
Adaptable Architectures for Acceleration of
Protocol Processing using FPGAs

Akagic Amila

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

School of Science for Open and Environmental Systems

Graduate School of Science and Technology

Keio University

September 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KeiO Academic Resource Archive

https://core.ac.uk/display/145772731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The emergence of multi-Gigabit Ethernet and ever-increasing volume of network traffic on the

Internet has begun outpacing server capacity to manage incoming data. In recent years, the

network traffic exhibits constant increase, due to the confluence of many market trends. Today,

data centers are considering employment of new technologies, such as 40- and 100-Gb Eth-

ernet, however their adoption rate is still rather small. The major concern is that the potential

for such high bandwidths would not be exploited, due to the communication overhead that con-

sumes high levels of processor’s processing power. One major source of processing overhead

is the TCP/IP stack. This problem has been addressed in various methods. One method is to

dedicate one or more cores for TCP/IP processing exclusively. However, with the new paradigm

shift to multicore processors, it is hard to guarantee the high throughput for inherently sequen-

tial processes, such as cyclic redundancy checks. Other methods include protocol processing

offloading onto a specialized hardware and using special large packets known as jumbo frames.

This has been specially beneficial in storage applications that transfer large blocks of data.

The future networks also seem to take a new direction toward so called programmable net-

works, which will allow greater agility, programmability and flexibility. In this dissertation, we take

another step in this direction by utilizing programmable hardware to achieve the same goals.

At first, we target one of the challenging aspects of iSCSI processing, which is processing of

digests or Cyclic Redundancy Checks (CRC). CRCs are often characterized as computationally

intensive, and thus often substituted with less efficient error detection schemes. We propose a

non-adaptable and fully-adaptable CRC accelerators based on a table-based algorithm, which

has been rarely used in hardware implementations. The non-adaptable CRC accelerator is suit-

able for acceleration of a specific application, and has no ability to adapt to a new standard or

an application. The fully-adaptable CRC accelerator has ability to process arbitrary number of

input data and generates CRC for any known CRC standard during run-time. We modify table

generation algorithm in order to decrease its space complexity.

We also address the problem of efficiently implementing IP-based iSCSI Offload Engine

which operates on the top of the TCP/IP protocol stack. Based on the analysis of iSCSI traffic,

CPU utilization and throughput of software-based Open-iSCSI, we propose a new architecture

which offloads data transfer and related non-data functions to an FPGA based adapter. The

resulting architecture relieves the host CPU from computational burden imposed by software

Abstract ii

implementations. The iSCSI Offload Engine allows very low utilization on the host CPU of ap-

proximately 3%.

Our work is a step toward the goal of using hardware accelerators to enable higher levels of

agility, programmability and flexibility in future networks.

Acknowledgments

There are a number of people without whom my doctoral study might not have been accom-

plished, and to whom I am greatly indebted.

Most of all, I would like to express my deepest gratitude to my supervisor, Professor Hideharu

Amano. His constant, patient and generous guidance, suggestions and hopeful encouragements

have been my endless source to pursue my work for three years I’ve spend in his laboratory. He

has always given me encouraging words whenever I had a difficulty in my research life, and

reviewed every paper that I have written with constructive comments. I am also grateful to all the

members of “hlab” and ASAP group. Especially, Kazuei Hironaka, Keimei Miyajima, Takayuki

Akamine and other h_superusers with technical support and significant knowledge.

For this dissertation, I would also like to thank my committee members: Naoaki Yamanaka,

Iwao Sasase, and Fumio Teraoka for their time, interest, and helpful comments.

I wish to express my reverence and heartfelt gratitude to Prof. Walid Najjar from University

of California, Riverside, for introducing me to this topic, which afterwards became my main fo-

cus of research. He has shared his great experience to enlarge my knowledge on computer

architecture fields, and also provided me with the crucial evaluation environment for this study.

I’m grateful to Professor Novica Nosovic and Professor Adnan Salihbegovic, my former pro-

fessors who had addressed evocative words on every milestone in my university life at University

of Sarajevo and here at Keio. I would also like to express my reverence to many other colleagues

and staff members from Faculty of Electrical Engineering, University of Sarajevo for being sup-

portive during my studies.

My deepest reverence and unfathomable sense of gratitude goes to Zejnil Velic, Zikret Dzana-

novic, Redzep Husejnagic, Omer Mustafic and many other professors, who lost their lives in the

Srebrenica Genocide. In the time of madness, you encouraged curiosity and a passion for learn-

ing, that has changed my life forever. I will never forget Zejnil Velic’s colorful drawings from

Biology class, who helped us memorize every lesson with ease. He thought me one of the most

important concept in life: "If you can’t explain it simply, you don’t understand it well enough".

I gratefully acknowledge the funding sources that made my Ph.D. studies possible. First

and foremost, I wish to express my sincere gratitude to Ministry of Education, Culture, Sports,

Science, and Technology of Japan for awarding me Monbukagakusho Scholarship. This ex-

traordinary opportunity enriched my life beyond all my expectations. I experienced a sense of

Acknowledgments iv

personal achievement that felt very different from professional achievements. I appreciate the

opportunity to experience the wonders of Japanese cultures and to understand its history a little

bit better. Second, I was funded by the Global COE (Center of Excellence) for the first 2 years

and I was honored to be GCOE Research Assistant. My gratitude extends to GCOE’s project

leaders, Professor Naoaki Yamanaka and Professor Masayasu Yamaguchi, for their exceptional

leadership and support during my studies. Third, my work was supported with grants from Keio

Leading-edge Laboratory of Science and Technology. I’m thankful to all administrative staff from

all three sources for their professionalism and helpfulness.

My time in Japan was made enjoyable in large part due to many friends and groups that

became a part of my life. I’m especially grateful to KIND, MIFA and Keio Welcome Net groups

for their efforts to introduce Japanese culture to foreign students. My unbounded thanks to all

my friends, especially Alma Halilovic Okajima and Taro Okajima, who helped and supported my

life in Japan countless times.

Lastly, I would like to thank my family for all their love and encouragement. For my parents

Djulzida and Mirsad, who raised me with a love of science and supported me in all my pursuits,

and my brother Adnan for his constant support. I’m especially grateful to my grandparents Behija

Temim and Munib Talovic, whose values are deeply embedded in my character, and who have

been my silent advisers and supporters whenever I felt lost.

And most of all for my loving, supportive, encouraging, patient and the best husband Emir

Buza whose faithful support during all stages of my Ph.D. is so appreciated. Thank you.

Amila Akagic

Yokohama, Japan

September 2013

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Background . 1

1.2 Objective . 3

1.3 Contribution . 4

1.4 Dissertation Organization . 5

2 Cyclic Redundancy Checks and iSCSI initiator 8

2.1 Error Control Coding . 9

2.1.1 Types of Errors . 10

2.1.2 Types of Error protecting codes . 11

2.1.3 Principles of Block Coding . 11

2.1.4 Error Detection Schemes . 15

2.2 Cyclic Redundancy Checks (CRC) . 16

2.2.1 Algorithms for CRC Computation . 16

2.2.2 CRC Standard . 22

2.2.3 Related Work . 23

2.3 Internet Small Computer System Interface (iSCSI) initiator 25

2.3.1 The iSCSI Protocol . 25

2.3.2 Processing of iSCSI Read and Write commands 25

2.3.3 Implementation Approaches . 28

2.3.4 Performance Analysis of Open-iSCSI . 29

2.3.5 Related Work . 30

3 High Performance Reconfigurable Computing 31

3.1 Accelerator Based Computing with FPGAs . 33

3.2 Classes of data processing architectures . 34

3.2.1 Programmable Architectures . 35

Contents vi

3.2.2 Reconfigurable Architectures . 37

3.2.3 Application-Specific Architectures . 40

3.3 Overview of Field Programmable Gate Arrays . 41

3.3.1 FPGA Programming Technologies . 41

3.3.2 FPGA Architecture . 43

3.3.3 Configurable Logic Block . 44

3.4 Hardware Design Flow . 47

4 High-Speed Fully-Adaptable CRC Accelerators 49

4.1 Design of a CRC Accelerator . 50

4.1.1 CRC Generation Module . 52

4.1.2 Tables Generation Module . 53

4.1.3 Effects of architecture’s scalability . 57

4.1.4 The IP* Core Interface . 59

4.2 FPGA Implementation . 59

4.3 Evaluation . 60

4.3.1 Non-adaptable CRC accelerator core . 60

4.3.2 Fully-adaptable CRC accelerator . 61

4.3.3 Comparison to Related Work . 64

4.4 Summary . 65

5 Design and implementation of IP-based iSCSI Offload Engine on an FPGA 67

5.1 Design and implementation of iSCSI Offload Engine 69

5.1.1 The Reception Module (Rx) . 73

5.1.2 The Transmission Module (Tx) . 75

5.1.3 The CRC Generation Unit . 76

5.1.4 The Control Module . 77

5.1.5 Modification of the Open-iSCSI Initiator 79

5.2 Implementation Results and Analysis . 82

5.2.1 iSCSI Offload Engine Board . 82

5.2.2 Elapsed time of main operations . 82

5.2.3 CPU Utilization and Throughput . 83

5.2.4 Reconfiguration time . 85

5.2.5 Resource Utilization . 85

5.2.6 Comparison to Related Work . 86

5.3 Summary . 86

6 Conclusions 88

6.1 Concluding Remarks . 88

Contents vii

Bibliography 93

Publications 99

List of Tables

2.1 A linear block code with k=4 and n = 7. 12

2.2 A list of parameters defined by a CRC standard. 23

2.3 A list of CRC standards with associated applications and protocols. 24

3.1 Acceleration benefits on Virtex FPGAs . 34

3.2 A comparison between fine- and coarse-grained architectures. 39

3.3 A comparison summary of selected architecture domains. 39

3.4 Resource comparison between five Xilinx generations of FPGAs. 46

4.1 Resource utilization of R Modules in (TRi + 1)-stage pipelined architecture. 60

4.2 Resource utilization of non-adaptable Slicing–by–N32 and Slicing–by–N64. 61

4.3 Resource utilization of fully-adaptable CRC accelerator. 63

4.4 Number of clock cycles and time required for re-generation of tables. 63

4.5 A summary of different CRC designs from Related Work and our implementations. 65

5.1 A minimum set of opcodes defined on an initiator and a target. 72

5.2 Elapsed time of main operations for a 1500-byte data packet. 83

5.3 Resource utilization of iSCSI Engine on Virtex-6 XC6VLX240T FPGA. 86

List of Figures

1.1 Dissertation organization . 6

1.2 Positions and contributions of this dissertation. 7

2.1 Effects of noise on transmission lines. 10

2.2 A representation of n-bit codeword. 11

2.3 LSFR for polynomial P(x) = x4 + x3 + x + 1. 16

2.4 LSFR2 for polynomial P(x) = x4 + x3 + x + 1. 17

2.5 Layers of iSCSI packet. 26

2.6 Flow diagram for processing of a) Data-In PDU and b) Data-Out PDU. 27

2.7 Three major implementation choices for iSCSI. 28

2.8 The performance profile of processing Data-In PDUs. 29

3.1 Architecture domains as a function of efficiency/performance and flexibility. 35

3.2 An example of a) fine-grained and b) coarse-grained reconfigurable architecture. . 38

3.3 An implementation of 256-tap FIR filter in a) GPPs/ASIPs and b) FPGAs. 40

3.4 Two basic elements used in FPGA implementation technologies 42

3.5 FPGA Block Structure . 43

3.6 Advancement in configuration of a CLB in latest Xilinx FPGAs. 45

3.7 An example of basic Xilinx Spartan-3 Configurable Logic Block. 46

3.8 Design flow of system hardware development. 47

4.1 Design overview of the non-adaptable and fully-adaptable CRC accelerators. . . . 51

4.2 The generic architecture of CRC Generator Module (CGM). 52

4.3 Pseudocode for generating contents of tables. 54

4.4 A schematic of various architectures of Table Generation Module. 55

4.5 Overlapped implementation of eight TGMs. 58

4.6 Throughputs of non-adaptable and fully-adaptable CRC accelerators. 62

5.1 Design overview of the proposed iSCSI Offload Engine. 70

5.2 An overview of two transfer directions during reading and writing processes. . . . 71

5.3 The structure of Reception and Transmission Modules in the iSCSI Offload Engine. 74

List of Figures x

5.4 The architecture of CRC Generation Unit. 76

5.5 An exemplary exchange of information between the initiator and target. 78

5.6 The flow of information between modules in the iSCSI Offload Engine. 79

5.7 Unmodified and modified data-paths for creating a SCSI Command by tx_thread. 81

5.8 Comparison of throughput and CPU utilization for 1500 bytes MTU. 84

Chapter 1

Introduction

1.1 Background

The emergence of multi-Gigabit Ethernet and ever-increasing volume of network traffic on the

Internet has begun outpacing server capacity to manage incoming data. In recent years, the

network traffic exhibits constant increase, due to the confluence of many market trends. Con-

sequently, there is a very high demand for faster transfer, processing, compilation, and storage

of data. In the recent 2012 study [1], Cisco predicts that annual global IP traffic will reach 1.3

zettabytes by 2016. The level of traffic growth is driven by a number of factors, including (a)

an increasing number of devices: 2.5 connections for each person on earth and an estimate

of 50 billion devices by 2020 [2], (b) more Internet users: about 45% of the world’s projected

population, (c) faster broadband speeds: expected to increase nearly a fourfold, (d) more video

content: 1.2M video minutes in every second and (e) Wi-Fi growth, which will account for the

half of the world’s Internet traffic by 2016. These factors are having a cumulative effect of putting

new demands on IT.

The Internet is evolving from the Internet of Things (IoT) [3], with 10 billions of devices con-

nected to the Internet every day, to the Internet of Everything (IoE), also referred to as networks

of networks [4], with more than 50 billion of connected things. The principal difference between

these concepts is that IoT focuses on the volume of connected things, whereas IoE focuses on

the actual connections. In the future, billions of new devices and smart sensors will interact with

one another without any human interaction. Hence, they will generate an enormous amount of

data at an unprecedented scale and resolution. It is obvious that the number of users is ever-

increasing factor that has an effect on a network. This effect is defined by Metcalfe’s law.1 Those

organizations who put the highest effort to harness capacities offered by the new networks of

networks will have the competitive edge.

Thus, there will be many unprecedented opportunities as well as challenges to face in the

1The Metcalfe’s law states that the value of a network increases proportionally to the square of the number of

users.

1. Introduction
1.1. Background 2

next decade. One of the goals of both IoT and IoE is to bring applications available anytime

and anywhere, which will allow users to move with greater agility and speed. In order to support

this idea, data centers have become the connecting technology between users and online ap-

plications. The entire infrastructure of data centers is undergoing a major transformation. The

major initiators of this change are migration of applications to private and public clouds, networks

getting faster and adoption of virtualization. In terms of network connections, data centers today

tend to employ 10-gigabit Ethernet (10GbE). However, they are heavily virtualized or handling

large-scale streaming audio/video applications [5], thus it became apparent that 10GbE isn’t fast

enough. Even though there are numerous network adapter cards that operate at 40- or 100-

gigabit Ethernet, their adoption rate is still rather small. The reasons for this are many, but two

major reasons are the price of the equipment and new wiring connectors.

Another aspect to consider is the processing power or CPU utilization of data center servers.

The potential for high bandwidth has little value if communication overheads consume all the

CPU processing power. In such a case, very little processing power is left for processing other

applications. Thus, CPU utilization is as important as bandwidth. It has been shown that a GbE

link in a single-CPU server can consume close to a half of server’s processing cycles [6,7]. Thus,

the CPU’s processing power would become a bottleneck if architecture of the network interface

card (NIC) would not change. A consequence would be severely limited throughput. One of the

solutions for this problem is to dedicate one or more cores for TCP/IP processing [8]. However,

with maximum operating speed of little above 3 GHz it is hard to guarantee high throughput2.

Other methods to minimize CPU utilization include offloading protocol processing onto special-

ized hardware [10–14] and using special large packets known as jumbo frames. This has been

especially beneficial in storage applications that transfers large blocks of data.

The future networks also seem to take another direction, as has been recently presented

by the CEO of Cisco, John Chambers. He predicts that networks will become programmable

and not just in the data centers, but throughout the network. This will allow greater agility, pro-

grammability and flexibility. One step in this direction is so called Software Defined Networking,

which separates data and control planes with well-defined protocol [15]. In this concept, the

control functionalities are taken out of the equipment and moved to a centralized or distributed

system, while data plane is retained in the equipment. Cisco already started developing a pro-

totype solution which they call Cisco Open Network Environment (Cisco ONE) [16].

In this dissertation, we take another step in this direction by utilizing programmable hardware

to achieve greater agility, programmability and flexibility. We utilize the Field Programmable Gate

Array (FPGA) which has been commonly used to speed up computationally intensive applica-

tions.

2A general rule of thumb is that it takes 1 MHz of CPU processing power to handle 1 Mb of network bandwidth [9].

Thus, a processor operating on 10 GHz would be required in order to process 10 Gbps.

1. Introduction
1.2. Objective 3

1.2 Objective

The objective of this dissertation is to study high performance reconfigurable architectures for

protocol processing. The study is based on the viewpoint that future computer systems will

integrate small FPGAs with general purpose processors, whose role will be to accelerate com-

putationally intensive kernels.

At first, we address the problem of efficient implementation of Cyclic Redundancy Check,

which has been identified as one of major bottlenecks in iSCSI protocol implementation. Tra-

ditionally, CRCs have been used in numerous applications for various types of network data

transmissions, data compression (e.g. gzip and bzip2) and data encryption. Howerver, they are

often characterized as computationally intensive, and thus often substituted with less efficient

error detection schemes. CRC plays an important role in the implementation of iSCSI (Internet

Small Computer System Interface) protocol in Storage Area Networks (SANs) for detecting errors

which occur between protocol transitions. When CRC is disabled, the network must rely on other

mechanisms to detect corrupted data, such as TCP and Ethernet error detection mechanisms.

Unfortunately, these mechanisms cannot detected data corruption between upper layer proto-

col transitions. This can lead to various problems such as failed integrity check of a database.

Therefore, our goals are to (1) reduce the computational burden, (2) make architecture generic

enough to support a variety of applications, (3) make architecture scalable so it can process

arbitrary number of data input (4) achieve significant improvements in throughput and (5) make

it area efficient.

The goal of traditional methods for designing CRC accelerators is acceleration of a specific

application. In such accelerators, the resulting CRC value is determined by a CRC standard

deployed by the application, which is usually fixed at the design time. We call these accelerators

non-adaptable. If accelerator does not have ability to adapt to a new standard or an application,

its usability is very limited. Thus, we propose adaptable CRC accelerator, which has ability to

generate CRC for a variety of CRC standards and thus support a wide range of applications.

Such accelerator eliminates the need for many non-adaptable CRC implementations. It also has

ability to process arbitrary number of input data and generates CRC for all currently defined CRC

standards during run-time.

Cyclic Redundancy Check plays an important role in IP-based storage systems or precisely

iSCSI initiator [17]. IP-based storage systems often require bandwidth intensive access to stor-

age devices, thus they exhibit high CPU utilization and low throughput when executed in a prin-

cipally software implementation. This is especially evident for multi-Gbps networks where the

impact of computational overhead is so pronounced that the current state of the art processors

cannot take advantage of the capacity of the network. The major concern is the processing of

iSCSI digests or CRC [18], thus it is common practice to disable data digests [19]. Commercial

hardware iSCSI solutions have been implemented by using TCP/IP Offload Engines (TOE) or

1. Introduction
1.3. Contribution 4

iSCSI host bus adapters (HBA). There has been only one attempt to offload iSCSI protocol to an

FPGA [14]. However, the maximum reported throughput is less than 100 Mbps, which is not ad-

equate for new multi-Gbps networks. There are three primary reasons why we believe offloading

the iSCSI protocol is challenging. First, the scope of iSCSI code is too large and requires a lot of

programming effort and time. Second, some functions such as authentication, authorization and

security are challenging to implement in hardware. Third, it is thought that operating frequency

of FPGAs is not enough to accomplish required throughput for high-speed networks. The perfor-

mance of software initiators is limited by the processing power of a general purpose processor,

especially for the multi-Gbps networks [20]. The biggest concern is high level of CPU utilization

that it causes. This has led to extensive research of offloading protocol processing to hardware.

In the second part of this work, we address the problem of efficiently implementing IP-based

iSCSI Offload Engine which operates on the top of the TCP/IP protocol stack. Even though pro-

cessing iSCSI digests have been identified as the most computationally intensive part of iSCSI

protocol processing, it is not enough to offload only iSCSI digests. In such a case, the commu-

nication overhead between software and hardware parts might undermine all the performance

gain. On the other hand, it is challenging to offload all iSCSI processes onto an FPGA. The tar-

get applications are mission-critical applications which require high data integrity, such as those

of financial and banking transactions where database integrity failures might lead to lost funds,

inaccurate stock exchange or credit card transactions. In these systems it is required to enable

header and data digests, which adversely affects overall performance.

To address these issues, we propose to combine two types of computing engines, general

purpose processors and FPGAs, in order to satisfy the current and future performance demands.

The advantage of FPGAs is that they allow speedup of slow sequential algorithms by efficient

hardware implementations. Thus, an algorithms can be partitioned into smaller units and exe-

cuted in parallel on an FPGA. This means that in every clock cycle it is possible to execute all

the units with no delay. FPGAs can also be re-programmed to obtain different hardware capa-

bilities at various times and this characteristic is knows as reconfigurability. Another advantage

is so called dynamic reconfigurability, which allows FPGAs to modify operation during run-time.

One drawback of FPGAs is their low clock speed when compared with ASICs or CPUs, which

is usually an order slower. Thus, not every algorithm is suitable for execution on FPGAs. Some

algorithms might present a set of challenges due to the complexity and the volume of the code.

1.3 Contribution

In this dissertation, we address the problem of efficiently implementing 1) Cyclic Redundancy

Checks accelerators and 2) IP-based iSCSI Offload Engine which operate on the top of the

TCP/IP protocol stack. One major concern for CRC implementations is high level of CPU uti-

lization and low throughput when executed in a principally software implementation. This has

1. Introduction
1.4. Dissertation Organization 5

led to substituting CRC with less efficient error detection schemes. We describe the design and

implementation of non-adaptable and fully-adaptable CRC accelerators based on a table-based

algorithm which is suited for the flexible implementation. Although the table-based algorithm has

been used in software, it has been rarely implemented in hardware as its performance is believed

to be lower than traditional implementation. We prove that this approach can be successfully im-

plemented on an FPGA and achieve significant performance improvements over related work.

Our contributions are as follows:

1) We design non-adaptable CRC accelerators with sufficient performance and reasonable

resource utilization using a table-based algorithm. Based on this design, a fully-adaptable CRC

accelerator is proposed by integrating algorithm for generating CRCs and algorithm for gener-

ating contents of tables. Resulting architecture generates CRC for any known CRC standard

during run-time. It achieves throughput of up to 418.8 Gbps, when the number of input bits M is

1024. Additionally, we modify table generation algorithm in order to decrease its space complex-

ity from O(nm) to O(n), where n is a number of tables, and m is a number of bits in a slice3. Design

of our architectures guarantees scalability/expandability by processing arbitrary number of input

bits M at minimal area cost. In order to show efficiency of our architecture in terms of area

utilization and throughput, we design five implementations, where M ∈ 64, 128, 256, 512, 1024.

2) We analyze iSCSI traffic and identify the most commonly used functions. We measure

and analyze CPU utilization and throughput of Open-iSCSI [21], which is an open source soft-

ware based iSCSI initiator. Based on this analysis, we offload data transfer and related non-data

functions to an FPGA based adapter. Data transfer functions are the most computationally inten-

sive and the most executed functions in a common case scenario. Other functions which do not

affect performance are implemented in software on a general purpose processor. The resulting

architecture relieves the host CPU from computational burden imposed by the software imple-

mentation. It is proved that the new architecture overcomes the performance limitations imposed

by a single processor which operates on 15 times higher frequency than our FPGA implemen-

tation. The iSCSI Offload Engine allows very low utilization on the host CPU of approximately

3%. Our architecture guarantees flexibility, since many functions are implemented on a general

purpose processor. Any new feature, such as security functions, specification updates, CRC

standards, etc., can be easily implemented.

1.4 Dissertation Organization

The dissertation organization is provided in Fig. 1.1 and here we provide short description of

every chapter. In Chapter 2 we introduce two problems that we addressed in this dissertation.

We survey theory behind error conrol coding, commonly used CRC algorithms and overview

3A slice is formed when a binary number is sliced into two or more constituent. Here, the slice is referred to

Slicing-by-N algorithm, and not to FPGA slice.

1. Introduction
1.4. Dissertation Organization 6

Chapter 3:

High	
 Performance	

Reconfigurable	
 Compu6ng	

Chapter 2:

Cyclic	
 Redundancy	
 Checks	
 and	

iSCSI	
 ini6ator	

Chapter 4:

High-­‐Speed	
 Fully-­‐Adaptable	
 CRC	

Accelerators	

Chapter 5:
Design	
 and	
 implementa6on	
 of	

IP-­‐based	
 iSCSI	
 Offload	
 Engine	
 on	

an	
 FPGA	

Chapter 6:

Conclusions

3.2: Classes of data proces sing architectures

 Non- and Fully-adaptable

 CRC accelerators

 iSCSI Offload Engine

2.1: Error Control Coding

2.2: Cyclic Redundancy Checks
.2.1: Algorithms
2.2.2: CRC Standard
2.2.3: Related Work

4.1: Design of a CRC Accelerator
4.2: FPGA Implementation
4.3: Evaluation
4.4: Summary

New solution/methodology

New solution

6.1: Concluding remarks

3.4: Hardware Design Flow

2.3: iSCSI Initiator
2.3.1: The iSCSI Protocol
2.3.2: Read and Write commands
2.3.3: Implementation approaches
 2.3.4: Performance Analysis

 2.2.1: Algorithms

5.1: Design and implementation
5.2: Implementation and Analysis
5.3: Summary

3.1: Accelerator Based Computing with FPGAs

3.3: Overview of Field Programmable Gate Arrays

Figure 1.1: Dissertation organization

Internet Small Computer System Interface protocol. We highlight problems related to these two

topics. We present results of performance analysis of software-based Open-iSCSI Initiator and

highlight its bottlenecks. Chapter 3 explains current state of high performance reconfigurable

technologies and gives short introduction to Field Programmable Gate Array (FPGA), which we

use to solve problems related with conventional approaches. Chapter 4 proposes a new method-

ology for designing non-adaptable and fully-adaptable CRC accelerators. Chapter 5 proposes

an iSCSI Offload Engine based on a FPGA adapter. The new architecture relieves the host CPU

from computational burden imposed by the software implementation. We compare our results

with similar technologies. Chapter 6 summarizes and concludes this dissertation.

In Fig. 1.2 we present positions of related work and contributions of this dissertations.

