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Department of Instrumentation Engineering, Keio University, 
Hiyoshi, Yokohama, 223, Japan 
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ABSTRACT 

The contributions of kinematical and dynamical interaction to zero-point spin reduction 
of a chain-like antiferromagnet are investigated. Kinematical interaction is considered by 
two methods, the metric operator method and the projection operator method. The biqua­
dratic terms of boson operators are treated self-consistently with the idea of mean fields 
to include the effects of dynamical interaction. The case of ferromagnetic inter-chain 
exchange interaction as well as the case of antiferromagnetic inter-chain interaction are 
considered and the results obtained are compared with each other. 

§ 1. Introduction 

In a previous paper (FuKucm and 0KABE 1977), the metric operator method by 
HERBERT (1969) was developed to get the zero-point spin reduction of antiferro­
magnets for general spins and the results obtained have been compared with 
those of the projection operator method by Ism KA WA and Ocucm (1975, hereafter 
we abbreviate it as IO). The usual free spin wave theory which contains the con­
tribution from the fictitious non-physical boson states gives the divergent reduction 
in the isotropic one-dimensional Heisenberg system. When the kinematical inter­
action is taken into account properly, the reduction reaches at most up to the order 
of magnitude of S even in the isotropic case. The value of the reduction goes to 
S when the effective anisotropy field A or the inter-chain exchange interaction ]' 
goes to zero. A large contribution coming from non-physical states is found in the 
ideal one-dimensional system, and also in the real chain-like antiferromagnets with 
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non-vanishing A and ]'. 
On the contrary, the isotropic two- and three-dimensional Heisenberg systems 

have the non-divergent reductions even in the usual free spin wave theory. Even 
if the kinematical interaction is considered, the reductions are found to decrease 
slightly in their magnitude. Thus, the effect of the kinematical interaction is small 
but, as we should notice, not negligible for these systems. 

In the present paper, we consider the spin-reduction of the chain-like antiferro­
magnets with the metric oprator method as well as the projection operator method. 
HERBERT (1969) has used the former in order to exclude the contribution arising 
from non-physical states and introduced the Dyson-Malecv (hereafter it is abbreviated 
to DM) transformation to rewrite the Hamiltonian described by spin operators into 
boson operators. On the other hand, IO have normalized the states in the spin space 
and introduced the projection operator using the Holstein-Primakoff (hereafter it is 
abbreviated to HP) transformation. 

It is known that long range order in the chain-like antiferromagnet, such as 
KCuFa, is caused due to the inter-chain exchange interaction (Th.EDA and HIRAKA \\'A 

1973). This inter-chain interaction in KCuF:i is found to be ferromagnetic. We 
investigate the case of the weak ferromagnetic inter-chain interaction at first in 
the harmonic approximation and then we treat the ca~~e of the antiferromagnetic 
inter-chain interaction. In order to compare the contribution arising from kinema­
tical interaction with that from dynamical interaction, the biquadratic terms of 
boson operators are self-consistently dealt with using the idea of mean fields. The 
effect of the dynamical interaction is found to be small and the large zero-point 
spin reduction can be attributed mainly to the kinematical interaction. 

§ 2. Treatment of Kinematical Interaction in the 
Harmonic Approximation 

We consider the Hamiltonian for the chain-like antiferromagnet with the 
ferromagnetic inter-chain interaction: 

I-!=2] I; SrSi-2!' I; Sm.·811, ( 1 ) 
j,I <111.11 

where f and ]' are the intra-chain and the inter-chain exchange interactions respec­
tively, and both of them are positive. Subscripts j and l denote up-spin and down­
spin sublattice sites respectively, and pairs of m and n represent sites in the iden­
tical sublattice. The summations over (j, l) and (m. n) are taken over all nearest 
neighbor pairs of spins interacting with f and ]', respectively. 

