慶應義塾大学学術情報リポジトリ

Keio Associated Repository of Academic resouces

Title	ヒト肝癌増殖・転移モデルを用いた分子標的治療薬の機能解明		
Sub Title	Functional analysis of molecular targeted therapy used human hepatocellular carcinoma		
	proliferation and metastasis model		
Author	杜, ぶん林(Du, Wenlin)		
Publisher			
Publication year	2011		
Jtitle	科学研究費補助金研究成果報告書 (2010.)		
Abstract	近年、Sorafenibなど分子標的治療薬が開発され、肝細胞癌に対しても従来の抗癌剤より良い効果が得られたと報告されたが、分子標的治療薬は腫瘍細胞における分子レベルの作用機序がある程度分かっていても、腫瘍の浸潤・転移など複雑な生物学的現象に与える影響や機能について解明されていないところが多い。本研究では、肝細胞癌の進行症例に相当する肝細胞癌転移モデルを用いて、分子標的治療薬の機能と作用機序について検討した。In vitroで肝細胞株に対しsorafenibを投与した結果、KYN2はLi7より細胞増殖抑制効果とアポトーシル誘導が顕著にみられた。マウスモデルにおいても、KYN2はsorafenib投与による肝内転移抑制傾向が認められたが、Li7にはそのような傾向はみられない。Microarrayの結果より、KYN2はLi7よりFGFR4、LYNなどの発現が多く、western blottingでもKYN2ではこれらの分子のリン酸化がsorafenib投与により低下している結果が得られた。これらの分子は治療効果予測因子として有用性が期待できる。		
Notes	研究種目: 若手研究(B) 研究期間: 2009 ~ 2010 課題番号: 21790366 研究分野: 医歯薬学 科研費の分科・細目: 基礎医学・人体病理学		
Genre	Research Paper		
URL	http://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KAKEN_21790366seika		

科学研究費補助金研究成果報告書

平成 23 年 6 月 16 日現在

機関番号:32612 研究種目:若手研究(B) 研究期間:2009~2010 課題番号:21790366 研究課題名(和文)

ヒト肝癌増殖・転移モデルを用いた分子標的治療薬の機能解明

研究課題名(英文) Functional analysis of molecular targeted therapy used human hepatocellular carcinoma proliferation and metastasis model

研究代表者

杜 ぶん林 (DU WENLIN) 慶應義塾大学・医学部・助教 研究者番号:90348798

研究成果の概要(和文): 近年、Sorafenib など分子標的治療薬が開発され、肝細胞癌に対しても従来の抗癌剤より良い効果が得られたと報告されたが、分子標的治療薬は腫瘍細胞における分子レベルの作用機序がある程度分かっていても、腫瘍の浸潤・転移など複雑な生物学的現象に与える影響や機能について解明されていないところが多い。本研究では、肝細胞癌の進行症例に相当する肝細胞癌転移モデルを用いて、分子標的治療薬の機能と作用機序について検討した。 In vitro で肝細胞株に対し sorafenib を投与した結果、KYN2 は Li7 より細胞増殖抑制効果とアポトーシル誘導が顕著にみられた。マウスモデルにおいても、KYN2 は sorafenib 投与による肝内転移抑制傾向が認められたが、Li7 にはそのような傾向はみられない。Microarrayの結果より、KYN2 は Li7 より FGFR4, LYN などの発現が多く、western blotting でも KYN2 ではこれらの分子のリン酸化が sorafenib 投与により低下している結果が得られた。これらの分子は治療効果予測因子として有用性が期待できる。

研究成果の概要 (英文): Multikinase inhibitor sorafenib is reported to have obtained a better effect than conventional chemotherapy for hepatocellular carcinoma. The influence and function of sorafenib on tumor invasion or metastasis is unknown. In this study, we aimed to analyze the mechanism of sorafenib on hepatocellular carcinoma (HCC) extension including tumor growth, invasion and metastasis and establish predictive model of sorafenib efficacy. Sorafenib inhibited the proliferation of HCC cell KYN2 more than Li7. Sorafenib also induced apoptosis on KYN2 not Li7. Sorafenib reduced the phosphorylation level of LYN on KYN2, but not on Li7. Microarray resulted the signal of LYN, FGFR4 of KYN2 were more than Li7. The difference expression of these tyrosinkinase molecular could be useful to find candidate biomarkers for prediction of sorafenib response.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009 年度	1,700,000	510,000	2,210,000
2010 年度	1,600,000	480,000	2,080,000
総計	3,300,000	990,000	4,290,000