1. Introduction
1.4. Dissertation Organization 7

Da
ta

 In
te

gr
ity

: C
yc

lic
 R

ed
un

da
nc

y
Ch

ec
ks

Bi
t-w

ise
 a

pp
ro

ac
h

Ta
bl

e
ba

se
d

ap
pr

oa
ch

M
ul

tip
le

ta
bl

es
 a

pp
ro

ac
h

No
ve

l T
ab

le
Lo

ok
up

-B
as

ed
 A

lg
or

ith
m

s
[2

7]

Sa
rw

at
e

alg
or

ith
m

 [3
4]

Ch
ap

te
r 2

: C
yc

lic
 R

ed
un

da
nc

y
Ch

ec
ks

an

d
iS

CS
I i

ni
tia

to
r

IP
-b

as
ed

 s
to

ra
ge

 s
ys

te
m

s
iS

CS
I I

ni
tia

to
r

iS
CS

I D
riv

er

an
d

NI
C

iS

CS
I D

riv
er

an

d
NI

C
wi

th
 T

OE

iS
CS

I H
os

t
Bu

s
Ad

ap
te

r (
HB

A)

Op
en

-iS
CS

I [
21

]

UN
H-

iS
CS

I [
41

]

AS
IC

: C
he

lsi
o’

s

Te
rm

in
at

or
 3

 [1
1]

AS
IC

: N
et

Ef
fe

ct
’s

NE

01
0

[4
2]

FP
GA

: H
yb

rid
 T

OE
 w

ith

em
be

dd
ed

 p
ro

ce
ss

or
 [1

0]

FP
GA

: T
OE

 w
ith

 h
ar

dw
ar

e/
so

ftw
ar

e
co

-p
ro

ce
ss

in
g

[1
2]

FP
GA

 w
ith

 P
ow

er
PC

 4
05

 C
PU

:
TC

P/
IP

 a
nd

 iS
CS

I O
ffl

oa
di

ng
 [1

4]

AS
IC

: C
-to

-H
DL

 tr
an

sla
tio

n
of

 s
pe

cif
ic

su
b-

m
od

ul
es

 o
f U

NH
-iS

CS
I [

44
]

AS
IC

: C
he

lsi
o

T1
10

 H
BA

 [4
5]

Er
ro

r C
on

tro
l C

od
in

g

Th
e

iS
CS

I P
ro

to
co

l

Ch
ap

te
r 3

: H
ig

h
Pe

rfo
rm

an
ce

Re

co
nf

ig
ur

ab
le

Co
m

pu
tin

g

Ch
ap

te
r 4

: H
ig

h-
Sp

ee
d

Fu
lly

-A
da

pt
ab

le

CR
C

Ac
ce

ler
at

or
s

Ch
ap

te
r 5

: D
es

ig
n

an
d

im
pl

em
en

ta
tio

n
of

IP

-b
as

ed
 iS

CS
I O

ffl
oa

d
En

gi
ne

 o
n

an
 F

PG
A

Pe
rfo

rm
an

ce
 a

na
lys

is
of

 O
pe

n-
iS

CS
I

Re
co

nf
ig

ur
ab

le
Ar

ch
ite

ct
ur

es

Ac
ce

ler
at

or
 B

as
ed

 C
om

pu
tin

g

wi
th

 F
PG

As

Fie
ld

 P
ro

gr
am

m
ab

le
Ga

te
 A

rr
ay

s:
Ar

ch
ite

ct
ur

e

Ha
rd

wa
re

 D
es

ig
n

Flo
w

Fix
ed

Ad

ap
ta

bl
e

Pa
ra

lle
l C

RC
 re

ali
za

tio
n

wi
th

 re
cu

rs
ive

 fo
rm

ul
a

wi
th

 s
ta

te
 tr

an
sit

io
n

m
at

rix
 [3

3]

AS
IC

: I
m

pl
em

en
ta

tio
n

of
 F

as
t C

RC
 C

alc
ul

at
io

n,

32
 a

nd
 6

4
bi

ts
 p

ar
all

el
in

pu
t [

35
]

FP
GA

: C
RC

 Im
pl

em
en

ta
tio

n
us

in
g

a
Pi

pe
lin

ed

Ar
ch

ite
ct

ur
e

fo
r t

he
 P

ol
yn

om
ial

 D
ivi

sio
n

[2
6]

Pi
Co

GA
: A

 p
ar

all
el

LF
SR

-b
as

ed
 im

pl
em

en
ta

tio
n

on
 a

n
em

be
dd

ed
 a

da
pt

ive
 D

SP
 [2

8]

Co
nf

ig
ur

ab
le

pr
oc

es
so

r:
Pa

ra
lle

l im
pl

.
us

in
g

Ga
lo

is
Fie

ld
 m

ul
tip

lic
at

io
n

an
d

ac
cu

m
ul

at
io

n
(G

FM
AC

)[
36

]

AS
IC

: P
ro

gr
am

m
ab

le
CR

C
Cir

cu
it

Ar
ch

ite
ct

ur
e

wi
th

 s
ta

te
 tr

an
sit

io
n

m

at
rix

 [2
5]

Ta
bl

e
Ge

ne
ra

tio
n

M
od

ul
e

Th
e

Re
ce

pt
io

n
M

od
ul

e
(R

x)

Th
e

Tr
an

sm
iss

io
n

M
od

ul
e

(R
x)

Th
e

Co
nt

ro
l M

od
ul

e

M
od

ific
at

io
n

of
 O

pe
n-

iS
CS

I

CR
C

st
an

da
rd

s

No
n-

ad
ap

ta
bl

e
CR

C
Ac

ce
ler

at
or

CR

C
Ge

ne
ra

tio
n

Un
it

CR
C

Ge
ne

ra
tio

n
M

od
ul

e

Fu
lly

-a
da

pt
ab

le
CR

C
Ac

ce
ler

at
or

Fi
gu

re
1.

2:
Po

si
tio

ns
an

d
co

nt
rib

ut
io

ns
of

th
is

di
ss

er
ta

tio
n.

Chapter 2

Cyclic Redundancy Checks and iSCSI initiator

Cyclic Redundancy Check (CRC) is a well known error detection scheme used to detect cor-

ruption of digital content in digital networks and storage devices. Numerous applications use

different CRC standards and algorithms for various types of network data transmissions, data

compression (e.g. gzip and bzip2) and data encryption. The simplest CRC algorithm imitates

the standard hand calculations, which are repeated shifts and conditional subtracts. In this case,

input bits are processed one at a time. One way to speed up this process is to merge a number of

shift and conditional subtract operations together within a single clock cycle, which is commonly

referred to as parallel CRC generation [22].

Traditionally, CRCs are implemented using hardware or software methods. Early hardware

designs are based on the serial Linear Feedback Shift Register (LFSR), which performs the

computations by handling one bit at the time [23, 24]. However, some parallel implementations

are proposed in [25, 26]. In [25], Toal et al. proposed ASIC based architecture for parallel CRC

generation, based on a method of merging shift and conditional subtract operations together

within a single clock cycle [22]. While in [26], Monteiro et al. proposed pipelined architecture

for polynomial division by using FPGAs. The basic idea is to perform a number of successive

multiplications and divisions in a shift-register structure.

Software implementations can handle word-size data, thus they became more convenient

and, until recently, very fast. They are based on algorithms with pre-computed remainders

stored in table(s), which are referred to as table-based approaches. The most recent algorithms,

Slicing-by-4 and Slicing-by-8, are based on multiple tables approach. Their main advantage

is the ability to process arbitrary number of data at a time. However, with the new paradigm

shift to multicore processors, it is challenging to exploit available parallelism due to a sequential

nature of cyclic redundancy checks algorithms. Hence, when CRCs are implemented in princi-

pally software implementations, they provide modest throughput of up to 3.6 Gbps [27], which

is not suitable for multi-Gbps networks. One additional problem is that they consume significant

portion of CPU processing power, thus very little to no resources are left for execution of other

applications. Hence, the major concern is that the potential of new multi-Gbps networks will

2. Cyclic Redundancy Checks and iSCSI initiator
2.1. Error Control Coding 9

not be exploited, due to the communication overhead that consumes high levels of processor’s

processing power. One obvious advantage of software implementations is that they are very

flexible, since very little effort is required to adapt algorithm to different CRC standards.

Even though many CRC implementations exist, there are two concerns that need to be ad-

dressed. The first one is the potential to processes data at current high-speed line rates, such as

10, 40 or more Gbps. Based on our review of current implementations, it is evident that almost

all implementations provide less than 10 Gbps throughput. Only one ASIC-based implemen-

tation [28] provides around 25 Gbps of throughput. As we mentioned earlier, the most recent

software implementation provides only up to 3.6 Gbps [27]. The second concern is ability to

adapt to different CRC standards. This may become concern when specification of an applica-

tion or a protocol changes, or when only one CRC accelerator is available. If the accelerator is

fixed to only one CRC standard, it cannot be used with other applications or protocols. This is

especially evident in ASIC implementations which tend to have fixed structure.

In this chapter we first review basic theory behind Error Control Coding, with the special

focus on Cyclic Redundancy Checks. Then, we review existing algorithms for CRC generation

and we highlight their bottlenecks. Then, we address one practical problem where CRCs have

been identified as the major bottleneck of processing, especially when executed in principally

software implementations. That is Internet Small Computer System Interface (iSCSI) initiator,

which is one of the mostly used components in IP-based storage systems.

2.1 Error Control Coding

Error control coding is a method which provides the means to detect or correct transmission

errors by introducing redundancies into the data to be transmitted. Error control coding usually

refers to error detection and correction. Error detection is the ability to detect errors caused by

noise or other impairments during transmission from the transmitter to the receiver [29]. Error

correction has an additional feature that enables identification and correction of the errors. Error

detection always precedes error correction. In this dissertation, we focus only on detection,

because most network applications do not use error correcting codes. The reason is that they

are expensive in terms of computational power. Also, they can correct only a few bits of errors,

thus they are not effective for more common burst errors. Instead of error correction, network

applications rather ask sender to re-transmit the correct bits. It is important to note that today’s

fiber optic network have very small error rates. If a packet is lost it is often due to the lack of

buffering in routers. In a case where a small number of bit errors occur, the error correcting codes

do not help. In the case of magnetic disks, they have to use error correcting codes because they

cannot depend on re-transmission for error correction.

All error detection codes transmit more bits than it was in the original data. These bits are

derived by some deterministic algorithm, that will produce the same output if applied on the

2. Cyclic Redundancy Checks and iSCSI initiator
2.1. Error Control Coding 10

original data. In the case of error detection, a receiver can apply the same method as sender

and check if the output is the same as received bits. These additional bits are referred as

redundancy, check bits or parity bits. The method to generate these bits is called error detection

scheme. The effectiveness of an error detection scheme is measured by the error scenario that

results in the most undetected errors [30]. Its purpose is to reduce the rate of undetected errors

to a level acceptable to users.

2.1.1 Types of Errors

Errors on transmission lines can occur due to inter-symbol interference and noise (Fig. 2.1). The

inter-symbol interference refers to a case when the energy from a previous bit causes a bit to be

wrongly interpreted. The noise, on the other hand, causes a change of a 0 level into a 1 level.

The raw error rate is the fraction of incorrect senseword symbols (output symbols from channel

demodulator), which is expressed as:

lim
n→∞

1
n

n∑
i=1

P(xi , yi), (2.1)

where xi represents input bits into a channel, and yi output bits from the channel (Fig. 2.1).

There are three types of errors that occur on transmission lines: random, burst and catas-

trophic errors. The random errors are independent noise symbols. They are caused by thermal

noise that is always present on transmission lines. Each noise event affects isolated symbols.

The burst errors occur when noise event causes a contiguous sequence of unreliable symbols.

They also occur due to incorrect synchronization at the physical layers (e.g. when a connector

is being plugged in). The catastrophic errors occur when a channel becomes unusable for a

period of time comparable to or longer than a data packet (e.g. ethernet collisions). In this case,

re-transmission is needed because packets are very corrupted.

Definition 1 A burst error of length l is an n-tuple whose nonzero symbols are confined to a

span of l symbols and no fewer.

The intermediate bits may or may not be corrupted. The burst error detecting ability of every

(n, k) block code is less or equal to n − k. An ideal error detection code should be able to detect

large localized burst errors and also be able to detect as many random bit errors as possible.

Channel
x1, x2, … y1, y2, …

n1, n2, …

Noise

Channel
Decoder

m’1, m’2, … Channel
Encoder

m1, m2, …

Figure 2.1: Effects of noise on transmission lines.

2. Cyclic Redundancy Checks and iSCSI initiator
2.1. Error Control Coding 11

n-bit codeword

n-bit
encoded

Block
coder

Information Parity

k n - k

k-bit
information

Figure 2.2: A representation of n-bit codeword.

2.1.2 Types of Error protecting codes

There are two types of error protecting codes: block and convolutional codes. In the block

coding, a data is blocked into k-vectors of information digits, then encoded into n-digit codewords

(n ≥ k) by adding p = n − k redundant check digits [31, 32]. The encoding of each data block

is independent of past and future blocks. Since cyclick redundancy checks are a type of block

codes, we focus only on block codes and provide more information in section 2.1.3.

The convolutional code is time-invariant encoding scheme, where each n-bit codeword de-

pends on the current information digits on the past m information blocks [31, 32]. This means

that the information bits are spread along the sequence. The information is mapped to code bits,

instead of blocks.

2.1.3 Principles of Block Coding

In the block coding, a binary information sequence is segmented into message blocks of fixed

length, where each block u consists of k bits. Thus, in the case of binary information from the

field of GF(2)1, there are a total of 2k distinct messages.

In more general terms, elements from a bigger field GF(q) might be considered, thus there

are a total of qk distinct messages. A message of n symbols associated with an input block

is called a codeword. An alternative approach to repeatedly calculating code every time it is

needed is to have a lookup table with k inputs and n outputs. This approach is feasible when k

is small, however this might be infeasible when k gets large.

A block code is a code in which k bits (also referred as symbols) are input and n bits are

output (Fig. 2.2). This code is designated as an (n, k) code. A binary block code is linear if and

1A field with a finite number of elements is called a finite field or Galois field (GF). In the case of GF(2), the field

has only two elements {0,1}, and it is called binary field.

2. Cyclic Redundancy Checks and iSCSI initiator
2.1. Error Control Coding 12

Table 2.1: A linear block code with k=4 and n = 7.

Messages Codewords

(0 0 0 0) (0 0 0 0 0 0 0)

(1 0 0 0) (1 1 0 1 0 0 0)

(0 1 0 0) (0 1 1 0 1 0 0)

(1 1 0 0) (1 0 1 1 1 0 0)

(0 0 1 0) (1 1 1 0 0 1 0)

(1 0 1 0) (0 0 1 1 0 1 0)

(0 1 1 0) (1 0 0 0 1 1 0)

(1 1 1 0) (0 1 0 1 1 1 0)

(0 0 0 1) (1 0 1 0 0 0 1)

(1 0 0 1) (0 1 1 1 0 0 1)

(0 1 0 1) (1 1 0 0 1 0 1)

(1 1 0 1) (0 0 0 1 1 0 1)

(0 0 1 1) (0 1 0 0 0 1 1)

(1 0 1 1) (1 0 0 1 0 1 1)

(0 1 1 1) (1 0 1 0 1 1 1)

(1 1 1 1) (1 1 1 1 1 1 1)

only if the modulo-2 sum of two code words is also a code word. An example of linear block code

(7, 4) is given in Table 2.1.

Definition 2 A block code C of length n with 2k code words is called a linear (n, k) code if and

only if its 2k code words form a k-dimensional subspace of the vector space of all n-tuples over

the field GF(2).

Since an (n, k) linear code C is a k-dimensional subspace of the vector space Vn of all the

binary n-tuples, it is possible to find k linearly independent code words g0, g1, ..., gk−1 in C such

that every codeword v is a linear combination of these k codewords:

v = u0g0 + u1g1 + ... + uk−1gk−1, (2.2)

where ui = 0 or 1 for 0 ≤ i ≤ k. These linearly independent codewords can be arranged in

rows of a k × n matrix as shown in equation 2.3.

2. Cyclic Redundancy Checks and iSCSI initiator
2.1. Error Control Coding 13

G =



g0

g1

.

.

.

gk−1


=



g00 g01 g02 ... g0,n−1

g10 g11 g12 ... g1,n−1

. . . .

. . . .

. . . .

gk−1,0 gk−1,1 gk−1,2 ... gk−1,n−1


, (2.3)

where gi = (gi0, gi1, ..., gi,n−1) for 0 ≤ i ≤ k. If u = (u0, u1, ..., uk−1) is the message to be

encoded, the corresponding codeword is given as follows:

v = u ×G = (u0, u1, ..., uk−1)



g0

g1

.

.

.

gk−1


= u0g0 + u1g1 + ... + uk−1gk−1. (2.4)

The matrix G is called a generator matrix for C. Its rows generate the (n, k) linear code C.

Thus, the coding operation can be represented as matrix multiplication. The linear code (n, k)

is completely specified by the k rows of a generator matrix G, therefore the encoder can store

the k rows of G and form a linear combination based on the input message. All-zero sequence

must be a codeword. Therefore, the minimum distance of the code C is the codeword of smallest

weight.

The generator matrix for the (7, 4) code from Table 2.1 can be formed as follows:

G =


g0

g1

g2

g3


=


1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1


. (2.5)

Thus, the codeword for a message u = (1 1 0 1) is calculated as:

v = 1 × g0 + 1 × g1 + 0 × g2 + 1 × g3

= (1 1 0 1 0 0 0)

+ (0 1 1 0 1 0 0)

+ (1 0 1 0 0 0 1)

= (0 0 0 1 1 0 1).

Associated with every linear block code generator G is a matrix H called the parity check

matrix whose rows span the nullspace of G. If v is a codeword, then it is orthogonal to each row

of H, which is expressed by the following equation:

2. Cyclic Redundancy Checks and iSCSI initiator
2.1. Error Control Coding 14

v × HT = 0. (2.6)

From this equation, follows the following:

G × HT = 0. (2.7)

It is called dual code and it has H as its generator matrix. This code is denoted as C⊥. If G is

the generator for an (n, k) code, then H is the generator for an (n, n− k) code. From the example

given above, the parity check matrix can be calculated as:

H =


0 0 1 0 1 1 1

1 0 0 1 0 1 1

0 0 0 1 1 0 1

 .
This is called the generator of an (7, 3) code. And, from here it is possible to calculate the

coderwords for dual code:

0 0 0 0 0 0 0

0 0 0 1 1 0 1

1 0 0 1 0 1 1

1 0 0 0 1 1 0

0 0 1 0 1 1 1

0 0 1 1 0 1 0

1 0 1 1 1 0 0

1 0 1 0 0 0 1

It may be verified that every codeword in C is orthogonal to every codeword in C⊥.

When original data needs to be explicitly evident in the corewords, that coding is called

systematic encoding. Then, G is denoted as:

G = [P|Ik], (2.8)

where Ik is k × k identity matrix and P is k × n − k matrix. A linear systematic (n, k) code is

completely specified by a k × n matrix G in the following form:

G =



g0

g1

g2

.

.

.

gk−1


=



p00 p01 ... p0,n−k−1 | 1 0 0 ... 0

p10 p11 ... p1,n−k−1 | 0 1 0 ... 0

p20 p21 ... p2,n−k−1 | 0 0 1 ... 0

| ...

| ...

| ...

pk−1,0 pk−1,1 ... pk−1,n−k−1 | 0 0 0 ... 1


. (2.9)

2. Cyclic Redundancy Checks and iSCSI initiator
2.1. Error Control Coding 15

Similarly, H parity matrix of an (n, k) linear code can take the following form:

H = [In−k|PT] =



1 0 0 ... 0 | p00 p01 ... pk−1,0

0 1 0 ... 0 | p10 p11 ... pk−1,1

0 0 1 ... 0 | p0 p21 ... pk−1,2

... |

... |

... |
0 0 0 ... 1 | p0,n−k−1 p1,n−k−1 ... pk−1,n−k−1


. (2.10)

2.1.4 Error Detection Schemes

There are several schemes for error detection. We will review some of them, with emphasize on

CRC (section 2.2).

1. Repetition schemes: The data is broken up into blocks of bits and each block is sent

predetermined number of times. This scheme is not efficient since all repeated blocks of

data might be corrupted, thus the receiver might think that the data is correct.

2. Parity schemes: The data is broken up into blocks of bits and the number of 1 bits is

counted. The extra bit is added during the transmission. This bit is called parity bit. There

are two type of parity scheme: even and odd parity scheme. In the Even scheme, if the

number of "1" bits is even (including parity bit), then the parity bit is set to "0", else to "1".

In the Odd scheme, if the number of "1" bits is odd (including parity bit), then the parity bit

is set to "1", else to "0". The problem arises when there are even number of error bits. In

this case, the parity scheme can not detect errors. This scheme also can not identify the

error bit’s position.

3. Checksum: The data is broken up into blocks of bits whose binary values are added to

form a checksum. The checksum is appended to the end of the transmitted message.

On the other end of the communication channel, this process is repeated and the result

is compared with the existing checksum. A non-match indicates an error, while a match

only indicates that the algorithm did not detect any errors. The checksum can not detect

all types of errors, some of which are the following: reordering of the bytes, inserting or

deleting zero-valued bytes and multiple errors that cancel each other out.

4. Cyclic redundancy checks: This error detecting scheme is almost universally used in

networks. This is because CRCs have good burst error detection properties and good

random bit error detection properties. It has high probability of detection for most larger

random bit errors. Its advantage over other detecting scheme is that it can detect almost

all errors with relatively low number of bits of redundancy. It is detailed in section 2.2.

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 16

C3 C2 C1 C0

x4 x3 x1 x0

Message

Figure 2.3: LSFR for polynomial P(x) = x4 + x3 + x + 1.

2.2 Cyclic Redundancy Checks (CRC)

CRC is calculated by performing long division operation between input message and a generator

polynomial. At first, a message M is multiplied by xw (x is a dummy variable, while w is the length

of a generator polynomial), which is equivalent to shifting to left by a polynomial length. This

value is then divided by a generator polynomial G(x), and the remainder is called CRC as shown

in equation 2.11. The CRC is affixed to the original message M and transmitted to a receiver.

CRC(M) = M(x) × xw mod G(x) (2.11)

An input data or a message M is treated as a polynomial, where bit values are coefficients

of a dummy variable x. The coefficients are all either 0 or 1, while the power of x corresponds to

the bit position. For example, the message "01010100" is represented as 0 × x7 + 1 × x6 + 0 ×
x5 + 1 × x4 + 0 × x3 + 1 × x2 + 0 × x1 + 0 × x0. If the length of M is defined as l, then M can be

represented as:

M(x) = ml−1xl−1 + ml−2xl−2 + ... + m0 (2.12)

where ml−1 is the most significant bit of a message M and m0 is the least significant bit. A

generator polynomial of length w is represented in the same manner:

G(x) = gwxw + gw−1xw−1 + gw−2xw−2 + ... + g0 (2.13)

Due to interference during transmission, data might be corrupted during transport. Errors will

be detected on a receiver’s side by performing similar process as a sender. At first, a receiver

will remove received CRC, then it will perform long division operation with the same generator

polynomial specified by a protocol used. Then it will compare received CRC value and its own.

Any discrepancy between these two values indicates the presence of transmission errors in the

received pair. In this case, a receiver will discard the message and request re-transmission of

the data.

2.2.1 Algorithms for CRC Computation

In this section we overview widely used approaches for generating CRC with emphasize on

newly proposed ones [27]. We highlight major overheads of these approaches.

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 17

2.2.1.1 Bitwise approach

In this approach, CRC is calculated with N shifts and XOR operations for N-bit input message,

which makes this algorithm computationally intensive. Early hardware implementations were

based on this algorithm, and implemented using linear feedback shift registers (LFSR) [24] (il-

lustrated in Fig. 2.3). Input message is fed serially into a circuit, hence if implemented on an

FPGA throughput would be limited by operating frequency of an FPGA (e.g. 200 MHz limits

throughput to 200 Mbps, thus will not be suitable for high-speed links). Some level of parallelism

must be introduced to gain higher throughput.

Traditional implementation with LFSR can be modified to combine the message with the

most significant register bit to form the feedback, as is illustrated in Fig. 2.4. This optimization

has been referred to as LFSR2. The advantage is that no zeros are needed to be shifted at the

end, thus the CRC can be generated in w clock cycles earlier (w is the length of a polynomial).

2.2.1.2 Parallel CRC Computation

In [33], Campobello et al. proposed parallel implementation of the CRC based on the circuit in

Fig. 2.4. The initial assumption is that the degree of the polynomial (w) and the length of the

message are both multiples of the number of bits processed in parallel (M). From linear systems

theory, time-invariant linear system can be expressed as follows:

X(i + 1) = FX(i) +GU(i)

Y(i) = HX(i) + JU(i),
(2.14)

where X is the state of the system, U input, Y output, and i ranges from 2 to M. F, G, H, J

are used to denote matrices, and X, Y, and U column vectors. Thus, X(i) can be derived from

previous equation as:

X(i) = FiX(0) + [Fi−1G · · · FG G][U(0) · · · U(i − 1)]T . (2.15)

Matrix F and G are chosen according to the equations of serial LFRS, while H and J are the

identity and zero matrices, respectively. Thus, X and H are:

X = [xw−1 · · · x1x0]T

H = Iw.

C3 C2 C1 C0

x4 x3 x1 x0

Message

Figure 2.4: LSFR2 for polynomial P(x) = x4 + x3 + x + 1.

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 18

If the identity matrix is of size w × w, then

J = [00 · · · 0]T ,

U = d,

G = [00 · · · 1]T ,

F =



Gw−1 1 0 ... 0

Gw−2 0 1 ... 0

...

G1 0 0 ... 1

G0 0 0 ... 0


.

When i = M, then X(M) can be derived as:

X(M) = FM ⊗ X(0) ⊕ [0 · · · 0|d(0) · · · d(M − 1)]T . (2.16)

From here it is possible to obtain a recursive formula:

X′ = FM ⊗ X ⊕ D, (2.17)

where X′ and X represent the next and the present state of the system, while D = [dw−1 · · ·
d1d0]T assumes the following values: [0 · · · 0|b0 · · · bM−1]T , [0 · · · 0|bM · · · bM−1]T , where bi are

bits of original input data followed by a sequence of w zeros.

For every generator polynomial, new Fw matrix must be derived, and from there it is possible

to derive matrix FM. Fw matrix is constructed recursively from the following formula:

Fi =


Fi−1 ⊗


pm−1

...

p1

p0


| the first m − 1 columns of Fi−1


. (2.18)

FM is defined as:

FM =
[
FM−1 ⊗ P′...F ⊗ P′ P′ | Im−w

0

]
. (2.19)

While, Fw is:

Fw =
[
Fw−1 ⊗ P′|...|F ⊗ P′|P′

]
. (2.20)

Here, we show four examples of Fw matrices based on four polynomials. In order to im-

prove the readability, matrices Fw are reported as a column vector in which each element is the

hexadecimal representation of the binary sequence obtained from the corresponding row of Fw,

where the first bit is the most significant. G denotes generator polynomial.

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 19

CRC-12: G = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1}
F12

CRC−12 = [CFF 280 140 0A0 050 028 814 40A 205 DFD A01 9FF]T

CRC-16: G = {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
F16

CRC−16 = [2DFFF 3000 1800 0C00 0600 0300 0180

00C0 0060 0030 0018 000C 8006 4003 7FFE BFFF]T .

CRC-CCITT: G = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1}
F16

CRC−CCITT = [0C88 0644 0322 8191 CC40 6620 B310 D988 ECC4

7662 3B31 9110 C888 6444 3222 1911]T .

CRC-32: G = {1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1}
F32

CRC−32 = [FB808B20 7DC04590 BEE022C8 5F701164 2FB808B2 97DC0459

B06E890C 58374486 AC1BA243 AD8D5A01 AD462620 56A31310 2B518988

95A8C4C4 CAD46262 656A3131 493593B8 249AC9DC 924D64EE C926B277

9F13D21B B409622D 21843A36 90C21D1B 33E185AD 627049F6 313824FB

E31C995D 8A0EC78E C50763C7 19033AC3 F7011641]T .

2.2.1.3 Table based approach

The main idea behind this approach is to pre-compute remainders for a specific input and store

them into a table. Widely used algorithm with this approach is known as Sarwate algorithm [34].

This algorithm has been designed when computer architectures supported XOR operation with

only eight bits, but it is still used today in low-performance implementations. In general, to

process a message M of length l, Sarwate algorithm requires a table of 2l×(w−1) pre-computed

remainders (w is the length of a generator polynomial). Today’s processors support operations

with 32 and 64 bit values, thus if this algorithm is to be extended it would require lookup tables

of 232 × (w − 1) and 264 × (w − 1) for processing 32 or 64 bit input data, respectively.

