast gross 

total production in 2030 (Ministry of Economy 2009b; Sadowski and Romancza 2013). 

Due to the environmental requirements set by EU, nuclear power plants will appear in the 

mix of electricity sources. It is assumed that the first nuclear power plant will appear in 2020. 

In total, three nuclear units power should operate with a net total capacity of 4,500 MW by 

2030. 

 In line with the above, comparison of Polish situation with the basic energy dependency 

definition provided by Balmaceda, uncovers the fact, that Poland meets the three 

requirements of this definition. That is why the assumption is that Poland’s energy security is 
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not guaranteed. In case of Poland, there is a threat to security of crude oil supplies, as well as 

a threat of monopolistic price fixing. This is a result of the market being dominated by 

supplies from one direction only – Russia. In order to avoid such a situation, the level of 

supply diversification needs to be enhanced. In line with the government statement (Ministry 

of Economy 2009b), it is crucial not only to boost the number of suppliers, but at stake is to 

eliminate situation, where oil and gas comes from a single area, and its transmissions are 

controlled by a single entity. 

Energy	Use	in	The	Transportation	Sector	

 The transport Sector is responsible for 64% of the crude oil consumption in Poland. 

When it comes to the gas consumption by the sector, 37% of total demand is consumed by 

industry, followed by residential use, and transportation (International Energy Agency (IEA) 

2011). In the time period between 1998 and 2012, demand for diesel grew by 70%, and 

demand for LPG almost doubled. Currently, diesel is used in the largest quantities, followed 

by gasoline and LPG. Trucks are using the largest amount of diesel fuel. However, 56% of 

total consumption is due to passenger vehicles (Chlopek et al. 2012). 

Influence	of	Russian-Ukrainian	dispute	on	energy	security	

 Dependency on Russian energy supplies is often cited as a threat to Central European 

energy security. Imports to the EU from Russia are dominated by crude oil and gas. Cuts of 

gas importation have happened before, e.g in 2009 during Ukrainian-Russian gas dispute. 

Moreover, Russia introduced a ban on imports of fruits and vegetables from Poland in 2014, 

depriving it of a major export market. Along with increasing crude oil prices and unstable 

political situation in Ukraine, the Polish citizens and government have opened their eyes, and 

urge securing energy safety issues. Currently, Europe is dependant on Russian energy 
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supplies and if there are any further unpleasant developments of the Russian-Ukrainian 

dispute, Poland might find it severely difficult to secure basic energy demand for both private 

users and companies. 

Shale	gas	in	Poland	

The expansion of shale gas has a remarkable impact on the growth of importance of natural 

gas in the world’s structure of primary energy sources and it is projected that there will be a 

significant drop of price of this fuel (Baranzelli et al. 2015). It has been known for many 

years, that Poland has rich shale deposits. However, it was the technological innovations that 

led to the shale gas revolution in North America that opened up the possibilities, for these 

reserves to be commercially exploited. There are three areas, where the potential for 

commercial exploitation is located in Poland: Podlasie Basin (east and east-central), the 

Baltic Basin (northern) and Lublin (southeast) (Johnson and Boersma). The US EIA 

estimated that technically recoverable shale gas resources are roughly 187 tcf (5300 bcm), or 

nearly 900 times Poland’s 2010 consumption of gas. However, the Polish Geological Institute 

released in 2012 a draft assessment stating that this amount is much lower, estimating 1920 

bcm of shale gas, of which somewhere between 350 bcm and 770 bcm is likely recoverable. 

The infrastructure for gas in Poland is not well developed. Only 54.6% of households 

currently have access to the gas network (Johnson and Boersma). Furthermore, most of the 

pipelines are located in industrial area of southwest Poland and around the main urban areas, 

but not necessarily in the areas where shale gas would be produced (Johnson and Boersma).  

Supreme Audit Office in Poland (Naczelna Izba Kontroli) has recently assessed the 

functioning of public administration and the business undertaken in connection with the 

exploration and identification of shale gas in Poland. In the period covered by the audit, 

search and exploratory activities of shale gas deposits were based on 113 concessions 
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covering nearly 30 percent of Polish territory. However, geological works performed by 

entrepreneurs proceeded only on a small part of the granted concession area and were often 

delayed. The reason for the sluggishness was not only economic and financial situation, but 

mostly from improper government action. What is more the administrative proceedings led 

by Minister of Environment on granting concessions for prospecting or exploration of shale 

gas were very unreliable and sluggish. Decisions were issued with an average 132 days, when 

law stipulated only 30 days for these actions (Forbes Poland 2012).  

Four powerful companies have already resigned of further shale search in Poland. Among 

others American: ExxonMobil and Marathon Oil, Canadian Talisman Energy and French 

Total. One of the reasons was bureaucracy and extending the work on the new regulations 

(Supreme Audit Office in Poland (Naczelna Izba Kontroli) 2014).  

3.4. Summary 

This chapter has examined both the automotive and energy sector in Poland. This study was 

designed to conduct detailed qualitative analysis of the problems associated with AFVs in 

Poland. 

The stakeholders of the analysis are: government, manufacturers and individuals. The three, 

core stakeholders are highly influencing each other’s. Taking into consideration the above, 

analysis of each of the stakeholders was conducted and in order to research government and 

manufacturers interviews with those entities have been carried out.  

All of the above interviews provided insight into Polish automotive sector and confirmed the 

problems that were found during the research. Environmental issues are neglected in Poland, 

price of the vehicle is the most important reason influencing the purchase. Moreover, 
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introduction of incentive system for AFVs for both companies and private entities might spur 

the sales of the cars again.  
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4. MODEL FOR VEHICLE PORTFOLIO ANALYSIS BY 

OPTIMISATION 

4.1. Chapter introduction 

 The total global energy demand has almost doubled since 1980 and studies have estimated 

that approximately 20% of the global energy is consumed by the transportation sector (OECD 

and International Transport Forum (ITF) 2015). It has been suggested that the volatility of 

petroleum prices and rapid technological developments are making alternative fuel vehicles 

(AFVs) an increasingly promising option for decreasing energy consumption and maintaining 

energy security (IEA, 2015). AFVs can be defined as vehicles operating exclusively on an 

alternative fuels (e.g. electricity or compressed natural gas (CNG)) or on a hybrid of 

alternative and traditional fuels (U.S. Energy Information Administration 2013). The AFVs 

investigated in this study are fuel cell vehicles (FCVs), hybrid electric vehicles (HEVs), 

diesel hybrid electric vehicles (DHEVs), electric vehicles (EVs) and CNG vehicles. Liquefied 

petroleum gas (LPG) vehicles and diesel vehicles (DV) are not generally considered to be 

AFVs. It is projected that between 2012 and 2040, the total volume of road vehicles will 

double; however, research has consistently shown that the adoption of more efficient 

technologies and switching to alternative fuels will slow the increase in demand for fuel 

relative to past periods (IEA, 2015). Recent analysis suggests that energy consumption in the 

transportation sector is expected to decline from 26.7 quadrillion Btu in 2012 to 25.5 

quadrillion Btu in 2040, owing to a considerable decline in energy consumption through AFV 

use (U.S. Energy Information Administration 2014). 
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Various AFVs have been developed to reduce greenhouse gas (GHG) emissions and move 

transport economies away from petroleum use. In addition to technological improvements, 

policy proposals are crucial to the market success of AFVs (Dong et al. 2014). Customers 

will not find AFVs attractive without an affordable price, easy access to spare parts and repair 

services and readily available fuel. Equally important, automakers, governments and energy 

producers will not invest in AFV infrastructure and technology without the anticipation of a 

sizeable market (Struben and Sterman 2008). According to Christensen (2011), 

manufacturers have developed many AFV prototypes but have produced only a few on a 

large scale. Orsato and Wells (2007) stated that large-scale production reaching 250,000 units 

per vehicle model is necessary to reduce the manufacturing cost and provide affordable 

products. Companies cannot invest in every technology and must, therefore, develop products 

most promising for the spread of AFVs. 

Numerous studies have investigated AFVs and their future portfolios (Nakano and Chua 

2011; Graham-rowe et al. 2012; Nanaki and Koroneos 2013; Yagcitekin et al. 2014; Yabe et 

al. 2015). However, they only examined EVs or HEVs and did not consider other AFV types. 

In another work, the Electric Power Research Institute (2007) evaluated the impact of adding 

petrol (gasoline) hybrids and petrol plug-in hybrids to vehicle fleet until 2030. However, they 

examined neither FCVs nor electric vehicles (EVs). Most studies disregard FCVs or 

minimise their impact owing to outdated data. Toyota has launched an FCV into commercial 

production and Honda has introduced their own hydrogen FCV into the market ('Toyota, 

Honda get ready to launch their FCVs', 2014), and it is of utmost importance to these and 

other companies to accurately forecast the implementation of FCV powertrains using new 

data. Sandy (2009) analysed and compared the societal benefits of deploying AFVs; the most 
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realistic of the study’s scenarios (a hydrogen FCV scenario) concluded that a value of 

approximately $330 billion per year could be saved in terms reductions in GHG emissions, 

petroleum consumption and urban air pollution. The cumulative social cost of delaying the 

introduction of hydrogen vehicles from 2015 to 2025 would rise by $16 billion in 2025 

(Sandy 2009). However, the benefits of hydrogen can be accomplished only if it is produced 

using renewable energy. Sharma and Krishna (2015) determined that solar energy is 

apparently the only source of renewable energy suitable to producing enough hydrogen to 

accommodate a hydrogen economy. Krishnan et al. (2015) focused on assessing hydrogen as 

an alternative fuel in a national portfolio. They concluded that sufficient improvements in 

FCV investment could allow such vehicles to outperform petrol and plug-in hybrid electric 

vehicles (PHEVs), providing a sustainable economic option under a high renewable-power-

generation portfolio, although only light duty vehicles (LDVs) were examined. In line with 

the above concerns, significant literature has been published on obtaining optimal portfolios 

using optimisation techniques; however, not all types of AFVs have been investigated and 

most studies have disregarded FCVs. This study seeks to remedy these gaps in the research 

by analysing FCVs and other types of powertrains. 

Gifford and Brown (2012) assessed four types of economy using well-to-wheel analysis of 

automotive transportation scenarios (i.e. operation cost, primary energy consumption, GHG 

emissions and water usage). They found that CNG vehicles scored the highest in all four 

metrics in two of their scenarios. Nevertheless, their research did not include infrastructure 

cost. Wu and Aliprantis (2013) examined models for both transportation and national energy 

planning, although they did not research FCVs and their influence. Onat et al. (2015) recently 

presented an interesting study that tackles not only environmental but also economic and 

social issues of sustainability in promoting AFVs. The study used a novel approach 

integrating compromise programming and a life cycle sustainability assessment (LCSA) 
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framework. The conclusion from the baseline scenario was that internal combustion vehicles 

(ICVs) are dominant only in terms of social and economic aspects, while HEVs are preferred 

when environmental aspects are considered (Onat et al. 2015b). One of the major weaknesses 

of the study was that it disregarded FCVs, and therefore, no attempt to quantify energy 

security was made. Onat et al. (2015a) conducted one of the most comprehensive literature 

reviews on the environmental impacts of AFVs. The research evaluated and compared around 

40 previous LCA studies in detail. According to the research, HEVs are the dominant vehicle 

type studied, and the majority of the articles make only a comparison between ICVs and 

AFVs. Moreover, LCA carried out by Onat et al. (2015a) examined 50 states, considered 

regional driving patterns and marginal and state average electricity generation mix while 

incorporating GHG emissions and energy consumption. Axsen and Kurani (2013); Kelly et 

al. (2012); Kintner-Meyer (2007); Samaras and Meisterling (2008) used LCA as a research 

method; however, their focus was on PHEVs and neither EVs nor FCVs were considered. In 

reviewing the above literature, it was found that although several attempts have been made to 

investigate AFVs and their implementation, most studies did not do so systematically. To 

address the gaps in the previous literature, this study investigates four case scenarios: 

Business As Usual (BAU), Energy Security, Low Petroleum Price and Subsidy. 

Considerable literature has been published on the environmental or economic impacts of 

AFVs (Hermann et al. 2007; Hawkins and Gausen 2012; Nanaki and Koroneos 2012; Faria et 

al. 2013; Marshall et al. 2013; Nanaki and Koroneos 2013). However, the energy security 

aspects of such vehicles should also be investigated. The uncertainty of future demand and 

supply of petroleum and gas poses a threat to energy security (IEA, 2012). To address this, 

the European Union (EU) has created a framework by which nations and automakers may 

decrease energy consumption and GHG emissions by 2020. These regulations will affect 

vehicle portfolios in the forthcoming years and innovations will be crucial to meeting the 
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challenges set by the EU (Köhler et al. 2013). The conflict between Ukraine and Russia has 

also sparked interest in the topic of energy security in the EU as imports of resources to the 

EU have been interrupted in the past by political circumstances in Eastern Europe (Umbach 

2010). Hedenus et al. (2010) determined that the cost of petroleum disruption may be €29.5–

31.6bn in the EU-25 countries. Wu and Aliprantis (2013) focused on LDV models used for 

national energy and transportation planning in the US; their results indicated that if 

aggressive electrification of LDVs were introduced along with investment in renewable 

energy, annual petrol consumption could be decreased by 66%. A comprehensive analysis of 

AFVs should include social, environmental and economic indicators (Litman 2008). The 

European Commission (EC) listed employment, contribution to GDP, injuries and external 

costs of the transportation as indicators for evaluating the social and economic sustainability 

outlook of the transportation system (Dobranskyte-Niskota et al. 2007). A multi-criteria 

analysis of AFVs should be thoroughly examined to propose a holistic approach (Onat et al. 

2014). Moreover, according to Litman and Burwell (2006), the socio-economic aftermaths of 

transportation should be investigated because quality of life is at stake. There have been only 

a few attempts to investigate those three dimensions. An extensive study conducted by Onat 

et al. (2014) considered both socio-economic and environmental impacts of AFVs and 

proposed 19 macro-level sustainability indicators for a scenario analysis. Another study by 

Onat et al. (2016) integrated the LCSA model and system dynamics to create a detailed 

sustainability impact assessment of AFVs. Although extensive research has been conducted 

on the environmental and economic aspects of AFVs, only few studies have prioritised 

energy security issues. To overcome this gap, we developed a model that considers resource 

restrictions.  

Governments of EU countries are slowly attempting to shift from fossil fuels to renewable 

energy, not only for environmental benefits, but also for energy security reasons, but these 
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are still minor sources of global energy production. Recent developments within the field of 

natural gas extraction from shale rock have changed the US energy mix dramatically (Wang 

et al. 2014). The shale gas revolution is also a promising option for countries like Poland and 

China to diversify their coal-based economies and additionally improve the energy security of 

many countries (Wang et al. 2014).  

Motivated by the findings from the above literature and conventional studies and by the lack 

of studies on the security aspects of introducing AFVs, this study examines opportunities for 

the integration of AFVs into transportation systems while considering energy security. This 

study aims to use an optimisation technique to develop future scenarios of AFV penetration 

that provide energy security. The study considers passenger vehicles, lorries and buses over a 

target implementation period till 2030. Several scenarios for integrating five types of AFV 

powertrains are investigated in accordance with improvements in technology, energy 

security, sensitivity of petroleum prices and national subsidies. These results can be used to 

advantage by automotive companies and national institutions for strategic decision making on 

transport and energy policy and for informing policies supporting introduction of AFVs (e.g. 

government subsidies or tax exemptions).  

In Section 4.2 of this study, the constraints and modelling approach is described. In Section 

4.3, variables and input data sources are presented.  