研究分野:医歯薬学

科研費の分科・細目:基礎医学・人体病理学

キーワード:分子標的薬、肝細胞癌

1.研究開始当初の背景

肝細胞癌は日本においてその罹患率が高

く、年間および3万5千人でありさらに増加 傾向を示している。日本における肝細胞癌の 大部分は慢性肝炎や肝硬変を背景としており、早期発見率および早期肝癌に対する治療成績は向上したが、肝細胞癌全体としての予後は依然として不良である。再発を繰り返す症例や肝内転移を来す症例など肝細胞癌の進行例に対しては、一般的な癌治療法として化学療法が選択されるが、肝細胞癌の場合、慢性肝炎や肝硬変が背景にあるため、間質の複雑な影響で肝細胞癌は抗癌剤に対する感受性が低く、また、肝機能や全身状態不良のために抗癌剤の継続投与が難しく、有効な化学療法が確立されていないのが現状である。

近年、癌の増殖、浸潤、転移に関するさま ざまな分子が同定されるにつれ、それらの分 子を標的とする治療薬の開発が進められて いる。最近、肝細胞癌に対する分子標的治療 が注目されるようになり、Sorafenib や Sunitinib など多標的チロシンキナーゼ阻害 薬が複数のキナーゼを阻害することで抗腫 瘍効果がより広範囲に期待できるとされて いる。欧米ではこれらの分子標的治療薬につ いての第 相臨床試験で生存期間中央値の 延長が得られたと報告されている。肝細胞癌 では、RAS/MAPKK, PI3K/Akt/mTOR pathway や VEGF, PDGFR シグナリングカスケードなどが 腫瘍の進展に重要な役割を果たすと考えら れるが、Sorafenib は受容体である FLT 3, VEGFR(1-3)および PDGFR - を標的とし、更に 細胞内 RAF を阻害することにより、癌細胞の 増殖と腫瘍の血管新生を抑制し、アポトーシ スを誘導すると報告されている。Sorafenib について上記のように細胞分子レベルの機 序が解明されているが、癌の浸潤・転移に与 える影響についてはいまだ不明である。癌の 浸潤・転移は癌細胞と腫瘍間質との複雑な相 互作用によって起きる高次な現象である。肝 細胞癌は周囲の環境との関連は特に特異的 であり、癌の発生、進展は慢性肝炎や肝硬変 による関与が強く、癌細胞と腫瘍間質との相 互作用がより複雑である。

2.研究の目的

本研究では、転移を高率に来すヒト肝細胞癌 株を用いた肝細胞癌転移モデルを利用して、 分子標的治療薬の肝癌の浸潤・転移における 効果とそのメカニズムを明らかにし、分子標 的治療の有効性の予測や治療効果の判定へ の応用を検討する。

3.研究の方法

(1)ヒト肝細胞癌株における分子標的治療薬の細胞増殖への影響の解析

分子標的薬Sorafenib [N-(3trifluoromethyl 4 -chlorophenyl) N' -(4 -(2 methylcarbamoyl pyridin 4 -yl) oxyphenyl)urea]はバイエル薬品株式会社よ り提供されている。In vitro実験で使用する 時、sorafenibは100%DMS0にて溶解し、 RPMI1640にて各濃度に希釈する。ヒト肝細胞 癌株KYN 2, Li7, KIM1は国立がんセンターよ り譲度された。ヒト肝細胞癌株HepG2, PLC/PRF/5はATCCより購入した。各肝細胞癌株 は10%FBSを含むRPMI1640で5%CO₂, 37 の条件 下で接着培養する。また、poly HEMAでコーテ ィングした培養皿で浮遊培養を行う。分子標 的薬Sorafenib(最終濃度0.01 µ M~10 µ M)を 添加し、5%CO2, 37 の条件下で培養する。72 時間後、増殖アッセイ用試薬WST -1を添加し、 1時間反応後、培養上清をマイクロリーダーで 測定する。また、上記濃度のsorafenib添加24, 48,72時間時の細胞数計測も行う。