Number of bits Size of a table

processed in parallel (l)

8 28 × (w − 1)

16 216 × (w − 1)

32 232 × (w − 1)

64 264 × (w − 1)

The problem arises when one wants to extend the number of bits processed in parallel l, as

is shown in the table bellow. The size of the table grows very quickly, and it would be impossible

to implement this algorithm efficiently in software or hardware. These tables cannot fit into a

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 20

cache so their contents have to be constantly fetched from the main memory, causing significant

performance drop.

2.2.1.4 Multiple tables approach

Looking to overcome limitations of processing only 8 bits of data at a time, two new algorithms

have been proposed and evaluated in [27]: Slicing–by–4 and Slicing–by–8 . The main ad-

vantage is that they can read and process arbitrarily large amounts of data at a time. The

algorithms are based on two principles associated with modulo-2 arithmetic: 1) bit-slicing and

2) bit replacement. The bit-slicing principle suggests that if a binary number is sliced into two or

more constituent terms, then the CRC value can be calculated as a function of the CRC values

of its constituent terms. The bit replacement principle suggests that the amounts of bits from

bitstreams can be replaced by potentially much smaller in length binary numbers producing the

same CRC values.

The Slicing–by–4 and Slicing–by–8 are based on the algorithmic framework which distin-

guishes the first and all subsequent steps. The reason why these steps are different is because

the length on input stream may not be a multiple of the amount of bits that are read at a time

q. Thus, different set of tables may be needed than in all other subsequent steps. At first, we

provide details of the first step and then every subsequent step k.

First step differs from all subsequent steps. Let B = [b1b2...bl] be the input bitstream,

P = [b1b2...bp] the initial p most significant bits of B, and b1 the most significant bit of P and B.

The length l of B is l > p, and the length g of generator polynomial G(x) is g < l. Then, the

l − g + 1 most significant bits of B are the information bits that are being encoded, and the g − 1

bits of B are equal to zero.

In order to be able to read potentially large amounts of data without the need to access a

lookup table of 2p entries, P is sliced into m slices, which are symbolized as P1, P2, ..., Pm with

lengths p1, p2, ..., pm. Thus, the binary number P and its length p are expressed as P = [P1 :

P2 : ... : Pm] and p =
∑

i pi for every i ∈ [1,m].

Each slice is associated with separate table. Thus, there are m different tables T1,T2, ..., Tm

of sizes equal to 2p1 , 2p2 , ..., 2pm , respectively. Each table Ti contains the remainders from the

long division of all possible values of slice Pi shifted by an offset oi. The divisor used is the

generator polynomial. The offset oi is given by

oi =

m∑
j=i+1

p j. (2.21)

The remainders during the first step are calculated with

R(1)
i = Pi · 2oi mod G, where i ∈ {1, 2, ...,m}. (2.22)

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 21

Then, the R(1) is defined as the result of XOR operation (⊕) between all R(1)
i values returned

from tables:

R(1) = ⊕m
i=1R(1)

i . (2.23)

If Q(1) represents the next q bits of the bitstream, which are positioned after the initial p bits,

then Q(1) is defined by

Q(1) = [bp+1bp+2...bp+q]. (2.24)

From here, it is possible to define the binary number S (1):

S (1) = [R(1) : Q(1)] = R(1) · 2q ⊕ Q(1). (2.25)

The First step ends with derivation of the binary number S (1). In each subsequent step k, the

algorithms operate on a binary number S (k−1) produced during the previous step k − 1.

Step k: The binary number S (k−1) of length s is sliced into n slices, which are symbolized

as S (k−1)
1 , S (k−1)

2 , ..., S (k−1)
n with corresponding slice lengths s1, s2, ..., sn. Hence, S (k−1) = [S (k−1)

1 :

S (k−1)
2 : ... : S (k−1)

n], while s =
∑

i si for i ∈ [1, n]. Each slice is used to perform a table lookup. The

number of tables equals number of slices and every step k > 1 uses the same set of tables. For

n slices, there are n tables symbolized as T
′
1, T

′
2, ..., T

′
n with sizes equal to 2s1 , 2s2 , ..., 2sn entries,

respectively. Each table T
′
i contains the remainders from the long division of S k−1

i shifted by an

offset fi. Similar to equation 2.21, the offset fi is defined as:

fi =
n∑

j=i+1

s j. (2.26)

The remainders during this step are calculated by

R(k)
i = S k−1

i · 2 fi mod G, where i ∈ {1, 2, ...,m}. (2.27)

Then, the R(k) is defined as the result of XOR operation (⊕) between all R(k)
i values returned

from tables:

R(k) = ⊕n
i=1R(1)

i . (2.28)

Subsequently, the binary number S (k) is calculated from R(k), and the next q bits of the bit-

stream are formed:

S (k) = [R(k) : Q(k)] = R(k) · 2q ⊕ Q(k). (2.29)

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 22

The step k ends with derivation of the binary number S k. In subsequent iteration, the same

procedure of bit slicing and parallel table lookups is repeated until all the bits in the bitstream are

processed. The total number of steps N that are required for the calculation of a CRC value for

bitstream B of length l is equal to

N =
⌊

l
q

⌋
+ 1, (2.30)

where q is the number of bits read at a time. It is assumed that the number of bits initially

read p is not the same as q.

The difference between two algorithms and comparison with Sarwate algorithm is given be-

low. The Slicing–by–4 algorithm reads and processes 32 bits at a time, and it doubles the

performance of existing implementations of Sarware algorithm. The algorithm deploys four ta-

bles with pre-computed remainders, which are accessed in parallel by using four 8 bit slices. A

slice is formed by slicing input binary number into four constituent terms. Each table requires 1

KB of data in the cache (256 × 32 bits values for 33 bit generator polynomial), thus Slicing–by–4

requires 4 KB of data in memory. This amount of data can easily fit in today’s cache, resulting in

faster execution, but it is still limited by the speed of a processor.

Similarly, the Slicing–by–8 triples the performance of the Sarware algorithm. It reads and

processes 64 bits at a time, and it deploys eight look-up tables accessed by eight 8 bit slices.

The algorithm requires 8 KB of data in the cache.

2.2.2 CRC Standard

The content of a pre-computed table depends on specific parameters of a CRC standard, as

well as on the position of a byte in the input stream that is being processed. A CRC standard is

defined by 8 parameters, as shown on the example of CRC32c standard in Table 2.2.

Width defines width of the algorithm. Poly defines hexadecimal value of a generator polyno-

mial, with top bit omitted, since its value is always 1. Init defines initial value of a CRC register

used only in the first iteration of a CRC algorithm. Input message is reflected before performing

long division operation if parameter Re f In is true, e.g. 8 bit value will be processed with bit 7

being treated as the least significant bit (LSB) and bit 0 as most significant bit (MSB). If Re f In

is false, input bits will not be reflected. Similarly, if Re f Out parameter is defined as true, the

remainder is reflected before writing it into the table. XorOut parameter is defined as a hexadec-

imal value and it is used in a final stage before the value is returned as the official checksum.

Check parameter is defined as hexadecimal value that represents CRC value of the ASCII string

"123456789". It is used as a weak validator of implementations of the algorithm. The parameters

Name and Check are not of any use for our implementation, thus we omit them.

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 23

Table 2.2: A list of parameters defined by a CRC standard shown on the example of CRC32c

standard.

Parameter Value

Name CRC-32C

Width 32

Poly 1EDC6F41

Init FFFFFFFF

RefIn True

RefOut True

XorOut FFFFFFFF

Check E3069283

In the server-type workload, CRC standard can be changed often. This is related to a num-

ber and a type of applications and protocols usually executed/employed on the server. Some

applications/protocols share a common CRC standard, in which case it is not required to change

functionality. However, many applications/protocols employ different CRC standards. Some ex-

amples are listed in Table 2.3.

CRC standard is sometimes changed in the specification of an application or a protocol, due

to the policy change or the need for more effectiveness. In some cases, it is important to have

ability to adapt fast. When CRC is implemented in software, then adaptation is very fast (the

code is modified, compiled and ran). However, in the case of ASIC solutions, the entire chip or

often the accelerator card has to be replaced, which affects operational cost of the system.

2.2.3 Related Work

Implementations of CRC accelerators with fixed CRC Standards are presented in [26,28,33,35].

In [33] authors identified a recursive formula in serial implementation from which they derived

parallel implementation, achieving maximum of 4.38 Gbps while processing 32 bits at a time, oc-

cupying only 162 LUTs. In [35] authors design a circuit with two parallel calculation units, capable

of processing 32 and 64 bits of input in two different implementations. They operate on 180 MHz

in 0.35 micron technology, with maximum throughput of 5.76 Gpbs for 32 and 64 bits processed

every clock cycle. In [26] CRC is implemented in a pipeline structure, with a number of succes-

sive multiplications and divisions. The maximum reported throughput for processing 32 bits at a

time with 16 bits generator polynomial is 4.585 Gbps with clock of 153.84 MHz, and 2.838 Gbps

for processing 32 bits with 32 bits polynomial, with clock of 95.23 MHz on Altera FLEX 10KE

2. Cyclic Redundancy Checks and iSCSI initiator
2.2. Cyclic Redundancy Checks (CRC) 24

Table 2.3: A list of CRC standards with associated applications and protocols.

CRC Standard Applications and Protocols

CRC-16-CCITT Bluetooth, HDLC FCS, SD

CRC-16-IBM USB

CRC-24 OpenPGP

CRC-32 Serial ATA, Gnuradio, HDLC,

Ethernet, MPEG-2, Gzip, Bzip2

CRC-32C iSCSI, Btrfs, ext4, SCTP

CRC-40 GSM control channel

CRC-64-ISO HDLC

CRC-64-ECMA-182 XZ Utils

device. In [28], the implementation of parallel LFSR-based applications on an adaptive DSP

featuring a Pipelined Configurable Gate Array (PiCoGA) has been presented, with Ethernet’s 32

bits CRC as a test-case. PiCoGA is integrated in the embedded digital signal processor based

on run-time reconfigurable technology (named DREAM), featuring a working frequency of 200

MHz. On the target architecture, CRC circuit achieves up to 25 Gbps throughput with a parallel

LFSR processing 128 bits at time.

There is relatively little work in the area of fully-adaptable CRCs on FPGAs. We found only

two other hardware implementations [25, 36] that can support very limited number of generator

polynomials. The re-generation in [36] is achieved with Galois Field Multiplication and Accumula-

tion (GFMAC) with soft-coded and hard-coded generator polynomials. Soft-coded implementa-

tion is much slower than fixed hard-coded counterpart. The maximum throughput of soft-coded

design with 32 bit CRC is 1.3 Gbps for a 128 bit message. Unfortunately, the reconfiguration

time is not provided. The implementation [25] can process variable number of 32 bit generator

polynomials, and can be modified to support 64 bit, but cannot support both at the same time in

one circuit. The maximum throughput for processing 32 bits with a 32 bit generator polynomial

is 4.92 Gbps. It is generic in its design, thus it can be scaled to 64, 128 or 256 bits, with maximal

theoretical throughput of 40 Gbps at 256 bits. The reconfiguration time is not very specific -

under 1µs.

The mostly used software solution [27] achieves maximum of 3.6 Gbps for processing 64 bits

at a time on Intel Pentium 1.7 GHz. In [37] we measured performance of the same algorithm on

the state-of-the-art Xeon 3 GHz processor with 4MB of L2 cache, and the throughput was 9.58

Gbps while processing 512 bits at a time, in idealized conditions without cache misses. There is

no research about CRC circuits which support 64 bit generator polynomials.

2. Cyclic Redundancy Checks and iSCSI initiator
2.3. Internet Small Computer System Interface (iSCSI) initiator 25

2.3 Internet Small Computer System Interface (iSCSI) initiator

In this section, we overview Internet Small Computer System Interface (iSCSI) initiator, which

is one of mostly used components in IP-based storage systems. The target applications are

mission-critical applications which require high data integrity, such as those of financial and

banking transactions where database integrity failures might lead to lost funds, inaccurate stock

exchange or credit card transactions. In these systems it is required to enable header and data

digests (CRC), which adversely affects overall performance. IP-based storage systems often

require bandwidth intensive access to storage devices, thus they exhibit high CPU utilization

and low throughput when executed in a principally software implementation. Even though, CRC

has been identified as one of the major bottlenecks in iSCSI implementations, it is not enough to

offload only CRC to an accelerator card. In this case, the overhead of communication between

software and hardware parts might undermine all the effort.

Hereafter, we overview the iSCSI Protocol, the common approaches of implementation, and

we provide performance analysis of commonly used software-based Open-iSCSI. We highlight

bottlenecks of this implementation. At the end of this section, we provide related work. In

Chapter 5, we propose to offload frequently executed operations to an FPGA-based accelerator

card to address the problems of high CPU utilization and low throughput.

2.3.1 The iSCSI Protocol

The iSCSI protocol is a transport for SCSI packets over TCP/IP infrastructure. The information

exchange is based on a client/server model where the client is called initiator, and server target.

The initiator and target divide their communications into messages, which are called Protocol

Data Units (PDUs). Typically, an initiator issues commands to a SCSI target to request transfer

of data to/from I/O devices. The group of TCP connections that link an initiator with a target form

a session. A session has two phases: Login and Full Feature Phase. In the Login Phase, an

initiator and a target negotiate protocol and security parameters, and authenticate each other for

the rest of the session. The session then transitions to the Full Feature Phase. In this phase, an

initiator may send SCSI commands and data to various SCSI devices on the target. The majority

of protocol processing load happens in the second phase.

2.3.2 Processing of iSCSI Read and Write commands

The principal layers of the storage networking model based on iSCSI are shown in Fig. 2.5. The

data segment represents the SCSI command set for communication with SCSI devices. iSCSI

layer is responsible for transmitting and receiving SCSI commands over TCP/IP infrastructure.

The TCP layer is used as end-to-end protocol to establish a reliable session, and for delivering

in-order TCP segments to the iSCSI layer. The IP layer is used to route the datagrams between

2. Cyclic Redundancy Checks and iSCSI initiator
2.3. Internet Small Computer System Interface (iSCSI) initiator 26

network devices, and the Ethernet layer is used as MAC protocol handler to transfer Ethernet

frames across the physical link.

Fig. 2.6 illustrates an exemplary flow diagram for processing a) incoming Data-In PDU (part

of READ operation) and b) outgoing Data-Out PDU (part of WRITE operation). These units are

two main vehicles by which SCSI data payload is transmitted between an initiator and a target.

In the case of Fig. 2.6a), the initiator first sends the request for reading data in the form of

SCSI READ commands to a target. Then, the target sends requested data. Ethernet, IP and

TCP layers are first to be processed by either TCP/IP Offload Engine (TOE) or some software

implementation. Then, if the frame does not correspond to an iSCSI PDU, it is forwarded either to

a different network processor or to the main memory. Else, the header is validated by calculating

its digest in the second phase. If the newly calculated digest is not the same as the received one,

the PDU is dropped and re-transmission request is sent. In the third phase, the information in

the iSCSI frame is identified and corresponding operations are performed. In the final phase, the

digest of data segment is calculated and compared with the received data digest. If two digest

values are equal, the data segment is copied to the main memory. If not, the frame is dropped

and re-transmission is requested.

In the case of Fig. 2.6b), the initiator first sends the request for writing data in the form of

SCSI WRITE commands to a target. Then, the target sends R2T PDU informing the initiator that

it is ready to transmit. When the initiator receives R2T, transmission of data-out PDU may begin.

The formation of Data-Out PDU begins with construction of its header. Then, the header and

data segment digest are calculated, respectively. The header, header digest, data segment and

data digest are then encapsulated with TCP, IP and Ethernet layers to form a Data-Out PDU and

sent to a target.

Gb
E

He

ad
er

IP

He
ad

er

TC
P

He

ad
er

iS
CS

I
He

ad
er

He
ad

er

Di
ge

st
*

Data Segment* Da
ta

Di

ge
st

*

Gb
E

Fil

l*

Gb
E

CR

C

Gb
E

EO

F

Et
he

rn
et

iSCSI TCP IP

Figure 2.5: Layers of iSCSI packet. The formation of the packet begins with data segment,

creation of header and data digests, and an appropriate iSCSI header. Then, the packet is build

out through TCP, IP and Gigabit Ethernet layers. (Optional fields are marked with *.)

2. Cyclic Redundancy Checks and iSCSI initiator
2.3. Internet Small Computer System Interface (iSCSI) initiator 27

yes

Receive data frame
from Target

iSCSI PDU
detected?

Calculate Header CRC

yes

Calculate Data CRC

Copy data to Main Memory

Does CRC
match?

Does CRC
match?

Drop PDU
and request re-

transmission

no

no

no

Process Eth/IP/TCP headers

yes

TC
P/

IP

Pr
oc

es
sin

g
iS

CS
I

Pr
oc

es
sin

g

Build iSCSI PDU header

Calculate Header CRC

Calculate Data CRC

Create TCP/IP/Eth headers

Send data frame to Target

iS
CS

I
Pr

oc
es

sin
g

TC
P/

IP

Pr
oc

es
sin

g
a)

b) Data descriptors

Header

Header Digest

Data segment

Data Digest

TCP/IP/Eth
Headers

Data-Out PDU

Eth/IP/TCP
Headers

Header Digest

Header

Header Digest

Data segment

Data Digest

Data Digest

Data segment

Processing Blocks

Received Data

Temporary generated Data

Control flow

Data flow

Temporary Data flow

Save the frame
to Main Memory

Fetch from
Main Memory

Reception of data and
control flow

Transmission of data and
control flow

Figure 2.6: Flow diagram for processing of a) Data-In PDU on the initiator, which performs SCSI

read on the target; b) Data-Out PDU on the initiator, which performs SCSI write on the target.

2. Cyclic Redundancy Checks and iSCSI initiator
2.3. Internet Small Computer System Interface (iSCSI) initiator 28

Application

SCSI

Other
protocols iSCSI

TCP

IP

Network
Interface

Application

SCSI

Other
protocols iSCSI

TCP

IP

Network
Interface

Application

SCSI

iSCSI

TCP

IP

Network
Interface

Type 1: iSCSI Driver
and NIC

Ha
rd

wa
re

Op

er
at

in
g

sy
st

em

Type 2: iSCSI Driver
and NIC with TOE

Type 3: iSCSI Host Bus
Adapter (HBA)

Figure 2.7: Three major implementation choices for iSCSI.

2.3.3 Implementation Approaches

In recent studies we found three major implementation choices for iSCSI (Fig. 2.7):

Type 1: iSCSI Driver with NIC: coupled with a generic Ethernet NIC with software implementa-

tion of iSCSI initiator.

Type 2: iSCSI Driver with TCP offload engine: entire TCP/IP stack is offloaded onto a special

purpose hardware accelerators coupled with operating system based iSCSI initiator.

Type 3: iSCSI Host Bus Adapter: TCP/IP and iSCSI initiator functions are offloaded to a special

purpose hardware.

For some applications, software initiators (Type 1) will suffice, but more-demanding appli-

cations require offloading of iSCSI processing to hardware initiators. The main advantage of

software based iSCSI initiators is their ability to easily adapt to modifications in the protocol.

There are two types of iSCSI hardware initiators. Type 2 only offloads TCP/IP processing from

the system’s CPU to a specialized Ethernet card which is called TCP Offload Engine. Type 3 of-

floads both TCP/IP and iSCSI processing from the system CPU to a specialized adapters known

as iSCSI Host Bus Adapters. They are usually implemented as ASIC solutions with superior

performance when compared to performance of Type 1, but they lack flexibility. Examples of

existing implementations are reviewed in section 2.3.5.

2. Cyclic Redundancy Checks and iSCSI initiator
2.3. Internet Small Computer System Interface (iSCSI) initiator 29

2.3.4 Performance Analysis of Open-iSCSI

We analyzed iSCSI traffic with Wireshark [38], the open source network packet analyzer. We

measured traffic between a software initiator and a target by using a set of microbenchmarks.

The microbenchmarks transmitted arbitrary number of data in both directions. The iSCSI com-

mands are issued to read/write from/to the same disk block address multiple times in order to

minimize the number of cache misses. We setup a software initiator with Open-iSCSI [21] on

Intel Core2 CPU 2.40 GHz with 8 GB of RAM, and a target by using Linux SCSI target frame-

work [39] on the Intel Core2 Quad CPU 2.83 GHz with 8 GB of RAM. The operating system on

both CPUs was based on Linux kernel 2.6.34.

In the most common case transmission, 60-70% of instructions were Data-In and/or Data-

Out PDUs, following by R2T, SCSI Commands and Responses with 10-20%. The remaining

instructions were related to mostly Login Phase, connection cleanup and connection termina-

tion. Then, we analyzed number of instructions and CPU utilization with Oprofile [40], which is

a system-wide profiler for Linux kernel. Fig. 2.8 shows the performance profile of processing

Data-In PDUs when header and data digests are enabled. The cost of data digest processing

(with kernel’s CRC32c module) represents about 50% of the total number of instructions for 8KB

workload size, while the iSCSI protocol processing is only 4%. As expected, the data digest pro-

cessing increases linearly with I/O workload size, while processing cost is decreasing. During

our experiments, CPU utilization was the highest when data digests were enabled, varying from

33% to 70% of processor’s resources. Thus, little or no processing resources are left for other

applications. When data digest is disabled, the cost of header digest processing is indistinguish-

able with 1% of the total number of instructions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

512 2048 4096 6144 8192

Other
Kernel (excluding CRC32c Module)
CRC32c Module
iSCSI Protocol Processing

Header and data digest enabled

Pr
oc

es
sin

g
Co

st
 (%

)

Write I/O Workload Size

Figure 2.8: The performance profile of processing Data-In PDUs on Intel Core2 CPU 2.40 GHz,

when header and data digest are enabled.

2. Cyclic Redundancy Checks and iSCSI initiator
2.3. Internet Small Computer System Interface (iSCSI) initiator 30

2.3.5 Related Work

The most common Type 1 implementations in the research community are open source Open-

iSCSI [21] and UNH-iSCSI projects [41]. Examples of Type 2 are ASIC-based 10GbE TOEs:

Chelsio’s Terminator 3 chip [11] and NetEffect’s NE010 adapter [42]. Both adapters show low

CPU utilization and near 10 Gbps performance, especially for larger data sizes. However, very

little information is available concerning their architectures. There is some research about TOEs

on FPGAs. In [10], Wu et al. introduced a hybrid TOE which processes IP, ARP, and ICMP

protocols on an FPGA, and TCP on an embedded processor by using software. In [12], Jang

et al. presented the design and implementation of a TOE by means of hardware/software co-

processing. Both implementations focus on decreasing CPU utilization by offloading TCP/IP

processing to an FPGA. The maximum reported throughput is bellow 1 Gbps: Wu et al. reported

300 Mbps [10], Jang et al. reported 673 and 551 Mbps [12]. However, two companies recently

announced FPGA based TOEs which operate at full 10 Gbps [13, 43] line rate. As we argued

in the previous section, digest processing occupies significant amount of CPU utilization. Thus,

it is not enough to offload TCP/IP processing to a special purpose hardware. This is especially

evident for multi-Gbps networks where the impact of computational overhead is so pronounced

that the current state of the art processors cannot take advantage of the capacity of the network.

Examples of Type 3 are [14, 44, 45]. In [14], Han-Chiang Chen et al. proposed offloading of

TCP/IP and iSCSI to an embedded OS on a PowerPC 405 CPU, which is part of Xilinx FPGA

embedded platform. This is the only attempt to offload iSCSI to an FPGA. The implementation

does not have any hardware accelerated modules, and it only consists of running unmodified

software initiator on the PowerPC 405 CPU. The maximum reported throughput is 86 Mbps with-

out digests, and 31.84 Mbps with digests. The low throughput is attributed to the low frequency

of PowerPC 405 CPU (300 MHz). The CPU utilization was 1.5%. In [44], Chung-Ho Chen et al.

proposed a hardware accelerator for data transfer iSCSI functions. The accelerator is designed

with direct C-to-HDL translation of specific sub-modules of UNH-iSCSI software. The design is

evaluated with UMC 0.18µ technology with 100 MHz system clock. The accelerator is able to

meet the requirements of 1 Gbps network when the average PDU size is greater than 125 bytes.

In [45], the peak throughput performance of Chelsio T110 (10 Gbps iSCSI ASIC-based HBA)

is 6.69 Gbps without digests, and 5.9 Gbps with digests. The average CPU utilization is 30%

without digests, and 37% with digests.

Chapter 3

High Performance Reconfigurable Computing

High Performance Reconfigurable Computing (HPRC) is relatively new concept in computing.

It represents synergistic systems consisting of conventional processors and field-programmable

gate arrays (FPGAs). In recent years, HPRC has shown orders of magnitude improvements

in performance, power, size and cost over conventional high performance computers in some

computationally intensive integer applications, thus it has received widespread attention of High

Performance Computing1 (HPC) community. HPC is a broad term that at its core represents

computationally intensive applications that need acceleration.

The importance of HPC systems has been highlighted as a crucial asset for many govern-

ments, such as the example of recent report [46] from the European Commission (EC) in 2012.

In the report, HPC has been identified as a crucial asset for the European Union’s innovation ca-

pacity. Thus, EU joined the world-wide race for leadership in HPC systems, which is driven by the

need to address societal and scientific grand challenges more effectively. The widespread use

of HPC systems in EU covers various areas such as early detection and treatment of diseases

(e.g. Alzheimer’s), deciphering the human brain [47], forecasting climate evolution or preventing

and managing large-scale catastrophes. The importance of HPC systems was first recognized

by US and Japan, following China and Russia who declared HPC an area of strategic priority

and massively increased their efforts in recent years.

Thus, a new window of opportunities is opening for HPC systems since the field is currently

undergoing a major change as the next generation of computing systems (referred to as "exa-

scale" systems) are set to emerge by 2020. Experts predict that new systems will be capable of

1018 floating point operations per second (flops), which is 1000 times more than the most pow-

erful machines in 2010 (referred to as "peta-flop" or 1015 flops). In mid-2007, DARPA/IPTO has

sponsored a series of studies intended to understand the future course of mainstream computing

technology and determine whether or not it would allow a 1000 times increase in the computa-

tional capabilities of computing systems by the 2015 time frame. The resulting two reports [48]

describe technology and software challenges in details. The four major technology challenges

1Also known as high-end computing or supercomputing.

3. High Performance Reconfigurable Computing
32

were identified in [49] and [50] (updated version):

• The Energy and Power Challenge is the most pervasive of the four. The key observation

is that it may be easier to solve the power problem associated with base computation than

it will be to reduce the problem of transporting data from one site to another. Based on

today’s architectures and concepts it is assumed that an exa-scale system would require

100 MW of power in year 2018. Thus, the use of a common nuclear power-plant would be

required for running a supercomputer exclusively, which is unacceptable.

• The Memory and Storage Challenge concerns the lack of currently available technology

to retain data at high enough capacities, access data at high enough rates and fit within

an acceptable power envelope. One of the solutions are additional layers in the memory

hierarchy such as higher-level CPU-caches or flash memory as disk caches.

• The Concurrency and Locality Challenge is evident through the end of increasing single

thread performance and the growth of levels of parallelism that makes it challenging for

users to exploit the system. The projections for the data center class systems, in particular,

indicate that applications may have to support upwards of a billion separate threads to

efficiently use the hardware.

• The Resiliency Challenge concerns the increasing number of components in HPC sys-

tems and ability of a system to continue operation in the presence of either faults or per-

formance fluctuations.

Traditionally, a HPC system consists of general purpose processors and high-speed inter-

connect links which connect the processors. Until the early 2000s, HPC relied on a processing

power of inexpensive singe-core CPUs, whose performance scaled with frequency in line with

Moore’s Law.2 However, the power dissipation escalated to impractical levels with the increase of

CPU’s frequency. Thus, general purpose CPU (GPCPU) vendors changed the course in the mid-

2000s to multicore architectures to meet high-performance demands. This paradigm shift also

forced adoption of a parallel programming model in order to take full advantage of underlining

performance.

