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ABSTRACT

The behaviour of a gas bubble in a viscous liquid under oscillating pressure is analyzed.
The extention of the theory from the inviscid case to the viscous case is easily done with
a linearlized theory, though not mathematically rigorous. Two asymptotic time solutions
are shown in the cases of uniform interior at low frequencies and nonuniform interior
at high frequencies. For the uniform interior, the results of calculation show that for
the glycerine the effect of viscosity is unable to be neglected and becomes maximum at
frequencies w=105~10 [Hz] for the initial bubble radius R,=10¢[cm]. For water and
mercury the viscous effect is negligibly small. And for less than w=104[Hz] the ratio of
the amplitude of perturbed radius to perturbed pressure is constant and its value is nearly
1/(3+2W), where W is the Webber number.

Nomenclature

A=k Tu/v/ D, D =deformation tensor

a=1+W E=PR(1+W)

B=kTw|R, k=thermal conductivity
By,=universal gas constant M=total mass of gas

C=ad n=number of moles
C,=specific heat at constant volume p=pressure

co=speed of sound R=radius of bubble
D=coefficient of thermal diffusion r=spherical coordinate

* Power Reactor and Nuclear Fuel Development Corporation
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s=Laplace variable B=MC,T.[AxR2)
T=temperature o=4p/P,

t=time f#=dimensionless temperature
U=bubble-wall velocity ' p=shear viscosity

v=velocity vector p=density
W=Webber number ¢=velocity potential

x=dimensionless radius of bubble w=frequency

a=Py/p: R} wi=a(3+2W)

Subscripts

- =time derivative out =outside

o =initial state 1=in the liquid
co=infinity 2=in the gas
in=inside ~=Laplace transform

1. Introduction

The oscillatory behaviour of gas bubbles in a viscous fluid is of a interest in
connection with chemical engineering, biological systems, and transmission of
sound waves in oil. In particular, the quasi-steady-state motion will be considered
in this paper. Lord RavLricH (1917) treated the problem of the free oscillations of
a gas bubble in one of the earliest papers, taking no account of heat conduction
and viscous effects. Recently, Plesset and Hsien (1960) discussed the gas bubble
dynamics in oscillating pressure fields with the effect of heat conduction, but they
disregarded the effect of viscosity. The effect of viscosity automatically vanishes
in the equations of motion when the motion is assumed to be spherically
symmetric and the fluid to be incompressible. Hence the resultant of viscous
stresses per unit volume at any point internal to the fluid vanishes. But the
expression for stresses themselves on the free spherical surface of the gas bubble
has the viscous term as shown by Poritsky (1952). Although in almost all cases
this viscous effect appearing only in the boundary surface may be disregarded,
there are sometimes the cases when one must take this viscous effect into con-
sideration. In the first place we discuss how this viscous effect appears in
asymptotic time solutions of the equations of motion of gas bubbles. Next, by
investigating whether the interior side of gas bubbles is uniform or not, we try
to extend the theory of uniform interior at low frequencies to nonuiform interior
at high frequencies.

2. Assumptions
The following assumptions will be made in this theory:
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(a) The fluid outside the gas bubble is incompressible and Newtonian.

(b) The bubble consists of a compressible ideal gas.

(¢} The bubble is so small that it holds spherical symmetry in motion.

(d) Physical quantities of the liquid and gas, such as coefficients of viscosity and
thermal diffusion, perfect gas constant, specific heat at constant volume, and
surface tension, do not depend on the frequencies of oscillating pressure.

(e) The acceleration of gravity may be neglected.

(f) There is no diffusion of gas through the bubble wall, and no heat source in
the field.

(g) Since the perturbed pressure is small, the equations governing the field may
be linearized. '

(h) The liquid and gas are at rest at time #<0 and at time #=0 disturbance is
suddenly given through a small oscillating pressure applied at infinity.

(i) The mutual distances among the bubbles are so long compared with the
bubble radius that the interaction may be neglected.

(j) There are no boundaries at a finite distance from the center of the bubble.

