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ABSTRACT

FIBONACCI AND LUCAS SERIES WITH ELLIPTIC FUNCTIONS

By TuAnh Gia Nguyen

The sequences {F;} and {L,} are well known as the Fibonacci and Lucas
sequences respectively. In this thesis, we present in detail several methods to evaluate
certain types of series involving reciprocals of Fibonacci and Lucas sequences, named
Fibonacci and Lucas series. Some new results are achieved and introduced.

In addition, we study some interesting properties of the Jacobi elliptic functions
sn(z), cn(z), and dn(z). We also discuss some properties of the Lambert series. These
properties are essential for evaluation of Fibonacci and Lucas series.

Moreover, we will evaluate series involving the reciprocals of the Horadam

sequence {W,} and its special cases including Fibonacci, Lucas, Pell, and Fermat series.
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INTRODUCTION

In 1202, the Italian mathematician Leonardo Fibonacci, also known as Leonardo

of Pisano, introduced the rabbit problem. He provided the general solution to the

problem using the sequence {Fn } defined recursively by

F,=F,_,+F

n-1>

F=1,F=1,n23.
Changing the initial values give the Lucas sequence, {Ln },
L =L ,+L_, L =1L, =3, n23 named after E. Lucas (1842-1891).

There are many research papers that discuss these numbers. This thesis presents
in detail the evaluation of the series involving combinations and reciprocals of the
Fibonacci and Lucas numbers and their generalizations.

Most of the articles referred to in this thesis can be found in a journal, “The
Fibonacci Quarterly”, which was established by professor Verner E. Hoggatt, Jr. of San
Jose State University in February, 1963.

In Chapter I, we discuss the very first four problems, which appeared in the
Fibonacci Quarterly in 1963, involving the series of reciprocals and infinite products of
Fibonacci numbers. Then, based on the idea of telescoping sum, we find several
formulas related to the series of reciprocal of the Fibonacci and Lucas numbers.

Specially, the author introduced a new theorem that evaluates recursively the sum of the

- 1 . e .

series , where k is a positive integer. Also, the author provided a program that

T F p g gr
n=l

n* ntk



k k
calculates the sums of series Z-l— and Z—l—, for any designed positive integer k,

w1 Ly =1 Loy
accurately to a hundred decimal places.

In Chapter II, we study the Jacobi elliptic functions sn(z), cn(z), and dn(z) as well
as their properties. We prove a difficult theorem that provides the Fourier series of the
Jacobi elliptic function sn(z). Then, based on this theorem and the Fourier series
expansions of sn(z), cn(z), and dn(z), we evaluate the sums of several series involving the
reciprocals of the Fibonacci and Lucas sequences.

In Chapter IIL, we introduce the Horadam sequence {W,} which contains
Fibonacci, Lucas, Pell, and Fermat sequences as special cases. Then, we use some
properties of the Lambert series and Jacobi elliptic functions to evaluate the sums of
infinite series involving combinations of {Wy}. As special cases of these results, we

obtain additional identities involving the Fibonacci and Lucas sequences.



CHAPTER1

SPECIAL SERIES INVOLVING FIBONACCI AND LUCAS NUMBERS

1.1 The Binet Forms for The Fibonacci and Lucas Numbers

The sequence {F, }is recursively defined by F, =F, , +F,

5 B =L F,=1,n23 is well
known as the Fibonacci sequence. With the same recurrence relation, choosing different

initial values, we have the Lucas sequence {L, }defined by

L=L,+L_, L =1L,=3,n23. The two sequences are related by the formula
L =F _ +F,, n>1. Morerelations between the two sequences can be found in
Hoggatt [12].

The quadratic equation

(B)

l+2\/§ and S = -V _2\/5

has two roots a =

. These two roots play an important role in

studying the Fibonacci and Lucas sequences. The number « is called the Golden Ratio.

It is clear that

(1.2) a+f=la-B=5aB=-1a*=a+l, and f* = f+1|

The equation (1.1) is called the Fibonacci quadratic equation. The Binet form for the

Fibonacci numbers, named after the French mathematician Jacques-Phillipe-Marie Binet

(1786-1856) is given by

(1.3) F=2=P 123 .
a-p




Proof: We will prove (1.3) by using strong mathematical induction on n.

-p
—ﬂ

When n =1, it is obvious that F; =1=

a"-p".
Hence, F, = A is true forn = 1.
a -_—

aﬂ_ﬂn

Let k is an arbitrary positive integer. Suppose F, = for any positive integer n

from 1 to k. Then, we must show that equation also holds whenn=k + 1.

k _ pk k-1 _ pk-l
Thus, by the inductive hypothesis, we have F, = @ -p ,and F,_ = %.
a-p a-p

Hence it follows that F,,, = F, + F,_,

a _ﬁ ﬂkl
a- ,B a-p
’”(a+1) (B +1)
a-p
a -1a2 _ﬂk—]ﬂZ b 1
o y(1.2)
=ak+1_ﬂk+l

a-p

an_ﬂn

a-—

Thus, by strong mathematical induction, F, = is true for all positive integer n.

However, in 2004, Sury [15] provided a new proof of (1.3) based on polynomial
identities.

The Binet form for the Lucas numbers is given by



(1.4) L=a"+B"\n=1,273,...

Proof: We also prove (1.4) by using strong mathematical induction on n.

Whenn=1, itis clear that L, =1=a + f# by (1.2).
Hence, L, =a" + f" istrueforn=1.
We now suppose that L, =a" + " is true for any integer n from 1 to k, where k is an

arbitrary positive integer. Then, we will show the above equation also holds when
n=k+1.
Thus, we have

L.,=L+L by the definition of Lucas number
=o" + B*+a*" + p*' by the inductive hypothesis
=" (a+1)+ B (B +1)
=a* '’ + g by (1.2)
= ak+1 +ﬂk+l.

Hence, by strong mathematical induction, L, =a" + " is true for all positive integer n.

1.2 The First Four Problems

In the year of 1963, professor Verner E. Hoggatt, Jr. of San Jose State University started
the journal, namely, “The Fibonacci Quarterly.” The first issue was published in
February 1963, with Verner E. Hoggatt, Jr. as the editor and Brother Alfred Brousseau as
the managing editor. The first four problems involving series of the reciprocals and

infinite products of the Fibonacci numbers appeared in this journal.



1.2.1 Problem 1: It was proposed by R. L. Graham, Bell Telephone Laboratories,

Murray Hill, New Jersey in the Fibonacci Quarterly in April 1963. Show that

© 1 © (_ )n+1
1.5 — =3
(1) LF LR

n+l* n+2

A solution by the famous author Leonard Carlitz of Duke University, Durham, N. C. was

published in the Fibonacci Quarterly in December 1963 . We have

iFL iF]]:F Z(F FFF J

n=24py n=2 4 p-14 p41 n+l

i Fn-an+1 F
n=2 Fn-lF Fn+l

Using F, | F,,, - F =(-1)"(see Hoggatt [12], page 57, (I3)) on the right hand side of

above equation, it follows that

s ()
2rrr, O

n- n+l

. = ] « (-1
Hence (*) can be rewrittenas » —-2=) ————
27 PLERE

n+l



= 1

)
o ;F F Z;F,,_,FF

n n+l1

o o 1 Z ( )n+l

n=1 Ex n=l FF Fn+2

n+l

1.2.2 Problem 2: It was proposed by R. L. Graham, Bell Telephone Laboratories,

Murray Hill, New Jersey in the Fibonacci Quarterly in April 1963. Show that

(1.6) iF 1F =1|

n-17 n+l

A solution by Francis Parker, University of Alaska, was published in the Fibonacci
Quarterly in December 1963.

We have ! = £,

F,_F,F

n=1* n+l n-1 n+l

F.,-F

= n+l n-1

F,_FF

n-1* n* n+l

1 1
FFFF

n-1 n+l

Elew FH

n+l

11 11 11
= ——— | —- + - +
(11 12) (1-2 2.3J (23 3-5)

=1

Hence Z TR

n=-1* n+l




1.2.3 Problem 3: It was proposed by L. Carlitz, Duke University, Durham, N.C. in the

Fibonacci Quarterly in October 1963. Show that

° ] ° ] 1
a7 AP 3y

n=1 n+2" n+3 n=1 n+l? n+3

A solution by John H. Avila, University of Maryland, College, Park Maryland, was
published in the Fibonacci Quarterly in February 1964.

Leta=F, b=F,

n+l?

c=F

n+2o

and d = F,

n+3-

Then, a+b=c¢, b+ c=d, and the left hand side of the desired formula is

ferd) - Haterde
~\ac’d ab*d “\abc*d ab*cd

= Z(C_za +dT_bj sincea+b=candb+c=d
m\abc’d ab‘cd

d 1 1 1 1
S AREREE
s\abcd bc’d ab‘c abced

C$( )
~\ab’c bc*d)

The last sum is the infinite telescoping series, which is

L P R 4. = L1
RFF, EFF,) \RFF FEFTF, REF, 2

1.2.4 Problem 4: It was proposed by S. L. Basin, Sylvania Electronic Systems, Mt.
View, Calif. in the Fibonacci Quarterly in October 1963.

Prove the identities:



L F
1.8 F_ = 1+
( ) n+l L [ + E ]r
n _1 i
(1.9) Fn+1 =1+ ( ) I
F, i
1+v5 . & (-
1.10 =1+ .
(419 2 &R,

A solution by J. L. Brown, Jr., Pennsylvania State University, State College, Pa., was
published in the Fibonacci Quarterly in February 1964. We have

1)

i=] i

_ Fn+1 XE.XFn-lx“'XFz - ﬁ(Fm

F xF _ x..xF,xF F,

F

n+l

i=1

This proves identity (1.8).

To prove identity (1.9), we start with the quotient on the left hand side.

Fp F. F F, _F, F, F
ol o= - + - S e e
Fn Ev F:r—l Fn-] Fn—2 F2 ‘Fi
= 1+ C i+l _i
2\ Fy
=1+ N E+1E‘—1 _F;z
in R,
n _1 i i
= 1+ ZI(?_)’ where we used the well-known identity F,, F,, — F* = (-1} .
i=2

it -1

Identity (1.10) comes from the limit of (1.9) as n — . As the limit of (1.9) gives



F an+1 n+l
S = =
B n+l
- 1_( ) }
= lim L

= lima since £-<1
n—»© 04

1+«/§

>

1.3  Telescoping Series Involving Fibonacci and Lucas numbers

The series involving reciprocals of various Fibonacci and Lucas numbers will be
evaluated by using the idea of telescoping series. A telescoping series will have all
intermediate terms cancel each other in pairs. Thus, a telescoping series always equals to

the sum of the first few terms for the infinite case, and additional last few terms for the

finite case. For example, let us evaluate the finite telescoping sum Z ! .
= k(k+1)

,,Z:‘k(k1+1) ) ;G_k_ii}

Il
7N
e )

|
R |
N

+
TN
|-

|
W | —
N~ S

+
7N
b)'t—-

|
N
N——

10



Since intermediate terms add up to zero in pairs, only the first and the last term are left.

1 n

Thus, wehavez (k+l) =1- — =

Here are some well-known finite telescoping identities that we will use later in this

section:

(1.11) Z(ak—akﬂ):al—anﬂa

k=1

n

(1.12) Z(alc _ak+2) = (al +a2) (an+1 +an+2)7

k=1

(1.13) Z(ak "ak+3) = (al +a, +a3) (an+l +4a,,, +an+3)a
k=1

(1.14) Z(ak _ak+4) = (a1 ta, +a, +a4) (an+1 ta,,+a,; +an+4)‘
k=1

Theorem 1.3.1 Let F, be a Fibonacci number. Then

> F
1.15 =—=1|
R
. -F
Proof: We start by observing that F = Bph 1]
Fn+1Fn+2 Fn+1Fn+2 Fn+1 F;|+2
= F
Now, consider the sequence of partial sums §, Z
k=1 F, k+1F k+2
. 501 1
Then, it follows that S, = Z( - ]
k=1 F;:H F;:+2
z 1 1
=>(a,-a,,), where g, =—, a,, =—
k=l k+1 ‘F;H'Z

11



al _an+l by (111)

since F, = 1.

n+2

=0.