There are two primary methods for the execution of algorithms in conventional comput-

ing [52]:

• Hardwired Technology: an Application Specific Integrated Circuit (ASIC) or a group of

individual components forming a board-level solution. ASICs are designed to perform only

2The Moore’s law [51] postulates that the level of chip complexity that can be manufactured for minimal cost is an

exponential function that doubles in a period of time. Surprisingly, Gordon Moore also predicted that by the end of

this decade (2020), society will have reached maximum chip-computer power.

3. High Performance Reconfigurable Computing
3.1. Accelerator Based Computing with FPGAs 33

a given computation, which makes them very fast and efficient. However, the circuit cannot

be altered after fabrication. This forces a redesign and refabrication of the chip if any part

of its circuit requires modification. Board-level circuits are also in-flexible to some degree.

They frequently require a board redesign and replacement.

• Software-programmed Microprocessors: Processors execute a set of instructions to per-

form a computation. Instructions are read from the memory, decoded and then executed.

Even though very flexible, performance may suffer in clock speed or in work rate, and is

far below that of an ASIC. The result is high execution overhead per instruction.

One promising alternative to scaling the number of cores in a system is to apply custom

accelerators which has received a widespread attention. In the current TOP500 list, 40% of

the top 10 systems are already equipped with accelerator cards [50]. Examples of modern

accelerator technologies are general purpose GPUs (GPGPU), Field Programmable Gate Array

and Cell processor. In this dissertation, we focus on acceleration methods using FPGAs, since

they have ASIC-like performance and power consumption, and GPGPU-like flexibility. Hence,

they can accelerate computationally intensive applications and exhibit high performance, while

being able to adapt to future changes.

3.1 Accelerator Based Computing with FPGAs

Accelerator based computing aims at moving the computationally demanding tasks of the appli-

cation to a special purpose processor optimized to perform certain computations very efficiently.

The main purpose of an accelerator is to speed-up the execution of computationally demanding

tasks of the application. Historically, FPGAs have been restricted to a narrow set of HPC ap-

plications due to their relatively high cost. However, advancements in the process technology

have enabled vendors to manufacture chips containing millions of transistors. Thus in the past

decade, the logic compute performance (clock frequency increase × logic cell count increase)

has improved by 92 times, while the cost decreased for 90% [53]. Users of Accelerator Based

Computing range from medical imaging, financial trading, oil and gas expiration, to bioinformat-

ics and computational biology, data warehousing, data security, and others. Such applications

usually consist of thousand or millions lines of code, thus it is common that they demand in-

creasing amount of processing capabilities. The need for acceleration is growing exponentially,

as does the need to develop more efficient HPC systems.

The process of porting a large application to an accelerator is highly complex and time con-

suming task. Not every application is suitable to map on an accelerator. A good initial candidate

should follow the well-known 90/10 rule, where a large fraction of the computation (i.e. 90%)

occurs in a small fraction of the source code (i.e. 10%). This small region in the program that

account for most of the program’s execution is called program’s kernel or a core. The region is

3. High Performance Reconfigurable Computing
3.2. Classes of data processing architectures 34

Table 3.1: Acceleration benefits on Virtex FPGAs

Algorithm/Application FPGA CPU Speed-up Over

Processor (times)

Cryptography: DES Virtex-6 Intel Quad Core i7 at 101

2.67 GHZ

Cryptography Key Recovery: Virtex-6 Intel Quad Core i7 920 at 20

NTLM 2.67 GHZ

Seismic Imaging: Virtex-5 8-core Xeon at 2.66 GHz 240

Convolution

Proteomics: Virtex-5 Xeon 2-core at 2.13 GHz 100

InsPecT/MS-alignment

Financial options valution: Virtex-4 Pentium-4 at 3.6 GHz 33

Quadrature methods

Dense linear equations: Virtex-5 Xeon Woodcrest at 3 GHz 140

LU factorization

Sparse iterative equations: Virtex-5 Xeon Woodcrest at 3 GHz 82

Conjugate gradient

usually identified by using some profiling tools, which should exhibit some characteristics in or-

der to be accelerated effectively. These include (a) some inherent parallelism or the ability to be

transformed as such to benefit from parallel implementations, (b) high computation to commu-

nication ratio, (c) the use of bit-level or low-precision arithmetic, (d) simple computation kernel,

and (e) uniform, non-divergent computations. The last three properties ensure small computa-

tional resource requirements, allowing for a large number of replications of the computation core

and hence higher parallelism. Often the kernel has to be re-structured in order to be efficiently

executed on an accelerator and afterwards integrated into the rest of the system.

Using FPGAs in the development of HPC systems can potentially deliver enormous perfor-

mance gains. This has already been confirmed in many applications as shown in Table 3.1. Two

main features made them attractive to the HPC community: (a) the ready availability and (b)

high-power efficiency of high-density FPGAs.

3.2 Classes of data processing architectures

Digital systems consist of elements for data processing and storage, which are connected in dif-

ferent manners to form a design-specific architectures. There are three classes of data process-

ing architectures: programmable, reconfigurable, and application-specific architectures [54]. In

Figure 3.1 we illustrate the trade-off between flexibility, efficiency and performance for various

3. High Performance Reconfigurable Computing
3.2. Classes of data processing architectures 35

GPP

ASIP

DSP

GPU

FPGA

ASIC

Efficiency/Performance

Fle
xib

ilit
y

Application
Specific
Purpose

Reconfigurable
Purpose

This work CGRA

General Purpose

Special Purpose Programmable
Architectures

Figure 3.1: An illustration of architecture domains as a function of efficiency/performance and

flexibility.

architectures. The term flexibility includes programmability and versatility (adaptability), while

efficiency relates to processing performance and energy efficiency. For example, the general-

purpose processor (GPP) provides high level of flexibility, while the Application-specific Inte-

grated Circuit (ASIC) provides high level of efficiency and performance.

3.2.1 Programmable Architectures

An architecture whose programmability is defined by a different set of instructions is called pro-

grammable architecture. Examples of such architectures are the general-purpose processor,

the application-specific instruction processor (ASIP), and the digital signal processor (DSP).

They can be divided into three groups: general-purpose processors, configurable instruction-set

processors, and special-purpose processors.

General-Purpose Processors have a general instruction set designed to serve a variety of

applications. The instruction set is not optimized or tailored for any specific application domain.

The instructions are processed in sequential order one after the other. The advantage of pro-

cessing instructions in sequential order is high instruction locality, but one obvious bottleneck is

high instruction dependency which prevents execution of instructions before they are needed (or

while waiting for some resources to become available).

All general-purpose processors rely on the von Neumann instruction fetch-and-execute model.

This model enables high level of flexibility, but it comes with a drawback of high energy consump-

tion and overhead of fetching, decoding and executing a stream of instructions. The underlying

3. High Performance Reconfigurable Computing
3.2. Classes of data processing architectures 36

architecture cannot disable components that are not used at a time, hence it has high energy

consumption. Another concern is that the clock speed of processors has grown much faster

than the speed of memory. Hence, a processor is in idle state while waiting for instructions to

be fetched from the memory. This gap between memory access speed and processor speed is

known as the von Neumann bottleneck. Some techniques have been introduced to relieve this

bottleneck, such as using caches or separating instruction and data memories. Software pro-

grammers always relied on a higher clock speeds for running their application faster. Increasing

the processing performance usually requires a higher clock frequency fclk, which consequently

increases the power consumption and therefore also the heat dissipation. The supply voldage

VDD has a quadratic effect on the dynamic power as

Pdyn = αCLV2
DD fclk, (3.1)

where α is the switching activity and CL is the load capacitance. Lowering the supply voltage

also effects the propagation time tp, which means that the system becomes slower. Hence, the

processing power cannot depend only on increasing the system clock frequency.

Recently, a new multicore paradigm is introduced to address the limitation of pure sequential

processing. Multiple processing units or cores are utilized to processes independent applications

or parts of the same application. Theoretically, processing speed may potentially increase with

a factor equal to number of processing units. However, the speed-up of a single thread is limited

by the instruction level parallelism (ILP) in the program code. This means that the multicore

model will not be able to provide any noticeable speed-up for an application with limited ILP. The

speed-up S from using N parallel processing units is calculated using Amdahl’s law:

S =
1

(1 − p) + p
N

(3.2)

where p is the fraction of the sequential program that can parallelized. In the case when

50% of a program can be executed in parallel, the speedup is limited to a modest factor of 2, no

matter how many processors are used.

Another technique for exploiting processing power of multiple processing units is called

thread level parallelism (TLP). The programmer divides application into multiple parallel threads

of execution, which are executed on different processing units.

Configurable Instruction-Set Processors have ability to extend original instruction set for a

given application. The process of extending the instruction set begins with identifying frequently

used computational kernels which constitute the main part of the execution time. The kernels are

groups of basic instructions that often occur in conjunction, hence it is possible to merge them

3. High Performance Reconfigurable Computing
3.2. Classes of data processing architectures 37

into a specialized instruction [55]. In addition to extending the processor with new instruction,

the compiler tools have to be modified to support the extended instruction set.

Special-Purpose Processors contain additional features and usually include more than one

computation unit and register bank in addition to common elements of a general-purpose micro-

processor. Examples of a special-purpose processor are the digital signal processor and the

graphic processing units (GPUs). The DSP is a microprocessor specialized for digital signal

processing. In a DSP, a set of frequently used operations can be executed in a single clock cycle

using a dedicated multiply-accumulate (MAC*) hardware. Some of the hardware features of a

DSP include: multiple addressing modes such as modulo, ring-buffer and bit-reversed address-

ing, a memory architecture designed for streaming data, saturation logic for integer arithmetic,

etc. The GPU resembles the stream processor with a more narrow application domain. Tradi-

tionally, GPUs provided none or limited programmability. However, in recent years the trend is

changing toward general-purpose GPUs (GPGPU), which widens the application domain. Appli-

cations which can benefit from this concept exhibit real-time requirements or have long execution

time.

3.2.2 Reconfigurable Architectures

Reconfigurable or adaptive architecture indicates that the logic functionality and interconnect of

a computing system or device can be customized to suit a specific application through post-

fabrication, user-defined programming [56]. Microprocessors change their functionality through

instructions, while reconfigurable architectures change their functionality through configuration

bits. Thus, a single reconfigurable architecture can be re-used to implement many potential

applications, rather than requiring a separate custom circuit for each. This feature makes pro-

grammability of reconfigurable architectures lower than that of a GPP though. Applications are

accelerated by allocating a set of required processing, memory and routing resources.

Recofigurable devices contain an array of computational elements whose functionality is de-

termined through multiple programmable configuration bits. These elements, known as logic

blocks, are connected using a set of routing resources that are also programmable. The size of

the reconfigurable elements is referred to as the granularity of the device. In terms of granularity,

there are two type of reconfigurable architectures: fine-grained and coarse-grained architec-

tures. A comparison between fine- and coarse-grained architectures is provided in Table 3.2.

The fine-grained reconfigurable architecture allows bit-level manipulation by using small

look-up tables (LUT). An example of a fine-grained reconfigurable architecture is illustrated in

Figure 2.2a). A LUT has a limited number of inputs (typically less than six) which generate a

single boolean output. Each logic block usually contains one or more flip-flops for fine-grained

3. High Performance Reconfigurable Computing
3.2. Classes of data processing architectures 38

FU
Config
Mem

Register
File

Register

To Neighbors

From Neighbors

Fabric GPP GPP

a) b)

Figure 3.2: An example of a) fine-grained reconfigurable architecture with embedded memory

(gray) and GPP macro-blocks. The FPGA fabric with logic blocks and switch boxes is magnified.

On b) is an example of coarse-grained reconfigurable architecture with an array of processing

elements.

storage. Today’s reconfigurable devices typically have tens of thousands of lookup tables con-

taining millions of gates of logic. The fine-grained architectures are very versatile and can be

used to map any type of an algorithm. Since the computational requirements are either not

known in advance or vary considerably among applications, the reconfigurable architecture has

to be fine-grained in order to achieve high degree of flexibility. The fine-grained devices in-

clude programmable array logic (PAL), complex programmable logic devices (CPLD), and field-

programmable gate arrays (FPGA). Reconfigurable processors have been widely associated

with fine-grained architecture, which is used as a reference for an FPGA. However, this degree

of flexibility may result in significant overheads of area, delay and power consumption. Examples

of fine-grained architectures are discussed in great details in [57].

The coarse-grained reconfigurable architecture, also known as CGRA, consists of com-

plex functional units (FU) ranging from ALUs and multipliers to full-scale processors. An example

of a Coarse-Grained Reconfigurable Architecture is illustrated in Figure 3.2b). They can perform

word-size operations such as addition, subtraction, and multiplication. Register files hold tem-

porary values which are accessible only by a subset of FUs. Logic blocks are optimized for

large computations which will perform operations much more quickly than a set of smaller cells

connected to form the same type of structure. They will also consume less chip area. How-

ever, they are not efficient when bit-size operations are performed, since there is unnecessary

area and speed overhead, as all of the bits in the full word size are computed. Examples of the

coarse-grained architectures are RaPiD [58], Chameleon [59], Pleiades [60], MorphoSys [61],

PACT’s extreme processor platform [62], Montium [63], etc. Many DSP applications benefit from

modular arithmetic operations, which have led to faster development of the coarse-grained archi-

tectures. The CGRAs have short reconfiguration times, low delay characteristics, and low power

3. High Performance Reconfigurable Computing
3.2. Classes of data processing architectures 39

Table 3.2: A comparison between fine- and coarse-grained architectures.

Properties Fine-grained Coarse-grained

Granularity bit-level (LUT) worl-level (ALU)

Flexibility high medium/high

Performance medium high

Interconnect overhead large small

Reconfiguration time long (ms) short (µs)

Development time long medium

Design specification hardware software

Application domain Prototyping/HPC RTR systems/HPC

Table 3.3: A comparison summary of selected architecture domains.

Technology Performance/ Time to Time to change Power

Cost market code functionality Consumption

ASIC Very High Very Long Impossible Low

FPGA Medium/High Long Long Low/Medium

ASIP Medium Medium Medium Medium/High

GPP Low/Medium Very Short Very Short High

consumption as they are constructed from standard cell implementations. Thus, gate-level re-

configurability is sacrificed, but the result is a large increase in hardware efficiency.

3.2.2.1 Comparison summary

An example of the 256-tap3 Finite Impulse Response (FIR) implementation is shown in Fig-

ure 3.3: a) on a conventional DSP device with von Neumann architecture and b) on an FPGA.

FPGAs can instantiate as many MAC* units as possible, while GPPs/ASIPs execute instructions

in the sequential manner. Thus, FPGAs can execute all 256 MAC* operations in one clock cy-

cle, while GPPs/ASIPs have to process 256 loops. This allows FPGAs to achieve much higher

performance in selected algorithms than GPPs/ASIPs. FPGAs run on lower frequency (e.g.

400 MHz) than GPPs/ASIPs (e.g. 2 - 3 GHz), thus not every algorithm can be accelerated

to a noticeable degree. The advantage of FPGAs over ASICs is that they have additional re-

programmability, while having ASIC-like performance and power consumption. They also have

3The number of taps is an indication of memory required to implement the filter, the number of calculation required

and the amount of filtering.

3. High Performance Reconfigurable Computing
3.2. Classes of data processing architectures 40

Register Data In

Data Out

MAC
unit

Register0 Data In Register1 Register2 Register255

C0 C1 C2 C255

Data Out

 a) b)

Figure 3.3: An implementation of 256-tap FIR filter in a) GPPs/ASIPs and b) FPGAs.

shorter development cycle and lower Non-Recurring Engineering (NRE) costs [64].

One drawback of FPGAs is that they have long time to change code functionality. This is due

to a different style of programming than conventional software programming, which executes

instructions sequentially. Even though there are many new environments to aid with hardware

programming, FPGA programming is still reserved to specialists.

3.2.3 Application-Specific Architectures

An application-specific architecture presents a fully customized hardware implementation of a

particular application or set of applications that share many common characteristics. Hence,

such architecture contains only capabilities necessary to execute its targeted workloads. They

exhibit the best performance and power consumption figures possible. They are non-reprogrammable

which limits their application to high volume, relatively low cost and low power applications.

3. High Performance Reconfigurable Computing
3.3. Overview of Field Programmable Gate Arrays 41

3.3 Overview of Field Programmable Gate Arrays

FPGAs have been invented in mid-1980 by one of Xilinx founders, Ross Freeman. FPGAs

are commodity integrated circuits (IC) whose logic can be determined, or programmed, in the

field. This is opposite to Application Specific Integrated Circuits (ASICs), where logic is fixed

at fabrication time. FPGAs are less dense and slower than ASICs, but their main advantage

is flexibility. They were first introduced as glue logic which made them popular in embedded

systems.

The original concept of reconfigurable computing is credited to Gerald Estrin. In 1960’s, he

described a hybrid computer structure consisting of an array of reconfigurable processing ele-

ments. His aim was to attempt to combine the flexibility of software with the speed of hardware,

with a main processor controlling the behavior of the reconfigurable hardware. However, this

concept could not be realized at the time, because technology didn’t exist. By the late 1980s

silicon technology had advanced to a point that allowed complex designs to be implemented

on a single chip âĂŞ large and very large-scale integration which paved the way for today’s

system-on-a-chip designs and FPGA programmable logic devices.

The first commercial reconfigurable computer, the Algotronix CHS2x4 [65], has been re-

leased in the beginning of 1990s. The Algotronix CHS2x4 had an array of CAL1024 proces-

sors in ISA format with up to 8 FPGAs, each with 1024 programmable cells. From that point

many reconfigurable architectures became available, such as Garp from UC Berkley [66], PACT-

XPP [62], FIPSOC [67], etc. Today, there are many FPGAs vendors, which beside Xilinx [68]

include Altera [69], Lattice Semiconductor [70] and Atmel [71].

There are three similar circuit families to FPGAs: a) Programmable Array Logic (PAL), Pro-

grammable Logic Array (PLA) and Programmable Logic Device (PLD). In principal, they differ

in two ways. First, FPGAs are more flexible in the types of functions that can be implemented.

Second, FPGAs have significantly more embedded components, such as memory blocks, built-

in multipliers and processor cores. FPGAs are more suitable for wide variety of applications, and

this is why they are more popular.

3.3.1 FPGA Programming Technologies

There are a number of programming technologies that have been used for reconfigurable ar-

chitectures. The well known technologies include static memory cells [72], flash [73] and anti-

fuse [74]. Static memory programming technology has become the dominant approach for FP-

GAs because of its re-programmability and the use of standard CMOS process technology. It is

expected that this technology will continue to dominate the other two programming technologies.

In this section, an overview of three commonly used programming technologies is given.

Static memory cells are the basic cells used for SRAM-based FPGAs (Figure 3.4.a)). The

3. High Performance Reconfigurable Computing
3.3. Overview of Field Programmable Gate Arrays 42

Vcc

Vdd

Bitline Bitline

Wordline

.

.

.
.

.
. .

.
Substrate

Source

Gate

Drain

Floating gate

a) SRAM Memory cell. b) A floating-gate transistor used in flash memory.

Figure 3.4: Two basic elements used in FPGA implementation technologies

cells are divided throughout the FPGA to provide configurability. They are used to program the

routing interconnect of FPGAs and CLBs4 that are used to implement logic functions. Since

SRAM is volatile and can’t keep data without power source, such FPGAs must be programmed

(configured) upon start. SRAM-based FPGAs include most chips of Xilinx Virtex and Spartan

families and Altera Stratix and Cyclone. The drawbacks associated with SRAM-based program-

ming technology are (a) cost effectiveness in terms of area (every SRAM cell requires 6 transis-

tors), (b) SRAM cells are volatile in nature and (c) they require external devices to permanently

store the configuration data which adds the cost and area overhead.

There are two basic modes of programming SRAM-based FPGAs:

• Master mode, when FPGA reads configuration data from an external source, such as an

external Flash memory chip.

• Slave mode, when FPGA is configured by an external master device, such as a processor.

This can be usually done via a dedicated configuration interface or via a boundary-scan

(JTAG) interface.

Flash-based programming technology uses flash as a primary resource for configura-

tion storage, and does not require SRAM. It is not volatile in nature and is more area efficient

than SRAM-based programming technology. However, it cannot be reprogrammed/reconfigured

an infinite number of times as SRAM-based programming technology. This technology has an

advantage of being less power consumptive and it is more tolerant to radiation effects. Using

flash-based FPGAs can be a solution to prevent unauthorized bitstream copying. Examples of

4The CLB is the basic logic unit in an FPGA. It is discussed in details in section 3.3.3.

3. High Performance Reconfigurable Computing
3.3. Overview of Field Programmable Gate Arrays 43

IOB

IOB

IOB

IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

CLB CLB

CLB CLB

IO
B

Block
RAM

Block
RAM

DSP

DSP

IO
B

IO
B

CLB

CLB

DCM

IOB

IOB

IOB

IOB

Configurable
Interconnects

Figure 3.5: FPGA Block Structure

flash-based FPGA families include Igloo and ProASIC3 that are manufactured by Actel. Fig-

ure 3.4.b) illustrates a floating-gate transistor used in flash memory.

Antifuse-based programming technology is different from the previous ones in that it can

be programmed only once. The primary advantage of anti-fuse programming technology is its

low area usage. There are however significant disadvantages associated with this programming

technology. It does not make use of standard CMOS process and can not be reprogrammed. An

example of antifuse-based device families include Axcelerator by Actel.

3.3.2 FPGA Architecture

Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can be electri-

cally programmed in the field to the desired application or functionality requirements. They are

based around a matrix of Configurable Logic Blocks (CLBs) connected through programmable

interconnects (Figure 3.5). FPGAs incorporate hard (ASIC type) blocks of commonly used func-

tionality such as RAM, clock management, and DSP. The CLB is the basic logic unit in an FPGA.

Exact numbers and features vary from device to device, but every CLB consists of a configurable

switch matrix with 4 or 6 inputs, some selection circuitry (MUX, etc), and flip-flops. The switch

matrix is highly flexible and can be configured to handle combinatorial logic, shift registers or

RAM. The programmable routing interconnect of FPGAs comprises of almost 90% of total area

of FPGAs.

3. High Performance Reconfigurable Computing
3.3. Overview of Field Programmable Gate Arrays 44

3.3.3 Configurable Logic Block

A configurable logic block (CLB) is a basic component of an FPGA that provides the basic logic

and storage functionality for a target application design. The CLBs are organized in a grid array

to implement different type of logic designs. Every new generation of FPGAs brings a range of

technical advances ranging from power reduction and device density to small changes such as

new placement of flipflops in the CLB. These small changes can be exploited by an experienced

FPGA engineer to the fullest.

The CLB consists of a number of logic cells (LC) which include a lookup table (LUT), a flip

flop, and connection to adjacent cells. The LUT uses combinatorial logic to implement a 4-, 5-

or 6-input expression (AND, OR, NAND, addition, etc.) Multiple logic cells are grouped together

to create a single unit, called a slice. In Figure 3.6 and Table 3.4 we show advancement in

configuration of a CLB and a slice, and resource comparison of latest Xilinx FPGA families,

respectively. The number of logic cells in a slice changes as the architecture of Virtex FPGAs

changes. For example, the number of flip-flops has been doubled when compared with Virtex-4

FPGA slices.

Vendors such as Xilinx and Altera use LUT-based CLBs, which provides a good trade-off

between too fine-grained and too coarse-grained logic blocks. Single CLB consists of a single

basic logic element (BLE), or a cluster of locally interconnected BLEs. A BLE consists of a LUT

and a flip-flop. A LUT can have k inputs and it contains 2k configuration bits. Single LUT can be

used to implement any k-input boolean function. Figure 3.7 illustrates 4-input LUT and a D-type

flip-flop. The output of LUT is connected to an optional flip-flop.

In Figure 3.6. we illustrate basic differences between two widely known Xilinx families Spar-

tan (3 and 6) and Virtex (4, 5 and 6). The Spartan-3 CLB consists of four slices grouped in pairs.

Each pair is organized as a column with an independent carry chain. Each slice is equivalent and

contains two LUTs, two storage elements, wide-function multiplexers, carry logic and arithmetic

gates. The carry chain supports fast and efficient implementations of mathematical operations.

In Figure 3.7. we illustrate an example of basic Xilinx Spartan-3 CLB. Slices X0Y0 and X0Y1

make up the column-pair on the left, and slices X1Y0 and X1Y1 make up the column-pair on the

right. Left-hand pair or SLICEM is labeled with an even "X" number, and right-hand pair or SLI-

CEL designates the pair with an odd "X" number (e.g. X1). Switch Matrices are programmable

interconnects of wire segments.

The Spartan-6 CLB consists of two slices, arranged side-by-side as part of two vertical

columns. There are three types of CLB slices in the Spartan-6 architecture: SLICEM, SLICEL,

and SLICEX. Each slice contains four LUTs, eight flip-flops, and miscellaneous logic. The LUTs

are for general-purpose combinatorial and sequential logic support. 25% of Spartan-6 FPGA

slices are SLICEMs. Each of the four SLICEM LUTs can be configured as either a 6-input LUT

with one output, or as dual 5-input LUTs with identical 5-bit addresses and two independent

3. High Performance Reconfigurable Computing
3.3. Overview of Field Programmable Gate Arrays 45

2 Slices
4 LUTs + 8 FF

4 LUTs + 8 FF

Total: 8 LUTs + 16 FF

Spartan-6 6-input LUT with one output,
or as dual 5-input LUTs with
identical 5-bit addresses and
two independent outputs.

4 Slices

2 LUTs + 2 FF

2 LUTs + 2 FF

Total: 8 LUTs + 8 FF

4-input LUTs

2 LUTs + 2 FF

2 LUTs + 2 FF

Virtex-4

2 Slices
4 LUTs + 4 FF

4 LUTs + 4 FF

Total: 8 LUTs + 8 FF

6-input LUTs or dual-output
5-input LUTs.

Virtex-5

2 Slices
4 LUTs + 8 FF

4 LUTs + 8 FF

Total: 8 LUTs + 16 FF

6-input LUT (64-bit ROMs)
with one output, or as two 5-
input LUTs (32-bit ROMs)
with separate outputs.

LUT FF
FF

LUT FF
FF

LUT FF
FF

LUT FF
FF

LUT FF
FF

LUT FF
FF

LUT FF

LUT FF

LUT FF

LUT FF

LUT FF
FF

LUT FF
FF

LUT FF
FF

LUT FF
FF

Virtex-6

4 Slices

2 LUTs + 2 FF

2 LUTs + 2 FF

Total: 8 LUTs + 8 FF

4-input LUTs

2 LUTs + 2 FF

2 LUTs + 2 FF

LUT FF
FF

LUT FF
FF

Spartan-3
Xi

lin
x S

pa
rt

an
 F

am
ily

Xi

lin
x V

irt
ex

 F
am

ily

CLB Configuration

Figure 3.6: Advancement in configuration of a CLB and a slice in latest Xilinx families of FPGAs.

outputs. The SLICEL contain all the features of the SLICEM except the memory/shift register

function and they occupy 20% of Spartan-6 FPGA slices. The SLICEX have the same structure

as SLICELs except the arithmetic carry option and the wide multiplexers. They occupy 50% of

Spartan-6 FPGA slices.

The Virtex-4 CLB has four slices (maximum of 64 bits). Each slice is equivalent and contains

two configurable 4-input LUTs, two storage elements (edge-triggered D-type flip-flops or level

sensitive latches), arithmetic logic gates, large multiplexers and fast carry look-ahead chain.

Each CLB has internal fast interconnect and connects to a switch matrix to access general

routing resources.