4.2. Methods 

4.2.1. Model 

This section presents the development of an optimisation model to calculate an optimal 

portfolio for three vehicle categories: passenger vehicles, lorries and buses. The model 
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consists of two parts: energy security constraints (petroleum and gas restrictions) and 

economic efficiency of a transportation system with AFVs. Fig. 12 shows an outline of the 

optimisation model. In this study, we evaluated seven engine platforms (CNG, HEV, DHEV, 

EV, FCV, LPG, DV and GV), where DV and gas vehicle (GV) refer to diesel and petrol 

fuelled vehicles, respectively. Six energy sources used in transportation (hydrogen, 

electricity, CNG, LPG, petrol and diesel) were considered. Vehicle characteristics (e.g. fuel 

consumption and price) and other preconditions (e.g. energy prices) were also input into the 

model, with details explained in Section 3. The model outputs are the optimal volume of 

vehicle sales in each year and the total cost of introduction and integration of AFVs.  

Figure 12 Optimisation model outline 

Three costs are input into the model: infrastructure, vehicle and fuel; their sum creates a total 

AFV system cost. Based on this definition, the AFV system cost is formulated as follows (1):  

min fk (x jk )  
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Sjkl (x jkl ) = x jkl + Sjkl−1 −
Sjkl−1
Ul

 

i: Type of energy [petrol, diesel, CNG, LPG, hydrogen, electricity] 

j: Vehicle type [passenger vehicles, lorries, buses (GV, DV, HEV, DHEV, CNG, LPG, EV 

and FCV)]  

l: Vehicle category [passenger vehicles, lorries, buses]  

k: Object year [2014–2030] 

fk: k yearly AFV system cost [PLN] 

xjk: Volume of new vehicle registrations in k years of the vehicle type j in the vehicle category 

l 

Sjk: Number of vehicle possessions in k years of the vehicle type j in the vehicle category l 

Uj: Average tenure of use of the vehicle category l [Year] 

Fjk: Possession average real run fuel consumption in k years of the vehicle type j [MJ/km] in 

the vehicle category l 

Aj: Annual average mileage of the vehicle type j [km] in the vehicle category l 

Eikb: Energy price in k years of the energy i [PLN/MJ] in b Scenario [1-4] 

b: Scenario [1–4] 

Vjkb: Vehicles’ price in k years of the vehicle type j [PLN/stand] in b Scenario [1-4] in the l 

category 
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Tj: Infrastructure price of the vehicle type j [PLN/Spot] 

I: Ratio of the number of AFV possessions to the required number of infrastructures 

The model in Eq. (1) defines fuel, vehicle and infrastructure costs. The objective of the 

function is to calculate the new sales of vehicles while minimising the total cost of 

implementing AFVs.  

The restriction functions are presented in Eqs. (2) and (3). The numerator sets total petroleum 

(Eq. 2) and gas (Eq. 3) expenditure while the denominator defines total energy consumption. 

Dk ≥

Sjkl (x jkl )Al (Ojkl
l
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         (2) 
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l
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j
∑
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l
∑

j
∑

         (3) 

Dk:k year petroleum dependency rate desired value (Dk∈[0, 1]) 

Hk:k year gas dependency rate desired value (Hk∈[0, 1]) 

Sjk: Number of vehicle possessions in k years of the vehicle type j in the vehicle category l 

Aj: Annual average mileage of the vehicle category l [km]  

Ojk: Petrol and diesel consumption per [in k years of the vehicle type j in the vehicle category 

l ] 1-km run [MJ/km] 

Fjk: Possession average real run fuel consumption in k years of the vehicle type j in the 

vehicle category l [MJ/km]  
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Gk: Rate of use of crude petroleum power (Gk∈[0, 1]) in Gjk:k year power supply 

composition 

Pjk: Amount of petrol consumption per [in k years of the vehicle type j in the vehicle category 

l] 1-km run. [MJ/km] 

Mjk: Rate of use of gas power (Mk∈[0, 1]) in Mjk:k year power-supply composition 

Owing to rapid improvements in technology, the prices of AFVs and of their attendant 

infrastructure have declined dramatically. Furthermore, as the new data used here come from 

production companies and are therefore more reliable, more accurate estimates can be made. 

Other original facets of this study are that the model has been improved and that several 

changes, such as adding LPGs, have been made to adapt to the model. For this study, four 

case scenarios were investigated and are presented in Table 8 below: 

Table 8 Scenario types 

  

Baseline 
scenario 

(technological 
developments) 

Energy 
security 

constraints 

High 
petroleum 

price 

Low 
petroleum 

price 
Subsidy 

Scenario 1 - 
BAU X     

Scenario 2 - 
Energy Security X X X   
Scenario 3 - Low 
petroleum price X X  X  

Scenario 4 - 
Subsidy X X X   X 

Scenario 1: BAU: Baseline scenario including technological developments. 
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Scenario 2: Energy Security: BAU Scenario with energy security constraints and increase in 

petroleum price over the next 15 years.  

Scenario 3: Low petroleum price: BAU scenario with energy security constraints and low 

petroleum price. As the price of petroleum is uncertain, this study develops a sensitivity 

analysis to improve the understanding of petroleum’s influence on portfolio results. Recent 

developments in the global market have resulted in a dramatic decrease in petroleum prices 

(Chen 2015); for this reason, a low-petroleum-price scenario is being investigated. The low-

petroleum-price projections were provided in a recent report by the IEA (2015). 

Scenario 4: Subsidy: Scenario 2 with subsidy. This assumes PLN16,000 worth of subsidies 

for HEV, DHEV, EV and FCV development and PLN8,000 for CNG development. 

Following the example of other EU nations, the Polish government implements a subsidy to 

encourage the use of AFVs (Filho and Kotter 2015). 

Biofuels were not investigated independently in this study because engine fuels in Poland 

must contain biocomponents (e.g. petrol should contain 7.16% esters and 10.3% ethanol 

(Polish Automotive Industry Association, 2015). 

4.2. Data, variables and preconditions 

4.2.1. Vehicle type (j) 

The study was based on eight types of vehicles (GV, DV, HEV, DHEV, CNG, FCV, EV and 

LPG) for each of the three categories (passenger vehicles, buses and lorries). The main 

assumption is that CNG would be introduced for GVs rather than natural gas vehicle (NGV) 

or liquefied natural gas vehicles (LNGs). This assumption is based on the fact that CNG 

vehicles are already used in the Polish market and CNG stations already exist in the country. 
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The model also includes LPG as 14.52% of the vehicles in the Polish market use LPG fuel 

and an increase in its sales is projected (Chlopek et al. 2012; Automotive Market Research 

Institute SAMAR 2015a). Note that PHEVs are included in this study under the term HEV 

and not in a separate category, as these are treated as a single type of vehicle in the 

registration process in Poland. 

The types of AFVs considered were also selected according to government regulations 

affecting forecasts of road transport activity (Ministry of Economy 2009a). All eight types of 

vehicles were chosen to compare their respective data; however, GV, DV and LPG vehicles 

were not considered to be AFVs. 

4.2.2. Volume of new vehicle registrations (xjk) 

According to Poland’s Central Statistical Office (Central Statistical Office, 2008), the 

country’s population is expected to decrease by approximately 3.5% from 2008 levels to 

2030. However, the Polish economy is rapidly expanding at present and GDP forecasts by the 

Ministry of Finance of Poland and the Council of Ministers (2014) project that the economy 

will be constantly expanding from 2014 to 2030. Therefore, the volume of new vehicle 

registrations cannot be calculated according to population dynamics; correspondingly, this 

study employs revealed preference data (Automotive Market Research Institute SAMAR, 

2015a, 2015b, 2015c; 'List of CNG lorries and buses in Poland,' 2014; Polish Automotive 

Industry Association, 2015) based on the actual sales of each vehicle category in 2014. To 

calculate future vehicle sales until 2030, the proportion of new vehicle sales in 2014 against 

the total number of vehicles in the same year was calculated and set as a constant benchmark 

for the remainder of the period. Based on this, data from various vehicle portfolio projections 

(Chlopek et al. 2012; Chlopek and Waskiewicz 2013) were multiplied by this proportion to 

calculate the volume of new vehicle sales until 2030 (Fig. 13). 
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Figure 13 Estimated volume of new vehicle registrations through 2030 [thousands of units] 

4.2.3. Number of possessions (Sjk) 

The numbers of each vehicle type in 2014, as shown in Table 9, were estimated based on 

literature review (Central Statistical Office 2014; Automotive Market Research Institute 

SAMAR 2015a; Polish Automotive Industry Association 2015; Automotive Market Research 

Institute SAMAR 2015b; Automotive Market Research Institute SAMAR 2015c). Note that 

before 2009, there were no vehicles classed as HEV or EV in the Polish vehicle-registration 

system. Such vehicles were registered as GVs before 2009, making it difficult to estimate 

their present numbers in the Polish market; however, data from the Polish Automotive 

Industry Association (2015) were used for production estimates. The numbers of FCVs and 

DHEVs in 2014 were set to zero owing to a lack of data and their general unavailability in the 

market. Furthermore, the numbers of buses and lorries were calculated based on their average 

tenures of use, causing the number of such vehicles to decrease. Because the number of 

passenger vehicles (Chlopek et al. 2012) is expected to increase till 2030, we decided that this 
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parameter was not affected by average tenure of use but rather by a scrap quota. Further 

explanation is provided in the next section.  

Table 9 Numbers of units owned in 2014 

  GV DV HEV DHEV, 
FCV CNG EV LPG 

PV 11,085,536 5,675,734 7,948 - 2,083 189 2,846,868 
Truck 670,502 2,409,969 - - 60 - 184,049 
Bus 4,189 97,417 30 0 450 3 799 

4.2.4. Average tenure of use (Uj) 

According to Samar (2015a), (2015b), (2015c), the average tenures of passenger vehicles, 

lorries and buses are 17.1, 16.3 and 19.2 years, respectively. In this study, these values were 

assumed to remain constant till 2030. According to the calculations by the Polish Automotive 

Industry Association (2015) and Samar (2015a), PVs are being resold and re-registered at a 

high rate, with only 2% of PVs being scrapped. The average tenure of use of PVs is not 

considered in our model because it contradicts these real market estimates and the forecasts 

of Chlopek and Waskiewicz (2013); instead, the above quota of scrapped PVs was used to 

calculate the numbers of vehicles leaving the market. 

4.2.5. Fuel consumption 

Fuel consumption differs by vehicle category and type. In addition, automotive fuel 

consumption has been decreasing each year owing to improved engine performance and 

reduced air resistance and vehicular weight. Dodds and McDowall (2014a), (2014b) provided 

efficiency figures for PVs, and the Japanese Ministry of Environment has investigated 

improvements for lorries and buses (Ministry of Environment of Japan 2009). Based on this, 
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a ‘New car real running fuel consumption’ [MJ/km] transition for each vehicle type was 

created (Table 10).  

Table 10 New car real running fuel consumption [MJ/km] 

  Year GV DV HEV DHEV CNG FCV EV LPG 

Passenger 
Vehicle 

2015 2.44 2.30 1.39 1.62 2.44 1.35 0.66 2.44 
2020 2.38 2.15 1.34 1.57 2.38 1.27 0.63 2.38 
2030 2.24 1.86 1.22 1.48 2.24 1.1 0.57 2.24 

Lorry bus 

2015 10.17 7.54 6.41 4.52 10.17 5.65 3.54 10.17 

2020 9.79 7.26 6.17 4.35 9.79 5.44 3.41 9.79 

2030 9.23 6.83 5.81 4.10 9.23 5.13 3.21 9.23 

In addition, fuel consumption includes both ‘New car real running fuel consumption’ and 

‘Weighted average real running fuel consumption’ of vehicles already available on the 

market. Note that the diesel efficiency figures may be affected by the recently revealed errors 

in the reported mileage data of many types of such vehicles, and real diesel fuel consumption 

should be investigated more closely in future studies (Le Page 2015).  

4.2.6. Vehicle price (Vjkb) 

The costs of vehicles for 2015 were based on prices available in the market. The prices of 

PVs for subsequent years were derived from a study conducted by McKinsey & Company 

(2010) for mid-size cars in the EU market. As the results of this study are based on 

McKinsey's (2010) estimates using proprietary industry data, it can be considered a more 

reliable and accurate estimate of costs (Dodds and McDowall 2014a). The prices in 

McKinsey's (2010) study did not include taxes, and our study follows suit because from 

2015, private owners can deduct the tax while making a purchase in Poland ('Deduction of 

VAT on personal vehicles for company cars in 2015,' 2015). In September 2015, the FCV 
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Toyota Mirai was expected to be sold at a price of €66,000 in Europe ('Toyota, Honda get 

ready to launch their FCVs,' 2014). Based on this, the forecast data were adjusted to real 

market costs in 2015. McKinsey (2010) did not include research on CNG and LPG vehicles; 

in our study, the rates for these were based on DV costs as their current market prices are 

comparable (Sielicki 2015). The DHEV price followed the price of HEVs. The future costs of 

CNGs, EVs, HEVs and FCVs in the lorry and bus categories were taken from Japanese 

government estimates as European data on these types of AFVs are scarce (Ministry of 

Environment of Japan 2009). Moreover, GV, DV and LPG vehicle pricing for lorries and 

buses should not change each year. Moreover, in Scenario 4 (Subsidy), the cost of HEVs, 

DHEVs, EVs, FCVs and CNGs would decline by PLN16,000 and by PLN4,000 (for CNGs) 

owing to governmental policy encouraging the use of these PVs. According to Filho and 

Kotter (2015) and Mock and Yang (2014), most of the EV, HEV and FCV subsidies in 

Europe are between €4,000 and €5,000. The CNG subsidy is lower because of energy 

security issues. It was assumed that the subsidies for HEVs, DHEVs, EVs and CNGs would 

last until 2020 while those for FCVs would last until 2025. 

The price pathways of passenger vehicles, lorries and buses, respectively, for Scenario 1 

(BAU), Scenario 2 (Energy Security) and Scenario 3 (Low Petroleum Price) are shown in 

Figs. 14–16. 
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Figure 14 Estimated passenger vehicle prices through 2030 for Scenario 1 – BAU, Scenario 2 

– Energy Security and Scenario 3 – Low Petroleum Price [PLN] 

 

Figure 15 Estimated lorry price through 2030 for Scenarios 1 – 4 [PLN] 
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Figure 16 Estimated bus price through 2030 for Scenarios 1 – 4 [PLN] 

4.2.7. Energy price (Eikb) 
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and hydrogen. The pathways of these energy prices were modelled according to the literature, 
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predictions based on data from the IEA (2015). Petrol, diesel and gas prices were calculated 

using formulas (4)–(7) based on the literature (Lezon 2015): 

Pk
G = Pk

C +TC +TV +OV +MR +MV
          (4)  

Pk
D = Pk

C +TC +T D +OD +MR +MD
         (5)  

Pk
L = Pk

M +TC +T L +OL +MR +ML
          (6)  

Pk
N = Pk

D × n+TC +T N +ON +MR
          (7)  

PGk: year petrol price [PLN/l] 

PDk: year diesel price [PLN/l] 

PLk: year LPG price [PLN/l] 

PNk: year CNG price [PLN/l] 

PCk: year petroleum price [PLN/l] 

PMk: year gas price [PLN/l] 

TC: VAT tax [PLN/l] 

TV: Petrol excise tax [PLN/l] 

TD: Diesel excise tax [PLN/l] 

TL: LPG excise tax [PLN/l] 

TN: CNG excise tax [PLN/l] 

OV: Petrol fuel surcharge [PLN/l] 
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OD: Diesel fuel surcharge [PLN/l] 

OL: LPG fuel surcharge [PLN/l] 

ON: CNG fuel surcharge [PLN/l] 

MR: Refining margin [PLN/l] 

MV: Petrol distribution margin [PLN/l] 

MD: Diesel distribution margin [PLN/l] 

ML: LPG distribution margin [PLN/l] 

n: Diesel–CNG parity 

 

Note that there is no set margin price in Poland for the refinement of petroleum, petrol or 

diesel; instead, these prices change according to current market conditions and sometimes 

drop when sudden hikes in petroleum price occur. The petroleum, diesel and gas-refining 

margins were calculated based on data from 2014, and the margin from 2014 was set as 

constant until 2030. The CNG price in Poland was calculated assuming an eco-diesel parity 

and an excise tax, fuel surcharge and fuel tax (Sliwka et al. 2014). The prices of these fuels 

were calculated according to the current tax rates (Lezon 2015), with the results by scenario 

shown in Figs. 17 and 18. 
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Figure 17 Estimated energy prices until 2030 [PLN] in Scenario 1 – BAU, Scenario 2 – 

Energy Security and Scenario 4 – Subsidy. 