(2)分子標的治療薬のアポトーシス誘導の解析

ヒト肝細胞癌株 (KYN 2, Li7, HepG2, PLC/PRF/5, KIM1)を接着培養し、分子標的薬 Sorafenib (最終濃度 $0.1\,\mu$ M $\sim 10\,\mu$ M)を添加した 48 時間後、細胞を 0.25% trypsinで培養皿から剥がし、AnnexinVを添加し、15分反応した後、フローサイトメーターでアポトーシス細胞について計測する。

(3)ヒト肝細胞癌株においけるチロシンキナーゼの発現、リン酸化の解析

ヒト肝細胞癌株 (KYN-2, Li7, HepG2, PLC/PRF/5, KIM1)の DNA マイクロアレイを 行う。Sorafenib による細胞増殖抑制、アポ トーシス誘導の効果が認められたグループ と認められないグループ間のチロシンキナ ゼ遺伝子の発現差を検討する。イムノブロ ッティング法にて各肝細胞癌株が sorafenib 投与後のチロシンキナーゼ分子の発現、リン 酸化の変化を解析する。各肝細胞癌株は 25000/ウェルで 6 ウェルプレートで 24 時間 培養後、sorafenib を最終濃度 1 μ M, 5 μ M, 10 uMになるように添加し、8時間後にHGF 25ng/ml で 10 分間刺激する。 ライシスバッフ ァで細胞溶解液を作製する。20 μg のタンパ クを NuPAGE 4-12% Bis -Tris ゲルで電気泳動 し、ニトロセルロース膜に転写する。抗 Lyn 抗体 (Santacruz)、抗リン酸化 Lyn 抗体 (Santacruz)、抗 FGFR4 抗体 (Abcam), 4G10 抗体 (Millipore) および HRP2 次抗体でブロット後、ECL で検出する。

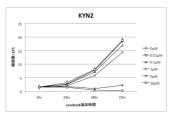
(4)肝細胞癌転移モデルにおける検討

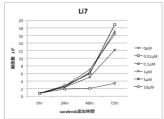

ヒト肝細胞癌株 (KYN-2, Li7, HepG2, Alexander, KIM1)は3X10⁶/20µIを重度免疫 不全マウス NOD/SCID の肝内に移植する。2週 後に sorafenib を 10mg/Kg, 30mg/Kg, 100mg/Kg 毎日 1 回投与する。溶媒のみ投与す るコントロール群も作製する。Sorafenib 投 与2週後にマウス肝臓を摘出し、肝の全重量、 腫瘍の重量とサイズ、肝内転移の有無と転移 巣数の計測を行う。また、一部の実験マウス は解剖せず、生存期間の検討を行う。摘出さ れたマウス肝に形成された腫瘍組織に対し て、免疫染色法により、細胞増殖能、アポト ーシス、チロシンキナーゼ分子の発現、リン 酸化を検討し、比較する。また、病理組織学 的に検討し、腫瘍の形態、増殖能と浸潤能に ついて比較検討する。

4.研究成果

(1)細胞増殖能抑制

接触培養条件下で sorafenib と 72 時間添加し、WST -1 増殖アッセイで測定した結果では、KYN2 と HepG2 は sorafenib の添加により、顕著な増殖抑制効果が認められた。一方、Li7 および PLC/PRF/5 は増殖抑制効果が低い。KIM1 の反応性はその中間に位置する。(図1)


図 1 Sorafenib 添加後の肝細胞癌の増殖能 WST -1 ア

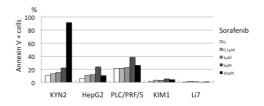


接着培養条件下で sorafenib を添加し、24時間、48時間、72時間時点での細胞数計測の結果は WST-1 アッセイとほぼ同様で、KYN2と HepG2 に sorafenib による増殖抑制が顕著であるのに対し、Li7と PLC/PRF/5 の増殖抑制効果は低い(図 2)、KIM1 に対する増殖抑

制強化はKYN2とLi7の中間に相当する。

図 2 Sorafenib 添加時の肝細胞癌細胞数

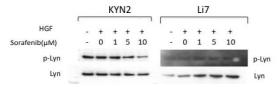
Poly HEMA でコーティングした培養皿を使用して浮遊培養を行い、sorafenib を添加し、WST -1 増殖アッセイと細胞数計測を行った。


接着培養時と類似して、KYN2 と HepG2 は sorafenib による増殖抑制効果が顕著に認められたが、Li7 の増殖抑制効果は低い。KIM1 と PLC/PRF/5 は KYN2 と Li7 の中間に相当する抑制がみられた。但し、KIM1 は浮遊培養時増殖能が低い。