3. Basic Equations

3.1 Equations of Motion for Viscous Liquid

We shall take a spherical coordinate system 7, 6, and ¢ whose origin is at the
center of a bubble. The equation of continuity is given by

;%? +div =0, (1)

where p is the density of the liquid and ¥ the velocity vector. Since from the
assumption (a) p=const. for the viscous liguid outside the bubble,

div #=0. (2)
Since vy=v,=0 owing to the assumption (c) of spherical symmetry, Eq. (2) becomes
1 6, ,
” -a‘r'(” v,)=0 (3)
Immediately from Eq. (3) we obtain

I (4)

Here A is a function of R and f?, where R is the radius of the bubble and
R=dR/dt. Since the boundary condition is given by

»,=R=U at r=R, (5)

Eq. (4) becomes

101



Takaniko TanaHasHI, Masakazu NisHIKIMI AND TSUNEYO ANDO

v, =URz[r? (6)

Here U denotes the bubble-wall velocity.
Next we consider the equation of motion. From the assumption (c), the flow
outside the spherical bubble is irrotational, so we have

curl 7=0. (7)

This means that # must be expressed as the gradient of a scalar potential ¢,
which is called the velocity potential.

The BERNOULLI equation for the potential flow of an incompressible fluid is
the first integral of the Navier-Stokes equation and is given by

0
Sver—2 =K, (8)
where P is the pressure and K(f) is a function of time only. If P. is taken as
the pressure in the liquid at infinity, Eq. (8) can be rewritten, as using ¢=R*U]Jr,

4 P2 . .

(9)

In particular, at the bubble wall where =R, the above equation becomes

Rib 2 fp Lo Lo (10)
2 2

where P, is the pressure in the liquid just outside the bubble: for >0,
Poy=lim P(R+¢). (11)
&0

Finally, the equation of energy derived from the first law of thermodynamics
is given by

-

z‘ +-grad T=DV:T+ %l; D: D, (12)
where T is the temperature of the liquid, C, the spec1ﬁc heat at constant volume,
k the thermal conductivity, p the shear viscosity, D the rate of deformation
tensor, and D the coefficient of thermal diffusion defined by k[(pCy). For the
inviscid case the second term on the right-hand side of Eq. (12) disappears. Egs.
(10) and (12) become important for later use.

3.2 Equations of Motion for a Gas Bubble

The gas inside the bubble may be assumed to be a perfect gas, whose
compressibility of the gas plays an important role in comparison with that of the
liquid outside the bubble. Hence div#-+0 for the gas although curl =0 still
remains valid for the spherically symmetric bubble. The conservation of mass in
the gas region is expressed by

%’t’ +odivi+i-grad p=0, (r=R). (13)
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With the neglect of viscous effect, the motion in the interior region is governed
by Euler’s equation :

%—’;w. grad 5= —% grad P (r=R) (14)
and the energy equation takes the following form

—7;+17-grad T =Dv:T— s div 7, (r=R). (15)
ot pCv
The last term in Eq. (15) represents the reversible part of the stress power due
to compressibility.
Furthermore, for the determination of motion of the gas we need the equation
of state which is satisfied locally only because of the nonuniformity of the interior,
which is now given by

P, )=Bor,T,), (=R (16)
where B is the ratio of the perfect gas canstant to the gram molecular weight of
the gas. Thus Egs. (13) through (16) are the basic equations for the motion of
the gas bubble with the nonuniform interior. While, if the interior of the gas
bubble is assumed to be uniform, then the temperature 7T, the pressure P and the

density o are uniform throughout the bubble. In this case, we have in place of
Eq. (16)

PIRBOIR¥6)=NT[R(@®)] a7

at the bubble wall, where N is a constant and is actually equal to (3/4n)nB,.
Here # is the number of moles of gas in the bubble and B, is the universal gas
constant.

4. Boundary Conditions

The requirement of continuity of temperature gives at the bubble wall
Ti[R®1=TAR@)] (18)

where the suffixes 1 and 2 mean the state of the liquid outside the bubble and
that of the gas inside the bubble, respectively. Similarly the requirement of
continuity of stress gives [for example, see Knapp, 1970]

2 R
Pln—PouL+?+4/1‘R_, (19)

where ¢ is the surface tension and P, is the pressure of the gas just inside the
bubble wall: for ¢>0,

Pi=lim P(R—¢).

e—0
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We should emphasize that the last term in the continuity equation of stress (19)
represents the viscous effect, although the viscous terms automatically disappear
in the equation of motion because of incompressibility and irrotationality. The
relative importance of the viscous to the surface tension terms depends on the
liquid in accordance with the ratio ZpP/q, and the effects of surface tension and
viscosity are negligible if Py %%+4/1~RR—. But in general when collapse proceeds,
and when a bubble becomes very small, we must take the effects of both viscosity
and surface tension into consideration as shown by Poritsky [1952]. Another
boundary condition is concerned with the heat equation (12). The requirement of
continuity of heat flux gives

