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A bstract
The advent of the second generation sequencing technology has made RNA sequencing (RNA-Seq) 

a preferable choice over existing transcriptome profiling methods. As RNA-seq experiments can be designed 
to output data which do not require a reference genome to analyze, it is a cost efficient and high-throughput 
choice for transcriptome profiling of non-model organisms which only have partial, if not any reference 
genome. However, as many second generation sequencers including the popular Illumina system are not 
capable of reading the full length of many transcripts, the reads must first be assembled in effort to 
reconstruct the original transcriptome. There have been studies independently addressing the influences of 
some sequencing parameters in de novo transcriptome assembly; namely the read depth and read length. 
Both reports suggest the existence of a fundamental limit for performance enhancement, but to date there is 
no study which comprehensively analyzes the influences of such parameters in actual RNA-seq data which 
are publicly accessible. In this research, RNA-seq data for four model organisms were obtained from the 
sequencing read archive (SRA), categorized by read depth and read length, assembled using the 
SOAPdenovo-Trans and Trinity software, and evaluated with several assembly metrics and by searching 
against a well defined subset of Clusters of Orthologous Groups (COGs) included in the Core Eukaryotic 
Genes Mapping Approach (CEGMA) pipeline. By studying these results vve aimed to generate guidelines to 
selecting sequencing parameters for RNA-seq experiments targeted to non-model organisms. However, 
assembly results were not consistent most likely due to lack of data.
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1 B ackground
The advent of massively parallel sequencing technologies has opened a new possibility for profiling 

transcriptome abundance. The method designated RNA sequencing (widely known as RNA-seq) (1,2), is a 
promising technology which has many advantages over existing transcriptome profiling techniques (3-7). 
RNA-seq yields a high-throughput, is capable of detecting a wide dynamic range of gene expression as well 
as novel isoforms, and can be designed to be analyzed without a reference genome (1,8)- These benefits 
make RNA-seq a high-throughput and cost efficient experiment for transcriptome profiling of non-classical 
model organisms. However, popular sequencing platforms including sequencers from Illumina, Roche 454, 
and Life Technologies all produce short reads from few tens to few hundreds of bases which is insufficient to 
cover the full-length of every transcript. On the contrary, the single molecule real time (SMRT) sequencing 
technology developed by Pacific Biosciences is capable of sequencing up to a few tens of kilobases but has 
moderate throughput and poor quality compared to methods listed above. According to the metadata of the 
Sequence Read Archive (SRA) (9-11) accessible at the DBCLS SRA (12), Illumina currently dominates the 
number of applications in RNA-seq, used in more than 4,000 studies out of 4,915 transcriptome analysis 
projects total, exemplifying the significance of high-throughput short read sequencing technology in the field 
today.

Data from short read sequencers can be mapped to a reference genome to calculate transcriptome 
abundance in the case where a reference is available, but because this is not the case for a great majority of 
non-classical model organisms, the reads must first be assembled de novo in effort to reconstruct a reference 
transcriptome for further downstream analyses. To date, various software have been implemented to perform 
this task (13-16), each possessing their own strengths and weaknesses, but there is no common consensus for 
a de facto  standard program yet. Another open question is the impact of sequencing parameters such as read 
depth and read length on de novo assembly metrics, which is crucial not only for de novo transcriptome 
assembly but also for cost effective experiment design. Effects of read depth, or more intuitively the number 
of RNA-seq reads, on de novo transcriptome assembly is discussed in a preceding research (17). Reads from 
a mouse RNA-seq experiment (SRR453174) obtained from the ENCODE project (18) hosted at SRA, along 
with six other invertebrate species sequenced by the team were used. The results showed a capping of 
assembly performance at around 30 million reads with some cases of mis-assemblies reported for samples 
with too many reads. They conclude that 30 million reads is a good choice both from their results and 
experience. Effects of read length and transcriptome complexity have been discussed in another paper (19) 
which performed de novo assembly on data which were computationally simulated from reference genomes 
of Saccharomyces cerevisiae, Mus musculus, and Homo sapiens. Reads were generated with a read depth of 
30 million reads as proposed in (17), and various read lengths and number of transcript isoforms. For the 
read length of the data, there was an observable limit to the number of reconstructed transcripts which were 
likely to be unique to each organism which had been known to exist for de novo genome assembly (20). 
Assembly performance of S. cerevisiae reads topped at a shorter length compared to Mus musculus and H. 
sapiens which showed similar trends. Assembly quality dropped drastically as more and more isoforms were 
introduced across different de novo transcriptome assemblers, confirming transcriptome complexity as a 
major factor to consider in de novo assembly. A factor to consider when using de novo assemblers with 
variable k option is the setting of the k parameter of the assembly software. The general algorithm used in 
transcriptome assembly is similar to that of genome assembly, breaking up reads into た-mers and 
constructing de Bruijn graphs to searching for eulerian paths representing transcripts. Smaller choices of k 
will make the graphs sensitive to transcripts with low expression and larger values of k resolve more 
repetitions and also may decrease graph complexity. Trinity uses a fixed k  of 25 for the internal pipeline, 
which according to their report is chosen from experience (14).

