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On Virtual Mass of Water contained in a Rectangular
Tank whose Side-Walls are Vibrating —II

(Received Dec. 18, 1959)

Fumiki KITO*

Abstract

The author has presented, in the previous paper, theoretical formulae whick
give the value of virtual mass of water, with regard to vibration of side-walls of

a rectangular water tank, full of water. The theoretical formulae were obtained
by calculation of kinetic energy of water, which is in vibration induced by the
vibration of side-walls. This was an approximate calculation, and not a rigor-
ous one. So, there arose the question about the degree of approximaticn of the
given formulae. In the present paper, this question is examined by taking into
account higher modes of vibration of side-walls, and using the minimum prin-
ciple of Lord Rayleigh. From the result of calculation, we see that the formulae
for virtual mass of water in the previous paper are sufficiently accurate for
practical use, at least for water tanks having usual proportions.

The formulae for virtual mass, for the case in which the water is only partial--
ly filled, is also given here.

I. Introduction

Let us consider a rectangular tank which is filled up with water. When side-
walls of the tank vibrate, the water contained in the tank makes also a vibratory
motion. Owing to this fact, there arises the effect called the virtual mass of water,
upon the natural frequency of vibration of rectangular flat plates which constitute
the side-walls of the tank. In the author’s previous paper,” the formulae which
give theoretical value of this virtual mass were presented.

These formulae were not, however, constructed on the ground of a rigorous theory
with respect to combined vibration of elastic plate and fluid mass, but were result
of an approximate calculation based on evaluation of kinetic energy of vibratory
motion of water. Consequently, there arose the question as to whether these for-
mulae are accurate enough for practical uses. In this second report, the author
intends to give the result of his examination of the degree of approximation, by
means of the method called Lord Rayleigh’s minimum principle. According to the
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122 Fumiki KITO

result of this examination approximate formulae given in the previous paper are
seen to be accurate enough for practical purposes, at least for those water tanks
having usual dimensions. "

Also, in the previous paper, the water was assumed to be completely or almost
completely filled up in the tank. Since then, there arose a request for formulae
of same kind, for the case in which the water is only partially filled in the tank.
The author has made the formulae for virtual mass for this case of partially-filled
tank, which is also reported herin.

As in the previous paper, the water is assumed to be an incompressible ideal
fluid, and the vibration to be of infinitesimally small amplitude. Also, we use the
following notations: —
¢ = velocity potential of vibratory motion of water, w= transverse displacement of
rectangular plate, A= vibration amplitude of ditto, w= angular frequency of vibra-
tion, L=length of the rectangular water tank; H= its height, B= its breadth, om=
density of material composing the rectangular plate, p., = density of water, W=wA
(amplitude of transverse velocity of the rectangular plate); T\»= kinetic energy of
the vibrating plate, for one sheet of the panel Hx B, T, = kinetic energy of water,
being the value referred to one panel of side- wall (only one face of which is in
contact with water), V=LBH=whole volume of the tank, U= strain energy of
rectangular elastic plate, for one
panel of dimension Hx B, k= depth
of water, when water is partially
filled, a=h/H, m=z|L, s=z/H. We
take rectangular coordinate axes (o,
A\ x, ¥, 2) as sketched in Fig. 1. In the
SR ~______j i__ J previous paper, the four specified
P $O cases (A), (B), (C) and (D), were ex-
QL/ Side  wall | AR amined. In the present report, how-
! e . ) ever, the two cases (A) and (C), which

, P is chosen from among the above-
mentioned four cases, will be taken
up, and the degree of accuracy of

z

top wall

Ay

Fig. 1. Sketch of a rectangular water tank

the approximate formulae will be here examined.
Thus, formerly, the displacement of the rectangular plate was taken to be (ten-
tatively) given by :——

w;=A, sin mx sin sz sin wt (1)

while in the present paper, supplementary term representing the modification of
wave-form will be added to Eq. (1). And, it will be examined how much this
modification (or correction) term should amount to.

(2>
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II. Case A. Rectangular Tank completely filled up with Water
(two Side-Walls making in-phase Vibration)

The transverse velocity of rectangular y
plate, corresponding to displacement as ’
given by Eq. (1), is e — /L—\\\\

N

dw, _

i W, sin mx sin sz cos ot (2) —_——

N~
~

where W,=wA,. Induced by this motion -
of side-walls, the water contained in the - =
tank will also vibrate. This vibrational Fig. 2. in-phase vibration of side-walls

motion of water is expressed by a veloc-

ity potential ¢,, which satisfy Laplace’s equation together with suitable boundary
conditions. As was shown in the previous paper, value of ¢, corresponding to the
case (A) is given by

$0=DBoofoo(¥)+ L ZBisf1;(y) cos(mix) cos(sjz) cos wt (3)
where we have put,
Joo(¥)=y,  fis(y)=sinh(ni;y), Be= —7‘:,— W, cos wt,

4e | 1 W, cos ot
2

Bu=r == " my cosh(m,BID)

ey =[mi P+ (s ]

The sign };}; of double summation means the double summation for :=0, 2, 4,------ ;
§=0, 2, 4,5+ (1=j=0 being excepted). When either one of / or j is equal to 0 we
take =2, while when both 7 and 5 are not equal to 0 we take e=4.