0T

oT, -
k]W—kghér—, at =R (20)

The last condition requiring continuity of the particle velocity at the bubble wall is
0ei(t)=R(t) =0,5(0). @1

And all physical quantities must be finite at #=0 and remain finite as #7—oo.
Since the temperature 7(7, ¢) at infinity is taken to be constant,

Ty(oo,t)=T, (22)
where 7., is the fixed temperature at a distance from the bubble. On the other

hand, the initial conditions are that the system is in equilibrium for #<0 and a
perturbation of P. sets the system into motion. Therefore, for #<0:

R@®)=R,, (23)
R(t)=R®)=0, (24
P.(t)=P,, (25)

and
Ty, )="Tu(r,)=T., (26)

where R, is the equilibrium radius of the bubble and P, is the equilibrium
pressure in the liquid. If the disturbance is small, then the governing equations
of the system may be linearized. Since all the subsequent mathematical operations
become linear, the physically significant solution is obtained by taking the real
part of the solution with complex quantities. Therefore, if the disturbance is
caused by a small oscillating pressure at infinity, then the pressure may be
expressed as

P ()=P[1+e)]=Po[1+coei], t>0, (27)

where ¢, is a positive constant much smaller than unity.
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5. Case A. Bubble Dynamics with Uniform Interior

The condition of uniformity inside the gas bubble makes the present problem
simple, because we need the knowledge of the physical quantities for the gas such
as temperature, pressure and so on, only at the bubble wall. The boundary con-
dition for the heat flux, Eq. (20), at the bubble wall can be rewritten as, after
integration with the aid of Eq. (15),

dTg < aTl

e, L _ g Ror, 7W> —4zRP(RR®, at r=R 28)
dt or Jr-r

where M is the total mass of gas which is assumed to be constant.

5.1 Linearized System with Dimensionless Parameters

The linearization procedure is carried out with respect to the equilibrium
configuration and is based on the smallness of ¢ in comparison with unity. We
now define the perturbed quantities by

xZ(R_Ro)/Ro,
0, =(T\—T..)] T,
0:=(T:—T.)| T,

and

|

a Z[Pz—Pz(Ro)]/Pz(Ro)

where z, 6,, 6, and p are of the same order as &, viz. small compared with unity.
And the constant @ is given by
a=1+W
where
W=24/PyR,,

W is called the Webber number.
The linearization of the dynamic equation (10) with the boundary condition
(19) gives

E+adt—aWr=a(p—e) (29)
where
__ b _ A
a= R and o= yuk

Similarly the linearization of the energy equation (12) gives
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00
7;‘)? =D1V201. (30)

This equation is the ordinary heat equation without convection. The linearization
of the gas equation of state, Eq. (17), gives

%:og—sx 31)

and the boundary condition, Eq. (28), becomes

‘80'22 —ClPoRoi"Fleoo(‘———) ’ (32)
4 =R

since Py(Ry)—Py= ]22"
0

in a steady state, where
B=MC, T[4z R*.
We have in a similar way
r=t=i=0,=0,=0, for ¢<0 (33)
and

01(co, =0, for all ¢ (34)

The effect of viscosity expressed by & appears only on the dynamic equation (29).
The rest are the same as those for the liquid without viscosity [PLEsSET and
Hsien, 1960].

5.2 The Formal Solution

Here we have four unknowns; p, x, 6, and 6,, and four equations; Egs. (29),
(30), (31) and (32). We shall introduce the Laplace transform of these unknowns
as follows

p=L(p)= Swpemdt
1]
and similarly,
£'=L((I»'> 5 él=L(0]); égzL(az),
furthermore, since e=¢gze“,
e=L{e)=¢o/(s—iw).