We now take the limit of S, as # — oo to yield (1.15) since lim
o n+2

Theorem 1.3.2 Let F, be a Fibonacci number. Then

=2 F 5
1.16 —=|
(110 ; FF., 4
Proof By using the definition of the Fibonacci numbers, we obtain
Fm—l — Fn+3 —Fn+2
FnFn+3 FnFn+3
_ Fn+3 —(F;: +Fn+1)
- EF,

(1 1) Fa
F, F) EF.

n+3

2\F, F

n n+3

.. F
Then, it is easy to see that —=2— = l[i— ! J

nt n+3

. . 2, F
We now consider the finite sum §, = > —£1—.
k=1 F;CF;H-B

It follows that S, = 1 Z{i— 1 J
2 k=1 Ec Fk+3

12



3

1 _ 1
(a, -a,,,) where a, =—,q,,=—
Fk F;c+3

B
w

—— 1 ™

(al +a2 +a3)—(an+] +an+2 +an+3 )] by (113)

1 1 1 1 1 1
—t—t— |- + + .
E F2 F; Fn+1 Fn+2 F;H-S

Therefore,

=3 since F=F=1LF=2
4

Theorem 1.3.3 Let F,, L, be the Fibonacci and Lucas numbers. Then

= L 17
1.17 —_—2 =
(1.17) ;FF -

n+4

Proof: We shall use the identity L ., = F,,, + F, ., (see Hoggatt [12], page 56, (Is)) to

n+2 n+l n

prove the theorem.
Ln+2 _ Fn+1 +Fn+3
FnFn+4 E!F"+4
_ Fn+1 +(F" —F;')+F'”’3
- FF..
_ButFa B F.,=F +F,
FnFn+4
F  -F .
=4 n since F,,+4 = Fn+2 +El+3
FnFn+4

13



n

: . L .
We now consider the finite sum S, = > —*2— together with the above result.
k=1 4 kL fyq

It follows that

< h _ 1 1
- Z(ak _ak+4)’ where g, = Uers = 7
k=1 k k+4

Theorem 1.3.4 Let F, be a Fibonacci number. Then

> _F, _85
1.18 an .
(1.18) ZF2 F?, ~ 108

n+2

2 —
n+2

Proof. We use the identity F?, =3F, (see Hoggatt [12] page 59, (I2g)) in proving

this theorem. Applying the identity for the numerator of the rational expression, we get

1 2 2
an _ (Fn+2_F ) _ 1 1 1
F? F2 F*? F2 3 F2 F2 .

n+2 n+2 n+2

14



: . =, F,
Now, let us consider the finite sum §, = > —2%—.
= F k+2F;t—2

1

n
(ak—Z _ak+2), Where ak—2 = F_2’ ak+2 - F2
” k-2 k+2

1o r gyt
FEE E)\F R FyEL)]
Taking the limit of S, as » — oo will yield the result

1(1 1 1 1) 85
imS, == | = +—5 +—r+—5 |=— since F, =F, =1, F, =2,F, =3.
Hm, =3 [Fﬁ F}F Ffj 108 P

Lemma 1.3.1 Let o be the Golden Ratio

1+J§
2

. Then for any positive integer k,

n—0

F
1.19 im—=% = |
(1.19) lim 7

n

Proof: We will prove the lemma by using the Binet form.

n+k n+k
F;H-k = a - ﬂ

F, o - B

From (1.3), we have

15



7]
)

n n+k
Since a = 1+J§ , B= l_ﬁ ,and &~ ’B <1, it implies that hm(’ﬁ) = lim(—j =0.
2 2 [#4 n—s»o\ O
Hence, we obtain |jm —2£ = o* .

Lemma 1.3.2 Let F,, L, be the Fibonacci and Lucas numbers. Then

(1.20) FL -F.L_ =(-1)

n+l

n>1.

p

Proof. We prove (1.20) by using mathematical induction on n.

Whenn=1, F,L -F.L , = FL-FL =) (1)-(1)@2) = -1= (-1

n+l
Thus, (1.20) is true forn = 1.
Suppose that (1.20) is true when n = k, where k is any arbitrary integer greater or equal to

1; we will show it also holds whenn=k + 1.

FruLis = Feoly = Fy (Lk +L, ) -L, (Ec + Fk+1)
=Fa L +FuL - LF, -LF,
= _(FkLk - Fk+lLk-1)
=—(-1)" by the inductive hypothesis

= (_1)k+1 .

Therefore, by mathematical induction, (1.20) is true for every positive integer n.

16



Theorem 1.3.5 LetL, be a Lucas number. Then

(1.21) i

Proof: We prove theorem 1.3.5 using (1.19) and (1.20).

Observe that
)" Y
Ln—an Ln—lL
FL -F_ L,
—nn__mirl by (120
L1 y (1.20)

- F F o+l
Ln-l Ln .

Consider the finite sum §, =

(s

I
= _Z(ak —aa )’ where a, = L_k, an =

(al Ay by (1.11)

F; n+1
LO

=- 1 fﬁsmceL—ZandF—l
2 L

n

By using the identityL,,, = F,

n+l

F,,, (see Hoggatt [12], page 56, (Is)) we obtain

Fn+1

S - _ Fn+1 _L_*_ Fn—l
2 F _ +F 2, Fun

Fn—l



E

n+l

So, lim S, -1 +|im| —&=2—
noe n—o Fn+1
[+
n-1
.. E., o . 1 o
Since lim - = a* by (1.19), it implies that limS§, =——+ =
n— ne 2 l+a

n-1

l+2\/§ leads tolim S, = % .

n—

Substituting a =

The following lemma is needed for the next theorem.

Lemma 1.3.3 If F, be a Fibonacci number, then

(1.22) F_F,.,-FF,,=2(-1)n>1

Proof: This lemma can be easily proved by mathematical induction on n.

Theorem 1.3.6 Let F, be a Fibonacci number. Then

= (-1)" 6a-9 145
123 = s h = .
(1.23) Zl: FE. I ere a -

Proof: Observe that

(_1)n+1 - (_l)n

EIF;1+3 F;:Fn+3
= _l Fn—an+3 _F;1Ev+2 by (1 22)
2 FnEHS ‘

18



k+1
Consider the finite sum S, Z FIZ and follow the observation above,
k=1 k+3

(al +a, +a3) (an+1 +a,.,+a,; )] by (1.13)

1

2

1[(0 1 1 F F, Fu
= 5 Y1t +

1

o 1 1 n+1 F;|+2 F;|+3
__l 1
2 n+3
n+2
-1 3 [l+l+l by (1.19) fork = 1
22 \a a «a
__I i_i}
212 «a
—6_
4
63 1++5
————L since oz—M
(1+\/§j 2
4
2
_3J5-6
4
6(1+\/§j_9
_ 2
- 4
_6a-9
4

19



Theorem 1.3.7 Let F, be a Fibonacci number. Then

© lnl
(1.24) Z( ) =-é—.

n=l F;n 11:2n+3

Proof: Observethat 3F, ., =F,. . +F,. +F,,

F;n+1 +F‘2n+1 +(F2n +F2n—])
e —
Fone2
}72)1+1 +F‘2n+2 +F2n 1
Fyps3
F;"+3 + F 2n-1-
n-1 n-1
-1 -1y F
Therefore, (=) = ()" Fon
an—1F2n+3 F‘Zn—lF2n+lF‘2n+3

l (_1)n—1 (F2n+3 +F2n-1)
FE _F, .F

2n-17 2n417 2n+3

3
= ()" [ I ]
3 F2n—1F F ‘F2n+3

n+1 2n+l

n ( l)kl

k=l F;l: IF k+3

Consider the finite sum §, = with the result above. Then we have

k-1
R (-1) { ] 1 }
L=
k=] 3 Ek—lﬂkﬂ F;k+]F2k+3
1 1 1 1 1 1 1 _ 1 1
3|\RF BF BRE ER R FE BuaFannt FannFones

n-l 1 :l
F2n+]F2n+3

|

: _
e " 3FF,

20



Lemma 1.3.4 If F, and L, be Fibonacci and Lucas numbers, then

L
(1.25) lim = V5

Proof: Use the identity L, = F, | + F,, (see Hoggatt [12], page 56, (Is)) we have

lim Ze. = fim | Lt Fon
n—w Fn n—w F

=l+a by (1.19)fork =1
a

=-f+a since aff =-1

=5

Theorem 1.3.8 Let F, and L, be the Fibonacci and Lucas numbers. Then

- (_I)H Foz _ 8
1.26 ~ 7 o -
(126) ~ I’I* 45

n'n+l

Proof We will use the identities (Ig) with k =2, (=1)"" = %(Fnl,,”2 - F,,,L,)and (I5)

withm=2n+2, L F,_, +L .F =2F, . (see Hoggatt [12], page 59) to yield the

following result:

11
(—1)”_1 F;n+2 _ (_1) : : E(Lnsz +Ln+2Fn)

L, - LL,, vy ety ()
1 1
E(F;!Ln+2 - Fn+2Ln) ) E(L"F;”'Z + L"+2F" ) b d . (I )
_ y idientiy (I,
ZL., 8
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= (-1) 7 F,
Consider the finite sum S, = Z( ) Fu .

k=1 LiLin
S ) l n (5_}2 ) (FIHQ )2
" 445 L, L.,

1 n F2 F2
4 = (ak ak+2), whnere ak Li 4 ak+2 Li+2
1

=2 [@+a)-(a..+a,.,)] by(112)

Ll LZ Ln+1 Ln+2
Taking the limit both sides of the equation as » — o, we obtain

limS§, -1 l+l—l—l -8 where we used (1.25).
ne 4 9 5 5] 45

Theorem 1.3.9 Let F, and L, be the Fibonacci and Lucas numbers. Then

(1.27) igi)—_iﬂ.

n+2

Proof: Using the identity L ,, = F,,, + F, (see Hoggatt [12], page 56, (Is)), we get

(—].)n_1 Ln+1 - (_]»)"_1 (EH-Z +Fn) = (_l)n—l 1 + 1
EtFn+1Fn+2 FnFnHF;H-Z FnFn+1 F;1+1Fn+2 .
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3

k-1
L i,
Thus, S, = Z ) o= (—1)“{ 1 }
FI:I:+1E:+2 k=1 F;eFkH F;:+1F;c+2

=1.

Sn is a finite telescoping sum; so, S, = - (—1)"_1

and lim§, =
FE,

Fn+lF;r+2 e EF2

Theorem 1.3.10 Let F, and L, be the Fibonacci and Lucas numbers. Then

© nlL .
(1.28 ZFF)L FRIL."

n+ln+1*n+2

1
3

Proof: The following equation (1.29) is easy to prove using mathematical induction on n.

So, we omit the proof and use (1.29) in proving theorem 1.3.10.

(1.29) F,

n+l

Ln+2 +F Ln+1 = L2n+2 .

We have (—1)H Lyea _( )H (FML,HZ +F L
FE.L.L EF.L.L

n+1=n+1n+2 n+1=n+1=n+2

n- 1 1
= (-1 .
( ) {FnLnH * F Ln+2 j]

) by (1.29)

k- 1
Let S be the finite sum Z D Lo , then
k=1 FFk+1Lk+lLk+2

Sn - (_l)k—l I: 1 + 1 :|
k=1 FkLk+1 Fk+1Lk+2

1

n-1 . . ' .
= (-1) since S_ is a telescoping series.
ELZ Fn+1Ln+2
Hence, limS§, = L.l :
n—»o EL2 3
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In conclusion, this section sketches some ideas about the applications of the telescoping
method to evaluate some series involving the reciprocals of the Fibonacci and Lucas
numbers. More identities that were evaluated by using the telescoping method can be

found in Brother Alfred Brousseau [5].

1.4  Recursive Relations of Special Series
In this section, we will investigate recursive relations of some series involving reciprocals

of the Fibonacci numbers having the types,

2 1 .
1.30 , Where k,,k,,...,k are positive integers.
(20 LFF Frp o Frue M P 8

n= n+k

1.4.1 Definition of series of k™ degree:

If the series (1.30) has k Fibonacci numbers in its denominator, then it is called a “series
of the k" degree.”

1.4.2 Convergence of series of Fibonacci reciprocals

We start by showing the series !

n=1 n

is convergent. This will help us to conclude that

all series having the form of (1.30) are convergent since their terms are less than or equal

to the terms of the series Z 1 . By the Binet form (1.3), we have

n=1 n
1
. F . F 1
lim = = |lim — = — by (1.19
n—)wL "—)anH a Y( )
Fn
2 . 1++/5
= <1since o = .
1+5 2
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. . o= 1
Therefore, by the ratio test theorem, the series Z is absolutely convergent.

n=1 n

1.4.3 The recursive relation of the second degree series:

This section is the original work of the author. We will define a recursion to evaluate the

second degree series of Fibonacci reciprocals of the form:

= 1
131
(1.31) Z:‘FF

n* nt+k
In order to do that, we need to prove the following lemmas and theorems.

Lemma 1.4.1 For any positive integers n and k,

(1.32) F,. =FF

n+l

+F Ry

Proof: We prove (1.32) by using strong mathematical induction on n where k is fixed.

When n = 1, it is easy to see that

F+k = E+k

n

=F +F,
=(1)F, +(1)F,,
=FF,+F_F since F, =1, F =1

Hence, F

n

w =,

n+l

+F,_F, is true for n =1.

Suppose that F,,,

=F.F

n+l

+F,_F, is true for all integer n < p, where p is an arbitrary

integer. We will show that the above equation still holds atn=p + 1.

We have
Foou =F,., +F,,,, by definition
=(EF,., +F,_F,)+(F,F, +F,_F,,) byinductive hypothesis
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=Fk(F

p+l

+Fp)+F,,_1 (FP +Fp_1)

=F,F

p+2

+F, F

p+le

Therefore, by strong mathematical induction, F,

n+k

=F,F

n+l

+F,_F, is true for all positive

integer n. Similar induction on k will yield the result.