Further, we take a modification (or correction) term into consideration. Here,
at first, we shall take the modification term of the form

d;’t_z =W, sin 3max sin 3szcos wt (4>

for transverse velocity of the rectangular
plate, as a trial case. (see Fig. 3) The value
~ of velocity potential ¢,, which corresponds
to the vibratory motion of water contained
in the tank, induced by the vibration of side- # SS——— ¢
walls as given by Eq. (4), could be obtained
by the same method of calculation as shown ‘
in the previous paper. The value thus .obtained is as follows: ——

2=Coo foo(¥)+ 2 X Cis fi;(y) cos (mix) €os (siz) cos wt (5)
where we put :

Coo= 9‘::2 Wz COS wlt '

w, + w;

Fig. 3. displacemehts w, and w,

(3)



124 Fumiki KITO

C.i= 36e 1 W cos wt
¥ n? ( 9)(]2—'9) n;j cosh (7’1ng/2)

the meaning of the sign of dovble summation, and the value of ¢, in Eq. (5) are
the same as in Eq. (3). When we consider a mode of vibration which consists of
superposition of two vibration as expressed by Egs. (2) and (4), the transverse ve-
locity of the side-wall will be (dw,/dt)+(dw./dt), while the velocity potential of the
corresponding vibratory motion of water will be given by ¢=¢,+¢,. The value of
kinetic energy T» of water for this combined vibratory motion ¢,+¢, will be given
by the surface integral of the form,

T tof 102

where o/on denotes the differentiation in dircction of outwardly drawn normal to
the surface, the integration being to extend to whole boundary surface of the water
region. Taking account of the fact that only side-walls are vibrating, the value
of T can be put into the following form: —

Tw=T11+T12+T21+T22 (6)

T, = —owfd)l dwl

le——owfd)l de as
T21——owf¢z dwl as

Tu= 00 [ 6222 dws 4

It is to be understood that the value (6) is the kinetic energy of water to be at-
tributed to each one panel of side-wall. The integration in Eq. (6a) is, therefore,
to extend to one panel of side-wall. Actual values of Ty, ect., are found to be as
follows: ——

T,= %Pw (W, coswt)PV

where

(6a)

8 16e 1 * tanh (n; B/2)
_F+Z 7t {(i’—l)(j’—l)} (nuﬁ) 0
le = Tzl = —%—pw wW,\W, (COS wt)’ V.
8 144 e tanh(n;;B/2)
[W +ZZ{ (2—9)2—9)(7?—1Y j2—1)}F (n.-j‘B) (8)
Tp= —%—pw (W, cos wt) V-
¢ ¢ tanh(n;;B/2)
[sw +ZZ{(1 9)(;z } = ;B (9)

(4)
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III. Case C. Rectangular Tank almost completely filled with Water
(two Side-Walls making Opposite-Phase Vibrations)

In this case, we take at first that side-walls are vibrating as expressed by Eq.
(2). The corresponding value of velocity potential ¢, was seen to be

¢,=2123 Bij fi{y) cos(mi x) cos(sjz) cos wi (10) -
where we put ‘
fiky)=cosh(n;;y),  Boo=0,

B.,— 2t . 1 . Wicoswt
VT T =1Yj?—1) iy sinh(n;; BJ2)

The sign XX of double summation is to be taken for
=0, 2, 4,-+-+; 7=1/2, 3/2, 5/2,++-+-- . eis to be taken equal
to 2 when =0, but equal to 4 when 7+0.

Next, we take a modification term. In this case (C), the
boundary conditions at top- and bottom surfaces are dif- \
ferent. In view of this fact, we put (Fig. 4)

u,

Fig. 4. displacements
w, and w
‘Z‘;’ =W, sin mx sin 2s2c0s ot (11) ! :
The corresponding value of velocity potential ¢, can be obtained by the similar
method as above, and is found to be

b,=22 C;j f:5(y) cos(mix) cos(sjz) cos wt (12)

where we put
Cumtef L) Wicosul
72 \ (12— 1X2—4) S n; sinh (n;; B/2)
Also, we take =0, 2, 4,--+---; j=1/2, 3/2, 5/2,---- -; and e=2 for i=0, e=4 for i+#0.
Estimating the value of kinetic energy of water T, by the consideration as before,
we have (alloted to each one panel of rectangular pl’ate);

T, = —;—pw(W, o8 wi)? %V-

1 ¢ coth(n;;B/2)
22 {gm=n) = o) (13
T12= T21= %pw (Wl WgCOSzwt)—frV .