 

Figure 18 Estimated energy prices until 2030 [PLN] in Scenario 3 – Low Petroleum Price 
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4.2.8. Infrastructure cost (Tj) 

The infrastructure cost in this research is provided by the third term on the right-hand side of 

formula (1). First, the ratio of service stations (SSs) to the total number of GVs was 

calculated. There were 6,552 stations and 11,760,227 GVs in 2014 (Polish Organization of 

Petroleum Industry and Trade (POPIH), 2015b), and this ratio is assumed to be applicable as 

a benchmark for AFVs as well. The cost of infrastructure per charging spot is based on the 

literature (McKinsey & Company 2010; McKinsey & Company 2014); the EV infrastructure 

cost is an average of the cost of establishing a slow-charging station (for which full charging 

takes 5–7 h, e.g. at a home or business location) and quick-charging stations (80% of full 

charging is achieved in 30 min, e.g. at a shopping centre location). The cost of a 3.7 kW 

slow-charging station with two outlets is PLN8,500 and that of a 50 kW quick-charging 

station is PLN45,000 (McKinsey & Company 2014). As the installation of house charging 

stations is essential to the success of an EV economy, PLN1,500 was added to the 

infrastructure per EV unit sold (McKinsey & Company 2014). The CNG infrastructure cost 

was estimated at PLN3,000,000 per station according to the data found in Smith et al. (2014). 

These values should not change by year. It was also assumed that the market for SSs for GVs, 

DVs, HEVs, DHEVs and LPGs will be saturated until 2030, so there should be no additional 

costs associated with purchasing this type of vehicle. This assumption is based on the fact 

that according to Polish market data, the number of gas stations is not increasing. The number 

of stations was 6,552 in 2015, 6,745 in 2013 and 6,756 in 2012 ( POPIH, 2015b). Thus, we 

assumed that further expansion of infrastructure for GVs, DVs and LPGs was not necessary 

(Polish Automotive Industry Association 2015). The cost of FCV infrastructure was set to 

PLN8,500 per unit; this figure, as calculated by McKinsey & Company (2010), includes 



 80 

operational and capital costs for retail stations as well as the costs for distribution from the 

production site to the retail station.  

Table 11 lists the modelled costs of AFV infrastructure. 

Table 11 Infrastructure cost per unit sold [PLN] 

Type of powertrain Cost 
EV  1,514  
CNG  1,671  
FCV  8,500  
GV・DV・HEV・DHEV・LPG  -  

 

4.2.9. Power demand composition 

According to the IEA (2013), the difference between power demand and supply is 

insignificant; correspondingly, data on power demand composition provided by the Polish 

Ministry of Economy (2009b) were used as a proxy to calculate power demand composition. 

Figure 19 represents the change in power demand composition until 2030.  
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Figure 19 Power demand composition until 2030 [PLN] 

4.2.9. Annual average mileage (Aj) 

The annual average mileage differs for passenger vehicles, lorries and buses. Moreover, these 

values differ among subcategories of these vehicle types owing to a number of determinants 
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calculated based on the data provided by Chlopek and Waskiewicz (2013) and were assumed 
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Type of vehicle Years 
Passenger Car 7,905 
Lorry 14,500 
Bus 25,000 

 

4.2.10. Setup of restriction values (D, H) 

In this study, four automobile portfolio scenarios were examined. Scenarios 2–4 show a 15% 

decrease in petroleum and gas consumption. As stated in Section 2.2, this numerical target, 

which is the only target set in the scenario analysis, reflects the government’s energy 

security-based goal to decrease imports from single sources by 15% by 2030 (see Energy 

Policy of Poland until 2030), corresponding directly to energy security issues. Thus, this rate 

was set as a scenario-restriction reflecting limit on petroleum and gas imports.  

4.4. Simulation results with Optimisation 

Numerical results of four scenarios and discussions with respect to the implementation of 

AFV portfolios are illustrated in below Sections. In the scenarios presented in this section, an 

optimisation technique was applied to forecast optimal solutions for implementing the 

integration of AFVs with given energy-security constraints in Poland until 2030.  

4.4.1 Total vehicle fleet 

In Scenarios 2, 3 and 4, both petroleum and gas energy-security issues were investigated. 

However, if gas security is disregarded and only petroleum is considered, then the 

deployment of AFVs is significantly slower. Moreover, in Scenario 1 (BAU), GVs and DVs 

are sold in large quantities and the spread of AFVs is marginal. The results also show that a 

drop in prices is necessary for successful diffusion of alternative vehicles; such a drop would 
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have to be achieved by either technological developments, governmental subsidies or both. 

Furthermore, the total cost of integrating AFVs amounts to PLN146bn, PLN152bn, 

PLN120bn and PLN156bn for Scenarios 1, 2, 3 and 4, respectively. Scenario 4 (Subsidy) is 

the most expensive owing to the presence of government subsidies, but the spread of AFVs is 

the greatest at 4,250,000 units. Scenario 3 (Low Petroleum Price) is the most economic as a 

result of an assumed decline in global petroleum prices, but the diffusion of AFVs is 

significantly lower at 3,420,00 units. In the BAU Scenario, only 36,000 AFVs are introduced 

to the market. 

In optimising the portfolio, it was found that gas and petroleum restriction quotas are not 

independent. Both energy security objectives cannot be accomplished at the same time if the 

reduction in the entire system cost, which involves decreasing petroleum price and surging 

gas consumption, is assumed. In the BAU Scenario, petroleum dependency increases and gas 

use declines by 6.15%. In the Energy Security, Low Petroleum Price and Subsidy Scenarios 

(2, 3 and 4), the petroleum dependency rate decreases by 15%, but the gas consumption rate 

increases from 10.5% to 23.36, 23.25 and 23.24%, respectively. Nevertheless, Chlopek and 

Waskiewicz (2013) predicted that gas spending will increase in the coming years. 

Furthermore, as the possibility of extraction and distribution of Polish shale gas is currently 

being investigated (Baranzelli et al. 2015), it was decided that the cost of gas should be 

minimised. 

The transition of the overall vehicle fleet from 2014 to 2030 in Scenario 2 (Energy Security) 

is shown in Fig.20. 
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Figure 20 Transition of overall vehicle fleet (old vehicles + new registrations) from 2014 to 

2030 for PVs, lorries and buses for Scenario 2 – Energy Security [Million units] 
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efficiency of CNG and LPG vehicles making those powertrain platform combinations 

favourable. In the Low Petroleum Price Scenario, the lower cost of petroleum increases the 

sales of GVs; however, the number of LPG sales is still high to outweigh the increase in 

petroleum use. HEVs, FCVs and EV vehicle sales increase the most under the Subsidy 

Scenario, under which 2,000,000 vehicles are subsidised at a cost of around PLN2bn. Sales of 

GVs and LPGs are lowest under this scenario. The anticipated sales between 2014 and 2030 

are shown in Fig. 21. 

 

Figure 21 Total sales projected between 2015 and 2030, by type of PV, for Scenarios 1, 2, 3 

and 4 [units] 
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are projected to decrease by approximately 70%. In all the above three Scenarios, including 

Energy Security [2-4], CNG is the engine platform for which projected sales are the highest 

among AFVs. LPG is a fuel that increases the most overall until 2030, as a number of reasons 

including low prices, petroleum restrictions and no-additional infrastructure cost make it the 

most affordable type of fuel.  

4.4.3 Lorries 

In BAU, Low Petroleum Price and Subsidy Scenarios (1, 3 and 4, respectively), the portfolio 

of lorries and buses does not change significantly.  

Correspondingly, only the Energy Security results pertinent to these vehicles are presented 

below. Fig.22 shows the transition of the total lorry fleet from 2014 to 2030. According to 

estimates by Chlopek and Waskiewicz (2013), the number of lorries will decrease through 

2030. CNG lorries proliferate the most among all AFVs under this scenario and account for 

10.7% of the total fleet in 2030. The spread of other types of AFVs varies from 2% to 3%. 

Even so, in 2030, the use of non-AFVs remains dominant, with 48.5% of vehicles being DVs, 

13.16% GVs and 17.58% LPGs.  
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Figure 22 Transition of total lorry fleet from 2014 through 2030 in Scenario 2 – Energy 

Security [Million units] 

The most striking observation emerges in the transition of new sales of lorries. In total, LPG 

lorries increase the most, with 430,958 units sold in 2030, followed by 290,095 CNG lorries 

and more than 100,000 DV and EV lorries 100,000 in the same year. However, EV distance 

restrictions for trucking applications indicate that CNG vehicles should be promoted more to 

reduce petroleum consumption by lorries. It was also found that even though there were 40% 

fewer lorries than passenger vehicles in 2012, they were consuming almost the same amount 

of fuel as passenger vehicles. At stake is support for the sale of AFV lorries because the 

increase in energy efficiency of such vehicles would be high and their decrease in fuel use 

would be significant. Furthermore, it is easier to aim for company clients rather than for 

private users as the former generally have more resources to buy new vehicles.  

4.4.4 Buses 

As indicated earlier, the portfolio of buses does not markedly vary between the BAU, Low 

Petroleum Price and Subsidy Scenarios.  
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Figure 23 Transition of total bus fleet from 2014 through 2030 in Scenario 2 – Energy 

Security [units] 

Fig. 23 shows the transition of the overall bus fleet under the Energy Security Scenario. The 

use of GV and DV buses decreases in favour of LPG and AFV buses by 46 and 52%, 

respectively. Compared with 2014, CNG and EV sales improve the most among AFVs. 

According to these results, the implementation of AFV buses does not correspond to a 

significant decrease in the use of petrol as their numbers are projected to decrease. However, 

such vehicles could play a crucial role in improving the public perception of AFVs. In this 

manner, AFV buses should be considered for use in public transportation systems. 

4.4.5 Discussions and summary 

This study was designed to determine future portfolios of AFVs considering the energy-

security constraints that will have to be dealt with in 2030. The portfolio model developed in 

this study uses an optimisation technique, which is integrated with the Polish national energy 

and transportation strategy. As evaluated in this study, the proposed method is applicable for 

the estimation of AFV uptake and fleet sizes under a number of scenarios. This method can 

be used by automakers to investigate which products are the most promising for the AFVs, 

and the methods used in this research may be applied by other researchers to future studies on 

policies regarding the use of AFVs in other countries. This research can serve as a basis for 

the government to recognise which types of AFVs best suit the Polish situation and to 

determine the most appropriate policy instruments to benefit consumers and meet larger 

policy objectives. The major contribution of this research is the framework for the 

establishment of governmental subsidies and a guide for automakers for developing 

hydrogen- or battery-based technologies. 
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Compared with results from previous studies (Romejko and Nakano 2015), the sales of FCVs 

are not projected to be marginal but should instead rise dramatically. A possible explanation 

for this may be the fact that new data were used here. Under our new estimates, the cost of 

FCVs, hydrogen and related infrastructure are all projected to drop significantly owing to 

technological improvements. The diffusion of FCVs is significant as delaying their 

introduction will result in huge economic losses over the long term (Sharma and Krishna 

2015). Hydrogen fuel is facing many challenges with respect to, e.g. establishing 

infrastructure, cost reduction and production; however, it is a promising fuel for the future, 

and according to McKinsey & Company (2010), automakers have already improved FCV 

performance and succeeded in lowering the price of such vehicles. Other authors (Lee et al. 

2009; Leaver and Gillingham 2010; Offer et al. 2010; Krishnan et al. 2015) also support 

moving into fleets with a high percentage of FCVs to achieve economic objectives. The 

findings of the current study are consistent with those of Onat et al. (2015), who found that 

ICV becomes the dominant vehicle type in the Baseline Scenario when only economic 

aspects are considered. Our results concerning governmental support also seem to be 

consistent with other research (De Haan et al. 2007; Struben and Sterman 2008; De Haan et 

al. 2009; Browne et al. 2012; Shepherd et al. 2012; Brand et al. 2013), which found that 

subsidies and tax incentives create a positive impact on the diffusion of AFVs. The findings 

of this study differ from estimates published by the IEA (2012); under their most probable 

scenario, they project a long-term 4°C rise in global temperature considering recent (although 

prior to the 2015 United Nations Climate Change Conference) international commitments to 

limit emissions and efforts to enhance energy efficiency. The IEA 4°C scenario projects that 

the overall fleet size of petrol and diesel vehicles will continue rising until 2030 and that there 

will be an insignificant increase in CNG and DHEV, HEV and EV and FCV markets, as well 

as a slow penetration rate for these. The discrepancy with our projections in terms of the rate 
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of proliferation of AFVs may be a result of our access to new predictions of the prices of 

these types of vehicles. It is crucial to underline that this research focuses mainly on 

economic objectives, and there is a strong need (Onat et al. 2014) to discuss and investigate 

both environmental and socio-economic indicators in future studies. 

Several conclusions emerge from the Case Study 1, which are linked to the proliferation of 

AFVs. One of the more significant findings is that under the non-BAU Scenarios (2–4), it is 

crucial to introduce all types of powertrains to achieve both energy security and economic 

objectives; the desired results cannot be accomplished by introducing only one type of AFV. 

The second major finding is that the spread of FCVs could be similar to that of other AFVs 

owing to the expected rapid decline in the cost of both infrastructure and purchase price of 

such vehicles. One of the issues that emerge from these findings is that it is of utmost 

importance to begin investing in FCV support and infrastructure. A similar conclusion was 

presented in the research conducted by Offer et al. (2010). CNGs will gain a large market 

share by 2030 if relevant infrastructure is made abundant. This finding has important 

implications for the government, which should seek a reliable CNG supply (Sliwka et al. 

2014). Furthermore, we recommend that the government set a subsidy for AFVs; this could 

improve public perception and possibly support an increase in the market penetration rates of 

AFVs. Comparable suggestions regarding this issue have been reported (Brand et al., 2013; 

Browne et al., 2012; De Haan et al., 2009; Shepherd et al., 2012; Struben and Sterman, 2008). 
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5. VEHICLE PORTFOLIO ANALYSIS AND LIFE CYCLE 

ASSESSMENT WITH SHALE GAS REVOLUTION 

5.1. Chapter introduction 

The past decade has seen the rapid development of Alternative Fuel Vehicles (AFVs). AFVs 

are vehicles operating on an alternative fuel such as hydrogen, electricity, etc. (U.S. Energy 

Information Administration 2013). The scarcity of resources, the climate change by GHG 

emissions, energy security and so forth have triggered the interest among lawmakers, 

automakers and researchers on AFVs and their implementation of sustainable transportation 

systems. Technologies using hydrogen and batteries will become increasingly popular due to 

the price drop and broader availability in the market (Dodds and McDowall 2014a).  

Governments of EU countries are slowly attempting to shift from fossil fuels to renewable 

energy, not only for environmental benefits, but also for energy security reasons, but these 

are still minor sources of global energy production. Recent developments within the field of 

natural gas extraction from shale rock have changed the US energy mix dramatically (Wang 

et al. 2014). The shale gas revolution is also a promising option for countries like Poland and 

China to diversify their coal-based economies and additionally improve the energy security of 

many countries (Wang et al. 2014).  

Due to the decrease of prices of oil on global markets, the pace of popularization of AFVs is 

impeded and the extraction of shale gas has noted a significant slowdown as well. However, 

according to the energy outlook for 22nd February 2016 by the IEA, the prices of oil will 

sharply increase before 2020, due to the insufficient investment in new production (2016a). 
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Indisputably, with the increase in oil price, the government will push the extraction of shale 

gas, also in Europe (Radio Poland 2015). There have been no studies, which analyze the 

impact of the shale gas revolution on AFV’s portfolio and its implications. It is of utmost 

importance to treat this topic in a systematic way and provide a broader view of the 

consequences of using shale gas in an economy.  