Lemma 1.4.2 For any positive integers n and k,

(1.33) F_F. -FF, . =(-1)F]|

n n* n+k-1

Again, we will prove (1.33) by using mathematical induction on n.
When n = 1, it is easy to see that

F o F. . —FF. = FF,, - EF, =0-F,,-1F = -F,.

Hence, F, F,,, ~F,F,.,, =(-1)"F, istruewhenn= 1.

n-1" n

Now, suppose that n > 1 be an integer such that F,_F,

vk —F P = (—1)" F,. We will
show that the equation also holds for n + 1.

FnFn+l+k_Fn+1Fn+k=Fn(F +F+k-1)-Fn+k(F;|+F;:—l)

n+k n
= FnFn+k +FnFn+k—1 _Enka _F;1—1Fn+k
=- (Fn—an+k —FnFn+k—1)
= —(-1)" F, by inductive hypothesis
- (_1)n+1 F;C .
Therefore, by mathematical induction, F,_F,., - F,F,.,, =(-1)" F,is true for all

positive integer n. Similar induction on k will yield the result.

26



Lemma 1.4.3: Let F, be a Fibonacci number. Then

= 1
134 =1
(134) EFF

Proof By replacing nin (1.6) by n+ 1, we will obtain (1.34)

Theorem 1.4.1: Let F,, be a Fibonacci number. Then for any positive integers n
and k,
s E E k[ & 1
1.35 L~ ki2 =(-1 -11|
( ) Z[F F;x+k Fn Fn+k+2 ) ( ) [ZF Fm+2 j

Proof Replacing k by (k+2) in (1.32), we have F,,., =F, ,F,, + F...F,. Thenthe

n+l

summand is given by

F, __F. _KF

n+k+2
F F;x+k F Fn+k+2 FF F

n+k® n+k+2

F (Ee+2Fn+1 +Fk+1F ) k+2 (F n+1 + Fk-II:n)
EF.F

n+k® n+k+2
- FFk+1F _Fk+2 F;:—IF;I
EFE_F

n+k* n+k+2
- _F (Fl:+2Fk 1 _Flka)
E F..F

n+k® ntk+2
"(Fk+2 Fk 1 _Eka)
F_F

n+k* n+k+2

F;c+2F

n+k

(‘1)k+1 .
=— 2 by(1.33)withk=2.

Therefore, we can write Z F __fo = ( "*‘ S 1
E F F F ~ F..F,

n+k n+k+2 n +Kk+2

On the other hand, we also have
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wherem=n+k

n=l + nekt nek+2 m=k+1 Fm m+2 ,
S t—-Y
m=1 Fm Fm+2 m=1 Fm Fm+2
k
=1-> since Z =1 by (1.34).
m=112n m+2 —1 mL me2
© k
It implies that > Bt )™ 1- > !
n=1 Fn ‘F;n+k F;z Fn+k+2 m=] F"' F"”z

_( l)k X 1
m=1 Fm Fm+2

Now, we use theorem 1.4.1 to define a recursive relation for the series Z k=1

n=l < p L ek

If k is even, say k = 2r, where r is an integer and r 2 1, then the series becomes

- 1
Z“FF

n=l £ n 4 ne2r

Let us define T, = > ,r21,then T, = ) L by (1.34) and
n=l £'n L pt2r n=l £'n & n+2
S
w1 FF

n+2r+2

2r
We also define A, =0 and A, = Z

m=14'm £ m+2

withr > 1. Then, it is easy to see that

(1.36) A=4_+ ! + ! , wherer > 1.

r r-1
FZr—l F F;r F2r+2

2r+l1

With the above definitions, using equation (1.35) with k = 2r, we get
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F, L -Fy T, =(—l)2r(Ar—1),or BT -Fpaglha=4

r+1) r+l r+1) 7 r+l

Solving the above equation for T,;, we obtain

TM=( Py ]Tr+ ! (1-4,),rz1,
E F,

2(r+1) 2{r+l)
(1.37) T =1 4,=0,
1 1
+ .
I:Zr—l F;r+1 ‘F2r JF‘2r+2

A =4+

Next, we will evaluate some terms of T;.
Forr=1, we have

1 1

A4 =4+ + =—, and
""" "RE EE 6
F,
Tzszi@_z):l.
F, E\ 6) 18
It means that
=1 7
1.38 T, = =—
(1389 T
For r =2, we have
A, =4+ ! + 1 =§+ 1 +L=£,and
FEF, FF, 6 2x5 3x8 40
F,
T,=| = T2+i(1_‘42)=3x.z_+l(1_3_9_j=£.
F, F, 8 18 8\ 40, 960
This implies that
- 1 143
1.39 T, = =—
N R Y
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For r =3, it follows that

1 39 1 1 272
—+ + , and
EEFE FF T 40 5x13 8x21 273

F,
1= 5lg, (1 4)-= 8 43 1 (1 272) 4351
r)'F 217960 21\ 273) 76440

Hence,

4= 4+

I | 4351
1.40 T, = = .
(1.40) 4 ;FF 76440

n* nt8

In general, we can recursively calculate exactly the value of any series of the form

- 1
ZF

m=l £ n L ny2r

, wherer > 1.

Ifkis odd, say k = 2r — 1, where 1 is an integer and r > 1, then the series becomes

i 1
n=1 Fn Fn+2r-l
Let us define P, = i;, then P; = i ! ,and Py = i———l———
n=1 Ez Fn+2r-] n=1 F;x Fn+1 F Fn+2r+1
2r-1 l 1
WealsodefmeBr=z withr > 1, then B, = ——==.

~F F FF 2

It is easy to see that

(1.41) B, =B +— 41

r+l r '
F2r }72r+2 }:2”1 Er+3

With the above definitions, using equation (1.35), we get

F, P -F,. b, = ( 1)2'_1 (B ) or F,, \B-F,F, = _(Br - l) :

2r+1% r+l
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Solving this equation for Py4; yields

1.42 , B =
( ) z F Fn+l
B, =B+ ! + L
F;r F;r+2 F;r+l F2r+3

Pr+1= h Pr+ : ( ,—1),7‘21,
F2r+l F;r+1

Now, we will calculate some particular values of P, using (1.42).

Forr=1, we have P, = %

3

It means that

= 1
1.43 P, =
(1.43) =L

n < n+3

Forr=2, we have

1 1 1 1 14
+ —t —

B, =B + l+ =
EF, FEF, 2 1x3 2x5 15’

F,
A== pz+L(Bz_1)=Z(lpl_lj+l(.lﬁ_
F E 502 4/ 5\15

Therefore,

= 1 1& 1 17
1.44 P, = = .
(1.49) ? Z;F F.. S”ZF,,F 150

n

n+l

Forr =3, it follows that

1 1 14 1 1 103
+ —+ +

B, =B+

F,F, F,F, 15 3x8 5x13 104
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Pl +E(Bl —1) = EPI +?(

, and

?

1

2

1

1)-

5

and

e

17
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F, 79
P== P3+L(B3—1)=i(lPl _-1_7_j+l(1_0_§_1j=_1.pl_2__
E, F, 135 150/ 13104 13 20250

Which gives

(1.45) =3 1 .1 L 2P
n=l F;a Fn+7 13 n=l F;l F;|+1 20280
In general, recursively, we can find the relationship between the series Z}:——F—l—,

n=l L pd py2ra)

where r > 1 and the seriesz . The sum of the series Z

n=l £ 4 opy] n=l £'n 4 pel

can be found

using Lambert series which will be discussed in chapter 3.

1.4.4 Alternating series of the second degree:

© _1 n
The alternating series of a second degree has the form Z—(—L

n=l £'n £ n+k

Theorem 1.4.2: Let F,, be a Fibonacci number. Then for any positive integer k,

(1.46) i ) = —I—(iﬂ—gj, where @ = 1+2\/§ .

F;: m=1Fm

Proof: By using equation (1.33), we have

(_1)” Fk - Fn-an+k _FnFn+k—1
F n F;n+k F;‘ka
_F ﬂu
Fn Fn+k
, . ~ (-1)"F, .
Now, we consider the finite sum §, = Z—- Then, it follows that
m=1 4 m & mik
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m m+k
=iFm—1 _ iFrm‘k-l
m=1 Fm m=] Fm+k
= 5+...+£+i+...+F”‘
3 F,  F. F,
- F"+...+F"1 i ...+F"*"‘1
F;H-l Fn Fn+1 Er+k
=(£+...+£J—[ F"*"‘J since the the last block of the first
E 'F;; n+1 F;H'k

parentheses cancel with the first block of the second parentheses.

By (1.19), we have lim £, —lmF"” = .. = llmF"*’” = -l—
o n+l wF e F a

n+k

Thus, llmS =lim 5 +...+£ - £L+.‘_+Fn+k—l

n+l n+k

I
:—l
éa
‘rj;’
g/
9|.—
+
R|~

k times
_ iFm -1 1‘_
m=1 Fm (44
c(V'F _(&F = () _1[&EL K
Hence, = i = | NIt _ 2
; n+k [; Fm j ; nFn+k FL{E Fm a]
1.4.5 Series of the third degree:
Series of the third degree have the form 2—-1— where a and b are positive

n=1 £ n 4 pea £ n+d

33



integers. In this section, we just evaluate some special cases of series of the third degree.

Theorem 1.4.3: Let F, be a Fibonacci number, then
= 1 1
1.47 —_—
(147 ; FF,F., 4

Proof: Observe that

l _ 2F;r+1
Fn Er+2 Et+3 2‘F;1 Fn+1F;1+2 Fn+3
= EH.S _F; Since ZF;H»] = n+3 _Fn
Z'Fn Fn+1Fn+2 Fn+3
_1 1 _ 1
2 F;u Fn+1Fn+2 Fn+1Fn+2 Fn+3 .
Let S, be a finite sum given by S, = Z—l————- . Then, we have
k=1 F;e F}c+2 F;c+3
¢ 13 ( 1 j
" 2 k=1 F;r Fk+1Fk+2 F;:+1F;c+2 Fk+3
1 & 1
=— a —a, ), whereq = ————
2 k=1 ( ¢ e ) ¢ Fk Fk+l‘F;.'+2
1
=5 (4 -a,,) by (1.11)
B l 1 1
2\KEEF  F.F,F.,)
C e . . 1 1 1
Taking limit of S, as » — o, it follows that limS, = — = =,
n—so 2 EFZF‘S 4
Theorem 1.4.4: Let F, be a Fibonacci number, then
2 1 7 1 1
1.48 e e N
( ) ;E’F'HZ 'Fn+4 18 32:‘]:"1 F"+1 n+2

34



Proof From (1.32), weobtain F, =F,F,, +F,F, and F, , =F,F, , + F,}F,. Then,

n+3 n+l n+4 n+l

F_____F _FEFR.-EF,
Fn F;H»Z F;l+3 F;: Fn+2 Fn+4 F Fn+2 Fn+3Fn+4
_F(FFu +EF,)~F (B + BR)
F Fn+2 Fn+3Fn+4
(B -FEE)F,
 F,Fpy FriFo
-1 since F, =1, F;, =2, and F, =3.
F.,F,..E

n+2 * n+3° n+4

F, = F g
“F F,F EFFF_Z;F

nt2 4 n+3 ne nt2 £ n+d n+2 * n+3* n+4

Hence, we have Z

On the other hand, we also have

-] 1 -]
257 FF ksz

where k =n+2

n=l £ pe2 £ i3l pea 3 F, k+1F k+2,
=i 11
= FF "FEEF, FFF,
ad 1 1
Dy

©

It implies that Z

© 1
FF F ZFF F _,,Z:,:FFF 3

n+2 £ n43 n+2 * n+4

Using (1.47) and solving the above equation for Z—ﬁ we get (1.48).

n+2 < n+éd

In general, by applying (1.32), we will get appropriate coefficients like F3 and F4 in the

proof of theorem 1.4.4 above. Then by using similar steps in the proof above, we can

obtain the following result
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2 1 & 1
1.49 —————— =c¢c +d ) ———— | wherea, b, ¢, and d are
( ) EF‘nFm.aF;H-b Z:‘FnF;wlsz’

positive integers.
More information about a, b, ¢, and d can be found in Brousseau [6].
The approach in this section has a limitation. It cannot evaluate directly to the final result

as a formula. It requires going through recursive steps until the final result.

1.5  Evaluation of Series Using Programming

1.5.1 Finite sum of the reciprocals of Fibonacci numbers:

o1
Here is the program written in Java to evaluate Z— for any positive integer k.