2 1 coth (n;; B/2)
ZZ{(i”—l)(j‘—'-4)}{(z”-—l)(j’—l)}s ) s

Tzz‘—‘ %pw (Wz COS wt)’—;?‘—v .

-2 22 coth (n;; B[2) .
ZZ{(i’—l)(j’—«l)} R W . (15

(5)
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IV. Examination of Accuracy of Approximate Formulae for Natural
Frequency of Vibration of Side-Walls of rectangular Water-Tank

Ler us first, take up the case (A) considered in section II. The strain energy U
of an elastic flat plate, which is in vibration, is given by

ff[(%zﬁ; %Zg )2_2(1_'}){?;7“;% (axaz) }]dxdz (16)

where we put D=flexural rigidity of flat plate=FEhn?/[12(1—2?)], hn=thickness of
the plate, »=Poisson’s ratio of the material composing the plate, E=Young’s mod-
ulus of the ditto, w=transverse displacement of the flat plate. For the case (A)
the value of transverse displacement w is assumed to be

w=w,+w,=[A, sin mx sin sz2+ A, sin 3mx sin 3sz] sin w¢

(W,=wA,, W,=wA,) Putting this value of displacement w into Eq. (16) we obtain
U=1 D(m2+sz) Hr 421 aA ] sin? o

The value of a for the present case (A) is found to be equal to 81. The kinetic
energy Tw of plate proper is,

T= pmhm [f (atz ) dxdz——pmhm LH w?[ A+ A2] cos? ol (18)

Thus, when the rectangular plate is vibrating, together with the water contained
in the tank, total kinetic energy will be the sum of Egs. (6) and (18), viz.,
T:=Tw+Tn, while the potential (strain) energy is U. Taking the mean value
over one period ({=r/0) of oscillation, we may write ;

U=CU(A12+¢1A22)

T:=0Cr(KiA2+FA A+ K, A% (19)
where Cp, Cr, K,, K, and ‘F are constants. Equating these values U and T, (each
being timely mean values), ahd putting A,/A;=\ for shortness, we have,

2

o= = KA PR 20)
Now, if the mode of vibration was correctly given, the expression (20) would give
just exact value for angular frequency o of free vibration.

But, since the expression for w=uw,+w, was chosen rather arbitrarily, the expres-
sion (20) will give only an approximate value. This being so, we determine the
value of A(=A;/A,) so as to make the value of expression (20) a minimum, accord-
ing to the principle of Lqrd Raylezgh” - This requires that A must be a root Anm
of the quadratic equatlon - »

F+2(K;—aK)A-aF)\*=0 . C 21)

2) G. Temple. W. G. Bickley; Rayleigh’s Prmczple and its Applzcatwns to Engi-
neering, Oxford Univ. Press, 1938, T

(6>
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The value wn which is obtained by putting the value An in place of A into the
expression (20), will give closer approximation to the natural frequency of vibra-
tion, than that given in the previous report. And the amount of An. will give a
measure to check the degree of approximation to it.

Similar treatment can also be made for the case (C) of section III. For this
case, we have

w=w,+w,=[A, sinmx sinsz+ A, sinmx - sin 2sz] sin wt

The value @ in the equation (17) is seen to be, a=(m?+4s2?/(m?*+s?). The expres-
sion (18) is left unchanged. Using this value of @, together with the expression for
Tw=T+T134T:+T,, as given in section 1II, we can obtain the values of con-
stants K,, K, and F, and hence also the value of root An by Eq. (21).

Furthermore, we can make similar estimation for other mode of vibration of the
rectangular plate, such as, for example,

w=w,+w,=[A, sinmx sin sz+ A, sin 3mx sin2sz] sin ot

V. Numerical Example

In order to illustrate numerically the result of study given in previhus section,
let us take the case of a rectangular tank having the dimensions L=5m, H=3m,
B=3m,which was also quoted in the previous paper.

