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Hiyoshi, Yokohama, 223, Japan
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ABSTRACT

The contributions of kinematical and dynamical interaction to zero-point spin reduction
of a chain-like antiferromagnet are investigated. Kinematical interaction is considered by
two methods, the metric operator method and the projection operator method. The biqua-
dratic terms of boson operators are treated self-consistently with the idea of mean fields
to include the effects of dynamical interaction. The case of ferromagnetic inter-chain
exchange interaction as well as the case of antiferromagnetic inter-chain interaction are
considered and the results obtained are compared with each other.

§1. Introduction

In a previous paper (FuxkucHI and OkABE 1977), the metric operator method by
HerBERT (1969) was developed to get the zero-point spin reduction of antiferro-
magnets for general spins and the results obtained have been compared with
those of the projection operator method by IsHikawa and OcucHi (1975, hereafter
we abbreviate it as 10). The usual free spin wave theory which contains the con-
tribution from the fictitious non-physical boson states gives the divergent reduction
in the isotropic one-dimensional Heisenberg system. When the kinematical inter-
action is taken into account properly, the reduction reaches at most up to the order
of magnitude of S even in the isotropic case. The value of the reduction goes to
S when the effective anisotropy field A or the inter-chain exchange interaction J’
goes to zero. A large contribution coming from non-physical states is found in the
ideal one-dimensional system, and also in the real chain-like antiferromagnets with
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non-vanishing A and J’.

On the contrary, the isotropic two- and three-dimensional Heisenberg systems
have the non-divergent reductions even in the usual free spin wave theory. Even
if the kinematical interaction is considered, the reductions are found to decrease
slightly in their magnitude. Thus, the effect of the kinematical interaction is small
but, as we should notice, not negligible for these systems.

In the present paper, we consider the spin-reduction of the chain-like antiferro-
magnets with the metric oprator method as well as the projection operator method.
HerserT (1969) has used the former in order to exclude the contribution arising
from non-physical states and introduced the Dyson-Maleev (hereafter it is abbreviated
to DM) transformation to rewrite the Hamiltonian described by spin cperators into
boson operators. On the other hand, IO have normalized the states in the spin space
and introduced the projection operator using the Holstein-Primakoff (hereafter it is
abbreviated to HP) transformation.

It is known that long range order in the chain-like antiferromagnet, such as
KCuF,, is caused due to the inter-chain exchange interaction (Ikepa and HIRAKAWA
1973). This inter-chain interaction in KCuF, is found to bhe ferromagnetic. We
investigate the case of the weak ferromagnetic inter-chain interaction at first in
the harmonic approximation and then we treat the case of the antiferromagnetic
inter-chain interaction. In order to compare the contribution arising from kinema-
tical interaction with that from dynamical interaction, the biquadratic terms of
boson operators are self-consistently dealt with using the idea of mean fields. The
effect of the dynamical interaction is found to be small and the large zero-point
spin reduction can be attributed mainly to the kinematical interaction.

§2. Treatment of Kinematical Interaction in the
Harmonic Approximation

We consider the Hamiltonian for the chain-like antiferromagnet with the
ferromagnetic inter-chain interaction:

[{22/ Z, Sj'Sl—ZJ/ Z Sm,'Sn; (1)
s

<m.n

where J and J’ are the intra-chain and the inter-chain exchange interactions respec-
tively, and both of them are positive. Subscripts ; and / denote up-spin and down-
spin sublattice sites respectively, and pairs of m and n represent sites in the iden-
tical sublattice. The summations over {j, /> and (m,n)> are taken over all nearest
neighbor pairs of spins interacting with J and J’, respectively.

The DM transformation is introduced into the Hamiltonian (1):

S; = V2Si—a;ta2Sa;, S — /25h,
S;m = /28, Sim = A/2S(L=b; 0))2S)by, (2)

S;# = S—a; a;, and Spp=>=S+b"bi.
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The boson operators are Fourier-transformed in the usual way:

a;=N-1? Z;‘ exp(ik- Rj)a;, and b,=N-1"? %} exp(—ik- R)by, (3)

then we get the following Hamiltonian:

How=~2/NZS\(1+2)+2/SZ S+ =74 @x axtbe bi)