The process of production of shale gas is connected with a heavy consumption of water, 

especially during extraction phase.  Moreover, there are other possible risks associated with 

shale gas production, i.e. water contamination; surface spills of drilling, fracking, and 

flowback fluids; cumulative adverse impacts on communities and ecosystems; air pollution; 

induced seismicity (Ground Water Protection Council (GWPC) and ALL Consulting 2009). 

The objective of this study is to determine the implication of the shale gas revolution on a 

portfolio of AFVs and water usage in an example of the Polish economy. The scenario of a 

low-priced natural gas is being presented. This study would be beneficial for the government, 

as well as automakers and potential shale gas investors as it would provide numerical results 

on water usage and vehicle portfolio as a consequence of implementing shale gas into a 

sustainable transportation system. Even though shale has might improve the AFV portfolio 

the drawbacks of high water consumption and safety threads might hinder the positive 

aspects of implementing it in a long run. 

Section 5.2. outlines quantitative methods to the study. The originality of this method is the 

integration of Life cycle assessment and optimization model. Water consumption is generated 

as an aftermath of shale gas used to supply energy for vehicles investigated in this study 

hence two methods are integrated in order to provide analysis of this phenomenon. The 

scenario of low-priced natural gas and petroleum is described in the section mentioned above. 
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The numerical results and findings are presented in Section 5.3. Section 4 concludes the 

research.  

5.2. Methods 

5.2.1. Model 

The qualitative part of this study integrates an optimization model described in Chapter 4 and 

life cycle assessment. The same optimization model from Section 4.2.1 is used, which 

contains multiple energy preconditions and transportation variables.  

In this case study, only personal vehicles are investigated. Scenario for low-price natural gas 

and petroleum is being investigated. The low price of the natural gas is associated with the 

development of shale gas on the case study’s market. The energy security restriction of 

petroleum has been set to 10%, while gas spending is minimized. The results of the 

calculations are in $. 

The outline of the optimization and Life Cycle Assessment process are presented in Figure 

24. 
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Figure 24 Outline of methods 

Life cycle assessment 

Life cycle assessment includes water consumption of shale gas on different stages of 

production (extraction, processing, transportation and power generation). The outline of the 

Life Cycle Assessment process is presented in Figure 1 above. We are considering 2 

scenarios, LCA1: Extraction to plant, which includes extraction and transportation of shale 

gas, LCA2: Extraction to wire, which includes extraction, transportation and power 

generation coming from shale gas. The focus of the study is on the production of the shale 

gas hence water consumption during vehicle usage is not taken into consideration. 

The originality of this approach is the integration of LCA and optimization model. Water 

consumption is generated as an aftermath of shale gas used to supply energy for vehicles 
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investigated in this study hence two methods are integrated in order to provide analysis of 

this phenomenon.  

5.2.2 Data, variables and preconditions 

The data for optimisation model are in line with the data supplied in Section 4.2 Howeve, in 

this case we consider the drop of gas price due to shale gas revolution. The prices of gas have 

been changed in this study. The average price of natural gas has been set to 0,25 $ per m3. 

The detailed estimation of gas price can be found in Section below. The oil prices are 

assumed to be low, that is why all other energy are in line with Scenario 3 – Low Petroleum 

Price from the study from Section 4. 

Shale	gas	extraction	and	transportation	

Shale gas extraction is relatively new to Polish economy, in line with this; the data on shale 

gas extraction, e.g. rate, size and cost are taken from the most reliable source - the US. The 

average lifespan of the shale gas well is set to 30 years (Corrie E. Clark, Jeongwoo Han, 

Andrew Burnham, Jennifer B. Dunn; Sullivan and Paltsev 2012). The average gas production 

of one well over six months for shale gas plays in the U.S. varies depending on the site size 

and resources, in Barnett play it amounted to 30000m³ per day, in Haynesville to 15000m³ 

per day, in Fayetteville to 50000m³ per day and Marcellus to 100000m³ per day (Hughes 

2014).  

The initial production is considerably higher than the above values, but the decline rate of 

shale gas is also significant. That is why the average production rate of the well is 60,000 m3 

per day per well from the conventional studies (Hughes 2014; U.S. Energy Information 

Administration (EIA) 2016a). 
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Water usage for production of shale gas consists of direct (onsite) consumption during 

extraction of shale gas and indirect (offsite) consumption during supply chain production. 

The heavy direct consumption of water, connected to the shale gas production, is associated 

with fracturing and drilling processes (Corrie E. Clark, Jeongwoo Han, Andrew Burnham, 

Jennifer B. Dunn). The rate of water consumption is also highly variable and depends on the 

geology and drilling techniques and rate of the flowback water recycling. The flowback water 

can be recycled, in Marcellus region, 95% of the flowback water is recycled, in other regions, 

the amount is significantly lower, e.g. 20% in Barnett and 0% in Haynesville (Corrie E. 

Clark, Jeongwoo Han, Andrew Burnham, Jennifer B. Dunn). In Marcellus play, 4,5 million 

gallons of water are used per well yearly for fraccing, drilling and construction activities 

(around 12,300 gallons per day). In Barnett it amounts to around 3,0 million gallons for 

fraccing and 270,000 gallons for drilling and construction (Corrie E. Clark, Jeongwoo Han, 

Andrew Burnham, Jennifer B. Dunn; Ground Water Protection Council (GWPC) and ALL 

Consulting 2009). The average amount of the US shale gas plays is set to 4Mbarells, which 

states to 15,141MT yearly, around 0.685 l/ per m3 of shale gas (taking into consideration that 

daily production is 60 000m3). Those numbers are higher in China, and according to Chang 

(Chang et al. 2014), water consumption amounts to around 25MT of water per shale gas well. 

The substantial difference corresponds to more advanced technologies, reuse of flowback 

water and favorable geological conditions in the U.S. in comparison with China. It is 

probable, that American companies will deliver the technology to the country used in the case 

study, which is why we have decided that the average direct use of water for m3 of shale gas 

is 0.685l/m3.  

Indirect consumption of water is linked mainly to forestry and agriculture industry, steel 

rolling and distribution and production of water (Chang et al. 2015). According to 
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benchmark, around 34% of entire water consumption results from direct water usage, and 

65% originates from indirect use (Chang et al. 2015).  

All things considered, total water consumption during shale gas production is set is 2,0l per 

1m3 of shale gas. Water consumption during shale gas transportation is minimal and amounts 

to 0.01l per 1m3 of shale gas Table 13 presents data connected to water consumption during 

shale gas production and transportation. 

Table 13 Water consumption during each stage of shale gas production 

Stage Unit Primary energy 
(kJ) 

Water consumption 
(l) 

Extraction 1 m³ 4,800.00 2.00 

 1 MJ 134.00 0.06 
Transportation 1 m³ 200.00 0.10 
  1 MJ 5.60 0.00 

Power	generation	from	shale	gas	

Estimates for water consumption in power generations were based on a combined-cycle 

power plant since the GHG emissions are lower than in the combustion turbine power plant. 

The estimated value of water consumption is set to 0.8l/kWh [16], [17], while primary energy 

use amounts to 7.06 MJ/kWh (Chang et al. 2015). 

The average price of natural gas extracted from shale gas has been set to 0.12$/m3 (without 

taxes), which is an average industrial price of gas in the U.S. in 2016 (Meldrum et al.),(U.S. 

Energy Information Administration (EIA) 2016b) The price of natural gas that is nowadays 

imported from Russia was around 0.37$ per m3 between 2014-2016 (Grzegorz Łyś 2015). 

The high-price results from long-term agreements signed between Poland and Russia. The 

price should decrease significantly within the next years due to the launch of LNG terminal 

and resources’ cooperation with other countries. Therefore, the average price of a m3 of 
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natural gas has been set to 0,25 $ per m3. All other parameters and data concerning LCA and 

shale gas were gathered in Table 14. 

Table 14 Parameters concerning LCA and shale gas production 

  Unit Amount Data source 
Natural gas price $/m³ 0.25 [18],[19] 
Shale gas price $/m³ 0.12 [15] 
Shale gas well lifespan year 30 [10],[11] 
Shale gas well average production m³/well/day 60000 [12],[13] 
Shale gas fracturing water consumption m³ (ton) 15141 [10],[14] 
Water consumption of power generation l/kWh 0.8 [16],[17] 

 

5.3. Simulation Results with Optimisation and Life Cycle Assessment 

The results of scenario of low-priced natural gas and petroleum are described in the sections 

below. In this section of the research, Poland is taken as a case study. 

5.3.1 Vehicle portfolio 

In this model, six energy sources are considered (LPG, CNG, diesel, petrol, electricity and 

hydrogen). Scenario for low-price natural gas and petroleum is being investigated. The low 

price of the natural gas is associated with the development of shale gas on the case study’s 

market. 

The energy security restriction of petroleum has been set to 10%, while gas spending is 

minimized. 
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The first set of analyses examined the impact of the introduction of cheap natural gas and 

petroleum, as a response to shale gas revolution, on vehicle portfolio. The numerical results 

are shown in Figures 25, 26 and 27.  

Figure 25 Total vehicle possession of the AFVs. 

In Figure 2, EV gains the most within AFVs. EV has surged substantially in the given time 

period. This result may be explained by the fact that around 13,7% (2016) and 14.5 % (2030) 

of electricity in Poland come from gas. 50% of hydrogen is produced from gas as well, 

however, the high prices of FCV and hydrogen price make it less favorable than EV. The 

combination of electricity and gas use is the most advantageous in AFVs in terms of energy 

security and price mix. There was no significant increase in HEV, DHEV due to petroleum 

restrictions. CNGs are using natural gas, however, their spread is not so high as it would be 

expected, due to the price of CNG fuel. In Poland, the price of CNG fuel is calculated 

according to petroleum benchmark and not natural gas price.  
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The transition of total vehicle portfolio between 2016 and 2030 is presented in the Figure 26 

below. The Figure shows that there has been a gradual decrease of GV and DV, slight 

increase of FCV, CNG, DHEV and HEV and a steady rise of EV and LPG. 

Figure 26 Changes in total vehicle portfolio between 2016 and 2030 

 

Figure 27 Total sum of units sold between 2016 and 2030 by type of vehicle 

0 
200000 
400000 
600000 
800000 

1000000 
1200000 
1400000 
1600000 
1800000 
2000000 

GV DV HEV DHEV CNG FCV EV LPG 

U
ni

ts
 s

ol
d 

Type of vehicle 

0  

5  

10  

15  

20  

25  
20

16
 

20
17

 

20
18

 

20
19

 

20
20

 

20
21

 

20
22

 

20
23

 

20
24

 

20
25

 

20
26

 

20
27

 

20
28

 

20
29

 

20
30

 

U
ni

t [
M

ill
io

n]
�

Year�

LPG 

EV 

FCV 

CNG 

DHV 

HEV 

DV 

GV 



 101 

Figure 27 presents the data for total units sold between the time period. In total, the vehicle, 

which recorded the most sales between 2016 and 2030, is LPG, followed closely by EV, 

while GV and DV sales remain low. 

5.3.2 Water usage 

The total water consumption is calculated as the sum of natural gas used to supply LPG, 

CNG, EV and FCV.  

Figure 28 illustrates water consumption of shale gas for LCA1: Extraction to plant (red and 

green) and LCA2: Extraction to wire (red, green and violet) 

Figure 28 LCA1 and LCA2 - water consumption of shale gas in billions of liters between 

2016 and 2030 

In LCA1 around 71 billions of liters of water are used in this stage of shale gas production in 

order to provide natural gas supplies for passenger vehicles. It is projected, that totally 67 

billions of water are consumed during extraction, which amounts to 95% of the whole 
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extraction to plant consumption. Only 5% comes from the transportation process, which is 4 

billions of water.  

In LCA2, the rate of total extraction to wire amounted to around 205 billions of liters of water 

between 2016 and 2030. 65.79% comes from power generation, 32.4% from extraction and 

1.7% from transportation. 

It is important to note that if the government switch from natural gas to shale gas, the extra 

usage of water amounts to the extra water used during the extraction of shale. The usage from 

gas production and transportation are similar in both natural gas and shale gas (Feng et al. 

2014). That is why, the government has to be prepared in this situation for an increased usage 

of water in the amount of 4 billion liters a year.  

In comparison, the yearly water supply to the city of Warsaw in 2014 reached around 120 

million liters (The capital city of Warsaw: Energy Infrastructure 2015). By contrast, annual 

consumption of water in extraction to the wire has amounted to around 10 billion in 2016 and 

17 billion in 2030. Moreover, there has been a myriad of questions raised regarding the water 

quality, wastewater and its disposal, spills and groundwater disturbance in the area of shale 

gas extraction (Rodriguez and Soeder 2015). Significant increase in the use of water for shale 

gas production could affect the availability of water for residents within the area (Rodriguez 

and Soeder 2015). Those threads have to be minimized, for instance, technologies such as 

wastewater recycling, storage and disposal; non-toxic hydraulic fracturing fluids or additives 

like guar gum are being adopted during shale gas production (Rodriguez and Soeder 2015). 

5.3. Summary and discussion 

The Case study 2 examined the impact of a feasible shale gas revolution on a portfolio of 

AFVs and water usage and provides findings for multiple stakeholders. Conventional studies 
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revealed that there are opportunities to explore shale gas in Poland (Uliasz-misiak et al. 2014; 

Lis and Stankiewicz 2016). Results of this qualitative analysis suggest that the shale gas 

revolution substantially impacts the portfolio of AFVs due to the significant decrease of gas 

prices. The results of this study indicate that due to shale gas revolution, the portfolio of 

vehicles positively on behalf of AFVs. The most important finding to emerge from this study 

is that the drop of GV and DHV is recorded in favour of EV and LPG. Moreover, the results 

for LCA1 and LCA2 cases show that increased use of shale gas engenders the high 

consumption of water. Those findings suggest that, if the shale gas is introduced in Poland, 

minimization of water-oriented issues is crucial.  
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6. MODEL FOR AIR EMISSIONS BY LIFE CYCLE 

ASSESSMENT 

6.1. Chapter introduction 

About half of global air pollution is attributed to emissions from coal- and oil-fired power 

plants, vehicles, and industrial facilities and associated with mortality and health problems 

such as asthma, respiratory problems, and cardiopulmonary diseases (Korzhenevych et al. 

2014; International Energy Agency 2016). According to the International Energy Agency 

(IEA), air pollution is the cause of ~6.5 million premature deaths each year with significant 

costs to the global economy  

In the European Union, more than 175,000 were recorded due to outdoor air pollution caused 

by PM. At the same time, it was more than 1 million in China (International Energy Agency 

2016). In 2014 in Cracow (Poland), there were 188 days, in which PM was higher than 

advised 50 µg/m3. In January 2017, in Warsaw (Poland), the PM level was seven times above 

the secure PM level described by World Health Organization (WHO) (2017). According to 

WHO, 33 out of Europe’s 50 most polluted cities are located in Poland, due to high 

dependence on the coal industry, residential heating, intensive usage of vehicles and low 

investment in green technologies (Huber 2017). 

The most common cause and effect relations of emissions were gathered in Table 15 below.  

Table 15 Health impact of pollutants 
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Source: Table based on (Korzhenevych et al. 2014) 

Plenty of studies have been conducted on Electric Vehicles, however, most of them focus on 

the use phase of those vehicles and disregard manufacturing part, which is energy and 

emission intensive. Indirect effects of energy production can cause severe health problems, 

e.g. asthma or even chronic mortality. It is crucial to decide if the governments should invite 

production in their country, or if it would be more apt to import vehicles.   

Governments are willing to invite manufacturers to establish green production technologies 

and promote EVs in their countries. However, both the benefits and drawbacks of locating 

production facilities in different regions should be carefully assessed prior to making 

decisions. Factors that influence environment-friendly production include the components of 

the electricity mix, dependency on coal energy, technological advancement, and the 

efficiency of energy and production. Very little attention has been paid to analyzing the 

indirect effects of locating production facilities in various countries. The governments should 

thoroughly evaluate the advantages and disadvantages of inviting manufacturers to their 

country or directly importing the finished products. 