The DM transformation is introduced into the Hamiltonian (1): 

S1 --> v2S(l-a/a.i/2S)a.i, 

S.i- ->- v2Sa.i , 

S/--> S-a.i a,;, and 

S1- - v2S(l-b1 b,/2S)b1, 

66 

( 2) 



Kinematical and Dynamical Interaction in Chain-Like Antiferromagnets 

The boson operators are Fourier-transformed in the usual way: 

ai=N- 1
'
2 I: exp(ik·Ri)ak, and bi=N- 1

'
2 I: exp(-ik·Rz)bk, ( 3) 

k k 

then we get the following Hamiltonian : 

HvM = -2JNZS2(l +~'Y) +2JSZ I:[{l +~!.i(l-r/)}(ak ak+bk. bk) 
k 

( 4) 

where 

rk=Z- 1 I: exp(ik·b), 
0 

rk' =Z'- 1 I: exp(ik·b'), 
o' 

: =]' /], and !.i=Z'/Z. ( 5 ) 

Here, as we are interested in the region ]' <{ ], only the biquadratic terms with } 
are treated. 

On the other hand, if the HP transformation is put into Hamiltonian (1), 

Sj · -~2S(l-a1 ·aj/2S) 112a1 , 

S/-S- a,; a.h and 

we obtain the following Hamiltonian in a similar way: 

HHP = -2JNZS2(l +~'Y) +2JZS I: [{1+~!.i(l-r/)}(ak 1 ak+bk bk) 
/( 

+ rk(akbk +ak 'lh' )J-2]ZN-1 I: [rk1--k2ak'1ak2bk,13b-k1. kz ka 
kl, k2, k3 

+ !- {r-k1. kz ka(a~1ak2ak3b-k1 kz -k3 +a1o:'1a-k2akab~1-k2-A:3) 

( 6) 

( 7) 

The Hamiltonians (4) and (7) take the same form in the harmonic approxima­
tion as follows : 

Il=-2JNZS2(l+C!.1)+2]ZS I: [{l+ClJ(l-r/)}(ak+ak+bk bk) 
k 

( 8) 

The Bogoliubov transformation is introduced to make the Hamiltonian (8) diagonal: 

( 9) 

then the energy of a spin wave is given as follows: 

(10) 
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where 

l 1 -1112 
ZtA-=± 2JSZ{l+:J)(l-i·/)}/2h+-z-J ' 

and 

(11) 

Next, we shall treat the chain-like antiferromagnet with the antiferromagnetic 
inter-chain interaction and the Hamiltonian is represented by 

fl'= 2] I: Sr S1 + 2]' I: Sui· Sn, (12) 
j,l> m,n> 

where m and n represent pairs of sites in different sublattices in this case. The 
Hamiltonian (12) can be written in the forms which corres1xmd to equations (4) 

and (7) as follows : 

ll'1JM=-2JNZS"(l+:l.!)+2JZSI; {a,.. a"'+b1., b"'+;-1.:(a1.-lh+a", l>i.: )} ,, 

and 

H'HP= -2JNZS2(l+:v)+2JZS I; {ak ak+bk · bk+rk(akbk+ak bk.)} 
J; 

(14) 

The excitation energy of a spin wave is obtained in the harmonic approximation: 

(15) 

The spin reduction JS is given (FuKuCHI and 0KABE 1977): 

28 

2:: D 11(l+u)(l+v)-c 1 - 11 lv 1 'n 

JSM = V - ~~-1 ~--
zs 

(16) 

1- l: Dn(l+v)-tl :n)vlcn 

a - 1 

or 

(2S+l)V28 1 

JSp=V- , (1 +v)zs ~i -vzs-1 (17) 

where 
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Du=Fu-Fn 1, Fn=l·(l-1/2S)···{l-(u-1)/2S}, 

and v=N- 1 I; vk 2
, (18) 

le 

where vk is the coefficient which appears in the Bogoliubov transformation. 
The numerical values of JS in the case of ferromagnetic inter-chain interaction 

are given in Table 1 (a). Figure 1 shows the reduction for S=l and 5=5/2, where 
the solid lines represent the results obtained from equation (16), the broken lines 
from equation (17) and the results of the usual free spin wave theory are also shown 
with the chain line. Table 1 (b) shows the reduction in the case of antiferromag­
netic interchain interaction. The difference of JS between both cases is considerably 
small as is clearly seen in Table 1. 