=l L'y
import java.text.*;
import java.math.*;
import java.io.*;
public class Fibonacci
{public static void main(String[] args) throws IOException
{int n;
char option ='y',
BigDecimal al = new BigDecimal(0);
BigDecimal bl = new BigDecimal(0),
BigDecimal sum = new BigDecimal(2);
BigDecimal f1 = new BigDecimal(1);

BigDecimal f2 = new BigDecimal(1),
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BigDecimal fn = new BigDecimal(0),
BufferedReader console = new BufferedReader(new InputStreamReader(System.in));
System.out. printin("\n\tW\SUMMATION OF 1/Fn OF FIBONACCI NUMBER"),
do {fl = new BigDecimal(1),
2 = new BigDecimal(1),
fn = new BigDecimal(0);
al = new BigDecimal(0);
bl = new BigDecimal(0),
n=0;
sum = new BigDecimal(2);
System.out.print("Please enter value n="),
n = Integer.parselnt(console.readLine());
if (n>=0)
{for (int i=0; i <= (n - 3); i++)
{fn = fl.add(f2);
String flcopy = f1+ ""; //converts to a string
2 = new BigDecimal(flcopy); // string is used to make a new BigDecimal
String f2copy = fn +"";
f1 = new BigDecimal(f2copy),
al = new BigDecimal(1);
String fncopy = fn + "";

b1 = new BigDecimal(fncopy);
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BigDecimal c1 = al.divide(bl, 100, BigDecimal ROUND_HALF_UP),
sum = sum.add(cl);}
System.out.println("\nFn=" + b1);
System.out. println("Summation of 1/Fn ="+ sum + "\n");}
System.out.print("Would you like to continue? (y or n)>");
option = (console.readLine()).charAt(0);
if (option !="y' && option !='n")
System.out.println("I assume you would like to continue"); }
while (option !='n");}
}
Running this program for certain positive integers, we get the following results accurately

to one hundred decimal places:

100
Z-}-:l— = 3.3598856662431775531674434867505621095621676787364058686707
n=1 n

192181825234206490359672834053588433647339,

2001

— = 3.3598856662431775531720113029189271796888993668031301019180

n=1 n

419369233944833935522398279141710598758965,

400
ZFL = 3.3598856662431775531720113029189271796889051337319684864955
n=1 n

538153251303189966833836062240783148035250,
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1000
1- 3.3598856662431775531720113029189271796889051337319684864955

n=1 n

538153251303189966833836154162164567900884.

1.5.2 Finite sum of the reciprocals of Lucas numbers:

1
Here is the program written in Java to evaluate Z—— for any positive integer k.

n=1 Loy
import java.text.*;
import java.math.*;
import java.io.*,
public class LucasSieries
{ public static void main(String[] args) throws IOException
{int n,
char option ='y';
BigDecimal al = new BigDecimal(0);
BigDecimal bl = new BigDecimal(0);
BigDecimal c1 = new BigDecimal(0);
BigDecimal sum = new BigDecimal(1);
BigDecimal L1 = new BigDecimal(1);
BigDecimal L2 = new BigDecimal(3);
BigDecimal Ln = new BigDecimal(0);
BufferedReader console = new BufferedReader(new InputStreamReader(System.in));
System.out. println("\n\ttSUMMATION OF 1/Ln OF FIBONACCI NUMBER"),

do
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{L1 = new BigDecimal(1),
L2 = new BigDecimal(3),
Ln = new BigDecimal(0),
al = new BigDecimal(0);
bl = new BigDecimal(0);
sum = new BigDecimal(1);
n=0;
al = new BigDecimal(1);
bl = new BigDecimal(3);
cl = al.divide(bl, 100, BigDecimal ROUND_HALF_UP);
sum = sum.add(cl),
System.out.print("Please enter value n="),
n = Integer.parselnt(console.readLine());
if(n>=0)
{for (inti=0;i<=(n-3); it++)
{Ln=L1.add(L2),
String L1copy = L2+ ""; //converts to a string
L1 = new BigDecimal(L1copy), // string makes a new BigDecimal
String L2copy =Ln +"",
L2 = new BigDecimal(IL.2copy);
al = new BigDecimai(1);,

String Lncopy =Ln + "";
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bl = new BigDecimal(Lncopy);
cl =al.divide(bl, 100, BigDecimal ROUND _HALF_UP);
sum = sum.add(cl);}
System.out.println("\nLn=" + b1);
System.out.printin("Summation of 1/Ln =" + sum + "\n"); }
System.out.print("Would you like to continue? (y or n):");
option = (console.readLine()).charAt(0);
if (option !="y' && option !="n")
System.out.println("I assume you would like to continue"); }
while (option |="'n");}
}
Running this program for certain positive integers, we get the following results accurately

to one hundred decimal places:
100 1

ZL— = 1.9628581732096457828667523391829461424072336075787360176029

n=1 n

014101099364863498492916688258569922800475,

400
Z Li =1.9628581732096457828687951286751835266495930171622194211307

n=1 n

152404170616075464603779749310499352245825,

1000

ZLL = 1.9628581732096457828687951286751835266495930171622194211307
n=1 &y

152404170616075464603779790418990840346964.
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CHAPTER II

ELLIPTIC FUNCTIONS AND APPLICATIONS

2.1 Theory of Elliptic Functions

2.1.1 Definitions Let z=u + iv be a complex variable.

Definition 1. An analytic function f(z)is doubly-periodic with periods w; and w,

(w,and w, are complex and independent) if

2.1) f(z+w)=1(z), f(z+w,)=f(z)|for all z in the domain of f(z).

The existence of doubly-periodic analytic functions was established in 1827 by N.H.

Abel and C.G.J. Jacobi (1804 - 1851), independent of each other.

Definition 2  An analytic function f(z)is said to e elliptic if

(i) f(z) is doubly-periodic,

2.2
@2) (1) f(z) is analytic in the finite plane except for poles.

An explicit example of an elliptic function is
76)= 3| 5 e-m-m)” |

This function has the periods w,= 1 and w,=1, and the poles z =m + ni.

The periods of a doubly periodic function f(z) are

(2.3) mw, + nw,| wherem, n=0, +1, £2 ...

These periods form a “mesh” in the z-plane and determine a set of congruent

parallelograms, known as periodic parallelograms (Figure 1).
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The range of any doubly-periodic function coincides with the set of values which it

assumes in a period parallelogram.

Definition 3  The order of an elliptic function is the sum of the orders of the poles of the
elliptic function in the period parallelogram.

More information about doubly-periodic functions can be found in Einar Hille [11].

2.1.2 Introduction of Jacobi’s elliptic functions (sn z. cn z. and dn z)

Consider the following integral:

dat

T I° \/(1—t2)(1—k2t2)

(2.4) , where 0 <k <1 and y is a complex variable.

This integral defines z as a function of k and y where k is called the modulus of the

integral. Conversely, y may be considered as a function of z defined by (2.4) except at its
singularities; we use a new symbol for this function and write y = sn (z,k), or simply
(2.5) when it is not necessary to emphasize the modulus k.

sn z is called an elliptic function.

In addition, Jacobi [14] defined two more elliptic functions as follows:
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(2.6) cnz =+v1-sn’z| and
(2.7) dnz =~\1-k'sn’z)

2.1.3 Simple properties of snz, cnz anddn z

If we set y = 0 in (2.4), then z = 0. Hence, from (2.5), it follows that sn 0 = 0.

Substitute s» 0 = 0 into (2.6) and (2.7), we obtain the properties,

(2.8) lsn0 =0, cn0 =1, dn0 =1|

If we replace t by — tin (2.4), we will get z = , Or

e dt
Ve

J-—y dt

° \/(1—t2)(1 -kr)

Then, by definition of s» z, it implies that sn (-z) = -y.

Since, y = sn z by (2.5), it follows that sn z= - sn (-z). Thus, s» z is an odd function.
Since sn z= - sn (-z), it implies that sn* z= sn* (-z). Therefore, it is easy to see that
cn z, and dn z are even functions by (2.6) and (2.7).

Thus, we have the properties

2.9) sn(-z) =-snz, cn(-z) =cnz, and dn(-z) =dnz|

Now, differentiating both sides of (2.4) with respect to y, we get

)

=VJ1-sn*z1-k*sn’z, sincey = snz
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=cnz-dnz by (2.6)and (2.7).

Hence, we have

d(snz)

(2.10) =cnz-dnz |

Next, we differentiate both sides of (2.6) with respect to z.

\ll—snzz)

d
l E(-SHZZ)
2 1-snz

_~snz-cnz-dnz

d(cnz) d
dz  dz

—

by (2.10)
J1-sn*z
_"Snz-cnz- dnz by (2.6)
chz
=-snz-dnz.

Thus, we have shown another property,

d(cnz)

=-snz-dnz|
dz

(2.11)

Similarly, differentiating both side of (2.7) with respect to z, we get the next property,

d(dn
(2.12) (dnz) =-k’snz-cnz|
dz
If we define K = Jq at , then using (2.5), (2.6), and (2.7), we obtain
° \/(l-tz)(l—kztz)
(2.13) snK =1, cnK =0, and dnK =+1-k*|

The following addition properties are well-known (see Woods [16], p. 372).
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(2.14)

snz, ¢cnz, dnz, + snz, cnz, dnz,
sn(z, +2,) = —— ,
1-k*sn°z sn’z,
cnz, cnz, —snz, snz, dnz dnz
en(z +2,) =———2———2—1—2 and
1-k'sn°z snz,
2
dn(z, +12,) _dnz, dnz, -k’ snz snz, cnz cnz,
Vi) T 2,2 2 -
1-k*sn°z sn°z,

2.1.4 Periods of Jacobi’s elliptic functions

Lett =sin o in (2.4), then it becomes

(2.15)

, where @, =sin™ y and 0 <|y|< 1.

;= J‘al da
° \/(1 —k*sin? a)

The angle ¢, is called the amplitude of z, written as ;= am z. Then,

(2.16)

sine, =sin(amz)=snz,

cosa, = cos(amz)=cnz,

J1-K*sin’q, = \/1 -k*sin’(amz) =dnz.

We now study the effect on z in (2.15) by adding n to «,.

Ia1+ﬂ'
0

J1-k*sina o Ji-ksin*a

y 2 da . J-Irm, do

4 1-k*sin’

:21%_d_a_+f”+“l___cw_
® N1-k*sina T ql-k*sin’ea

about x equals %

=ZI% da +J“11 dﬁ
® J1-k*sinfa ° J1-k*sin’ B

+2 by (2.15).

O J1-k%sinla
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If we putt=sinain K = I; \/( at , then
1

-£)(1-#77)

T
2.17) K= J' ;__da |

* V1-k*sin*a
Hence, it follows that z+2Kk=[""

da
° Ji-Ksinfa
Thus, using (2.16) we obtain
sn(z+2K) =sin(e, +7)=-sing, = -snz,

en(z+2K) = cos(a, +7)=-cosa, =—cnz,

dn(z+2K)=\/l—sin2 (¢, +7) =1-sin’ @, =dnz.

Replacing z by z + 2K into these equations above, we have

sn(z+4K)=-sn(z+2K)=snz,

(2.18) en(z+4K)=-cn(z+2K)=cnz, and

dn(z+4K)=dn(z+2K)=dnz

Thus we have proved that the elliptic functions sn z and cn z are periodic with period 4K,
and dn z is periodic with period 2K.

Now, we define X' by the formula

where k' =1-k% |

(2.19)

K’:_[%___‘i‘?___z.[‘__dg—
* J1-k'"*sin*a °,/(l—s2)(l—k'2s2)

k is the modulus of integral, and &’ is the complement modulus of integral.

Ifwelett= —l—“, then we have the following results:
1-k"s
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dt ks

ds (1 —k'zsz)\/l _kst

’?2 _ 122
=——k—k— since k> +k* =1

,1 _ kl2s2
kE'\N1-s°
/l-—k'zsz ’

ik's : i
and 1-#* = —————= (we ignore the positive answer).

Therefore, we have

k"sds
dr ) (l—k'zsz) /l_krzsz ) ids
D=2 i ( -ik's J[ K- ] (1-5?)(1-#75")

\/l_k12s2 \/l—k'zsz

t=1whens=0

Since t = ——-1——, it follows that 1 1
=—,whens=1.

4 = —_
1-k"s? ik K

Therefore, we have J.’l: dt = _[] ds .
o J1=5)(1-k75)

)

Since the integral on the right side is equal to iK'by (2.19), it implies that

1
(2.20) K'=-ift a

‘ \/(1—t2)(1—k212) ‘

From (2.17), (2.19), and (2.20), we have




dt

(1-#F) -k Ja-2)(1-#) '

K+iK,=I°\f(l~t)1 = +J'1\/

Hence, it follows that

sn(K +iK") % by (2.5),

(2.21) n(K +iK') = —5-2— by (2.6), and

dn(K +iK') = 0 by (2.7).

For the negative sign of cn(K +iK"), see Woods [16], pages 337 — 339

Using the results of (2.21) and (2.14), we obtain

sn(z+K +iK') = kdnz ,
cnz

en(z+K +iK') =_ki ,
cnz

dn(z+K +iK'") = i snz
cnz

and

(2.22)

Let us derive the first identity of (2.22); the other two will be derived in a similar way

From (2.14), we have
snz cn(K +iK') dn(K +iK')+ sn(K +iK")enz dnz

sn(z +K+iK') = 1-k*sn’zsn® (K +iK')

O+lcnz danz

1~ ksnz( j
k?