Virtex-5 FPGA CLB has two slices which are organized differently from previous genera-

tions. The slices are based on real 6-input look-up table technology. Each slice has four 6-input

3. High Performance Reconfigurable Computing
3.3. Overview of Field Programmable Gate Arrays 46

Switch
Matric

Slice (3)
X1Y1

Slice (1)
X1Y0

Slice (2)
X0Y1

Slice (0)
X0Y0

COUT

COUT

SHIFT
CIN

CIN

Fast
Connects
to neighbors

SLICEM
(logic or distributed RAM or shift

register)

SLICEL
(logic only)

Look-up
Table (LUT)

Carry
and

Control
Logic

BY
SR

CLK
CE

. .

.

D

CK

EC R

S Q YQ

Y

COUT
YB

F5IN

G1
G2
G3
G4

Look-up
Table (LUT)

Carry
and

Control
Logic

BX
CIN

. .
D

CK

EC R

S Q XQ

X
XB

G1
G2
G3
G4

Simplified slice structure

Logic Cell (LC)

Figure 3.7: An example of basic Xilinx Spartan-3 Configurable Logic Block.

LUTs or dual-output 5-input LUTs, four storage elements (edge-triggered D-type flip-flops or level

sensitive latches), arithmetic logic gates, large multiplexers and fast carry look-ahead chain.

Virtex-6 FPGA CLB has two slices, each having four LUTs, eight flip-flops, multiplexers and

arithmetic carry logic. The LUTs can be configured as either one 6-input LUT (64-bit ROMs) with

one output, or as two 5-input LUTs (32-bit ROMs) with separate outputs but common addresses

or logic inputs.

Table 3.4: Resource comparison between five Xilinx generations of FPGAs.

Resources Spartan-3 [75] Spartan-6 [76] Virtex-4 [77] Virtex-5 [78] Virtex-6 [79]

Logic Cells 1.6k – 73k 4k – 144k 12k – 200k 19k – 324k 72k – 741k

Slices 0.8k – 33k 600 –23k 5k – 87k 3k – 50k 11k – 115k

CLBs 192 – 8320 300 – 11519 1368 – 22272 1560 – 25920 5820 – 59280

Block RAM (kb) 72 – 1872 216 – 4824 648 – 9936 936 – 18576 5616 – 38304

DSP Slices – 8 – 180 32 – 512 24 – 1056 228 – 2016

Serial Transceivers – 0 – 8 0 – 24 0 – 48 0 – 36

SelectIO 124 – 300 132 – 576 320 – 960 172 – 1200 360 – 1200

3. High Performance Reconfigurable Computing
3.4. Hardware Design Flow 47

Specification

Hardware description

Logic Synthesis

Placement

Routing

Simulation

Simulation

Prototype

Exploration

=?

Behavioral
(ESL)

Structural
(RTL)

Physical

Bitstream file

Program FPGA

Figure 3.8: Design flow of system hardware development.

3.4 Hardware Design Flow

Hardware developers follow a design flow to systematically handle the design steps from an

abstract specification (a model) to a functional hardware platform [54]. The most common flow

used in the design of FPGAs involves the steps shown in Figure 3.8. Some of the steps imply

use of tools supplied by the different FPGA vendors, however these tools do not help designer

in initial steps of specification and prototyping.

The first step is to make a specification or a model of a system, which implies block dia-

grams and hierarchical schematics, design constraints and design requirements. Prototyping is

required to verify the specification and allow hardware and software co-design. The prototype

is usually programmed using high-level programming languages such as C, C++, Matlab or a

high-level hardware description language such as System C. The specification is often modified

after prototyping phase, which is called Exploration phase. Hardware description consists of

transforming the design ideas into some Hardware Description Language (HDL). This can be

accomplished automatically or manually. The code which is used to make a prototype can be

automatically translated into HDL with, for example, C-to-VHDL compiler. The other approach is

to manually describe a system at the register-transfer level (RTL). This approach might be time

consuming, but often results in optimized solution. The two most popular HDLs are VHDL (Very

High Speed Integrated Circuit HDL) and Verilog. The HDLs differ from conventional software

programming language since they additionally support concurrent execution of statements in the

3. High Performance Reconfigurable Computing
3.4. Hardware Design Flow 48

code.

Logic Synthesis is used to compile the hardware description into gate level. It generates

a netlist which uses vendor specific primitives to implement the logic behavior specified in the

HDL. The gate primitives are provided in form of a cell library which describes the functional and

physical properties of each cell. Vendor specific synthesis tools provide options such as logic

optimization, register load balancing and other techniques to enhance timing performance. After

this stage it is possible to verify netlist against RTL description.

Placement takes the synthesized netlist and chooses a place for each of the primitives inside

the chip. Then, Routing interconnects all primitives together satisfying the timing constraints,

such as the frequency of the system clock. The resulting choices for the configuration of each

programmable element in the FPGA chip is stored in a bitstream file which is later used to

program an FPGA.

The design flow is an iterative process, where changes to one step may require the designer

to repeat previous step in the flow. After some phases, it is possible to make a simulation and

check functionality of a circuit.

Chapter 4

High-Speed Fully-Adaptable CRC Accelerators

Cyclic Redundancy Check is used in numerous applications as a method to detect errors in

sequences of bits. Since it has good detecting properties it is used in data transmission and in

data storage. However, it is often substituted with less efficient error detection schemes, since it

is a computationally intensive process that adversely affects performance. It plays an important

role in implementation of iSCSI protocol in Storage Area Networks (SANs) for detecting errors

which occur between protocol transitions. In such a case, it is common practice to disable iSCSI

digests in order to decrease latency, thus the network must rely on other mechanisms to detect

corrupted data, such as TCP and Ethernet error detection mechanisms. Unfortunately, these

mechanisms cannot detect errors which occur between upper layer protocol transitions. This

can result in undetected data corruption, thus it can lead to various problems such as failed

integrity check of a database. Therefore, it is desired to (1) reduce the computational burden,

(2) make architecture generic enough to support a variety of applications, (3) make architecture

scalable so it can process arbitrary number of data input (4) achieve significant improvements in

throughput and (5) make it area efficient.

There are a couple of methods to implement CRC, and they are introduced in section 2.2.

The simplest method imitates the standard hand calculations of polynomial division, and it is

predominately used in hardware implementations. The simplest implementation of this method

is when an input message is fed serially into a circuit, but there are other methods which intro-

duce some level of parallelism. In related work in section 2.2.3, we introduced the most recent

methods highlighting achievable throughput, the ability to adapt to different applications and the

amount of processed bits at a time. It is important to note that the goal of traditional methods

for designing CRC accelerators is acceleration of a specific application. In such accelerators,

the resulting CRC value is determined by the CRC standard deployed by an application, which

is usually fixed at the design time. We call these accelerators non-adaptable. Their usability is

limited to only one CRC standard, thus they can be used by limited numer of applications. On

the other hand, adaptable CRC accelerator has ability to generate CRC for a variety of CRC

standards and thus support a wide range of applications. They eliminate the need for many

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 50

non-adaptable CRC accelerators. The fully-adaptable CRC accelerator has ability to process ar-

bitrary number of input data and generates CRC for all currently defined CRC standards during

run-time. In related work, we found only one method, based on parallel implementation of LFSR,

which exhibits throughput of up to 25 Gbps. However, it has no mechanism to adapt to different

standards. Other methods exhibit maximum of 6 Gbps and have very little to no adaptability.

We propose new CRC architecture based on FPGAs, which can potentially achieve high

throughput, high adaptability in terms of support for CRC standards and process arbitrary amount

of data at a time at minimum area utilization. FPGAs are chosen because of their potential to

implement many functional units in parallel, thus many bits at a time might be processed, which

in the end affects throughput. In this section, we describe design and implementation of non-

adaptable and fully-adaptable CRC accelerators based on a table-based algorithm, which is

suited for the flexible implementation. Although the table-based algorithm has been used in soft-

ware, it has never been implemented in hardware as its performance is believed to be lower than

traditional implementation. We prove that this approach can be successfully implemented on an

FPGA and achieve significant performance improvements over related work.

Our contributions are as follows:

1. A design of non-adaptable CRC accelerator with sufficient performance and reasonable

resource utilization using a table-based algorithm is proposed.

2. Based on the above design, a fully-adaptable CRC accelerator is proposed by integrating

algorithm for generating CRCs and algorithm for generating contents of tables. Resulting

architecture generates CRC for any known CRC standard during run-time. It achieves

throughput of up to 418.8 Gbps, when M = 1024 (M is number of bits of input data).

3. We modify table generation algorithm in order to decrease its space complexity from O(nm)

to O(n), where n is a number of tables, and m is a number of bits in a slice.

4. Design of our architectures guarantees scalability/expandability by processing arbitrary

number of input data M at minimal area cost. In order to show efficiency of our architecture

in terms of area utilization and throughput, we design five implementations, where M ∈
64, 128, 256, 512, 1024.

4.1 Design of a CRC Accelerator

In order to support variable number of CRC Standards, we propose the structure consisting

of a non-adaptable CRC accelerator core and Table Generation Module (TGM) as shown in

Fig 4.1. From the viewpoint of an application, the total system is treated as a CRC IP* Core.

The accelerator core consists of CRC Generation Module (CGM) and tables with pre-computed

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 51

ad
dr

start

tab_crc

polynomial

ref_in

ref_out

Tables	
 Genera+on	

Module	

TGM	

1	

TGM	

4	

TGM	

N	

…

G-1

1

1

1

1

da
ta

… …
IP

*
	
 C

o
re

	
 I
n
te

rf
a
ce

	

CRC IP* Core Control Data

Adaptable CRC

Tables	

da

ta

ad
dr

 data_input

data_in_ready

init_value

final_value

CRC	
 Genera+on	
 	

Module	

Buffer	
 Buffer	

Buffer	
 Read	

Buffer	
 CRC	

Buffer	
 Output	

Buffer	
 Buffer	
 1

M

G-1

G-1

8

G-1 8
… …

G-1

Table	

1	

Table	

N	

… Host PCIe Bus

Non-adaptable CRC

Figure 4.1: Design overview of the non-adaptable (accelerator core) and fully-adaptable CRC

accelerators.

values. The CGM calculates CRC for provided data input every clock cycle by accessing pre-

computed remainders stored in tables in parallel. The TGM generates pre-computed remainders

for a specified generator polynomial G, and stores them into tables. The IP* Core Interface

is responsible for managing generation of remainders, accessing and storing them from/into

tables, and managing input/output buffers. Two main modules are not executed in parallel in

order to maintain data consistency of tables. The fully-adaptable accelerator accepts variable

width generator polynomial G up to 65 bits, while different input stream widths M require different

FPGA implementation for each. The most significant bit in a polynomial G is always considered

to be 1, thus the input polynomial is always G − 1. The number of tables N depends on an input

data M and it is equal to M/8.

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 52

CRC	
 Genera)on	
 	

Module

Init	

Input	
 data	

CRC	

IP Core Interface

Co
nt
ro
lle
r	

Tables

…
TN

RemainderN	

XOR	

Intermediate	
 Address	

Intermediate	
 CRC	

XOR	

XorOut	

…
T1

…

…

Remainder1	

XOR	

…
T2

Remainder2	

(7..0) (15..8) (M-9..M-16) (M-1..M-8)

MUX

Control

Data

…

Host PCIe Bus

PCIe	
 Controller	
 DMA	
 Controller	

Input	
 Buffer	
 Output	
 Buffer	
 Command	
 Buffer	
 Comple=on	
 Buffer	

M
G-1

G-1

G-1

Figure 4.2: The generic architecture of CRC Generator Module - CGM and accompanying IP*

Core Interface.

4.1.1 CRC Generation Module

Fig 4.2 shows the architecture of CRC Generator Module and IP* Core Interface. In the first

iteration, Intermediate Address is formed by XORing input data with initial value (Init), while in

other iterations Intermediate CRC is used instead of Init. Intermediate Address is then sliced

into N eight bit slices, which are used as addresses to N Tables. The number N dependents on

the number of input data M and it is equal to M/8. Then, Tables provide N Remainders, which

are XORed to form Intermediate CRC. When the end of the Input Buffer is reached, Intermediate

CRC is XORed with the final value (XorOut) and then stored in the Output Buffer.

For fully-adaptable implementation, the CGM must support variable number of CRC Stan-

dards. There are four parameters defined by a CRC Standard which affect execution of CGM:

Width, Poly, Init and XorOut. In order to make this architecture fully-adaptable, we fix data-path’s

width to maximum number of bits in Width in order to support variable width generator polyno-

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 53

mial. CRCs with higher degree polynomials are still not used in practice, thus there is no need

to implement them yet. The CGM indirectly depends on the Poly through TGM which generates

reminders in tables (which will be discussed in the next section). In the fully-adaptable architec-

ture, the IP* Core Interface permits usage of the CGM only until tables are ready, thus the CGM

doesn’t have to check if tables are ready or not.

The CGM is implemented in a pipeline with three stages as following. In the first stage, M

bits are read from the Input Buffer and stored into a temporary register. This value is then XORed

with either Init or previous Intermediate CRC, depending on the iteration. In the second stage,

Intermediate Address is sliced into N slices and used to access N remainders from N tables.

These remainders are then XORed to form Intermediate CRC. In the third stage, Intermediate

CRC is XORed with XorOut and stored into the Output Buffer. The latency of CGM module is

three cycles, but CRC is generated every cycle (the throughput is one cycle).

Fully-adaptable CGM’s architecture has the following aspects to provide adaptability:

• data-path is extended to maximum number of bits in Width,

• structure of tables TN ..T1 is extended to maximum 2S lice×Width, and tables are read-write,

instead of previously read-only,

• values in tables and resulting CRC are aligned to right, while in the case when G < 65 bit

positions 64 − (G − 1) are filled with zeros, since XORing a value with zeros will result with

the value itself,

• Init and XorOut values are programmable, instead of hard-coded in the circuit,

• controller is modified in order to support integration with TGM and IP* Core Interface.

4.1.2 Tables Generation Module

For all table-based CRC algorithms tables are generated by a separate algorithm. The results

are used to form a data-set in the program for generating CRCs. In software implementations,

tables are generated sequentially and independently from each other. In our design, we integrate

these two algorithms and in this section we discuss the architecture of Tables Generation Module

- TGM. This architecture enables support for a variable number of CRC Standards, as well

as processing arbitrary number of bits at a time. We provide a pseudo-code for generating

remainders in Fig. 4.3 based on the description in [27,80].

We present a general block diagram of our single TGM in Fig. 4.4a). Every clock cycle, the

counter generates a message ranging from 0 to 2S lice (line 2 in Fig. 4.3). This message then

passes through the input reflection unit (line 4) or directly to the remainder generator (line 9 -

15), depending on a CRC standard. The input reflection unit reflects message bits by swapping

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 54

1: for O f f set = 1→ N do

2: for i = 0→ 2S lice do

3: if Re f In = true then

4: input ← re f lect(i, S lice)

5: else

6: input ← i

7: end if

8: r ← input << (Width − S lice)

9: for j = 0→ O f f set ∗ S lice do

10: if r ∧ input then

11: r ← (r << 1) ⊕ Poly

12: else

13: r ← r << 1

14: end if

15: end for

16: if Re f Out = true then

17: r ← re f lect(r,Width)

18: end if

19: end for

20: end for

Figure 4.3: Pseudocode for generating contents of tables based on the description in [27, 80].

The O f f set is the position of a byte in an input message M that is being processed.

them around its center. Prior to forwarding a message to the remainder generator, the message

is shifted to left by Width − S lice bits (line 8), depending on the width of a data-path and a slice.

The remainder generator unit performs long division operation, consisting of series of se-

quential operations. Operations are inter-dependent from the results of a previous operation,

thus it is impossible to execute them simultaneously. We described a single operation and de-

fined it as R Module (Fig. 4.4d). Number of cycles required to generate one remainder depends

on the offset of a byte in input message M. At the end, the remainder is reflected or forwarded

to output. This unit determines the speed and the area of the circuit.

The TGM is designed to be independent of the width of a generator polynomial, thus the

TGM in Fig 4.1. does not require additional input for the width of a generator polynomial. The

polynomial is aligned to left, while in the case when G < 65 bit positions from (64 − (G − 1)) to 0

are filled with zeros. This feature significantly simplified design of TGM.

In the next two sections we will describe two possible architectures for TGM and analyze

them.

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 55

<<
	
 1
	

xo
r	

m
ux

r
po

ly

r(
1)

r’

Re
fle

ct
	

R1
	

R2
	

R8
	

. . .

Re
fle

ct
	

R1
	

R2
	

R8
	
 . . . R9
	

R1
0	

R1
6	
 . . .

Re
fle

ct
	

R1
	

R2
	

R8
	

. . . R9
	

R1
0	

R1
6	
 . . . R1
7	

R1
8	

R2
4	
 . . .

Re
fle

ct
	

R1
	

R2
	

R8
	
 . . .

Co
un

te
r	
 N

	

R9
	

R1
0	

R1
6	
 . . .

R1
7	

R1
8	

R2
4	
 . . .

R2
5	

R2
6	

R(
N
*8
)	

. . .

T 1
	

T 2
	

T 3
	

T N
	

Co
un

te
r	
 3

	

Co

un
te
r	
 2

	

Co

un
te
r	
 1

	

Co

un
te
r	
 N

	

Co

un
te
r	
 3

	

Co

un
te
r	
 2

	

Co

un
te
r	
 1

	

Re
fle

ct
	

R1
	

R2
	

R8
	

. . . T 1
	

TG
M
	
 1

	

R1
	

R2
	

R8
	

. . . T 2
	

TG
M
	
 2

	

R1
	

R2
	

R8
	

. . . T 3
	

TG
M
	
 3

	

R1
	

R2
	

R8
	

. . . T N
	

TG
M
	
 N

	

(T
R
 +

 1
)-s

ta
ge

 p
ip

el
in

ed
 a

rc
hi

te
ct

ur
e

O
ve

rla
pp

ed
 p

ip
el

in
ed

 a
rc

hi
te

ct
ur

e
TG

M
	
 N
	

TG
M
	
 3
	

TG
M
	
 2
	

TG
M
	
 1
	

R Module

Co
un

te
r	

Control	
 Logic	

a)

b)

c)

d)

i

O
ut
pu

t	

Re

fle
cE
on

	

U
ni
t	

Re
m
ai
nd

er
	

Ge
ne

ra
to
r	

U
ni
t	

Re
fle

cE
on

	
 U
ni
t	

Ta
bl

e
G

en
er

at
or

M

od
ul

e

Fi
gu

re
4.

4:
a)

A
ge

ne
ra

lb
lo

ck
di

ag
ra

m
of

a
si

ng
le

Ta
bl

e
G

en
er

at
io

n
M

od
ul

e
-

TG
M

;b
)

A
sc

he
m

at
ic

of
(T

R
i
+

1)
-s

ta
ge

pi
pe

lin
ed

ar
ch

ite
ct

ur
e;

c)

A
sc

he
m

at
ic

of
O

ve
rla

pp
ed

pi
pe

lin
ed

ar
ch

ite
ct

ur
e

(p
re

fe
rr

ed
de

si
gn

);
d)

A
rc

hi
te

ct
ur

e
of

a
si

ng
le

op
er

at
io

n
of

R
em

ai
nd

er
G

en
er

at
or

U
ni

tc
al

le
d

R

M
od

ul
e.

Th
e

pi
pe

lin
e

re
gi

st
er

s
ar

e
pl

ac
ed

af
te

ra
ll

R
efl

ec
t

an
d

R
M

od
ul

es
in

bo
th

ar
ch

ite
ct

ur
es

.

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 56

4.1.2.1 (TRi + 1)-stage pipelined architecture

Straight-forward implementation of TGM in hardware is to design N circuits, and generate con-

tents for each table in parallel. In order to generate one remainder each cycle we consider

multiplying R Modules and using pipelining to exploit the intrinsic parallelism. The schematic of

this architecture is presented in Fig. 4.4b).

The number of R Modules depends on the width of input data M. We explored possibil-

ity of processing M ∈ 64, 128, 256, 512, 1024. Thus, the total number of R Modules per every

consecutive table i ∈ 1, 2, 3, ... N is calculated with the following formula:

TRi = O f f seti × S lice_length, (4.1)

where O f f set is the position of a byte in an input message M that is being processed.

However, the space complexity of this approach is O(nm) when we consider the total number of

R Modules per algorithm:

TRN =

N∑
i=1

TRi = S lice_length ×
N∑

i=1

O f f seti. (4.2)

Consequently, the minimum required number of stages in the pipeline for the first table is 9

stages, and every consecutive table requires 8 additional stages (shown in Fig. 4.4b). The first

remainder is generated after TRi clock cycles, followed by other remainders generated in every

clock cycle.

By our estimations (detailed in Section 4.2.), the architecture with 64 and 128 tables couldn’t

fit in a moderate size FPGA, while the architecture for smaller number of tables would occupy

substantial amount of area on a modern FPGA. In next section we introduce the method to

reduce space complexity by overlapping specific operations.

4.1.2.2 Overlapped pipelined architecture

We noticed that we can reduce number of R Module per table to only 8 modules, by forwarding

last non-reflected value from the R8 Module as an input to the R1 Module in the next TGM. The

concept is illustrated in Fig. 4.4c). Doing so, we significantly reduced number of R Modules,

and we simplified architecture of TGMs from 2 to N. Architecture of the first TGM was modified

to output non-reflected value from R8 Module, and corresponding logic was added to connect

this value to the following TGM. First non-reflected value can be forwarded in TRi clock cycle,

just before output reflection. This also means that the second TGM can start processing one

clock cycle before the first table outputs its first remainder. Initial reflection is not necessary

for tables 2 to N, since the counter value was reflected in the first table. We keep counters in

other generators to generate addresses for corresponding remainders. Thus, TGM 1 has nine

pipeline stages, while other TGMs have only eight. The input reflection is not needed due to the

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 57

forwarding of non-reflected values from TGM 1. Thus, the latency of TGM 1 is nine cycles, while

the latency of TGM 2 to 8 is eight cycles.

Any additional table will add the latency of 8 cycles to a number of cycles from the start of

calculation. The total latency is the same as in (TRi + 1)-stage pipelined architecture, but the

amount of resources used is significantly reduced.

In this architecture, the total number of R Modules per algorithm is calculated with:

TRN = N × 8, (4.3)

where N ∈ 8, 16, 32, 64, 128. Thus, the space complexity is reduced from O(nm) to O(n).

4.1.3 Effects of architecture’s scalability

As we mentioned earlier, we explored possibility of processing arbitrary number of input data

M ∈ 64, 128, 256, 512, 1024 bits and in this section we discuss effects on our architecture. The

first series of table generations read M = 64 bits (Slicing–by–8) and require eight TGMs. Every

other extension in the number of processed bits doubles the number of required TGMs. In order

to keep resource utilization at minimum, we decided to re-use these eight modules for other

implementations. The basic idea is shown in Fig 4.5. Clock cycles are presented as numbers

on the left side from a table, while numbers inside the tables represent position of the remainder

in a table. For the second series of table generations (Slicing–by–16), which read 128 bits, we

modified TGM 1 to accept non-reflected values from TGM 8. This is essentially forwarding of

non-reflected values again to TGM 1. The only problem is that TGM 1 can start generating

remainders for table 9 after 264 clock cycles, while TGM 8 generates first non-reflected value in

cycle 64. This means that non-reflected values cannot be forwarded directly to TGM 1. Thus,

we decided to introduce a temporary table for TGM 8’s non-reflected values - Table X. TGM

1 will start generating remainders for Table 9 just after it finishes generation of remainders for

Table 1. In order to generate remainders for Table 9, TGM 1 will read input values from Table X

(shown with line 1 in Fig 4.5.) instead from the counter shown in TGMs basic architecture. All

the following tables will start executing with 8 clock cycles latency compared to a previous table.

For the third series of Table generations, which read 256 bits, we had to introduce another

temporary table - Table Y. TGM 8 generates new non-reflected values for Table 9. before TGM 1

reads all the values from the first temporary table, thus these values will be temporarily stored in

Table Y. Then, Table Y will be used for generation of Table’s 17 remainders (line 2), while Table

24 will store its non-reflected values in Table X (line 3). Input into Table 25 will be non-reflected

values stored in Table X (line 4), and so forth. Table Y will be lastly re-used by Table 120, in order

to calculate remainders for total number of 128 tables for Slicing–by–128. This will be 7th usage

of this table during re-generation of tables for Slicing–by–128 implementation (line 7).

Table X and Table Y are implemented as dual-port BlockRAMs, thus there are no pipeline

stalls in any TGM. Due to its pipelined design, TGM 1 can start reading first non-reflected value

4. High-Speed Fully-Adaptable CRC Accelerators
4.1. Design of a CRC Accelerator 58

TGM	
 1	
 TGM	
 2	
 TGM	
 8	

Overlapped pipelined architecture

Table 8
65
66
67

320

1
2
3

256

Table 1
9

10
11

264

1
2
3

256

Table 2
17
18
19

272

1
2
3

256

Table X
64
65
66

319

1
2
3

256

C
lo

ck
 C

yc
le

s

Table 16
321
322
323

576

1
2
3

256

Table 9
265
266
267

520

1
2
3

256

Table 10
273
274
275

528

1
2
3

256

Table Y
320
321
322

575

1
2
3

256

Table 24
577
578
579

832

1
2
3

256

Table 17
521
522
523

776

1
2
3

256

Table 18
529
530
531

784

1
2
3

256

Table 25
777
778
779

1032

1
2
3

256

1	

2	

3	

4	

Table 128
1857
1858
1859

2112

1
2
3

256

Table 120
1794
1795
1796

2049

1
2
3

256

Table 121
1802
1803
1804

2057

1
2
3

256

7	

Slicing-by-8
Slicing-by-16

Slicing-by-128

Figure 4.5: All five implementations use only eight TGMs for generating contents of 1 - 128

tables.

4. High-Speed Fully-Adaptable CRC Accelerators
4.2. FPGA Implementation 59

from Table X in 257 cycle, instead of 319 cycle. Thus, the first value in Table 9 is generated in

cycle 265. This technique also applies to remaining tables.

In order to support this idea, data-path and controller of each of these series of table gener-

ations is significantly different from each other. Resource utilization is therefore kept minimal, as

will be discussed in Section 4.2. This architecture enables further expansion of throughput with

minimal resource utilization.

4.1.4 The IP* Core Interface

When an application requests CRC IP* Core service, the request is first delivered to the IP*

Core Interface (as seen in Fig 4.2). The Interface is connected with external processing systems

through the PCI Express bus. It consists of a PCI Express Controller, command buffer, comple-

tion buffer, input buffer and output buffer. A command request is delivered to the CRC IP* Core

through the command buffer. There are two types of command request: Table re-generation and

CRC generation. After the command is processed, a completion result is delivered to the host

CPU through the completion buffer. The input buffer is used to store data fetched from the main

memory by DMA. Similarly, output buffer is used to store data that will be transferred into the

main memory by DMA.

When a user invokes a routine in the CRC IP* Core device driver, it creates a command

request corresponding to the user’s request and stores it into the command buffer. The IP*

Core Interface then reads the command request and performs operations corresponding to the

request. After the request is processed, the IP* Core Interface creates the completion result and

stores it in the completion buffer. The IP* Core Interface then interrupts the host CPU to report

completion of a request. The CPU reports the result to the user program.

4.2 FPGA Implementation

We designed a prototype implementation using the Xilinx Virtex 6 LX550T device (xc6vlx550t-

2ff1760). The design was written in VHDL and Xilinx’s ISE 12.4 design environment was used

for all parts of a design flow including synthesis, mapping and place and route. The behavioral

correctness of each circuit has been manually checked through a series of simulatios in Xilinx

ISim 12.4. The advantage of implementing table-based CRC architecture on an FPGA comes

from FPGA’s ability to access look-up tables in parallel, thus by increasing number of processed

bits at a time we can maintain increase in throughput.