(a) 

Table 1. Zero-point spin reduction obtained in the harmonic approximation; 
(a) the inter-chain interaction f' is ferromagnetic and (b) f' antiferromagnetic. 
The values of JSM and JSp are given by equations (16) and (17) respectively. 

f' : ferromagnetic 

.:.ISM 

s 
f'/J --·------- - - - ------- --- - -

1/2 3/2 2 5/2 

3.16x 10-1 0.0743 0.0801 0.0823 0.0834 0.0842 
1x10-1 0.1379 0.1582 0.1670 0.1720 0 .1752 

3.16x 10-2 0.2000 0.2440 0.2655 0.2785 0.2872 
1x10-2 0.2499 0.3198 0.3573 0.3812 0.3981 

3.16x 10-3 0.2874 0.3812 0.4350 0.4709 0.4969 
1x10-4 0.3157 0.4300 0.4988 0.5464 0.5817 

3.16x 10--4 0.3375 0.4692 0.5513 0.6096 0.6539 
1x10-4 0.3548 0.5010 0.5949 0.6629 0. 7154 

- - -

JSp 
---- - -- ----- - - ------- ------

1-
s 

f'/J 

I 

--------- - --- - ---------- - -----

I 1/2 1 3/2 
I 

2 I 5/2 
I 

.16x10- 1 0.0743 

I 

0.0857 0.0871 0.0873 0.0873 
1x10 1 0 .1379 0 .1780 0.1877 0 .1898 0 .1902 

.l6x10- 2 0.2000 0.2858 0.3177 0.3285 0.3319 

3 

3 
I 

1x10-2 
I 

0.2499 
I 

0.3843 0.4496 0.4788 0.4912 
.16x10-3 : 0.2874 0.4652 0.5671 0.6219 0.6499 3 

1x10--3 0.3157 0.5298 0.6667 0.7498 0.7981 
3 .16x10--4 0.3375 0.5815 0.7497 0.8610 0.9320 

1x10 4 0.3548 0.6234 0.8191 0.9569 1.0510 
- - --
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JSp 

s 
!'ff 

! 1/2 3/2 2 5/2 

3.16x10-1 0.0877 0 .1036 0.1060 I 0.1063 0.1063 
1x10-1 0 .1411 0 .1832 0 .1937 0 .1960 0 .1965 

3.16xlo-2 0.2007 0.2871 0.3149 0.3304 0.3339 
1x10-2 0.2500 0.3846 0.4500 0.4793 0.4918 

3.16xlo-a 0.2874 0.4653 0.5673 0.6220 0.6501 
1x10-:i 0.3157 0.5299 0.6667 0.7498 0.7982 

3.16x10-4 0.3375 0.5815 0.7497 0.8610 0.9320 
1x10-4 0.3548 0.6234 0.8191 0.9569 1. 0510 

§ 3. Dynamical Interaction 

In order to treat the contribution due to the dynamical interaction, we shall 
consider in this section the biquadratic terms of the boson operators in the mean 
field approximation. The equations of motion for ak and bk 1 can be obtained from 
Hamiltonian ( 4): 

and 

(19) 

where 
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1. 5 

1.0 

0~4~~~~~~----'-_3~~~~~~-'-_2~~~~~~~_,~~~~~~~ 

10- 10 10 10 

J/J 
Fig. 1. Zero-point spin re:iuction with ferromagnetic inter-chain interaction for S=l 

and S=5/2 in the harmonic approximation. Solid lines and broken lines correspond 
to JSM and JSp respectively, a".ld a chain line to v which does not depend on the 
magnitude of S. 

r k =2JZS [1 +~v(l-r/)-(SN)- 1 ~ {(a1, aµ)+rl'(a 1,b,,)}], 
u 

,1u.: =2JZS [1-(SN)-l ~ r,,(a,,bl,)]rk. 
µ 

and 
il2k =2JZS [l-(SN)-1 ~ {2(a,, a,,)+r1,(a1,bl')} Jrk· (20) 

I' 

Here, interaction terms are linearized by replacing pairs of boson operators by their 
expectation values in the ground state and the following relations between these 
expectation values are used in equation (20); 

Further, l11k and ll2k are replaced by their arithmetical mean value ,h to get the 
effective Hamiltonian: 

Hetf=-2JNZS2(l+~v)+~ l\(ak rh+bk 1bk) 
k 

and 
1h=2JZS[l-(SN)-1 ~ {(al''a,,)+rl'(al'bl')}]rk· (21) 

I' 
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The equations of motion obtained from the Hamiltonian (7) give the same Hamiltonian 
(21) in this approximation. 