Pollutant Impact Specification of impact
Chronic Mortality All-causes

Respiratory
Cardio-pulmonary
Carcinogenic (cancer) 
Cerebrovascular 
Otitis media 
Asthma 
Pulmonary effects in asthmatics 
Reduced lung-growth 
Leukaemia 
Asthma 

Acute and Chronic Mortality All-causes
Acute and Chronic Morbidity Cardio-pulmonary

PM Acute and Chronic Morbidity

Acute MorbidityNOx

SO2
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According to Held et al. (Held and Baumann 2011), EVs produce less environmental burden 

than internal combustion vehicles during the use phase. Furthermore, according to Buekers 

(Buekers et al. 2014), replacing internal combustion vehicles with EVs in France would result 

in substantial environmental and health profits amounting to 2.5 Eurocents per kWh. Those 

advantages can be reached due to a significant use of low-polluting energy sources (Buekers 

et al. 2014). In Sweden, only 6 g/km of CO2 is produced during the use phase because most 

of the electricity is generated in hydroelectric power plants (Jochem et al. 2015). However, 

various studies simultaneously dispute the environmental benefits of EVs. Hawkins et al. 

(Hawkins et al. 2013) suggest that it is counterproductive to promote EVs in regions where 

electricity is produced from oil, coal, and lignite combustion. In China, electricity mostly 

comes from coal-fired power plants and Ji states that replacing gasoline vehicles (GVs) with 

EVs would have adverse effects on public health and the environment (Ji et al. 2012). Similar 

results were found in (Buekers et al. 2014), where the external costs for replacing GVs with 

EVs were close to zero in both Poland and Estonia. In line with these previous studies, 

despite decreased emissions from EVs during the use phase, the production processes might 

greatly influence the total impact of these vehicles on the environment and make them less 

environmentally friendly than GVs.  

Numerous studies have investigated EVs and their environmental impact. However, most 

researchers have assessed only one stage of the vehicle life, e.g., the use phase (Howey et al. 

2011; Ji et al. 2012; Jochem et al. 2015). This approach favors EVs because they produce 

lower CO2 emissions during use. Most studies disregard the end-of-life phase of the vehicles 

(Nonaka and Nakano 2011; Zhao et al. 2012; Buekers et al. 2014). At the same time, 

recycling and disposal of EVs can substantially influence the final results of the life cycle 

assessment (LCA). Furthermore, the bulk of the papers focus mostly on the US market 

(Kintner-Meyer 2007; Samaras and Meisterling 2008; Elgowainy et al. 2009; Sandy 2009; 
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Axsen and Kurani 2013; Marshall et al. 2013; Wu and Aliprantis 2013; Nealer et al. 2015a), 

that is why there is no need to further explore this region. Moreover, many studies consider 

only the greenhouse gas (GHG) emissions, e.g., carbon dioxide (CO2) and disregard the non-

GHG emissions, e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter 

(PM) (Elgowainy et al. 2009; Jochem et al. 2015; Nealer and Hendrickson 2015). The survey 

of conventional studies is gathered in Table 16. Only a few of papers have focused on the 

impact of AFVs on air pollution. Furthermore, health effects are neglected in most of the 

studies. Only (Guo et al. 2010; Yang and He 2016) conducted the study while incorporating 

the effects of vehicles on health issues. However, the before-mentioned studies concentrate 

on only one country, China. Moreover, most of the papers investigate only one stage of 

vehicle’s lifecycle, mostly usage. Therefore, there is a necessity to examine the gaps. 

Table 16 Survey of conventional studies 

Research AFVs LCA 
Air Health Multiple 

pollution effects countries 
Nonaka [9] X X 		 		 		
Brady [10] X 

	
X 

	 	Zhao [11] 	 X X 
	 	Romejko [12] X 

	 	 	 	Faria [13] X X 
	 	

X 
Guo [7] 	

	
X X 

	Sheng Yang 
[8] 	

	

X X 

	This research X X X X X 

This study uses a more systematic approach to obtain a complete picture of the environmental 

impact of EV’s. The objective of the case study 1 is to compare the entire life cycle of EVs 

and GVs in multiple regions with a focus on GHG and non-GHG emissions and the cost of 

air pollution to the economy. LCA was applied to assess air pollution through the life cycle of 
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the vehicles under two technology scenarios. We performed the assessment for three 

countries that show great interest in introducing and promoting EVs in their markets: China, 

Japan, and the United Kingdom (UK). Those countries have the highest sales and market 

share of EVs till 2015 (International Energy Agency (IEA) 2015c). China has the largest 

market for electric cars with over 200 000 new registrations yearly. However, In China, most 

of electricity is produced from coal and EVs could hinder health and the environment quality 

(Ji et al. 2012). Japan is most famous for its high-technology and the production Nissan Leaf, 

which is the world's best-selling EV (Nissan Official Website 2017). The United Kingdom is 

not a main automotive producer, but invites investment from manufacturers (fourth largest 

vehicle producer in Europe), moreover its electricity mix consist of high percentage of 

renewables (International Energy Agency (IEA) 2016a).  

The results of this study can be used by governments and automotive companies to move 

toward sustainable manufacturing.  

In this case study 2, we consider environmental leakage, which happens when rich country 

imports dirty products from developing countries. This phenomenon leads to displacement of 

emissions abroad and often an increase in the global pollution (Fæhn and Bruvoll 2009). 

According to (Ghertner and Fripp 2007), the consumption-based approach is necessary to 

calculate the impact of production activities. Hence, in this study, we quantify environmental 

leakage according to consumption-based approach and base the calculations on ‘who 

consumes the product’. Therefore, the objective of the case study 2 is that it estimates the 

health effects cost of EVs throughout the total lifecycle and compares it among several 

countries while taking into consideration environmental leakage. Additionally, Poland case is 

being investigated. Poland’s electricity is based on coal and the air pollution is high. Poland 

has just established an “Electromobility Development Plan for Poland”, which implies that 
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till 2025 there will be a million EVs on the polish roads. The government of Poland is also 

interested in investment in automotive industry (Ministry of Energy of Poland 2017).  

Section 2 describes the LCA model used for two case studies. Vehicle assumptions, 

scenarios, and the data used in the calculations are explained in Section 3. 

6.2. LCA model 

Life cycle assessment is a tool that has been used in most of the recent studies on the 

assessment and comparison of vehicles (Nonaka and Nakano 2010; Notter et al. 2010; Lucas 

et al. 2012; Hawkins et al. 2013; Egede et al. 2015). Life cycle assessment can identify the 

environmental impact of a product. The evaluation formula of baseline LCA is shown in Eq. 

(1-6).  

(1) 
𝐿𝐶𝐴!,!,!,! !"!#$ 𝑦 = 𝐿𝐶𝐴!,!,!,!

 !"#$ 𝑦 + 𝐿𝐶𝐴!,!,! !"#$% 𝑦 + 𝐿𝐶𝐴!,!,!,! !"#  𝑦 + 𝐿𝐶𝐴!,!,!,! !"# 𝑦 ×𝑅 
 

(2) 
𝐿𝐶𝐴!,!,!,!

 !"#$ 𝑦 = 𝑛!,! 𝑦
!

×𝐶!,!,! 𝑦 ×𝐸!,!,! 𝑦 ×𝑃𝐻!  

(3) 
𝐿𝐶𝐴!,!,! !"#$% 𝑦 = 𝐹 𝑦 ×𝐸!"#$#% 𝑦 ×𝑃𝑇!×𝐷! 

(4) 
𝐿𝐶𝐴!",!,!,! !"# 𝑦 = 𝑛!,! 𝑦

!

×𝐶!",!,! 𝑦 ×𝐸!,!,! 𝑦 ×𝑃𝐻!×𝑀!  

(5) 
𝐿𝐶𝐴!",!,!,! !"# 𝑦 =𝐽!",!,!,! 𝑦 ×𝑃𝐿!×𝑀! 

(6) 
𝐿𝐶𝐴!,!,!,! !"# 𝑦 = 𝑛!,! 𝑦

!

×𝐶!,!,! 𝑦 ×𝐸!,!,! 𝑦 ×𝑃𝐻! 

 

i: vehicle type [GV/EV] 

s: scenario [BAU/Tech. Adv.] 
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e: emission type [CO2, NOx, SO2, PM] 

k: country investigated (Japan/ China/ UK) 

n: energy ratio (Japan/ China/ UK) 

y: year [2016-2025] 

m: type of energy used (coal, nuclear, gas, etc.) 

J: permitted emissions for GV [kg per km] 

C: energy consumption [kWh] 

E: air emissions of CO2, NOx, SO2, PM from energy production[kg per kWh] 

J: permitted emissions for GV [kg per km] 

M: mileage [km] 

R: production rate [units] 

F: energy used to transport one vehicle on a diesel MSD ship per km [kWh per km] 

𝐸!"#$#%: air emissions of  NOx, SO2, PM from energy production in MSD ferry ship [kg per 

kWh] 

D: distance in ferry transportation [km] 

𝑃𝐻!: Monetary damage conversion cost of high-height emissions for CO2, NOx, SO2, (energy 

production) PM [€ per kg] 

𝑃𝐿!: Monetary damage conversion cost of low-height emissions cost (transportation) for 

CO2, NOx, SO2, PM [€ per kg] 
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𝑃𝑇!: Monetary damage conversion cost of ship transportation emissions cost for CO2, NOx, 

SO2, PM [€ per kg] 

𝐿𝐶𝐴!,!,!,! !"!#$- total cost [€] 

𝐿𝐶𝐴!,!,!,!
 !"#$ - cost in manufacturing phase [€] 

𝐿𝐶𝐴!,!,!,! !"#$% - cost in transportation [€] 

𝐿𝐶𝐴!,!,!,! !"# - cost in use phase [€] 

𝐿𝐶𝐴!,!,!,! !"#  – cost in End of Life phase [€] 

The equation (1) presents the total cost of a lifecycle of vehicles. It is a sum of three stages, 

i.e. manufacturing, use phase and end of life of vehicles.  Second equation outlines the cost of 

emissions from manufacturing stage. The equation (3) presents the transportation phase of 

vehicles on ships. The equation (4) and (5) describes the use phase of GVs and EVs. Final 

equation (6) defines the cost of End of Life stage of the vehicles.  

 

The differences in the model are described in the below Sections. 

The case study was conducted on Japan, China, Poland and the United Kingdom (UK). 

According to (International Energy Agency (IEA) 2015c), China, UK and Japan are the 

countries with the largest EV sales and market share till 2015. Moreover, China was the 

largest market for electric cars with over 200 000 new registrations (International Energy 

Agency (IEA) 2015c). However, in China, most of electricity is produced from coal and 

according to (Ji et al. 2012) EVs could hinder health and the environment quality (Ji et al. 

2012). Japan is a country, which produces Nissan Leaf, the Nissan LEAF, which is the 
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world's best-selling EV(Nissan Official Website 2017). The United Kingdom is not a main 

automotive producer, but invites investment from manufacturers, moreover its electricity mix 

consist of high percentage of renewables (International Energy Agency (IEA) 2016a). On the 

other hand, Poland’s electricity is based on coal and the air pollution is high. Poland has just 

established an “Electromobility Development Plan for Poland”, which implies that till 2025 

there will be a million EVs on the polish roads. The government of Poland is also interested 

in investment in automotive industry (Ministry of Energy of Poland 2017). 

In this chapter SO2, PM and NOx are investigated, because they are the main pollutants, 

which damage cost is the highest among all primary pollutants (Korzhenevych et al. 2014). 

GHG emissions are in 82.5% caused by CO2 (U.S. Environmental Protection Agency 2017)). 

Moreover, there are international standards in road transportation for the emission of those 

pollutants (Korzhenevych et al. 2014). 

 

6.2.1 Case study 1: GHG and non-GHG emissions 

 In this study, we used LCA to determine the GHG and non-GHG emissions at each stage in 

the life of a vehicle. Figure 29 presents an outline of the LCA. Red fields indicate the fields 

investigated in this part of the study. 
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Figure 29 Outline of LCA1 

The pollutants under consideration are those that cause the most damage to human health, 

such as those that contain fine particulate matter (PM), nitrogen oxides, and sulfur oxides 

(Korzhenevych et al. 2014). The manufacturing, use, and end-of-life phases are examined for 

CO2, NOx, SO2, and PM. Under PM, we investigate the combination of PM10 and PM2.5. The 

case study is conducted for Japan, China, and the UK that will produce and use EVs and GVs 

over a 10-year period (2016–2025). 
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In the analysis, two scenarios are explored. The first scenario, Business As Usual (BAU), 

does not assume a change in the energy mix or a technology improvement. Therefore, the 

data are constant for the years 2016–2025. The second scenario, Technology Advancement 

(Tech. Adv.), is intended to present the benefits of global technology advancement and the 

pathway of countries towards a more renewable-friendly energy mix in accordance with the 

suggestions from the IEA, presented in World Energy Outlook 2015 (International Energy 

Agency (IEA) 2015a). Tech. Adv. considers technology improvements in electricity 

generation and thus a decrease in pollutant production; implementation of stricter emission 

standards for vehicles; an increase in the energy efficiency of manufacturing, use phase, and 

recycling of EVs; and an increase in renewables in the energy mix. In this case study, mileage 

is constant and amounts to 10,000km and transportation is not taken into consideration, that is 

why M= 10,000km and  𝐿𝐶𝐴!,!,!,! !"#$% = 0. 

6.2.2 Case study 2: Health impact of air pollution 

The LCA method was used in Case study 2 to quantify the health impact of EVs during their 

manufacturing stage, transport, use phase and end of life stage. The case study was conducted 

in Japan, China, Poland and the United Kingdom. The picture below presents the outline of 

the LCA. In line with it, we calculate 16 cases of vehicle life cycle. In the picture J, CH, PL 

and UK stand for Japan, China, Poland and United Kingdom respectively. EVs are used 

during a 10-year period. Moreover, the scenarios for 2016 and 2025 are being investigated as 

well in order to compare the improvements in the technologies.  
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Figure 30 Outline of LCA2 
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Figure 31 Import, export and transportation in LCA2 

There are a couple off differences between LCA model in Case study 1 and 2. In this case 

study, transportation is taken into consideration, the model is calculated for Technology 

Advancement scenario only and moreover Poland is included in the calculations. In addition, 

the average mileage distance is not constant in this case. Furthermore, we are considering 

environmental leakage and therefore we use consumer-base approach (Ghertner and Fripp 

2007), which assumes that consumers are bearing the full responsibility for the impacts of 

producing the goods they consume. Due to the above, we are taking into consideration the 

total emissions that were produced i.e. manufacturing and transportation and add them to the 

cost of the importing country. The changes and additional data gathered for this case study 

are defined in the below sections.  
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6.3. Vehicle assumptions and data analysis 

6.3.1 Basic vehicle assumptions 

There is a wide variety of EVs produced globally. However, in this study, we base our 

specifications on Nissan Leaf equipped with a 24-kWh battery. The model is available in all 

three markets and has high sales volume in UK and Japan. In China, the price of Nissan Leaf 

is high and sales are low, which is why the locally produced Chinese model, is more popular. 

The Chinese model is not available in other countries (Ayre 2016). In in this study we 

investigate a typical gasoline vehicle that is comparable in size to Nissan Leaf. We used the 

data collected by the Argonne National Laboratory from 35 plants located in the United 

States (Sullivan et al. 2010). Table 17 shows the main characteristics of EVs and GVs used in 

our analysis. 

Table 17 Characteristics of vehicles 

  EV GV 
Vehicle model Nissan Leaf Comparable average GV 
Vehicle weight (kg) 1,493 1,532 
Annual mileage (km) 10,000 10,000 
Battery capacity 
(kWh) 24 - 
Battery life (km) 150,000 - 

Battery life varies across different regions and weather conditions (Nealer et al. 2015b). 