With the initial conditions given by Eq. (33), Eq. (29) becomes, after the elimina-
tion of p with the help of Eq. (31),

[s*+ads+aB+2W)]E=af[(1+ W), —e]. (35)

The equation (30) gives for the spherical symmetry
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A a .
$(rg) =Dy 5-(rd1) (36)
with 8,(r=c0)=0 from Eq. (34). Since 0.()=0,(R, ), we have #,=4,(R). Hence
the Laplace transform of the boundary condition given by Eq. (32) becomes

sphi=—aPyRosi+ kT ~i0'1 , at r=R. (37)
! d” r=R

The solution for Eq. (36) is readily found to be

é] CYES Ro

=gy exn| —r—Ri6ID) | (39)

where P is a polynomial defined by
P(u)=(pu*+ Au+ B)(u' + Cu* + 0,*) +a E(1+ W )u®. (39)
The constants which have been introduced are defined as follows:
ot=a(3+2W);
A=k T/~ D ;
B=kT.|Ry;
C=ad; (effect of viscosity)
E=P,R,(1+ W ).
And we now find from Eqs. (37) through (39) that

__aps+Avs +B)
= P(V's) “0)

o | 8

Since é=¢o/(s—iw), the formal solutions to the problem are obtained by the inver-
sion of Egs. (38) and (40). If the roots of P(u#)=0 are —a; (j=1,2,--,6) and
ar=0"2%™ and az= —ow'2e"*=w"%**/, then the inversions are given by

8
0y(r, )= _éﬂ_ >3 ab; Erfc [(r—Ro)[24/ Dyt +a;+/ ¢ 1
=1

-exp [a;(r—Ro)|v Dy +ajt) (41)
and
a(t)=— 3] aje; Bric (a;/ T) exp (@), (42)
i=1

where b; and c; are given by the partial fractians

aESOS 3 b]

i P s) BV s +a;
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Here the complementary error function is defined by

2 00
Erfc (x) =7 S exp (—y*)dy.

The unknowns #, and p are also given by similar forms:
057, )= — il ab; Erfc (a;+/ ) exp (a;%) (43)
and :
p@)=1+ W)(0:—3x)
=(14+W) j}i’l a;(3c;—b;) Erfc(a;~/ ) exp (a2b). (44)

The effect of viscosity appears only on the coefficient C in the polynomial P(u).
If we set C to be zero, then the formal solutions expressed by Eqgs. (41) through
(44) are the same as those for the inviscid liquid outside the bubble. But this
polynomial P(ux) is essential for the behaviour of the gas bubble.

5.3 Asymptotic Time behaviour

The formal solutions expressed by Egs. (41) through (44) are not convenient
to visualize the behaviour of the physical quantities in the oscillating field because
the complementary error function has complex arguments and the roots —a; of
P(u)=0 are found only by numerical method when specific values for the physical
constants are used. But the asymptotic expressions obtained by the application of
the method of steepest descent enable to avoid these difficulties and give the
steady-state solutions of significance for the thermodynamic relations. As mentioned
above, the behaviour of the roots —a; is very important to examine the asymptotic
behaviour of the solutions. For the inviscid case (6=0, and hence C=0), the six
roots —a; of the algebraic equation P(x#)=0 expressed by Eq. (39), as is well
known, lie in the sector

larg (—a,)|>=/4, or  |arga;|<3r/4

by the principle of the argument in the theory of complex analytic functions.
But for the viscous case, it is very difficult to do the same discussion as done by
PLEsseT and Hsien (1960) because when u=wve®”* the polynomial P(ux) becomes

P(ver*)= M(v)+iN(v)

where M(») and N(») are the real and the imaginary parts of P(x«), respectively:

Mv)=— <«/2 v+B)(v —w,?) — C(ﬁz}+7§~)
Nw)= <5vz+ j%f—v)(—v‘+wi)+C('%~v+B>v2+aE(1+ W .
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Here if C=0, then P(we'”*)=0 has no positive real root, that is to say, M(v)=0 and
N(@)=0 have no common positive real root. This discussion is valid for the small
C, ie., for slightly viscous liquids. We may also say that except the very special
physical values, M(v)=0 and N(»)=0 have no common real root. Therefore we
may use the principle of the argument for the viscous case as well as for the
inviscid case. After the direct inversion integral of the transformed solution and
the change of the contour of integration by use of CaucHY’s residue theorem, the
asymptotic expressions follow with the aid of WaTsoN’s lemma (CARRIER et al.
1966) for large ¢

Oi(r, B)= ?(‘0(5072%%7‘3 % exp [ —(r— RO)/(Z’(I)/DI)%] -exp [i(wt +=[2)]+0(*) ; (45)
1/2,5—ir/d __ 4
alt)=— “e"(ﬁw?‘éﬁigeﬁﬁ) L exp litot + /21406 (46)
0.(8) = asEw (i P) 0(£-2) - 47)
2()—WeXp[z(0) +7/2)]+00E?); (

and

172 ,—ix/4 __ A, R
sty = LT WNELIP 207238 exp ot + 5121+ 0. (48)

These asymptotic expressions are similar to those for the inviscid case only except
the form of the polynomial P(x). If C in the polynomial P(#) goes to zero, all of
Eqs. (45) through (48) become asymptotic expressions for the inviscid case.

