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Chapter 1

Introduction

In Chapter 1, the background and objective of this dissertation are presented in detail. The approaches

that are used to achieve the objectives are clarified. This chapter ends by giving the chapter organization

and nomenclature.

1.1 Background of This Dissertation

In the conventional analysis and design methods of control systems, it is assumed that the dynamics

of plants that are desired to be controlled are known accurately [1, 2]. However, the assumption is not

practical in many cases; in reality, the dynamics of plants can be identified at some level of accuracy

in a limited bandwidth, so there is a discrepancy between the mathematical models and the actual dy-

namics of systems [3, 4]. Typical sources of the discrepancy are un-modeled high frequency dynamics,

model simplification, order reduction, system parameter variations, torn-and-worn factors, and so on. If

a controller is designed by considering only the identified dynamic model, i.e., nominal plant model,

then the stability and performance of the system may deteriorate by the uncertain plant dynamics that

are not considered in the design of the controller [3, 4]. Besides the perturbations of plant dynamics,

external disturbances, such as gust disturbance on a crane or aircraft, sensor noises, etc., may degrade

the performances of control systems, significantly [5, 6].

To improve the stability and performance of control systems in practice, plant uncertainties and exter-

nal disturbances should be considered in the design of controllers. In the literature, it is examined under

the problem of ”Robust Control” that is described in this dissertation as follows:
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G(s)C(s)
y(s)

d

r
�

�
� �

Fig. 1-1: Block diagram of a basic feedback control system.

”Designing a controller such that stability and performance goals are achieved irrespective of plant

uncertainties and external disturbances.”

It is a well-known fact that high gain controllers are naturally robust; parameter variations can be

neglected by using sufficiently high gain control signals [7–9]. Equation (1.1) shows the transfer function

of a basic feedback control system that is shown in Fig. 1-1.

y(s) =
C(s)G(s)

1 + C(s)G(s)
r(s)− G(s)

1 + C(s)G(s)
d(s), (1.1)

where C(s) and G(s) denote controller and plant, respectively; r(s) and d(s) denote reference and

disturbance external inputs, respectively; and y(s) denotes response. Equation (1.1) shows that as the

control signal is increased, C(s) becomes more dominant in the closed loop response of the system and

attenuation of external disturbance is improved, i.e., the robustness of the control system is improved.

However, increasing control gain has several disadvantages such as exciting high frequency dynamics

or resonant frequency, increasing noise, energy consumption, and so on. Therefore, the robustness of

control systems cannot be achieved by only increasing the control gain in general.

The theory of modern Robust Control began in the late of 70s and early of 80s by noticing that

optimal feed-back control methods fail to recognize the importance of model uncertainty in limiting

achievable control performance [10, 11]. After that, several researches have been conducted to suppress

the effects of plant uncertainties and external disturbances [11–13]. The definition of the dynamic

perturbations of plants is the basis of the robust analysis and design control methods. In general, robust

control methods can be categorized by considering the dynamic perturbations of plants, namely real

parametric uncertainties and unstructured uncertainties as shown in Fig. 1-2.

In the real parametric uncertainty based analysis and design methods, as it can be deduced from the

name directly, it is assumed that the general structure of a plant’s dynamics is known accurately; however,
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Fig. 1-2: Dynamic perturbations of plants.

the parameters of the dynamic model include uncertainties in which the upper and lower bounds of

parameters can be determined [14, 15]. Equation (1.2) and eq. (1.3) show the model of a servo system

by using real parametric uncertainties.

mq̈ + cq̇ + kq = f(t), (1.2)

(mn + δm)q̈ + (cn + δc)q̇ + (kn + δk)q = f(t), (1.3)

where •n denotes nominal, i.e, identified, parameters; and δ• denotes parameter variations.

The dynamic perturbations in many industrial applications can be modeled by considering the real

parametric uncertainties such as torn-and-worn effects on plant components, shifting operating point,

and so on [15]. Conventionally, systems that include real parametric uncertainties are analyzed by grid-

ding the uncertain parameters in admissible regions; however, it is computationally inefficient [14].

Kharitonov theorem is the basis of the modern real parametric uncertainty based robust analysis and

design control methods [16, 17]. It shows that at most four polynomials should be analyzed to show the

asymptotic stability of interval polynomials, so the computational complexity and load of the conven-

tional gridding methods are eliminated. After Kharitonov theorem, several real parametric uncertainty

based analysis methods were proposed in this field, e.g., Edge and Tsypkin-Polyak theorems which are

used in Chapter 3 [18, 19]. The real parametric uncertainty based analysis methods have two main dis-

advantages. The first one is that only the real parametric uncertainties can be considered in this method;

therefore, the general structure of the dynamic model should be obtained accurately, e.g., the relative

degree or the order of the plant model should be identified precisely. The second one is that it is not

an easy task to derive compact solutions in the robustness analysis. Therefore, in general, numerical

or geometry-based control algorithms are used in the analysis and design of the robust control systems.

Although useful analysis algorithms can be obtained numerically, designing a robust controller is not an

easy task in general.

– 3 –
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∆(s)

�

�

Gn(s)
y(s)

G(s): Uncertain Plant

Fig. 1-3: Description of output multiplicative uncertainty.

In the unstructured uncertainty description, many perturbations, such as order reduction, paramet-

ric uncertainties, un-modeled non-linearities, etc., can be lumped into one single perturbation block

[3, 4, 20]. Therefore, any kind of plant uncertainties can be easily considered by using the unstructured

uncertainty based description. There are different unstructured uncertainty definition methods in the

literature such as additive perturbation, inverse additive perturbation, input-output multiplicative pertur-

bations, and so on [4]. All of the perturbation definition methods have their own advantages and disad-

vantages, so they are chosen by considering the robust control problem [4]. The output multiplicative

uncertainty based description, which is used in Chapter 3, is shown in eq. (1.4) and Fig. 1-3.

G(s) = Gn(s)(1 + ∆(s)), (1.4)

where ∆(s) denotes the unstructured uncertainty block.

Several robust analysis and design control methods have been proposed by using the unstructured un-

certainty based plant description [11–13]. Small Gain theorem is one of the most widely used robust

control tools to analyze the robust stability by using the unstructured uncertainty model of an exact plant

[21, 22]. The main advantage of the Small Gain theorem is that the robust stability and performance cri-

teria can be analytically defined in a compact form for any kind of plant dynamics. However, Small Gain

theorem considers only the amplitude response of Nyquist plot; therefore, it suffers by the conservatism

which may degrade the performance of control systems significantly as shown in Chapter 3.

H∞ control is another important robust analysis and design control method that can be implemented

into several different robust control problems such as multi-variable control [23,24]. Several researches

have been conducted on H∞ based robust control in the literature, and the robust control systems can
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be simply designed by using the advanced H∞ control toolbox provided by Matlab [25, 26]. The main

disadvantages of H∞ control are that it has a complicated mathematical structure which is a very serious

problem for practitioners and even researchers, robust controllers that are designed by using H∞ control

methods may not be implemented easily that is a very challenging issue in practical applications, and

it suffers from conservatism. The conservatism can be decreased by using Structured Singular Values,

i.e., µ synthesis, introduced by J. C. Doyle [27]. However, µ synthesis based analysis and design

methods have also complicated mathematical structures. To analyze and design µ synthesis based robust

controllers, µ control toolbox provided by Matlab can be used [28].

There are also another conventional robust control methods in the literature such as Linear Quadratic

Gaussian (LQG) optimal control problem [29]. However, complicated mathematical structures and

impractical controllers are the main challenging issues of the conventional Robust Control methods in

general.

Besides the conventional robust control methods, two-degrees-of-freedoms (2-DOF) controllers are

widely used to achieve robust control systems in the literature. In 2-DOF control systems, against the

conventional methods, a robustness controller forces uncertain/exact plant to behave as its nominal plant

model and suppresses external disturbances so that the performance controllers can be easily designed

by considering only the dynamics of the nominal plant model. Consequently, the robustness and perfor-

mance goals of the systems are controlled independently by using two different controllers, namely the

robustness and performance controllers. Several 2-DOF robust control structures have been proposed

in the literature such as Generalized Internal Model Control (GIMC) and Disturbance Observer (DOb)

based controllers [30–33]. Among them, DOb is one of the most popular robust control tools since the

robustness can be adjusted in a desired bandwidth, intuitively. The basis of the DOb design depends on

the unknown or unmeasured input observation methods which were proposed in the beginning of 70s

[34,35]. However, it has been widely used in robust motion control applications after it was proposed by

K. Ohnishi in 1983 [32]. A DOb is a very important design tool to achieve robustness in sliding mode

based control systems (SMC), e.g., acceleration based controller (ABC) in motion control systems [36].

1.2 Objective

There are two main objectives of this dissertation. They are stated as follows:

(1) To extend the application area of DOb beyond the motion control.

– 5 –
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(2) To clarify the design constraints in the DOb based robust motion control systems.

Although DOb has long been a very well-known robust control tool in the literature and has a very

simple control structure, its applications are mainly limited in the motion control field. One of the most

important reasons of this limitation is that DOb based robust control systems have not sufficient analysis

and design control methods. To extend the application area of DOb beyond the motion control, new

analysis and design control methods should be proposed by considering different dynamic characteristics

of uncertain/exact plant, e.g., non-minimum phase systems.

DOb has been widely used in motion control applications, such as robotics and automotive, since it

was presented in the first IPEC conference [32]. However, DOb based robust motion control applications

still suffer from insufficient analysis and design control methods, so its implementations highly depend

on designers’ own experiences. To improve the robustness, stability, and performance of DOb based

motion control systems, the robust motion control structures should be re-considered, the robustness and

stability should be clarified, and novel analysis and design control methods should be proposed.

1.3 Approach

In this dissertation, novel analysis and design control methods are proposed for DOb based robust

control systems.

Several different uncertain/exact plant dynamics, such as plants with real parametric uncertainties and

right half plane pole(s) and zero(s), are considered in the design of DOb so as to extend its application

area. The design constraints of DOb are clarified by using advanced control methods such as Kharitonov

and Bode integral theorems. The main advantage of the proposed methods is that they clarify the robust-

ness characteristics of DOb practically, e.g., if an uncertain/exact plant is minimum phase and includes

only real parametric uncertainties, then the robust stability margin of the control system can be improved

by increasing the bandwidth of DOb. The proposed methods can be easily implemented into many dif-

ferent robust control problems without requiring advanced mathematical background.

Although the robustness and stability of DOb based motion control systems have been previously

researched in the literature, they are re-considered in this dissertation so as to clarify the practical de-

sign constraints of DOb in the motion control applications. Against the conventional analysis methods,

imperfect velocity measurement, in which a LPF is used to suppress noise of velocity measurement in

practice, is considered in the proposed analysis; and a new robustness design constraint is derived. It
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Fig. 1-4: Chapter organization.

is shown that the proposed robustness constraint directly limits the stability and performance of DOb

based motion control systems. The stability of DOb based robust motion control systems, i.e., position

and force control systems, are analyzed, and new practical design constraints, which improve the per-

formance of motion control systems significantly, are proposed. The author believes that the proposed

control tools are very useful not only for researchers, but also for practitioners of motion control field

due to their simplicity.

1.4 Chapter Organization

Fig. 1-4 shows the chapter organization. Chapter 2 explains the general structure of DOb based robust

control systems, briefly. Chapter 3 analyzes the DOb based robust control systems by considering real

parametric and unstructured uncertainties. Firstly, DOb is implemented into the robust control problem

of minimum phase systems that include real parametric uncertainties; and it is shown that the robustness
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of the system can be achieved by increasing the bandwidth of DOb. Secondly, unstructured uncertainty

is considered, and the analyses are extended to non-minimum phase and unstable plants and higher order

DOb (HODOb). Several design constraints are provided for different robust control systems by using

Bode and Poisson integral theorems. Chapter 4 analyzes the DOb based robust motion control systems.

A new robustness design constraint is proposed by considering the practical velocity measurement that

is obtained by using a low-pass-filter (LPF). It is shown that the bandwidth of DOb and nominal inertia

are limited by the robustness. Novel stability analysis methods are proposed for DOb based position

and force control systems. The trade-off between the robustness of DOb and stability of motion control

systems is explained clearly. Robust force control systems are discussed in detail by considering practical

environmental impedance estimation methods. It is shown that the robustness is crucial not only in

position control systems, but also in force control systems. Chapter 5 analyzes the DOb based robust

position control problem of multi-degrees-of-freedom robot manipulators by using non-linear control

methods. The equivalence between the passivity and DOb based controllers are used in the analysis of

the robust position control systems. A new design constraint for the nominal inertia matrix is proposed

to improve the stability of the robust position control system. It is shown that the error of the robust

position control system is uniformly ultimately bounded if trajectory tracking problem is considered;

and the radius of the error bound can be shrunk by increasing the bandwidth of DOb and/or nominal

inertia matrix. However, asymptotic stability is achieved if regulator problem is considered. Chapter 6

summarizes and concludes this dissertation.
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Nomenclature

DOb Disturbance observer
HODOb Higher order disturbance observer
DOF Degree-of-freedom
RFOb Reaction force observer
RLMSE Recursive least mean square error
ABC Acceleration based control
LQG Linear quadratic Gaussian
SMC Sliding mode control
SSV Structured Singular Values
LPF Low pass filter
MIMO Multi-input-multi-output
MISO Multi-input-single-output
RHP Right half plane
GA Genetic algorithm
sup Supremum
emin Minimum modeling error
emax Maximum modeling error
τ Delay time
G(s) Uncertain/Exact plant model
Gn(s) Nominal plant model
Ĝn(s) Approximate minimum-phase nominal plant model
Q(s) Low-pass-filter of DOb
C(s) Outer-loop performance controller
L(s) Open loop transfer function
L̃ Minimum phase open loop transfer function
r Reference external input
d Disturbance external input
ξ Noise external input
y(s) System response, i.e., output
d̂∗(s) Estimated disturbance
rcon(s) Control signal
WP (s) Performance weighting function
WS(s) Stability weighting function
T (s) Co-sensitivity function
S(s) Sensitivity function
∆ Uncertain block in which ||∆||∞ < 1

g0 Bandwidth of DOb
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zRHP Right half plane zero
pRHP Right half plane pole
wB Bandwidth of closed loop system
Jmn Nominal inertia/mass of motor
Jm Inertia/mass of motor
∆Jm Inertia/mass variation
Kτn Nominal thrust coefficient of motor
Kτ Thrust coefficient of motor
∆Kτ Thrust coefficient variation
Im Motor current
Idesm Desired motor current
Icmpm Compensate motor current
qm Angle/position of motor
q̇m Velocity of motor
q̈m Acceleration of motor
q̈desm Desired acceleration
q̇noisem Noise of velocity measurement
qrefm Reference angle/position
q̇refm Reference velocity
q̈refm Reference acceleration
gDOb Cut-off frequency of DOb
gRFOb Cut-off frequency of RFOb
gv Cut-off frequency of velocity measurement
τ loadm Loading torque/force
τ frcm Friction torque/force
τ intm Interactive torque/force
τdm Total external disturbance
τdism Total disturbance
τ̂dism Estimation of τdism

τ̂ frcm Estimation of τ frcm

τ̂ intm Estimation of τ intm

τ̂ loadm Estimation of τ loadm

τ loadref Reference torque/force
extτdm External disturbance
TDObsen (s) Sensitivity function of DOb based motion control system
TDObcosen(s) Co-sensitivity function of DOb based motion control system
LDOb(s) Open loop transfer function of DOb based motion control system
TPCsen (s) Sensitivity function of the DOb based position control system
TPCcosen(s) Co-sensitivity function of the DOb based position control system
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LPC(s) Open loop transfer function of the DOb based position control system
wn Natural frequency
ξ Damping coefficient
KD Derivative gain of performance controller
KP Proportional gain of performance controller
R Fictitious robust control switch
Cf Force control gain
LCFC(s) Open loop transfer function of the DOb based conventional explicit robust force control system
LRFOB(s) Open loop transfer function of the explicit robust force control system with RFOb
Jsen Sensor inertia/mass
Dsen Sensor damping
Ksen Sensor stiffness
gsen Bandwidth of force estimation
ρ Compliance selection constant
µ Forgetting factor
Prj Projection function
Mn Nominal inertia matrix
M(q) Inertia matrix
∆M(q) Inertia matrix variation
C(q, q̇) Coriolis and centrifugal matrix
g(q) Gravity torque/force vector
τ Generalized torque control input vector
τ frc Friction torque/force vector
τ load Load torque/force vector
q Angle vector
q̇ Velocity vector
q̈ Acceleration vector
q̈des Desired acceleration vector
e Angle/position error vector
ė Velocity error vector
eD Vector of the error dynamics
˙eD Derivative of the error dynamics vector
qref Reference angle vector
˙qref Reference velocity vector

q̈ref Reference acceleration vector
σ(·) Minimum eigenvalue of ·
σ(·) Maximum eigenvalue of ·
τdes Desired torque/force vector
τ̂dis Vector of disturbance estimation
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τd External disturbance vector
τdes Desired torque input vector
GDOb Bandwidth of DOb in a diagonal matrix form
GLPF(s) LPF of DOb in a diagonal matrix form
ĜDOb Bandwidth of DOb and integrator in a diagonal matrix form
KD Derivative gain in a diagonal matrix form
KP Proportional gain in a diagonal matrix form
V Lyapunov function candidate
V̇ Derivative of Lyapunov function candidate

Superscript
con Control
ref Reference
des Desired
dis Total disturbance, including external disturbances and system uncertainties
d External disturbance
frc Friction
load Load
int Interactive
DOb Disturbance observer
RFOb Reaction force observer

Subscript
DOb Disturbance observer
RFOb Reaction force observer
sen Sensitivity function
cosen co-sensitivity function
m motor

This dissertation is written in time domain unless otherwise stated.
“(s)” signs after variables indicate that the variables are in Laplace domain.
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Chapter 2

Disturbance Observer

2.1 Introduction

In this chapter, DOb based robust control systems will be explained, briefly.

2.2 Disturbance Observer based Robust Control Systems

A DOb, which was proposed by Ohnishi et al., is a robust control tool that estimates external dis-

turbances and system uncertainties [32, 33]. In DOb based robust control systems, the estimated distur-

bances, including system uncertainties, are fed-backed in a feed-back loop, namely inner-loop, so that

the robustness of a system is obtained. To achieve performance goals, another feed-back loop, namely

outer-loop, is designed independently by considering only nominal plant parameters, since a DOb nom-

inalizes uncertain plant and suppresses external disturbances in the inner-loop. The control structure, in

which the robustness and performance are adjusted independently, is called as two-degrees-of-freedom

(2-DOF) control in the literature [37]. The main advantage of a DOb is that it suppresses external distur-

bances and system uncertainties without affecting the outer-loop performance controller [38]. Therefore,

it has wide range of application areas, specifically in the motion control field, e.g., industrial automation,

automotive, and robotics [39–42].

A Block diagram for a DOb based robust control system is shown in Fig. 2-1, in which 2-DOF robust

control structure is clarified.

In this figure, G (s) and Gn (s) denote uncertain and nominal plant models, respectively; Q (s) de-

notes the low-pass-filter (LPF) of DOb; C (s) denotes the outer-loop performance controller; r, d, and
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Fig. 2-1: Block diagram of a DOb based robust control system.

ξ denote reference, disturbance, and noise external inputs, respectively; d∗ denotes system disturbances

including external disturbances and plant uncertainties, and d̂∗ denotes its estimation; and rcon denotes

outer loop control signal.

Equation (2.1), eq. (2.2), and eq. (2.3) are derived directly from Fig. 2-1 as follows:

rcon + d̂∗ −G (s)−1 y = d, (2.1)

rcon + d̂∗ −G−1
n (s) (y − ξ) = d∗, (2.2)(

rcon + d̂∗ −G−1
n (s) (y − ξ)

)
Q (s) = d̂∗. (2.3)

Equation (2.1) indicates external disturbances; however, eq. (2.2) indicates external disturbances as

well as system uncertainties. Equation (2.3) shows that a DOb can estimate external disturbances and

system uncertainties precisely if they stay within the bandwidth of Q (s) and the output measurement is

not influenced by noise, i.e., ξ = 0 . Therefore,

• The higher the bandwidth of DOb is, the more the disturbance suppression improves.

• The output measurement influences the performance of DOb based robust control systems, signif-

icantly.

Equation (2.1), eq. (2.2), eq. (2.3) and Fig. 2-1 indicate that the dynamic characteristics of a DOb

based robust control system depend on the dynamics of the LPF of DOb, the discrepancy between the

nominal and uncertain plant dynamics, and the outer-loop performance controller. In the next chapter,
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DOb based robust control systems are analyzed by considering the dynamics of plants, LPF of DOb, and

outer-loop performance controller, in detail.

2.3 Summary

This chapter briefly explains DOb based 2-DOF robust control systems. There are several different

2-DOF robust control structures in the literature, such as generalized internal model control (GIMC);

however, among them, DOb is one of the most popular robust control tools due to its simplicity. As it

can be seen from Fig. 2-1 and eq. (2.1)-eq. (2.3), the main advantage of a DOb is that a robust control

system can be intuitively designed in a limited bandwidth without requiring complicated mathematical

methods. However, the stability and performance of DOb based robust control systems are influenced

by the design parameters of DOb, such as the dynamics of LPF and nominal plant model, significantly.

Therefore, more advanced analysis and design methods should be proposed to improve the DOb based

robust control systems.
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Chapter 3

Robustness of Disturbance Observer
Based Control Systems

3.1 Introduction

In this chapter, the robustness of DOb based control systems will be analyzed in detail. Firstly, the

conventional analysis method, which is based on the Small Gain theorem, will be discussed briefly in

section 3.2 [31]. The robustness of a DOb based control system can be easily analyzed by using the con-

ventional method; however, it has several disadvantageous, e.g., the conservatism limits the bandwidth

of DOb which degrades the performance of control systems significantly, and the conventional analysis

method does not provide clear insight into the robustness characteristics of DOb. To decrease the con-

servatism, the robustness of a DOb based control system is analyzed by using Structured Singular Values

(SSV), i.e., µ-synthesis, in section 3.3 [43, 44]. Although the conservatism can be decreased by using

the SSV, it cannot be removed completely due to the discontinuity problem of the real SSV. Besides,

as the conventional analysis method, µ-synthesis cannot provide us a clear insight into the robustness

characteristics of a DOb based control system.

To solve the aforementioned problems, two novel robustness analysis methods are proposed for the

control systems based on DOb. In the first analysis method, it is assumed that a minimum-phase uncertain

plant includes only real parametric uncertainties and the order of DOb is one. Kharitonov and Edge

theorems are implemented into the DOb based control systems, and it is shown that the robust stability

can be achieved if the bandwidth of DOb is higher than its lower limit that is defined in section 3.4.

Tsypkin-Polyak theorem is also implemented into the defined problem, and it is shown that the stability
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margin of the control system is improved as the bandwidth of DOb is increased [43]. The proposed

method does not suffer from conservatism and gives a clear insight into the robustness characteristic

of a DOb based control system; however, the applications are limited by the strict assumptions on the

uncertain plant model and DOb dynamics. To analyze the robustness of more general control systems and

higher order DOb (HODOb), Bode and Poisson integral theorems are implemented into the DOb based

robust control systems, and the strict assumptions on the uncertain plant model and DOb are released

in the second proposal. It is shown that the bandwidth of a DOb is limited by the robustness constraint

if the uncertain plant includes time delay and/or right half plane zero(s). However, if the uncertain

plant includes right half plane pole(s), then the bandwidth of DOb has lower bound due to the robustness

constraint. Besides, the performance of a DOb can be improved by increasing its order, yet the robustness

deteriorates and the bandwidth constraints of DOb become more strict. The proposed method provides

a deep insight into the robustness of DOb based control systems in a wide range of application area such

as non-minimum phase and unstable plants; however, it suffers from the conservatism that is explained

in section 3.5 [45]. This chapter is finally concluded in section 3.6 by giving summaries.