However, for this analysis, we assume that the battery lifespan is 150,000 km and that only 

one battery is needed during the 10-year period (Hawkins et al. 2013). We assume no battery 

replacement in the 10-year usage period, since the Nissan Leaf guarantees the battery for 

around 160,000 km (2016b). The location of EV introduction is set to urban areas because 

most EVs are used in urban areas for short-distance travel. These data are set for household 
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cars and do not differentiate between EVs and GVs. However, in order to make the results 

comparable between the countries and the vehicle types, we assume an annual distance of 

10,000 km for case study 1. Moreover, even if the driving distance varies, it will not 

significantly influence the final results because no battery replacement will be needed at 

distances below 150,000 km. For the case study 2, annual average vehicle mileage differs 

among the case study countries. For China it is 14,496 km (Chen 2005), for Japan 9,300 km 

(FIA Foundation 2003), UK 12,713km (Department for Transport 2015) and 8,257 km in 

Poland (Chlopek and Waskiewicz 2013). Since the data do not distinguish types of vehicles, 

we assume that the distance is same for all types of passenger vehicles. The energy efficiency 

of EVs was set to 0.20 kWh/km (Nealer et al. 2015b; Jochem et al. 2016) for the BAU 

scenario and 0.15 kWh/km for the Tech. Adv. scenario. The total weight of the GV assumed 

in this study is 1,532 kg and that of the EV is 1,569 kg, which basically consists of 1,275 kg 

plus an additional 294 kg of the lithium-ion battery  (Aguirre et al. 2012). 

 

6.3.2. Electric mix and emission cost 

The energy mix data for the BAU scenario is based on data from the latest IEA report for 

September 2016 (International Energy Agency (IEA) 2016a); data for Japan, Poland and the 

UK are from 2015 and the newest data for China are from 2014. Table 18 presents the 

findings for the BAU scenario. We assume that the energy mix does not change and that the 

numbers are constant for the years 2015-2025. 

Table 18 Electricity mix in BAU scenario 

Electricity production by source in 2015 (%) 
  Japan China UK Poland 
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Nuclear 0.93% 2.33% 20.85% 0.00% 
Oil 8.95% 0.17% 0.54% 1.29% 
Coal 33.77% 71.14% 22.76% 80.71% 
Natural 
gas 38.94% 2.17% 29.53% 3.83% 

Hydro 8.98% 18.70% 2.59% 1.48% 
Wind 0.52% 2.46% 11.97% 6.57% 
Biofuel 
and waste 4.12% 1.01% 9.52% 6.08% 

Solar 3.79% 2.02% 2.24% 0.04% 

At the 21st Conference of the Parties (COP21) (International Energy Agency (IEA) 2015b) 

meeting in 2015, all countries agreed under a legal framework to establish actions to 

decarbonize many sectors and combat air pollution. They committed to keep the global 

temperature increase well below 2°C and even try to limit it to 1.5°C. According to the IEA, 

actions to decarbonize the energy sector would cost about USD 9 trillion between 2016 and 

2050 (International Energy Agency (IEA) 2015b). Investment in technology, cost reductions, 

and strong low-carbon policies in the energy sector will be needed to comply with those 

agreements. 

In 2015, two reactors restarted in Japan after the Fukushima nuclear accident and according 

to Ministry of Trade, Economy and Industry (METI), the share of nuclear power will rise to 

about 22% by 2030 (Kakudo 2015). During the same time period, coal will reach 26%, LNG 

will reach 27%, and renewables will reach 24%. As a result of the accident, the energy supply 

mix changed dramatically in Japan. Imports of fossil fuels increased, which triggered higher 

prices for electricity and increased CO2 emissions (International Energy Agency (IEA) 

2016b). Before the Fukushima Daiichi nuclear accident, the Japanese energy roadmap was 

aiming at expanding nuclear energy’s share to about 50% by 2030. Japan plans to reduce CO2 

emissions by 22% from the 2013 level (International Energy Agency (IEA) 2016b). Nuclear 

power in Japan is important to ensure energy security and decrease CO2 emissions. 
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China has been investing heavily in the construction of nuclear and hydroelectric power 

plants in recent years. China has pledged to grow the share of non-fossil fuels in the energy 

mix to about 20% by 2030 and lower the carbon intensity of its GDP by about 60% from the 

2005 level by 2030 (International Energy Agency (IEA) 2015a). According to the IEA 

scenario, China’s coal share is forecasted to decline significantly to 50% by 2040. China’s 

policy support will spur a rise in renewable energy to about 30% by 2040. 

The EU 2030 framework targets the share of renewables to reach 27%, reduce GHG 

emissions by at least 40% below 1990 levels, and improve energy efficiency by 27% 

(International Energy Agency (IEA) 2015a). According to IEA estimates, coal’s share in EU 

in 2040 would amount to 6% of its power generation. 

In the Tech. Adv. scenario, we assume a gradual change in the energy mix starting in the year 

2016. Table 19 presents the final electricity generation share in 2025, according to the 

estimates by the IEA (International Energy Agency (IEA) 2015a), provided in the “New 

Policies Scenario,” which includes the countries’ pledges towards environmental issues. IEA 

predicts scenario for Europe as a whole, which is an inaccurate scenario for Poland, since the 

electricity mix is based on coal. In view of this fact, we use the forecast conducted by the 

Polish government (Polish Ministry of Economy 2016). 

Table 19 Electricity mix in Tech. Adv. scenario in 2025 

Electricity production by source in 2025 (%) 
  Japan China UK Poland 

Nuclear 20.55% 7.87% 23.34% 6.47% 
Oil 2.73% 0.07% 0.64% 1.27% 
Coal 27.33% 57.39% 17.27% 67.34% 
Natural 
gas 27.33% 6.03% 19.78% 7.92% 

Hydro 8.58% 16.21% 11.85% 1.39% 
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Wind 1.41% 7.09% 15.63% 9.25% 
Biofuel 
and waste 4.81% 2.92% 6.71% 5.79% 

Solar 7.26% 2.41% 4.78% 0.57% 

The external cost of air pollution and transportation has a considerable influence on the 

environment and society. In this section, we present the assumed damage values of those 

harmful factors for both electricity production and transportation. 

According to the literature review performed by Becker et al., the cost of CO2 emissions 

varies in several studies between €70 and €486 (Becker et al. 2012). In this study, the cost of 

CO2 is set to a constant value of €120 per ton (Jochem et al. 2016) for all countries. The 

prices of other emissions from electricity production, based on the European average price 

(Korzhenevych et al. 2014), are also set as constants for a clear comparison between the three 

countries. Transportation costs were higher because emissions are located near the ground in 

dense, urban areas. The data used in this study correspond to the values evaluated in the 

Ricardo-AEA study (Korzhenevych et al. 2014) conducted for the European Commission. 

Emission prices for maritime transportation were calculated as an average price of the 

available damage cost of pollutants in sea regions (Korzhenevych et al. 2014).  Those cost 

factors quantify the effects of emissions on health, materials, and crop losses (Table 20). 

Table 20 Emissions cost in € 

Emissions cost 

  
Electricity 
production  

Transportation 
(city) 

Transportation 
(maritime) 

(€ per ton) (€ per ton) (€ per ton) 
CO2 120 120 - 
NOx 8,050 10,640 3,688 
SO2 9,350 10,241 5,613 
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PM 18,850 270,178 15,913 

6.3.3. Manufacturing 

This study adapts a gate-to-gate analysis of manufacturing processes, similar to the studies by 

Sullivan and Hawkins (Sullivan et al. 2010; Hawkins et al. 2013). LCA starts at the 

manufacturing gate when materials in the form of pellets, billets, and ingots arrive at the 

factory. Later, the parts are fabricated and eventually assembled into vehicles. During this 

time, transformation processes such as metal and polymer forming, assembling and fastening, 

and painting take place (Sullivan et al. 2010). In these calculations, we do not include raw 

material extraction or production of the basic materials. However, the energy necessary for 

operating the plant, lighting, heating, and air conditioning is included in the analysis. 

In order to produce GVs, 33,924 MJ of energy is needed, whereas the base of an EV (without 

the battery) needs 38,094 MJ plus additional energy for the production of the battery 

(Sullivan et al. 2010). Those numbers are constant for each country and scenario. In this 

study, we assume a yearly production of 50,000 units of EVs and GVs over a 10-year period. 

Battery	production	

The greatest difference between the manufacturing of GVs and EVs is the production of 

lithium-ion batteries (Nealer et al. 2015b). Battery production is an energy intensive process 

and the estimates vary depending on the battery type and the region in which it is produced 

(Samaras and Meisterling 2008; Elgowainy et al. 2009; Lewis et al. 2012; Buekers et al. 

2014). According to the estimates gathered in “Cradle to Grave” (Nealer et al. 2015b), the 

production of a 294-kg battery (including material, production, and manufacturing) requires 

between 7,569 and 12,353 kWh of energy. Therefore, we set our assumption at the mid-level 

of 10,000 kWh. According to Buekers (Buekers et al. 2014) and Lewis (Lewis et al. 2012), it 
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is possible that more energy is used in a battery’s production process than during its usage 

depending on the energy mix. In total, the production of the whole EV with a 294-kg battery 

requires 74,094 MJ (Sullivan et al. 2010) in the BAU scenario. 

Previous studies suggest that the outlook for the battery industry looks promising with the 

lower battery costs, higher performance, and stronger alliances (Poullikkas 2015; Zhao et al. 

2015; International Energy Agency (IEA) 2015c). First, in the Tech. Adv. scenario, we 

include the improvements in the battery recycling technology, which lead to a 15% decrease 

in energy consumption during battery manufacturing (Hendrickson et al. 2015; Nealer et al. 

2015b). Then, we assume a further 20% decrease in energy used for production of a 294-kg 

battery, which is “very” feasible to achieve, because lower estimates for battery production 

found in other sources are at a similar level (Division 2010; Lewis et al. 2012). 

6.3.4. Use phase 

BAU	scenario	

EVs and GVs create emissions at different times: the pollution attributed to EVs is produced 

indirectly in factories, whereas GVs pollute directly during the use phase. Emission standards 

have been set for GVs by governments and institutions for the production of new vehicles. 

The Euro VI standard, introduced in 2014, is being implemented by the UK and Japan 

(Minjares and Williams 2016) and will soon be implemented in China (Yang et al. 2015). It 

presents maximum emission rates for pollutants such as NOx and PM. SO2 is not included in 

the Euro VI standard because SO2 is usually not emitted from well-refined gasoline. The 

emissions for GVs during the use phase in the BAU scenario, based on Euro VI, are presented 

in Table 5. According to the European law, new vehicles registered in the EU cannot emit 

more than an average of 130 g of CO2 per km. Similar laws are also in effect in Japan and 
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China. Therefore, CO2 emissions for GVs in the BAU scenario are set as follows: 166 g/km 

for China (Transport Policy Portal 2013), 130 g/km for the UK, and 125 g/km for Japan 

(Mock and Yang 2014). Permitted emission levels are presented in Table 21. 

Table 21 Emissions from GVs in BAU scenario 

Emission (g/km) 
  China Japan UK 

CO2 166 125 130 
NOx 0.06 0.06 0.06 
SO2 - - - 
PM 0.0045 0.0045 0.0045 

The volume of emissions coming from EVs during the use phase depends on the energy 

efficiency of the battery, energy mix of the country, and air pollution emissions per kWh. In 

the BAU scenario, we assume that an EV requires 0.2 kWh per km. Air pollutant emissions 

per kWh of electricity production are set as constant for the three countries and for both 

scenarios. The data for pollutants are adapted from the study by Buekers (Buekers et al. 

2014). However, the emissions generated from coal are different between the countries and 

scenarios because different energy efficiencies and technologies are used in each country. We 

used the higher estimates calculated by the IEA for NOx, SO2, PM (International Energy 

Agency 2012), and CO2 (Hussy et al. 2014). Emissions from electricity generated from coal 

for Poland were taken from IEA (IEA Clean Coal Centre 2015). The government 

implemented new emission standards for coal from 2016. The data concerning emissions 

coming from electricity production are presented in Tables 22 and 23. 

Table 22 Emissions from coal power plants 

Emission (kg/kWh) 
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  China Japan UK Poland 
CO2 9.55.E-01 8.36.E-01 8.73.E-01 9.55.E-01 
NOx 1.90.E-03 4.80.E-04 9.00.E-04 2.40.E-03 
SO2 6.00.E-03 3.30.E-04 1.00.E-03 6.60.E-03 
PM 4.50.E-04 4.20.E-05 3.50.E-05 2.10.E-04 

Table 23 Emissions from electricity production 

Emission (kg/kWh) 
  NOx SO2 PM CO2 

Nuclear power plant 4.27.E-05 6.86.E-05 2.34.E-06 1.21.E-02 
Light oil gas turbine 6.51.E-04 9.90.E-04 1.28.E-05 8.53.E-01 
Hard coal* 5.98.E-04 3.34.E-04 1.76.E-05 6.19.E-01 
Natural gas 1.95.E-04 1.38.E-04 3.56.E-06 3.73.E-01 
Waterpower 7.57.E-05 2.30.E-05 5.28.E-05 1.22.E-02 
Wind 2.60.E-05 2.76.E-05 6.29.E-06 9.08.E-03 
Biomass 1.76.E-03 1.43.E-04 4.86.E-05 1.80.E-02 
Solar 1.12.E-04 1.68.E-04 2.90.E-05 5.35.E-02 

Technology	Advancement	scenario	

We assume that the Euro VII standard will come to life in 2020 and that the emissions for 

GVs will be downgraded considerably. Experts predict that Euro VII will impose half of the 

Euro VI emissions for NOx (Tinham 2016). Similar standards will be implemented in the US. 

In the US, especially in California, the standards are more stringent than in the EU and we 

assume the US Federal Tier 3 and California LEV III standards for the years 2020-2025 for 

PM and NOx (Delphi 2013). Further CO2 reductions are supposed to be implemented in 2020 

(in the EU in 2021), and the amount of the emission limits would be 125 g/km for China, 95 

g/km for the UK and Poland, and 105 g/km for Japan (Mock and Yang 2014). The data is 

presented in Table 24. 

Table 24 Emissions from GVs in Tech. Adv. scenario 
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Emission (g/km) 
  China Japan UK 

CO2 125 95 105 
NOx 0.03 0.03 0.03 
SO2 - - - 
PM 0.0019 0.0019 0.0019 

In the Tech. Adv. scenario, we assume that EV energy efficiency slowly increases from a 

value of 0.20 kWh in 2015 to 0.15 kWh in 2025. In compliance with the implementation of 

new policies and emission standards, technologies such as advanced ultra-supercritical (A-

USC), integrated gasification combined cycle (IGCC), and integrated gasification fuel cell 

(IGFC) are planned to be introduced in those three countries. The average CO2 emissions 

produced by the above-mentioned technologies are 670, 670–740, and 500–550 g/kWh, 

respectively (International Energy Agency 2012). Japan plans to introduce new plants with 

the IGCC technology, which emit about 670–740 g/kWh and to start implementing IGFC 

before 2030. That is why we set 700 g/kWh as a benchmark. For the UK and China, 

emissions are set to 750 and 800 g/kWh as feasible options in compliance with the 

international pledges for minimizing emissions. The data for NOx, SO2, and PM were taken 

from the policy options from (International Energy Agency 2012) for non-GHG emissions 

and from (International Energy Agency 2016) for China. China set new standards to limit the 

emissions from coal plants: for NOx, the limit is 100 mg/m3, for SO2 it is 100 mg/m3, and for 

PM it is 30 mg/m3 for new plants (International Energy Agency 2016). The future emissions 

from electricity generated from coal for Poland were adjusted to the UK levels. Table 25 

presents the data for emissions from coal generation in 2025.  