The Bogoliubov transformation is introduced to get the renormalized spin wave 
energy: 

where 
Ak =2]ZS [ {1 +(i;(l-r1/)-J/S }2 -(1-J/S ) 2 rk 2 ] 11 ~, 

J =N 1 L: {(a1, 'a1,)+r1,(a1.b,,)} · 
fl 

(22) 

(23) 

Here, J should be determined self-consistently. The numerical calculation shows 
the convergence is obtained by a few times of iterations. The results are shown 
in Table 2 (a). 

The Hamiltonians (13) and (14) with antiferromagnetic inter-chain coupling give 
the same effective Hamiltonian in the same way mentioned above: 

H'e.r.r= -2JNZS2(l +(i;) + L; r{(ak 1 ak+bk ·bk) 
k 

+ L;Jl{(akbk +ak +bk!), (24) 
t.· 

Table 2. Values ot L1 which are obtained self-consistently by several times of interations. 

(a) L1 (!': ferromagnetic) 

]'/] 

3.16x 10-1 

1x10-1 

3.16x10-2 

1x10-2 

3.16x10-3 

1x10-3 

3.16x10-4 

1x10-4 

1/2 

-0 .1328 

-0.1621 

-0.1748 

-0.1794 

-0.1810 

-0.1815 

-0.1816 

-0.1817 

(b) L1 (!': antiferromagnetic) 

]'/] 

·-. -- ·------J ... -···--·-1 __ .1_2·-···--·-·'·· 
3.16x10-1 

1· -0.1252 
1x10--1 -0 .1608 

3.16x10-2 -0.1746 

1x10-2 -0 .1794 

3.16x10-3 -0.1810 

1x10-3 -0 .1815 

3.16xl0-4 -0.1816 

1 x 10-4 - 0. 1817 

-0.1598 

-0.1738 

-0.1791 

-0.1808 

-0.1814 

-0.1816 

-0.1817 

-0.1204 

-0.1582 

-0.1736 

-0.1791 

-0.1808 

-0 .1814 

-0.1816 

-0.1817 

72 

s 

3/2 

-0.1277 

-0.1589 

-0.1735 

-0.1789 

-0.1808 

-0.1814 

-0.1816 

-0.1817 

s 

3/2 

-0 .1188 

-0.1572 

-0.1732 

-0.1789 

-0.1808 

-0.1814 

-0.1816 

-0.1817 

2 

-0.1270 

-0 .1584 

-0.1733 

-0.1789 

-0.1808 

-0.1814 

-0.1816 

-0.1817 

2 

-0.1179 

-0.1567 

-0.1730 

-0.1788 

-0.1808 

-0.1814 

-0.1816 

-0.1817 

5/2 

-0.1266 

-0 .1581 

-0.1731 

-0.1788 

-0.1808 

-0.1814 

-0.1816 

-0.1817 

5/2 

-0.1174 

-0.1563 

-0.1729 

-0.1788 

-0.1808 

-0.1814 

-0.1816 

-0.1817 
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Table 3. Spin reduction v given by equation (18). (a) ]' is ferromagnetic and 
(b) f' antiferromagnetic. The 2nd column represents the values of v ob­
tained in the harmonic approximation, and the 3rd'"'"'7th columns correspond 
to those in the renormalized treatment. 

(a) ]' : ferromagnetic 

]'If Harmonic 

3.16x 10-1 

1x10-1 

3.16x 10-2 

1x10-2 

3.16x 10-3 

1 X l0-3 

3.16x10-4 

1x10-4 

0.0873 
0 .1903 
0.3334 
0.4994 
0.6758 
0.8565 
1.0388 
1. 2216 

(b) ]' : antiferromagnetic 

]'If Harmonic 

3.16x 10-1 

1x10-1 

3.16x 10-2 

1x10-2 

3.16x10-3 

1x10-3 

3.16 x10-4 

1x10-4 

where 

and 

0.1063 
0.1966 
0.3354 

0.5000 
0.6760 
0.8566 
1.0388 
1. 2216 

1/2 

0 .1045 
0.2222 
0.3751 
0.5457 
0.7241 
0.9045 
1.0880 

1.2709 

1/2 

0.1190 
0.2267 
0.3765 
0.5462 
0.7242 
0.9055 
1.0880 
1.2709 

0.0959 
0.2069 
0.3555 
0.5242 
0.7018 
0.8828 
1.0653 

1.2482 

0.1125 
0.2121 

0.3571 
0.5247 
0.7019 
0.8829 
1.0653 
1.2482 

ll'=N- 1 I: {(a1,
1 a 1,)+r1,(a11b1,)}. 