To clarify the conservatism and design constraints of a DOb, a general second order plant model,

which is shown in eq. (3.1) and eq. (3.2), is analyzed in this chapter.

Gn (s) =
s+ 9

s2 + 8s+ 20
, (3.1)

G (s) = G (s) =
β1s+ β0

α2s2 + α1s+ α0
+∆WA (s) , (3.2)

where 12 ≤ α0 ≤ 32; 3 ≤ α1 ≤ 15; 0.2 ≤ α2 ≤ 8; 6 ≤ β0 ≤ 13; 0.2 ≤ β1 ≤ 3; WA (s) = s+0.1
0.5s+700

denotes an additive unstructured uncertainty weighting function; and ∥∆∥∞ = 1.

In the definition of the uncertain plant model dynamics, it is assumed that the plant includes high para-

metric uncertainties, and it is also influenced by the additive unstructured uncertainty, which is defined

by WA (s), after 700 rad/s., significantly. Fig. 3-1 shows the step response of the nominal plant and pole

spread of the uncertain plant models when a PID controller, in which Kp = 10, Ki = 30 and Kd = 0.5

are used as proportional, integral and derivative gains, is implemented in the feed-back control.

It is clear from Fig. 3-1 that the system response changes significantly by the plant perturbations.

Although the PID controller provides a good performance for the nominal plant model, the stability

cannot be achieved when the plant uncertainties are considered. It is a well known fact that the robustness

can be improved by increasing the control gain when plant is minimum phase. However, as discussed in

– 17 –



CHAPTER 3 ROBUSTNESS OF DISTURBANCE OBSERVER BASED CONTROL SYSTEMS

Chapter 1, it has several practical disadvantages such as exciting resonant frequency.
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Fig. 3-1: Step response and pole spread of the second order plant when the PID controller is implemented.
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3.2 Conventional Analysis Method

Conventionally, a DOb based robust control system is analyzed by using the Small Gain theorem

due to its simplicity [31, 46–48]. In the conventional analysis method, an uncertain plant is described

by using an unstructured uncertainty model, so any kind of uncertainty can be easily considered in a

compact form [47,48]. For the sake of simplicity, the robustness is analyzed analytically by considering

only the amplitude response of Nyquist plot [3, 4, 22]. However, the simplification causes conservatism

which is the main drawback of the Small Gain theorem [49–51].

A block diagram for a DOb based robust control system is shown in Fig. 3-2 when plant is defined by

using an output multiplicative unstructured uncertainty.

In this figure,G(s) andGn(s) denote uncertain and nominal plant dynamics, respectively;WS (s) and

WP (s) denote robust stability and performance weighting functions, respectively; C(s) denotes outer-

loop performance controller; Q(s) denotes the LPF of DOb; r, d and ξ denote reference, disturbance and

noise external inputs, respectively; d̂∗ denotes estimated disturbance; and ∥∆∥∞ < 1.

The robustness, i.e., the robust stability and performance, of a DOb based control system can be

analyzed analytically by using the output multiplicative unstructured uncertainty and Small Gain theorem

as follows:

Robust Stability:

∥∆WST∥∞ < 1, (3.3)
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Fig. 3-2: Block diagram of a DOb based robust control system when output multiplicative unstructured
uncertainty is used to define uncertain plant.
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Robust Performance:

∥∆WPS∥∞ < 1, (3.4)

where S (s) and T (s) denote the sensitivity and co-sensitivity transfer functions, respectively.

Equation (3.3) and eq. (3.4) show that the robust stability and performance of a DOb based control

system can be easily analyzed by deriving the sensitivity and co-sensitivity transfer functions. However,

in general, weighting function design is the most challenging issue and influences the performances of

control systems and conservatism of analyses, significantly.

Sensitivity and co-sensitivity transfer functions of a DOb based robust control system are derived

directly from Fig. 3-2 as follows:

Inner-loop:

Si (s) =
Gn (s) (1−Q (s))

Gn (s) (1−Q (s)) +G (s)Q (s)
, (3.5)

Ti (s) =
G (s)Q (s)

Gn (s) (1−Q (s)) +G (s)Q (s)
, (3.6)

Outer-loop:

So (s) =
Gn (s) (1−Q (s)) +G (s)Q (s)

Gn (s) (1−Q (s)) +G (s)Q (s) +G (s)Gn (s)C (s)
, (3.7)

To (s) =
G (s)Gn (s)C (s)

Gn (s) (1−Q (s)) +G (s)Q (s) +G (s)Gn (s)C (s)
, (3.8)

where S• (s) and T• (s) denote inner and outer-loops’ sensitivity and co-sensitivity transfer functions,

respectively.

Equation (3.3) and eq. (3.6) show that the bandwidth of a DOb is directly limited by the robust stability

weighting function, i.e., if the bandwidth of DOb is higher than the frequency in which the nominal plant

model cannot describe the dynamics of the exact plant sufficiently, then the robust stability deteriorates.

Consequently, the bandwidth of DOb, i.e, the performance of the robust control system, is limited by the

identification of plant uncertainties, i.e., the dynamics of WS (s).

At low frequencies, i.e., Q (s) ∼= 1, the sensitivity and co-sensitivity transfer functions are derived as

follows:

Inner-Loop:

Si (s) = 0,

Ti (s) = 1, (3.9)
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Outer-Loop:

So (s) =
G (s)

G (s) +G (s)Gn (s)C (s)
,

To (s) =
G (s)Gn (s)C (s)

G (s) +G (s)Gn (s)C (s)
. (3.10)

It is clear from eq. (3.9) that if external disturbances have low frequencies, then a DOb provides good

robustness by suppressing external disturbances in the inner loop. Although, in general, it is assumed

that the robustness and performance of a DOb based control system are independently adjusted in the

inner and outer-loops, respectively, eq. (3.10) shows that the performance controller, C (s), changes the

robustness of the outer-loop.

At high frequencies, i.e., Q (s) ∼= 0, the sensitivity and co-sensitivity transfer functions are derived as

follows:

Inner-Loop:

Si (s) = 1,

Ti (s) = 0, (3.11)

Outer-Loop:

So (s) =
Gn (s)

Gn (s) +G (s)Gn (s)C (s)
,

To (s) =
G (s)Gn (s)C (s)

Gn (s) +G (s)Gn (s)C (s)
. (3.12)

Equation (3.11) shows that a DOb is sensitive to external disturbances at high frequencies, however

noise can be suppressed precisely in the inner-loop.

The sensitivity and co-sensitivity transfer functions clearly show the asymptotic behaves of a DOb

based robust control system’s frequency responses. However, as shown in eq. (3.3) and eq. (3.4), the

robust stability and performance are determined by the supremums’ of the sensitivity and co-sensitivity

transfer functions’ frequency responses. Therefore, the analyses of asymptotic behaves are not sufficient

to determine the robustness.

3.2.1 Simulations

In the simulations, a DOb based robust control system is designed for the uncertain plant model that

is defined in eq. (3.1) and eq. (3.2). Robust stability and performance of the DOb based control system
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(b) Inner-loop co-sensitivity function.
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Fig. 3-3: Sensitivity and Co-sensitivity function frequency responses.

are analyzed by using the Small Gain theorem so as to clarify the conventional analysis method. The

uncertain plant model is obtained by using the first order approximation of the output-multiplicative

unstructured uncertainty weighting function as follows:

G (s) =
s+ 9

s2 + 8s+ 20

(
1 + ∆

2s+ 120

s+ 600

)
. (3.13)

The performance weighting function is chosen asWP (s) = 0.5s+10
s+0.5 . The sensitivity and co-sensitivity

transfer function frequency responses are shown in Fig. 3-3.

Fig. 3-3 shows the inner and outer loops’ sensitivity and co-sensitivity transer functions frequency

responses, i.e., the inner and outer loops’ robust performance and stability, respectively. Fig. 3-3(a) and

Fig. 3-3(b), respectively, indicate that the robust performance and stability of the inner-loop are related to

the bandwidth of DOb significantly, and as the bandwidth of DOb is increased, the robustness of inner-

loop deteriorates. In the simulations, the upper bound of the bandwidth of DOb is obtained as 200 rad/s..
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to satisfy the robust stability and performance. As shown in Fig. 3-3, the bandwidth constraints become

more severe as the order of DOb is increased. It is a well-known fact that although the robustness

deteriorates, the performance of a DOb is improved by using a HODOb. Fig. 3-3 clearly indicates that

the outer-loop performance controller changes the robustness of a DOb based control system.

3.3 Structured Singular Values (µ-synthesis)

To decrease the conservatism, structured uncertainty based analysis methods are generally used in the

literature [31, 52]. Structured Singular Values (SSV), which was proposed by Doyle, is one of the most

widely used structured uncertainty based robustness analysis methods [27]. It can be easily implemented

into many different robust control problems, e.g., multi-input-multi-output (MIMO) control systems, by

using the µ and ”Robust Control” toolboxes of Matlab [26, 28]. Although the conservatism can be

decreased by using the SSV, it cannot be removed completely due to the discontinuity problem of the

real SSV [53].

Guvenc et al. and Sariyildiz et al. analyzed the robustness of DOb based control systems by using

the SSV and obtained less conservative results than the conventional analysis method [44, 47]. Block

diagram of a DOb based robust control system is shown in Fig. 3-4 when an uncertain plant is defined

by using the SSV.

In this figure, Mα−1
2

=

[
−α2δ −α−1

2n

−α2δ −α−1
2n

]
, Mαi =

[
0 1

αiδαin αin

]
and Mβj =

[
0 1

βjδβjn βjn

]
denote

the linear fractional transformations; αi = αin (1 + αiδδαi), βj = βjn
(
1 + βjδδβj

)
denote structured

parametric uncertainties in which αin and βjn denote nominal plant parameters and αiδδαi and βjδδβj

denote parametric uncertainties.

By using the SSV, the robust stability of a control system can be simply analyzed in a compact form

as follows:

sup (µ∆ (M)) < 1, (3.14)

where µ∆ (M) = 1
min{σ(∆): det(I−M∆)=0,∆ is structured} .

The robust performance can be similarly analyzed by using the SSV [26, 28]. The SSV can be

implemented into DOb based robust control systems systematically by using the µ toolbox of Matlab;

however, the robustness characteristics of a DOb cannot be clarified by using the µ toolbox.

– 23 –



CHAPTER 3 ROBUSTNESS OF DISTURBANCE OBSERVER BASED CONTROL SYSTEMS

�

�

�
�

( )y s
r ( )C s 1 0

2
2 1 0

n n

n n n

s

s s

β β
α α α

+
+ +

ξ

0

1

2

0

1

0 0 0

0 0

0 0

0 0 0

α

α

α

β

β

δ
δ

δ
δ

δ

 
 
 
 
 
 
 
  

⋯

⋮ ⋮

⋯

d

0

0

g

s g+ ( )( )
2

2 1 0
0

1 0 0

n n n

n n

s s
g

s s g

α α α
β β

+ +
+ +

d̂∗

�

�

�

� �

�

( ) :G s uncertain plant

DOb

(a) SSV structure.

�

�

( )y sr ( )C s 1
2

Mα −

1
Mα

∫

1
Mβ

�

�

�

∫ 0
Mβ

0
Mα

�

ξ

0

0

g

s g+ ( )( )
2

2 1 0
0

1 0 0

n n n

n n

s s
g

s s g

α α α
β β

+ +
+ +

d̂∗

� �

�

�

�

�

d
�

�

DOb

( ) :G s uncertain plant

(b) Linear Fractional Transformation.

Fig. 3-4: Block diagram of a DOb based robust control system when SSV is implemented.

3.3.1 Simulations

In the simulations, DOb based robust control problem of the uncertain plant that is defined in eq. (3.1)

and eq. (3.2) is re-considered by using the SSV. The robustness of the control system is analyzed by

using the µ toolbox of Matlab. Fig. 3-5 and Fig. 3-6 show the robust stability and performance analysis

results, respectively.

To solve the discontinuity problem, fictitious complex coefficients, which cause small conservatisms,
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Fig. 3-5: Robust stability analysis by using the SSV.

are used in the definitions of the structured uncertainties.

Fig. 3-5 shows that increasing the bandwidth of DOb improves the robust stability; however, increas-

ing the order of DOb deteriorates the robustness. The analysis shows that the robustness of the system is

achieved when the bandwidth of DOb is 250 rad/s.. However, in the previous section, the conventional

analysis shows that the bandwidth of DOb should be smaller than 200 rad/s. to achieve the robust stabil-

ity. It is clear that the conservatism degrades the performance of DOb based control systems significantly

by limiting the bandwidth of DOb.
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Fig. 3-6: Robust performance analysis by using the SSV.

3.4 DOb Design Constraints in the Presence of Real Parametric Uncer-
tainty

In this section, the robustness of DOb based control systems is analyzed by using the robust control

methods based on real parametric uncertainties [43]. To obtain a general result, it is assumed that the

order of DOb is one and the uncertain plant is minimum phase. However, the proposed method can be

similarly implemented into different plants that have real parametric uncertainties to determine the ro-

bustness. Kharitonov and Edge theorems are implemented into interval and affinely linear characteristic

polynomials, respectively, and it is shown that the robustness of the control system is achieved if the

bandwidth of DOb is higher than its lower bound [54–56]. Besides, Tsypkin-Polyak theorem is used,

and it is shown that the robust stability margin of the DOb based control system improves as the band-

width of DOb is increased [54–56]. Mikhailov criterion is used to show the robust stability [14]. The

Mikhailov criterion, Kharitonov and Edge theorems are given without proofs as follows:

Theorem 3.1 Mikhailov Criterion: The real polynomial p (s) = q0 + q1s+ . . .+ qns
n of degree n is

stable if and only if the plot of p (jw) with w increasing from 0 to ∞ turns strictly counterclockwise and

goes through n quadrants in turn [14].

Theorem 3.2 Kharitanov Theorem: An interval polynomial p (s) = q0 + q1s + . . . + qns
n where

– 26 –



CHAPTER 3 ROBUSTNESS OF DISTURBANCE OBSERVER BASED CONTROL SYSTEMS

q−i ≤ qi ≤ q+i , is stable if and only if the following four Kharitanov polynomials are stable.

p−− (s) = q−0 + q−1 s+ q+2 s
2 + q+3 s

3 + q−4 s
4 + q−5 s

5 + . . . ,

p−+ (s) = q−0 + q+1 s+ q+2 s
2 + q−3 s

3 + q−4 s
4 + q+5 s

5 + . . . ,

p+− (s) = q+0 + q−1 s+ q−2 s
2 + q+3 s

3 + q+4 s
4 + q−5 s

5 + . . . ,

p++ (s) = q+0 + q+1 s+ q−2 s
2 + q−3 s

3 + q+4 s
4 + q+5 s

5 + . . . . (3.15)

It is sufficient to check the stability of p+− (s) if p (s) is third order; p+− (s) and p++ (s) if p (s) is

fourth order and p+− (s), p++ (s) and p−+ (s) if p (s) is fifth order [14, 16, 17].

Theorem 3.3 Edge Theorem: An affinely linear polynomial, p (s) = p0 (s) +
∑n

i=1 qipi (s) , in which

q−i ≤ qi ≤ q+i , is stable if and only if all edge polynomials are stable [14].

Kharitonov theorem is a very useful robust stability analysis tool when a characteristic polynomial

is interval. However, the strict restriction on the characteristic polynomial limits the applications of

Kharitonov theorem. Although it can be used even if a characteristic polynomial is not interval, results

include conservatism. As shown in eq. (3.15), at most four polynomials should be analyzed to determine

the robustness of uncertain systems when Kharitonov theorem is used. If a characteristic polynomial is

affinely linear, then Edge theorem is used to obtain non-conservative robustness analysis results. How-

ever, l × 2l−1 number of edge polynomials should be analyzed for l number of uncertain parameters

when Edge theorem is used.

Let us assume that a plant that includes real parametric uncertainties is defined as follows:

G (s) =
βn−1s

n−1 + βn−2s
n−2 + . . .+ β1s+ β0

αnsn + αn−1sn−1 + . . .+ α1s+ α0
, (3.16)

where α−
i ≤ αi ≤ α+

i and β−i ≤ βi ≤ β+i denote real uncertain parameters.

If the characteristic polynomials of a DOb based robust control system, which are given in eq. (3.5)

and eq. (3.7), are considered, then a new property is obtained as follows:

Property: If the uncertain parameters are only at the denominator of the plant model, i.e., βi is known,

and the relative degree of the plant model is one, then the characteristic equations of the inner and outer

loop transfer functions given in eq. (3.5) and eq. (3.7) are interval polynomials. However, if the uncertain

parameters are also at the numerator of the plant model and / or its relative degree is higher than one, then

the characteristic equations of the inner and outer loop transfer functions are affinely linear polynomials.

Proof: The property can be proved by using a general example. Let us consider: a PID controller that
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is defined by C (s) = Kp + Ki
1
s + Kds, the LPF of a DOb that is defined by Q (s) = g0

s+g0
in which

g0 denotes the bandwidth of DOb, and a general second order uncertain plant model that is defined by

G (s) = β1s+β0
α2s2+α1s+α0

. The characteristic equations of the inner and outer loop transfer functions are

derived as follows:

Inner-Loop:

∇i (s) = λi0 + λi1s+ λi2s
2 + λi3s

3 + λi4s
4, (3.17)

where λi0 = α0ng0, λi1 = α0 + α1ng0, λi2 = α1 + α2ng0, λi3 = α2, and λi4 = 0 if the numerator

parameters of the plant are known; however, λi0 = α0nβ0g0, λi1 = α0β0n + α1nβ0g0 + α0nβ1g0,

λi2 = α1β0n +α0β1n +α2nβ0g0 +α1nβ1g0, λi3 = α2β0n +α1β1n +α2nβ1g0, and λi4 = α2β1n if the

numerator parameters of the plant are uncertain.

Outer-Loop:

∇o (s) = λo0 + λo1s+ λo2s
2 + λo3s

3 + λo4s
4 + λo5s

5, (3.18)

where λo0 = β0ng0Ki, λo1 = α0ng0 + β0nKi+ β0ng0Kp+ β1ng0Ki, λo2 = α0 +α1ng0 + β0ng0Kd+

β0nKp + β1nKi + β1ng0Kp, λo3 = α1 + α2ng0 + β0nKd + β1ng0Kd + β1nKp, λo4 = α2 + β1nKd,

and λo5 = 0 if the numerator parameters of the plant are known; however, λo0 = β0β0ng0Ki, λo1 =

α0nβ0g0 + β0β0nKi + β0nβ1g0Ki + β0β1ng0Ki + β0β0ng0Kp, λo2 = α0β0n + α1nβ0g0 + α0nβ1g0 +

β0β0ng0Kd+β0nβ1Ki+β0β1nKi+β1β1ng0Ki+β0β0nKp+β0nβ1g0Kp+β0β1ng0Kp, λo3 = α1β0n+

α0β1n+α2nβ0g0+α1nβ1g0+β0β0nKd+β0nβ1g0Kd+β0β1ng0Kd+β1β1nKi+β0nβ1Kp+β0β1nKp+

β1β1ng0Kp, λo4 = α2β0n + α1β1n + α2nβ1g0 + β0nβ1Kd + β0β1nKd + β1β1ng0Kd + β1β1nKp, and

λo5 = α2β1n + β1β1nKd if the numerator parameters of the plant are uncertain. αi and βi denote

uncertain plant parameters and αin and βin denote their nominal values, respectively.

The parameters of the controller and nominal plant model are known. Therefore, as it can be directly

deduced from eq. (3.17) and eq. (3.18), the characteristic polynomials become interval (affinely linear)

if the numerator parameters of G(s) are known (uncertain). The relative degree case can be shown,

similarly.

By using Property, the robust stability of the DOb based control systems are analyzed as follows:

Theorem 3.4 Robust Stability of DOb Based Control Systems with Real Parametric Uncertainties: The

plant with real parametric uncertainties given in eq. (3.16) is robustly stable if the bandwidth of DOb, g0,

is higher than its lower bound glower.

Proof: Let us first consider the interval inner and outer loop characteristic polynomials case, in which
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βi is a known parameter. The Kharitonov polynomials of the inner and outer loop characteristic polyno-

mials are as follows:

∇−−
i (s) = λ−i0 + λ−i1s+ λ+i2s

2 + λ+i3s
3 + λ−i4s

4 + . . . ,

∇−+
i (s) = λ−i0 + λ+i1s+ λ+i2s

2 + λ−i3s
3 + λ−i4s

4 + . . . ,

∇+−
i (s) = λ+i0 + λ−i1s+ λ−i2s

2 + λ+i3s
3 + λ+i4s

4 + . . . ,

∇++
i (s) = λ+i0 + λ+i1s+ λ−i2s

2 + λ−i3s
3 + λ+i4s

4 + . . . , (3.19)

∇−−
o (s) = λ−o0 + λ−o1s+ λ+o2s

2 + λ+o3s
3 + λ−o4s

4 + . . . ,

∇−+
o (s) = λ−o0 + λ+o1s+ λ+o2s

2 + λ−o3s
3 + λ−o4s

4 + . . . ,

∇+−
o (s) = λ+o0 + λ−o1s+ λ−o2s

2 + λ+o3s
3 + λ+o4s

4 + . . . ,

∇++
o (s) = λ+o0 + λ+o1s+ λ−o2s

2 + λ−o3s
3 + λ+o4s

4 + . . . . (3.20)

The lower bound on the bandwidth of DOb is derived by using the Mikhailov and Kharitonov theorems

as follows:

Let us consider the outer loop Kharitonov polynomial of ∇−+
o (s). It can be written in frequency

domain by using

∇−+
o (w) = Re∇−+

o

(
w, g0, α

±
i

)
+ jwIm∇−+

o

(
w, g0, α

±
i

)
, (3.21)

where

Re∇−+
o

(
w, g0, α

±
i

)
= λ−o0 − λ+o2w

2 + λ−o4w
4 − . . . ,

Im∇−+
o

(
w, g0, α

±
i

)
= λ+o1 − λ−o3w

2 + λ+o5w
4 − . . . . (3.22)

If the polynomial ∇−+
o (s) is stable, then the frequency response of the polynomial ∇−+

o (jw) with w

increasing from 0 to ∞ turns strictly counterclockwise and goes through n+ 2 quadrants in turn. If

Re∇−+
o

(
w, g0, α

±
i

)
= λ−o0 − λ+o2w

2 + λ−o4w
4 − . . . = 0,

Im∇−+
o

(
w, g0, α

±
i

)
= λ+o1 − λ−o3w

2 + λ+o5w
4 − . . . = 0, (3.23)
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are solved in terms of g0 and α±
i , then wi = ψi

(
g0, α

±
i

)
, in which i = 1, 2, 3, . . . , n+2, is derived. Let

us assume that w1 ≤ w2 ≤ w3 . . . . Consequently, the following conditions are derived to determine the

stability of ∇−+
o (s).