Table 25 Emissions from coal power plants in 2025 

Emission (kg/kWh) 
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  China Japan UK Poland 
CO2 8.00.E-01 7.00.E-01 7.50.E-01 8.00.E-01 
NOx 4.20.E-04 2.10.E-04 2.10.E-04 2.10.E-04 
SO2 4.20.E-04 6.00.E-05 6.00.E-05 6.00.E-05 
PM 1.00.E-04 2.00.E-05 2.00.E-05 2.00.E-05 

6.3.5. End of life 

According to the literature, emissions produced during vehicle disposal are not significant for 

GVs or the main bodies of EVs (Hawkins et al. 2013; Nealer and Hendrickson 2015; Nealer 

et al. 2015b). We assume that the disposal of EVs and GVs differs only in the disposal of the 

EV battery. The energy requirement for the disposal of an GV and the main body of an EV is 

set to 1,297.33 MJ of energy (Aguirre et al. 2012). Battery recycling is a relatively new 

technology for EVs and it is difficult to estimate the cost because battery vehicles are still a 

novelty on the global market. According to Aguirre (Aguirre et al. 2012), it is cheaper to use 

virgin battery material than recycled material because the recycling of batteries is more 

energy intensive. Based on their findings, we use a benchmark of 31 MJ/kg for battery 

recycling in the BAU scenario. The gathered data are presented in Table 26. 

Table 26 Energy production from end-of-life phase 

End of life energy production (kWh) 
  GV EV 

Main body 360.37 360.37 
Battery - 2531.67 
Total 360.37 2892.04 

 

Nealer et al. suggest that there is a potential for reducing the emissions from battery 

production in the future (Nealer et al. 2015b). In the Tech. Adv. scenario, we assume that 
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battery recycling technology will improve and the battery will be recycled, which will cause a 

15% (Hendrickson et al. 2015; Nealer et al. 2015b) reduction in energy consumption during 

battery manufacturing. Moreover, we assume a 20% reduction in battery production and 

disposal as an aftermath of technology advancement.  

6.3.6. Transport 

Global transport of large quantities of new vehicles is primarily carried by ships. We 

calculate the emissions produced during transportation from the main port of dispatch to the 

main port of arrival. For Japan, the port of entry is Yokohama, for the UK is Bristol, for 

China is Shanghai and Gdańsk for Poland. The distance is calculated according to data from 

(Shipping Quotation Platform 2017). The assumption is, that the shipping takes place on Roll 

On Roll Off (RORO) base (Belson 2012), which capacity is 7,200 EV vehicles (Toyofuji 

Shipping Co Ltd. 2017). This type of vessel is used to due to the fact that most of the vehicle 

producers use this type of shipment in order to maximize capacity and minimize time. The 

g/kWh emissions of medium speed diesel vessel (MSD) were taken from (Moreno-Gutiérrez 

et al. 2015) and the energy cost in kWh/t-km of freight-transport was based on (McKay 

2008).  

6.3. Summary 

In this chapter methods for environmental and social evaluation of AFVs were presented. 

Life Cycle Assessment has been chosen as a method to calculate both environmental and 

social impact of AFVs. The proposed LCA model takes into different stages of AFV’s i.e. 

manufacturing, use, end of life and transportation. Mathematical mode, two case studies, two 

scenarios and parameter values are described in details. 
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7. SIMULATION RESULTS WITH LCA MODEL 

7.1. Case 1 with environmental issues 

Emission levels were computed for four pollutants under two technology scenarios for both 

EVs and GVs. 

7.1.1. Life cycle assessment for vehicles produced in 2016 

Results for vehicles produced in 2016 and estimated to be used over a 10-year period until 

2025 are presented in Tables 27-32. 

Table 27 Total LCA for 10 years of use for vehicles produced in 2016 in BAU - Japan 

Japan Emissions (kg) 
  NOx SO2 PM CO2 

GV         
Manufacturing 3.58 2.53 0.23 4,786.22 
Use phase 6.00 0.00 0.45 12,500.00 
End of life 0.14 0.10 0.01 183.04 
Total 9.72 2.63 0.69 17,469.26 
EV         
Manufacturing 7.83 5.53 0.51 10,454.20 
Use phase 7.61 5.38 0.49 10,158.58 
End of life 1.10 0.78 0.07 1,468.95 
Total 16.54 11.69 1.07 22,081.73 

Table 28 Total LCA for 10 years of use for vehicles produced in 2016 in BAU – China 

China Emissions (kg) 
  NOx SO2 PM CO2 

GV         
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Manufacturing 13.12 40.37 3.12 6,529.95 
Use phase 6.00 0.00 0.45 16,600.00 
End of life 0.50 1.54 0.12 249.73 
Total 19.63 41.92 3.69 23,379.68 
EV         
Manufacturing 28.67 88.18 6.82 14,262.91 
Use phase 27.86 85.69 6.63 13,859.60 
End of life 4.03 12.39 0.96 2,004.12 
Total 60.55 186.26 14.41 30,126.64 

Table 29 Total LCA for 10 years of use for vehicles produced in 2016 in BAU – UK 

UK Emissions (kg) 
  NOx SO2 PM CO2 

GV         
Manufacturing 4.24 2.91 0.16 3,018.04 
Use phase 6.00 0.00 0.45 13,000.00 
End of life 0.16 0.11 0.01 115.42 
Total 10.40 3.03 0.62 16,133.46 
EV         
Manufacturing 9.26 6.37 0.35 6,592.10 
Use phase 9.00 6.19 0.34 6,405.69 
End of life 1.30 0.89 0.05 926.27 
Total 19.56 13.45 0.74 13,924.06 

Table 30 Total LCA for 10 years of use for vehicles produced in 2016 in Tech. Adv. Scenario 

- Japan 

Japan Emissions (kg) 
  NOx SO2 PM CO2 

GV         
Manufacturing 2.23 1.10 0.15 3,062.51 
Use phase 3.00 0.00 0.19 10,500.00 
End of life 0.09 0.04 0.01 117.12 
Total 5.32 1.14 0.35 13,679.63 
EV         
Manufacturing 4.12 2.03 0.28 5,649.21 
Use phase 3.55 1.75 0.24 4,875.05 
End of life 0.56 0.28 0.04 767.13 
Total 8.23 4.05 0.57 11,291.39 
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Table 31 Total LCA for 10 years of use for vehicles produced in 2016 in Tech. Adv. scenario 

– China 

China Emissions (kg) 
  NOx SO2 PM CO2 

GV         
Manufacturing 3.06 2.54 0.65 4,595.23 
Use phase 3.00 0.00 0.19 12,500.00 
End of life 0.12 0.10 0.02 175.74 
Total 6.18 2.64 0.86 17,270.97 
EV         
Manufacturing 5.65 4.68 1.20 8,476.52 
Use phase 4.87 4.04 1.03 7,314.91 
End of life 0.77 0.64 0.16 1,151.06 
Total 11.29 9.36 2.39 16,942.49 

Table 32 Total LCA for 10 years of use for vehicles produced in 2016 in Tech. Adv. scenario 

- UK 

UK Emissions (kg) 
  NOx SO2 PM CO2 

GV         
Manufacturing 2.12 0.80 0.16 2,055.48 
Use phase 3.00 0.00 0.19 9,500.00 
End of life 0.08 0.03 0.01 78.61 
Total 5.21 0.83 0.35 11,634.09 
EV         
Manufacturing 3.92 1.47 0.29 3,791.62 
Use phase 3.38 1.27 0.25 3,272.02 
End of life 0.53 0.20 0.04 514.88 
Total 7.83 2.94 0.58 7,578.52 

The results reveal that CO2 emissions during the manufacturing and use phases of EVs in all 

countries in the BAU scenario are at similar levels. For example, for Japan, it is 10,454 kg of 

CO2 during manufacturing and 10,158 kg in the use phase. During the manufacturing phase, 

EVs are more environmentally intensive than GVs. Those findings support the results of a 

previous study conducted by Hawkins et al. (Hawkins et al. 2013) . The substantial difference 
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between the CO2 emissions from GVs and EVs is attributed to battery manufacturing. They 

amount to 6.93 kg in China, 5.05 kg in Japan, and 3.2 kg in the UK. In the Tech. Adv. 

scenario, they are 5.58 kg, 4.07 kg, and 2.57 kg for each of the three countries, respectively. 

At the same time, according to Argonne’s report (Sullivan et al. 2010), CO2 emissions are 

around 2.72 kg and those in Hawkins et al. (Hawkins et al. 2013) are 4kg and 4.62 kg. 

Moreover, the results suggest that only in the UK are the total CO2 emissions of EVs lower 

than those of GVs. This could be linked to the large share of renewables in the UK and low 

emissions during electricity production from coal. In China, producing and using EVs does 

not improve CO2 emissions. Instead, it exacerbates the pollution in the BAU scenario because 

of the widespread use of coal-fired power plants. The research conducted by Jochem et al. 

also states that EVs do not automatically decrease CO2 emissions (Jochem et al. 2015). Even 

though Japan has the lowest emissions from coal burning, the total LCA is still more 

favorable for GVs. In a prior study by Nonaka et al., EVs in Japan emit less CO2 than GVs 

(Nonaka and Nakano 2010). Japan changed its electricity mix after the Fukushima Daiichi 

accident and more electricity has been produced from coal, oil, and natural gas since then. 

The results show that CO2 emissions during the use phase of EVs for both scenarios are lower 

than for GVs and they significantly decrease in the Tech. Adv. scenario. Those findings 

support the results of Brady and Mahony (Brady and O’Mahony 2011) on the emissions 

during the use phase of EVs. 

The current study found that the end-of-use phase of EVs accounts for about 5% to 6% of the 

total CO2 emissions in both scenarios. These results differ from the study by Aguirre et al. 

(Aguirre et al. 2012), in which the disposal of EVs accounts for only 1% of the total CO2 

emissions. However, the figure is low in (Aguirre et al. 2012), because the study included 

battery recycling as a subset of the battery lifecycle. 
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Our results indicate that the total emissions of NOx, SO2, and PM are higher for EVs than for 

GVs in both scenarios. There are two reasons for this: First, in 2016, the production of EVs 

required twice as much energy as the production of GVs because battery production is energy 

intensive. Second, indirect EV emissions are higher during the use phase, related to the 

electricity production in power plants. GVs emit less as a result of high emission standards 

for new vehicles set by the countries in this study. Other results consider the emissions of 

SO2. In the BAU scenario, a single EV produces over 183 kg of SO2 during its 10-year life 

cycle in China, whereas in Japan it is only 11.5 kg and in the UK it is 13.24 kg. High 

emissions in China are the consequence of substantial pollution during electricity production 

in coal-fired power plants. In the Tech. Adv. scenario, all countries improve their electricity 

mix and advanced technologies are introduced in coal-fired power plants. Therefore, SO2 

emissions for EVs in China drop by about 37% from the BAU scenario. In Japan, total 

pollution decreased between 19% and 26%, 18% and 37% in China, and 11% and 32% in the 

UK. 
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Figure 32 EV emissions for 10,000 km for Tech. Adv. scenario between 2016 and 2025. 

Figure 32 shows plummeting yearly emissions in the use phase of EVs over the years in the 

Tech. Adv. scenario. The comparison of the results from both scenarios show that the most 

significant decrease in emissions took place in the use phase of EVs in all three countries 

over a 10-year period.  

Although the emissions of NOx, SO2, and PM from both GVs and EVs decrease over the 

duration of the Tech. Adv. scenario, the volume of those pollutants is still higher for EVs. 

This LCA shows, that it is counterproductive to introduce EVs in countries where electricity 

is produced from coal or oil and those findings are consistent with the results of Hawkins et 

al. (Hawkins et al. 2013). 
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7.1.2. Life cycle assessment for vehicles produced in 2025 

This case presents vehicles produced in 2025 and used for 10 years to better illustrate the 

technology advancement over time. Figure 33 presents the total CO2 emissions for the Tech. 

Adv. scenario.  

 

Figure 33 CO2 emissions for Tech. Adv. scenario. 

Under the Tech. Adv. scenario, pollutant levels decrease significantly for EVs and total CO2 

emissions for those vehicles are lower than for GVs in all countries. A substantial 

discrepancy is recorded for the UK, where the CO2 emissions for GVs are 11,634 kg and only 

7,469 kg for EVs. 

Figures 34-36 illustrate the emissions for the BAU and Tech. Adv. scenarios for EVs 

produced in 2025. 
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Figure 34 NO2, PM emissions for Tech. Adv. scenario. 

In this case, the greatest decreases are recorded for emissions in China because of the 

improvements in technology. China is introducing carbon capture and storage (CCS) 

technology in its plants and invests heavily in renewables. The UK is experiencing further 

decreases as a result of energy efficiency improvements and limited coal use in electricity 

production. In Japan, the reduction is connected with the reintroduction of nuclear power and 

an increase of renewables in the energy mix.  
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Figure 35 SO2 emissions for Tech. Adv. scenario. 

The findings of the current study are consistent with those of Nichols et al., who found that 

the PM, NOx, and SO2 emissions from EVs are greater than those from GVs in a coal-based 

electricity mix (Nichols et al. 2015). Moreover, both studies suggest that SO2 emissions are 

considerably higher for EVs. 
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Figure 36 CO2 emissions for Tech. Adv. scenario and BAU scenario. 

The total emissions of EVs in Tech. Adv. scenario are lower than GVs emissions in the BAU 

scenario. However, it is important to note, that those results are feasible if the commitments 

of the regions to improve the electricity mix and to lower the emissions will be met. We 

believe, that those pledges should be fulfilled without difficulties since the countries follow 

the path of the already-established guidelines. In the study, we also expect the further 

improvements in the battery technology, however previous studies forecast the technology 

advancement as well (Lewis et al. 2012; Hendrickson et al. 2015; Poullikkas 2015; Zhao et 

al. 2015; International Energy Agency (IEA) 2015c).  

22,082	

30,127	

13,924	

11,291	

16,942	

7,579	

0.00	

5,000.00	

10,000.00	

15,000.00	

20,000.00	

25,000.00	

30,000.00	

35,000.00	

Japan	 China	 UK	

Em
is
si
on

s	(
kg
)	

Emissions	(kg)	CO2	BAU	 Emissions	(kg)	CO2	Tech.Adv	



 140 

7.1.3. Total cost of emissions 

Table 17 shows the total cost of emissions for both scenarios. We assume that 50,000 

vehicles are produced each year and used until the year 2025. 

The findings in Table 33 suggest that only in the UK is the cost of total emissions for EV 

lower than for GVs in both scenarios. In the BAU scenario, EV pollution costs almost twice 

as much as that from GVs. However, the cost of EV emissions in the Tech. Adv. scenario 

drops from €3 billion to €1.3 billion. A similar tendency is observed in Japan. Note that EV 

vehicles produced in 2024 will only be used until 2025. Since production of those EVs is 

energy-consuming and their use phase is short, the full benefits of EVs cannot be enjoyed in 

this case (Buekers et al. 2014; Nealer et al. 2015b).  

Table 33 Total air pollution cost 

Total LCA cost Cost (€) 
  Japan China UK 
GV in BAU 1,170,411,356 1,776,855,269 1,094,146,944 
EV in BAU 1,456,195,487 3,057,888,214 983,991,824 
GV in Tech.Adv. 646,461,535 939,395,540 538,613,896 
EV in Tech.Adv. 780,620,458 1,408,200,951 530,051,030 

7.2. Case 2 with social issues 

The comparisons of results for the 16 cases of vehicle life cycle are presented in Fig. 37 and 

Fig. 38 below. 
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Figure 37 Total health cost associated with EV production, transportation and use (production 

in 2016) 

 

Figure 38 Total health cost associated with EV production, transportation and use (production 

in 2025) 

The findings from Fig. 37 and Fig. 38 clearly present the fact that if we consider 

environmental leakage, import and export of EVs is not justified in some situations e.g. 
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where emissions during manufacturing are high or the distance between the countries is 

substantial. 

According to the outcome of the research, the production and use of vehicles in the Japan 

contribute to the lowest health cost among all 16 cases analyzed in 2016 and it is UK in 2025. 

Provided that, it would be advised to set additional production of EVs in the UK due to the 

advantageous electricity mix and the proximity to other European markets. It is seen, from 

the Fig. 2, that for Poland, the apt solution would be to import the EVs from the UK in 2016. 

In this situation, the total health cost that Poland would have to bear stands at around €40M. 