+ielarbe +ai by )1—2JZN! . g " (7@ O r2biib_kr - k2 ks

1 ‘
+"2- Grokr - k2 k3@ @ia@iesb_kr k2 ks 700 @i Ogalicsbrr s k2—xs)] (4)

where
7e=2"" 2 exp(ik-d), =2 z exp(ik-d’),
Z=J'/], and v=27'|Z. (5)

Here, as we are interested in the region /7« J, only the biquadratic terms with J
are treated.
On the other hand, if the HP transformation is put into Hamiltonian (1),

Sj' =281 —a; a;/25) %a;,  Su—>A/25b0 (1—bi b,/25)",

Srowasa; (l=a; @f29) S —y/25(1=bi /25" b,

S;/#—>S—a; «a;, and SF——=S+0b,by, (6)
we obtain the following Hamiltonian in a similar way:

Hyp=—2JNZS(1+00) +2] 28 L {1+ 21 =4 ) ax+ by be)

+relarbe+ap by )] =2JZN™" 2 [7er-ke@i@rabiab k1 k2 ks

k1,%2,k3
1 ] - ,
+ 4‘ {7kt - k2 ks (@@ ha@rsD iy ke ks T @@ @rabiy - ka—ks)

F 7 (@r1Diabrsber - ko s+ WAOGLDED k1 k2 k)} ] (7)

The Hamiltonians (4) and (7) take the same form in the harmonic approxima-
tion as follows:

H=—-2JNZS*(1+v)+2]ZS %} {14+ o — 5@ ar +br by)

+ie(@cbr +ar b )] (8)
The Bogoliubov transformation is introduced to make the Hamiltonian (8) diagonal:
ar=urar—vibp , and  Sp=urbpi—vias , (9)

then the energy of a spin wave is given as follows:

Ae=2]SZ {1+ (L =7 ) — 1'% (10)
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where
] 11/2
uk:j{g/&2u+:41—;/»wa+~§¢ :
and '
1 /2
vp= Tr\ 275Z{1 +:v(1_;'1\'/)}/2;‘k_7 | . an

Next, we shall treat the chain-like antiferromagnet with the antiferromagnetic
inter-chain interaction and the Hamiltonian is represented by

}]/:12] Z Sj‘S[+2]/ Z Sm'sna (12)
7> ‘

com,me

where m and #n represent pairs of sites in different sublattices in this case. The
Hamiltonian (12) can be written in the forms which correspond to equations (4)
and (7) as follows:

[1/I)M = — 2]NZS‘)(1 +;U) +2]ZS Z {(l/v- Ui+ /);;, /)k+ ;'1.;(([;;/)};, + /)A: ’ )}
-
V2 7S X {an ap b b7 (@b Fak bi )}
P
—-2JZN"" 3] [yt k@ @rabib k1 ke i
k1, k2, k3
1 ‘ ‘
+—2‘ (;lm k2 k3ak1ak2ak3b—kl k2 k3+}'mﬂmbk§[)kabm k2—k1)) s (] 3/‘
and
Hup=—2JNZS*14+0)+2]ZS 3 {ax ar+by br+relacbe+ax by )}

x

+2]'7'S ? {ar ar+b bx+rilacbe +ax by )}

—2JZN-' 3 ‘[2’1:1-»-“(1121'611»'2});;3[)—lcl K2k

k1, K2, k3
1 | Lo .
+“‘4 iokn ke k(@R @ra@isD— iy k- ks ™+ QAo @isDgs - k)
+ 711 @rrDgelisbir - ko —ies + bbby k2 k3)} ] (14)

The excitation energy of a spin wave is obtained in the harmonic approximation:
2 = 2] ZSI(L+ o)t Gt Sopa! (15)

The spin reduction JS is given (FukucH! and OxaBE 1977):

28
> Du(I+u)(140)= ¢ -wplie

N N (16)
1__ Z Du(l _I_v)—(] ;u)vl 33
u=1
or
‘ 25+ 1y
ASp=0v— mﬁ’ , (17)
where
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Du:P‘w_‘F‘u 1y ﬁ‘1¢:1'(1—1/28){1—(u_1>/zs}r !
and v=N"'T o, (18)

where v, is the coefficient which appears in the Bogoliubov transformation.

The numerical values of S in the case of ferromagnetic inter-chain interaction
are given in Table 1(a). Figure 1 shows the reduction for S=1 and S=5/2, where
the solid lines represent the results obtained from equation (16), the broken lines
from equation (17) and the results of the usual free spin wave theory are also shown
with the chain line. Table 1(b) shows the reduction in the case of antiferromag-
netic interchain interaction. The difference of 4S between both cases is considerably
small as is clearly seen in Table 1.