5.4 Examples

As examples for the asymptotic time behaviour with viscosity, in the first
place we shall study the dimensionless amplitude of the perturbed radius in the
expression of Eq. (46). Now, let us assume that the gas in the bubble is air with
the initial temperature 20°C. And as the liquids outside the bubble we adopt
water as the most general liquid, glycerine as one of the high viscous liquids and
mercury as the liquid with the large surface tension. These fluids have the
physical quantities as shown in Table 1 (JSME, 1966).

Table 1. Physical quantities of liquids and air at 20°C.

air ' water glycerine‘ mercury } unit
density o | 0.00116 0.998 1.264 < 13.546 g/cms3
thermal conductivity k | 0.000257 | 0.00594 | 0.002849  0.0858  joulefcm.s°C
thermal diffusivity D | 0.219 | 0.00142 | 0.000944 | 0.0456 cms
Sps(glf\ilin geat at constant | 70 ‘;7 " ;"”’;ﬁ?/g’;gf:
surface tension g 0.0739 | 0.0637 0.481 - g/cm
shear viscosity p 1 0.000181 | 0.01 14.896 0.0155 \ g/cm. s
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Here we shall try to examine how the effects of viscosity and surface tension
appear in the basic equations. Since Eq. (29) becomes, with the derivative &=dx/dt*
with respect to the dimensionless time *=wf,

(1)2
f&Ajc+5(r)i‘—Wx=p—e, (49)

the dimensionless numbers such as W, V=00 and ®/a show respectively the
effects of surface tension, viscosity and frequency in the oscillating field. Hence
these dimensionless numbers are peculiarly suitable for describing the effects on
the dimensionless amplitude of the perturbed radius x. And from Eq. (46) we
also have

_Naclfo+Aw'?e” " —iB]|
- [P(a)l”'ze""“)] :

Edi (50)
These equations (49) and (50) become important later in the discussion of the
effects of viscosity and surface tension.

Next we consider two models in order to compare the effects of viscosity and
surface tension with that of surface tension, which are respectively named VW
and W models. In Figs. (a) the solide lines are for the VW model and the
broken lines are for the W model. For the very small bubble considered here the
surface tension usually plays a more important role in motion than the viscosity,
so we need not consider the models with the effect of viscosity alone. Next we
shall give some explanations for each figure.

Fig. a-1 shows for water how the ratio of amplitude of the radius |z| to the
input perturbed pressure ¢, depends on the initial radius. Generally speaking, the
larger the initial radius, the smaller the ratio |z|/e,. Since the VW model which
contains the effect of viscosity differs little from the W model, we can not
distinguish between them in this scale.

Fig. a-2 shows the similar results, namely, the change of |z|/e, When the
liquid outside the bubble is glycerine. In this case the effect of viscosity appears
considerable at the high frequencies and at the small initial radii.

Fig. a-3 shows the ratio |x|/e, with a constant initial radius changes according

w = 107 w =105
1075 : .
W model of water
i L i 1 .
107° 1074 1073 102  Ro (cm)

Fig. a-1. The ratio of amplitude of the radius |z| to the
input perturbed pressure ¢, for water.
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of glycerine

---— V W model

i0-° 10"* 103 102 Ro (cm)

Fig. a-2. The ratio of amplitude of the radius |z| to the
input perturbed pressure g, for glycerine.

(R3]
€o
1072
10-4l Ro=10""

Ro= 1072
0-6| Ro-= 1073

Ro= 10"%(cm)
1078 A

Vy moqel of ymfer ’ )

5

"' lo 10® 10° 107w (Hz)

Fig. a-38. The dependence of the ratio |z|/e, on the frequencies.

lo'ﬂ
S Ro= 0.0001 (¢m)
~ lycerine
=04l qly
z
2
xl 6
Z o
1 water
E
=108
- mercury

A A 1 L

10 102 0% 10% 105 10% o (Hz)