Im∇−+
o

(
w1, g0, α

±
i

)
= Im∇−+

o

(
ψ1

(
g0, α

±
i

)
, g0, α

±
i

)
> 0,

Re∇−+
o

(
w2, g0, α

±
i

)
= Re∇−+

o

(
ψ2

(
g0, α

±
i

)
, g0, α

±
i

)
< 0,

Im∇−+
o

(
w3, g0, α

±
i

)
= Im∇−+

o

(
ψ3

(
g0, α

±
i

)
, g0, α

±
i

)
< 0,

Re∇−+
o

(
w4, g0, α

±
i

)
= Re∇−+

o

(
ψ4

(
g0, α

±
i

)
, g0, α

±
i

)
> 0. (3.24)

The minimum value of g0, which satisfies all inequalities in eq. (3.24), gives us the stabilizing band-

width, g∇−+
o

, for the polynomial of ∇−+
o (s). Consequently, the lower bound on the bandwidth of DOb

is derived as follows:

glower = max
(
max

(
g∇−−

i
, g∇−+

i
, g∇+−

i
, g∇++

i

)
,max

(
g∇−−

o
, g∇−+

o
, g∇+−

o
, g∇++

o

))
. (3.25)

Now, let us consider the affinely linear characteristic polynomial case, in which βi is an uncertain

parameter. The Edge theorem is used to determine the lower bound on the bandwidth of DOb. (n +

m)×2n+m−1 number of edge polynomials should be analyzed to find the lower bound on the bandwidth

of DOb. They can be defined as follows:

There are 2n+m vertex polynomials,

pv0 = ∇ (s, α, β, g0) |αn=α
−
n ,... ,α0=α

−
0 ,βm=β−

m...β0=β
−
0
,

pv1 = ∇ (s, α, β, g0) |αn=α
−
n ,... ,α0=α

−
0 ,βm=β−

m...β0=β
+
0
,

pv2n+m−1 = ∇ (s, α, β, g0) |αn=α
−
n ,... ,α0=α

+
0 ,βm=β+

m...β0=β
+
0
. (3.26)

(n + m) × 2n+m−1 number of edge polynomials are derived by using the vertex polynomials as

follows:

pe1 = κpv1 + (1− κ)pv2 ,

pe2 = κpv1 + (1− κ)pv3 ,

pe2n+m−1 = κpv2n+m−1 + (1− κ)pv1 , (3.27)
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where 0 ≤ κ ≤ 1.

The minimum value of g0, which guarantees that all edge polynomials are stable, gives us the lower

bound on the bandwidth of DOb. The Bialas theorem can be used to analyze the stability of edge

polynomials [57, 58]. Also the algorithm, which is derived to find the lower bound in the interval

polynomial case, can be used to find the lower bound in the affinely linear polynomial case as well.

However, the constraint of 0 ≤ κ ≤ 1 should also be considered in this case.

It should be noted here that it is very hard to find the analytical solution of the lower bound if the

characteristic polynomial is affinely linear or the characteristic polynomial is interval and the number of

the uncertain parameters is higher than three. For instance, the lower bound can be derived for the third

order interval characteristic polynomial as follows:

g0 > 0 and g0 >
α0nα

+
2 − α1nα

−
1 − α2nα

−
0

α1nα2n

. (3.28)

However, the lower bound can be easily obtained by using numerical solution methods for both of the

interval and affinely linear characteristic polynomials. To simplify the solution, Kharitonov theorem can

also be applied to the affinely linear characteristic polynomials if the conservatism is acceptable. The

acceptable conservatism means that the derived lower bound on the bandwidth of DOb should be smaller

than its upper bound which is generally determined by practical constraints.

The numerical solutions can be extended to the polynomial coefficient case, which is more general

form of the characteristic polynomials, by using the mapping theorem [14, 15]. However, only the

interval and affinely linear polynomials are considered in this dissertation.

Theorem 3.4 is useful to determine whether a system is robustly stable or not; however, the degree of

robust stability cannot be determined. The stability margin of a DOb based control system is determined

by using Theorem 3.6 as follows:

Let us first consider an interval polynomial p(s) = q0+q1s+q2s
2+. . .+qns

n, in which qi = q0i +δiq
∗
i ,

q0i is nominal parameter, q∗i ≤ 1 is the normalized uncertain parameter, and δi is the coefficient of the

normalized uncertain parameter. Without loose of generality, the normalized uncertain parameter is

derived by using q∗ = 2q−q+−q−
q+−q− , in which q− and q+ denote lower and upper bounds of the uncertain

parameter, respectively. Let us define new polynomials as follows:

p0 (w) = Re
(
p0 (jw)

)
+ jIm

(
p0 (jw)

)
= U (w) + jV (w) , (3.29)
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where p0 (jw) = a00 + a01s+ . . .+ a0ns
n, and

S (w) = η0 + η2w
2 + η4w

4 + . . . ,

T (w) = η1 + η3w
2 + η5w

4 + . . . , (3.30)

where
∣∣a − a0i

∣∣ < γηi. Hence, a new function is defined as follows:

Zint =
U (w)

S (w)
+ j

V (w)

T (w)
. (3.31)

Let us now consider an affinely linear polynomial that is p (s) = p0 (s) +
∑l

i+1 qipi (s), in which

|qi| ≤ 1 is the uncertain parameter. A new function is defined as follows:

τ (w) = max
1≤j≤n

|Im (p0 (jw) /pk (jw)) |∑l
i=1 |Im (p0 (jw) /pk (jw)) |

if w ̸= ws,

τ (w) =
|p0 (jw) |∑i=1
l |pi (jw) |

, w = ws. (3.32)

Tsypkin-Polyak theorems for the interval and affinely linear polynomials are stated as follows:

Theorem 3.5 Tsypkin Polyak Theorem:

Interval Polynomial: An interval polynomial is robustly stable if the function Zint(w) holds the fol-

lowing conditions:

(1) It goes through n quadrants in counterclockwise direction for w ∈ [0,∞].

(2) It does not intersect the square centered at the origin with side length 2γ.

(3) Its boundary points, Zint(w) and Zint(∞), have coordinates with absolute values larger than γ.

The stability margin of the interval polynomial is 2γ.

Affinely Linear Polynomial: An affinely linear polynomial is robustly stable if it holds the following

conditions:

(1) p0(s) is stable.

(2) τ (w) > 1, where 0 ≤ w ≤ ∞.

or
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(1) p0(s) ̸= 0 is stable.

(2) Zaff (w) =
p0(w)
|p0(w)| goes for 0 ≤ w ≤ ∞ through n quadrants and does not intersect the unit circle.

The stability margin of the affinely linear polynomial is min (τ (w) , τ (ws) , τ (0) , τ (∞)).

Theorem 3.6 Stability Margin of the DOb Based Control Systems with Real Parametric Uncertainties:

The stability margin of the system with the real parametric uncertainties increases as the bandwidth

of DOb, g0, increases, and the system becomes robustly stable if the bandwidth of DOb is higher than its

lower bound g0 > glower.

Proof: Let us consider the interval inner and outer loop characteristic polynomials case by using

∇• (s, g0, q) = q0 + q1s+ . . .+ qns
n, (3.33)

where qi = q0i + δiq
∗
i . The function Zint(w) is derived directly from eq. (3.31) as follows:

Zint(w, g0) =
U (w, g0)

S (w)
+ j

V (w, g0)

T (w)
. (3.34)

The second condition of Theorem 3.5 is re-written as follows:

U (w, g0)

S (w)
> γ and

V (w, g0)

T (w)
> γ. (3.35)

Equation (3.35) gives us the robust stability radius of the DOb based control system. It directly shows

that as the bandwidth of DOb increases, the robust stability margin of the system also increases since the

characteristic polynomials of a DOb based control system are as follows:

∇i (s) = D (s)Nn(s)s+Dn (s)N (s) g0,

∇o (s) = D (s)Nn(s)s+Dn (s)N (s) g0 +N (s)Nn (s)C (s) , (3.36)

where N (s) , D (s) , Nn(s) and Dn(s) denote the uncertain and nominal numerator and denominator

polynomials, respectively. It should be noted here that the conditions 1 and 3 should also be checked to

determine the robust stability.

Let us now consider the affinely linear characteristics polynomial case. The characteristic polynomial

is rewritten as follows:
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p0 (s) +

l∑
i=1

qipi (s) , (3.37)

where |qi| ≤ 1. The function τ (w) is re-written by using eq. (3.38) as follows:

τ (w, g0) = max
1≤j≤n

|Im (p0 (jw, g0) /pk (jw, g0)) |∑l
i=1 |Im (p0 (jw, g0) /pk (jw, g0)) |

, if w ̸= ws,

τ (w, g0) =
|p0 (jw, g0) |∑i=1
l |pi (jw, g0) |

, w = ws. (3.38)

The second condition of Theorem 3.5 gives the robust stability radius of a DOb based control system.

If the characteristic polynomials of the inner and outer loops, which are given in eq. (3.36), are consid-

ered, then it can be easily seen that as the bandwidth of DOb is increased the function τ (w, g0) increases

as well. Therefore, the stability margin of the system is improved as the bandwidth of DOb is increased.

The stability margin of the system is derived as follows:

min (τ (w) , τ (ws) , τ (0) , τ (∞)) or,

Zaff (w) =
p0(w)
|p0(w)| . (3.39)

3.4.1 Simulations

Let us consider the uncertain plant model that is given in eq. (3.1) and eq. (3.2). The non-conservative

robust stability analysis result can be obtained by using Theorem 3.4. If it is applied to the uncertain

plant model, then the lower bound on the bandwidth of DOb are derived as 16 rad/s. and 25 rad/s. in the

inner and outer loops, respectively. Consequently, the lower bound is derived as 25 rad/s. to obtain the

robust stability. The Mikhailov plots of the inner and outer loop characteristic polynomials are shown

in Fig. 3-7(a) and Fig. 3-7(b), respectively. If Teorem 3.4 is used for the affinely linear characteristic

polynomials by considering the Kharitonov and Edge theorems, then the lower bounds on the bandwidth

of DOb are derived as 925 rad/s. and 166 rad/s., respectively. Since the former is higher than 700 rad/s.,

the conservative result of the theorem cannot be used in this system. The Mikhailov plots of the inner

and outer loop characteristic polynomials are shown in Fig. 3-7(c) and Fig. 3-7(d), respectively.

The stability margin analysis is obtained by using Theorem 3.6. Fig. 3-8(a) and Fig. 3-8(b) show

the frequency responses of the functions Zint(w) and Zaff (w) when the characteristic polynomials
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(a) Inner-loop interval characteristic polynomial. (b) Outer-loop interval characteristic polynomial.

(c) Inner-loop affinely linear characteristic poly-
nomial.

(d) Outer-loop affinely linear characteristic poly-
nomial.

Fig. 3-7: Mikhailov plots of the inner and outer loop characteristic polynomials.

are interval and affinely linear, respectively. The unit square/circle indicates the limit of the robust

stability, and the system becomes robustly stable if the curve of Zint(w) / Zaff (w) stays out of the unit

square/circle. The minimum distance between the curve of Zint(w) / Zaff (w) and the unit square/circle

determines the robust stability margin. The red, black, blue, green and cyan curves of Zint(w) / Zaff (w)

are sketched when the bandwidth of DOb, g0,is 15 rad/s., 25 rad/s., 30 rad/s., 40 rad/s., and 60 rad/s. in

Fig. 3-8(a) and 130 rad/s., 166 rad/s., 180 rad/s., 200 rad/s., and 300 rad/s. in Fig. 3-8(b). As it can be

directly seen from the figures, as the bandwidth of DOb is increased, the stability margin of the system

is increased as well.
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(a) Frequency response of Zint(w).

(b) Frequency response of Zaff (w).

Fig. 3-8: Stability margin analysis of interval and affinely linear characteristic polynomials.

3.5 DOb Design Constraints in the Presence of Unstructured Uncertainty

In this section, design constraints of DOb based robust control systems are derived analytically by

using unstructured uncertainty based analysis methods [45]. Bode integral formula is utilized so that

the robustness constraints are derived for minimum phase and time delay systems [45, 59–61]; and

Poisson integral formula is utilized to derive the robustness constraints of systems with right half plane
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(RHP) zero(s) and pole(s) [45, 61, 62]. It is shown that RHP zero(s) and/or time-delay of a plant limit

the bandwidth of DOb; however, RHP pole(s) of a plant put(s) a lower bound on the bandwidth of

DOb to obtain a good robustness. Besides that increasing the order of DOb improves the performance

of the system by using the bandwidth of DOb more efficiently; however, the bandwidth constraints

become more severe, and the robustness of the system deteriorates. If a DOb is implemented to a non-

minimum phase system, then internal stability problem occurs since inverse of nominal plant model

is required in the design of a DOb. The internal stability problem is solved by using an approximate

minimum phase model of the uncertain non-minimum phase plant. A new performance controller is

proposed to improve the DOb based robust control systems when plants have RHP pole(s). Against the

real parametric uncertainty based analysis, the proposed method includes conservatism. Therefore, it is

not suitable to design a controller. However, the proposed tools provide clear insight into the robustness

characteristics of a DOb based control system.

To analyze the robustness of a DOb based control system, uncertain plant model is defined by using

the output multiplicative unstructured uncertainty as follows:

G (s) = Gn (s) (1 + ∆W (s)) exp (−τs) , (3.40)

where G(s) and Gn(s) denote uncertain and nominal plant models, respectively; W (s) denotes multi-

plicative unstructured uncertainty weighting function; and τ denotes delay time. First order approxima-

tion of the output multiplicative unstructured uncertainty weighting function is used as follows:

W (s) =
w−1
T s+ emin

w−1
T emaxs+ 1

, (3.41)

where emin and emax denote minimum and maximum modeling errors, respectively; and wT denotes the

frequency, in which the nominal plant model starts to be a bad indicator for the uncertain plant [4]. It is

assumed that e−1
max < ∆ < 1 instead of ∆ < 1 not to add a RHP zero due to uncertainty. The nth order

LPF of DOb is defined as follows:

Q (s) =
g0

sn + gn−1sn−1 + . . .+ g1s+ g0
, (3.42)

The inner-loop’s open loop, sensitivity and co-sensitivity transfer functions are derived by using

eq. (3.40) and Fig. 3-2 as follows:
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Li (s) =
Q (s)

1−Q (s)
(1 + ∆W (s)) exp (−τs) ,

Si (s) =
1−Q (s)

1−Q (s) +Q (s) (1 + ∆W (s)) exp (−τs)
,

Ti (s) =
Q (s) (1 + ∆W (s)) exp (−τs)

1−Q (s) +Q (s) (1 + ∆W (s)) exp (−τs)
. (3.43)

Let us first consider minimum phase plants.

Lemma1: Let us consider the plant model given in eq. (3.40) and assume that the uncertain plant is

minimum phase and the order of DOb is one. Then, it can be shown that the inner-loop is strictly robust if

∆ > 0 and its robustness can be guaranteed for a wide range of DOb’s bandwidth if ∆ < 0. However, if

a HODOb is used instead of DOb and/or the plant includes time delay, then the robustness of inner-loop

cannot be guaranteed for a wide range of DOb’s bandwidth even if ∆ > 0, and the bandwidth of DOb

becomes limited.

Proof: The open loop-transfer function of the inner-loop given in eq. (3.43) can be re-written when a

first order DOb is used in the robust control problem of minimum phase plants as follows:

Li (s) = g0 (1 + ∆emax)
s+ wT emax

(
1+∆emin
1+∆emax

)
s (s+ wT emax)

. (3.44)

Equation (3.44) shows that the strict robustness can be achieved when ∆ > 0 since the Nyquist plot

of the inner-loop gets into the unit circle that is shown in Fig. 3-9 if emin > emax which contradicts with

the error assumption. Although the Nyquist plot gets inside the unit circle when ∆ < 0 robust stability

can be achieved for a wide range of DOb’ bandwidth.

If a HODOb is used instead of a DOb, then the robustness cannot be achieved for a wide range of

DOb’s bandwidth even if ∆ > 0. It can be easily shown by using a HODOb in eq. (3.43). In this case,

the robustness of a system can be guaranteed for a limited bandwidth of HODOb. Besides, as shown in

Fig. 3-9, the robustness cannot be guaranteed for a wide range of DOb’s bandwidth if a plant includes

time delay. Hence, the proof of Lemma 1 is completed.

Although Lemma1 gives us a basic insight into the robustness of DOb, further analysis is required for

HODOb based robust control systems. HODOb can be analyzed by using the Horowitz integral formula

that is given in eq. (3.45).
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|S(jw)|>1                                     |S(jw)|<1

-2.0 -1.5 -1.0 -0.5 0.5 1.0
Re

-1.0

-0.5

0.5

1.0

Im
Nyquist Plot

Fig. 3-9: Nyquist plot.

∫ ∞

0
(log (|Si (jw) |)− log (|Si (j∞) |)) dw = −π

2
Ress=∞ (log (Si (s))) . (3.45)

The relative degree of Li(s) is higher than one when a HODOb is used. Therefore, if a HODOb is

considered, then the Horowitz integral formula is simplified as the Bode integral formula by using

∫ ∞

0
log (|Si (jw) |) dw = 0. (3.46)

The peak of the sensitivity function, which is defined by sup (|Si(jw)|), determines the robustness of

control systems. However, eq. (3.46) is not suitable to determine the robustness of HODOb based control

systems due to the infinite integral range. From mathematical point of view, eq. (3.46) can be balanced

with a small peak in a wide frequency range. However, in general, control systems cannot exhibit this

response due to uncertainties, digital control implementations, and so on. Lemma2 limits the integral of

eq. (3.46) as follows:

Lemma2: Let us assume that Li(s) satisfies

|Li (s) | ≤
M

wk+1
= δ ≤ 1

2
, ∀w ≥ wγ , (3.47)

where M ≥ lims→∞ sup |sk+1Li(s)| and k + 1 is the order of DOb. Then Si(s) satisfies

∣∣∣∣∣
∫ ∞

wβ

log (Si (jw)) dw

∣∣∣∣∣ ≤ 3
δ

2k
wγ . (3.48)

Proof: Equation (3.47) holds if a HODOb is used. Let us consider the relation by using [63, 64]
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if Li(s) ≤
1

2
, then | log (1 + Li(s)) | ≤

3

2
|Li(s)| ≤

3

2
δ. (3.49)

If eq. (3.47) is put into eq. (3.49), then

∣∣∣∣∣
∫ ∞

wγ

log (|Si (jw)|) dw

∣∣∣∣∣ ≤
∫ ∞

wγ

|log (Si(jw))| dw

=

∫ ∞

wγ

|log (1 + Li(jw))| dw ≤ 3

2

∫ ∞

wγ

M

wk+1
dw =

3δ

2k
wγ , (3.50)

The robustness constraints of a HODOb is derived by determining the performance and robustness

requirements, a priori. Then, the sensitivity function frequency response is shaped by using the perfor-

mance and robustness requirements. Theorem 3.7 clarifies the bandwidth constraints of a HODOb as

follows:

Theorem 3.7: Let us assume that a minimum phase plant is defined by using eq. (3.40). Let us also

assume that Si(s) satisfies |Si(jw)| ≤ α < 1, ∀w ≤ wβ < wγ . If a DOb is used, then the system has a

good robustness in a wide frequency range, yet its performance is limited by the dynamic characteristics

of the first order DOb. However, if a HODOb is used, then the low-pass-filter of HODOb should satisfy

the following inequalities to obtain a good robustness and predefined performance criterion.

|Q (jw)| ≥ 1−α
1+α|∆W (jw)| , ∀w < ψwγ ,

|1−Q(jψwγ)|
|1+∆QW (jψwγ)| ≥ α, (3.51)

where ψ =
supw∈[wβ,wγ ] log(|Si(jw)|)+ 3δ

2k

supw∈[wβ,wγ ] log(|Si(jw)|)+log(α−1)
in which |Li (jw)| ≤ δ ≤ 1

2 , ∀w ≥ wγ .

Poof: Lemma 1 proves the robustness of a DOb. Therefore, HODOb can be considered, directly. Let

us re-write eq. (3.46) as follows:

∫ wβ

0
log(|Si(jw)|)dw +

∫ wγ

wβ

log(|Si(jw)|)dw +

∫ ∞

wβ

log(|Si(jw)|)dw = 0. (3.52)

If the sensitivity constraints given in Theorem 3.7 and Lemma 2 are applied into eq. (3.52), then

log(α)

∫ wβ

0
dw + sup

w∈[wβ ,wγ ]
log(|Si(jw)|)

∫ wγ

wβ

dw +
3δ

2k
wγ ≥ 0. (3.53)

Equation (3.53) can also be written as follows:
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sup
w∈[wβ ,wγ ]

log(|Si(jw)|) ≥ log(α−1)
wβ

wγ − wβ
− 3δ

2k

wγ
wγ − wβ

, (3.54)

wβ
wγ

≤ ψ = ψ =
supw∈[wβ ,wγ ] log (|Si(jw)|) +

3δ
2k

supw∈[wβ ,wγ ] log (|Si(jw)|) + log (α−1)
. (3.55)

If the sensitivity constraint given in Theorem 3.7 is applied, then

|1−Q (jψwγ)|
|1 + ∆QW (jψwγ)|

≤ α, ∀w ≤ wβ ≤ wγ . (3.56)

If eq. (3.55) is applied into eq. (3.56), then eq. (3.51) is derived. Hence, the proof of Theorem 3.7 is

completed.

The frequencies wβ and wγ get closer each other as the order of DOb is increased. Therefore, as

shown in eq. (3.54), the peak of the sensitivity function increases as the order of DOb is increased.

Equation (3.56) shows that as the bandwidth of DOb is increased, α−1 and wβ increase as well.

Therefore, as shown in eq. (3.54), the peak of the sensitivity function increases as the bandwidth of DOb

is increased.

Theorem 3.7 provides a new design tool to obtain a good robustness and predefined performance

criterion that are determined by α and wβ . However, it includes conservatism due to the sectionally

constant sensitivity function bound that is defined by |Si(jw)| ≤ α < 1, ∀w ≤ wβ ≤ wγ . It can be

lessened by using more realistic sensitivity function bounds [63, 64].

Let us now consider the design constraints when uncertain plant includes time delay. Lemma 3 is used

to bound the integral range of eq. (3.46) as follows:

Lemma 3: Let us assume that Li(s) includes time delay and satisfies

|Li (s)| =
∣∣∣L̃i (s) exp (−τs)∣∣∣ ≤ M

Rk
exp (−Rτ cos (θ)) ≤ δ

(
R

|s|

)k
, ∀ |s| ∈ S (R) , (3.57)

where S (R) = {s : Re (s) ≥ 0 and |s| ≥ R}; M ≥ lims→∞ sup
∣∣skL (s)

∣∣; k is the order of DOb; and

s = R exp(jθ). Then Si satisfies:

∣∣∣∣∫ ∞

R
log (|Si (jw)|) dw

∣∣∣∣ ≤ 3π

4τ
δ. (3.58)

Proof: Similar to Lemma 2.
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Hence, the bandwidth constraints of a DOb are derived by using Theorem 3.8 as follows:

Theorem 3.8: Let us assume that a plant is defined by using eq. (3.40) where Gn(s) is a minimum

phase nominal plant model. Let us also assume that Si(s) satisfies |Si(s)| ≤ α < 1, ∀w ≤ wβ . Then

the LPF of a DOb should satisfy the following inequalities to obtain a good robustness and predefined

performance criterion.

|Q(jw)|
|1−Q(jw)| ≥

1−α
α|1+∆W (jw)| ,∀w ≤ ψR,

|1−Q(jψR)|
|1−Q(jψR)+Q(jψR)(1+∆W (jψR)) exp(−jτψR)| ≥ α. (3.59)

If the order of DOb is one, then

g0 ≥ (1−α)w
α|1+∆W (jw)| , ∀w ≤ ψR,

ψR
|jψR+g0(1+∆W (jψR)) exp(−jψτR)| ≥ α, (3.60)

where ψ =
supw∈[wβ,R] log(|Si(jw)|)+ 3π

4τR
δ

supw∈[wβ,R] log(|Si(jw)|)+log(α−1)
in which |Li (s)| ≤ δ

(
R
|s|

)k
,∀|s| ∈ S(R).