Table 1. Zero-point spin reduction obtained in the harmonic approximation;
(a) the inter-chain interaction J' is ferromagnetic and (b) /' antiferromagnetic.
The values of 4Sy and 4Sp are given by equations (16) and (17) respectively.

(a) J': ferromagnetic

i 4Su
S
]l/] e e e —
2 1 | 3/2 2 | 5/2
3.16 X101 0.0743 0.0801 0.0823 0.0834 0.0842
1x10-1 0.1379 0.1582 0.1670 0.1720 0.1752
3.16x10-2 0.2000 0.2440 0.2655 0.2785 0.2872
1x10-2 0.2499 0.3198 | 0.3573 0.3812 0.3981
3.16x 10~ 0.2874 0.3812 | 0.4350 0.4709 0.4969
110~ 0.3157 0.4300 0.4988 0.5464 0.5817
3.16x 10~ 0.3375 0.4692 0.5513 | 0.6096 0.6539
110~ 0.3548 0.5010 0.5049 | 0.6629 0.7154
4Sp
S
T e R —
| 1/2 1 | 32 | 2 5/2
3.16% 10! 0.0743 0.0857 | 0.0871 0.0873 0.0873
1x10-1 0.1379 0.1780 | 0.1877 0.1898 0.1902
3.16x 102 0.2000 0.2858 0.3177 0.3285 0.3319
1x10-2 0.2499 0.3843 | 0.4496 0.4788 0.4912
3.16x10% | 0.2874 0.4652 | 0.5671 0.6219 0.6499
1x10+ 0.3157 0.5208 | 0.6667 0.7498 0.7981
3.16x 10~ 0.3375 0.5815 0.7497 0.8610 0.9320
1x104 0.3548 0.6234 0.8191 0.9569 1.0510
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(b) J': antiferromagnetic

A4Sy
I . . ;
/2 1 3/2 2 | 5/2
3.16x 10" 0.0877 0.0957 0.0989 0.1006 0.1016 |
1x10 0.1411 0.1624 0.1718 0.1771 0.1805
3.16% 102 0.2007 0.2450 0.2667 0.2998 0.2887
1102 0.2500 0.3200 0.3576 0.3816 0.3984
3.16 X103 0.2874 0.3812 0.4350 0.4709 0.4970
1x10- 0.3157 0.4301 0.4988 0.5464 0.5818
3.16 10 0.3375 0.4692 0.5513 0.6096 0.6539 |
1x10 4 0.3548 0.5010 0.5949 0.6629 0.7154
; 4Sp
| | s |
: I [ - .
‘ 2 L e 2 52
O 3.16x10 0.0877 0.1036 0.1060 0.1063 0.1063 !
i Ix10 0.1411 | 0.1832 0.1937 | 0.1960 | 0.1965
3.16x10"2 | 0.2007 | 0.2871 0.3149 0.3304 0.3339 !
13102 | 0.2500 | 0.3846 0.4500 | 0.4793 | 0.4918 |
o 3.16%107 0.2874 } 0.4653 0.5673 0.6220 ‘ 0.6501 |
| 1x107% 0.3157 | 0.5299 0.6667 0.7498 | 0.7982
o 3a6x100 0.3375 0.5815 0.7497 0.8610 0.9320 |
| | 0 ‘ 0. 0.8191 0 1.0510i

1x10—¢ .3548 .9569

§ 3. Dynamical Interaction

In order to treat the contribution due to the dynamical interaction, we shall
consider in this section the biquadratic terms of the boson operators in the mean
field approximation. The equations of motion for e, and b;' can be obtained from
Hamiltonian (4):

i(0/ot)ar =1"rar+ A1xby",
and

1(0/00)by™ = — 1 "kbi " — Aaxay, (19
where
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Fig. 1. Zero-point spin reduction with ferromagnetic inter-chain interaction for S=1
and S=5/2 in the harmonic approximation. Solid lines and broken lines correspond
to 4Sy and ASp respactively, and a chain line to » which does not depend on the
magnitude of S.