Fig. a-4. The effect of viscosity for the fluctuation of the bubble wall.
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- - 5
0! w =105(HZ) water
11
€0 -3 — W model
10 mercury ——— = V W model glycerine
1 i Il 1 A
10°5 10™4 03 102 Ro (cm)
Fig. a-5. The ratios |z|/e, for three liquids at the constant
frequency w=105[Hz].
107 \wot&
I x
Er T
10 mercury —— W model ~ N
Ro=0.0001 (cm) ———VWmodel glycerine
o=l 10 102 10® 10% 10% 10 wiHZ)

Fig. a-6. The ratios |x|/¢, for three liquids at the constant initial
radius R,=0.0001 [cm].

to frequencies for water. For less than w=10%[Hz] the ratio |z|/s, is a constant
value (0.3) independent of the initial radii. And we have the smaller ratio |z|/e
at higher frequencies for the larger initial radii.

Fig. a-4 shows how the effect of viscosity appears for the different liquids
surrounding the bubble at the initial radius R,=0.0001 [cm]. There is the maximum
effect of viscosity near the frequency w=10°~10°[Hz] independent of kind of the
liquid used. This fact can be explained by Eqgs. (49) and (50).

Fig. a-5 shows how the ratio |x|/e, changes for the initial radii and the
different liquids outside the bubble at the constant frequency «=10°[Hz]. In
comparison with the curves for mercury and glycerine, the ratio |x|/¢, for mercury
of which surface tension is large is smaller than that for glycerine in the range
of the small initial radii. But the ratio |x|/s, for glycerine with large viscosity is
smaller than that for mercury in the range of the large radii.

Fig. a-6 shows how the ratio |x|/cq changes according to the frequencies for
the three different liquids outside the bubble at the initial radius R,=0.0001 [cm].
The ratio |x|/e¢, becomes a constant value for less than the frequencies 10 [Hz].
The constant value can be obtained in the limit w — 0 from Eq. (50) to be 1/(3+2W).
And its value is 0.17 for water, 0.18 for glycerine, and 0.046 for mercury. But it
has a tendency that the ratio |x|/e, becomes small for high frequencies and especially
the effect of viscosity is remarkable for glycerine.

Assumption of Uniform Interior

At the high frequency the assumption that the interior of the bubble is uniform
seems not to be correct. In order that the interior of the bubble is uniform, for
example ; the propagation velocity of acoustic pressure although it is quite fast,
must be larger than R,/r, where ¢ is the characteristic period of vibration. If the
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greater part of the change of pressure on the surface of the bubble caused by the
vibration can not reaches at the center of the bubble within the characteristic
period, the assumption of uniformity is not valid. Therefore, we must examine
the validity of this theory based on the uniformity. And we can estimate the
range of radius from the uniformity assumption of c,r» R,, where ¢, is the speed
of sound. Therefore, we shall obtain the following inequality

27ZCo>> a)Ro.

Since the speed of sound is 340 m/sec at 15°C (2rco=2.14x 10° cm/sec), we may say
that the uniformity assumption is a good assumption in the range of R,<10~*[cm]
at w=10*[Hz]. If wR,>2rc,, the interior state of the bubble is a function of space
and time. Then we must analyze the interior state of the bubble more precisely.

6. Case B. Bubble Dynamics with Nonuniform Interior

If the change of state is caused in the range of wR,»2rc,, the requirment is
no longer imposed that conditions are uniform throughout the bubble. The basic
equations for the formulation of this problem are Eqs. (13) through (16) for the
bubble of a perfect gas. And the basic equations for the surrounding liquid and
the boundary conditions are the same ones as for the uniform case.

6.1 Linearized System with Dimensionless Parameters

The linearization procedure is carried out in the same way as before with the
following definitions;

x=(R~Ry)|R,,
0, =(T,—T.)Tw,
02= (TZ_ TN)/Tooy

7=(02— p0)/ 0o,
5@) :(Pw(t) —PO)/PD)
and

D+ W=(Pr— Py)/ P,

where x, 0;, 0;, » and p are small quantities compared with one and are of the
same order as e.