Proof: Similar to Theorem 3.7. Lemma 3 is used instead of Lemma 2.

Equation (3.59) and eq. (3.60) provide new design tools for DOb based robust control systems when

uncertain plant includes time-delay. They directly show that the bandwidth of a DOb is limited due to

time delay. However, the proposed design tool also includes conservatism due to the sectionally constant

sensitivity function bound.

To lessen the peak of |Si(jw)|, the smallest value of R that satisfies Theorem 3.8 should be chosen.

sup
s∈S(R)

(Li(s)) = max

{
sup
w≥R

(|Li(jw)|) , sup
0≤θ≤π

2

(|Li(R exp(jθ))|)

}
. (3.61)

Equation (3.61) shows that Theorem 3.8 holds even if sups∈S(R) (Li(s)) ≥ δ, which can be used to

lessen the peak of |Si(jw)|. Consequently, the peak of the sensitivity function can be lessened if the

following inequalities hold.
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wT emin
w2 + (wT emin)2

− wT emax
w2 + (wT emax)2

> τ, 1storderDOb

wT emin
w2 + (wT emin)2

− wT emax
w2 + (wT emax)2

> τ +
g1

s+ g1
, 2ndorderDOb,

wT emin
w2 + (wT emin)2

− wT emax
w2 + (wT emax)2

> τ +
g1g2 + g2w

2

g22w
2 + (g1 − w2)2

, 3rdorderDOb. (3.62)

As it is expected from Theorem 3.7, eq. (3.62) shows that as the order of DOb is increased, the peak

of |Si(jw)| also increases.

Finally, let us consider uncertain plants with right half plane pole(s) and zero(s). Right half plane

zero(s) and pole(s) cause undershoot and overshoot in the step response of the closed loop systems,

respectively. To achieve good performance, bandwidths of control systems are limited as follows [63,

64]:

wB ≤ 2.1991zRHP

log
(
1− 0.9

yundershoot

) , (3.63)

wB ≥ 2.1991pRHP
log (10 (yovershoot − 0.9))

, (3.64)

where wB denote the bandwidth of closed loop system; zRHP and pRHP denote right half plane zero

and pole, respectively; yundershoot and yovershoot denote the infimum and supremum of the step response,

respectively. To derive the design constraints of a DOb, Poisson integral formula is used. It can be stated

as follows:

Theorem 3.9. Poisson Integral Formulas: Assume that an open loop transfer function L(s) has a right

half plane zero/pole at zRHP = σz + jwz/pRHP = σp + jwp. Let S(s)/T (s) be the sensitivity/co-

sensitivity transfer function defined by 1
1+L(s)/

L(s)
1+L(s) . Then, it can be shown that the sensitivity/co-

sensitivity transfer function satisfies:

∫ ∞

−∞
log (|S (jw)|) σz

σ2z + (wz − w)2
dw = π log

(
B−1
S (zRHP )

)
, (3.65)∫ ∞

−∞
log (|T (jw)|) σp

σ2p + (wp − w)2
dw = π log

(
B−1
T (pRHP )

)
, (3.66)

where L(s) = L̃(s)B−1
S BT (s); L̃(s) is a minimum phase transfer function;

∏k
i=1 ((pi − s) / (pi + s));
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and
∏l
i=1 ((zi − s) / (zi + s)) are Blaschke products [63, 64]. It is clear from eq. (3.65) and eq. (3.66)

that Poisson integrals’ ranges are bounded by Wpi (w) =
σx

σ2x+(wx−w)2
.

Let us first consider plant with RHP zero(s). To solve the internal stability problem, approximate

nominal plant model should be used in the design of DOb. It can be defined as follows:

G (s) = Gn (s) (1 + ∆W (s)) = Ĝn (s) rerr (s) (1 + ∆W (s)) , (3.67)

where Ĝn (s) denotes the approximate nominal plant model that has stable inverse; and rerr (s) =

Gn (s) Ĝ
−1
n (s) [65]. Then, the open loop transfer functions of inner and outer loops are derived as

follows:

Li (s) =
rerr (s) (1 + ∆W (s))Q (s)

1−Q (s)
, (3.68)

Lo (s) =
C (s)G (s)

1−Q (s) + rerr (s) (1 + ∆W (s))Q (s)
. (3.69)

The design constraints of a DOb based robust control system are derived by using Theorem 3.10 as

follows:

Theorem 3.10: Let us assume that a plant, which has a right half plane zero at zRHP , is defined by

using eq. (3.40) when τ = 0 and Si(s) and Ti(s) are the sensitivity and co-sensitivity transfer functions

of the inner-loop, respectively. Let us also assume that the frequency responses of the sensitivity and co-

sensitivity functions satisfy |Si(jw)| ≤ αβ,∀w ≤ wβ and |Ti(jw)| ≤ αγ , ∀w ≥ wγ . Then, the LPF of

a DOb should satisfy the following constraints to obtain a good robustness and predefined performance

criteria.

|Q (jw)|
|1−Q (jw)|

≥
1− αβ

αβ |rerr (jw) (1 + ∆W (jw))|
, ∀w < zRHPψ1,

|1−Q (jzRHPψ1)|
|1−Q (jzRHPψ1) + rerrQ (jzRHPψ1) (1 + ∆W (jzRHPψ1))|

≥ αβ, (3.70)

|rerrQ (jw) (1 + ∆W (jw))|
|1−Q (jw)|

≤ αγ
1− αγ

, ∀w > zRHPψ2,

|rerrQ (jzRHPψ2) (1 + ∆W (jzRHPψ2))|
|1−Q (jzRHPψ2) + rerrQ (jzRHPψ2) (1 + ∆W (jzRHPψ2))|

≥ αγ , (3.71)

where ψ1 = tan(
log(1+αγ)(π−2ϑ(wγ))+2 log

(
maxwβ≤w≤wγ (|Si(jw)|)

)
ϑ(wγ)

2
(
log

(
maxwβ≤w≤wγ (|Si(jw)|)

)
+log(α−1

β )
)
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− π log(|B−1
S (zRHP )|)

2
(
log

(
maxwβ≤w≤wγ (|Si(jw)|)

)
+log(α−1

β )
)),

ψ2 = tan(
log((1+αγ)

−1)π+2
(
log

(
maxwβ≤w≤wγ (|Si(jw)|)

)
+log(α−1

β )
)
ϑ(wβ)

2
(
log

(
maxwβ≤w≤wγ (|Si(jw)|)

)
+log((1+αγ)

−1)
)

+
π log(|B−1

S (zRHP )|)
2
(
log

(
maxwβ≤w≤wγ (|Si(jw)|)

)
+log(α−1

β )
)),

and ϑ (w•) =
∫ w•
0 Wpdw =

∫ w•
0

zRHP

z2RHP+w2dw = arctan
(

w•
zRHP

)
.

Proof: If |Ti(jw)| ≤ αγ , ∀w ≥ wγ , then |Si(jw)| ≤ 1 + αγ , ∀w ≥ wγ . If the sensitivity constraints

are applied into eq. (3.65), then

log (1 + αγ)

(∫ −wγ

−∞
Wp (w) dw +

∫ ∞

wγ

Wp (w) dw

)
+ log (αβ)

∫ wβ

−wβ

Wp (w) dw

+ log

(
max

wβ≤w≤wγ

(|Si(jw)|)
)(∫ −wβ

−wγ

Wpdw +

∫ wγ

wβ

Wpdw

)
≥ π log

(
B−1
S (zRHP )

)
. (3.72)

It can be re-written as follows:

log

(
max

wβ≤w≤wγ

(|Si(jw)|)
)

≥ log
(
α−1
β

) 2ϑ(wβ)

2 (ϑ(wγ)− ϑ(wβ)))

+ log
(
(1 + αγ)

−1
) π − 2ϑ(wγ)

2 (ϑ(wγ)− ϑ(wβ)))
+
∣∣B−1

S (zRHP )
∣∣ π

2 (ϑ(wγ)− ϑ(wβ)))
, (3.73)

ϑ (wβ) ≤
log (1 + αγ) (π − 2ϑ (wγ)) + 2 log

(
maxwβ≤w≤wγ (|Si(jw)|)

)
ϑ (wγ)

2
(
log
(
maxwβ≤w≤wγ (|Si(jw)|)

)
+ log

(
α−1
β

))
−

π log
(∣∣B−1

S (zRHP )
∣∣)

2
(
log
(
maxwβ≤w≤wγ (|Si(jw)|)

)
+ log

(
α−1
β

)) , (3.74)

ϑ (wγ) ≥
log
(
(1 + αγ)

−1
)
π + 2

(
log
(
α−1
β

)
+ log

(
maxwβ≤w≤wγ (|Si(jw)|)

))
ϑ(wβ))

2
(
log
(
maxwβ≤w≤wγ (|Si(jw)|)

)
+ log ((1 + αγ)−1))

)
+

π log
(∣∣B−1

S (zRHP )
∣∣)

2
(
log
(
maxwβ≤w≤wγ (|Si(jw)|)

)
+ log

(
α−1
β

)) , (3.75)

where eq. (3.74) and eq. (3.75) are the functions of ψ1 and ψ2 given in Theorem 3.10. If the sensitivity

and co-sensitivity transfer functions are derived by using eq. (3.68), and the constraints given in Theorem

3.10 are applied, then
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∣∣∣∣ 1−Q(s)

1−Q(s) + rerr(s) (1 + ∆W (s))Q(s)

∣∣∣∣ ≤ αβ,∀w ≤ wβ, (3.76)

∣∣∣∣ rerr(s) (1 + ∆W (s))Q(s)

1−Q(s) + rerr(s) (1 + ∆W (s))Q(s)

∣∣∣∣ ≤ αγ ,∀w ≥ wγ . (3.77)

If eq. (3.74) and eq. (3.75) are applied into eq. (3.76) and eq. (3.77), then eq. (3.71) and eq. (3.72) are

derived. Hence, the proof of Theorem 3.10 is completed.

Equation (3.71) and eq. (3.72) are new design constraints for a DOb based robust control system

when an uncertain plant includes RHP zero(s). They show that the bandwidth of a DOb is limited by the

RHP zero(s). However, Theorem 3.10 also suffers from the conservatism due to the unrealistic bounds

of sensitivity and co-sensitivity transfer functions. In Theorem 3.10, the performance of robust control

system is controlled by shaping the co-sensitivity transfer function at high frequencies.

The minimum phase approximation of a non-minimum phase system is derived by using Genetic

Algorithm (GA) as follows:

Let us assume that a non-minimum phase system is defined by using

G(s) =
N(s)

D(s)
, (3.78)

whereN(s) andD(s) denote numerator and denominator, respectively. Let us also assume that the order

of N(s) and D(s) are n and d ≤ n, in which l ≤ n is the number of right half plane zeros. An error

polynomial is defined as follows:

e(s) = N(s)A(s)−B(s), (3.79)

where A(s) and B(s) are polynomials that have left half plane zeros. Let us assume that the order of

A(s) and B(s) are m and m + n, respectively. If e(s) is minimized, then N(s) is defined by using a

non-casual minimum phase transfer function by using

N(s) =
B(s)

A(s)
. (3.80)

The optimization problem of e(s) is defined by using a quadratic integral performance index as fol-

lows:
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Fig. 3-10: Block diagram of a DOb based robust control system when uncertain plant is unstable.

min :

∫ min(Re(zRHP ))

0

{
λamp(w)|e(jw)|2 + λphase(w)(arg(e(jw)))

2
}
dw,

s.t. :

{
A(s), B(s) and s+ grerr(s) are Hurwitz polynomials

−π ≤ arg (e (jw)) ≤ π

}
, (3.81)

where λamp(w) and λphase(w) are weighting functions of magnitude and phase errors. The minimization

range is bounded by 0 ≤ w ≤ min(Re(zRHP )), since Theorem 3.10 shows that the bandwidth of DOb

is limited by (Re(zRHP )).

However, it is very hard to solve the defined optimization problem analytically. Although some analyt-

ical results are proposed in the literature, they can’t satisfy the optimality in the desired frequency range

[66]. Minimizing the optimization problem is not a straight forward task due to the nature of the per-

formance index and constraints. An efficient search algorithm is needed to determine the coefficients of

the polynomials of A(s) and B(s). Genetic Algorithm (GA), which is a particular class of evolutionary

algorithms, is chosen as a search algorithm. GA avoids the local minima and finds the global minimum

of the optimization problem using techniques inspired by natural evolution like mutation, selection, and

crossover [67, 68].

Against the conventional design of DOb based robust control systems, if a DOb is applied into the

robust control problem of an unstable plant, then the outer-loop controller should be designed to satisfy

the stability instead of performance. The inner-loop is always unstable when the uncertain plant has RHP

pole(s). A new performance controller is proposed to improve the performance of robust control system

as shown in Fig. 3-10. Design constraints of a DOb is derived by using Theorem 3.11 as follows:
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Theorem 3.11: Let us assume that a plant which has a RHP pole at pRHP is defined by using eq. (3.40)

when τ = 0. Let us also assume that the nominal plant can be stabilized by using the stabilizing

outer loop controller CS(s), and the co-sensitivity transfer function of the outer loop, To(s), satisfies

|To(s)| ≤ α, ∀w ≥ wα. Then, the LPF of DOb should satisfy the following constraint to obtain a good

robustness and predefined performance criterion.

|1 + ∆Q(jw)W (jw))| ≥ 1− α

α
|CS(jw))G(jw)| , ∀w ≥ pRHPψ, (3.82)

where ψ = tan

(
π(log(α−1)+log(|B−1

T (pRHP )|))
2(log(α−1)+log(∥To∥∞))

)
.

Proof: Similar to Theorem 3.10.

Equation (3.82) provides a new design tool for DOb based robust control systems when the uncertain

plant includes RHP pole(s). It shows that the bandwidth of DOb has a lower bound to obtain good

robustness when the plant is unstable. Theorem 3.11 also suffers from the conservatism.

3.5.1 Simulations

In the simulations, four case studies are carried out to show the validity of the proposed design con-

straints of DOb. Let us first consider a minimum phase plant by using

Gn (s) =
s+ 5

s2 + 5s+ 6
, G (s) = Gn (s) (1 + ∆WS (s)) , (3.83)

where WS (s) =
5s+100
s+500 ; and −0.2 < ∆ < 1. To achieve the robust stability in the inner-loop, the band-

width of DOb should be smaller than 100 rad/s.. Fig. 3-11 shows that as the order of DOb is increased,

the bandwidth of DOb is used more efficiently and noise suppression is improved. However, as shown

in Theorem 3.7, the robustness deteriorates and the bandwidth constraints of DOb become more severe.

The robustness and performance of a DOb based control system are improved as follows:

The design parameters k,α and supw∈[wβ ,wγ ] log (|Si(jw)|) should be determined by considering the

robustness and performance requirements. The order of DOb determines δ that is directly related to the

slope of Li(s). Let us assume that a second order DOb is used and the design parameters are set as

α = 0.1 and supw∈[wβ ,wγ ] log (|Si(jw)|) =
√
2. Then δ = 0.4 satisfies for ∀w ≥ 100 rad/s.. Hence, the

performance and robustness constraints are derived from Theorem 3.7 as follows:

wβ = 46 rad/s. and Bandwidth < 100 rad/s., (3.84)
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Fig. 3-11: Frequency responses of the inner-loop sensitivity and co-sensitivity transfer functions when
the bandwidth of DOb is 100 rad/s..
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Fig. 3-12 shows the frequency responses of the inner-loop sensitivity and co-sensitivity transfer func-

tions when a second order DOb is designed by using different bandwidth values. The performance and

robustness constraints, which are different from eq. (3.84) due to conservatism, are obtained directly

from Fig. 3-12 as follows:

wβ = 15 rad/s. and Bandwidth < 65 rad/s.. (3.85)

The weighting function of the sensitivity transfer function is WP (s) = 0.707s+30
s+2 .

Let us now consider the DOb constraints when uncertain plant includes time delay. The uncertain

plant model is described as follows:

Gn(s) =
s+ 10

s2 + 5s+ 10
and G(s) = Gn(s) (1 + ∆WS(s)) exp(−0.01s), (3.86)

where WS(s) =
3s+240
s+600 . The bandwidth constraint of DOb is derived by using Theorem 3.8 as follows:

The design parameters α and supw∈[wβ ,wγ ] log (|Si(jw)|) should be determined by considering the

robustness and performance requirements. Besides, δ and R, which depend on the order of DOb,

should be determined. Let us assume that the order of DOb is one and the design parameters are set

as supw∈[wβ ,wγ ] log (|Si(jw)|) =
√
2 and α = 0.1 . If δ is chosen as 0.1, then R ≈ Bwδ

−1 =

10Bw, in which Bw denotes the bandwidth of DOb. If Theorem 3.8 is used, then it is drived that

supw∈[wβ ,wγ ] log (|Si(jw)|) =
√
2 satisfies for a wide range of bandwidth. If a second order DOb is

used, then supw∈[wβ ,wγ ] log (|Si(jw)|) =
√
2 satisfies for Bw ≤ 500 rad/s.. Fig. 3-13 shows the fre-

quency responses of the inner-loop’s sensitivity and co-sensitivity transfer functions. The bandwidth

constraint is derived as Bw ≤ 70 rad/s. from Fig. 3-13. The difference between the bandwidth con-

straints is due to the conservatism of Theorem 3.8. The weighting function of the sensitivity transfer

function is WP (s) = 0.707s+30
s+2 .

Let us now consider the design constraints of DOb for plants with right half plane zero(s). The model

of the plant is as follows:

Gn(s) =
−s+ 50

s2 + 25s+ 40
and G(s) = Gn(s) (1 + ∆WS(s)) , (3.87)

where WS(s) = 3.75s+450
s+1500 and Ĝs = s2+200s+20

(4s+0.4)(s2+25s+40)
[65]. The bandwidth constraint of DOb is

derived by using Theorem 3.10 as follows:
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Fig. 3-12: Frequency responses of the inner-loop sensitivity and co-sensitivity transfer functions when a
2nd order DOb is used.
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Fig. 3-13: Frequency responses of the inner-loop sensitivity and co-sensitivity transfer functions when a
1st order DOb is used and uncertain plant includes time delay.
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It is assumed that αβ = 0.5, αγ = 0.2,∥Si∥∞ = 2 and wγ = 2Bw. If Theorem 3.10 is applied by

using the defined performance and robustness constraints, then

6 ≤ Bw ≤ 55, and wβ ≤ 35 rad/s., (3.88)

are derived. Fig. 3-14 shows the frequency responses of the inner-loop sensitivity and co-sensitivity

transfer functions when a first order DOb is used. The performance and bandwidth constraints, which

are different from eq. (3.88) due to conservatism, are obtained directly from Fig. 3-14 as follows:

12 ≤ Bw ≤ 24, and wβ ≤ 15 rad/s.. (3.89)

The weighting function of the sensitivity transfer function is WP (s) = 0.5 s+16
s+2 .

Finally, let us consider the design constraints when uncertain plant has a RHP pole. The uncertain

plant model is defined as follows:

Gn(s) =
1

s(s− 5)
and G(s) = Gn(s) (1 + ∆WS(s)) , (3.90)

where WS(s) =
7.5s+600
s+1500 . Because a DOb is implemented in the inner-loop, the outer loop controller, in

whichCS(s) = 12s+20, is designed to satisfy the stability by considering only the nominal plant model.

The frequency responses of the outer-loop sensitivity and co-sensitivity transfer functions are shown in

Fig. 3-15 when a second order DOb is used. It clearly shows that the robustness of the system improves

as the bandwidth of DOb is increased. The lower bound on the bandwidth of DOb can be derived by

using Theorem 3.11 similarly; however, it also includes conservatism.

Fig. 3-16(a) shows the performance improvement of the controller, CP (s), which is designed as

CP (s) = s+10
4s+10 . Fig. 3-16(b) shows the step responses for different external disturbances. As it can

be seen from the figure, DOb cannot estimate high frequency disturbances precisely, so the robustness of

the system deteriorates. There is a trade-off between the robustness and noise response to determine the

bandwidth of a DOb.

Simulation results show that the proposed method suffers by the conservatism, significantly. The

source of the conservatism is shown in Fig. 3-17. In this figure, the gray areas are determined by the

sectionally constant sensitivity bounds, and the black areas denote the errors which cannot be considered

in the robustness analysis. It clearly shows that there is a significant difference between the areas, which

are bounded by the real sensitivity function and its approximate bound.
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Fig. 3-14: Frequency responses of the inner-loop sensitivity and co-sensitivity transfer functions when a
1st order DOb is used and uncertain plant has a RHP zero.
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Fig. 3-15: Frequency responses of the inner-loop sensitivity and co-sensitivity transfer functions when a
2nd order DOb is used and uncertain plant has a right half plane pole.
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Fig. 3-16: Step responses of the uncertain plant when a DOb is implemented.
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Fig. 3-17: General frequency response of a sensitivity function.

Let us again consider the plant with time-delay case, which has the most severe conservative results,

to obtain more accurate bandwidth constraint by decreasing the conservatism. If the nominal plant model

with time delay is considered, then the sensitivity function frequency response is derived as follows:

|Si (jw)|2 =
w2

w2 − 2g0w sin (wτ) + g20
, (3.91)

where g0 is the bandwidth of the first order DOb; and τ is time delay. The frequencies of w1 and w2

given in Fig. 3-17 are derived approximately as follows:

w1 =

√
3τ − 1.73205

√
τ2 (3− gτ)

τ3
,

w2 =

√
3τ + 1.73205

√
τ2 (3− gτ)

τ3
. (3.92)

The conservatism can be decreased by using w1 and w2 instead of R. If the sectionally constant

sensitivity bound is used with w1 and w2, then the bandwidth constraint of DOb, which is obtained as

70 rad/s. from sensitivity function frequency responses, is derived as 95 rad/s.. Hence, the conservatism

can be lessened by considering more realistic sensitivity bounds.
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3.6 Summary

In this chapter, the robustness of DOb based control systems is analyzed by using different robust

control methods, in detail. Firstly, the conventional analysis method, which depends on the Small Gain

theorem, is explained briefly. The robustness of a DOb based control system can be easily analyzed by

using the conventional analysis method. However, it limits the bandwidth due to conservatism and does

not provide a clear insight into the robustness characteristics of a DOb. The conservatism can be lessened

by using the SSV in the presence of structured uncertainties. However, the conservatism cannot be

removed due to the discontinuity problem of the real SSV. Although the SSV can be easily implemented

to DOb based control systems by using the toolboxes of Matlab, the robustness characteristics of a DOb

cannot be clarified. A new analysis method is proposed for DOb based control systems by using the

real parametric uncertainty based robust control methods. To clarify the robustness characteristics of

DOb, it is assumed that a minimum phase plant that has real parametric uncertainties is controlled by

using a first order DOb. It is shown that the robust stability of the DOb based control system is achieved

if the bandwidth of DOb is higher than its lower bound and the stability margin is improved as the

bandwidth of DOb is increased. The main disadvantage of the proposed method is the strict restrictions

on the dynamics of the plant and DOb. To derive the general design constraints of a DOb based control

system, a new unstructured uncertainty based analysis method is proposed. Bode and Poisson integral

theorems are utilized so that the design constraints of DOb are derived analytically for a wide range of

application area. The proposed method also includes conservatism. However, it is not a severe problem,

since it clarifies the robustness characteristics of DOb based control systems, qualitatively. Besides,

the conservatism can be lessened by using more realistic sensitivity function bounds, yet it increases the

computational complexity. I believe that the proposed method is very useful to understand the robustness

characteristics of a DOb based control systems.
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Chapter 4

Disturbance Observer Based Robust
Motion Control Systems

4.1 Introduction

In this chapter, the stability, performance, and robustness of DOb based motion control systems, i.e.,

position and force control systems, will be analyzed in detail [69, 70]. Three decades before, DOb was

proposed by Ohnishi et al. to improve the performance of motion control systems in the first IPEC con-

ference [32]. After that it has been widely used in several motion control applications, such as robotics,

industrial automation, automaotive, etc., due to its simplicity and efficiency [40,71–78]. DOb estimates

external disturbances and plant uncertainties, such as gravity, friction, inertia variations, etc., in motion

control systems. It provides the robustness of motion control systems in the inner-loop as shown in the

previous chapters. Since a DOb suppresses disturbances in the inner-loop, high performance accelera-

tion based controllers (ABC) can be designed in the outer loop [36, 70, 79, 80]. In ABC, performance

goals, e.g., position, force, or admittance control goals, are defined uniformly in the acceleration domain

[36, 80, 81].