After the implementation of TGMs on an FPGA, we came to the conclusion that (TRi + 1)-

stage pipelined architecture is area consuming, when we consider re-generating remainders for

32, 64 or 128 tables in parallel. We measured number of resources for a single R Module which

is 8 slices or 32 LUTs. Then, we implemented two versions of this architecture with M = 64

4. High-Speed Fully-Adaptable CRC Accelerators
4.3. Evaluation 60

Table 4.1: Resource utilization of R Modules in (TRi + 1)-stage pipelined architecture for M ∈
64, 128, 256, 512, 1024. Column three represents roughly estimated resources utilization based

on the resources required by a single R Module, while column four represents actual resource

utilization on the Xilinx Virtex 6 LX550T.

Xilinx Virtex 6 TGMs LUTs LUTs

LX550T (Tables) est.

M = 64 bits 8 9.2k (2%) 10.5k (3%)

M = 128 bits 16 34.8k (10%) 37.6k (10%)

M = 256 bits 32 135k (39%) -

M = 512 bits 64 532k (154%) -

M = 1024 bits 128 2113k (614%) -

and M = 128, with 8 and 16 TGMs/Tables, respectively. We also roughly estimated number

of resources used for R Modules in M ∈ 64, 128, 256, 512, 1024 architectures. The results are

presented in Table 4.1. The estimated resources were very close to the measured resource

utilization, thus we concluded that the majority of resources were used for R Modules. Most

likely, architectures with M = 512 and M = 1024 would not fit on this fairly large FPGA chip,

while architecture with M = 256 would occupy substantial amount of resources - 39% on the

Xilinx Virtex 6 LX550T.

Overlapped pipelined architecture is used for implementation of TGM. Maximum of eight

TGM’s are used in all five implementations. This feature ensured minimal resource usage for a

number of input bits at a time, and also enabled further expansion of the architecture.

Number of tables grow proportionally with the number of bits processed at a time, thus it

is important to choose storage elements with fastest access time. To measure performance of

this architecture, we implemented tables in a) BRAM and in b) logic. Tables are read-write, but

writing and reading operations are not overlapped in order to maintain consistency of tables. For

implementation a) tables are implemented as RAM modules in Block RAM.

4.3 Evaluation

4.3.1 Non-adaptable CRC accelerator core

First of all, we evaluated the performance and resource usage of the CRC accelerator core when

it is used as a fixed non-adaptable one. In Table 4.2, Slicing–by–N32 and Slicing–by–N64 show

the case when the resulting CRC value is 32 and 64, respectively.

As shown later, the throughput achieved is superior or comparable to the traditional LFSR im-

4. High-Speed Fully-Adaptable CRC Accelerators
4.3. Evaluation 61

plementation. Thus, it appears that the accelerator with table-based algorithm achieved enough

performance with reasonable cost.

Table 4.2: Resource utilization of non-adaptable Slicing–by–N32 and Slicing–by–N64 algorithms

on the Xilinx Virtex 6 LX550T, where N = M/8, M ∈ 64, 128, 256, 512, 1024, and "32" and "64"

represent the width of a resulting CRC value (related to 33 and 65 generator polynomial). Tables

are implemented in BRAM.

Slicing–by–N32

Xilinx Virtex 6 LX550T M = 64 M = 128 M = 256 M = 512 M = 1024

LUTs (max 343680) 205 404 676 916 1180

Fully used LUT-FF pairs 159 359 493 714 979

BRAM (max 632) 8 16 32 64 128

Max. operating freq. (MHz) 469.14 431.86 332.92 332.92 347.98

Throughput (Gpbs) 29.32 53.98 83.23 166.46 347.98

Slicing–by–N64

Xilinx Virtex 6 LX550T M = 64 M = 128 M = 256 M = 512 M = 1024

LUTs (max 343680) 540 780 1186 1328 2230

Fully used LUT-FF pairs 458 698 849 946 1824

BRAM (max 632) 8 16 32 64 128

Max. operating freq. (MHz) 468.02 430.91 332.36 332.36 347.37

Throughput (Gpbs) 29.25 53.86 83.09 166.18 347.37

4.3.2 Fully-adaptable CRC accelerator

4.3.2.1 Throughput and resource usage

In Table 4.3, the performance and resource usage of fully-adaptable CRC accelerators are

shown. In this implementation, Overlapped pipelined architecture is used in TGM, and tables

are implemented in: a) BRAM and b) logic. Note that the fully-adaptable architecture is capable

of generating remainders for any known CRC standard, up to 65 bits of generator polynomial,

during run-time. Its usability is much broader than non-adaptable architecture.

The throughputs of four implementations of non-adaptable and fully-adaptable CRC acceler-

ators are shown in Fig. 4.6. The maximum throughput was achieved with fully-adaptable archi-

tecture with tables implemented in logic (Table 4.3b). It is 418.8 Gbps when M = 1024, and it is

up to 31% higher than adaptable architecture with tables implemented in BRAM. Compared to

non-adaptable CRCs, the configuration of BRAM was changed from read-only to read-write, thus

4. High-Speed Fully-Adaptable CRC Accelerators
4.3. Evaluation 62

Figure 4.6: Throughputs of four implementations of non-adaptable and fully-adaptable CRC

accelerators.

the total critical path was increased to approximately 1.78 ns, and between 0.512 to 0.696 ns of

routing delay. This is why fully-adaptable CRCs with BRAM show decrease in throughput, but

they can still support most demanding applications. Slicing–by–N32 and Slicing–by–N64 exhibit

almost the same trend in throughput, because their architecture is not noticeable different. We

show that each time we double number of processed bit at a time, architecture’s throughput also

doubles in all four implementations. Thus, when choosing a type of accelerator, the trade off is

between flexibility/adaptability, throughput and resource utilization.

Even though fully-adaptable architecture a) exhibits highest throughput among all implemen-

tations, it also exhibits highest resource utilization on Xilinx Virtex 6 LX550T board. It occupies

between 1.6% and 14.2% of LUTs resources, while the architecture b) occupies only 1-2% of

LUTs resources. LUTs resource utilization of non-adaptable accelerators is around 1% on the

same device. Resource utilization is kept at minimum in each implementation with different M’s,

as explained in Section 4.1.3. Every consecutive implementation in a) adds insignificantly more

resources, while in b) most resources are occupied by contents of tables. We think that resource

utilization is still acceptably low, especially for fully-adaptable architecture a).

4. High-Speed Fully-Adaptable CRC Accelerators
4.3. Evaluation 63

Table 4.3: Resource utilization of fully-adaptable CRC accelerator, where N = M/8 and M ∈
64, 128, 256, 512, 1024. We present two implementations with tables implemented in a) BRAM

and b) in logic on the Xilinx Virtex 6 LX550T.

a) Slicing–by–N [BRAM]

Xilinx Virtex 6 LX550T M = 64 M = 128 M = 256 M = 512 M = 1024

LUTs (max 343680) 3398 3405 3949 5119 6774

Fully used LUT-FF pairs 3082 2977 3481 3604 3617

BRAM (max 632) 8 16+1 32+2 64+2 128+2

Max. operating freq. (MHz) 352.37 345.31 337.93 321.31 283.1

Throughput (Gpbs) 27.8 44.2 86.50 164.51 289.8

b) Slicing–by–N [logic]

Xilinx Virtex 6 LX550T M = 64 M = 128 M = 256 M = 512 M = 1024

LUTs (max 343680) 5571 9151 14861 26114 48756

Fully used LUT-FF pairs 3306 5084 6185 10839 17218

BRAM (max 632) – – – – –

Max. operating freq. (MHz) 443.9 417.8 414.61 415.14 408.9

Throughput (Gpbs) 28.41 53.47 106.14 212.6 418.8

4.3.2.2 Time for re-generation of tables

It’s important to consider time required for regeneration of content in tables. This happens only

when CRC standard changes. In Table 4.4. we present number of cycles and time required for

each algorithm we implemented. We consider this to be reasonably quick and not noticeable by

Table 4.4: Number of clock cycles and time required for re-generation of tables when generator

polynomial changes.

Clock BRAM logic

Input data Tables Cycles (µs) (µs)

M = 64 bits 8 320 0.91 0.72

M = 128 bits 16 576 1.67 1.38

M = 256 bits 32 1088 3.22 2.62

M = 512 bits 64 1600 4.98 3.85

M = 1024 bits 128 2112 7.46 5.17

4. High-Speed Fully-Adaptable CRC Accelerators
4.3. Evaluation 64

a user.

4.3.3 Comparison to Related Work

Table 4.5. provides a summary of related works for generating CRC implemented on a different

technologies. Although it is difficult to compare performance and area parameters for different

technologies, some valid comparisons can be made.

Compared to all non-adaptable hardware designs, [28] achieves the best throughput, but our

circuit is more than 2 times faster (M=128). Unfortunately, the area used in this design is not

provided. When compared with fastest software solution [27], our design is 8 times faster with

further ability to extend number of bits processed at a time. In [26, 33, 35] the throughput is

significantly lower than our implementations and the circuits have to be taken off-line in order to

support other CRC Standards.

There are only two adaptable hardware implementations with limited support for a number

of generator polynomials [25, 36]. They differ from our implementation in that they require sep-

arate implementation for every generator polynomial, while our circuits support variable number

of CRC standards with only one implementation. Our fully-adaptable Slicing–by–16 (M=128)

implementation is 41 times faster than [36] soft-coded design with 32 bit CRC and 14.5 times

faster than hard-coded design. Unfortunately, the reconfiguration time and area utilization are

not provided. [25] is generic in its design, thus it can be scaled to process 64, 128 or 256 bits,

with maximal theoretical throughput of 40 Gbps at 256 bits. It is 6 times slower compared

with our adaptable Slicing–by–8 implementation, and 5 times slower compared with adaptable

Slicing–by–16. The reconfiguration time is not very specific - under 1µs, just as our adaptable

Slicing–by–8. It uses different implementation technology, thus it is very difficult to compare area

used.

As can be seen from Table 4.5., there is no much research about CRC circuits that support

64 generator polynomial, so we cannot compare our implementation to any other in that terms.

4. High-Speed Fully-Adaptable CRC Accelerators
4.4. Summary 65

Table 4.5: A summary of different CRC designs from Related Work and our implementations on

the Xilinx Virtex 6 LX550T: a) fully-adaptable CRC with Overlapped architecture with tables

in BRAM and b) tables in logic; c) non-adaptable Slicing–by–N32 CRC and d) non-adaptable

Slicing–by–N64 CRC.

Design Polynomial M Adaptable Re-generation time

[27] 32 32, 64
√

N/A

[33] 32 32 – N/A

[35] 32 32, 64 – N/A

[26] 16, 32 8, 16, 32 – N/A

[28] 32 128 – N/A

[36] 8, 32 128 –/
√

N/A

[25] 32 32 (64)
√

< 1µs

Our a) up to 64 64-1024
√

0.91-7.46µs

Our b) up to 64 64-1024
√

0.72-5.17µs

Our c) 32 64-1024 – N/A

Our d) 64 64-1024 – N/A

Design Technology Area Throughput

[27] Pentium 1.7 GHz (90nm) - 1.4, 3.6

[33] 350nm (∼137 MHz) 162 LUTs 4.38

[35] 350nm AMS (180 MHz) 7.73 mm2 5.76

[26] FLEX10KE ALTERA family 149 - 1849 LC 1.1 (8b) - 4.6 (32b)

[28] 90nm ST CMOS (200 MHz) N/A ∼25

[36] 180nm (200 MHz) N/A 1.3 - 3.7

[25] 130nm UMC standard cell 0.15 mm2 4.92 (9.84)

Our a) Virtex 6 LX550T 3398 - 6774 LUTs 27.8 - 289.8

Our b) Virtex 6 LX550T 5571 - 48756 LUTs 28.41 - 418.8

Our c) Virtex 6 LX550T 205 - 1180 LUTs 29.32 - 347.98

Our d) Virtex 6 LX550T 540 - 2230 LUTs 29.25 - 347.37

4.4 Summary

Cyclic Redundancy Check is a well known error detection scheme used to detect corruption of

digital content in digital networks and storage devices. Since it is a computationally intensive

process which adversely affects performance, hardware acceleration using FPGAs has been

tried and satisfactory performance has been achieved. However, recent extended usage of

4. High-Speed Fully-Adaptable CRC Accelerators
4.4. Summary 66

networks and storage systems require various correction capabilities for various CRC standards.

Traditional hardware designs based on the LFSR (Linear Feedback Shift Register) tend to have

fixed structure without such flexibility.

Here, non-adaptable and fully-adaptable CRC accelerators based on a table-based algo-

rithm are proposed. The table-based algorithm is a flexible method commonly used in software

implementations. It has never been implemented with the hardware, since it is believed that the

operational speed is not enough. However, by using pipelined structure and efficient use of mem-

ory modules in FPGAs, it appeared that the table-based fixed CRC accelerators achieved better

performance than traditional implementation. Based on the implementation, the fully-adaptable

CRC accelerator which eliminate the need for many non-adaptable CRC implementations is pro-

posed. The accelerator has ability to process arbitrary number of input data and generates CRC

for any known CRC standard, up to 65 bits of generator polynomial, during run-time. Further, we

modify table generation algorithm in order to decrease its space complexity from O(nm) to O(n).

On Xilinx Virtex 6 LX550T board, the fully-adaptable accelerators occupy between 1 to 2% area

to produce maximum of 289.8 Gbps at 283.1 MHz if BRAM is deployed, or between 1.6 - 14%

of area for 418 Gbps at 408.9 MHz if tables are implemented in logic. Proposed architecture

enables further expansion of throughput by increasing a number of input bits M processed at a

time.

Chapter 5

Design and implementation of IP-based iSCSI

Offload Engine on an FPGA

The Internet Protocol (IP) based storage systems provide a flexible and high-performance block

data access for storage applications. Their unique contribution is the ability to integrate storage

networking into mainstream data communications. Hence, they have expanded the boundaries

of traditional data storage by employing standard IP networks such as Gigabit Ethernet. Since

Ethernet-based LANs have long been the industry standard, it is expected that overall perfor-

mance of storage systems will improve with expected increase of Ethernet’s data rate. The

iSCSI protocol [17] defines one approach for accessing and transporting data over commonly

utilized TCP/IP infrastructure. It is developed by the Internet Engineering Task Force (IETF)

with the goal to map the SCSI protocol over TCP/IP. This approach enables storage devices

to be attached to IP-based networks. The protocol ensures high data integrity through header

and data digests in the specific iSCSI Protocol Data Units (PDUs). However, the processing of

iSCSI digests (CRC) is considered to be the most computationally intensive part of the iSCSI

protocol processing [18]. This is especially evident for multi-Gbps networks where the impact

of computational overhead is so pronounced that the current state of the art processors cannot

take advantage of the capacity of the network. Thus, it is common practice to disable data di-

gests [19]. In such cases, data integrity is ensured with only TCP and/or Ethernet error detection

mechanisms, which cannot detect errors which occur between upper layer protocol transitions.

This problem has been addressed by offloading computationally intensive parts to a special

purpose hardware. Thus far, commercial hardware iSCSI solutions have been implemented by

using TCP/IP Offload Engines (TOE) or iSCSI host bus adapters (HBA). These systems offload

either TCP/IP protocol stack or both TCP/IP and iSCSI protocol onto a specialized hardware.

Offloading TCP/IP protocol stack shows significant decrease of CPU utilization, but digest pro-

cessing still requires significant time on a CPU. Even though iSCSI digests have been identified

as the most computationally intensive part of iSCSI protocol processing, it is not enough to of-

fload only iSCSI digests. In such a case, the communication overhead between software and

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
68

hardware parts might undermine all the performance gain. On the other hand, it is challenging to

offload all iSCSI processes onto an FPGA. There are three primary reasons. First, the scope of

iSCSI code is too large and complex, and requires a lot of programming effort and time. Second,

some functions such as authentication, authorization and security are challenging to implement

in hardware. Third, it is thought that operating frequency of FPGAs is not enough to accomplish

required throughput for high-speed networks.

The performance of software initiators is limited by the processing power of a general pur-

pose processor, especially for the multi-Gbps networks [20]. The biggest concern is high level of

CPU utilization, which affects execution of other applications. This has led to extensive research

of offloading protocol processing to hardware. One example is iSCSI HBA, which guarantees

performance for computationally intensive applications, but due to its underlining technology it

prevents the addition of new functions. Thus, it is considered inflexible solution. Flexibility is

an added value that enables easy adaptation to future changes in a protocol or an application.

There has been only one attempt to offload iSCSI protocol to an FPGA [14]. However, the max-

imum reported throughput is only 86 Mbps without processing digests, and 31.84 Mbps with

digests. This is not adequate for multi-Gbps networks.

Thus, we address this problem by partitioning Open-iSCSI code into two parts, one executed

on general purpose processor and other offloaded to an FPGA-based adapter. Less frequently

executed parts, such as processes belonging to Login Phase, are executed on general purpose

processor, while frequently executed parts are implemented on an FPGA. In section 2.3.4 we

performed performance analysis of Open-iSCSI and identified instructions which are executed

most frequently. Not surprisingly, these are Data-In and Data-Out instructions, which are also

called data transfer functions. However, it is not enough to offload only these instructions since

communication between software and hardware parts might become overwhelming due to the

exchange of control information. Thus, we also offload non-data transfer functions which are

closely related to processing of data transfer functions. In the new architecture, we also integrate

our previous work from Chapter 4, but employing several CRC generation units. In our research,

we target mission-critical applications which require high data integrity, such as those of financial

and banking transactions where database integrity failures might lead to lost funds, inaccurate

stock exchange or credit card transactions. In these systems it is required to enable header and

data digests, which adversely affects overall performance.

Precisely, our contributions are:

1. We analyze iSCSI traffic and identify the most commonly used functions. We measure

and analyze CPU utilization and throughput of Open-iSCSI [21], which is an open source

software based iSCSI initiator (section 2.3.4).

2. Based on (1), we offload data transfer and related non-data functions to an FPGA based

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 69

adapter. Data transfer functions are the most computationally intensive and the most ex-

ecuted functions in a common case scenario. Other functions which do not affect per-

formance are implemented in software on a general purpose processor. The resulting

architecture relieves the host CPU from computational burden imposed by the software

implementation.

3. It is proved that the new architecture can overcome the performance limitations imposed

by a single processor which operates on 15 times higher frequency than our FPGA im-

plementation. The iSCSI Offload Engine allows very low utilization on the host CPU of

approximately 3%.

4. Our architecture guarantees flexibility, since many functions are implemented on a general

purpose processor. Any new feature, such as security functions, specification updates,

CRC standards, etc., can be easily implemented.

5.1 Design and implementation of iSCSI Offload Engine

The iSCSI adapter consists of an iSCSI Offload Engine, a TCP/IP Offload Engine, an iSCSI

Offload Engine Interface, a memory controller, a 10-Gigabit Ethernet Media Access Controller

(MAC) and an eXtended Attachment Unit Interface (XAUI) Core. The 10-Gigabit Ethernet MAC

is used to interface to Physical Layer devices in a 10-Gigabit Ethernet (10GE) system. The

XAUI Core allows physical separation between the data link layer and physical layer devices in a

10GE system. Fig. 5.1 illustrates the structure of iSCSI adapter based on the architecture of the

iSCSI Offload Engine. The design overview is based on Xilinx ML605 Evaluation Board. More

implementation details are provided in Section 5.2.1. Our architecture is relying on the existing

TCP/IP Offload Engine, which is well researched subject [10,12,13,43].

In a typical iSCSI session, an initiator initiates series of read and/or write SCSI commands,

after which appropriate responses follow, as illustrated in Fig. 5.2. Several read and/or write

commands, as well as their data and responses usually intertwine, depending on the readiness

to transmit data on initiator and target side. Data transmitted from a target to an initiator is

regarded as reading part of the session (reception). Similarly, the transfer from an initiator

to a target is regarded as writing part of the session (transmission). Thus, the iSCSI Offload

Engine consists of two modules which divide processing work into reception work - the Reception

Module (Rx) and transmission work - the Transmission Module (Tx). The architecture of two

modules is discussed in Sections 5.1.1 and 5.1.2, respectively.

The Control Module enables sharing of data between Reception and Transmission Modules,

TCP/IP Offload Engine, and modified Open-iSCSI initiator. The memory controller handles buffer

memory which holds the packet buffers. The packet buffers consist of a header, data, header

digest and data digest areas.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 70

Host PCIe Bus

iSCSI Offload Engine Interface

PCIe Controller DMA Controller

Input
Buffer

Output
Buffer

Command
Buffer

Completion
Buffer

10-Gigabit Ethernet PHY

TCP/IP Offload Engine

Reception
Module (Rx)

Transmission
Module (Tx)

Control
Module

iSCSI Offload Engine

M
em

or
y

Co
nt

ro
lle

r

M
em

or
y

Virtex-6 ML605
FPGA

10-Gigabit Ethernet Media Access Controller (MAC)

Control Data

Login, Logout, Text,
Nop-In/Out, Async Msg,...

iscsid
Command line tool, sends

command to iscsid.

iscsiadm
Configuration

database

iSCSI Offload Engine
Device Driver

Generic transport switch, generic upcal/downcall demultiplexor, etc.
iscsi transport class

iscsi_tcp
Implements iSCSI data path.

Control Plane

Data Plane

User
Kernel

Host
PC

XAUI

eXtended Attachment Unit Interface (XAUI) Core

Dual SFP+ (FMC)
Module

Figure 5.1: Design overview of the proposed iSCSI Offload Engine and modified Open-iSCSI

implementation. The design is based on Xilinx ML605 Evaluation Board, which has only a

1000-BASE Ethernet interface. Hence, additional Dual SFP+ FMC [81, 82] and 10GbE SFP+

transceiver are required to achieve throughput of over 1 Gbps. More implementation details are

provided in Section 5.2.1.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 71

Operations implemented in the the Reception Module are: detection of iSCSI Frames, gen-

eration and validation of header digest, identification of a PDU, calculation and validation of data

payload digest, and storing data in the host memory. Operations implemented in the Transmis-

sion Module are: fetching data from the host memory, creation of a header, and generation of

header and data digests.

Table 5.1 displays the minimum set of opcodes defined on an initiator and a target. Based

on our analysis of Open-iSCSI (Section 2.3.4), we offload processing of PDUs marked in bold

to an FPGA. These PDUs are the most computationally intensive and the most frequently ex-

ecuted. Except R2T and SNACK Request, they all require data digests. The operations such

as Asynchronous Message, Text Request and Text Response, Nop-In and Nop-out, and Reject

also require data digest, but they are executed far less frequently. Thus, these functions are

implemented on a general purpose processor.

Login Request
Login Response

SCSI Command (Read)
SCSI Data-In
SCSI Data-In

SCSI Data-In
. . .

SCSI Response
. . .

SCSI Command (Write)

SCSI Data-Out

SCSI Data-Out

SCSI Data-Out
. . .

SCSI Response

Ready to Transmit (R2T)

Tr
an

sm
iss

ion
 Tr

an
sfe

r
In

itia
to

r

 T
ar

ge
t

Re
ce

pt
ion

 Tr
an

sfe
r

Ta
rg

et

In

itia
to

r

Ready to Transmit (R2T)
Ready to Transmit (R2T)

SCSI Data-Out

R
e

a
d

i
n

g

W
r

i
t

i
n

g

. . .

IN
IT

IA
TO

R

TA
RG

ET

Figure 5.2: An overview of two transfer directions and two common sets of operations executed

during reading and writing processes.

On the host CPU, we modified Open-iSCSI and Linux kernel to bypass certain iSCSI func-

tions and TCP/IP layers. The Open-iSCSI is partitioned into kernel and user parts (Fig. 5.1),

which implement iSCSI data plane and the control plane, respectively. The interface between

these two parts is implemented using Netlink sockets. The socket library functions are handled

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 72

in a single system call (sys_socketcall). Depending on the type of a function, the sys_socketcall

calls either the iSCSI Offload Engine Device Driver or the TOE Device Driver. The iSCSI Offload

Engine Device Driver consists of a set of routines which control the iSCSI Offload Engine. The

modifications are discussed in details in Section 5.1.5.

Table 5.1: A minimum set of opcodes defined on an initiator and a target. The iSCSI Offload

Engine processes the most computationally intensive data-transfer and related non-transfer op-

erations in both directions, marked in bold.

Initiator to Target (Tx)

No. Opcode Name

T1 0x00 NOP-Out (H&D)

T2 0x01 SCSI Command (H&D)

T3 0x02 SCSI Task Management function request (H)

T4 0x03 Login Request

T5 0x04 Text Request (H&D)

T6 0x05 SCSI Data-Out (H&D)

T7 0x06 Logout Request (H)

T8 0x10 SNACK Request (H)

T9 0x1c-1e Vendor specific codes

Target to Initiator (Rx)

No. Opcode Name

R1 0x20 NOP-In (H&D)

R2 0x21 SCSI Response (H&D)

R3 0x22 SCSI Task Management function response (H)

R4 0x23 Login Response

R5 0x24 Text Response (H&D)

R6 0x25 SCSI Data-In (H&D)

R7 0x26 Logout Response (H)

R8 0x31 Ready To Transfer (R2T) (H)

R9 0x32 Asynchronous Message (H&D)

R10 0x3c-0x3e Vendor specific codes

R11 0x3f Reject (H&D)

(H&D) : Header and data digest (H) : Header digest

When a user requests iSCSI Offload Engine service, this request is first delivered to the

iSCSI Offload Engine Interface. The modules then read the request from the Command Buffer

and perform required operations. The data is copied to/from main memory of the host CPU into

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 73

Input/Output buffers by using DMA. The host CPU then fetches results from the Completion and

Output Buffers and delivers them to the user program.

5.1.1 The Reception Module (Rx)

Fig. 5.3a) illustrates the structure of Reception Module (Rx). It consists of the Packet Controller,

the SNACK Controller and the Rx Buffer Controller. After the incoming packet is processed by

the TCP/IP Offload Engine, the TCP payload is transferred to the Rx Buffer Controller. The

Packet Controller parses the header, identifies a PDU and validates header and data digest. If a

PDU represents a SCSI Data-In, a SCSI Response or a R2T PDU, it is processed by the Packet

Controller, else it is forwarded to the main memory to be processed by the software initiator or

to a different processing engine.

The operations performed in the Reception Module are:

1. Header Parser reads the first 64 bits from the buffer, which contains information about

PDU’s opcode, the total length of additional header segment and the length of data seg-

ment. If the opcode belongs to one of the following PDUs: a) SCSI Response, b) SCSI

Data-In or c) R2T, the PDU is processed by our offload engine. In any other case, the

PDU is forwarded to the main memory to be processed by the software or to a different

processing engine.

2. Calculation of header digest begins in parallel with parsing header. The header digest is

calculated by the CRC Generation Unit (detailed in Section 5.1.3).

3. The newly calculated header digest is validated by comparing it to the received header

digest. If equal, the CRC Generation Unit begins calculation of data digest.

4. When data digest is validated, the data is copied from Rx Buffer directly to the host memory

via DMA.

5. When header or data digests are not validated, the packet in Rx Buffer is dropped. Then,

an appropriate SNACK request is generated and sent by the SNACK Controller. In a

session that supports error recovery, the target may request positive acknowledgment of

input data. In this case, the SNACK Controller generates SNACK DataACK PDU and

sends them through Tx Buffer.

Some operations are executed in parallel in order to improve the performance. Parsing of a

header and calculation of header’s digest are executed in parallel, as well as calculation of data

digest and validation of the header digest. When data digest is validated, the data is copied

from Rx Buffer directly to the host memory via DMA without a copy (direct data placement). The

header and data digests are calculated with CRC Generation Unit, and validated by the Parser.

The architecture of CRC Generation Unit is detailed in Section 5.1.3.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 74

Rx Buffer TCP/IP Offload Engine

iS
CS

I O
ffl

oa
d

En
gi

ne
 R

ec
ep

tio
n

M
od

ul
e

iSCSI Header
Parser

SNACK Request
Generation Unit

CRC
 Generation Unit

SNACK Request
Buffer

TargetTransferTag,

DataSn, R2TSn, StatSn
Rx Buffer

Header

Header
Digest

Data

Data
Digest

Rx
 B

uf
fe

r C
on

tro
lle

r

SNACK Controller

Shared Context
Manager

Packet Controller

Host Memory

Data
digest

Header
digest

He
ad

er

Data

Control Module

Status of Host
Rx Buffer

Number of ACK
PDUs, Dropped
PDUs, etc.