Given such background our question is simple: what combination of software and parameters 
produce the best assembly metrics? This study aimed to elucidate the relationships of various parameters 
(read depth, read length, transcriptome complexity, assembly algorithm, and k) against multiple assembly 
metrics (number of reconstructed scaffolds, mean length and median length of the scaffolds, N50, N90, and 
reconstruction of well conserved genes) by comprehensively assessing RNA-seq data from SRA.

2 M aterials and M ethods
2.1 Data Sampling

From the massive amount of data available at SRA, samples were reduced according to the following 
procedures. As the first step, the metadata of read entries of transcriptome studies registered in SRA were
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collected from the metadata XML dump available at the FTP site of the National Center for Biotechnology 
Information (NCBI) (21) and analyzed. From the metadata the samples which met all of the following 
criteria were extracted:

a) Sequenced on an Illumina platform
b) Sequenced with a paired-end protocol
c) Sequenced with read length >75 bases per end

The Illumina platform is preferred over other short read sequencers for the total number of read data 
available at SRA and reports of superiority in de novo transcriptome assembly over the 454 system (22). Of 
the 82,251 RNA-seq read data registered in SRA 4,269 samples met all three criteria. The read data were 
then separated into bins based on the distribution of read depth and read length. The bins were partitioned to 
5 ,1 0 ,1 5 , 20, 30, 40, and 50 million reads for read depth, 7 5 , 100, and 150 bases for read length, and by 
organism {Homo sapiens, Drosophila melanogaster, Saccharomyces cerevisiae, and Arabidopsis thaliana) 
for transcriptome complexity. From each bin, 5% of the read data with a minimum of 5 reads data per bin 
were chosen while maximizing the heterogeneity of SRA study much as possible. All data for organisms 
which had small amounts of data in total were used for analyses. Reads which had insufficient number of 
reads left after filtering were discarded during the assembly pipeline.

2.2 Preprocessing and de novo  Assembly
Each of the reads were preprocessed by filtering out reads which had a mean Phred score <10 with a 

Perl script. Assembly was performed with two software: SOAPdenovo-Trans (13) which requires little 
computational resources as well as execution time and Trinity (14) which executes a series of sophisticated 
pipelines to resolve transcript isoforms but consumes significant amount of computational resources and 
time. Processed reads were directly fed to Trinity, and additional procedures for estimating the mean insert 
size was necessary for SOAPdenovo-Trans. The insert sizes were estimated using the Burrows-Wheeler 
Aligner (BWA) (23) to map 1 million subsampled paired reads to the reference genome of the organism. As 
the choice of k for the partitioning of the reads is variable in SOAPdenovo-Trans, assembly has been 
performed for a range of values for k starting at 21 and incremented by 6 up to 63. The assembly process has 
been conducted using the supercomputer system of the National Institute of Genetics (NIG).