Although several applications of DOb based motion control systems have long been realized in the

literature successfully, DOb suffers from insufficient analysis and design control methods [70, 82]. The

low pass filter (LPF) of DOb, nominal inertia, and torque coefficient are the fundamental design param-

eters of a DOb based robust motion control system. It is a well known fact that the higher the bandwidth

of DOb is, the better the disturbance suppression improves. However, so far, the relation between the

bandwidth of DOb and nominal inertia and torque coefficient has not been considered in detail. In section
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4.2, the design constraints of DOb and nominal plant parameters are derived analytically by considering

the practical constraints of DOb based motion control systems. It is shown that the bandwidth of a DOb

and nominal inertia have upper bounds to improve the robustness of DOb due to imperfect velocity es-

timation in practice. Besides that a DOb can be designed as a phase lead-lag compensator by adjusting

the nominal inertia and torque coefficient. The stability of a DOb based motion control system can be

improved by increasing / decreasing the nominal inertia / torque coefficient [70]. However, as shown in

Chapter 3, nominal plant parameters are bounded by the robustness constraints in practice. Therefore,

there is a trade-off between the stability and robustness, in which it is adjusted by nominal plant param-

eters, in the design of a DOb based motion control system. In section 4.3, DOb based robust position

control systems are analyzed. It is shown that the stability of the DOb based robust position control

systems is improved as the nominal inertia is increased in the design of DOb. The robustness of position

control systems is clarified by deriving the sensitivity function. It is shown that the robustness of the po-

sition control systems is improved by the outer-loop performance controller. In section 4.4, DOb based

explicit robust force control systems are analyzed. It is shown that there is a strict relationship between

the stability and robustness in the explicit force control systems. The performance and stability are im-

proved if the robustness of an explicit force control system is achieved. The robustness of a DOb based

explicit force control system is clarified by proposing new sensitivity functions. Implicit and explicit

contact force estimation methods are considered by using a force sensor and a reaction force observer

(RFOb), respectively. It is shown that the explicit force control systems are improved intrinsically by

using the explicit force estimation method, i.e., RFOb. Dynamic model of a force sensor is obtained by

using two mass resonant system, and novel stability and robustness analysis methods are proposed. In

general, an RFOb based robust force control system is considered as a feed-forward control structure,

so only performance analysis has been performed so far. However, it is not true, and an RFOb has a

feed-back control structure. Therefore, not only the performance but also the stability of an RFOb based

robust force control system changes significantly by the design parameters of a DOb and an RFOb. A

novel stability analysis method is proposed for RFOb based robust force control systems and practical

design constraints are derived. By using the proposed analysis methods, a novel adaptive RFOb design

method is proposed in section 4.5. The chapter ends with summaries given in section 4.6.
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4.2 Disturbance Observer Based Robust Motion Control Systems

A block diagram of a DOb based robust motion control system is shown in Fig. 4-1. In this figure, the

following apply:

Jmn and Jm nominal and uncertain inertias/masses, respectively;

Kτn and Kτ nominal and uncertain torque/force coefficients, respectively;

Im, Idesm and Icmpm total, desired and compensate motor currents, respectively;

qm,q̇m,and q̈m angle/position, velocity and acceleration, respectively;

q̈desm desired acceleration;

q̇noisem noise of velocity measurement;

gDOb cut-off frequency of DOb;

τ loadm loading torque/force;

τ frcm friction torque/force;

τ intm interactive torque/force such as Coriolis;

τdm = τ loadm + τ frcm + τ intm total external disturbance;

τdism and τ̂dism total disturbance and its estimation, respectively;

Henceforth, torque and force are used interchangeably in this chapter. A DOb estimates external

disturbances and plant uncertainties, such as gravity, friction, inertia variation, etc., in the inner-loop.

The robustness of motion control system is achieved by feeding-back the estimated disturbances, τ̂dism , as
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Fig. 4-1: Block diagram of a DOb based robust motion control system.

– 61 –



CHAPTER 4 DISTURBANCE OBSERVER BASED ROBUST MOTION CONTROL SYSTEMS

shown in Fig. 4-1. Dynamic equations of a DOb based motion control system are derived directly from

Fig. 4-1 as follows:

KτnIm − Jmnq̈m = τdism = τdm +∆Jmq̈m −∆KτIm, (4.1)

τ̂dism = gDOb
s+gDOb

τdism , (4.2)

where ∆Jm = Jm − Jmn; and ∆Kτ = Kτ − Kτn denote inertia and torque coefficient variations,

respectively. Equation (4.2) shows that a disturbance can be estimated / suppressed accurately if it stays

within the bandwidth of DOb. A DOb based robust motion control system has a multi input single output

(MISO) control structure. Its transfer function is derived from Fig. 4-1 as follows:

q̈m = α
s+ gDOb
s+ αgDOb

q̈desm − 1

Jm
TDObsen (s) τdm − TDObcosen (s) sq̇

noise
m , (4.3)

where TDObsen (s) = 1
1+LDOb(s)

and TDObcosen (s) =
LDOb(s)

1+LDOb(s)
are the sensitivity and co-sensitivity transfer

functions, respectively, in which LDOb(s) = α gDOb
s ; and α = JmnKτ

JmKτn
.

Although Fig. 4-1 is used in the conventional analysis of DOb based motion control systems, in reality,

it is impractical. It is a well known fact that a DOb requires precise velocity measurement. Equation (4.3)

shows that the derivative of the noise of velocity measurement, qnoisem , gets transferred into the output by

TDObcosen. Therefore, in general, velocity is estimated by using a LPF, and precise velocity measurement is

achieved in a predetermined bandwidth. Practical block diagram of a DOb based motion control system

is shown in Fig. 4-2.

In Fig. 4-2, gv denotes the cut-off frequency of velocity measurement. Transfer function of a practical

DOb based motion control system is derived similarly as follows:

q̈m = α
(s+ gv)(s+ gDOb)

s2 + gvs+ αgvgDOb
q̈desm − 1

Jm
TDObsen (s) τdm − TDObcosen (s) sq̇

noise
m , (4.4)

where TDObsen (s) = 1
1+LDOb(s)

and TDObcosen (s) = LDOb(s)
1+LDOb(s)

are sensitivity and co-sensitivity transfer

functions, respectively, in which LDOb(s) = α gvgDOb
s(s+gv)

.

Equation (4.3) and eq. (4.4) show that a DOb can be designed as a phase-lead lag compensator that is

adjusted by α. If α > 1, then a DOb works as a phase lead compensator. The stability and performance

of the motion control systems are improved by increasing phase lead, i.e., α; however, the upper bound

of α has not been derived yet.
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Fig. 4-2: Block diagram of a DOb based robust motion control system when a low pass filer is used in
velocity measurement.

Although the structures of eq. (4.3) and eq. (4.4) are quite similar, the robustness of a DOb based

motion control system changes significantly when velocity is estimated by using a LPF. The sensitivity

and co-sensitivity transfer functions, i.e., disturbance and noise responses, of a DOb based motion control

system are shown in eq. (4.3) and eq. (4.4). The relative degree of LDOb(s) is one and two when gv is

infinite and finite, respectively. In Chapter 3, Bode integral theorem shows that if the relative degree of

LDOb(s) is higher than one, then TDObsen cannot be shaped freely; the peak of TDObsen at high frequencies

increases as the sensitivity reduction at low frequencies is increased. Therefore, as shown in eq. (4.4), α

and gDOb cannot be increased freely due to the robustness constraint. A simple robustness constraint can

be derived analytically as follows:

Let us consider the characteristic polynomial of TDObsen / TDObcosen and apply gv = κgDOb. Then, the

characteristic polynomial of the robust motion control system is as follows:

Pch(s) = s2 + κgDObs+ ακg2DOb. (4.5)

The natural frequency and damping coefficient of eq. (4.5) are derived as follows:

wn =
√
ακgDOb and ξ = 0.5

√
α−1κ. (4.6)

To improve the robustness of a DOb, i.e., to suppress the peak of TDObsen /TDObcosen, if it is assumed that

ξ ≥ 0.707, then

αgDOb ≤
gv
2
. (4.7)
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Fig. 4-3: Frequency responses of the inner-loop sensitivity and co-sensitivity transfer functions.

Equation (4.7) is a new practical design constraint for the DOb based robust motion control systems.

It shows that α and gDOb are limited by the robustness constraint of DOb when imperfect velocity

measurement is considered. The robustness of a DOb can be improved by increasing the lower constraint

of ξ; however, the upper bound of α and gDOb become more severe, i.e, the stability and performance

deteriorate. Consequently, there is a trade-off between the robustness, stability, and performance in DOb

based motion control systems.

The robustness constraint of a DOb based motion control system is shown in Fig. 4-3. It is clear from

the figure that not only the stability, but also the robustness improves as α and gDOb are increased when

perfect velocity measurement is achieved, i.e., gv is infinite. However, imperfect velocity measurement

changes the sensitivity and co-sensitivity transfer function frequency responses at high frequencies, i.e.,

the robustness of the DOb based motion control systems, significantly. It is clear from the analysis that

not only the performance, but also the stability and robustness of a DOb based motion control system

can be improved by using perfect velocity measurement though it is not practical.
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4.3 Disturbance Observer Based Robust Position Control Systems

A block diagram of a DOb based robust position control system is shown in Fig. 4-4. In this figure,

qrefm and q̈refm denote angle/position and acceleration reference inputs, respectively; and KD and KP

denote derivative and proportional gains of the outer-loop acceleration controller, respectively. The other

parameters are same as defined earlier. In the robust position control, a DOb provides robustness in the

inner-loop and performance goals are achieved by using an ABC controller in the outer-loop.

The transfer functions between q̈refm and q̈m are derived from Fig. 4-4 as follows:

q̈m

q̈refm

=
α(s+ gDOb)(s

2 +KDs+KP )

s2(s+ αgDOb) + α(s+ αgDOb)(KDs+KP )
, (4.8)

when gv is infinite; and

q̈m

q̈refm

=
α(s+ gv)(s+ gDOb)(s

2 +KDs+KP )

s2(s2 + gvs+ αgvgDOb) + α(a+ gv)(s+ αgDOb)(KDs+KP )
, (4.9)

when gv is finite.

Let us consider eq. (4.8). If the stability analysis of the position control system is performed, for

instance Routh-Hurwitzh theorem can be used, then

α−1 < 1 + gDOb
KD

KP
+

KD

gDOb
+
K2
D

KP
, (4.10)

is derived as the stability criterion [1, 83]. Equation (4.10) shows that the stability of the robust position
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control system is improved by increasing α and gDOb. However, as shown in eq. (4.7), αgDOb cannot be

increased freely due to the robustness constraint in practice.

Although, in general, it is assumed that the robustness and performance of a DOb based motion control

system are adjusted in the inner and outer loops, independently, it is not true. The robustness of a DOb

based position control system depends on the DOb as well as the outer loop performance controller. It

can be clarified by deriving the sensitivity and co-sensitivity transfer functions of a DOb based robust

position control system as follows:

TPCsen =
1

1 + LPC(s)
, (4.11)

TPCcosen =
LPC(s)

1 + LPC(s)
, (4.12)

where

LPC(s) = α
gDObs

2 + (s+ gDOb)(KDs+KP )

s3
, (4.13)

when gv is infinite; and

LPC(s) = α
gvgDObs

2 + (s+ gv)(s+ gDOb)(KDs+KP )

s3(s+ gb)
, (4.14)

when gv is finite.

As it is expected, eq. (4.11) and eq. (4.12) show that the robustness of the position control system is

improved by the outer loop PD controller. Although the robustness of the position control system can

be improved by increasing the outer loop control gain when αgDOb > 0.5gv, the robustness of inner-

loop becomes sensitive to disturbances at high frequencies such as noise. Besides, increasing outer-loop

controller gain has several disadvantages and limitations such as energy consumption, vibration due to

attracting high frequency dynamics, saturation, and so on.

4.3.1 Simulations and Experiment

In this section, simulation and experimental results are given for DOb based robust position control

systems. Table 4.1 shows the parameters of the simulations.

Let us start by considering the robustness of a DOb based position control system. Fig. 4-5 shows

the inner and outer loops’ co-sensitivity function frequency responses, i.e., TDObcosen and TPCcosen, when a

PD controller is implemented to achieve position control goals. As shown in Fig. 4-5(a), the frequency
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Table 4.1: Simulation parameters of the robust position control system.
Variables Definition of variables Value
Jmn Nominal mass 0.10 kg
Kτn Nominal torque coefficient 5.0 N/A
KP Position feedback gain 900

KD Velocity feedback gain 200

Table 4.2: Experiment parameters of the robust position control system.
Variables Definition of variables Value
Jmn Nominal mass 0.62 kg
Kτn Nominal torque coefficient 33.0 N/A
KP Position feedback gain 1200

KD Velocity feedback gain 90

gv Cut-off frequency of velocity measurement 1000 rad/s.
gDOb Cut-off frequency of DOb 250 rad/s.

responses of TDObcosen change significantly at high frequencies as α and/or gDOb are increased when gv is

finite. Against the ideal velocity measurement case, αgDOb cannot be increased freely due to the robust-

ness constraint when practical velocity measurement is considered. However, the outer-loop position

controller improves the robustness of the position control system as shown in Fig. 4-5(b). Although the

robustness of the outer-loop is improved by the performance controller, a DOb becomes more sensitive

at high frequencies in the inner-loop as αgDOb is increased.

Let us now consider the stability of a DOb based robust position control system. The root-locus of

the robust position control system, which is shown in Fig. 4-6, is plotted with respect to α when gv is

500 rad/s.. It shows that the stability of the robust position control system improves as α is increased.

However, it is limited by the robustness constraint of a DOb, so there is a trade-off between the stability

of the position control system and the robustness of a DOb.

A linear DC motor, which is shown in Fig. 4-7, is used to show the validity of the analysis in the

experiments. Specifications of the experimental setup is shown in Table 4.2.

Fig. 4-8 shows the position control response of the linear DC motor when a DOb is implemented. In

the experiment, a sinusoidal reference input is applied between 1 and 10 seconds, and the position control

responses are observed by changing the nominal inertia in the design of a DOb. Initially α is set as α > 1

and the stability of the robust position control system is improved. Even if the robustness constraint of
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Fig. 4-5: Inner and outer loops’ co-sensitivity functions frequency responses.

DOb is not satisfied, the outer loop controller improves the robustness of the position control system. As

α is decreased, the stability of the position control system deteriorates, and the position control response

starts to oscillate as shown in Fig. 4-8.
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Fig. 4-7: Linear DC motor.
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Fig. 4-9: Block diagram of a conventional explicit force control system.

4.4 Disturbance Observer Based Robust Force Control Systems

In this section, DOb based explicit robust force control systems are analyzed in detail. The stability

of contact motion and low performance are the main challenging issues of explicit force control systems

[84–86]. This section shows that not only the performance, but also the stability of an explicit force

control system is improved by using robust force control methods [87].

Force control goals can be achieved asymptotically by using an open loop controller if external distur-

bances, such as gravity and friction, are ignored. However, in practice, an explicit force control system

becomes very sensitive to external disturbances and environmental impedance variations when open loop

controllers are used [36]. Conventionally, external disturbances are canceled by using model based con-

trol methods such as feed-back linearization, and environmental impedance variations are controlled by

using a force control feed-back loop [88]. However, it is a well-known fact that modeling errors of ex-

ternal disturbances degrade the performance of an explicit force control system. Besides, environmental

impedance variations cannot be controlled directly in a force control feed-back loop due to the natural

reactive feed-back loop that is shown in Fig. 4-9. It can be explained as follows:

Natural frequency and damping coefficient of an explicit force control system are derived from Fig. 4-

9 as follows:

wn =

√
(1 + Cf )

Kenv

Jm
and ξ =

bm + (1 + Cf )Denv

2
√
Jm (1 + Cf )Kenv

, (4.15)

when R is on; and
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wn =

√
Cf

Kenv

Jm
and ξ =

bm + CfDenv

2
√
JmCfKenv

, (4.16)

when R is off.

In Fig. 4-9, R denotes a fictitious robust control switch. External disturbances and the natural reactive

feed-back loop are canceled, i.e., the robustness of the explicit force control system is achieved, when

R is off. Equation (4.15) and eq. (4.16) show that an explicit force control system is more sensitive to

environmental impedance variations when it is influenced by the natural reactive feed-back loop. As

the stiffness of environmental impedance, Kenv, increases, the stability deteriorates even if a low force

control gain is used. However, as shown in eq. (4.16), environmental stiffness can be controlled directly

when the natural reactive feed-back loop is canceled. Therefore, the fictitious robust control switch, R,

should be realized. It is obvious that a DOb works as the fictitious robust control switch. However, the

robustness of an explicit force control system is limited by the dynamic characteristics of DOb such as

bandwidth limitations. Therefore, the dynamics of DOb should be considered in the analysis of the DOb

based explicit robust force control systems.

Block diagram of a DOb based explicit robust force control system is shown in Fig. 4-10. In this

figure, Cf denotes force control gain; and Denv and Kenv denote environmental damping and stiffness

coefficients, respectively. The other parameters are same as defined earlier.

Without any approximation, Fig. 4-10 can be simplified as shown in Fig. 4-11. In this figure, α =

1
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Fig. 4-10: Block diagram of a conventional DOb based explicit robust force control system.
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JmnKτ
JmKτn

. It is clear from Fig. 4-11 that a DOb works as a phase lead-lag compensator that is adjusted by

α in the explicit robust force control systems; and the stability is improved by increasing phase lead, i.e.,

α. Besides, not only the stability, but also the disturbance suppression at low frequencies is improved

by increasing α, since external disturbances and the reactive feed-back loop is suppressed in a wider

frequency range as α is increased. However, as shown in the previous sections, α cannot be increased

freely due to the robustness constraints of DOb. The transfer function between τ loadref and τ loadm is directly

derived from Fig. 4-11 as follows:

τ loadm

τ loadref

=
LCF (s)

1 + LCF (s)
, (4.17)

whereLCFC(s) =
(s+gDOb)(Denvs+Kenv)

s{Jms2+(JmαgDOb+Denv)s+Kenv} is the open loop transfer function of the conventional

DOb based explicit robust force control system.

Equation (4.17) shows that the steady state error of the explicit robust force control system is removed

by a DOb, since the open loop transfer function has a pole at the origin. The relative degree of LCFC

is one so the asymptotes of the root loci are at angle of π rad.. The transient response of the explicit ro-

bust force control system changes by the environmental impedance, control gain, nominal and uncertain

motor parameters, and the bandwidth of DOb. As the bandwidth of DOb is increased, the robustness is

improved but the stability deteriorates due to phase lag increment. Although, in practice, it is not a severe

problem when environmental stiffness is high, the stability may deteriorate by increasing the bandwidth

of DOb when a robot contacts with a soft environment. Therefore, the robustness of a DOb based explicit

force control system should be adjusted by considering the stability of the explicit robust force control

system.

The transfer functions between extτdm and τ loadm are derived from Fig. 4-9 and Fig. 4-11 as follows:
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τ loadm
extτdm

= − Denvs+Kenv

Jms2 + (1 + Cf )Denvs+ (1 + Cf )Kenv
, (4.18)

when the conventional explicit force control system is considered; and

τ loadm
extτdm

= − s (Denvs+Kenv)

Jms2 (s+ αgDOb) + {CfJmα (s+ gDOb) + s} (Denvs+Kenv)
, (4.19)

when the DOb based explicit robust force control system is considered.

Equation (4.18) shows that as the force control gain, Cf , is increased, the robustness of the conven-

tional explicit force control system is improved, i.e., suppression of external disturbances is improved.

However, it is a well known fact that force control gain cannot be increased freely due to the stability

constraint. Therefore, the robustness of the conventional explicit force control system is limited by the

stability. Equation (4.19) shows that external disturbances can be suppressed precisely at low and high

frequencies when a DOb is used. However, the dynamics of the explicit robust force control system

become more dominant in the intermediate frequencies. Therefore, the robustness of the explicit force

control system may deteriorate in the intermediate frequency range.

Although Fig. 4-11 provides us a basic insight into the DOb based explicit robust force control sys-

tems, it is impractical due to the assumption which is that environmental impedance is known, a priori. In

real explicit force control implementations, environmental impedance is generally unknown; therefore,

the estimation of environmental impedance is crucial in the explicit force control systems. However, the

environmental impedance estimation methods change the robustness, stability, and performance of the

explicit force control systems, drastically. In this section, implicit and explicit environmental impedance

estimation methods are considered by using a force sensor and an RFOb.

Let us start by considering the implicit environmental impedance estimation method, i.e.,force sensor.

Force sensors are widely used to detect contact forces in conventional force control applications. A force

sensor detects contact forces implicitly by estimating the strain of a strain gauge. The estimated strain

is transformed into stress by using Young’s modulus so as to detect contact forces. The compliance of

an explicit force control system changes by a force sensor if the stiffness of the strain gauge is low.

Since the stability of an explicit force control system deteriorates by the low stiffness of strain gauge,

highly stiff force sensors are generally used in force control applications. However, stiff force sensors

suffer from noise, because contact forces are detected by estimating infinitesimal strains. Compliance

and noise are the main disadvantages of a force sensor. Besides that force sensors have several practical
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Fig. 4-12: Model and block diagram of a force sensor.

disadvantages, e.g., they require amplifiers which increase costs, mounting force sensors on robotic

systems may cause some difficulties, connection between force sensor and amplifier increases design

complexity, force sensors can estimate environmental impedance if they are in contact, and so on.

A two mass resonant system, which is shown in Fig. 4-12(a), is used to obtain the lumped parameter

model of a force sensor. Fig. 4-12(b) shows the block diagram of a two mass resonant system model.

In this figure, Jsen, Dsen and Ksen denote the inertia, damping and stiffness of a force sensor, respec-

tively; Dm and Denv denote damping of motor and environment, respectively; Kenv denotes stiffness

of environment; and τ̂ loadm denotes estimated contact force. The other parameters are same as defined

earlier.