_cnzdnz
- k(l—snzz)

by(2.21)

z .
= since cn’z =1-sn’z.
kenz
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Again, we can use (2.22) and (2.14) to yield

-K’ -
sn(z +iK") P
idnz
K")=-
(2.23) en(z+iK') ksnz,and
dn(z +iK’) = -2
snz

We derive the first identity of (2.23); the other two will be derived similarly.

Since z+iK'=(z+K +iK')+(-K), using (2.14), we have

sn(z+iK') =sn[(z+K +iK')+(-K)]
_sn(z+K +iK") en(=K) dn(-K) + sn(-K) en(z+K +iK') dn(z+K +iK’)
1-k*sn* (z+ K +iK")sn’ (-K) '
We also have cn(-K)=cnK =0 and sn(-K)=-snK = -1, by using (2.9) and (2.13).

Then, using (2.22), we get

—ik’ \( —ik'snz
0+(-1
( )(kcnz)( cnz j_ ksnz

l-kZL_dﬂJ(_l)z k(dn*z—cnz)

kcn’ z

sn(z+iK') =

Since cn’z =1-sn*z from (2.6) and dn*z = 1-k*sn’z from (2.7), it follows that
dn*z—cn*z = snw’z—k*sn’z

= (1 -k ) sn’z

=k'"sn’z.

k"snz 1

Hence, sn(z+iK')= ——= .
kxk“sn‘z ksnz

If we replace z by z +iK'into (2.23), we get
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sn(z +2iK")=snz,
(2.24) cn(z+2iK') = —cnz, and
dn(z +2iK') =—dnz.

We verify the first identity.
If we replace z by z +iK'into (2.23), we get

1 1
ksn(z +iK,) by(-z-_23)k 1

ksnz

sn(z+2K")= =snz.

Similarly, if we replace z by z+2iK" into (2.24), we obtain

sn(z+4iK') = snz,
(2.25) en(z+4iK')=cnz, and
dn(z+4iK')=dnz.

From (2.18), (2.24), and (2.25) we can conclude that:

The elliptic functions sn z, cn z, and dn z are doubly periodic functions: the function sn z
has the periods 4K and 2iK', the function cn z has the periods 4K and 4iK’, and the
Junction dn z has the periods 2K and 4iK'.

2.1.5 Maclaurin’s series expansion

Let f(z)=sn z, then the Maclaurin’s series of the function f(z) at 0 is given by

F(2)=r(0)+ f’l(!O) z+ f;(!o) 2+ f’;(!O) z* +...

Let’s recall (2.8), (2.10), (2.11), and (2.12) as the following:

sn0 =0, cn0 =1, dn0 =1, (snz)' =cnz-dnz ,
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('cnz)' =-snz-dnz,and (dnz)' =—k’snz-cnz.

Hence,

f(z)=snzimplies f(0)=sn0=0,

f'(z)= (snz)' =cnz-dnz implies f'(0)=cn0-dn0=1, and
f"(z)=-snz-dn*z - k’snz-cn’ z implies f"(0)=0.

All the even derivatives contain sn z as a factor, therefore,
77(0)= 1 (0)= /9(0)= /(0) =... = 0.

Thus, the Maclaurin’s series for sn z can be written as

2\ 2 2 4\ 2
(2.26) sz =z= (148 ) 2+ (14148 4 k") ..

Similarly, we also get the Maclaurin’s series for cn z and dn z as

z* z* z°
(2.27) cnz=1-"=+(1+4k*) == - (1+44K" +16k* ) = +...|
2 41 61
2 4 6
(2.28) dnz=1-k 4k (4+8) = - B (16 + 44k* +£*) = +.. |
21 41 6!

2.2 Fourier Series of Jacobi Elliptic Functions
In this section, z is a complex variable. Our objective is to sketch the proof of the

following theorem
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mz = 2244 z(

(2.29) -

where g = e X and

qg-e

Jeleg]

Y74

K

Since the proof is long and very difficult, we will not go over all the details. For a

complete proof, one can see Hancock [10], pages 99 — 261. The reason that we introduce

this proof is the Fourier expansion will be used heavily later. Also, the details here will

enhance the understanding of the Jacobi elliptic functions.

First, we define the function #(z) and the constant q as follows

inz

(2.30)

#(z)=1+eX Jandg=e ¥ |

7K'’

We use this definition to prove the following lemma.

Lemma22.1

(2.31)

¢(z+niK") ¢(-z+niK')=1+2¢g" cos%+q2"

Proof: By definition, we have

¢(z+niK') ¢(~z +niK")

—1 + em(%u(,]]

irz nrK'

inz

=1+q"(eK +e

e

( inz _inz
=|1+q"e¥ ][1+q"e KJ
\

izd
K + q2n

{1 + em[%w)}

inz neK'
¥k K
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nz . L
=1+2q"cos?+q2" since 2cosz =e™ +e”.

Now we consider the two functions:

O(z)=[#(z+iK')-$(z+3iK')$(2+5iK")... ] [#(-z +iK")-#(-z + 3iK ) (-2 +5iK)....

and @, (z) = 4(z)[ #(z+ 2iK") $(z +4iK")... | [# (-2 + 2iK") $(-z + 4iK").... .

Then using (2.31), it is easy to verify the two following identities.

(2.32) CD(Z) = ﬁ(l +2¢°™ COSZK£+q2(2H))

n=1

A3

inz \
(2.33) o, (z)=[1+e’< ]H(1+2q2" cos%+ q‘"j.

n=1

Next, we introduce the four Jacobi’s theta functions.

0,(2)= 4 0(2), H, () = 4 g ()

2.34) ©(z)=0, (K -z2), H(z)=H, (K -2),

where A is a constant.

With these definitions, using (2.32), we get

(2.35) 0, (z) = AH(1+2q2n-l cos%+q2n(2n—l) ,
n=1 J
_ = 2n-1 7z 2n(2n-1)
(2.36) 0(z)= AH(I-—Zq cs—=+q )
n=1
since cosi(K - z) = cos(;r - E] = —cosZZ.
K K K
_"l(.l_,K'_z) [_”_K'_ﬂ] _ixz K’
Wealso have e2X\2 /=¢' % /- 4fg.¢ K sinceg=e ¥ .
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Hence, from (2.34) we can rewrite H, (z)as follow:

inz

H/(z) =4-4q-¢ X .0 (2)

=A-4q-¢ % -(1+e’< jn(1+2q2” cos—’%+q“"jby(2-33)

n=1

imz iz w
=A‘\‘/3{e 2K +e2KJH(1+2q2" cos%+q“"]

n=1

Again, using 2cosz =e™” +¢”, we obtain:

0

(237) Hl (Z) =(2A%ms%)n(l+2q2n COS%-{-qMJ.

n=]

Now, using (2.34), (2.37), and the facts that cos {E(K - z) = Ccos (% - _rf_z_j =sin

2K

and cos%(K ~z)= COS(IZ’ —Ej = —cosz;?z, we can rewrite H (z) as follow:

. T2\~ n Tz
2.38 H = 2A4 bl 1_2 2z, ‘
(2.38) (2) ( qsmzK)];[( g7 cos==+¢ )
Lemma222
(2.39) 1_2q"’ cos22+q2m = (l_qmelzz) (1 _qme—iZZ)'

Proof: We have
(1 _ qmex’Zz) (1 _ qme—iZz) =1- qm (eiZz +e7i% ) + q2m
i2z -i2z
=l_2qm L%_]*_qu

=1-24¢" cos(2z)+¢*".
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Lemma 2.2.3

(2.40) Letz =u +iv, then lim

V—o0

=0l

sinz

Proof: We have

|sin 2| 'sin (u+v)

u-v —iu+v
-€

e

v

lsinhv).

. 1 1
Hence, it follows that —— < ———=0as v > ©.
lsinz| ~ |sinhv|

0
Theorem 2.2.1 Suppose f ( z) is a doubly-periodic function of the 2n” order with periods
4K and i2K' suchthat f(z+2K)=-f(z), and f(z) has n poles
a, within the period- rectangle RSTU, where R is an arbitrary point z,, S

and U are the two points z, + 2K and z, + ;2K’. Then

T & A
(2.41) f(2)==73 ‘ | where

A is the residue of f(z) relative to @, .
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Proof Let LMNP be a rectangle (figure 2) whose vertices L and P are the points
Z,— i2IK’ and z, + i2IK’, while M and N are the points (z, + 2K) — i2/K’ and

(zo + 2K) + i2IK', where [ is an integer.

AP (Zp+i2K') N (Zg+2K +12IK')
V4

Y N
W
A4 T
UKy |1
N
R(Zo) S (Zp+2K) %
N’ N
AN

L(Zg-i2K') M (Zg+2K-i2K)

Figure 2
Let w be an arbitrary point within the rectangle LMNP.

/()

sin %(Z -w)

dz , where v is taken counterclockwise

Consider the line integral ! I
1oy

over the sides of the rectangle LMNP.

f(z+2K) ~f(2) A C) B 4 C)
sin%(z+2K—w) sin(n+5%(z—w)j —sinzirlg(z—w) sin%(z—w)

Since

b

/(2)

has the period 2K and its poles are the points z = w and
sin—— (z-w)
2K

it is clear that

z= a, +i2mK' where m varies from - /to /- 1.
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/()

sin 2—’;{—(2 -w)

From Cauchy’s theorem, it follows that the integral ! - L dz equals to the
7

sum of the residues relative to the poles that are located with the rectangle LMNP.

We have

I.J‘ f(z) g I.LM f(Z) dr I.IW f(Z) dz
i 7sini(z—w) 27i sini(z—W) 27i Sinl(z—w)
2K 2K 2K

rpf =L g Ly SO,

27 27

sin?;%(z—w) sin%(z-—w)

Since the integrand has a period 2K, it implies that

1 J' /(2) dz + 1 j /(z) dz =0 because these two integrals
MN PL

2 . 27i . T
sin e (z-w) sin Yo (z-w)

have opposite direction of each other. On the other hand, we also have

! I f(z) —dz + ! j f(z) dz = 0 because when / becomes large,
M NP

i ™ L(z—w) 2ri sina%(z—w)

2K

then -—-——ﬂl—approaches zero by (2.40).
sin—(z-w)
2K

Thus, the sum of the residues equals to zero, which means

Res —Z—(z)—,w +iRes —~7f;-(-z—)——,a, =0
i o t=1 o o
s1n2K(z w) s1n2K(z w)
Also, since
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/(2)

Res — ,W | =lim p
smﬁ—(z—w) smE—E(z—w)
=lim l f(w) | by LHospital rule
" 2 cos L z-w)
2K 2K
2K
- 7f(w) >
it follows that zn:Res L,a, S f(w),or

r=1 sin%(z -w)

_ f(2) _n3 f(2)
f(w)= -——ZRes — % [T Z—;Res — |
sin—(z-w) sin— (w-z)
2K 2K
We know f(z) has n poles o, within the period-rectangle RSTU. Let A_ be the residue

of f(z)relative to «, . Then for all w in the finite complex plane (see Hancock [10]),

AR L At
we have f(w)==—= >

2K e’ sin%(w -a; —i2mK') |

Then by replacing w by z, we get (2.41).

Corollary

(2.42) , where
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@ (z) and H (z) are the Jacobi theta functions.

Proof From (2.36) and (2.38), we have

_ rz 2 A3 rz 6
®(z) [1 2gcos X +q )(1 2q° cos e +q j

H(z) (2 qsmﬁ)(l 2g° cos?+q J(l—Zq“cos%+q8]...

It is clear that

® 2K ®
(z+2K) = (2) since cos—(z+2K) cos 22 and sm——(z+2K) = —sin 22
H(z+2K) CH(z2) K 2K

® 4K (C]
(2 +4K) = (2) , since cosl(z+4K) = cos = and sinL(z+4K) = sin 2=
H(z+4K) H(z) K K 2K

and

0]
Thus, the function (z) satisfies all conditions of the theorem 2.2.1, then by (2.41) we

H(z)
© n A
have 2(2) = LK Z d , where At is the residue of
(z) 2K~ sm——(z-—a, —i2mK)
g(_z)_ relative to &
.
H(z)

The zeros of H (z) are the poles of ——, then , are the solutions of equation

0(z)
H(z)’
H(z)=0, whichis 24 ‘]Sillf—lz-(l—Zq2 cos%+q“}(l—2q4 cos%+qs)... =0.

Now, applying (2.39) yields
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.z _i%z iz iz
2“qsin-;r—[zul—q2e1<j(l—q2e K]}Kl—q“ei"j(l-q“e Kﬂ..;o.

K'n

nz; -
Consider equation 1-g*"eX ‘=0 Using g=e X asdefined in (2.29), we get

-2mnK' 7z, _ ,
e[ Kok ]=1 or —m#—+%i=2hni,h=0,il,i2,... since e’ =1iff z = 2hxi |

or z=2hK-2mK'i .

ﬂ .
Thus, the equation 1—g*"eX "= 0 has solutions z = 2K - 2mK’’ .