Linearization of the governing equations of the system yields the following
equations upon neglect of second-order terms of ¢ with the same dimensionless
parameters as before. For the interior side of the gas bubble, the equation of
continuity, Eq. (13), becoms

on 1 0

DU L = Y ey V=
a T e (o) =0, ®b
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where v,. is the r-component of the velocity of the perfect gas. And also the
equation of motion, Eq. (14), becomes

OVr2 _ Py fjp (52)

The linearized local equation of energy, Eq. (15), is

1 602 _ 1 0 2 802 Poavrgw
Dy ot 5?[’( or  koT. )] (%3)

while the equation of state, Eq. (16), becomes
pla=n+0., (54)
and the equilibrium condition in the bubble is given by
aPy=Bp,T..
On the other hand, for the liquid surrounding the bubble, the linearized form of
the energy equation, Eq. (12), is
— (101). (59)

Finally the dynamic equation (10) of the boundary of the bubble becomes with the
aid of Eq. (19)

&+ adt —a Wr=af p(Ry, t)—¢]. (56)

Furthermore, we will find that the boundary conditions [Egs. (18), (20), and (21)]
expressing the continuity of the temperature, the heat flux, and the rate of
displacement become

UI(RO’ t)ZOZ(Ro, t); (57)
00, _ a0
o(5) 0 ). @
and
V1R, ?) =Rt =0r5(Ry, £) (59)

respectively. Here the boundary R is approximated by the initial radius R, in
order to linearize the equation of the system.

6.2 The Asymptotic Solutions
As in the previous case, we define the Laplace-transformed functions as follows :

2=L(x); b,=L(#,); b.=L(02); p=L(p);
7=L(p); 0=L(v;2);  &=L(e).

After the Laplace-transformation of Egs. (1) through (56) with the initial con-
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ditions of the unperturbed state;
x(r, 0)=2(r, 0)=0,(r, ) =0(7, 0) =v.5(r, 0) =7(7, 0)=p(r, 0)=0,

we have the following equations;

1 d
Sﬂ =+ 7 w(?’zv) =0, fOI‘ 1’—§ Ro (60)

d
pﬁﬁ:—Pg—jf%, for 7=R, (61)
St @ sy P 1 d = )
Dz_ez—f g (r85) BT, 7 dr (r*9), for =R, (62)
ﬁ/ﬂ=ﬁ+éz, for V_S_—Ro (63)

2

L wby=Frb,  for r=Ry (64)

1
(s*4ads—aW)z=alp(R,)—¢], for r=R,. (65)

We also have the following boundary conditions at r=R:

él(RO) = éZ(RO) )

b\ (dby
k‘( ar )no—kz( dr )RO’

#(R)=Rys&.

Then we shall solve the system of these equations in order to find the asymptotic
solutions. Eliminating 4, and 4 in Eq. (62) in virtue of Eqgs. (61), (63), and (60)
yields the following equation with respect to p;
dt . d: . -
ErT(l’P)"F(S)W(TP)-FG(S)(?’P):Q

where

_ PoS? b 1 _ PoS?
Fo=-p, +( wT. D, )s' CO=pan, "

This equation may be written in the form
d? az A
(=) (G —2)rpr=0
where
RS =)+ FH 46T
The general solution for p may be now written as
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ﬁ:l’,[/l1 cosh 4,7+ A, sinh 4,7+ As cosh 2.7+ A, sinh A.r],

since p is to finite at =0, A,=—A;. Equations (60) and (61) give

1 &
= ‘0052 7 d?’?(yp)‘
Since # is also finite at =0, and since in general i,=2,, we also have A,=—A4;=0.
Thus
ﬁ:%{Az sinh Zi7+ A, sinh 2577 ; (66)
N P() 1 2 . N
=——- —[£A, sinh 4,7+ #A, sinh A,7]. (67)
00S s

From Egs. (61), (63), and (64) we obtain the rest solutions for o, 92, and 4,, respec-
tively ;

P B [A2< A cosh 47 smhZ e ) +A4< A cosh &gy sinh 2(227’) )], 68)
008 v 7 7 7
ézzl[/h(l—!ﬁ) sinh 4,7+ A, (l— PM; ) sinh er], (69)
e a ©0S2 a PoS
. A .
b= = exp[—(s/Dy)""r), (70)

where the requirement that 4, remains finite as # — co has been imposed and it is
easily verified that » -0 as » > co. It should be noticed that these solutions
expressed by Eqs. (66) through (70) are the same ones obtained by PLESSET and
Hsien for the inviscid case but for the constants A, A, and A, which are
functions of the parameter s. And these constants are determined by the equation
of motion of the bubble wall [Eq. (65)], which has the effect of viscosity, together
with the boundary conditions at »=R. After some calculations we find