Without any approximation, a simplified block diagram of the explicit robust force control system is

obtained as shown in Fig. 4-13 when environmental impedance is estimated by using a force sensor. In
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Fig. 4-13: Simplified block diagram of a DOb based explicit robust force control system when force
sensor is used to estimate environmental impedance.

this figure, ∆1(s) = Jsens
2 +Denvs+Kenv; ∆2(s) = Jsens

2 + (Dsen +Denv)s+Ksen +Kenv; and

gsen denotes the bandwidth of force estimation.

It is clear from Fig. 4-11 and Fig. 4-13 that the compliance of the explicit robust force control system

changes by the dynamics of force sensor. The stability and performance of the explicit robust force

control system deteriorate as the stiffness of force sensor is decreased. Therefore, in general, stiff force

sensors are used in force control applications. To suppress the noise of a stiff force sensor, contact forces

are detected by using a LPF as shown in Fig. 4-13. However, the LPF degrades the performance by

limiting the force control bandwidth, gsen, and stability by increasing phase lag.

The stability and robustness can be analyzed similarly by deriving the transfer functions of the explicit

robust force control system. However, the dynamics of force sensor and LPF, which degrade the stability

and performance, should be considered.

Let us now consider the explicit environmental impedance estimation method, i.e., RFOb. Block dia-

gram of an RFOb based robust force control system is shown in Fig. 4-14. In this figure, ∆Jm and ∆Kτ

denote inertia and torque coefficient variations, respectively. A DOb estimates external disturbances and

system uncertainties in the inner-loop. The robustness of the force control system is achieved by feeding

back the estimated disturbances. However, system uncertainties should be identified a priori to design

an RFOb in the outer-loop. Although the structures of a DOb and an RFOb are quite similar, only the

latter is a model based control method which is the most challenging issue in its design. In general, an

RFOb is considered as a feed-forward control structure to simplify the analysis. However, it is not true.

The design parameters of a DOb and an RFOb change not only the performance, but also the stability
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Fig. 4-14: Block diagram of a DOb based explicit robust force control system when RFOb is used to
estimate environmental impedance.

of the explicit robust force control system, significantly. The stability of the explicit robust force control

system is analyzed as follows:

Let us define the environmental contact by using a lumped spring-damper model as follows:

τ loadm = Denv(q̇m − q̇env) +Kenv(qm − qenv), (4.20)

where Denv and Kenv denote the environmental damping and stiffness, respectively; and qenv and q̇env

denote the position and velocity of environment at equilibrium, respectively. The dynamic equation of

an RFOb based robust force control system is derived from Fig. 4-14 as follows:

(
K̂τIm − Ĵmq̈m − τ̂ frcm − τ̂ intm

) gRFOb
s+ gRFOb

= τ̂ loadm , (4.21)

where τ̂ frcm and τ̂ intm denote identified friction and interactive disturbances, respectively; and Ĵm = Jmn+

∆Ĵm and K̂τ = Kτn +∆K̂τ denote identified inertia and torque coefficient, respectively.

The transfer function between τ loadref and τ̂ loadm is derived by using eq. (4.1), eq. (4.2), eq. (4.21), and

Fig. 4-14 as follows:
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τ̂ loadm

τ loadref

=
LRFOb(s)

1 + LRFOb(s)
, (4.22)

where

LRFOb(s) = Cf
gRFOb

Jmn
Kτn

(s+ gDOb)φ (s)

s {Jms (s+ αgDOb) + (Denvs+Kenv)} (s+ gRFOb)
, (4.23)

is the open loop transfer function of an RFOb based explicit robust force control system; φ(s) =

JmK̂τs(s + αgDOb) + K̂τ (Denvs + Kenv) − ĴmKτs(s + βgDOb); α = JmnKτ
JmKτn

and β = JmnK̂τ

ĴmKτn
.

The other parameters are same as defined earlier. If an RFOb is designed by using perfect identification

of inertia and torque coefficient, i.e., α = β, then

LRFOb(s) = Cf
gRFObJmα (s+ gDOb) (Denvs+Kenv)

s {Jms (s+ αgDOb) + (Denvs+Kenv)} (s+ gRFOb)
. (4.24)

In general, the bandwidths of a DOb and an RFOb are set to the same value. If it is applied into

eq. (4.24), then

LRFOb (s) = Cf
gJmα(Denvs+Kenv)

s {Jms (s+ αg) + (Denvs+Kenv)}
. (4.25)

Equation (4.23), eq. (4.24), and eq. (4.25) show that each of the open loop transfer function has a pole

at the origin, so the steady state error is removed by a DOb in the explicit robust force control systems.

Let us first consider eq. (4.25), in which it is assumed that perfect system identification is achieved and

the bandwidth of DOb and RFOb are set to the same value. The relative degree of the open loop transfer

function is two, so the root loci of the robust force control system have asymptotes, at ±π
2 rad.. The

stability of the robust force control system deteriorates as the environmental stiffness, Kenv, increases,

since the zero of the open loop transfer function, which is at Kenv
Denv

, moves away from the origin and phase

lag increases.

Let us now consider eq. (4.24), in which it is assumed that perfect system identification is achieved

and the bandwidths of DOb and RFOb are set to the different values. The relative degree of the open

loop transfer function is two, so the asymptotic behaves of the root loci do not change. However, a phase

lead-lag compensator, which can be used to improve the stability and performance, is obtained by setting

the bandwidths to the different values. If the bandwidth of RFOb is higher than DOb’s one, then a phase

lead compensator is obtained; however, if the bandwidth of DOb is higher than RFOb’s one, then a phase

lag compensator is obtained. It is shown clearly by re-writing eq. (4.24) as follows:

– 77 –



CHAPTER 4 DISTURBANCE OBSERVER BASED ROBUST MOTION CONTROL SYSTEMS

LRFOb(s) = CfCcom(s)
gRFObJmα(Denvs+Kenv)

s {Jms (s+ αgDOb) + (Denvs+Kenv)}
, (4.26)

where Ccom(s) = s+gDOb
s+gRFOb

is the phase lead-lag compensator that is adjusted by the bandwidths of DOb

and RFOb.

Finally, let us consider eq. (4.23), in which imperfect identification of inertia and torque coefficient

are considered. The relative degree of the open loop transfer function is one, so the root loci of the robust

force control system have asymptotes at π rad.. Equation (4.23) and eq. (4.24) show that asymptotic

behaves of the root loci improves when α ̸= β, i.e., inertia and torque coefficient are not identified

precisely in the design of an RFOb. However, the stability of the robust force control system changes

drastically by the imperfect identification. It can be explained as follows:

Let us consider the numerator of eq. (4.23) by using

CfgRFOb
Jmn
Kτn

(s+ gDOb)φ(s), (4.27)

where φ(s) =
(
JmK̂τ − ĴmKτ

)
s2 + K̂τDenvs+ K̂τKenv.

As shown in eq. (4.27), the open loop transfer function has a right half plane zero if JmK̂τ < ĴmKτ ,

i.e., β < α. Therefore, not only the performance, but also the stability of the robust force control system

deteriorates significantly by the imperfect identification of inertia and torque coefficient.

The performance of an RFOb changes significantly by the imperfect identification of torque coeffi-

cient. However, in general, the error of inertia identification can be neglected due to the low accelerations

in force control. In practice, although torque coefficient identification can be achieved precisely, identi-

fication of inertia may not be a simple task, e.g., the inertia of a multi-body system is quite complex and

non-linear. Therefore, a new design constraint, which improve the performance and stability, is proposed

for the RFOb based robust force control systems as follows:

Ĵm ≤ Jm and K̂τ = Kτ , or (4.28)

β ≥ α and K̂τ = Kτ . (4.29)

If it is assumed that K̂τ = Kτ , Ĵm = Jm, and gDOb = gRFOb = g, then the transfer functions of
τ̂ loadm
extτdm

and τ loadm
extτdm

are derived from Fig. 4-14 as follows:
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τ̂ loadm
extτdm

=
g

s+ g

Jms
2(s+ αg)(1− ψ)− s(Denvs+Kenv)ψ

Jms3 + (Jmαg +Denv)s2 + (Kenv + JmαgCfDenv)s+ JmαgCfKenv
, (4.30)

τ loadm
extτdm

=
JmαgCf (Denvs+Kenv)(1− ψ)− s(Denvs+Kenv)ψ

Jms3 + (Jmαg +Denv)s2 + (Kenv + JmαgCfDenv)s+ JmαgCfKenv
, (4.31)

where extτ̂dm =ext τdmψ denotes the identified external disturbances. Equation (4.30) and eq. (4.31)

show that an RFOb cannot detect contact forces precisely when it suffers from imperfect identification

of external disturbances, i.e., ψ ̸= 1.

If external disturbances are identified precisely, i.e., ψ = 1, then eq. (4.31) is re-written as follows:

τ loadm
extτdm

= − s(Denvs+Kenv)

Jms3 + (Jmαg +Denv)s2 + (Kenv + JmαgCfDenv)s+ JmαgCfKenv
. (4.32)

Equation (4.32) is quite similar to eq. (4.18). It shows that external disturbances can be suppressed

precisely at low and high frequencies. However, the robustness may deteriorate in the intermediate

frequency range even if ψ = 1.

4.4.1 Simulations and Experiment

In this section, simulation and experimental results are given for explicit robust force control sys-

tems. The stability and robustness of a DOb based explicit force control system are considered in the

simulation. The parameters of the simulations are shown in Table 4.3.

The stability analyses are conducted by using the root-loci of the robust force control systems that are

shown in Fig. 4-15, Fig. 4-16 and Fig. 4-17. Fig. 4-15 shows the root-loci with respect to gDOb when

α has different values and environmental impedance is known, a priori. It indicates that the stability of

Table 4.3: Simulation parameters of the explicit force control system.
Variables Definition of variables Value
Jmn Nominal mass 0.10 kg
Kτn Nominal torque coefficient 0.25 N/A
Dsen Force sensor damping 0.02 Ns/mm
Ksen Force sensor stiffness 100 N/mm
Denv Damping of environmental impedance 0.01 Ns/mm
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Fig. 4-15: Root loci with respect to gDOb when environmental impedance is known a priori.
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Fig. 4-16: Root loci with respect to Cf when a force sensor is used.

the robust force control system can be improved by increasing α. However, against α, increasing gDOb

may improve or degrade the stability of the robust force control system. If there is no a constraint on

the bandwidth of DOb, then a good stability can be achieved by increasing gDOb. However, in reality,

it is limited by practical constraints such as noise and sampling time. Therefore, as shown in the figure,

the stability deteriorates if the closed-loop poles cannot get close to the zeros when gDOb is increased.

In this case, decreasing the robustness, i.e., using lower gDOb, can improve the stability. The stability

constraint on gDOb becomes more dominant as the environmental stiffness decreases. Fig. 4-16 shows

the root-loci with respect to Cf when a force sensor is used. It indicates that the stability of the robust
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Fig. 4-18: Disturbance suppression when environmental impedance is known a priori.

force control system deteriorates if the stiffness of a force sensor is decreased and/or a LPF is used to

suppress the noise of force estimation. Fig. 4-17 shows the root-loci with respect to Cf when an RFOb

is used. It indicates that the stability of the robust force control system changes drastically by the design

parameters of a DOb and an RFOb. The stability of the robust force control system is improved by using

Ĵm ≤ Jm, i.e., α ≤ β and gRFOb ≥ gDOb.

The robustness analyses of the explicit force control systems are conducted by using the frequency

responses of the transfer functions between extτdm and τ loadm in Fig. 4-18, Fig. 4-19, and Fig. 4-20. Fig. 4-

18 indicates that a good robustness can be achieved at low and high frequencies; however, the robustness
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Fig. 4-19: Disturbance suppression when a force sensor is used to detect environmental impedance.
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Fig. 4-20: Disturbance suppression when an RFOb is used to detect environmental impedance.

changes with respect to the dynamics of the plant, environmental impedance, and the robustness and per-

formance controllers in the intermediate frequencies. As shown in Fig. 4-18, an external disturbance may

not be suppressed even if it stays within the bandwidth of DOb, gDOb . As the stiffness of environmental

impedance increases, the robustness of a DOb based explicit force control system deteriorates. Fig. 4-19

and Fig. 4-20 show the robustness analyses when a force sensor and an RFOb are used to detect contact

force, respectively. As the bandwidth of DOb is increased, the robustness of the explicit force control

system is improved. However, it is more sensitive to external disturbances when an RFOb is used to

detect environmental impedance. The performance of the explicit force control system is influenced by
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Table 4.4: Experiment parameters of the explicit force control system.
Variables Definition of variables Value
Jmn Nominal mass 0.62 kg
Kτn Nominal torque coefficient 33 N/A
gRFOb Cut-off frequency of RFOb 1000 rad/s.
Cf Force control gain 1

Ksen Stiffness of force sensor 1500 N/mm
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Fig. 4-21: Robustness / Noise suppression of the DC motor .

external disturbances even at low frequencies when ψ ̸= 1 .

A linear DC-motor, which is shown in Fig. 4-7, is used in the experiments. The specifications of the

experimental setup are shown in Table 4.4. Sampling time is 1 ms, and KYOWA LUR-A-50NSA1 force

sensor is used to estimate contact forces.

Let us start by considering the robustness constraint of a DOb. Fig. 4-21 shows the force control

responses of the DC motor when α has different values and gDOb = 200 rad/s.. It is clear from the

figure that as α is increased a DOb becomes more sensitive to noise, since the robustness deteriorates.

To improve the robustness of DOb, α and gDOb should be tuned by considering the robustness constraint

given in eq. (4.7).

Fig. 4-22 shows force control responses when contact forces are detected by using the force sensor. A

step force control command is applied at 1 s., and a fictitious external disturbance, which is sin(wt), is

applied between 5 and 13 s. The frequency of the external disturbance, i.e.,w, is: 1 rad/s. between 5 and 7

s., 10 rad/s. between 7 and 9 s., 100 rad/s. between 9 and 11 s., and 500 rad/s. between 11 and 13 s.. Fig. 4-
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Fig. 4-22: Step responses of the robust force control system when the force sensor is used to detect
contact forces.

22(b) indicates that the explicit force control system becomes more sensitive to the external disturbance

as the stiffness of environmental impedance increases. The external disturbance is suppressed precisely

at low frequencies; however, the force control system is influenced by the fictitious external disturbance,

sin(wt), as w is increased. Fig. 4-22(a) shows that although the fictitious external disturbance is out of

the bandwidth of DOb, the explicit force control system can suppress it when environmental stiffness is

low. The stability of the explicit robust force control system is improved by decreasing gDOb; however,
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Fig. 4-23: Step responses of the robust force control system when RFOb is used to detect contact forces.

the robustness deteriorates. The stability improvement is more dominant when environmental stiffness

is low.

Fig. 4-23 shows force control responses when contact forces are detected by using an RFOb. Force

sensor is used to verify the detection of contact forces that are obtained by the RFOb. Fig. 4-23(a) shows

that the stability of the robust force control system changes significantly by the identification of motor

inertia. It is improved by using Ĵm < Jm. Fig. 4-23(b) shows that imperfect identification of external

disturbances degrades the performance of the explicit force control system when an RFOb is used. The
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Fig. 4-24: Two link planar robot arm.

Fig. 4-25: Block diagram of an accelaration based hybrid motion control system.
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Fig. 4-26: Position control responses of the two link planar robot arm.

performance of the explicit force control system is influenced by the fictitious external disturbance even

at low frequencies, since an RFOb cannot detect contact forces, accurately. Fig. 4-23(b) clearly shows

the contact force estimation error of RFOb between 5 and 13 s. when ψ ̸= 1.

Finally, two link planar robot arm, which is shown in Fig. 4-24, is controlled by using the proposed

position and force control systems. Block diagram of the ABC hybrid motion control system is shown in

Fig. 4-25. In this figure ρ denotes compliance selection constant. Torque control is conducted between 0

and 5, and 10 and 15 seconds; and position control is conducted between 5 and 10 seconds. Step torque
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Fig. 4-27: Torque control responses of the two link planar robot arm.

reference inputs are applied to each joints at different times during the torque control, and the links

interact with the environments initially; sinusoidal position reference inputs are applied to each joints.

Fig. 4-26 and Fig. 4-27 show the position and torque control responses at each joints, respectively. As

shown in the figures, the position and torque control goals can be achieved precisely when the proposed

methods are used.
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4.5 Adaptive Reaction Force Observer Design

In this section, a novel adaptive design method is proposed for RFOb based robust force control

systems. In the design of the adaptive RFOb based robust force control system, practical constraints

of DOb and RFOb are considered. Equation (4.22) clearly shows that the robust force control system

depends on the environmental impedance, the dynamics of the plant, and the robustness and performance

controllers. To achieve high performance force control systems, all dynamics of the robust force control

system should be considered. Therefore, environmental impedance and plant uncertainties should be

estimated. A new adaptive design method is proposed as follows:

a) Damping Environmet: Kenv is zero.

Let us first consider environmental impedance as pure damping. If α = β and gDOb = gRFOb = g,

then the open and closed loop transfer functions of the robust force control system are derived as follows:

LRFOb (s) = Cf
JmαgDenv

Jms2 + (Jmαg +Denv) s
, (4.33)

τ̂ loadm

τ loadref

= Cf
JmαgDenv

Jms2 + (Jmαg +Denv) s+ JmCfαgDenv
. (4.34)

Let us consider a general second order transfer function by using,

TDES(s) =
w2
n

s2 + 2ξwns+ w2
n

. (4.35)

The design parameters of the robust force control system are derived as follows:

αg = 2ξwn −
Denv

Jm
, (4.36)

Cf =
w2
n

αgDenv
. (4.37)

If the bandwidth constraint of a DOb, which is given in eq. (4.7), is applied into eq. (4.36), then

Denv

Jm
< 2ξwn <

gv
2

+
Denv

Jm
. (4.38)

Consequently, the adaptive robust force control system is designed as follows:

(1) ξ is chosen between 0.707 ≤ ξ ≤ 1 to improve the stability.
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(2) wn is obtained by using wn = γ
2ξ

(
gv
2 + Denv

Jm

)
where 2Denv

Jmgv+2Denv
< γ < 1 to satisfy eq. (4.38).

(3) αg and Cf are obtained by using eq. (4.36) and eq. (4.37), respectively.

b) Stiff Environmet: Denv is zero.

Let us now consider environmental impedance as pure stiffness. If α = β and gDOb = gRFOb = g,

then the open and closed loop transfer functions of the robust force control system are derived as follows:

LRFOb (s) = Cf
JmαgKenv

s (Jms2 + Jmαgs+Kenv)
, (4.39)

τ̂ loadm

τ loadref

= Cf
JmαgKenv

Jms3 + Jmαgs2 +Kenvs+ JmCfαgKenv
. (4.40)

Let us consider a desired characteristic polynomial by using

PDES(s) = (s+ p)
(
s2 + 2ξwns+ w2

n

)
= s3 + 2 (ξwn + p) s2 +

(
w2
n + 2ξwnp

)
s+ w2

np. (4.41)

The design parameters of the robust force control system are derived as follows:

p =
Kenv − Jmw

2
n

2Jmξwn
, (4.42)

αg = 2ξwn + p, (4.43)

Cf =
w2
np

αgKenv
. (4.44)

If eq. (4.7) is applied into eq. (4.43), then

0 < 2ξwn + p ≤ gv
2
. (4.45)

Let us assume that wn = k
√

Kenv
Jm

where k < 1 to satisfy the stability. Then, eq. (4.42) and eq. (4.45)

are re-written as follows:

p = ηξwn = 1−k2
2ξk2

wn, (4.46)

wn ≤ 2ξk2

1+(4ξ2−1)k2
gv
2 , (4.47)
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where η = p
ξwn

. η is an important design parameter to adjust the performance of the system. If k is

derived in terms of η by using eq. (4.46) and put into eq. (4.47), then

k = 1√
1+2ηξ2

, (4.48)

η2 + (4− 2R)η + 4− R
ξ2

≤ 0, (4.49)

where R = Jmg2v
4Kenv

. The real and positive values of η are derived from eq. (4.49) if the following condi-

tions are held.

i If Jmg
2
v

Kenv
≥ 16, then ξ can take any value.

ii If Jmg2v
Kenv

< 16, then ξ should satisfy ξ ≤ ξ̆ where ξ̆ = 2
√
Kenv√

16Kenv−Jmg2v
to obtain real η and ξ̆ =

0.5
√

Jmg2v
4Kenv

to obtain η > 0.

Consequently, the adaptive robust force control system is designed as follows:

(1) η is determined by considering i and ii. If ξ̆ < 1, then η should be chosen small enough, e.g.,

η = 0.1, to suppress the effects of low damping poles; however, if ξ̆ > 1, then η can be chosen,

freely.

(2) ξ is determined by using

(a) If 4(2 + η)2Kenv ≤ 2Jmηg
2
v , then ξ can take any value.

(b) If 4(2 + η)2Kenv > 2Jmηg
2
v , then ξ ≤ Jmg2v

4Kenv(2+η)2−2ηJmg2v
.

(3) p and k are obtained by using eq. (4.46) and eq. (4.48).

(4) wn is obtained by using wn = k
√

Kenv
Jm

.

(5) αg and Cf are obtained by using eq. (4.43) and eq. (4.44).

c) Stiff and Damping Environmet: Finally, let us consider environmental impedance as damping and

stiffness. If α = β and gDOb = gRFOb = g, then the closed-loop transfer function of the robust force

control system is derived as follows:
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τ̂ loadm

τ loadref

= Cf
Jmαg(Denvs+Kenv)

Jms3 + (Jmαg +Denv)s2 + (CfJmαgDenv +Kenv)s+ JmCfαgKenv
. (4.50)

If eq. (4.41) is considered, then the design parameters of the robust force control system are derived

as follows:

p =
K2
env − w2

nJmKenv

2ξJmwnKenv − w2
nJmDenv

, (4.51)

αg = 2ξwn + p− Denv

Jm
, (4.52)

Cf =
w2
np

αgKenv
. (4.53)

If eq. (4.7) is applied into eq. (4.52), then

Denv

Jm
< 2ξwn + p ≤ gv

s
+
Denv

Jm
. (4.54)

Let us assume that wn = k
√

Kenv
Jm

= k̆2ξKenv
Denv

. Then, eq. (4.51) is re-written as follows:

p = ηξwn =
1− k2

2ξ2(1− ψk)k2
ξwn, (4.55)

where ψ =

√
Kenv
Jm

2ξKenv
Denv

; and η = p
ξwn

.

The stability of the robust force control system is achieved if

k < 1 and k <
1

ψ
or k > 1 and k >

1

ψ
, (4.56)

and the bandwidth constraints of a DOb are satisfied if

Denv

Jm
< (2 + η)ξk

√
Kenv

Jm
≤ gv

2
+
Denv

Jm
. (4.57)

However, it is not an easy task to design an adaptive RFOb when environmental impedance is modeled

by using damping and stiffness. To overcome this challenging issue, a simple and effective design method

is proposed as follows:

Let us consider the relation between k and η by using eq. (4.55)

η =
1− k2

2ξ2(1− ψk)k2
. (4.58)
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Equation (4.58) shows that η is zero and infinite when k is equal to one and 1
ψ , respectively. Therefore,

k should be chosen close to one when η is desired to be small enough to suppress low damping poles’

effects. Hence, the constraints on ξ are derived approximately as follows:

ξ− < ξ ≤ ξ+, (4.59)

where ξ− =
Denv
Jm

2
√

Kenv
Jm

; and ξ+ =
gv
2
+Denv

Jm

2
√

Kenv
Jm

.