_rz;

Similarly, the equation 1-g*"e X ' = Ohas solutions z = ~2AK +2mKi.
From the above two results, we have a,= 2hK +2mK'i, where h,m =0,£1,£2,....
This shows that for each pair values of (h, m), the corresponding &, lies in distinct

rectangle period (Recall theorem 2.2.1, the vertices of a period- rectangle RSTU are

located at R which is an arbitrary point z,, S and U are the two points z, + 2K and

0]
z,+ i2K’.) That means, for each period- rectangle RSTU, H((z)) has only one pole.
z
A Res of G)(z) at0
! H(z)

Then, it follows that Z": p = p .
=1 sin—(z—a, —2mK’i> sin —(z - 0-2mK')
2K 2K

We have Res(?]((zz)) , OJ =lim ((z -0) 2((?)J = 1(3’(((()))) by L'Hospital rule .
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Lemma224

(2.43) H(z)= 7 0(0) i _ 1

0(z) 2K H'(0),= SmLK(z ~i(2m-1)K’) |

Proof We replace z by z+ K% into (2.42) to obtain

O(z+iK') 7 0(0) & 1

H(z+iK') 2K H'(0),= 1n£<—(z+K’i—2mK'i)

O(z+iK') H(2)

On the other hand, Hancock [10], pages 222-223, it is shown that — = .
H(z+iK') 0O(z)

H(z) _z 0(0) & 1
8(5) " 2K T(0) =

Hence, it follows p .
™= sin ﬁ(z i(2m-1)K’ )

Lemma225

T 1
(2.44) snz = > .
2kK pe sini%(z -i(2m- 1)K')

Proof Jacobi [14], pages 225-256, proved the following formula, which relates the theta

functions, @(z)and H (z), to the elliptic function, sn z.
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1 H(2)

Jk ©(z)

Differentiating both sides of the above equation with respect to z, we obtain

snz= (also see Hille [11]).

cnz-dnz= 1 H(2)0(z)- H(z)@(z) (using (2.10) on the left hand side).

NP

H'(0)®(0 0)0'(0
Then, at z= 0, we have cn0 . dn0=— I ( )®( ) ( ) ( )

JE @ (0)
0(0) 1

Sincecn0=1,dn0=1, and H(0) =0, it follows that = —.

i and H (0) ws tha 70) 7k

H 0) &
Thus, snz =L _ L 7 ®,( ) D ! by (2.43)
‘/_ O(z) Vk2KH (O)’"='°°sm——(z—i(2m—l)K')

Substituting ( (0 )) , we obtain (2.44).
Lemma22.6

2.45) 1 . 1 _ 4\/q_"(q" +1)siny
' sin(y+inx) sin(y-inx) 1-2g"cos2y+g™ |

K’

where e* = \/E, and g=e X .
Proof: We have

2i 2i

i(y+inx) _e—x‘(yﬂ'm:) i(y-inx) _ e—i(y—inx)

LHS =

e
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_ 2ie™e”  2ie™e”

T gt et _|

= 2;2‘{_; Z":a/': since e* = \/5

_ 2i [q" e _21\/q_"e'y

- l_qne—i2y l_qnei2y

] =)
21\/—{( _,2y)(1 qnex2y)

Using (2.39) and the formula e” —e™ = 2isin y, we obtain (2.45).

Theorem 2.2.2
2”\/5 gz e qm—-l (1 + q2m-l )
(2.46) snz=——=sin—>" .
kK 2K | —2g2m! 202 | ama2
-2 cos——+¢q
2K
Proof Let E x= ﬂ—K, or e’ since g = e—”?K’
Y kT ke 75meed |
Then, by expanding the right hand side of (2.44), we have
> : =Y
=0 sin—’—r—(z -i(2m-1)K') ™= sin[ y—i(2m-1)x]
2K
1 1 1 1
=t + + + + +...

sin(y+i3x) sin(y+ix) sin(y-ix) sin(y-i3x)

1 1 1 1
Lin(y+ix) ¥ sin(y—ix)}+{sin(y+i3x) +sin(y—i3x)}—m

- 1 1
,,,Z{ 1n[y+1(2m lx:| sm[ —i(2m—1)x:|}
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q2m-1 (q2m-1 + 1) sin

4m-2"

=3

~1-2¢"""cos2y+q

by (2.45).

Then, replace y = 2”—;(40 yield (2.46).

Theorem 2.2.3

S __ (1+g)siny iy
(2.47) ;q s1n(2m-1)y—1_2qcoszy+q2,where|q-e |<1.

Proof We have

. ] x(2m—1)y _ e—i(2m—1)y
Zq sin(2m-1)y = Zq"’ >
m=1
1 - m— m-— m- —I m-1
_ EI{Z 1gi(2m1)y Z‘I 15712 } (*)

Let us consider the series Zq H(am)y

m=1

. Then, we have

©

Z (2m-1)y qu l 2m-1 where W= eiy

m=1 m=]

=LZ(qw2)m

qW m=1

Z(r) ,where r = gw’

qW m=]

= w;(r)m.

1

Since || = lqw2| - }q , e2r'y‘ <1by the hypothesis, it gives i(r)"l =T
m=0 -

Hence, it follows that
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iy

i qm_1 ei(zm-l) y

sincew = e”and r = gw’
m=1 1- q
e’

_ (1 9e)
(1-ge™)(1-g)

e” (1 —-qe™V )
T 1-2gcos2y+¢°

by (2.39).

e‘b’ 1- ei2y
Similarly, we also obtain Z q™le ~i(am=t)y _ ( 1 ) _
m=1 T 1-2gcos2y+q

Hence, from (*)it follows that

iqm_lsin(Zm-l)y=_l- ei( —9¢ ﬂy) e (l qelzy)}

pow 2i 1—2qc052y+q

Ao )

2i 1-2gcos2y +q°

(.

_ siny+g-siny
1-2gcos2y+q°

Now, we are ready to prove the theorem mentioned in the beginning of this section 2.2,

o . 27z\/_ . %4 zK
which is the equation snz = Z sin| (2m - 1)2—K ,whereg=e ¥ .

Proof: From (2.46)and y = 2K , we have

snz:.?‘”\/_[( ¢’ (1+g)siny J ( g'(1+4")siny }L}

1-2qgcos2y+q’ 1-2¢°cos2y +¢°

From (2.47), we also have
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q0(1+q Siny © L
1_2qcosly+q2 =Z_lq0q ISln(Zm_l)y’

g' (1+¢°)siny o .
1"2(‘13cosly+¢16 =Z=lq(q3) 1sm(2m"1)y’

Hence, it follows that

snz= Mi[q‘) ()" +q(q3 )""1 +q (q5 )m_1 +...}sin(2m 1)y

S [i(qm-l )"}in(m “1)y

X
1]
o

-k’

Since |g| = e K

<1, we get Z ( 2m-1 ) = -l-:-;zT by the geometric series.

n=0

Thus, snz = ‘/_ Z[l Jsin [(2m -1) y] , which is the equation (2.29).

m=

More expansions of the elliptic functions can be found in Hancock [10] and Jacobi [14].

The restrictions on the expansions can be found in Byrd [8], pp 304-305.

2.3 Applications of The Jacobi Elliptic Functions

2.3.1 Relationships between constants K. X'and E. E’

Let’s recall the definitions of K, X'and E, E’ as follows:

X =I% da K,_J-% da

J-ksinfa © 1-k"sin’e
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E=L%\/1—k2 sin’ ¢ da, E’=I:/2,/1._k'2 sin®a da, where k* + k" =1,

If we let m = k*, thenk> =1-m, and

K=K(m), K'=K'(m)=K(1-m),
E=E(m), E'=E'(m)=E(1-m).

2.3.2 Series expansions for the Jacobi elliptic functions

We define functions x and q by

zK'(m)

d g=e
K(m),an g=e

(2.48) x=x(m)=

The following equations are the Jacobi expansions of the elliptic function s» z, cn z, and

dn z in terms of sine and cosine and related expansions given by Bruckman [7]:

1
2r < qM— . rz
2.49 = 2n+1)—
(2.49) snz e él—qz"” sin(2n )2K A
n+l
2t - q°? rz
2.50 chz = cos(2n+1)—
( ) z \[;n_K "=01+q2n+1 ( )2K P
T rae q nz
251 dnz=—+-— 2n)—
@31) SbTan P hwe Corrg
KY KE = ng" rz
2.52 —|dntz-—=2 2n)—
@32 (ﬂ) T él—q"‘”s( "2k
4 K\' 4KE 1 > ng*
2.53 “(2-m)| = | - - =38 i
4KE = (-1)" ng*
2.54 l-— =8y~~~ —
( ) ”2 ; 1_q2n P
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© 2n-1

~Liog(1-m) = g
(2.55) 161og(1 m) Z} )=

2.3.3 Series of hyperbolic functions

We apply the results of the expansions of Jacobi elliptic functions to obtain the series of

hyperbolic functions.
Lemma 2.3.1
(2.56) A — = lcsch mx, and —q—2 = lsechmx ,where g=e¢™".
1-g" 2 1+¢"
Proof: Observe that
" _ 1
1_ q2m q—m _qm
= m—l_; since g=¢™~
e™ —e
= ; = lcsch mx.
2 sinhmx 2
Similarly, it is easy to show that 1 1 — = -l—sechmx.
+9q
Theorem 2.3.1
(2.57) 2 (=1)"" esch (n —l]x _Km | where x= 7%
n=1 2 V4 K

Proof: We prove (2.57) by substituting z =K in (2.49). That gives
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2r ~ g . z
snkK = x ,,Zgl—qz"“ s1n(2n+1)3

1 .
54 2 (-1
‘\/;K e l_q2n—l

4 n1 1 1 .
= -1)" —cschi n-—|x, by (2.56)withm=n-4.

, replacingnbyn-1

M

Using sn K = 1, we obtain (2.57)

Theorem 2.3.2

(2.58) > sech(n—%)x =22sech(n—-;-jx = 2K\Jm | where x = %
n=-o n=1

w

Proof. From (2.50), we substitute z =0 to yield

1
ne—

2 <~ q°
cn( = E cos0
’mK o 1+ q2n+1

n——

_ s 9
\/’;I-K":]1+q2n-l’

2r 1 1 .

V4 hd 1
=— E sech| n—— |x.
va n=1 ( 2)

Using cn 0 =1 and the fact that Z sech(n - -;—jx =ZZsech [n —%}x , we get (2.58).

n=—0 n=1

replacingnbyn- 1

70



The following theorems are proved similarly as the above theorem. Therefore, we only

sketch the ideas how to get them.

Using z=01in (2.51) and the facts dn 0 = 1and Y sechnx =23 sechzx+1, we get

n=—cw0 n=1

(2.59) > sechnx K

n=—e0 T

Substituting z =K in (2.51), using dnK =+/1-m by (2.13) and (2.56), we have

(2.60) i (-1)" sechnx _2KNlom)
n=—c0 7

Let z=01in (2.52), and with dn 0 = 1 and (2.56), we obtain

K(K-E)

2

(2.61) > ncschnx =
n=1 7

Let z=Kin (2.52) and use dnK =~/1-m . Then by (2.13) and (2.56) we get

(2.62) Z‘b:(—l)"'1 n cschnx =£2 -(1 —m)(ﬁ) .

n=1 T /4

2.3.4 Applications to infinite series involving Fibonacci and Lucas numbers

In this section we evaluate Fibonacci series using some results from the elliptic functions.

Lemma 2.3.2 Let F, be a Fibonacci number. Then

(2.63) F, = —2—sinh(2n/1) , where A =Inq, and a =

J5

Proof. From the Binet form, we have

2n _ a2n -
EZ-——Lwherea=M and ﬂ=£.
a- 2 2

1+J§
S

5, =
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Since af=-1, a-f =5, A=Ina, and a =¢*, it follows that

2
F, =————=—sinh(2nl).
2n \/g \/g ( )

Lemma 2.3.3 Let F, be a Fibonacci number. Then

(2.64) E,. = 2 cosh (2n+1)A|

7

Proof. Using the Binet form, we have

2n+l ﬁ2n+l

a-p
2n+1 -(2n+1)
=£—L, since aff = -1 and a—ﬁ=«/§

NG

(2n+1)A —(2n+1)4
€ +€ . i
= siInce ax =e

J5

cosh(2n+1)A.

[#4
Fopa =

2
NG

In the same way, we use the technique above, that is the Binet form and definitions of a

and B, to find a hyperbolic expansion for the Lucas numbers. It is easy to show that

(2.65) L,, =2cosh2ni| and
(2.66) L, =2sinh(2n+1)4|
K’
Next, let us consider the equation ”K ((m) =2A=In(1+a).
m
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Then, by definition (2.48), the left hand side of this equation is x, and the right hand side

1+\/§

2

equals to ZIn[ j by definition of o in (2.63). This equation has a unique solution

m =y where 0 < <1, (see Bruckman [7], page 296).

K)o ES5.

K(u)

It means x =

Then, if we define p = and o

K E
_(_,u_) = M (see definitions of K and E in section
4 r

2.3.1), this particular value of x will lead to the following theorem.