2.3 Evaluation
Assembly scaffolds were assessed based on several metrics; namely the total number of assembled 

scaffolds, mean scaffold length, median scaffold length, N50, and N90. Reconstruction of conserved genes 
were evaluated by performing a similarity search using BLAST (24) with E  value less than le  6 following the 
protocol described in (17) to identify the number of reconstructed Core Eukaryotic Genes (CEGs); a set of 
248 EuKaryotic Orthologous Groups (KOGs) (25) defined in the Core Eukaryotic Genes Mapping Approach 
(CEGMA) pipeline (26). The number of CEGs reported were counted and were annotated as full length 
reconstructed if the assembled transcript length was within range of the longest and shortest sequences of the 
CEG. Both the count of BLAST hits and full length reconstructed transcripts were used for further evaluation 
of the data.

3 R esults
3.1 Overall Statistics

Overall, there were only a small amount of data with a read depth of 150 bases available across 
every organism. For organisms besides Hsapiens, reads in one or two bins contained more than half of the 
number of data available for the organism in total. These data were mostly from a single large scale study 
following a single experimental protocol. In order to reduce the number of data used in the analysis, 5% of 
the H. sapiens data were subsampled with a minimum of 5 data per bin.

3.2 Evaluation of Assembly Results
Resulting assembly metrics were plotted against read depth, read length, and value of k (for 

SOAPdenovo-Trans only), and Pearson correlation coefficients for each combination of parameters and 
metrics were calculated. Number of scaffolds, mean scaffold length, median scaffold length, N50, and N90 
were all converted to common logarithm. From the overall results no immediately obvious patterns besides a
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Figure 1 .Plot of assembly metrics against parameters
The bottom left partition contains plots of SOAPdenovo-Trans and Trinity assembly metrics: number of scaffolds 
(Scaffold_Num)， mean scaffold length (Mean一 Size), median scaffold length (Median—Size)，N50, N90, number of full 
length reconstructed CEGMA CEGs (CEGMA_Range)， and number of CEGMA CEGs with a BLAST hit report 
(CEGMAJHit)， against read length and read depth. Scaffold_Num，Mean—Size, Median—Size, N50, and N90 were 
converted to common logarithm. The top right partition contains the Pearson correlation coefficients between variables. 
The diagonals represent the histograms of each variable. The value of k with the highest product of assembly metrics 
were selected as the best k and used in the plots.

gradual improvement in some assembly metrics with the increase of read depth were observable for output 
from both of the assemblers (Figure 1 ) ,only SOAPdenoo-Trans (Figure 2) and only Trinity (Figure 3). The 
plots split by organism which are omitted for brevity, revealed a drop in the number of scaffolds and 
CEGMA coverage with the increase of k  for SOAPdenovo-Trans results. An increase in the number of 
scaffolds following the increase of read depth and decrease in variance of CEGMA BLAST hits can be 
observed in H. sapiens plots and D. melanogaster plots.
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Figure 2. Plot of SOAPdenovo-l^ans assembly metrics against parameters
The bottom left partition contains plots of SOAPdenovo-Trans assembly metrics: number of scaffolds (Scaffold_Num), 
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converted to common logarithm. The top right partition contains the Pearson correlation coefficients between variables. 
The diagonals represent the histograms of each variable.
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Figure 3. Plot of Trinity assembly metrics against parameters
The bottom left partition contains plots of SOAPdenovo-Trans assembly metrics: number of scaffolds (Scaffold_Num), 
mean scaffold length (Mean—Size), median scaffold length (Median_Size), N50, N90， number of full length 
reconstructed CEGMA CEGs (CEGMA_Range), and number of CEGMA CEGs with a BLAST hit report 
(CEGMA_Hit), against read length and read depth. Scaffold_Num, Mean_Size, Median_Size, N50, and N90 were 
converted to common logarithm. The top right partition contains the Pearson correlation coefficients between variables. 
The diagonals represent the histograms of each variable.