If ξ+ < 1, then the DOb constraints, i.e., ξ− < ξ ≤ ξ+ and η < 1 should be satisfied. However, if

ξ+ ≥ 1, then only the DOb constraints should be satisfied. Therefore, two different solutions should be

considered to design an adaptive RFOb.

Consequently, the adaptive robust force control system is designed as follows:

(1) The constraints on ξ are determined by using eq. (4.59).

(a) If ξ+ < 1, then

i. Chose ξ in the given interval, and η < 1

ii. Solve k by using eq. (4.59)

2ηξ2ψk3 − (1 + 2ηξ2)k2 + 1 = 0, (4.60)

iii. Chose the solution of k which is close to 1.

(b) If ξ+ ≥ 1, then

i. Chose ξ = 1

ii. Solve k by using eq. (4.59)

4ξ2ψk3 + (1− 4ξ2 − 2ξψϱ)k2 + 2ξϱk − 1 ≥ 0,

4ξ2ψk3 + (1− 4ξ2 − 2ξψδ)k2 + 2ξδk − 1 < 0 (4.61)

where ϱ =
gv
2
+Denv

Jm√
Kenv
Jm

; and δ =
Denv
Jm√
Kenv
Jm

.

iii. Chose the real and positive solution of k.

(2) wn is obtained by using wn = k
√

Kenv
Jm

.
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(3) p, αg, and Cf are obtained by using eq. (4.51),eq. (4.52) and eq. (4.53), respectively.

The solution of the cubic equations should satisfy positive and real k values. It can be shown by using

the Property as follows:

Property: Let us consider a cubic polynomial and functions by using

a3x
3 + a2x

2 + a1x+ a0 = 0,

∆ = 18a3a2a1a0 − 423a0 + a22a
2
1 − 4a3a

3
1 − 27a23a

2
0,

∆0 = a22 − 3a3a1,

∆1 = 2a32 − 9a3a2a1 + 27a23a0, (4.62)

Then,

i If ∆ ≥ 0, then the polynomial has three real roots.

ii If ∆ < 0, then the polynomial has imaginary roots.

The roots of the polynomial are as follows:

x1 = − 1

3a3

(
a2 + Γ +

∆0

Γ

)
,

x2,3 = − 1

3a3

(
a2 +

−1± i
√
3

2
Γ +

∆0

−1±i
√
3

2 Γ

)
, (4.63)

where Γ =
3

√
∆1+

√
∆2

1−4∆3
0

2 .

Let us first assume that ξ+ < 1. Equation (4.60) should be solved when η < 1. It can be easily

checked that the polynomial has two positive real or imaginary and a negative real roots. To obtain a

positive real k, all roots should be real. By using Property, it can be shown that all roots are real if the

following inequality is satisfied.

8ξ6η3 − (27ψ2 − 12)ξ4η2 + 6ξ2η + 1 ≥ 0, (4.64)

By using Property, it can be easily shown that eq. (4.64) is satisfied if the following conditions hold.
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ifψ ≤ 1, then η > 0,

ifψ > 1, then 0 < η ≤ λ2
ξ2
, or η ≥ λ3

ξ2
, (4.65)

where λ1 < λ2 < λ3 are the roots of the polynomial that is given in eq. (4.64). Consequently, the roots

of the polynomial are obtained by using eq. (4.63).

Now, let us assume that ξ+ > 1. η can be chosen freely, and only the bandwidth constraints of

DOb should be considered. It can be easily checked that the polynomials given in eq. (4.61) have one

positive real and two negative real or imaginary roots when the coefficients of k2 are positive, and three

positive roots when the coefficients of k2 are negative. Therefore, the real positive solutions of the cubic

polynomials can be obtained.

4.5.1 Online Parameter Identification

To design an adaptive RFOb, environmental impedance and plant uncertainties should be identified.

An on-line parameter identification algorithm is proposed as follows:

The dynamic equation of a DOb based robust motion control system is written by using Fig. 4-1 as

follows:

(
Jmn
Kτn

q̈desm +
τ̂dism

Kτn
Kτ

)
= Jmq̈m + τ frcm + τ loadm , (4.66)

where τ loadm = Denv(q̇m − q̇env) + Kenv(qm − qenv). For the sake of simplicity, let us use the static

model of the friction. However, more complex friction models, such as LuGre, can be used similarly

[89]. The static model of friction is as follows:

τ frcm = kvscq̇m + kclmbς(q̇m), (4.67)

where kvsc and kclmb denote viscous and coulomb friction coefficients, respectively; and ς(q̇m) denotes

the approximation of the coulomb friction model [90].

Jm, kvsc, kclmb, Denv, and Kenv should be estimated to design an adaptive RFOb. Because external

load is estimated by using an RFOb, the plant parameters, i.e., Jm, kvsc and kclmb, and environmental

impedance, i. e., Denv, and Kenv, can be identified during non-contact and contact motions, separately.
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Let us first consider non-contact motion to identify plant parameters and re-write eq. (4.66) in vector

form as follows:

unc = ρnc
Tδnc, (4.68)

where unc = Jmnq̈
des
m + τ̂dism ; ρnc =

[
q̈m q̇m ς(q̇m) 1

]T
; and δnc =

[
Jm kvsc kclmb τ̂dm

]
.

Let us assume that unknown parameters are bounded by a convex set that is defined by ∀δnc(i) ∈

Ξnc : δ
min
nc (i) ≤ δnc(i) ≤ δmaxnc (i), i = 1, 2, 3, 4.

A recursive least mean square error (RLMSE) algorithm is used to identify the plant parameters as

follows:

Knc(t) = Γnc(t− 1)ρnc(t)
(
µnc + ρTnc(t)Γnc(t− 1)ρnc(t)

)−1
,

δnc(t) = δnc(t− 1) + Prj
{
Knc(t)

(
unc(t)− ρTnc(t)δnc(t− 1)

)}
,

Γnc(t) =
1

µnc

(
I4 −Knc(t)ρ

T
nc(t)

)
Γnc(t− 1), (4.69)

where µnc denotes forgetting factor; •nc denotes the parameters in non-contact motion; and

Prj {•nc(i)} =


0, δnc(i) ≤ δminnc (i)

0, δnc(i) ≥ δmaxnc (i)

•nc(i) otherwise

(4.70)

The projection function, Prj {•nc(i)} , i = 1, 2, 3, 4, provides that the plant parameters are updated

only in non-contact motion and do not burst.

To estimate environmental impedance, eq. (4.66) is rewritten in vector form as follows:

uc = ρc
Tδc, (4.71)

where uc = τ̂ loadm ; ρc =
[
q̇m qm 1

]T
; and δc =

[
Denv Kenv τ̂ loadm

]T
.

The environmental impedance is identified by using an RLMSE algorithm as follows:

Kc(t) = Γc(t− 1)ρc(t)
(
µc + ρTc (t)Γc(t− 1)ρc(t)

)−1
,

δc(t) = δc(t− 1) + Prj
{
Kc(t)

(
uc(t)− ρTc (t)δc(t− 1)

)}
,

Γc(t) =
1

µc

(
I3 −Kc(t)ρ

T
c (t)

)
Γc(t− 1), (4.72)
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Fig. 4-28: Performance of the proposed identification algorithm.

where µc denotes forgetting factor; •c denotes the parameters in contact motion; and

Prj {•c(i)} =


0, δc(i) ≤ δminc (i)

0, δc(i) ≥ δmaxc (i)

•c(i) otherwise

(4.73)

It is obvious that the uncertainty range of environmental impedance is larger than the plant parameters’

one. The projection function, Prj {•c(i)}, provides that the estimation of environmental impedance is

conducted only in contact motion. In the proposed RLMSE algorithm, the projection functions work

discontinuously, and the parameters are updated conditionally [91–93].

Fig. 4-28 shows the performance of the proposed RLMSE algorithm. During non-contact motion, the

inertia of a linear motor is identified. To achieve contact motion, a known environmental impedance is

designed by using zero position control of a linear DC motor, in which KP = 900 and KD = 60 are the

parameters of the PD position controller. Fig. 4-28 indicates that the plant parameters and environmental

impedance can be identified by using the proposed algorithm. It is obvious that the convergence rates

of the parameters influence the performance of the adaptive RFOb based robust force control system.

Besides, impact forces cause high identification errors initially in the environmental impedance identifi-

cation. Therefore, the parameters of the adaptive RFOb should be updated by considering the drawbacks

of the proposed on-line RLMSE algorithm, i.e., the parameters should be updated when they converge.

Fig. 4-29 shows the block diagram of the proposed adaptive RFOb based robust force control system.
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Fig. 4-29: Block diagram of the proposed adaptive RFOb based robust force control system.

Table 4.5: Simulation Parameters of the adaptive RFOb design.
Variables Definition of variables Value
Jmn Nominal mass 0.025 kg
Kτn Nominal torque coefficient 0.5 N/A
gv Cut-off frequency of velocity measurement 1000 rad/s.

4.5.2 Simulations and Experiment

In this section, simulation and experimental results are given for adaptive RFOb based explicit force

control systems. Simulation parameters are shown in Table 4.5.

Fig. 4-30, Fig. 4-31, and Fig. 4-32 show the tunings of the design parameters by using the proposed

adaptive algorithms. It is assumed that α = 1 , so the maximum achievable bandwidth of DOb is

500 rad/s. to satisfy a good robustness. As shown in the figures, the maximum bandwidth of DOb can

be achieved if damping environment is considered. However, if stiff environment is considered, then the

bandwidth of DOb should be limited to improve the stability and performance when the environmental

stiffness is low. The performance and robustness of the force control system can be improved if the
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Fig. 4-31: Parameter tuning of adaptive RFOb when Kenv ̸= 0 and Denv = 0.

environmental stiffness is considered as damping and stiffness. In this case, the bandwidth of a DOb can

be increased even if the environmental stiffness is low. Although there is a small pole near the origin, the

performance of the force control system is not affected due to the zero near the pole.

An XZ-table mechanism, which is shown in Fig. 4-33, is carried out to show the validity of the

proposals. The specifications of the experimental setup are shown in Table 4.6. The sampling time is 0.1

ms. KYOWA LUR-A-50NSA1 force sensor is used to verify the performance of RFOb.

Let us start by considering how identification of plant parameters improves the performance of the ro-

bust force control system. In the Z (vertical) direction of table mechanism, force control is implemented
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Fig. 4-32: Parameter tuning of adaptive RFOb when Kenv ̸= 0 and Denv = 0.25.

Fig. 4-33: An XZ table mechanism.
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Table 4.6: Experiment Parameters of the adaptive RFOb design.
Variables Definition of variables Value
Jm1 Nominal mass 0.81 kg
Jm2 Nominal mass 3.2 kg
Kτn Nominal torque coefficient 33.0 N/A
gv Cut-off frequency of velocity measurement 1000 rad/s.
KP Proportional gain of position control 1200

KD Derivative gain of position control 90

between 0 and 5, and 10 and 15 seconds; position control is implemented between 5 and 10 seconds,

and the uncertain plant parameters, i.e., motor mass and friction, are identified by considering gravity.

Fig. 4-34 shows that the position and force control goals are achieved. The performance of the RFOb

is improved between 10 and 15 seconds by identifying the plant parameters during non-contact motion.

A soft environment (sponge) is used during force control. The bandwidths of DOb and RFOb are set to

500 rad/s., and Cf = 5 .

Let us now consider how identification of plant parameters improves the stability of the robust force

control system. Force control is implemented in the X (horizontal) direction by using different nominal

and identified mass values in the design of DOb and RFOb, respectively. The open loop gain is set to

a fixed value by using Cfα = 2.5. Fig. 4-35- Fig. 4-38 show the stability of the robust force control

system. Fig. 4-35 and Fig. 4-36 show that as the nominal mass of the plant is increased in the design

of DOb, the stability of the robust force control system is improved. However, as shown in eq. (4.7),

the nominal mass cannot be increased freely due to the robustness constraint. Fig. 4-37 and Fig. 4-38

show that the value of the identified mass that is used in the design of RFOb changes the stability of the

robust force control system, significantly. An RFOb should be designed by using Ĵm ≤ Jm, i.e., α ≤ β

to improve the stability of the force control system. A hard environment (aluminum box) is used in the

experiment. Since the transient between non-contact and contact motions is not treated, the wide impact

forces are occurred in force control. It is obvious that the impact force can be suppressed by controlling

the approaching velocity between non-contact and contact motions.

So far, identification of environmental impedance has not been considered. Finally, let us consider

how identification of environmental impedance improves the robust force control system. The plant

parameters are identified in free motion, and DOb and RFOb are designed by using α = 2 and β = 2 to

improve the stability. The force control response is shown in Fig. 4-36 when the adaptive algorithm is
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Fig. 4-34: Position and force control responses in the Z-direction.

not implemented. The bandwidths of DOb and RFOb and the force control gain are tuned by using the

adaptive algorithm with on-line and off-line parameter identification methods. Fig. 4-39 shows the force

control responses when the adaptive algorithm is implemented. It is clear from Fig. 4-39(a) and Fig. 4-

39(b) that the adaptive algorithm improves the force control response. However, as shown in Fig. 4-

39(a), the adaptive algorithm with on-line identification is influenced by the dynamics of identification

process during the transition between non-contact and contact motions, which is shown in Fig. 4-28.

In the adaptive algorithm, the control parameters are not updated during the transition, so oscillations
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Fig. 4-35: Stability of the foce control system: α = β = 0.5, gDOb = gRFOb = 500 rad/s., and Cf = 5.
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Fig. 4-36: Stability of the foce control system: α = β = 2, gDOb = gRFOb = 500 rad/s., and Cf = 1.25.

cannot be suppressed precisely when on-line parameter identification is used. However, as shown in the

Fig. 4-39(b), if environmental impedance is known a priori, which is impractical in many cases, then the

oscillations can be suppressed precisely by using the proposed adaptive algorithm.
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Fig. 4-37: Stability of the foce control system: α = 4, β = 2, gDOb = gRFOb = 500 rad/s., and
Cf = 0.625.
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Fig. 4-38: Stability of the foce control system: α = 2, β = 4, gDOb = 500 rad/s., gRFOb = 1000 rad/s.,
and Cf = 1.25.

4.6 Summary

In this chapter, novel analysis and design methods are proposed for DOb based motion control sys-

tems. Firstly, inner-loop, in which robustness of motion control systems is achieved, is considered, and

a new robustness constraint is proposed. It is shown that the bandwidth of DOb and nominal inertia are

bounded by the bandwidth of velocity measurement in the design of DOb. Secondly, the stability and

performance analysis are proposed for the robust position and force control systems.
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(a) Adaptive algorithm with on-line parameter estimation .
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(b) Adaptive algorithm with off-line parameter estimation .

Fig. 4-39: Force control responses in X-direction when the adaptive algorithm is used.

In the analysis of DOb based robust position control systems, it is shown that the stability is improved

as the nominal inertia is increased in the design of DOb. However, the nominal inertia is bounded by

the robustness constraint of DOb. Therefore, there is a trade-off between the robustness and stability in

the DOb based robust position control systems. Although, in general, it is assumed that the robustness

and stability are adjusted in the inner and outer loops independently, it is not true. The robustness of the

position control system is improved by the outer loop performance controller and good robustness may

be achieved even if the proposed design constraint is not used in the position control system. However,
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it should be kept in mind that the inner-loop suffers from noise and disturbances at high frequencies if

the proposed design constraint is not satisfied.

Robust force control systems are analyzed and it is shown that not only the performance, but also the

stability improves significantly if the robustness of force control systems is achieved, i.e., uncertainties

and the natural reactive feed-back loop that occurs in contact motion is canceled. A DOb provides a

very useful control tool to eliminate the natural feed-back loop in a limited bandwidth and improve

the stability of contact motion. However, the design constraints of DOb should be considered in the

analysis of the robust force control systems. Besides, environmental impedance estimation is crucial and

changes the stability and performance of the explicit force control systems significantly. Two different

environmental impedance estimation methods, namely force sensor and RFOb, are considered, and their

advantages and disadvantages are discussed in detail. It is shown that the stability and performance of the

explicit force control systems can be improved by using RFOb. Besides that force control application can

be realized without using a sensor. Therefore, I believe that RFOb is a very useful motion control tool

for several applications such as surgical robotics. However, as shown in Chapter 4, RFOb has a model

based control structure, and not only the performance, but also the stability deteriorates significantly

by the imperfect identification of design parameters. A novel stability analysis is proposed for RFOb

based robust force control systems. To improve the stability of contact motion, the identified inertia

should be decreased in the design of RFOb. If acceleration is negligible during force control, then high

performance force control responses can be achieved. The proposed analysis and design methods are

very practical and can be easily implemented into several sensorless force control problems. Although

force sensors have several disadvantages, such as increasing cost, against RFOb, they are not sensitive

to system uncertainties. The results are discussed in detail, and simulation and experimental results are

given to show the validity in this chapter.
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Chapter 5

Robust Control of Robot Manipulators via
Disturbance Observer

5.1 Introduction

Conventionally, robot manipulators are controlled by using model based control methods such as feed-

back linearization [84, 88]. However, the conventional design methods are very sensitive to modeling

errors; not only the performance, but also the stability of robot control systems may deteriorate due to the

modeling errors in the design of the conventional controllers [94]. Model-free control methods have been

proposed by using intelligent based control methods; however, real time synchronism deteriorates due to

high computational amount [95, 96]. It is a well known fact that robust control of robot manipulators is

crucial to achieve high performance robot control systems [97]. In the literature, several robust control

methods have been proposed to improve the performance of robot manipulators [98].

This chapter analyzes the robust control problem of robot manipulators by using DOb. In Chapter

4, robust control problem of motion control systems is analyzed in the joint space, and novel analysis

and design methods are proposed. In the conventional analysis of the DOb based robust motion control

problem of robot manipulators, joint space analyses are extended into multi-degrees-of-freedom systems

directly to simplify the problem [99–101]. However, robot manipulators have highly non-linear dynamic

characteristics so oversimplified linear analyses cannot provide a deep insight into the stability of DOb

based robust motion control problem of robot manipulators. A decade ago, a new nonlinear DOb is

proposed for a two link planar robot manipulator by Chen et. al in [102]. Recently, a general solution

is derived for non-linear DOb based robot manipulators in [103]. In these papers, the authors consider
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only the observation of un-modeled / un-known disturbance estimation and provide a stability analysis

for the non-linear disturbance observer. However, experiments of DOb based robust motion control

systems show that the stability of a DOb based motion control system cannot be guaranteed even if the

disturbance estimation is stable, i.e., disturbance canceling in the inner-loop may cause instability if the

design parameters of DOb are not tuned adequately [70]. A decentralized adaptive robust controller is

proposed by using DOb in [104]. It is assumed that DOb guarantees the robustness of robot manipulators

within its bandwidth; however, the design parameters of DOb are not discussed in this paper. Bickel and

Tomizuka showed that DOb based robust position controller is equal to the passivity based one and

claimed that the stability of the DOb based robot control systems can be achieved by using the passivity

theorem [105]. However, they also have not considered the design parameters of DOb in their analysis.

Therefore, the stability of the DOb based robust position control problem of robot manipulators have not

been clarified yet.

In this chapter, a new nonlinear stability analysis method is proposed for DOb based robust position

control problem of robot manipulators by using the equivalence of DOb and passivity based controller

design methods. The design parameters of DOb, i.e., the nominal inertia matrix and the bandwidth of

DOb, are considered in detail, and a new practical non-linear stability analysis method is proposed. It

is shown that a DOb based robust position control system is uniformly ultimately bounded when it is

applied into trajectory tracking control problem. The error bound is determined by the bandwidth of

DOb and nominal inertia matrix; as the bandwidth of DOb and/or nominal inertia matrix are increased,

the bound of error decreases. If the robust position control method is applied into a regulator problem,

i.e., point to point motion control problem, then asymptotic stability is achieved. It is shown that the

stability of the robust position control system is improved by increasing the nominal inertia matrix in the

design of DOb. Although the robust position control system is not sensitive to inertia matrix variations,

using very small nominal inertia matrix destabilizes the robust position control systems. This dissertation

proposes that a DOb based robust motion control system should be designed by using Mn(q) ≥ M(q),

in which Mn(q) and M(q), respectively, represent nominal and uncertain inertia matrices, to improve

the stability.

The rest of the chapter is organized as follows. In section 5.2, some preliminaries are given for the

dynamic properties of robot manipulators. In section 5.3, DOb and ABC system are explained for robot

manipulators, briefly. In section 5.4, a new non-linear stability analysis method is proposed for DOb

based robust position control systems. In section 5.5, simulation studies are given. This chapter ends
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with summaries given in section 5.6.

5.2 Preliminaries

The dynamic model of a robot manipulator with n-degrees-of-freedom is derived by using Euler-

Lagrange formulation and expressed in joint space as follows:

M(q)q̈+C(q, q̇)q̇+ g(q) = τ − τ frc − τ load, (5.1)

where M(q) ∈ Rnxn is the inertia matrix; C(q, q̇)q̇ ∈ Rn is the vector of Coriolis and centrifugal

torques; g(q) ∈ Rn is the vector of the gravitational torques that is obtained as the gradient of the robot

potential energy due to gravity; τ ∈ Rn is the vector of generalized torques in joint space; τ frc and

τ load ∈ Rn are the vectors of friction and load torques, respectively; q, q̇ and q̈ ∈ Rn are the vectors of

angle, velocity, and acceleration of the robot manipulator in joint space, respectively.

It is assumed that the robot manipulator under consideration has only revolute joints and reference

trajectories, qref (t), q̇ref (t), and q̈ref (t), are continuous and bounded. The equation of motion given in

eq. (5.1) has the following important properties that will be used in the stability analysis and controller

design [94, 106].

Property 1: M(q) is a positive definite and symmetric matrix that satisfies

βminM I ≤ σ(M(q))I ≤ M(q) ≤ σ(M(q))I ≤ βmaxM I, (5.2)

where σ(·) and σ(·) represent minimum and maximum eigenvalues of (·), respectively; βminM and βmaxM

represent positive real constants.

Property 2:

∥C(q, q̇)q̇∗∥ ≤ βC ∥q̇∥ ∥q̇∗∥ , (5.3)

where βC represents a positive real constant.

Property 3:

∥g(q)∥ ≤ βg, (5.4)

where βg represents a positive real constant.

Property 4:
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Fig. 5-1: Block diagram of a DOb when multi-degrees-of-freedom robot is used.

xT
(
d

dt
M(q)− 2C(q, q̇)

)
x = 0, (5.5)

where x ∈ Rn represents an n-dimensional vector, and d
dtM(q)−2C(q, q̇) is a skew-symmetric matrix.

5.3 Acceleration Based Robust Position Control of Robot Manipulators

In this section DOb and acceleration based control systems will be explained for robot manipulators.

5.3.1 Disturbance observer design in multi-degrees-of-freedom systems

A block diagram of a DOb based robust motion control system is shown in Fig. 5-1 when the general

dynamic model of robot manipulator given in eq. (5.1) is used. In this figure, M(q) and Mn(q) ∈ Rnxn

represent uncertain and nominal inertia matrices, respectively; τ and τdes represent robot and desired

joint torques, respectively; GDOb = Diag
([
g1DOb, g

2
DOb, ..., g

n
DOb

])
∈ Rnxn in which Diag (•) is a

diagonal matrix of vector • and giDOb represents the bandwidth of DOb in the ith joint; GLPF(s) =

Diag
([

g1DOb

s+g1DOb
,

g2DOb

s+g2DOb
, ...,

gnDOb
s+gnDOb

])
∈ Rnxn represents the matrix of the LPF of DOb; τd ∈ Rn

represents external disturbances; τ̂dis ∈ Rn represents the estimated disturbance; and q, q̇, and q̈ ∈ Rn

represent n-dimensional angle, velocity, and acceleration vectors, respectively.