fl 

Then the spin wave energy is given by 

s 
3/2 

0.0930 
0.2015 
0.3485 
0.5164 
0.6936 
0.8745 

1.0569 
1.2398 

s 
3/2 

0.1104 
0.2071 
0.3502 I 

0.5169 
0.6937 
0.8746 
1.0570 

1.2398 

2 

0.0916 
0 .1988 
0.3448 
0.5123 
0.6893 
0.8702 

1.0526 
1.2354 

2 

0.1093 

0.2045 
0.3466 
0.5128 
0.6895 
0.8703 
1.0526 
1.2354 

5/2 

0.0907 
0.1971 
0.3426 
0.5098 
0.6867 

0.8676 
1.0499 
1.2328 

5/2 

0.1087 
0.2029 
0.3444 
0.5103 

0.6869 
0.8676 
1.0500 
1.2328 

(25) 

(26) 

Here also Ll' should be calculated self-consistently and the results are given in Table 
2(b). It is seen in Table 2 that Ll and Ll' approach to a finite value which seems 
to show no dependence upon S when ' tends to zero. Further, Table 2 shows that 
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the difference between the energy spectra of spin waves, (22) and (26), is small. It 
is concluded that the spin wave spectrum is not so seriously affected by the inter­
chain interaction even if it is ferromagnetic or antiferromagnetic. 

In Table 3, there are shown bJth of the values of v in the usual free spin 
wave theory and the values in the approximations when the biquadratic terms are 
treated self-consistently; (a) ]' is ferromagnetic and (b) ]' antiferromagnetic. The 
contribution due to dynamical interacLion is not so large within our approximations 
at least, when (decreases, namely, the chain-like property predominates. The large 
spin reduction in the chain-like antiferromagnets can, therefore, be mainly attributed 
to kinematical interaction. Table 4 shows the values of zero-point spin reduclion 
when the dynamical interaction is considered for the cases of ferromagnetic and 
antiferromagnetic inter-chain exchange coupling. 

Table 4. Zero-point spin reduction obtained in the renormalized spin wave treatment. 
(a) ]' is ferromagnetic and (b) ]' antiferromagnetic. The values of JSM and JSp 
are given by equations (16) and (17) respectively. 

(a) ]' : ferromagnetic 

JSM 

s 
!'/! 

1/2 3/2 2 5/2 

3.16x10-1 0.0864 0.0872 0.0873 0.0873 0.0873 I 

1x10--1 0.1538 0 .1693 0.1754 0 .1788 0.1809 
3.16x10-2 0.2143 0.2553 0.2747 0.2862 0.2939 

1x10-2 0. 2609 i 0.3294 0.3655 0.3884 I 0.4404 
3.16x10-3 0.2958 0.3890 0.4418 0.4770 0.5024 

1x10-3 0.3221 0.4362 0.5045 0.5515 0.5865 
3.16x 10-4 0.3426 0.4742 0.5560 0.6140 0.6579 

1x10- 4 0.3588 0.5051 0.5988 0.6666 
I 

0. 7189 

LlSP 

s 
!'/! 

I 

1/2 3/2 2 5/2 

3.16x 10-1 0.0864 0.0939 0.0928 0.0916 0.0907 
1x10-1 0 .1538 0.1917 0 .1983 0.1982 0 .1970 

3.16x10-2 0.2143 0.3004 0.3306 0.3393 0.3409 
1x10-2 0.2609 0.3970 0.4619 0.4899 0.5009 

3.16x10-a 0.2958 0 .1755 0.5778 0.6321 0.6593 
1x10-3 0.3221 0.5380 0.6756 0.7587 0.8067 