In contrast, there was a 95% decrease in the case of the production and use of the EVs in 

Poland from 2016 to 2025. The slump of the total monetary cost can be explained by the fact 

that improvement in electricity production technologies and the change of the electricity mix 

in Poland takes place. In addition, European Union imposes new standards emission for 

electricity generation. Moreover, the driving distance in Poland is shorter than in the UK. 

However, for the 2025 scenario, the total cost for EVs made and used in Poland and the EVs 

produced in the UK and transported to Poland stands at the similar level. In China, for both 

2016 and 2025 scenario, the most appropriate solution would be to import the EVs from 

Japan due to the short distance and the lower emissions of pollutants in Japan. 

Moreover, in Japan the cost of LCA would have been expected to be lower. This has a 

reflection in the change of electricity mix in Japan after Tohoku Earthquake in 2011. Instead 

of nuclear energy, Japan is using a higher percentage of gas and coal for electricity 

generation. In 2025 in all cases, the total monetary cost of health diseases drops dramatically 

due to significant improvement in electricity production, technology efficiency of vehicle and 

battery production, and new standards for air pollution. The most substantial decrease in 
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terms of value can be noted in the case of producing the EVs in Poland and exporting them to 

China. This case scenario is worth around €115M in 2016 and no more than €18.5M in 2025.  

Another interesting aspect that emerges from analyzing the data is that during the maritime 

transportation the emission of air pollutants is significant. The analysis showed that only the 

transportation of an EV from Japan to Poland in 2016 accounted for almost 35% of total 

lifecycle emissions of NOx 18% of SO2 and 59% of PM. In terms of the import of an EV 

from Japan to the UK in 2016, those results were even higher and amounted to 30% of NOx, 

43% of SO2 and 76% of PM. The result from this study can be substantiated by the data from 

(Vidal 2009), which shows that a ship can emit around 5,000 tons of SO2 annually. The 

author of the previous-mentioned study asserts that one container ship can produce “almost 

the same amount of cancer and asthma-causing chemicals as 50M cars”.  

Figure 39 Emission usage for EVs made in Japan, transported on diesel oil ships and used in 

Poland (Made in 2016, 10 years usage ) 
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Figure 39 presents emissions for the EV produced in Japan, transported and utilized in 

Poland. The results shows that only the transportation of an EV from Japan to Poland 

accounts for almost 35% of total lifecycle emissions of NOx 18% of SO2 and 59% of PM. 

That is why, my recommendation is to switch from diesel marine oil to LNG-fuelled ships. 

Due to the clean-burning characteristics of natural gas, the use of LNG leads to significant 

reduction of NOx, SOx and PM. Use of LNG reduces emissions of nitrogen oxides (NOx) to 

80%, PM to near 99%, and sulfur oxides (SOx) emissions to near 100%. (Kumar et al. 2011; 

Burel et al. 2013). Due to those significant reductions, the case for switching from diesel to 

LNG was calculated. The results for total cost are presented below in Figure 40. 

Figure 40 Total health cost associated with EV production, transportation with LNG ships 

and use (production in 2016) 

 

The most significant decrease in total cost occurs for the EVs made in Japan and transported 

to Poland (18% decrease) and England (43% decrease). Moreover the cost for EVs made in 

UK and transported to Japan plummets by 44%. Due to usage of LNG ships long-distance 

transportation on ships is becoming cleaner and takes only a small percentage of total air 

emissions.  
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Figure 41 Emission usage for EVs made in Japan, transported on LNG ships and used in 

Poland (Made in 2016, 10 years usage)

 

The significant decrease of emissions from switching from diesel oil to LNG ships is 

presented in Figure 41. In this case, transportation is producing a not significant percentage of 

total air emissions.  
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in 2016 in comparison with GVs are lower only in the UK. Surprisingly, the CO2 emissions 

from EVs in Japan are higher than those of GVs, which could be linked to the significant 

decrease in electricity production from nuclear power plants following the Fukushima Daiichi 

accident. In China, total emissions from EV production are substantially higher than those 

from GVs. The impact of SO2 emissions from EVs should not be ignored for China; because 

of high SO2 emissions, it is currently counterproductive for China to introduce EVs. 

High emissions from the manufacturing phase of EVs decrease significantly in the Tech. 

Adv. scenario. EVs become increasingly more favorable in that scenario due to technological 

developments, increases in energy efficiency, increase in the share of renewable sources in 

the electricity mix, and pledges by the three countries for a more environmentally friendly 

economy. Additionally, if EVs are produced, total CO2 emissions in 2025 will be lower than 

those from GVs for all three countries. The reduction in PM, NOx, and SO2 emissions during 

the EV use phase in the Tech. Adv. scenario compared with the BAU scenario is estimated to 

stand at 20%-26% in Japan, 19%-36% in China, and 11%-36% in the UK. 

This analysis confirms the previous findings that clean electricity generation is crucial for the 

implementation and popularization of EVs globally. Energy produced in coal-fired power 

plants creates more pollution than any other type of power plant and degrades air quality. 

Therefore, we recommend further cooperation on reducing global emissions by implementing 

international policies to increase the share of renewable sources and improve energy 

efficiency and global standards for air pollution. These findings suggest that governments 

should thoroughly assess the introduction of EVs. If they decide to go through with it, then 

they should implement energy-related policies. We recommend locating vehicle production 

facilities in regions where renewables play a central role in the electricity mix. Such moves 
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were made by Nissan that located their assembly plant in Tennessee where emissions are 

lower than in other regions (Nealer et al. 2015b). 

The monetary value of air pollution on human health is substantial and varies between €520 

million in the UK and €3 billion in China. In general, the impact of EV emissions on public 

health is lower than that of GV emissions because the EV-related pollution is originated far 

from the cities and not near the ground. Therefore, the cost of EV emissions is lower than that 

of GV emissions.  

The second case study was designed to determine the cost of health problems associated with 

air pollution, while incorporating environmental leakage. In this research, the rich countries 

carry the cost of locating production in developing countries and pay the abatement cost back 

to producing countries. We believe that developed countries, producers and consumers and 

are to be blamed for the aftermaths of the environmental leakages. The numerical results of 

this study prove our concern about environmental leakage and the danger of importing the 

products from developing countries. This study has found that it is advisable to keep local 

production if the country’s electricity is generated from the clean energy source. 

Additionally, if the electricity mix is unfavorable, it is recommended to import from a 

nearby-located country of clean electricity mix. 

 There is a strong need for further regulations and implementation of standards for not only 

vehicle transportation emission but also maritime transportation. It is also recommended to 

switch from using marine diesel to ships fueled by liquefied natural gas (LNG), this can 

considerably reduce not only Sox but also PM emissions.  Moreover, that there are still other 

regulatory challenges to overcome, e.g. according to WHO, the maximum level of emissions 

is 25 µg/m3 for PM 2.5 and 50 µg/m3 for PM10. Nonetheless, in Poland, the alarming level 

of PM is set at 300 µg/m3, while in France it is 80 µg/m3(2017). Therefore, at stake is 
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implementing regulations, global policy towards decreasing the air emission level, and 

unification of the alarming standards. Furthermore, it is also crucial to note that this paper has 

only analyzed the cost of the health from production, transport and use of EVs. If the cost of 

GHG emissions would be analyzed the final result would differ. Further improvements in the 

study could investigate a broader view and include total sustainability analysis of EVs’ 

impact. 
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8. CONCLUSIONS 

Concerns surrounding energy security and climate change, along with improvements in 

technology have spurred an interest in alternative fuel vehicles. The road transportation sector 

is responsible for the majority of overall emissions. Advancements in AFVs could stimulate 

positive changes in the transportation system. In view of the need for more efficient 

transportation new regulations are being introduced all over the world. Improvements in 

technology and governmental support policies have already increased the demand for AFVs 

(Brand et al. 2013). 

The majority of human-made air pollution originates from energy use and production, 

combustion of biomass and fossil fuels (International Energy Agency 2016). Health problems 

associated with the aftermaths of air pollution are causing a considerable monetary cost for 

the global economy. In this study, we believe that developed countries, producers and 

consumers and are to be blamed for the aftermaths of the environmental leakages. 

Developing countries imports dirty products and this lead to displacement of emissions 

abroad and often an overall increase in the global pollution (Fæhn and Bruvoll 2009). 

Therefore, it is essential to include environmental leakage in the studies to provide a realistic 

and global image of production and its consequences.  

8.1. Key findings and recommendations 

This research was designed to conduct a systematic analysis of sustainability of AFVs. The 

purpose of this study was to create an optimal portfolio of AFVs and to decide if the 

production of the AFVs is justified in some regions due to environmental and social impacts 



 150 

of the vehicles. Firstly, the economic aspects of AFVs were being investigated. Secondly, 

environmental and social study was carried out. This section presents key findings resulting 

from this work, as well as limitations and future studies.  

As a result of the present research work, the following key findings can be pointed out 

concerning the sustainability of AFVs. 

Economic analysis: 

• This paper has examined both automotive and energy sector in Poland. The results 

from qualitative analysis prove, that considering former evolution of Polish 

automotive sector, rapid improvements appear difficult to be achieved in a short time. 

With the present and forecasted future energy mix in Poland, AFVs are clearly much 

more favorable when compared with GV and DV. 

• Firstly, it is crucial to introduce all types of powertrains to achieve both energy 

security and economic objectives; the desired results cannot be accomplished by 

introducing only one type of AFV.  

• The highest spread of AFVs for Case Scenario 1 would be in CNGs and EVs. 

• Secondly, the spread of FCVs could be similar to that of other AFVs owing to the 

expected rapid decline in the cost of both infrastructure and purchase price of such 

vehicles.  

• One of the issues that emerge from these findings is that it is of utmost importance to 

begin investing in FCV support and infrastructure 

• The government should seek a reliable CNG supply (Sliwka et al. 2014).  

• Technological developments are essential in making the change. Nevertheless, non-

technological aspects as governmental policy instruments, incentives and consumer-

consciousness might play a decisive role in triggering the growth of AFVs. 
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• We recommend that the government set a subsidy for AFVs; this could improve 

public perception and possibly support an increase in the market penetration rates of 

AFVs.  

• The shale gas revolution substantially impacts the portfolio of AFVs due to the 

significant decrease of gas prices.  

• EVs are the most optimal vehicles for the Shale Gas Scenario. The combination of 

electricity and gas use is the most advantageous in AFVs in terms of energy security 

and price mix.  

• Increased use of shale gas engenders the high consumption of water.  

• Those findings suggest that, if the shale gas is introduced in Poland, minimization of 

water-oriented and safety issues issues is crucial. Water quality, wastewater and its 

disposal, spills and groundwater disturbance in the area of shale gas extraction are the 

topic that have to be tackled if the shale gas revolution takes place. 

Environmental and social analysis:  

• The results imply that EV production is more energy intensive and emits more 

pollutants than GV production. However, this effect can be compensated for by lower 

CO2 emissions during the EV use phase. Using EVs over their entire lifetime can 

offset the high emissions during the manufacturing process. 

• Total lifecycle GHG and non-GHG emissions of EVs produced in 2016 in comparison 

with GVs are lower only in the UK. Surprisingly, the air pollution from EVs in Japan 

are higher than those of GVs, which could be linked to the significant decrease in 

electricity production from nuclear power plants following the Fukushima Daiichi 

accident. In China, total emissions from EV production are substantially higher than 

those from GVs. 
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• High emissions from the manufacturing phase of EVs decrease significantly in the 

Tech. Adv. scenario. EVs become increasingly more favorable in that scenario due to 

technological developments, increases in energy efficiency, increase in the share of 

renewable sources in the electricity mix, and pledges by the three countries for a more 

environmentally friendly economy. 

• Clean electricity generation is crucial for the implementation and popularization of 

EVs globally 

• This social case study has found that it is advisable to keep local production if the 

country’s electricity is generated from the clean energy source. Additionally, if the 

electricity mix is unfavorable, it is recommended to import from a nearby-located 

country of a clean electricity mix.  

• The numerical results of this study prove our concern about environmental leakage 

and the danger of importing the products from developing countries.  

• We recommend locating vehicle production facilities in regions where renewables 

play a central role in the electricity mix.  

• We recommend further cooperation on reducing global emissions by implementing 

international policies to increase the share of renewable sources and improve energy 

efficiency, global standards for air pollution and unification of the alarming standards. 

• There is a strong need for further regulations and implementation of standards for not 

only vehicle transportation emission but also maritime transportation 

• It is also recommended to switch from using marine diesel to ships fueled by liquefied 

natural gas (LNG), this can considerably reduce not only SOx but also PM emissions.   
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8.2. Contributions 

The major contributions of this research work include the development of a methodology for 

estimation of optimal portfolio of AFVs and environmental and social LCA of them. 

As evaluated in this study, the proposed method is applicable for the estimation of AFV 

uptake and fleet sizes under a number of scenarios. This method can be used by automakers 

to investigate which products are the most promising for the AFVs, and the methods used in 

this research may be applied by other researchers to future studies on policies regarding the 

use of AFVs in other countries. This research can serve as a basis for the government to 

recognise which types of AFVs best suit the Polish situation and to determine the most 

appropriate policy instruments to benefit consumers and meet larger policy objectives. The 

major contribution of this research is the framework for the establishment of governmental 

subsidies and a guide for automakers for developing hydrogen- or battery-based technologies. 

After proper technology is developed, the findings can be used to create governmental 

policies and targets, which was already studied by (Nakano and Chua 2011; Nonaka and 

Nakano 2011). 

Additionally, this study is beneficial for the government, as well as automakers and potential 

shale gas investors as it provides numerical results on water usage and vehicle portfolio as a 

consequence of implementing shale gas into a sustainable transportation system.  

The LCA methods used in this research can be applied and used in other regions in order to 

thoroughly assess the introduction of AFVs. Automakers and policy makers need to 

investigate the lifecycle emissions of vehicles in different regions. It is crucial to decide if 

governments should invite EV production into their country, or whether it would be more 
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beneficial to import vehicles. If the governments decide to go through with it, then they 

should implement energy-related policies.  

Furthermore, the results of the study highlight the importance of the environmental leakage 

phenomenon. The present study confirms previous findings and contributes additional 

evidence that suggests that it is essential to include environmental leakage in the studies to 

provide a realistic and global image of production and its consequences. Moreover, 

governments can benefit from this LCA and choose the most sustainable location for the 

production of EVs. 

8.3. Limitations and further work 

Finally, a number of important limitations need to be considered. First, the use of biofuels 

research as a single source of fuel was not considered. This aspect should be studied further 

in line with the national goal for biofuels to achieve a 10% share of fuels by 2020. Another 

limitation is that the scrap percentage rates were set as constants. A potential methodical 

weakness that could have affected our results concerning DVs is that there is a possibility that 

future demand for this type of non-AFV will significantly plummet; this is contrary to our 

projection of the increase in the number of AFV engine platforms. Moreover, the data 

concerning DV energy consumption may be misleading and could differ significantly from 

real fuel consumption, which should be investigated more thoroughly. In response to recent 

developments concerning DV emission inconsistencies (Le Page 2015), the next series of 

studies could elaborate on the impacts of this situation. Although the current methods used in 

this research present valuable insights, there are still uncertainties in the estimated model 

parameters such as fuel, infrastructure and vehicle cost. It is important to note that fuel price 

is highly volatile and the forecasts used in this study may differ in the years to come. Changes 
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in this parameter may profoundly influence the results of the optimisation model. Finally, this 

study examined only one scenario of technology improvement; in the future, however, even 

faster vehicle price drops may be expected. This could significantly impact the results of the 

analysis. Moreover, a limitation of this study is that it assumes constant fuel efficiencies, and 

that the emissions from sources other than coal-fired power plants are constant among the 

three countries. In this regard, further research may have to consider those uncertainties.  

Further research should be extended and could investigate the sensitivity analysis of factors 

such as: vehicle efficiencies, the production rate, the recycling rate of the flowback water, the 

decline rate of shale gas price, technological improvements over time, etc. Moreover, future 

studies should investigate other types and sizes of vehicles. As mentioned earlier, battery 

recycling technologies are still developing and should be further investigated.  
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