Case (A) For this case, the values of the coefficient which is defined by

Tu = —Pw(Wl COoSs (Dt)z VMU
T,,= —%—pw W, W, cos?wt VM,
Tgl = —- pw W] Wz cos? wt VMz;

Tzz = — pw (Wz COS (J.)t)2 VMgz

are found, by numerical calculation of Egs. (7) (8) and (9), to be M,,=0.0985,
M, ,=M, =0.00367, M,,=0.0282. This means that virtual masses of vibration are
4.40, 0.165 and 1.269 (expressed in terms of equivalent values of tons) respectively.
Assuming that the vibrational mass of the plate itself is 0.30 (in ton), we infer
that K, : F : K,=4.70:0.330 : 1.57. Inserting this proportional val'ue, and also the
value ¢=81 into Eq. (21), we find that A,=0.00326, which is very small in compar-
ison to unity.

Case C For this case, by numerical calculatlon we obtam the values M,;=0.16,
M, = M, = 00438, M,, = 0.0675. The Vlbratlonal masses correspondmg to these
are, 7.20, 1.97 and 3.04 (in equlvalent values of tons) Therefore\ Kl F K,=750:
3.94: 3.34. Also we have e . :

(&)
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(1, 4\t/(1  1\t_
a=(+5) /([ +s) =10
Putting these values into Eg. (21), we obtain the value A»=0.0268, which means
that the ratio of amplitudes A,/A, is only 2.7%. The correction to natural fre-

quency corresponding to this value of Am is obtained by taking the ratio of natural
frequencies (26) for A=0 and A=An respectively. We see that the correction does

not exceed 1%.
In the above discussion, two cases among the four were taken up, and the wave

form of the plate displacement was rather arbitrarily assigned. So that we may
have no right to insist that the discussion about the correction term was done com-
pletely. But, from the result of the above discussion we may safely infer that the
correction for natural frequency will not exceed 2 or 3%, and that the formulae
given in the previous report may be said to be accurate enough for practical use.

V1. Rectangular Tank in which the Water is only partially filled

For the case in which water is not
filled up to the top (z=H) but only
/ \\ 7/W / \\ , partially filled to the level z=h (Fig. 5),
| b= — / | b we made similar calculation as given
@ —t l | | in the previous report, and obtained
| H— —— A l\ / the value of virtual mass of water
\T—— | 1 \|! corresponding to the vibration of side-
!;' - - __{ walls of the tank. The result of cal-
ST o culation is as follows. Namely, the
value of kinetic energy T. of the
whole water region, alloted to each
one panel (whose one face is in con-
tact with water) of side-wall, is found
to be
Tw=L o, [Wycos t]V,M  (22)
w |——T— | H 2

;W T A ‘ And, the virtual mass (of vibration)
N - Mo, is given by Muw=puVaM. Vi=
Tt —— - LBH is the volume of water contained

B - R . .
2 2 in the tank. The value of coefficient
Fig. 5. rectangular tank in which the M, for the case of in-phase vibration

water is partially filled up of side-walls (Fig. 5(a)) is,
. . 2 .

M= %ZZ[H((;_}){;&J:I}()Q ”)] ) atangggi\/}j/Z) 9

(8)
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where we put a=k/H, and
BN;;=n[(iB/LY+(jB/h)*]"/*

also, the double summation is to extend to =0, 2, 4,------ 37 =a'+-%; 0=0,1, 2,----- y
and also, e=4 when 70 but e=2 when /=0. As to the case of opposite-phase
vibration of side-walls, we have to write coth instead of tanh in the above expres-
sion (23). It is to be understood, as in the previous report, that we assume the
value of w?H/g to be very large in comparison with unity, and that the Eq. (23)
gives approximate value.

Lastly, for the case in which the bottom plate is vibrating, as shown in Fig. 5(b),

o1

Fig. 6. Value of coefficient M for virtual mass, for a rectangular
tank partially filled with water

we have made similar calculation and found that the value of coefficient M is as
follows : ——

=16 vis [ 1 ’

M=) ) et ==y 29
where we put

Eiy==[(¢h/LY*+(jh/B)*]/*

vi;=[ktanh&;;—&;;]1/[k—&;; tanh§;;]
k=w?h/g, and the double summation is to extend to /=0, 2, 4.------ 5 §=0, 2, 4,-en;
also, when 7+#0, j#0 we have =4, but when j=0, /0 or when j#0, /=0 we have
e=2, the value of & for /=0, j=0 being equal to unity. It is to be noted that,
when i=0, =0 we have »;;/:;=1.

Since the right hand side of Eq. (24) contains w, which is not yet known, we
must resort to some kind of method of successive approximation, in order to obtain

(9)
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the numerical value of M. But, in actual circumstances, there are many cases
wherein the value of % is known to be very large in comparison with unity. In

that case, we can take approximately that, v;;=tanh£;; and so the left hand side
of Eq. (24) is almost independent of w.

(10)