Theorem 2.3.3 Let L, be a Lucas number. Then

2.67) 3 CY” .1 pip|

n=l L2n-l i 2

Proof: Using the hyperbolic form as in (2.66), we get

1 1
L, 2sinh(2n-1)2
1

1+J§
2

= since A=>==In
2

2sinh (n - l)x
2
= lcsch [n - ljx
2 2

n-1
Hence, Zgi = %Z:;(— 1)"'lcsch (n - -;—Jx = -;—l’%/-;— by (2.57).

n=1 n~1

By replacing K / m by p and m by u in the equation above, we obtain (2.67).

Theorem 2.3.4 Let F,, be a Fibonacci number. Then

73



w

(2.68) >

n=l £ 2p-|

1
=5P\/§.

= %sech (n—%)x with A =x/2.

Proof: Using (2.64), it is easy to show that

2n-1

Hence, it follows that > ! =—Z h( —l) =£K—J:b (2.58).

n=1 4 2p-1

Then, replacing K/ 7t by p and m with p, we get (2.68).

Similar to the proofs of theorem 2.3.3 and 2.3 .4, we can obtain the following identities:

= 1 1 1
(269) Z =-2—p—ZP

® _1 n-1
(2.70) s L1

LG 4 2
(2.71) Z F‘ =%p(p—o-)r
- _1 n-1
(2.72) 21(12 n:%[pa-(l—y)az].

2.4 Bruckman’s Theorem and Applications

2K'(m,) _ K'(m,)

Theorem 2.4.1 If =
K(m) K(m,)

, then
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(a) K(m1)=(l+ mz)K(mz)’

®) K'(m)=- (1+ m, )K'(m;),

2.73) © m1=1-[1" mz] =( sy,

1+/m 1+ mz)z’

) E'(m2)+\/ZK'(m2)’

@) E'(m)=———

_2E(m,)-(1- mz)K(mz)

(e) E(m)= 1+\/—_

K’
Proof: Part (a) Let x = =K (m) and x' = = () , then by the hypothesis of

(mx) K(m,)

the theorem, x = %x Observe that Z sech(2n)x + Z sech(2n-1)x = Z sech nx .

n==w

Using x = -;-x' in the left hand side of the equation, we get

i sechnx’ + i sech(n—%jx’ = i sechnx .

n=—w n=—cw n=—co

d 2K ® 2K
By (2.59), we have D sechnx’ =__(m_2) and Y sechnx =—(m—l).
n=—w T n=-~ /2

© 2K N
Also, by (2.58), we have Y sech (n —%Jx' =__M.
n

n=--

2K (m,) + 2K(m2)\/;2_ _ 2K (m,)

T

Thus, we get a relation , which implies (a).
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K(m) . . 2K'(m)
Part (b) From (a), we have (1+m, | = , which is ———=by the
(=) K (m,) K'(m,)
hypothesis. It follows that X'(m,) = -;—(1 +Jm, )K '(m, ), which is (b).
Part (c) By the formula 17.3.29 of Abramowitz and Stegun [1], we have

)

2
K(m)= K . Replacing m by (1 — my) on both sides of the
( ) 1+m (l+ — 2 p g y ( 2)

2 (1-J7n_2)2

above equation yields K (1-m,) = K

1+ m, (1+M)2 |

Since K (1-m,)=K'(m,) by definition 2.3.1, it follows that

2 (=)

Y1 m, (l+ m2)2

Since %(1 +m, )K'(mz) =K'(m,) by part (b), it follows

(1= )

———— |, Or K(l—ml)zK -— bydeﬁmtlon231

(1+ m, (1+\/m_2)2
(=)

This implies 1-m, = —. Solving this equation for m, , we obtain (c).

1+\/m_2)

Part (d) From the formula 17.3.30 of Abramowitz and Stegun [1], we have
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(1-I=m) 2i-m . (1-vi=m)

Bm)=(1+1-m)E (i) | T | (i) |

S

Replacing m by (1 — my) in the above equation yields

(1‘\/—’5)2 _ 2ym, x (1"\/%)2 .
(1+\/n72)2 1+ym, (1+ m2)2

o)

—=1-m, from part (c),

E(l—m2)=(1+ mz)E

Since E(1-m,)=E'(m,) by by definition 2.3.1 and
-

it follows that E'(m,) = (1+\/——)E(l m) 2m; K(l m,)

1+

=(1+ mz)E’(ml)— ‘/—— K'(m,) by definition 2.3.1.

™

Next, we substitute the result of part (b) into the right hand side of the above equation to

g E/(m) =1+ ) )~ 2 (1 ) )|

Solving this equation for E'(m, ) yields (d).

Part (e) Recall the well-known Legendre’s formula,

E(m)K'(m)+E'(m)K(m)-K(m)K' (m) for any parameter m.

Letting m = m, , we get E(m)K'(m,)+E'(m ) K (m)—K(m)K'(m,) =

(SR

Letting m = m,, we get E(m,)K'(m,)+E'(m,)K (m,)-K (m,)K'(m,)

1]
ISR
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Hence, it follows that

E(m)KX'(m)+E'(m)K(m)-K(m)K'(m)=E(m)K (m)+E (m)K(m,)-K(m,)K' (m,)

Now, use (a), (b), and (d) in the above equation and solve it for E(m, )to obtain (e).

7K'(u) ) 2ln1+\/§
K(u) 2

Now, if we set m, = n (where p satisfies ) and define u” by the

zK'(u"
——(#—) =41 = 4lnﬂ ,then u" plays the role of m,in theorem 2.4.1.

relation x' =
K(u") 2

We also define p”" =

. Based on these definitions, we have the

three following corollaries.

Corollary 2.4.1

(2.74) \/7 _IoVl-p

1+ 1—,u’

af1-
(2.75) 1- 4" i

()|

2
l— L4
Proof: Let m, = u"and m = u in(c) of (2.73), we get u = 1—( ‘/'17] :

1+\/;7

Solve this equation for \/',7 to yield (2.74) and solve for 1 — 4" to obtain (2.75).
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Corollary 2.4.2

(2.76) p'=

(1+1- 1) |

|-

Proof: Using (a) of (2.73) with m, = u and m, = 4", and dividing both sides of that

K K(u" K
equation by T we get M = (1 +4/ #')M . Since —Ql—) = p (definition on page
7 /4 /4

K ”
71) and __(,u_) = p", it follows that p = (1 + 4 ,u") p". Then solve this equation for p”
z

and use \/7 as in (2.74), we will obtain (2.76).

Corollary2.4.3

(2.77) o= ZTPNTH vi- 4
' 1+ 1-4 |

Proof: Using (e) of (2.73) with m, = u and m, = 4", and dividing both sides of that

equation by T we get M(1 +\/;1_”) = M-(l - y')M
7 4 z

K » ”
W_, K@) o g EW) g EW)
T T Va w

Since it follows that

0'(1 + \/7) =20"-(1-u")p". Then, use (2.74) for the expression of Ju',(2.75) for

(1- "), and (2.76) for p". Now, solve that equation for o" to yield (2.77).

Now we are ready to evaluate additional Fibonacci and Lucas series.
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Theorem 2.4.2 Let F, be a Fibonacci number. Then

e B E )

‘F:tn-2

Proof. From (2.63), we have

n—l n-l
w (— (-1)
Z Z
n—l F 4n-2 "-‘ %Slnh (4n 2)/1
= i("l)"_] csch (n —ljx' since A=2=1In s \/g
n=t 2 4 2

Using (2.57), we also have

n=}

] _ K ”
2 1 csch(n—%)x=&m;)_‘/};__2_—_ p"\[u" since m, = u” and (: ) =p".

Now, using (2.74) and (2.76) for the expressions of \/? and p", we get

n—-1 P
iz (-1) = %(1 +41- ,u)p : [%) . Simplifying this equation gives (2.78).
TVl 4

Theorem 2.4.3 Let L, be a Lucas number. Then

(2.79) iLl =1(1— -u)p|
n=l Lypod

Proof: Using (2.65), we have

Z: L, Z cosh( -2)4

n-2 n=1

=lZsech n—l x' since/1=-)£-=lr11+\/g
2 2 4

n=l
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2

K L4
=%p"\/7 since u" =m, and p" = (s )

a

Now, using (2.74) and (2.76) yields Z

n=1 &4p-2

LR E |

Simplifying this equation, we obtain (2.79).

Similar to the proofs of theorems 2.4.2 and 2.4.3, we can derive the following three

identities.
EN

(2.80) >—=—(1+1-p)p-=|
n=l 4p
(-7 1 1,

. =—- —(1-

@ 5

(2.82) S =\/?—-[(2—,u)p2—2p0'].
n=l £ 4n

In general, if we let x = 2A, 4A, or 8A, and so on, and then using the theorem 2.4.1, we
can derive the other relationships between three basic constants y, p, and 6. If we

continue to use these relations, we can obtain more results on the infinite series for the

reciprocals of the Fibonancci and Lucas numbers. More identities can be found in

Bruckman [7].
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CHAPTER Il

SERIES INVOLVING THE

GENERALIZED FIBONACCI AND LUCAS NUMBERS

3.1 The Generalized Sequence {W,} and Other Related Sequences

3.1.1 Introduction

In this chapter, we evaluate the sum of infinite series of the sequence {#,} introduced by

Horadam [13]. The sequence {#,} is a generalization of the Fibonacci, Lucas, Pell, and

other sequences. The sequence {#,} which is described below was introduced by

Horadam in 1965. More details can be found in Bodas [4].

Consider the sequence of real numbers {#¥,} defined by the recurrence relation:

(3.1)
(3.2)

W, = pW,_, —qW,_,| with the initial conditions

W, =a, W, =b|, where

a20,b>1,p>1,q#0areintegers with p* —4¢ > 0.

The characteristic equation of the sequence {W,},

(3.3)

(3.4)

x* — px +¢q = 0| has the roots

_ptP -4 ﬂzp—\/p’—4q
2 ’ 2 '

a

It is obvious that

(3.5)

a>pB, af=q, a+f=p, and a-f=+p’-4g>0|

The Binet form for {W,} is given by
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(3.6)

(3.7)

W,

n

_ Aa" -Bp"

a-p

. where

|A=b—a,B and B=b-aa|

3.1.2 Special cases of {W,}

Whena=0,b=1, p=1, and q=-1, we have the Fibonacci sequence {F}}.

(3.8)

F=F +F _,, where F, =0 and F =1

From (3.4), (3.5), and (3.6), we have

(3.9)

(3.10)

(3.11)

o=

1+\/§

2

, and fB

1-V5

2 P

aff=-1, a+f=1, and a—ﬂ=\/§

F

n

_an_ﬂn

n

a_

a-p 5

L and

Whena=2b=1p=1, and q=-11in(3.1) and (3.2), we have the Lucas sequence {L,}.

(3.12)

(3.13)

L =L +L, , where L =2and L =1

. and its Binet form is

Ln

=" + f"|where a =

145 ]
2

5

and f = —>

7

Similarly, if a= 0 and b = 1, we obtain the generalized Fibonacci sequence {U,},

(3.14)

(3.15)

Un = pU -1 _qUn—Z

U

n

an_ﬂn
a-pB |

, and (3.6) implies that

If a=2and b =p, we get the generalized Lucas sequence {V,},

(3.16)

n

V =

an-l _qV-

2]
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Then by (3.7), we have A= {p* —4q and B=- \[p’ -4q.

Hence, from (3.6) we obtain the Binet form for the sequence { V, },

3.17) V,=a" + " where o. and B as in (3 .4).

Ifa=0,b=1, p=2, and q =-1, we have the Pell sequence {P,},

(3.18) P =2P +P _, where F,=0 and £ =1|

Ifa=2,b=2,p=2, and q =-1, we have the Pell-Lucas sequence {Q.},

(3.19) Q,=20,,+0Q,, where O, =2 and O, =2|

Ifa=0,b=1,p=3, and q =2, we have the Fermat sequence {f},

(3.20) f,=3f,.-2f,, where f, =0 and f, =1

Ifa=2,b=3, p=3, and q =2, we have the Fermat-Lucas sequence {g.},

(3.21) g,=3g,,-2g,, where g, =2 and g, =3|

3.2 Analyzing the Horadam Series

3.2.1 Convergence of series ZWL

n=] n

By equation (3.6), we have

1
lim W =liml 7,
n—w _1_ noo VVm-]
v,
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Since
a n—x a n—re a

n n+l
—'B- <1, it follows that lim (ﬁ) = lim (ﬁj =0,

Hence, we obtain

R
W
(3.22) lim |z | = L
n—0 1 a
Wn

This result generalizes what we have proved earlier in (1.20).

From (3.4), we note that 2a = p + m, p=landq=0.

If q <0 then p+m >p+p=2p22. Itmeans2a>2 ora>1.

If q > 0 then 4q > 4 since q is an integer. By the hypothesis p* —4¢g > 0, it follows that
p*>4q=4, 0orp>2.

Hence, we have 2a = p++/p° —4g>p>20ra > 1.