Fk:z.[ZS [1 +:‘J(l_7'k/>_(SN)_l Z {((l,, au) +7',,(d,,b,,)}],

Ae=2JZS[1-(SN)™"' 35 ylad ) lie
and
Ao =2JZS[1—(SN)"1 3} {2(a, a.)+7.a.b )N ]ie (20)

u

Here, interaction terms are linearized by replacing pairs of boson operators by their
expectation values in the ground state and the following relations between these
expectation values are used in equation (20);

(ap @e)=(bi br), (awbp)=(ax b)), and jr. =7y .

Further, /,; and ./l are replaced by their arithmetical mean value .l to get the
effective Hamiltonian:

Hrr=—2JNZS*(1+v)+ ; (@ ax+bi'by)

+ ZA: Alawbe +ap' by "),

and
de=2JZS[1—(SN)' 3 {(a.' a.) +7.a.b)} Iy (21)

"

71



Mitsurt Fukucr, Tapasil OkABE and TATsUro KoOIKE

The equations of motion obtained from the Hamiltonian (7) give the same Hamiltonian
(21) in this approximation.

The Bogoliubov transformation is introduced to get the renormalized spin wave
energy :

Le=2JZS {1+ (=5 ) =[S P — A —d4[S)%* ], (22)
d=N"'3{a., a)+7lab)t. (23)

1t

where

Here, 4 should be determined self-consistently. The numerical calculation shows
the convergence is obtained by a few times of iterations. The results are shown
in Table 2 (a).

The Hamiltonians (13) and (14) with antiferromagnetic inter-chain coupling give
the same effective Hamiltonian in the same way mentioned above :

I yrp=—2]NZS*(1+ L)+ ; I'ar' ax+bi b)
+ %]/l;f(akbk +atbr'), (24)

Table 2. Values ot 4 which are obtained self-consistently by several times of interations.

(a) 4 (J': ferromagnetic)

i S
| 1/2 1 32| 2 | 5/2
T aex10 —0.1328 | —0.1201  —0.1277 = —0.1270 ' —0.1266
1x10-1 —0.1621 | ~0.1598 —0.1589 ; —0.1584 —0.1581
3.16 102 —0.1748 —0.1738 —0.1735 | —0.1733 “ —0.1731
1x10-2 —0.1794 ~0.1791 | -0.1789 |  —0.1789 | —0.1788
3.16x 103 —0.1810 —0.1808 : —0.1808 | —0.1808 | —0.1808
1x10-2 —0.1815 —0.1814 —0.1814 \ —0.1814 1 —0.1814
3.16x10-4 —0.1816 —0.1816 |  —0.1816 ‘ —0.1816 | —0.1816
1x10-4 —0.1817 —0.1817 i —0.1817 : —0.1817 1 —0.1817 i
(b) 4 (J': antiferromagnetic)
| | s
: 7 e :
172 \ 1 | 3/2 9 5/2
3.16x 10! —0.1252 —0.1204 —0.1188 —0.1179 —0.1174
1x10t —0.1608 —0.1582 —0.1572 —0.1567 —0.1563
3.16x10-2 —0.1746 —0.1736 -0.1732 —0.1730 | —0.1729
1x10-2 —0.1794 —0.1791 -0.1789 —0.1788 —0.1788
3.16x10-# —0.1810 —0.1808 —0.1808 —0.1808 —0.1808
1x10-3 —0.1815 —0.1814 —0.1814 --0.1814 —0.1814
3.16x 104 —0.1816 —0.1816 —0.1816 ~0.1816 —0.1816
1x10-4 —0.1817 —0.1817 —0.1817 —0.1817 —0.1817
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Table 3. Spin reduction » given by equation (18).
(b) /' antiferromagnetic.

(a) J' is ferromagnetic and
The 2nd column represents the values of » ob-

tained in the harmonic approximation, and the 3rd~7th columns correspond
to those in the renormalized treatment.

(a) J': ferromagnetic

Iy
3.16x 101
1x10-1
3.16x 102
1x10-2
3.16x 1073
1x10-3
3.16x10~¢
1x10~

(b) J': antiferromagnetic

Iy

3.16x 104
1x10!
3.16x 1072
1x10-2
3.16x10-°
1x10-3
3.16 10
1x10+

where

and

\ S

| Harmonic ‘ S ‘

1 Y- 1 3/2 2 | 52
0.0873 0.1045 0.0959 0.0930 0.0916 0.0907
0.1903 0.2222 0.2069 0.2015 0.1988 0.1971
0.3334 0.3751 0.3555 0.3485 0.3448 0.3426
0.4994 0.5457 0.5242 0.5164 0.5123 | 0.5098
0.6758 0.7241 0.7018 0.6936 0.6893 0.6867

| 0.8565 0.9045 0.8828 0.8745 0.8702 | 0.8676

| 1.0388 1.0880 1.0653 1.0569 | 1.0526 | 1.0499
1.2216 1.2709 1.2482 1.2398 | 1.2354 1.2328

e S .

j S
Harmonic | e e U
IR T RV 2 | w2

. “ S . !