3.16x 10-4 0.3427 0.5881 0.7572 0.8688 0.9396 
1x10-4 0.3588 0.6288 0.8254 0.9636 1.0579 
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(b) ]' : antiferromagnetic 

JSM 
- - -------- ------------ - ---- - -- ---------- --~------

s 
]' /] 

1/2 3/2 2 5/2 

3. lGx 10- 1 0.0961 0 .1006 0.1024 0 .1033 0 .1038 
1x10-1 0 .1560 I 0.1727 0.1796 0 .1834 0 .1858 

3.16x10-2 0.2148 0.2561 0.2757 0.2874 0.2952 
1x10--2 0.2610 0.3296 0.3658 0.3887 0.4047 

3.16xlo-a 0.2958 0.3890 0.4419 0. 4771 0.5025 
1X10-a 0.3221 0.4363 0.5045 0.5516 0.5865 

3.16x 10-4 0.3426 I 0.4742 0.5560 0.6140 0.6579 
1x10-4 0.3588 I 0.5051 0.5988 0.6666 0. 7189 

JSp 

s 
!'/] I 

1/2 3/2 
I 

2 5/2 

3.16x 10-1 0.0961 0.1094 0.1100 0 .1093 0.1087 
1x10-1 0.1560 0.1954 0.2036 0.2038 0.2028 

3.16x10-2 0.2148 I 0.3014 0.3320 0.3409 0.3427 
1x10--2 0.2610 0.3972 0.4622 0.4903 0.5014 

3.16x 10-3 0.2958 0.4756 0.5579 0.6322 0.6594 
1X10--3 0.3221 0.5381 0.6756 0.7588 0.8067 

3.16x10-4 0.3426 0.5881 0.7572 0.8688 0.9397 
1x10-4 0.3588 0.6288 0.8254 0.9636 1.0579 

§ 4. Discussion 

Now we shall consider the relation between our metric operator method and 
the projection operator method. The j-th lattice site is considered and we shall 
drop the site-index j hereafter. In the metric operator method, an operator ~1 in 
the spin space is represented as follows (MILLS and KENAN 1966) : 

(27) 

The corresponding operator in the boson space can be written as 

(28) 
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Thus, these operators satisfy the relation ; 

(ulAlv) =(ul77AnM Iv). (29) 

Because the metric operator appears as the form 77AnM in the right hand side of 
equation (29), the summations over u and v are restricted naturally to the physical 
states only. On the other hand, if we take the orL-iOnormal basis in the spin space, 
iu') =Fu- 1 2 lu), the operator A is expressed as follows: 

and 
(30) 

Then, the relation (u'IAlv')=(u'IPAHPlv') holds. As this relation is defined in terms 
of the orthonormal basis, the metric operator does not appear apparently. It is 
necessary, however, to introduce the projection operator P to exclude contributions 
arising from nonphysical states. It is possible to confirm that AnM and AHP are 
the OM- and HP-operator respectively, corresponding to the operator A in the spin 
space. 

If the exact ground state j O)nM in the boson space is obtained by OM-trans­
formation, it can be represented as 

- 28 

I O)nM = L; dnin)DM· (31) 
n=O 

The corresponding state 10) in the spin space is expressed by 

_ 2s 

I 0) = L; dnln). (32) 
n--o 

As the matrix elements are related by (29), the spin reduction .1S is given by 

25 2S 

.1SnM=L:; dn 2 ·Fn·n/L; dn 2 ·Fn. (33) 
n=O n =O 

On the other hand, if the exact ground state i O)nP is obtained by HP-transforma­
tion, it should be written as 

2S 

IO)np= L; hn,ln')HP· (34) 
n' -=-~O 

Since ln')HP corresponds to the normalized spin state, JS becomes 

28 28 

.JSIIP= L: hu, 2
• n' I L: lzn, 2

• (35) 
n'~o n'=O 

It is seen from these results, (33) and (35), that there is an apparent effect of kine­
matical interaction even in the physial states in OM. It seems that this causes the 
spin reduction JSM smaller than that of JSP in the numerical calculation. The 
difference between i O)nM and I O)nP does not come out in our present approxima­
tion, and therefore the further investigations (treatment of source terms, and of 
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non-Hermitian nature of HDM, etc.) are necessary to clear up the difference of the 
two. These problems have to be solved in future. 
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