生体内での腫瘍の発育進展における多様な状況を反映すると考えられる各種培養条件により、反応性に若干の variation が見られるが、全体として、KYN2、HepG2、KIM1 が高感受性、PLC/PRF5、Li7 が低感受性と分類できる可能性がある。特にLi7 の感受性が低いことは有意な所見とみなされる。

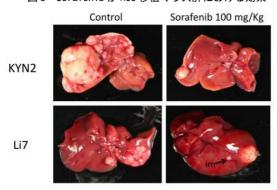
(2)アポトーシス誘導

ヒト肝細胞癌株 (KYN2, HepG2, KIM1, PLC/PRF/5, Li7)を接着培養し、sorafenib添加48時間後にAnnexin でアポトーシス細胞を測定した。KYN2はsorafenibに濃度依存性にapoptosis誘導が認められた。一方、Li7はsorafenibによるアポトーシス誘導は認められなかった。HepG2,PLC/PRF/5およびKIM1はsorafenibによる顕著なアポトーシス誘導はみられない。(図3)


図3 Sorafenib添加による各肝細胞癌細胞の AnnexinV陽性アポトーシス細胞比

KYN2 と Li7 の sorafenib によるアポトーシス誘導性の違いは有意であると考える。
(3)チロシンキナーゼの発現とリン酸化
DNA microarray のチロシンキナーゼ解析データーについて、KYN2 と Li7 を中心に検討した。KYN2 と Li7 間にシグナル 3 倍以上の違いがみられたのは、IRS1, LYN, FGFR3, FGFR4, ERBB3, ERBB4 である。

肝細胞癌株 KYN2 と Li7 に sorafenib を添加し、48 時間培養後に細胞ライセットを収集し、抗 LYN 抗体および抗 LYN リン酸化抗体を用いてウェスタンブロッティングを行った。Sorafenib 未添加時、KYN2 と Li7 いずれも LYN 発現が認められるが、 Li7 の LYN タンパク量は KYN2 より少ない。Sorafenib 添加後、KYN2においてはリン酸化 LYN の減少が認められたのに対し、 Li7 においては LYN のリン酸化に有意な変化はみられなかった。(図4)


図 4 Sorafenib が KYN2 の LYN リン酸化を阻害する。

(4) 肝細胞癌移植動物モデルにおける sorafenibの in vivoの効果

肝細胞癌株(KYN2, HepG2, PLC/PRF/5, KIM1, Li7)を 3X106 個免疫不全マウス NOG の肝内に移植し、2 週間経過して肝腫瘍が形成された後、sorafenibを 10,30,100mg/Kgで毎日経口投与した。14 日後にマウスを解剖し、肝を摘出した。いずれの肝細胞癌株移植マウスにおいても sorafenib 投与による腫瘍サイズの減少が認められた。KYN2 と Li7 は高率に肝内転移を来す肝細胞癌であるが、KYN2 は sorafenib 投与により、肝内転移巣の減少傾向が認められ、一方、Li7 では sorafenib による転移抑制傾向はみられなかった。(図5)

図5 SorafenibがHCC移植マウス肝における効果

(5)結論

Sorafenibはinvitroおよびinvivoにおいて、肝細胞癌の増殖抑制効果を示した。更に、肝細胞株 KYN2 においては肝内転移抑制の効果も認められた。増殖抑制と肝内転移抑制効果のある KYN2 と増殖抑制や転移抑制効果の低い Li7 の間の相違を検討した結果、KYN2 において LYN の発現が Li7 より多く、さらに sorafenib 投与による LYN のリン酸化抑制も認められた。Microarrayでは LYN の他、FGFR3、FGFR4 などの発現も KYN2 と Li7 間に差が認められた。これらの分子は sorafenibの効果予測因子の候補になりうると考える。これから、in vivo の検体と臨床検体について候補因子の発現を計測し、候補因子の有用性について検討すべきと考える。

5 . 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計0件)

〔学会発表〕(計0件)

[図書](計0件)

〔産業財産権〕

出願状況(計0件) 取得状況(計0件)

〔その他〕 ホームページ等 なし

- 6.研究組織
- (1)研究代表者

杜 ぶん林 (DU WENLIN) 慶應義塾大学・医学部・助教 研究者番号:90348798

- (2)研究分担者 なし
- (3)連携研究者 なし