! 0.1063 | 0.1190 0.1125 | 0.1104 0.1093 ! 0.1087

| : ! '

L 0.1966 ’ 0.2267 0.2121 |  0.2071L 0.2045 |  0.2029
0.3354 | 0.3765 0.3571 |  0.3502 | 0.3466 |  0.3444 |
0.5000 | 0.5462 0.5247 |  0.5169 ~  0.5128 = 0.5103 |
0.6760 | 0.7242 0.7019 I 0.6937 ! 0.6895 0.6869 |
0.8566 0.9055 0.8829 0.8746 i 0.8703 0.8676 J

| |
1.0388 | 1.0880 1.0653 ' LOSTO - 1.0526 1.0500 |
1.2216 | 1.2709 L2482 | 1.2398  1.2354 | 1.2328 |

'y =2]JZSA+v—4'1S), A’ =2]ZS(re+ vy’ — 4 7i/S),
4'=N" 5 (@ a)+rlad) (25)

”
Then the spin wave energy is given by

=" — A )R (26)

Here also 4’ should be calculated self-consistently and the results are given in Table

2(b).

It is seen in Table 2 that 4 and 4’ approach to a finite value which seems

to show no dependence upon S when { tends to zero. Further, Table 2 shows that
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the difference between the energy spectra of spin waves, (22) and (26), is small. It
is concluded that the spin wave specirum is not so seriously affected by the inter-
chain interaction even if it is ferromagnetic or antiferromagnetic.

In Table 3, there are shown both of the values of » in the usual free spin
wave theory and the values in the approximations when the biquadratic terms are
treated self-consistently; (a) /' is ferromagnetic and (b) // antiferromagnetic. The
contribution due to dynamical interaciion is not so large within our approximations
at least, when { decreases, namely, the chain-like property predominates. The large
spin reduction in the chain-like antiferromagnets can, therefore, be mainly attributed
to kinematical interaction. Table 4 shows the values of zero-point spin reduction
when the dynamical interaction is considered for the cases of ferromagnetic and
antiferromagnetic inter-chain exchange coupling.

Table 4. Zero-point spin reduction obtained in the renormalized spin wave treatment.
(a) J' is ferromagnetic and (b) J' antiferromagnetic. The values of 4Sy and A4Sy
are given by equations (16) and (17) respectively.

(a) J': ferromagnetic

ASu
S
I | ; : [
2 I 32| 2 5/2

3.16 1071 0.0864 0.0872 0.0873 0.0873 0.0873 |
1x 101 0.1538 | 0.1693 0.1754 0.1788 0.1809 |
3.16x10-2 0.2143 0.2553 0.2747 | 0.2862 0.2939 |
1102 0.2609 | 0.3204 0.3655 . 0.3884 | 0.4404 |
3.16x10~ 0.2958 0.3890 0.4418 | 0.4770 | 0.5024
110 0.3221 0.4362 0.5045 0.5515 | 0.5865
3.16% 107 | 0.3426 0.4742 0.5560 0.6140 ‘ 0.6579 |
1x10-+ | 0.3588 | 0.5051 . 0.5988 | 0.6666 | 07189‘
i 45p 3
1 s i
3 1/2 k 1 3/2 ‘ 2| 52 |
| 8.16x100 0.0864 i 0.0939 . 0.0928 | 0.0916 0.0907 |
f ILxio 0.1538 0.1917 - 0.1983 0.1982 0.1970 |
o 816x10 | 0.2143 ’ 0.3004 0.3306 0.3393 | 0.3409 |
1310 | 0.2609 | 0.3970 0.4619 0.4899 0.5009}
| 3.16x107 | 0.2958 | 0.4755 0.5778 [ 0.6321 | 0.6593
§ 1107 0.3221 ‘ 0.5380 0.6756 | 0.7587 0.8067 |
. 3.16x10t | 0.3427 0.5881 0.7572 | 0.8688 049396’
| 1x10- | 0.3588 l 0.6288 | 0.8254 | 0.9636 | 1.0579 !
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(b) J': antiferromagnetic