3.3 Cross evaluation of assembly metrics across software
Assembly metrics of scaffolds reconstructed by SOAPdenovo-Trans and Trinity were plotted against 

each other (Figure 4) and distributions were compared to assess performance differences (Figure 5). Of the 
multiple values of k available for SOAPdenovo-Trans, value of k with the highest prcxluct of assembly metric 
values were calculated and used. All assembly metrics showed strong correlation (r > 0.7) and had consistent 
distributions with the exception of median scaffold length, whose distribution differed significantly between 
the assemblers (p-value 8.965e—7 tested with ANOVA).
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Figure 4. Plot of assembly metrics across SOAPdenovo-lVans and Trinity results
T h is fig u r e  sh o w s  the p lo t  o f  se v e n  a sse m b ly  m e tic s  b e tw e e n  a sse m b ly  resu lts fro m  S O A P d en o v o -T ra n s and  T rinity. 

S c a ffo ld —N u m ，M e a n _ S iz e , M e d ia n _ S iz e , N 5 0 , and N 9 0  w e re  co n v e rte d  to  c o m m o n  lo g a r ith m . AH resu lts  sh o w  strong  

correlation .
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Figure 5. Distribution of assembly metrics from SOAPdenovo-TYans and THnity results
T h is  f ig u r e  sh o w s  the d istr ib u tion s o f  th e  a sse m b ly  m e tr ic s  fo r  the sc a ffo ld s  outp ut by S O A P d e n o v o -T r a n s and  T rinity. 

S c a ffo ld _ N u m , M e a n _ S iz e , M e d ia n _ S iz e , N 5 0 , and N 9 0  w e r e  co n v erted  to  c o m m o n  lo g a r ith m . T h e  m ean  o f  m ed ian  

sc a ffo ld  s iz e  d iffered  s ig n if ica n tly  (p -v a lu e  8 .9 6 5 e  7 te s ted  w ith  A N O V A ).

3.4 Discussion
Regardless of the target organism, the number of CEGMA BLAST hits seemed to drop as k value 

was increased for SOAPdenovo-Trans. As the number of scaffolds and CEGMA coverage values show a 
moderate correlation (r = 0.62), it is intuitive to interpret that the decrease in the absolute number of 
scaffolds is lowering the chance of finding BLAST hits. It is logical for the number of scaffolds to have a 
negative relation with the choice of k, as larger k  values reduce the complexity and heterogeneity of de 
Bruijn graphs generated in the assembly process. Such relationship between k and number of scaffolds holds 
true for H. sapiens^ D. melanogaster, and A. thaliana assemblies. S. cerevisiae data shows the most 
inconsistent results, most likely due to lack of data for each bin with the exception of the 5 million read 
d ep th ,100 base read length bin. The assembly results from Trinity for A. thaliana reads are also inconsistent, 
which too is probably a result of insufficient data. For other plots, increase in the number of scaffolds 
assembled and CEGMA coverage can be observed as read depth accumulates, up to a point where not much
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improvement is apparent at around 30 to 40 million reads, which is consistent with the results of Francis, et 
a l . (17). Effects of read length were not observable in all of the cases which is a surprising result as 
consistent trends were not observed even in between 75 base and 100 base read length data which in many 
cases have plenty amount of data.

Cross evaluation of the output from both assemblers yielded interesting results and provided some 
insights to the characteristics of each assembler. All of the assembly metrics show strong correlation of r >
0. 7. indicating that assembly metric trends are consistent between the two assemblers and suggest that the 
inconsistency in the pattern of the data is indeed not an assembler specific problem. The distributions of the 
assembly metrics from both software indicate performance differences between the two software. Trinity 
tends to have lower variance in many assembly metrics, more transcripts that is close to median length, and 
is slightly more suited to generating fully reconstructed KOGs compared to SOAPdenovo-Trans. On the 
contrary, SOAPdenovo-Trans seems to generate many scaffolds that have a BLAST hit report against the 
CEG dataset, and is producing scaffolds with length distributed in a wide range which explains the 
significantly low median length, These results suggest that Trinity output scaffolds have high quality as a 
trade-off with quantity, while SOAPdenovo-Trans generates large quantities of scaffolds with lower quality。
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