The estimated disturbance,τ̂dis, includes not only external disturbances, but also the inertia variations.

It is formalized as follows:
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τ̂dis = GDOb(s)τ
dis, (5.6)

where τdis = (Mn −M(q)) q̈+ τd; and τd = C(q, q̇)q̇+ g(q) + τ frc + τ load.

The dynamic equations of a DOb based robust motion control system are derived directly from Fig. 5-1

as follows:

τ̂dis = GDOb(s)(τ̂
dis + τdes −Mnq̈), (5.7)

τ̂dis = ĜDOb(s)(τ
des −Mnq̈), (5.8)

where ĜDOb(s) = Diag
([

g1DOb
s ,

g2DOb
s , ...,

gnDOb
s

])
.

5.3.2 Acceleration based robust position control in multi-degrees-of-freedom systems

A block diagram of an acceleration based robust position control system is shown in Fig. 5-2 when

the general dynamic model of robot manipulator given in eq. (5.1) is used. In this figure, KD and

KP ∈ Rnxn represent velocity and position gains of PD controller, respectively; q̈des ∈ Rn represents

desired acceleration; qref , q̇ref , and q̈ref ∈ Rn represent reference vectors of angle, velocity, and

acceleration, respectively. The other parameters are same as defined earlier.

As shown in Fig. 5-2, disturbances are estimated in the inner-loop by using a DOb, and the robustness

of the position control system is achieved by feeding-back the estimated disturbances. The outer-loop

acceleration controller is designed by considering the nominal inertia matrix, since DOb nominalizes the

inner-loop.

There are four parameters, GLPF(s), Mn,KD, and KP, that should be tuned in the design of the

robust acceleration based position control systems. It is a well-known fact that the higher the bandwidth

of DOb is, the more the robustness improves. However, the bandwidth of DOb is limited by some

practical constraints, such as noise and sampling time, as shown in Chapter 3 and Chapter 4. Therefore, in

practice, the bandwidth of DOb is set as high as possible to improve the robustness of the position control

systems. However, against the bandwidth of DOb, tuning the parameters of the nominal inertia matrix

is not clear in the design of DOb. In the conventional design of DOb based motion control systems, a

diagonal nominal inertia matrix is used and decentralized control structure is achieved by assuming that a

DOb cancels disturbances precisely [99–101]. Thereby, the stability analysis is simplified and conducted
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Fig. 5-2: Block diagram of a DOb based robust position control system when multi-degrees-of-freedom
robot is used.

for each joint of robot manipulators by using linear models of servo systems. The oversimplified stability

analysis shows that asymptotic stability can be achieved if nominal inertia is bounded by the design

constraints given in [99]. However, in reality, it is not true, and oversimplified analyses are not sufficient

to determine the stability of the robot manipulators. The parameters of the outer-loop controller, KD and

KP are tuned directly by considering the nominal inertia matrix.

5.4 Stability Analysis of the Robust Position Control System

In this section, a new nonlinear stability analysis is proposed for the acceleration based robust position

control problem of robot manipulators by using its passivity equivalence.

Let us assume that the bandwidths of DObs are same at each joints, i.e., g1DOb = g2DOb = ... =

gnDOb = gDOb. Let us also assume that the robot manipulator is not influenced by friction and external

load torques, i.e., τ frc = τ load = 0. If the robot manipulator is controlled by using the robust ABC

system, then the dynamic model of the robot manipulator is described as follows:

M(q)q̈+C(q, q̇)q̇+ g(q) = τdes + τ̂dis, (5.9)

The vector of desired torque is derived from Fig. 5-2 as follows:

τdes = Mnq̈
des, (5.10)
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where q̈des = q̈ref −KD(q̇− q̇ref )−KP(q− qref ) = q̈ref −KDė−KPe, in which e = q− qref

represents the error of angle.

The vector of estimated disturbance is derived by using eq. (5.8) and eq. (5.10) as follows:

τ̂dis = gDObMn(q̇
des − q), (5.11)

If eq. (5.10) and eq. (5.11) are applied into eq. (5.9), then

M(q)q̈+C(q, q̇)q̇+ g(q) = Mnq̈
des + gDObMn(q̇

des − q), (5.12)

Let us define an error dynamics by using eD = q̇− q̇des. Then, eq. (5.12) is re-written as follows:

M(q)ėD +C(q, q̇)eD + gDObMneD = −Ψ, (5.13)

where Ψ = ∆M(q)q̈des + C(q, q̇)q̇des + g(q); eD = ė + KDe + KP

∫
edt represents the error

dynamics; e = q− qref represents the error of angle; and ∆M(q) = M(q)−Mn.

Equation (5.13) shows that a DOb based robust position control system has same error dynamics as

the passivity based control method. Therefore, the following general passivity theorem can be directly

implemented into the DOb based robust position control systems.

Theorem 5.1: If the mapping −eD → Ψ is passive, i.e.,

∫ tf

0
eD(t)Ψ(t)dt ≥ −ϕ, (5.14)

for all tf and for some ϕ ≥ 0, then eD ∈ Ln2 ∩ Ln∞, ėD ∈ Ln2 , eD continuous and eD → 0 as t→ ∞.

Proof: The inverse of the transfer function between eD and e , i.e.,

eD =

(
s+KD +KP

1

s

)
e, (5.15)

is stable and strictly proper. Therefore, the robust motion control system is asymptotically stable if the

mapping −eD → Ψ is passive [107].

Theorem 5.1 provides us a basic insight into the stability of DOb based robust position control sys-

tems. For instance, if it is assumed that Ψ = 0, in which a DOb is designed by using perfect inertia

identification, i.e., ∆M(q) = 0, a planar robot application is considered and gravity is canceled, and

Coriolis and centrifugal forces are neglected, then the asymptotic stability of the robust motion control
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system is achieved directly by using Theorem 5.1. However, it is not an easy task to show the passivity

mapping due to complex integration in eq. (5.14) when Ψ ̸= 0. Therefore, to show the stability of the

DOb based robust position control systems, the main theorem of this chapter is proposed as follows:

Theorem 5.2: The origin of the system defined in eq. (5.13) is uniformly ultimately bounded with

respect to the set BΓ {∥eD∥2 > Γ} where

Γ =
βmax∆M

∥∥q̈des
∥∥
2
+ βC ∥q̇∥2

∥∥q̇des
∥∥
2
+ βg

gDObβ
min
∆M

, (5.16)

if DOb is designed by using Mn ≥ M(q), i.e., ∆M ≤ 0.

Proof: Let us consider the Lyapunov function candidate by using

V =
1

2
eTDM(q)eD, (5.17)

The time derivative of the Lyapunov function is derived as follows:

V̇ =
1

2
eTDM(q)ėD +

1

2
eTDṀ(q)eD, (5.18)

= eTDΨ− gDObe
T
DMneD +

1

2
eTD

(
Ṁ(q)− 2C(q, q̇)

)
eD, (5.19)

If Property 4 is applied into eq. (5.19), then

V̇ = eTDΨ− gDObe
T
DMneD, (5.20)

= −gDObeTDMneD − eTD∆M(q)q̈des − eTD

{
C(q, q̇)q̇des + g(q)

}
, (5.21)

The time derivative of the Lyapunov function is smaller than zero if the following inequality is satis-

fied.

gDObMneD ≥ −∆M(q)q̈des −C(q, q̇)q̇des − g(q), (5.22)

The conservative bound of the inequality given in eq. (5.22), i.e., the sufficient condition of the stabil-

ity, is obtained by using Property 1, Property 2 and Property 3 as follows:

V̇ ≤ gDObβ
max
Mn

∥eD∥22 + βmax∆M

∥∥∥q̈des
∥∥∥
2
∥eD∥2 + βC ∥q̇∥2

∥∥∥q̇des
∥∥∥
2
∥eD∥2 + βg ∥eD∥2 ≤ 0, (5.23)
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Equation (5.23) shows that the time derivative of the Lyapunov function, V̇ , is negative outside of the

compact set BΓ {∥eD∥2 > Γ} where Γ is defined in eq. (5.16). Therefore, all solutions that start outside

of BΓ enter this set within a finite time, and remain inside the set for future time. As a result, the error

dynamics, eD, is uniformly ultimately bounded with respect to BΓ.

Remark 1: Equation (5.20) and eq. (5.21) show that as the bandwidth of DOb and / or nominal

inertia matrix are increased, the Lyapunov function, i.e., the error dynamics, eD, decreases faster and the

stability of the position control system is improved.

Remark 2: The radius of the compact set BΓ can be controlled directly by using the bandwidth of

DOb and nominal inertia matrix. Equation (5.16) shows that as the bandwidth of DOb and / or nominal

inertia matrix are increased, the radius of the compact set BΓ shrinks.

Remark 3: The stability of the robust position control system is improved by using Mn ≥ M(q), i.e.,

∆M ≤ 0.

Let us consider the first two terms of the right hand side of eq. (5.21).

V̇ ∗ = −gDObeTDMneD − eTD∆M(q)q̈des, (5.24)

It is obvious that if Mn = M(q), then the second term of the right hand side of eq. (5.24) is canceled,

so the robust position control system is not influenced by the desired acceleration fluctuations. However,

it is not practical in many robotic applications.

Let us consider the practical case in which Mn ̸= M(q). The first term of the right hand side of

eq. (5.24) is negative definite, so it is obvious that increasing the bandwidth of DOb and / or nominal

inertia matrix improves the stability of the robust position control system. However, the second term of

the right hand side of eq. (5.24) is not as clear as the first one.

Let us consider the error dynamics and desired acceleration by using

eD = ė+KDe+KP

∫
edt, (5.25)

q̈des = q̈ref −KDė−KPe, (5.26)

It is assumed that the reference trajectory is continuous and bounded. Therefore, the error dynamics

and desired acceleration are bounded if the robust position control system is stable. Equation (5.25) and

eq. (5.26) show that the error dynamics and desired accelerations have different signs as the error of the

position control system is increased, i.e., stability deteriorates.
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Let us consider the second term of the right hand side of eq. (5.24) and apply Property 1.

βmin∆MI ≤ σ(∆M(q))I ≤ ∆M(q) ≤ σ(∆M(q))I ≤ βmax∆M I, (5.27)

If eq. (5.27) is applied into the second term of the right hand side of eq. (5.24), then

βmin∆MeTDq̈des ≤ eTD∆M(q)q̈des ≤ βmax∆MeTDq̈des, (5.28)

Equation (5.28) shows that as the error of the position control system tends to be increasing the second

term of the right hand side of eq. (5.24) tends to be negative if ∆M(q) > 0; however, it tends to be

positive if ∆M(q) < 0 . Therefore, if a DOb is designed by using ∆M(q) < 0, then the time derivative

of the Lyapunov function is decreased by the second term of the right hand side of eq. (5.24) as the error

of the position control system increases. However, if a DOb is designed by using ∆M(q) > 0, then

the time derivative of the Lyapunov function is increased by the second term of the right hand side of

eq. (5.24) as the error of the position control system is increased. Consequently, the stability of the robust

position control system is improved practically by using ∆M(q) ≤ 0 in the design of a DOb.

Although, in practice, the design of a DOb is not very sensitive to inertia variations, the stability

may deteriorate significantly if the bandwidth of DOb cannot compensate the inertia variations when

∆M(q) > 0. Therefore, a DOb should be designed by using ∆M(q) ≤ 0 to improve the stability of

the robust position control system.

Remark 4: The proposed nonlinear stability analysis provides us a very practical design method for

the DOb based robust position control problem of robot manipulators. The design constraints that are

proposed in the previous chapters can be directly implemented into the robust position control problem of

robot manipulators. Although the stability of the robust position control system is improved by increasing

nominal inertia matrix, it is limited by the practical constraints and robustness as shown in Chapter 4.

Remark 5: Not only the robustness, but also the stability of the acceleration based position control

systems is improved by increasing the bandwidth of DOb.

Let us now consider the regulator problem of robot manipulators, i.e., point to point motion control,

in which q̈ref , q̇ref → 0, qref → q∗ and q̇∗ = 0 as t → ∞. The following theorem shows that

asymptotic stability is achieved when the ABC system is implemented to the regulator problem of robot

manipulators.

Theorem 3: If the final value of the desired trajectory is an equilibrium point, i.e., q̈ref , q̇ref → 0, and
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qref → q∗, in which q∗ is a constant vector, as t → ∞, and a DOb is designed by using ∆M(q) ≤ 0,

then the robust position control system is asymptotically stable.

Proof: Theorem 1 shows that the stability of the robust position control system is achieved if eq. (5.22)

is satisfied. If the equilibrium is a constant point, then the stable position control system should reach at

a constant point as t→ ∞.

If Theorem 1 holds for the constant equilibrium point and the robot reaches at a constant point as

t→ ∞, then eD becomes a constant vector. Then,

gDObe
T
DMneD = φ ≥ eTDΨ, (5.29)

where φ is a constant value. Theorem 1 directly shows that the origin is asymptotically stable, since the

mapping −eD → Ψ is passive.

5.5 Simulation

In this section, simulation results will be presented. Two different robot arms, which are shown in

Fig. 5-3, are considered in the simulations. The first one is a two-degrees-of freedom planar robot arm

and the second one is a six-degrees-of freedom industrial robot manipulator. The virtual reality toolbox

of Matlab is used to obtain animations and Simulink is used to design on-line robot control systems.

The robust position control responses of the two link planar robot manipulator are shown in Fig. 5-

4. Fig. 5-4(a) shows the errors of the robust position control system when the two link planar robot

manipulator follows a desired trajectory. It is clear from Fig. 5-4(a) that when trajectory tracking con-

trol problem is considered, the error of the robust position control system is bounded if the stability is

achieved. The bound of the position control error can be decreased by increasing the bandwidth of DOb

and nominal inertia matrix; however the error cannot be eliminated by using the conventional acceler-

ation based robust motion control systems. Fig. 5-4(a) also shows that increasing the nominal inertia

matrix improves not only the performance, but also the stability of the robust position control system.

The stability can also be improved by increasing the bandwidth of DOb. Against the trajectory tracking

problem, the asymptotic stability of the robust position control system can be achieved when regulator

problem is considered as shown in Fig. 5-4(b). Fig. 5-4(b) also shows that the stability of the robust

position control system is improved by increasing the nominal inertia matrix in the design of DOb.

Fig. 5-5(a) and Fig. 5-5(b), respectively, show the position control responses of a six-degrees-of-
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(a) Two link planar robot arm.

(b) Six-degrees-of-freedom robot manipulator.

Fig. 5-3: Two link planar arm and six-degrees-of-freedom robot manipulators.
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(b) Point to point control responses of two link planar robot arm.

Fig. 5-4: Robust position control responses of two link planar robot arm.

freedom robot manipulator when trajectory tracking and regulator problems are considered. Similar

stability and performance results can be seen for the six-degrees-of-freedom robot manipulator in Fig. 5-

5.
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(b) Point to point control responses of six-degrees-of-freedom robot arm.

Fig. 5-5: Robust position control responses of six-degrees-of-freedom robot arm.

5.6 Summary

In this chapter, a novel practical nonlinear stability analysis method is proposed for the position con-

trol problem of robot manipulators when DOb is used to achieve robustness. A new design constraint,

Mn ≥ M(q) in which Mn and M(q) denote nominal and uncertain inertia matrices, is presented to

improve the stability of the robust position control systems. It is clear from Chapter 4 and Chapter 5

that the stability of the DOb based robust motion control systems is improved by increasing the nominal
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inertia in the design of DOb. Although diagonal nominal inertia matrix is used in the conventional design

of DOb based robust position control systems, the proposed analysis shows that non-diagonal terms can

be also used to increase the nominal inertia matrix, i.e., to improve stability. As shown in Chapter 4, the

nominal inertia in the design of DOb is limited by the practical constraints such as noise, sampling time,

and robustness. Therefore, the stability of the robust position control system cannot be improved inde-

pendently. As the nominal inertia is increased to improve the stability, the bandwidth of DOb should be

decreased, which deteriorates the robustness and performance of the position control systems, to satisfy

the practical constraints. Consequently, a DOb based robust position control system should be designed

by considering the stability, performance, and robustness constraints given in Chapter 4 and Chapter 5.

The author believes that optimal design methods, in which the bandwidth of DOb is maximized and nom-

inal inertia matrix is minimized without degrading the stability of DOb, should be proposed to improve

the performance of DOb based robust motion control systems. However, the optimal DOb design is out

of the scope of this dissertation.
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Conclusions

Chapter 2 briefly describes the fundamentals of DOb based robust control systems, which is the basis

of this dissertation. A DOb based robust control system is one of the most popular two-degrees-of-

freedom control methods, in which robustness and performance are adjusted separately. There are two

feed-back loops, namely inner and outer loops, in a DOb based robust robust control system. The ro-

bustness of control systems is achieved by using DOb in the inner-loop, and the performance goals are

achieved by using a performance controller in the outer-loop. This control structure is explained in this

chapter, briefly.

Chapter 3 analyzes the DOb based robust control systems by using advanced linear control methods.

Firstly, the conventional analysis method, i.e., Small-Gain theorem, is considered in the robust stability

and performance analysis of DOb based control systems. It is a well-known fact that Small-Gain theo-

rem can be easily implemented into robust control problems; however, it suffers by conservatism, since

only the amplitude response of Nyquist plot is considered. It is shown that the conservatism limits the

bandwidth of DOb directly, and as the uncertainty of plant is increased the conservative constraints on

the bandwidth of DOb become more severe. Although conservatism can be decreased by using SSV,

it cannot be removed completely due to the discontinuity problem of real SSV. To remove the conser-

vatism, it is assumed that uncertain plant includes only real parametric uncertainties. A new stability

analysis is proposed for the first order DOb based robust control system by using Kharitonov and Edge

Theorems. It is shown that if a minimum phase uncertain plant includes only real parametric uncertain-

ties and the order of DOb is one, then the robust stability is achieved if the bandwidth of DOb is higher

than its lower bound which is derived in Chapter 3. The robust stability margins of the DOb based robust
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control systems are analyzed by using Tsypkin-Polyak theorem, and it is shown that the stability margin

of the DOb based robust control system is increased as the bandwidth of DOb is increased. Although the

proposed analysis method can be implemented into different plants, such as non-minimum phase plants,

general design constraints cannot be achieved easily. To derive general design constraints of DOb based

robust control systems, unstructured uncertainty based analysis re-considered by using Bode and Poisson

integral theorems. It is shown that the bandwidth of a DOb is limited by the robustness constraint if an

uncertain plant includes time delay and/or RHP zero(s); however, if an uncertain plant includes right half

plane pole(s), then the bandwidth of a DOb has lower bound due to the robustness constraint. Besides,

the performance of a DOb can be improved by increasing its order, yet the robustness deteriorates and the

robustness constraint limits the bandwidth of DOb. The proposed method provides a deep insight into the

robustness of DOb based control systems in a wide range of application area such as non-minimum phase

and unstable plants; however, it suffers by the conservatism that is explained in Chapter 3. The author

believes that the conservatism is not a severe problem, since the proposed method clarifies the robustness

characteristics of a DOb based control system qualitatively. Besides, the conservatism can be lessened

by using more realistic sensitivity function bounds, yet it increases the computational complexity.

Chapter 4 analyzes the DOb based robust motion control systems by using linear control methods.

A new robustness constraint is proposed on the bandwidth of DOb and nominal inertia by considering

practical velocity measurement that is obtained using a LPF. It is shown that the bandwidth of DOb and

nominal inertia are limited by the bandwidth of velocity measurement. As the bandwidth of DOb is

increased, the nominal inertia should be decreased and vice versa. Novel stability analysis are proposed

for the DOb based robust position and force control systems. It is shown that the stability of the DOb

based robust position control system is improved by increasing nominal inertia in the design of DOb;

however, it is limited by the bandwidth of velocity measurement. Therefore, there is a trade-off between

the robustness and stability in the DOb based robust position control systems. Although it is generally

assumed that the robustness and performance are adjusted in the inner and outer loops separately, it is

not true. It is shown that the robustness of the position control system is improved by increasing the

performance controller gain. Robust force control systems are considered, and it is shown that not only

the performance, but also the stability of the force control systems improves significantly by achieving

robustness, i.e., canceling the natural feed-back loop. To estimate environmental impedance, force sensor

and RFOb are used in this dissertation. An RFOb has several superiorities over force sensors, such as

sensorless-force control, force control bandwidth improvement, stability improvement, cost decreasing,
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and so on. The main disadvantage of RFOb is that the dynamic model of servo system should be known

accurately to improve not only the performance but also the stability. In this chapter, a novel stability

analysis is proposed for the RFOb based robust force control systems. As shown in this chapter, high

performance force control systems can be obtained by using force sensors as well. The main advantage

of force sensors is that force control goals can be achieved even if the dynamics of the servo system are

not known accurately.

Chapter 5 analyzes the DOb based robust motion control systems by using non-linear control methods.

Robot manipulators have generally highly non-linear dynamic models, so linear control based analysis

methods do not provide deep insight into the stability of the multi-degrees-of-freedom systems. However,

for the sake of simplicity, linear control methods are conventionally used in the DOb based robust control

problem of robot manipulators. Although non-linear design methods have been considered to estimate

disturbances, the stability of the robust control problem has not been discussed yet. In this approach, it is

assumed that if disturbance estimation is stable, then the robust motion control system is stable. However,

as shown in Chapter 4, the stability of the DOb based robust motion control systems is influenced by the

design parameters of DOb. In this chapter, a novel stability analysis method is proposed by using the

equivalence of DOb and passivity based controllers. A DOb based robust position controller is a special

solution of the passivity based controller design method. It is shown that if a DOb is used in the robust

trajectory tracking control problem of robot manipulators, then the error is uniformly ultimately bounded.

The bound of position control error is adjusted by the bandwidth of DOb and nominal inertia matrix, i.e.,

the position control error is decreased by increasing the bandwidth of DOb and nominal inertia matrix.

If a DOb is used in the regulator, i.e., point to point, motion control problem of robot manipulators,

then asymptotic stability is achieved. To improve the stability of the robust position control systems, the

nominal inertia matrix in the design of DOb should be higher than the uncertain one. Although diagonal

nominal inertia matrix is used in the conventional design methods, this chapter shows that non-diagonal

terms can also be used to increase the nominal inertia matrix, i.e., to improve the stability. As shown

in Chapter 4, the nominal inertia matrix cannot be increased independently due to the practical and

robustness constraints. Therefore, optimal solutions, in which the bandwidth of DOb is maximized and

nominal inertia matrix is minimized without degrading the stability, should be considered to improve the

performance in the DOb based robust position control systems.

As stated above, this dissertation proposes novel analysis and design methods for the DOb based

robust control systems. DOb is one of the most efficient and practical robust control tools, in which the
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robustness of control systems is adjusted intuitively in a predetermined bandwidth. Therefore, it is widely

used in several control applications, specifically in motion control, in the literature. However, although

DOb has long been used in several motion control applications in the literature, it suffers from insufficient

analysis and design control methods; therefore, the applications of DOb based motion control systems

generally depend on designers own experiences. This dissertation provides novel analysis and design

methods for DOb based robust position and force control systems. Although it is generally assumed that

the robustness is crucial in position control systems, it is clarified in this dissertation that the stability

and performance of force control systems are improved significantly by the robustness. Therefore, the

robust controllers are crucial not only for position, but also for force control systems. The validity of the

proposals is verified by simulation and experimental results.
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