ASu

S

7 ‘ | :

1/2 [ 1 3/2 | 2 5/2
3.16x 10 0.0961 | 0.1006 0.1024 0.1033 0.1038
1x10- 0.1560 0.1727 0.1796 0.1834 0.1858 |
w 3.16x10-2 0.2148 i 0.2561 0.2757 0.2874 0.2952
1102 0.2610 0.3296 0.3658 0.3887 0.4047 .
3.16%10-3 0.2958 0.3890 0.4419 0.4771 0.5025
1x103 0.3221 0.4363 0.5045 0.5516 0.5865
3.16x 10 0.3426 | 0.4742 0.5560 0.6140 0.6579 |
1x10-4 0.3588 | 0.5051 0.5988 0.6666 0.7189 |
ASp ‘
| S ‘

I oo S [y -

i 1/2 Lo 3/2 | 2 \ 5/2
3.16x 10 0.0961 | 0.1094 0.1100 0.1093 0.1087
1x10 0.1560 0.1954 | 0.2036 0.2038 0.2028
: 3.16x10-2 0.2148 | 0.3014 0.3320 0.3409 0.3427
% 1x102 0.2610 0.3972 | 0.4622 0.4903 0.5014
‘ 3.16x10-% 0.2958 0.4756 0.5579 ! 0.6322 0.6594
1x10-3 | 0.3221 | 0.5381 0.6756 0.7588 0.8067
3.16x10-4 | 0.3426 ! 0.5881 | 0.7572 0.8688 | 0.9397 |
1104 i 0.3588 | 0.6288 | 0.8254 | 0.9636 j 1.0579%

§4. Discussion

Now we shall consider the relation between our metric operator method and
the projection operator method. The j-th lattice site is considered and we shall
drop the site-index j hereafter. In the metric operator method, an operator A in
the spin space is represented as follows (MiLLs and KENAN 1966):

A= 3] |u>F1;<u]A]v>il‘;<v|. 27

w, v

The corresponding operator in the boson space can be written as

N 1
Apu= 2 JM)F

(uly A ) 7,1- (o] (28)
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Thus, these operators satisfy the relation;
(| Aoy =(ulpApyu|v). (29)

Because the metric operator appears as the form n/imw in the right hand side of
equation (29), the summations over # and v are restricted naturally to the physical
states only. On the other hand, if we take the ortiionormal basis in the spin space,
lu’>=F,"*uy, the operator A is expressed as follows:

A= 3 1| A

and
Aup= /Z:,/ JM,)(U/IP/‘]IPIZ)/)(U/IIJ‘ (30)

Then, the relation (#'|Alv’>=(u’| PAup|v’) holds. As this relation is defined in terms
of the orthonormal basis, the metric operator does not appear apparently. It is
necessary, however, to introduce the projection operator P to exclude contributions
arising from nonphysical states. It is possible to confirm that Apy and Ayp are
the DM- and HP-operator respectively, corresponding to the operator A in the spin
space.

If the exact ground state |O)py in the boson space is obtained by DM-trans-
formation, it can be represented as

- 28
[O)pu =727 dnl7)py. (31)
n=0
The corresponding state }O> in the spin space is expressed by
- 28
(0> =2 daln>. (32)
As the matrix elements are related by (29), the spin reduction 4S is given by
28 28
JSDM:Z an'Fn'n/Z an'Fn. (33)
n=0 n=0

On the other hand, if the exact ground state [O)yp is obtained by HP-transforma-
tion, it should be written as

_ 28
’O)HP: Z /zn,}n’)ﬂp. (34)
n’ =0
Since |#')up corresponds to the normalized spin state, 4S becomes

28 28
JSIIPZ Z hwz'n,/ Z ll’n’z- (35>

n’ =0 n’=0

It is seen from these results, (33) and (35), that there is an apparent effect of kine-
matical interaction even in the physial states in DM. It seems that this causes the
spin reduction Sy smaller than that of 4Sp in the numerical calculation. The
difference between |O)py and |O)up does not come out in our present approxima-
tion, and therefore the further investigations (treatment of source terms, and of
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non-Hermitian nature of Hpu, etc.) are necessary to clear up the difference of the
two. These problems have to be solved in future.
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