1 aésR, i
Ax(s)= a6y WR(S, 22)S(s, 22),
1 a’ésRo
Ayls)=— o) ‘*Q*GT‘R(S, 2)S(s, 1),

where
A(s)=41(A1, A2) — d1(22, A1),
Q(s)=s*+tads—a W,

1 Pk
Ris, )= ==

(1=1,2)
S(S, /{z)zkz(/{l COSh ZzRo"‘Slnh /ZLRo/Ro)+k1[’\/v(é]D1) +1/R0] Sinh /{iROy
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and

Pg _ as
poRis  Q(s)

Here the polynomial Q(s) has the effect of viscosity. And, in principle, we can
determine the quantities of interest such as p, », v, 82, or 4, by the inverse Laplace
transformation. For example,

Ai(sy ) =[~ Doy osh z,Ro—<

poROS ) sinh 21R0]‘S(S, lz)R(S, 22).

pr,t)= *17 S Plr, s)e'ds
2ni Br

1

= S —I—[Az(s) sinh 4,7+ A,(s) sinh A#]e*ds < (71)
27t pr?

where the path of integration [Br] is the Bromwich path. Only the asymptotic
behaviour for large ¢ will be considered here. After the similar discussion to one
done by PLesseT and Hsiegn, the following asymptotic solutions are obtained for
the viscous case:

plr, )=~ —}/—[Az(io)) sinh 4,((@)r + As(iw) -sinh A;(iw)rle, (72)

0a(r, t) :%[Ag(i(n)R(iw, A1(im) ) sinh A,(iw)r

+ A(iw) R(iow, Ao(iw) ) sinh A,(im)r]et s, (73)
P I (i) cosh (i@)Ry _ sinh Ay(iw)R, |
alh f)= oo Row? {Az(lw)l R, R; J
LA (im)[ As(iw) Cojr? A(iw) R, _ sinh Z}z;zlw)Ro] ot (78)
- 0 . 0 .

where the quantities As(iw), Ai(iw), Ai(iw), and 2(iw) are obtained from the expres-
sion given in the foregoing by replacing the argument s by iw. For these high
frequencies we can also easily calculate the pressure and temperature in the
bubble,. and the radius of the bubble wall in the same way as in the case A.

7. Conclusions

A new analysis of viscous effect on the behaviour of a gas bubble in a viscous
liquid under oscillating pressure is proposed in this paper. The effect of viscosity
appears only in the characteristic polynomial. Formal solutions expressed by Eqgs.
(41) through (44) and asymptotic time behaviours expressed by Egs. (45) through
(48) are the same as in the inviscid case except for P(#). For the uniform interior,
the results of calculation show that for glycerine the effect of viscosity is unable
to be neglected and that for water and mercury the viscous effect is negligibly
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small. The assumption of uniformity is no valid at high frequencies. Asymptotic
solutions for nonuniformity inside the gas bubble are shown by Egs. (72), (73)
and (74).

Acknowledgements

The authors would like to thank Professor Yasoo MAaTsunoBu of Keio Univer-
sity for his suggestion and careful reading of manuscripts and Mr. Norio Syoji
for his helpful assistance in calculation. This work is also partly supported by
the Hattori-Houkou-Kai Foundation and the Ministry of Education under research
grants A-975092 for financial assistance.

REFERENCES

CARRIER, G.F. et al. (1966): Functions of a Complex variable, McGraw-Hill p. 253.

Cuapman, R.B. and PrLesseT, M.S. (1971): Thermal Effects in the Free Oscillation of Gas
Bubbles, J. Basic Engng. Trans. ASME, Ser. D, 93-3, pp. 373-376.

JSME (1966): Dennetsu-Kougaku-Shiryo (Data of Heat Transfer Engineering) 2nd. ed. pp.
257, 260-262.

Knarp, R.T. et al. (1969): Cavitation, McGraw-Hill, pp. 98-99, 107-110.

MaLVERN, L. E. (1969): Introduction to the Mechanics of a Continuous Medium, Prentice-
Hall, p. 298.

PiesseT, M.S. and Hsien, D.Y. (1960): Theory of Gas Bubble Dynamics in Oscillating
Pressure Fields, Phys. of Fluids 3-6, pp. 882-893.

PoriTsky, H. (1952): The Collapse or Growth of Spherical Bubble or Cavity in a Viscous
Fluid, Proc. First. U.S. Natl. Congr. Appl. Mech. ASME, pp. 813-821.

RAYLEIGH, L. (1917): On the Pressure Developed in a Liquid during the Collapse of a
Spherical Cavity, Phil. Mag. 34, pp. 94-98.

118