Header and
Data Digest

SNACK
PDU

Tx Buffer

iSCSI Header
Generator

Tx Buffer

Header

Header
Digest

Data

Data
Digest

Tx
 B

uf
fe

r C
on

tro
lle

r

Packet Generator

Host Memory

Data

Control Module

Status of Tx
buffer, Header
Decriptors

Header Decriptors

Number of
transmitted
packets

CRC
Generation Unit

CRC
Generation Unit

iS
CS

I O
ffl

oa
d

En
gi

ne
 T

ra
ns

m
iss

io
n

M
od

ul
e

TCP/IP Offload Engine

a)

b)

Figure 5.3: The structure of Reception and Transmission Modules in the iSCSI Offload Engine.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 75

Even though SNACK Request is originally in the transmission data-path, we implement the

SNACK controller in the Reception Module in order to shorten the time required to generate

a request for re-transmission or acknowledgment of data. However, a SNACK PDU is sent

through the Tx Buffer. The re-transmission request (SNACK) is generated when the header or

data digests are not validated (the packet in the Rx Buffer is dropped in this case). In order to

reduce the overhead of acknowledging each incoming packet, we design the SNACK Controller

to generate a single delayed SNACK request for a group of missed status, data, or R2T PDUs

within a task. This decreases the number of interrupts and improves the performance, since

there are fewer number of requests.

The other example when the SNACK Controller is used is when a session supports error

recovery. In this case, the target requests a positive acknowledgment in the form of SNACK

DataACK PDU. This operation begins in parallel with the operation to store the validated packet

from the Rx Buffer to the host memory. By implementing this operation in the hardware, the

resources at the target are released faster, thus enabling more resources for other transactions.

The SNACK Controller has independent CRC Generation Unit, thus it can generate header

digest in parallel with the Packet Controller.

5.1.2 The Transmission Module (Tx)

Fig. 5.3b) illustrates the structure of Transmission Module (Tx). It consists of the Packet Gen-

erator and the Tx Buffer Controller. When the iSCSI Offload Engine device driver requests

creation of an iSCSI PDU, the header descriptors are fetched from the main memory via DMA

and forwarded to the Packet Generator. The iSCSI Header Generator creates a new header and

forwards it to CRC Generation Unit to create a header digest.

When iSCSI Offload Engine device driver requests the Transmission Module (Tx) to create

an iSCSI PDU, the operations performed are:

1. Header descriptors are fetched from the main memory and forwarded to the iSCSI Header

Generator using the Control Module.

2. When header is generated, it is stored in the header area of the Tx Buffer, and then for-

warded to the CRC Generation Unit to generate its digest. These operations are executed

in parallel.

3. Once header digest is generated, it is stored in header digest area of the Tx Buffer.

4. The Tx Buffer Controller forwards the data payload to the CRC Generation Unit, while it is

being copied from the host memory.

5. After it is generated, the data digest is stored in the Tx Buffer in the Data Digest area.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 76

The following two sets of operations are executed in parallel. First, the generation of header

digest is executed in parallel with transfer of a header from the iSCSI Header Generator to the Tx

Buffer. Second, the generation of data digest is executed in parallel with transfer of data from the

main memory to the Tx Buffer. The Tx Buffer Controller forwards a PDU to the TCP/IP offload

engine for creation of TCP/IP/Eth header information. The TCP/IP Offload Engine then sends a

request to the Gigabit Ethernet controller to transmit the packet.

5.1.3 The CRC Generation Unit

Init

Input data

Controller

Tables

…

T8

XOR

Intermediate Address

…

T1
…

…

…

T2

1x8 2x8 7x8 8x8

Control

Data

…

CR
C

Ge
ne

ra
tio

n
Un

it

CRC

Remainder8

Intermediate CRC

XOR

XorOut

Remainder1

XOR

Remainder2

64

64

64

8 8 8

64 64 64

64 64 64

64
64

64

64

64

64

64
64

Pipeline
register

Figure 5.4: The architecture of CRC Generation Unit.

Fig. 5.4 illustrates the architecture of CRC Generator Unit based on our previous research

with high-speed CRC accelerators [83–85]. The CRC algorithm deploys eight tables (T8, ..., T2,T1)

with pre-computed remainders. The architecture is pipelined in three stages, and the throughput

is 64 bit/cycle. The digest (CRC) of input data is formed with the following steps. In the first

iteration, the Intermediate Address is formed by XORing input data with initial value (Init). In the

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 77

every other iteration, the Intermediate CRC is used instead of Init. The Intermediate Address is

then sliced into eight 8-bit slices, which are used as addresses to access eight tables in parallel.

Eight remainders are XORed to form the Intermediate CRC. The Intermediate CRC is XORed

with the final value (XorOut) when the controller indicates the end of data. The digest is stored

in the digest area of a buffer.

In order to achieve high degree of flexibility, we made some modifications to the original

design. We enabled support for any given 32-bit CRC Standard defined in the iSCSI Specifi-

cation [17]. The values of parameters Init and XorOut, and the contents of tables depend on

a CRC standard. The values of parameters are changed on the request of the iSCSI Offload

Engine device driver. However, the contents of tables is challenging to be replaced in the sim-

ilar manner. Thus, we use difference-based partial reconfiguration. We minimize the dynamic

part of the circuit to only tables, which allows us to generate a small bitstream containing only

differences between two versions of the design. Then, we wrote a set of scripts to automatically

assign new values corresponding to a CRC Standard, and stored them into the tables (BRAM

components). The new values are stored into tables with the Xilinx FPGA Editor. We automatize

the process of generating new bitstream which allows complete flexibility. The idea is to provide

a number of pre-generated bitstreams (for a set of CRC standards) with the unit.

5.1.4 The Control Module

The Control Module shares information among four components: Reception and Transmission

Modules, TCP/IP Offload Engine, and iSCSI software initiator. It supports fast and efficient

data sharing by using quad-port memory [86]. In Fig. 5.5 we illustrate an exemplary exchange

of information between an initiator and a target, where italic font displays direction of the new

information coming from an initiator to a target, and inversely. The iSCSI initiator must verify

consistency of the values used in all task-related PDUs. Thus, it stores important information in

five look-up tables in a memory of a Control Module and forwards them to an appropriate unit

for verification.

Fig. 5.6 illustrates the flow of information between modules in the iSCSI Offload Engine.

Before sending a request to create a command PDU, the device driver first checks the status

of iSCSI Offload Engine via the session table in the Control Module. Along with the request,

it sends an address of the buffer with a set of information required to form a command PDU.

This set is defined by the RFC 3720 [17]. In the case of "SCSI Cmd PDU" (Fig. 5.5), following

kinds of information are being exchanged: Logical Unit Number (LUN), Initiator Task Tag (ITT),

expected transfer length, command sequence (CmdSn), expected status number (ExpStatSn),

etc. The LUN is used to identify a Logical Unit within a target, and ITT to identify a new task

in the initiator. The command table is used to store these information. In the response to a

command, the target sends a set of information such as a Target Transfer Tag (TTT), expected

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 78

SCSI Cmd Req,
Desc. Buffer Address

Fetch Descriptors:
ExpectedTransferLength,
CmdSn, ExpStatSn,
CDB, etc.

SCSI Cmd PDU (READ):
LUN, ITT, ExpectedTransferLength,
CmdSn, ExpStatSn, CDB, etc.
SCSI Data-In PDU
LUN, ITT, TTT, StatSN, ExpCmdSN,
MaxCmdSN, DataSN, Buffer Offset, etc.

…

SNACK DataACK PDU (opt)
LUN, ITT, TTT, ExpStatSN, BegRun,
RunLength, etc.

SCSI Response PDU
ITT, SNACK Tag, ExpCmdSN,
MaxCmdSN, ExpDataSN, etc.

Store Data and
status information

…

SCSI Cmd Req
Buffer Address
Fetch Descriptors:
LUN, ITT,
ExpectedTransferLength,
CmdSn, ExpStatSn,
CDB, etc.

SCSI Cmd PDU (WRITE):
LUN, ITT, ExpectedTransferLength,
CmdSn, ExpStatSn, CDB, etc.

SCSI Data-Out PDU
LUN, ITT, TTT, ExpStatSN, DataSN,
Buffer Offset, etc.

…

Ready To Transfer (R2T)
LUN, ITT, TTT, StatSN, ExpCmdSN,
MaxCmdSN, R2TSN, Buffer Offset, etc.

SCSI Response PDU
ITT, SNACK Tag, ExpCmdSN,
MaxCmdSN, ExpDataSN, etc.

Fetch Data
…

Store response

Store response

IN
IT

IA
TO

R

TA
RG

ET

IN
IT

IA
TO

R

TA
RG

ET

Reception Data Path

Transmission Data Path

Figure 5.5: An exemplary exchange of information between the initiator and target. Italic font

displays direction of the new information coming from an initiator to a target and inversely. The

information is used for validation of a PDU.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 79

command sequence number, sequence number of data PDU, etc. The Control Module also holds

information regarding the status of transmit and receive buffers in the host memory, as well as in

the TCP/IP Offload Engine. The R2T table holds information received from a target through R2T

PDU, which are later used by the Transmission Module to create a SCSI Data-Out PDU. The

SNACK table holds information required to generate SNACK requests, which can be requested

from iSCSI Offload Engine device driver or generated directly by the Reception Module. When

a PDU is acknowledged, it sends necessary information to modified Open-iSCSI. Lastly, the

data_address tables holds the address where the data is directly copied from Rx Buffer to the

host memory via DMA.

DMA Controller

Rx Buffer Tx Buffer

TCP/IP Offload Engine

Tx Buffer
Controller

Transmission
Accelerator

Transmission
Module

Rx Buffer
Controller

Reception
Accelerator

Reception
Module

Quad-port
Memory

Output
Buffer

Input
Buffer

Command
Buffer

Completion
Buffer

Gigabit Ethernet Controller

Tx FIFO Rx FIFO

TOE Controller

iSCSI Offload Engine Interface

iSCSI Offload Engine

Host PCIe Bus

Control Module

SCSI Cmd
Req

Get Status,
Descriptor Buffer

Address

ü  SCSI Cmd PDU
 (Read or Write)
ü  SCSI Data-OUT

PDU
ü  SNACK DataACK

ü  SCSI Re sponse PDU
ü  SCSI Da ta-In PDU
ü  Ready to Transfer

Store
response

 Store data and
 status informatio n Fetch

data

Status of
Tx Buffer,

Header
Descriptors

Status of
Tx and Rx Buffers,
Number of ACK PD Us

Status of Tx and Rx
Buffers, Control signa ls

Figure 5.6: The flow of information between modules in the iSCSI Offload Engine.

5.1.5 Modification of the Open-iSCSI Initiator

Traditionally, Open-iSCSI is partitioned into kernel and user parts, which implements iSCSI data

path (Read and Write), and the control plane, respectively. The interface between these two

parts is implemented using Netlink sockets. The SCSI subsytem in the Linux kernel is divided

into three levels: upper, middle and low-level drivers. The task of the upper level is to take

requests from outside of the SCSI subsystem, and turn them into actual SCSI requests. The

requests are passed down to the middle level (known as SCSI Mid-Level, SML), which handles

support for file system, bus scanning, queuing of commands, error handling, etc. The low level

drivers (LLD) transfer commands, data, status, messages etc. between initiator and the target.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 80

We modified Open-iSCSI’s data-path to bypass some of the SCSI functions and TCP/IP lay-

ers in the Linux kernel. The Open-iSCSI spawns two threads for every connection in a session:

a transmit thread (tx_thread) and a receive thread (rx_thread). Fig. 5.7 shows an exemplary

unmodified and modified data-paths for creating a SCSI Command by the tx_thread. First, the

SCSI Mid-Level passes commands to the low level drivers through queuecommand() call. Then,

the initiator generates unique Initiator Task Tag (ITT) and allocates memory for a new command

initialized with it (a). The PDU fields are then prepared and stored in the memory (b). A new

command is added to the linked list of all pending commands (c), and tx_thread is woken up to

send the PDU to a target (d). Then, a TCP routine is called to send a SCSI Command PDU to a

target (e).

The tx_thread and rx_thread data-paths are modified to bypass the processing of T2, T6 and

T8 PDUs, and R2, R6 and R8 PDUs, respectively. In the transmission path, a command is first

identified by its opcode and forwarded either to unmodified data-path (tx_thread) or to the new

iSCSI agent - offload_engine_agent (f), which is responsible for performing communication with

iSCSI Offload Engine. Then, a new request is forwarded to the sys_socketcall to be transmitted

to a target through either (g) iSCSI_OE_socketcall (T2, T6, T8) or (h) TOE_socketcall (T1, 3-

5, 7). In both cases, the Linux TCP/IP stack in the sys_socketcall is bypassed, by which we

eliminated copying of user data to the socket buffer (a kernel copy). Instead, we translate the

virtual address of the user’s data into a physical address by using get_user_pages and kmap

functions. The address is sent to iSCSI Offload Engine, which is followed by the DMA request.

The requests are created and pushed into the Command Buffer.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.1. Design and implementation of iSCSI Offload Engine 81

SC
SI

M

id
-L

ev
el

Lo
w

Le
ve

l
Dr

ive
r

qu
eu

ec
om

m
an

d(
)

co
m

m
an

d1

co
m

m
an

d2

…

isc
si_

in
itia

to
r:

tx
_t

hr
ea

d(
)

Op
co

de
,

IT
T,

da
ta

se
gl

en
gt

h,

 C
DB

, e
tc

.

(a
) A

llo
ca

te

m
em

or
y

Pr
ep

ar
e

PD
U

fie
ld

s
(b

)
Co

m
m

an
d

lis
t

sy
s_

so
ck

et
ca

ll

Ad
d

(c
)

co
m

m
an

d

Wa
ke

up
 (d

)

Ca
ll T

CP

ro
ut

in
e

(e
)

To
 T

ar
ge

t
iS

CS
I_

OE
_s

oc
ke

tc
all

 O

E_
re

qu
es

t_
se

rv
ice

()

 O
E_

se
nd

_d
es

c_
bu

ffe
r_

 a

dd
r(

)
 …

 O

E_
se

nd
_t

x_
da

ta
_

 b
uf

fe
r_

ad
dr

()

 O
E_

pr
oc

es
s_

da
ta

_i
n(

)
 of
flo

ad
_e

ng
in

e_
ag

en
t

TO
E_

so
ck

et
ca

ll

Ca
ll i

SC
SI

 O
E

ro
ut

in
e

(g
)

Ca
ll T

OE

ro
ut

in
e

(h
)

Un
m

od
ifie

d
da

ta
-p

at
h

M
od

ifie
d

tx
_t

hr
ea

d
da

ta
-p

at
h

Ad
dr

es
s

Tr
an

sla
tio

n

 i
sc

si_
bu

ild
_s

cs
i_

cm
d(

)
 i

sc
si_

bu
ild

_d
at

ao
ut

()

 …

 i
sc

si_
se

nd
pa

ge
_s

g(
)

 i
sc

si_
se

nd
_t

x_
da

ta
()

(f)

Fi
gu

re
5.

7:
U

nm
od

ifi
ed

an
d

m
od

ifi
ed

da
ta

-p
at

hs
fo

rc
re

at
in

g
a

S
C

S
IC

om
m

an
d

by
tx

_t
hr

ea
d.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.2. Implementation Results and Analysis 82

5.2 Implementation Results and Analysis

5.2.1 iSCSI Offload Engine Board

Design of our iSCSI Offload Engine is best suited for new Xilinx platforms, such as Virtex-

6 HXT or Virtex-7 FPGAs, which contain all the necessary hardware for high-bandwidth and

high-performance applications. However, the functionality of the proposed iSCSI Offload Engine

is verified on the ML605 board, which is equipped with the Virtex-6 XC6VLX240T-1FFG1156

FPGA [87]. Our test platform includes the Multi-port memory controller for accessing the exter-

nal DDR3 memory. It is connected with host PC with 64-bit PCI Express x4, with transfer rate of

16 Gbps in each direction. The synchronization between the CPU and the FPGA is performed

by the PCIe Message Signaled Interrupts (MSI). This allows an FPGA task to wait for a data

being produced by a software task and inversely.

The board has only a 1000-BASE Ethernet interface, hence additional Dual SFP+ FMC [81,

82] and 10GbE SFP+ transceiver are required to achieve throughput of over 1 Gbps. The Dual

SFP+ FMC is an FPGA Mezzanine Connector [88] daughter card with two SFP+ connectors,

two 10 Gbps physical layer transceivers which provide full PCS, PMA, and XGXS sub-layer

functionality. We utilize only one transceiver. The daughter card is connected to the High Pin

Count (HPC*) J64 connector of the ML605 board.

As illustrated in Fig. 5.1, the iSCSI PDUs are formed and encapsulated by iSCSI and TCP/IP

Offload Engines and sent out through the LogiCORE IP 10-Gigabit Ethernet MAC [89]. The

10-Gigabit link is supported by the LogiCORE IP XAUI core [90] using a SFP+ cable. The iSCSI

Offload Engine is clocked at the standard Ethernet interface frequency of 156.25 MHz, which

allows fully synchronous and lowest latency data exchange with DINIGroup TCP/IP Offload En-

gine [13] and the MAC.

5.2.2 Elapsed time of main operations

In order for a network adapter to achieve the throughput of approximately 10 Gbps, it has to be

able to process a 1500-byte packet in 1.2 µs. Table 5.2 shows elapsed time of main operations

processed in iSCSI Offload Engine for a 1500-byte packet with data digests enabled. We design

our iSCSI Offload Engine to interface DINIGroup’s TCP/IP Offload Engine [13], which works at

the full 10 GbE line rate. Input to output packet latency of the TOE is less than 1 µs, however

elapsed time of some operations are already included in elapsed time of iSCSI Offload Engine,

such as fetching and storing data from/to host memory and DMA Initialization. These operations

require 58% of total time for transmission, and 53% for reception processing. Thus, elapsed

time for TCP/IP processing is only 0.21 µs for transmission, and 0.23 µs for reception. The total

elapsed time for transmitting a 1500-byte packet is 1.449 µs, and receiving 1.538 µs.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.2. Implementation Results and Analysis 83

Table 5.2: Elapsed time of main operations processed in the iSCSI Offload Engine for a 1500-

byte data packet.

Hardware Operation Elapsed

time (µs)

Transmission (1) DMA Initialization .045

Module (2) Fetching descriptors from host .038

memory and Header Generation

(3) Header Digest Generation .038

(4) Fetching data from host memory 1.162

and Data Digest Generation

DINIGrp (5) TCP/IP Processing and storing .21

TOE [13] a packet into network interface

Total: 1.449

DINIGrp (1) Fetching a packet from network

TOE [13] interface and TCP/IP Processing .23

Reception (2) Parsing header and .099

Module Header Digest Generation

and validation

(3) DMA Initialization .045

(4) Data Digest Generation and 1.162

validation, storing data into

host memory

Total: 1.538

5.2.3 CPU Utilization and Throughput

Fig. 5.8 shows CPU utilization and throughput of write micro-benchmarks of three implemen-

tations: Open-iSCSI running on Intel Core2 CPU 2.40 GHz with 8 GB of RAM, Chelsio T110

iSCSI ASIC-based HBA with CRC enabled (the results are published in [45]), and our iSCSI

Offload Engine. We ran the same set of micro-benchmarks (as discussed in Section 2.3.4) for

several thousand times with I/O sizes ranging from 128 bytes to 128 KB. We used Ethernet

standard Maximum Transmission Unit (MTU) of 1500 bytes. The processing cost of read micro-

benchmarks is very similar to write micro-benchmarks, with slightly lower throughput for reading

process.

The average CPU utilization of software-based Open-iSCSI varied from 33% to 55% accord-

ing to a write size. The iSCSI Offload Engine exhibits very low utilization of approximately 3%

on the host CPU, which is 10-15 times reduction compared with Open-iSCSI implementation on

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.2. Implementation Results and Analysis 84

0

10

20

30

40

50

60

16 32 64 128 256 512 1024 2048 4096 8192

CP
U

Ut
iliz

at
io

n
(%

)

Write size (Kbytes)

Chelsio T110
Open-iSCSI [Software]
iSCSI Offload Engine

0

2000

4000

6000

8000

10000

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

Th
ro

ug
hp

ut
 (M

bp
s)

Write size (bytes)

Chelsio T110
Open-iSCSI [Software]
iSCSI Offload Engine

Figure 5.8: Comparison of throughput and CPU utilization of write micro-benchmarks for 1500

bytes MTU.

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.2. Implementation Results and Analysis 85

Intel Core2 CPU 2.40 GHz, and 10 times reduction compared with Chelsio T110. Unfortunately,

we were unable to acquire the host CPU Utilization for the Chelsio T110 for I/O workload sizes

higher than 128 KB. Also, from [45] it is not clear why Chelsio T110 exhibits such high CPU

Utilization on the host. However, we think it is because Chelsio T110 only offloads expensive

byte touching operations, such as header and data digests generation/checking, while all other

related tasks are performed on the host CPU. Our iSCSI Offload Engine additionally processes

related non-data transfer functions on an FPGA, which results in decreased number of instruc-

tions and interrupts on the host CPU. Additionally, delayed SNACKs and direct data placement

in the host memory also decreased the number of interrupts.

There has been significant increase in throughput when iSCSI is offloaded to hardware.

Fig. 5.8 shows the overall throughput for different values of write I/O workload size. The software-

based Open-iSCSI is executed on 15 times higher clock frequency (2.40 GHz) than iSCSI Of-

fload Engine. However, the maximum transmission throughput of iSCSI Offload Engine is 7.81

Gbps, while the reception throughput is 7.34 Gbps. The results show 2 times speedup over

software-based Open-iSCSI. One of the principal reasons why iSCSI Offload Engine achieves

higher throughput is because large number of operations are executed in parallel. Specifically,

the Open-iSCSI requires 2.15 cycles per byte to generate a CRC value for 8KB of data, while our

CRC Generation Unit requires 1 cycle for eight bytes. Thus, our CRC Generation Unit requires

17 times less cycles to generate a CRC value than Open-iSCSI.

5.2.4 Reconfiguration time

We measured the time required to upload full bitstream and bitstreams of Partial Reconfiguration

(PR) modules for the CRC Generation Unit. We used JTAG to upload both bitstreams on the

specified FPGA board. The configuration time depends on the size of a bitstream and Test

Clock frequency (TCK) for boundary-scan operations. Fixed number of clock cycles required for

pre- and post-processing while programming an FPGA is also included in configuration time as

specified in [91], while minimum TCK frequency was 15 MHz. The size of the full configuration

bitstream is 9 MB, and the size of PR bitstream is 43 KB. The time to upload these two bistreams

is 6.15 s and 0.03 s, respectively. Thus, uploading the PR bitstream is 205 times faster than

the time required to upload full bitstream. This feature ensures fast adaptability to new CRC

Standards in the future of iSCSI protocol.

5.2.5 Resource Utilization

Table 5.3 shows resource utilization on Virtex-6 XC6VLX240T FPGA. The receive and transmit

buffers are configurable 4KB and 64KB buffers mapped onto dedicated on-chip Block RAMs.

The CRC Generation Unit requires only 540 LUTs, and 4 dual-port BRAM for holding contents

of its pre-computed remainders. The small resource footprint indicates that multiple instances

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.3. Summary 86

Table 5.3: Resource utilization of two modules on Virtex-6 XC6VLX240T FPGA. The iSCSI

Engine does not contain resource utilization of DINIGrp TOE.

Module Buffer Slices LUTs FFs BRAMs

(KB) (%) (%) (%) (%)

iSCSI 4 5983 (16) 15.7k (10) 8.9k (3) 24 (3)

Engine 64 5983 15.7k 8.9k 52 (6)

DINIGrp 4 2742 (3) 7k (4.6) 4k (1.3) 6 (.7)

TOE [13] 64 2742 7k 4k 34 (4)

can be used, thus increasing performance of the system.

5.2.6 Comparison to Related Work

We compare our work with two other attempts to offload iSCSI to hardware [14, 44], which are

discussed in Related Work. Han-Chiang Chen et al. [14] has significantly lower throughput than

our Offload Engine. Their method is to execute iSCSI on a Xilinx FPGA embedded platform,

without any hardware accelerated parts. This method has very low CPU utilization, but through-

put is limited by the low frequency of PowerPC 405 processor and does not pose technological

challenge. The method of Chung-Ho Chen et al. [44] consists of offloading data-transfer iSCSI

functions by using C-to-HDL translation process. The difference in design is that our iSCSI Of-

fload Engine offloads not only data transfer functions, but also related non-data functions such

as SCSI Command, SCSI Response, R2T and SNACK request. This has contributed to faster

processing of requests and release of resources. Even though our iSCSI Offload Engine uses

higher capacity host bus and higher clock frequency, it has higher level of parallelism since we

used more CRC Generation Units. The architecture of CRC circuit in Chung-Ho Chen et al. [44]

uses simple linear feedback shift register, which is less efficient than the architecture of our CRC

circuit [83]. Thus, our initiator is able to achieve 7 times higher throughput. The CPU utilization

is similar as in Han-Chiang Chen et al. [14] and Chung-Ho Chen et al. [44], since both offload

iSCSI to hardware in some terms.

5.3 Summary

The IP-based storage systems often require bandwidth intensive access to storage devices,

thus they exhibit high CPU utilization and low throughput when executed in a principally soft-

ware implementation. This is especially evident for multi-Gbps networks where the impact of

computational overhead is so pronounced that the current state of the art processors cannot

take advantage of the capacity of the network. We address this problem by proposing new

5. Design and implementation of IP-based iSCSI Offload Engine on an FPGA
5.3. Summary 87

iSCSI Offload Engine architecture for high data rate storage networking. Based on our analy-

sis of open source Open-iSCSI initiator, we offload the most computationally intensive and the

most executed functions in a common case scenario, while other functions are implemented in

a modified Open-iSCSI initiator on a general purpose processor. Our architecture overcomes

the performance limitations imposed by a single processor which runs on 15x higher operating

frequency than our accelerator. It exhibits very low CPU utilization of approximately 3% on the

host CPU, which is 10-15x reduction compared with software implementation. The maximum

transmission throughput is 7.81 Gbps, while reception throughput is 7.34 Gbps, which is 2 times

speedup over software. The new architecture also shows comparable performance with Chelsio

T110 ASIC-based HBA, and has more flexibility.

Chapter 6

Conclusions

In order to enable higher levels of agility, programmability and flexibility of hardware-based ac-

celerators we presented a methodology for designing non-adaptable and fully-adaptable cyclic

redundancy checks accelerators, which are based on a multiple table-based algorithm. We also

studied behavior of software-based Open-iSCSI initiator and analyzed its network traffic based

on several cases. We proposed new iSCSI Offload Engine architecture for processing iSCSI

data transfer and related non-data functions on an FPGA based adapter.

6.1 Concluding Remarks

In recent years, the growth of network traffic is increasing with inexorable certainty. It has been

driven by a widespread adoption of smartphones, tables, video content and exchange of vast

quantities of data over Internet in general. Today, the major concern is that this volume of network

traffic on the Internet has begun outpacing server capacity to manage incoming data. Storage

systems are crucial components which provide high levels of data integrity and availability of

the critical data. The iSCSI protocol defines one approach for accessing and transporting data

over commonly utilized TCP/IP infrastructure. The protocol ensures high data integrity through

header and data digests in the specific iSCSI Protocol Data Units. However, the processing of

iSCSI digests is considered to be the most computationally intensive part of the iSCSI protocol

processing.

There are three main approaches to building IP-based storage systems. The first approach

is by using software-based TCP/IP stack. This approach relies on the belief that the perfor-

mance will scale with ever-increasing CPU speed. However, after a recent paradigm change

to multicore architectures, where the CPU speed doesn’t exceeds 3 GHz, it is not clear how it

will effect performance of sequential processes. One such process is cyclic redundancy checks.

The second approach is to offload the entire TCP/IP stack onto a specialized hardware, which

is called TPC/IP Offload Engines (TOE). This approach reduces the TCP copy-and-checksum

and interrupt overheads. The third approach is HBA approach, which have a specific storage

6. Conclusions
6.1. Concluding Remarks 89

transport interface and it is aware of protocol semantics. All three approaches have been tried

and an interesting results have been reported. The software approach has the highest flexibility,

but it cannot guarantee significant increases in performance in the future. On the other hand,

TOE and HBA approaches reported an interesting performance gain, however they have little

to no flexibility to future changes in networking infrastructures. Thus, the trade-off is between

flexibility and performance.

In this dissertation, we first addressed the problem of efficient implementation of one of major

bottlenecks in an iSCSI protocol implementation, which is the generation of Cyclic Redundancy

Checks. We propose a methodology for designing two types of CRC accelerators, which we call

non-adaptable and fully-adaptable CRC accelerators. The accelerators are based on a table-

based algorithm which has never been used in hardware implementations. The reason is be-

cause it is believed that operational speed of current reconfigurable technologies is not enough

to obtain significant performance results. We prove that this approach can be successfully im-

plemented on an FPGA and achieve significant performance improvements over related work.

We focus on enhancing throughput, the amount of processed bits at the time and the flexibility

to adapt to different applications. Secondly, we analyzed the implementation of open-source

Open-iSCSI software and its network traffic in the most common scenarios. We identified the

most commonly used functions, and we measured CPU utilization and throughput. Based on

this analysis, we proposed new architecture called iSCSI Offload Engine, which offloads data

transfer and related non-data functions to an FPGA based adapter. Functions which do not

affect performance were implemented in a modified Open-iSCSI initiator on a general purpose

processor.

Our results show that deploying more than one type of a computing engine can satisfy the

current and future performance demands. By offloading certain tasks to an FPGA accelerator,

we proved that it is possible to obtain high throughput and relieve a CPU of high computational

burden. It appeared that combining two technologies, general purpose processor and an FPGA,

enables dramatic benefits in the ever-present demand for a greater computational performance.

The FPGAs have the computing performance which can be used with general purpose proces-

sors to enable greater level of flexibility and agility. The accelerators can be designed to adapt

to different application domains, which extend their usability, decreases area utilization and elim-

inates the time required for re-design and re-programming. Our research is one step into a

direction of integrating these two technologies, since it is very likely that their significance will

increase as time progresses. The most important feature of this integration is the flexibility of

FPGAs, which will most probably play important role in the future programmable networks. In

our research, we have shown that it is feasible to deploy such an architecture on the example of

CRC accelerators and iSCSI Initiator.

Abbreviations and Acronyms

10GE 10-Gigabit Ethernet

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ASIP Application-Specific Instruction Processor

BLE Basic Logic Element

BRAM Block Random Access Memory

CGM CRC Generation Module

CGRA Coarse-Grained Reconfigurable Architecture

CLB Configurable Logic Blocks

CMOS Complementary MetalâĂŞOxideâĂŞSemiconductor

CPU Central Processing Unit

CRC Cyclic Redundancy Checks

DARPA Defense Advanced Research Projects Agency

DDR2 Double Data Rate

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

EC European Commission

EU European Union

FIFO First-in First-out

FIR Finite Impulse Response

FMC FPGA Mezzanine Connector

FPGA Field Programmable Gate Array

FU Functional Unit

GF Galois Field

GFMAC Galois Field Multiplication and Accumulation

GPCPU General Purpose Central Processing Unit

GPGPU General Purpose Graphic Processing Unit

GPP General-Purpose Processors

GPU Graphic Processor Unit

Conclusions 91

HBA Host Bus Adapters

HPC High Performance Computing

HPC* High Pin Count

HPRC High Performance Reconfigurable Computing

IC Integrated Circuits

IP Internet Protocol

IP* Intellectual Property

IPTO Information Processing Techniques Office

iSCSI Internet Small Computer System Interface

ITT Initiator Task Tag

JTAG Joint Test Action Group

LC Logic Cells

LFSR Linear Feedback Shift Register

LUN Logical Unit Number

LUT Lookup Table

MAC Media Access Controller

MAC* Multiply-Accumulate

MSI Message Signaled Interrupts

MTU Maximum Transmission Unit

NRE Non-Recurring Engineering

PAL Programmable Array Logic

PCI Peripheral Component Interconnect

PDU Protocol Data Unit

PLA Programmable Logic Array

PLD Programmable Logic Device

PMA Physical Medium Attachment Sublayer

PSC Physical Coding Sublayer

R2T Ready to Transmit

RAM Random Access Memory

RTL Register Transfer Level

RTR Real-Time Recovery

SAN Storage Area Networks

SNACK Selective Negative Acknowledgment

SRAM Static Random-Access Memory

TCP/IP Transmission Control Protocol/Internet Protocol

TGM Table Generation Module

TOE TCP/IP Offload Engines

TTT Target Transfer Tag

Conclusions 92

XAUI eXtended Attachment Unit Interface

XGXS 10 Gigabit Ethernet Extended Sublayer

Bibliography

[1] Cisco’s VNI Forecast Projects the Internet Will Be Four Times as Large in Four Years. http:

//newsroom.cisco.com/press-release-content?type=webcontent&articleId=888280,

May 2012.

[2] Padmasree Warrior. The Future of IT. http://blogs.cisco.com/news/the-future-of-it/,

January 2013.

[3] Yen-Kuang Chen. Challenges and opportunities of internet of things. In 17th Asia and South Pacific

Design Automation Conference (ASP-DAC), 2012, pages 383–388, 2012.

[4] Dave Evans. The Internet of Everything: How More Relevant and Valuable Connections Will Change

the World. http://www.cisco.com/web/about/ac79/docs/innov/IoE.pdf, 2012.

[5] David Storm. 100Gbps and beyond: What lies ahead in the world of network-

ing. http://arstechnica.com/information-technology/2013/02/100gbps-and-beyond-

what-lies-ahead-in-the-world-of-networking/, February 2013.

[6] Bob Wheeler. 10 Gigabit Ethernet In Servers: Benefits and Challenges. http://www.hp.com/

products1/serverconnectivity/adapters/ethernet/10gbe/infolibrary/10GbE_White_

Paper.pdf, 2005.

[7] Andrew Gallatin, Jeff Chase, and Ken Yocum. Trapeze/IP: TCP/IP at Near-Gigabit Speeds. Pro-

ceedings of the FREENIX Track: 1999 USENIX Annual Technical Conference, Monterey, California,

USA, June 1999.

[8] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, D. Newell, L. Cline, and

A. Foong. Tcp onloading for data center servers. Computer, 37(11):48–58, 2004.

[9] Server Network I/O Acceleration, 2004.

[10] Zhong-Zhen Wu and Han-Chiang Chen. Design and Implementation of TCP/IP Offload Engine

System over Gigabit Ethernet. In Proceedings.15th International Conference on Computer Commu-

nications and Networks, 2006. ICCCN 2006., pages 245–250, 2006.

[11] The Chelsio Terminator 3 ASIC, Third-generation 10Gb Ethernet Unified Wire Engine for iSCSI,

RDMA and TCP/IP Applications. http://www.chelsio.com/assetlibrary/products/T3_

Unified_Wire_Eng_WP.pdf.

[12] Hankook Jang, Sang-Hwa Chung, and Dae-Hyun Yoo. Design and implementation of a protocol

offload engine for TCP/IP and remote direct memory access based on hardware/software copro-

cessing. Microprocessors and Microsystems, 33(5-6):333 – 342, 2009.

http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=888280
http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=888280
http://blogs.cisco.com/news/the-future-of-it/
http://www.cisco.com/web/about/ac79/docs/innov/IoE.pdf
http://arstechnica.com/information-technology/2013/02/100gbps-and-beyond-what-lies-ahead-in-the-world-of-networking/
http://arstechnica.com/information-technology/2013/02/100gbps-and-beyond-what-lies-ahead-in-the-world-of-networking/
http://www.hp.com/products1/serverconnectivity/adapters/ethernet/10gbe/infolibrary/10GbE_White_Paper.pdf
http://www.hp.com/products1/serverconnectivity/adapters/ethernet/10gbe/infolibrary/10GbE_White_Paper.pdf
http://www.hp.com/products1/serverconnectivity/adapters/ethernet/10gbe/infolibrary/10GbE_White_Paper.pdf
http://www.chelsio.com/assetlibrary/products/T3_Unified_Wire_Eng_WP.pdf
http://www.chelsio.com/assetlibrary/products/T3_Unified_Wire_Eng_WP.pdf

Bibliography 94

[13] DINIGroup TCP Offload Engine IP: For Latency Critical, FPGA-based Embedded Networking Ap-

plications. http://www.applistar.com/wp-content/uploads/2012/06/TOE_Brief_v092.pdf,

April 2012.

[14] Zheng-Ji Wu Han-Chiang Chen and Zhong-Zhen Wu. Implementation of Offloading the iSCSI and

TCP/IP Protocol onto Host Bus Adapter. Conference on Mass Storage Systems and Technologies,

2006.

[15] Software Defined Networking: A new paradigm for virtual, dynamic, flexible networking, October

2012.

[16] Sanjeev Mervana. The Programmable Network: End-to-End Visualization and Control.

http://blogs.cisco.com/news/the-programmable-network-end-to-end-visualization-

and-control/, May 2013.

[17] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. Internet Small Computer

Systems Interface(iSCSI), RFC 3720.

[18] H.M. Khosravi, Abhijeet Joglekar, and R. Iyer. Performance characterization of iSCSI processing in a

server platform. In Performance, Computing, and Communications Conference, 2005. IPCCC 2005.

24th IEEE International, pages 99–107, 2005.

[19] Jerry Daugherty. Understanding iSCSI Digests: Accurately Evaluating the Cost and Risk of Disabling

Digests. http://www.jdsu.com/ProductLiterature/Understanding-iSCSI-Digests-white-

paper-30162803.pdf, 2009.

[20] Prasenjit Sarkar, Sandeep Uttamchandani, and Kaladhar Voruganti. Storage Over IP: When Does

Hardware Support Help? In Proceedings of the 2nd USENIX Conference on File and Storage

Technologies, FAST ’03, pages 231–244, Berkeley, CA, USA, 2003. USENIX Association.

[21] Open iSCSI, Open source iSCSI Initiator implementation. http://www.open-iscsi.org/.

[22] T.-B. Pei and C. Zukowski. High-speed parallel CRC circuits in VLSI. IEEE Transactions on Commu-

nications, 40(4):653–657, 1992.

[23] T.V. Ramabadran and S.S. Gaitonde. A tutorial on CRC computations. Micro, IEEE, 8(4):62–75,

1988.

[24] C. Borrelli. IEEE 802.3 Cyclic Redundancy Check. http://www.xilinx.com/support/

documentation/application_notes/xapp209.pdf, 2001.

[25] C. Toal, K. McLaughlin, S. Sezer, and Xin Yang. Design and Implementation of a Field Programmable

CRC Circuit Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

17(8):1142–1147, 2009.

[26] F. Monteiro, A. Dandache, A. M”Sir, and B. Lepley. A fast CRC implementation on FPGA using

a pipelined architecture for the polynomial division. In the 8th IEEE International Conference on

Electronics, Circuits and Systems, 2001. ICECS 2001, volume 3, pages 1231–1234 vol.3, 2001.

[27] M.E. Kounavis and F.L. Berry. A Systematic Approach to Building High Performance Software-based

CRC generators. In Proceedings of the 10th IEEE Symposium on Computers and Communications,

pages 855–862, 2005.

[28] C. Mucci, L. Vanzolini, I. Mirimin, D. Gazzola, A. Deledda, S. Goller, J. Knaeblein, A. Schneider,

L. Ciccarelli, and F. Campi. Implementation of Parallel LFSR-based Applications on an Adaptive

http://www.applistar.com/wp-content/uploads/2012/06/TOE_Brief_v092.pdf
 http://blogs.cisco.com/news/the-programmable-network-end-to-end-visualization-and-control/
 http://blogs.cisco.com/news/the-programmable-network-end-to-end-visualization-and-control/
http://www.jdsu.com/ProductLiterature/Understanding-iSCSI-Digests-white-paper-30162803.pdf
http://www.jdsu.com/ProductLiterature/Understanding-iSCSI-Digests-white-paper-30162803.pdf
http://www.open-iscsi.org/
http://www.xilinx.com/support/documentation/application_notes/xapp209.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp209.pdf

Bibliography 95

DSP featuring a Pipelined Configurable Gate Array. In Design, Automation and Test in Europe,

2008. DATE ’08, pages 1444–1449, March.

[29] Allen Kent and James G. Williams Rosalind Kent. Encyclopedia of Microcomputers: Volume 6 -

Electronic Dictionaries in Machine Translation to Evaluation of Software: Microsoft Word Version

4.0. CRC press, 1 edition, June 1990.

[30] J.M. Simmons. A strategy for designing error detection schemes for general data networks. Network,

IEEE, 8(4):41–48, 1994.

[31] Richard E. Blahut. Algebraic Codes for Data Transmission. Cambridge University Press, 1 edition,

March 2003.

[32] John Gill. EE 387 Algebraic Error Control Codes, lecture notes. http://www.stanford.edu/

class/ee387/, Autumn 2012.

[33] G. Campobello, G. Patane, and M. Russo. Parallel CRC realization. IEEE Trans. Comput.,

52(10):1312–1319, October 2003.

[34] D. V. Sarwate. Computation of cyclic redundancy checks via table look-up. Commun. ACM,

31(8):1008–1013, August 1988.

[35] Tomas Henriksson and Dake Liu. Implementation of fast CRC calculation. In Proceedings of the

2003 Asia and South Pacific Design Automation Conference, ASP-DAC ’03, pages 563–564, New

York, NY, USA, 2003. ACM.

[36] H. Michael Ji and E. Killian. Fast parallel CRC algorithm and implementation on a configurable

processor. In IEEE International Conference on Communications, 2002. ICC 2002., volume 3, pages

1813–1817 vol.3, 2002.

[37] A. Akagic and H. Amano. An FPGA Implementation of CRC Slicing-by-N algorithms. Technical

Report 319, The Institute of Electronics, Information and Communication Engineers, 2010.

[38] Wireshark network packet analyzer. http://www.wireshark.org/.

[39] Linux SCSI target framework. http://stgt.sourceforge.net/.

[40] OProfile: system-wide profiler for Linux systems. http://oprofile.sourceforge.net/.

[41] The UNH-iSCSI project. http://unh-iscsi.sourceforge.net/.

[42] D. Dalessandro, P. Wyckoff, and G. Montry. Initial Performance Evaluation of the NetEffect 10 Gigabit

iWARP Adapter. In Cluster Computing, 2006 IEEE International Conference on, pages 1–7, 2006.

[43] Intilop’s 76-nanosecond TOE Based System Etablishes a Record 93% TCP/IP Bandwidth at a

Major Customer’s 10G Network Deployment. http://www.sbwire.com/press-releases/10g-

toe/tcp-performance/sbwire-156548.htm, August 2012.

[44] Chung-Ho Chen, Yi-Cheng Chung, Chen-Hua Wang, and Han-Chiang Chen. Design of a Giga-bit

Hardware Accelerator for the iSCSI Initiator. In Proceedings 2006 31st IEEE Conference on Local

Computer Networks, pages 257–263, 2006.

[45] Chelsio Communications T110 10-gigabit HBA: iSCSI HBA Performance Testing by VeriTest, June

2004.

[46] High-Performance Computing: Europe’s place in a Global Race, European Commis-

sion. http://ec.europa.eu/information_society/newsroom/cf/document.cfm?action=

display&doc_id=891, 2012.

http://www.stanford.edu/class/ee387/
http://www.stanford.edu/class/ee387/
http://www.wireshark.org/
http://stgt.sourceforge.net/
http://oprofile.sourceforge.net/
http://unh-iscsi.sourceforge.net/
http://www.sbwire.com/press-releases/10g-toe/tcp-performance/sbwire-156548.htm
http://www.sbwire.com/press-releases/10g-toe/tcp-performance/sbwire-156548.htm
http://ec.europa.eu/information_society/newsroom/cf/document.cfm?action=display&doc_id=891
http://ec.europa.eu/information_society/newsroom/cf/document.cfm?action=display&doc_id=891

Bibliography 96

[47] The Human Brain Project. http://www.humanbrainproject.eu/.

[48] Exascale Computing Study Report. http://users.ece.gatech.edu/mrichard/

ExascaleComputingStudyReports/ECS_reports.htm, 2008.

[49] P. Kogge et. al. ExaScale Computing Study: Technology Challenges in Achieving Exas-

cale Systems. http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/

exascale_final_report_100208.pdf, 2008.

[50] N. Eicker and Th. Lipper. An accelerated Cluster-Architecture for the Exascale, 2011.

[51] G.E. Moore. The future of integrated electronics. Electronics Magazine, 1965.

[52] Katherine Compton and Scott Hauck. Reconfigurable Computing: A Survey of Systems and Soft-

ware. ACM Comput. Surv., 34(2):171–210, June 2002.

[53] Prasanna Sundararajan. High Performance Computing Using FPGAs. http://www.xilinx.com/

support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf, 2010.

[54] Thomas Lenart. Design of Reconfigurable Hardware Architectures for Real-time Applications, Mod-

eling and Implementation. PhD thesis, Lund University, Sweden, 2008.

[55] A.C. Cheng. A Software-to-Hardware Self-Mapping Technique to Enhance Program Throughput for

Portable Multimedia Workloads. In 4th IEEE International Symposium on Electronic Design, Test

and Applications, DELTA 2008, pages 356–361, 2008.

[56] Russell Tessier and Wayne Burleson. Reconfigurable Computing for Digital Signal Processing: A

Survey. J. VLSI Signal Process. Syst., 28(1/2):7–27, May 2001.

[57] K. Tatas, K. Siozios, and D. Soudris. A Survey of Existing Fine-Grain Reconfigurable Architectures

and CAD tools. In Stamatis Vassiliadis and Dimitrios Soudris, editors, Fine- and Coarse-Grain Re-

configurable Computing, pages 3–87. Springer Netherlands, 2008.

[58] Carl Ebeling, DarrenC. Cronquist, and Paul Franklin. RaPiD Reconfigurable pipelined datapath. In

ReinerW. Hartenstein and Manfred Glesner, editors, Field-Programmable Logic Smart Applications,

New Paradigms and Compilers, volume 1142 of Lecture Notes in Computer Science, pages 126–

135. Springer Berlin Heidelberg, 1996.

[59] Reiner Hartenstein. Coarse grain reconfigurable architecture (embedded tutorial). In Proceedings

of the 2001 Asia and South Pacific Design Automation Conference, ASP-DAC ’01, pages 564–570,

New York, NY, USA, 2001. ACM.

[60] Arthur Abnous, Hui Zhang, Marlene Wan, George Varghese, Vandana Prabhu, and Jan Rabaey.

The Pleiades Architecture, pages 327–359. John Wiley and Sons, Ltd, 2002.

[61] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M. Chaves Filho.

MorphoSys: an integrated reconfigurable system for data-parallel and computation-intensive appli-

cations. IEEE Transactions on Computers, 49(5):465–481, 2000.

[62] V. Baumgarte, G. Ehlers, F. May, A. Nuckel, M. Vorbach, and M. Weinhardt. PACT XPP Self-

Reconfigurable Data Processing Architecture. The Journal of Supercomputing, 26(2):167–184,

2003.

[63] Gerard J.M. Smit, Michel A.J. Rosien, Yuanqing Guo, and Paul M. Heysters. Overview of the Tool-

Flow for the Montium Processor Tile. In International Conference on Engineering of Reconfigurable

Systems and Algorithms, ERSA 2004, pages 45–51. CSREA Press, 2004.

http://www.humanbrainproject.eu/
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECS_reports.htm
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECS_reports.htm
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf
http://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf

Bibliography 97

[64] Khaled Benkrid. High Performance Reconfigurable Computing: From Applications to Hardware.

IAENG International Journal of Computer Science, 35(1), 2004.

[65] Algotronix History. http://www.algotronix.com/people/tom/album.html.

[66] Garp: Combining a Processor with a Reconfigurable Computing Array. http://brass.cs.

berkeley.edu/garp.html.

[67] J.M. Moreno, J. Cabestany, E. Cant √âL’ě, J. Faura, P. Duong, M.A. Aguirre, and J.M. Insenser.

Fipsoc. A Novel Mixed FPGA for System Prototyping. In Andrzej Napieralski, Zygmunt Ciota, Au-

gustin Martinez, Gilbert Mey, and Joan Cabestany, editors, Mixed Design of Integrated Circuits and

Systems, volume 434 of The Springer International Series in Engineering and Computer Science,

pages 169–173. Springer US, 1998.

[68] Xilinx. http://www.xilinx.com/about/company-overview/.

[69] Altera. http://www.altera.com/corporate/about_us/.

[70] Lattice Semiconductor. http://www.latticesemi.com/corporate/.

[71] Atmel. http://www.atmel.com/about/corporate/.

[72] Freeman R.H. Carter W., Duong K. et al. A user programmable reconfiguration gate array. IEEE

Custom Integrated Circuits Conference, pages 233âĂŞ–235, 1986.

[73] Chiu T.L. Guterman D.C., Rimawi I.H. et al. An electrically alterable nonvolatile memory cell using a

floating-gate structure. IEEE Trans. Electron Devices, 26(4):576–586, 1979.

[74] Chua H.T. Birkner J., Chan A. et al. A very-high-speed field programmable gate array using metal-

to-metal antifuse programmable elements. Micro, 23(7):561–568, 1992.

[75] Spartan-3 FPGA Family Data Sheet, DS099. http://www.xilinx.com/support/

documentation/data_sheets/ds099.pdf, October 29, 2012.

[76] Spartan-6 Family Overview, DS112 (v3.1). http://www.xilinx.com/support/documentation/

data_sheets/ds112.pdf, August 30, 2010.

[77] Virtex-4 Family Overview, DS160 (v2.0). http://www.xilinx.com/support/documentation/

data_sheets/ds160.pdf, October 25, 2011.

[78] Virtex-5 Family Overview, DS100 (v5.0). http://www.xilinx.com/support/documentation/

data_sheets/ds100.pdf, February 6, 2009.

[79] Virtex-6 Family Overview, DS150 (v2.4). http://www.xilinx.com/support/documentation/

data_sheets/ds150.pdf, January 19, 2012.

[80] M.E. Kounavis and F.L. Berry. Novel Table Lookup-Based Algorithms for High-Performance CRC

Generation. Computers, IEEE Transactions on, 57(11):1550–1560, 2008.

[81] Dual SFP+ FMC Module. http://hitechglobal.com/FMCModules/FMC_SFP+.htm.

[82] Xilinx ML605 Board Accessories, List of FMC Modules. http://www.xilinx.com/products/

boards_kits/board_accessories.htm.

[83] A. Akagic and H. Amano. Performance analysis of fully-adaptable CRC accelerators on an FPGA. In

Field Programmable Logic and Applications (FPL), 2012 22nd International Conference on, pages

575–578, 2012.

http://www.algotronix.com/people/tom/album.html
http://brass.cs.berkeley.edu/garp.html
http://brass.cs.berkeley.edu/garp.html
http://www.xilinx.com/about/company-overview/
http://www.altera.com/corporate/about_us/
http://www.latticesemi.com/corporate/
http://www.atmel.com/about/corporate/
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://hitechglobal.com/FMCModules/FMC_SFP+.htm
http://www.xilinx.com/products/boards_kits/board_accessories.htm
http://www.xilinx.com/products/boards_kits/board_accessories.htm

Bibliography 98

[84] A. Akagic and H. Amano. A study of adaptable co-processors for cyclic redundancy check on an

fpga. In International Conference on Field-Programmable Technology (FPT), 2012, pages 119–124,

2012.

[85] Amila Akagic and Hideharu Amano. High speed CRC with 64-bit generator polynomial on an FPGA.

SIGARCH Comput. Archit. News, 39(4):72–77, dec 2011.

[86] N. Sawyer and M. Defossez. Quad-Port Memories in Virtex Devices, Application Note XAPP228

(v1.0), September 24, 2002. http://www.xilinx.com/support/documentation/application_

notes/xapp228.pdf.

[87] ML605 Hardware User Guide, v1.8. http://www.xilinx.com/support/documentation/

boards_and_kits/ug534.pdf, October 2, 2012.

[88] Raj Seelam. I/O Design Flexibility with the FPGA Mezzanine Card (FMC), Xilinx WP315 (v1.0),

August 19, 2009.

[89] Xilinx LogiCORE IP 10-Gigabit Ethernet MAC v11.2, Xilinx UG773, October 19, 2011.

[90] Xilinx LogiCORE IP XAUI v10.2, DS266 January 18, 2012.

[91] Virtex-6 FPGA Configuration, UG360 (v3.2), November 1, 2010.

http://www.xilinx.com/support/documentation/application_notes/xapp228.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp228.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf

Publications

Related Papers

Journal Papers

[1] Akagic Amila and Hideharu Amano, Design and implementation of IP-based iSCSI Offload

Engine on an FPGA, IPSJ Transactions on System LSI Design Methodology (TSLDM11),

Vol. 6, No. 1, pp. – , Aug 2013.

[2] Akagic Amila and Hideharu Amano, High-Speed Fully-Adaptable CRC Accelerators, IEICE

TRANS. INF. & SYST., Vol. E96, No. 6, pp. – , Jun 2013.

International Conference Papers

[3] Akagic Amila and Hideharu Amano, A study of adaptable co-processors for Cyclic Redun-

dancy Check on an FPGA, International Conference on Field-Programmable Technology

(FPT), 2012, pp. 119 – 124, Dec 2012, Seoul, (South) Korea

[4] Akagic Amila and Hideharu Amano, Performance analysis of fully-adaptable CRC accel-

erators on an FPGA, 22nd International Conference on Field Programmable Logic and

Applications (FPL), 2012, pp. 575–578, Sep 2013, Oslo, Norway

[5] Akagic Amila and Hideharu Amano, High Speed CRC with 64-bit generator polynomial

on an FPGA, International Workshop on Highly-Efficient Accelerators and Reconfigurable

Technologies, HEART 2011, Jun 2011, Imperial College London, London, UK

[6] Akagic Amila and Hideharu Amano, Performance Evaluation of Multiple Lookup Tables Al-

gorithms for generating CRC on an FPGA, International Symposium on Access Spacess,

ISAS 2011, Jun 2011, Yokohama, Japan

Domestic Conference Papers and Technical Reports

[7] Marijana Cosovic, Akagic Amila and Zdenka Babic, Performance Analysis of Modular Mul-

tipliers Implementations On FPGA, Scientific Professional Symposium INFOTEH-JAHORINA,

Vol. 10, Ref. E-VI-6, pp. 869–873, March 2011. (In Bosnian)

Publications 100

[8] Akagic Amila and Hideharu Amano, Multiple Table Lookup Implementation of Error Correc-

tion on an FPGA, Design, Automation and Test in Europe, DATE 2011, Grenoble, France,

March 2011.

[9] Akagic Amila and Hideharu Amano, An FPGA Implementation of CRC Slicing-by-N algo-

rithms, IEICE Technical Reports (RECONF), Vol. 110, No. 319, pp. 19–24, Nov 2010.

[10] Akagic Amila Dusanka Boskovic and Novica Nosovic, Implementation of MIC-MAC-1 Hy-

pothetical Processor on an FPGA, Scientific Professional Symposium INFOTEH-JAHORINA,

Vol. 9, Ref. E-V-12, pp. 748–751, March 2010. (In Bosnian)

[11] Akagic Amila and Novica Nosovic, GRID Security Architecture, Scientific Professional

Symposium INFOTEH-JAHORINA, March 2007. (In Bosnian)