For both of the above cases, we have shown that o > 1 for all integer q # 0.
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From (3.22), we get lim Wi‘” =1y

W,

n

n=1

therefore convergent.

n=l1

. =1
We desire to evaluate Y — but up to now, no one can evaluate exactly the result. In
p

n=l1

1969, Brousseau [6], calculated by approximating to 10 decimal place for the case Z—l-

n=1

and Z—- as follow: Z—- = 3.3598856662 .

n n=1

X1
ZZ— = 1.9628581732 ... .

The author of this thesis, in section 1.5 of chapter I, provided a program using the Java

language which gives more accurate values of ZL and Zi

s
n=1 F;, n=1 Ln

400
ZL = 3.3598856662431775531720113029189271796889051337319684864955

n=1 n

538153251303189966833836062240783148035250 ...,

400
Z 1. 1.9628581732096457828687951286751835266495930171622194211307

n=1 n

152404170616075464603779749310499352245825 ....
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In 1883, Catalan [9] had divided the seriesZ—l— into two parts: even terms of {F,},

n=1 n

0

ZL, and odd terms of {F,}, i . The series i

n=1 £ 2n n=1 £ 2p-1 n=l £ 2n

1 1

can be expressed in term of

the Lambert series (to be discussed later) and of Jacobi elliptic functions forz ! .

n=l 4 2p-1

" . " -
Therefore, we find that it is appropriate to partition the series Z— into two parts, one

n=1 n
with odd terms {#,,. ;}, and other with even terms {#5,}. We will use the Jacobi
elliptic functions (in section 3.3) and the Lambert series (in section 3.4) to investigate the

= 1 = 1
i d )
series ZWzn-1 an Z_:‘Wzn

n=l

3.3 Evaluating Special Series Using The Jacobi Elliptic Functions

In chapter II, we discussed the two elliptic integral constants K and X’. They are given

byK =K and XK'= where

z da z da
(k) = | * =—, K'(k)=|?—0ouoes
'L J1-k*sin*a '[0 N1-k"sin* @
k' +k* =1. In all the lemmas and theorems in this section will use these two constants.
Also, Jacobi’s symbol g is here replaced by r to avoid confusion with the use of g in the

recurrence relation (3.1).

-nK'

Lemma3.3.1 Letr=e X . Then

= 4" 2K
2

3.23
(3.23) ~1+r"
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Proof: From equation (2.51), we have the following identity

dnz=L+2—” ! - cos(2n)£.
2K K Z1+r” 2K

n

Now, let z = 0 in this equation, we get dn0 = 2—”}; +2—”-

X & T cosO.

n

Using dn 0 = 1 by (2.8) and solving this equation for ZT-{_Z'T’ we obtain (3.23).
n=1 r

-aK’
Lemma3.3.2 Letr=e X . Then

1

Figy

o

r ? kK
3.24 =
(3.24) Z‘ 1+ 27

1
o n+§
Proof: let z = 0 in equation (2.50), we obtain cn0 = 27 Z A cosO.

J’;K "=01+r2n+l

Since cn 0 = 1 by (2.8) and </m =k, solving this equation for LS yields (3.24).
z

Theorem 3.3.1 Suppose A=B=1in(3.6) and q=-1. Then

©
2

1 .
(3.25) > =p’ +4 -ﬂ, where L is a real number such that
n=1 pVZn-l 2r

-k ’! o )

r=e K(u) = 2, ﬂ:%(p_,/pzw), and g +u”=1.

a2n—1 _ﬂZn—l
Proof: Since A=B =1, from (3.6), we obtain W, _, = —T Thus,
a —
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1 o e
W/z"_l (a ﬂ) (aﬂ)h—l _ﬁ4,,_2
=(a-p) (_1)2',,8_12"__1’34"_2 since af =-1

Since S = ';'(p‘\/p2 +4)< 0. Hence, from the hypothesis, 7 = 5%, we get Jr =-f

and 0 < v <1 since — )i =%(\/q2 +4 -—p)< 1 when p 2 1. Thus, we can write

3 i} _\/;).(_\/;)2"-2
>——=(a-4) (
=1 Wzn-l ; (_1)_(_\/;)

© r"—%

=@-A2 =

1+
© rn+%

=(a-p)Y

o l+r

2n+1 by replacing n withn + 1

=(a _ﬂ)%ﬂ by (3.24) with k= 4.
V4

Substituting & — B =+/p® +4 in the above equation obtains (3.25).
Here are some special cases of theorem 3.3.1.
Since A =B =1 and q =-1, we can use (3.25) to evaluate series involving the reciprocals

of the Fibonacci and Pell numbers, {F>,_,} and {P2,_,}.

If p =1, then from (3.25), we have
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(3.26) > I -ﬁ-l-(—, where | satisfies

n=l F;n—l 2r
5 zK'(4'
B =[#] —e ¥ and w+u?=1.
(3.27) Z Pl =2 ';—K- where p satisfies
n=l L7251 Ir
—nK'!,u'!

B =(l—\/5)2 L O p+pu?=1.
The results of (3.26) and (3.27) are consistent with those of Bruckman [7].

Theorem 3.3.2 Suppose A=—B=a - and q=-1. Then

(3.28) inj =%(§—1).

n=l

Proof: Again, using (3.6), we have

1 a-p
W/Z AaZ"—Bﬂz”

A(ah _%ﬂ%)

- 4 ince a— f= B__

= A(az” —(—1),6’2") since - f =4 and 1 1
ﬂZn

(aB)" + "

n

2n
=1+ﬂﬂ4n since aff =q=-1by(3.5).
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-nK'!,u'!
Now let k =p such that r =e *(¥) =, ﬁ="(P‘ P2*4q),then Jr =—f3 since

1 > = ]
=—{p- +4)<0. Thus,
B 2(17 VP rz_le

=Z1 L Using (3.23) for the right hand
=1 +r

n

side of this equation, we get (3.28)

Here are some special cases of theorem 3.3.2
Since A=-B and q=-1, we can use (3.28) to evaluate series involving the reciprocals
of Lucas and Pell-Lucas numbers.

If p = 1, then from (3.25), we have

=1 _1(2K =
(3.29) > —= —(——1), where K = jo

.L with
J1-42sin’a
) —nK’!,u'!
: 2 _ 1—\/§ _ K(#) 2 " _
p satisfies f° = 5 =e and p°+u"* =1,

o z
(3.30) Z l =l[£—l), where K =J.2
n=1 QZn 4\ z 0

da .
————————— with
J1-4sin’ a

U

-7K'(u
2
u satisfies S’ =(l—\/§) —e ¥ ang w+ut =1,

Notice that Bruckman [8] had calculated > 1~ 056617767 ..., and E. W. Bowen
n=]

1

found i

n=1 2n

=0.2017495 ... .
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More information about the applications of the Jacobi elliptic functions on the reciprocals

of {W,} can be found in Horadam [13].

3.4 Lambert Series and Applications

The Lambert series is a special case of the series

(331 ian

xn
1-x"

Specifically, the Lambert series is defined as

n

(332) L(x):ilxxn, I <1

n=l 17

It is clear that the Lambert series is convergent by the ratio test as follows:

n+l

1_ n+l l_x"

= lim|x| —

1-x"

= lim |x| since limx” =lim x™"' = 0 when |x| <1
n—»0 n-»o n=>w

x|<1.

The generalized Lambert series is defined (see Arista [3]).

J m’l
(3.33) L(a’x)=§1—ax"’ x| <1, |ax|<1|
Lemma 3.4.1
© x2n
(3.34) él_x% =L(x*)-L(x*), |¢<1|

®© n
Proof’ Using ratio test, it is easy to show that Z

n=11_

— is convergent when |x| <1.
x n
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Observe that * _ =
I-x 1-x

. : : x
Now, replacing x by x*" in the above equation to get " -

. © - ye2n © x4 © 2
Thus, it follows that > ———-> —— =3 0|
X 1-x —1-x

n=] 1-

Lemma3.4.2

-X 1-x

@ 2n+1

(3.35) Z-—f;m=L(x)—L(x2), x| <1|

n'=01

2n+1

X

Proof: Again, ) ——— converges for |x| <1 by applying the ratio test.
n=0

1 _ x2n+l

© xn x x2 x3

= + + +

2

vt 1— X" Tl-x 1-x* 1-%°

x x*
=| —+ Hoor |+
(l—x 1-x° J [

2n+l @ 2n

> X X
=Zl_x2n+l +Zl_x2n'

n=0 n=1
) ) @ 2n+l © xn @ xZn )
It implies that ;1_ 5 ; — —; - L(x)—L(x )
Lemma3.4.3
O x”
(3.36) ;Hx" =L(x)—2L(x2), x| <1
Proof: Again, one can verify that i 1:” — converges via the ratio test.
n=l X

93
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or L(xz)—L(x“):Z

n=1

2n

x
1-x

4n ’



2
Observe that X 2x =

l-x 1-x" 1l+x
n 2n n
Replacing x by x" in the above equation obtains X == .
1-x" 1-x" 1+x"
Thus, it follows that i Z i ,or L(x)- L(xz) = i l :n —.
n=1 n=1 n=1 X
Lemma3.4.4
© x2n+1
(3.37) §W=L(x)—3L(x2)+2L(x4), x| <1

2n+]

Proof: Again, one can verify that Z —— converges via the ratio test.
+Xx

Expanding i X —, we have
n=1 1+
© x2n+1 © x2n

;l+x Z;l+x2"+1 Z_:’1+x2"’or

© x2n+1 _

;1+x2"“ _;1+x _Z'Hx
=[L(x)-2L(x")]-[L(x*)-2L(x")] by 3.36)
=L(x)—3L(x2)+2L(x“).

Lemma3.4.5

© 2n-1
(3.38) ;#:z:(x)-zL(xz)w(f), x| <1
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© 2n-1

Proof. One can verify that ZW converges via the ratio test.
nsl 1= X

Observe that X + ¥ - 2x2.
I-x 1+x 1-x

1

Replacing x by x*"™ in the above equation, we obtain

© 2n-1 @ 2n-1 © 2n-1

Since ‘;li—;l = L(x)-L(x*) by (3.35) and
§%=L(x)—3L(x2)+2L(x“) by (3.37),
it follows that gli—:z = %[L(x) -L(x*)] +%[L(x)— 3L(x*)+2L(x*) ], which

implies (3.38).

1

-]
Now we evaluate the series Z

n=1 "V 2p-1

and 3
27

1
2n

Theorem3.4.1 Suppose A=B=1andq= —1. Then

(3.39) >—=(a-A)L(e*)-L(8")]|

n=l 2n

Proof. From (3.6), we have

1 a-pB
W;n Aa2n_Bﬂ2n

ﬁZn
=(a-pB)—5—— since A=B=1
o,
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B _ ﬂ2" ) __
=(a 'B)l—ﬁ‘" since aff
c(a-B)S L
Flmn_(a ﬂ)él_ﬁ%'

<1 when p > 1, apply (3.34) to obtain (3.39).

Since |,6'| l (p \/p_-a)

Here are some special cases of theorem 3.4.1

Since A=B=1and q= — 1, we can apply (3.39) to the Fibonacci and Pell sequences as

follow.

640 ;TJ{ Eax: (“;ﬁﬂ

1-5
2

for the Fibonacci numbers.

sincea— f = J5and § =

(3.41) Z-:zf[ (3-2v2)-L(17-122)]

n=1 2n

since a— f=2\2and f=1- 2 for the Pell numbers.

Theorem 3.4.2 Suppose A=-B=oa-f3and q=-1. Then

(3.42) iwl =-L(B)+2L(B*)-L(B*)|

n=1 "M 3p-1

Proof: From (3.6), we have

1 _ a-p
VVzn_l Aa2n—l _BﬂZn—l
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_ A
A(aZn-l B

ﬂZn—l

ﬂ2n—l )

A

= — — since
(aB)" + 5

,an_l
1 - ﬂ4n—2

since aff

1 —-—

It implies that

n=l 7P 2p-1 n=

—zl 1 _ ﬂ4n—2

since - f =4

-1

4

=-1.

'32;1—1

Here are some special cases of theorem 3.4.2

=_[L(,3)-2L(/32)+L(ﬂ4)] by (3.38).

With conditions A = -B = o — 8 and q = -1, we can apply (3.42) to the Lucas and Pell-

Lucas sequences as follow.

(3.43)

(3.44)

3.5 Further Applications of Lambert Series

In this section, we investigate the series of the type Z

n=l TV rn™ p(n41)

odd integer. We first justify the following two lemmas.

2L1_ =—L{L—2_\/_5_]+2L[3—2\/§]—L(7_§\/§J since ﬂ:# '
in =-L(1-+2)+2L(3-2v2) - L(17-12v2) since f=1-2.

, Where r is a positive

Lemma3.5.1 Suppose A=B =1, q=-1, and r is a positive odd integer. Then

1

23

(3.45)

@

1 1

n=1 &

rnu/’n

* er . ; I/Vranr(n-v-l) .

a'W,
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Proof: From (3.6), we have

r.A rn+1 Bﬂ n+1 + n_Bﬁyn
a-p a-p

,H'("”) (o —ﬂ’")} since A=B=1

a I/Vr(n+l) + PVrn =

=a_1.ﬂ[(a r(n+2)
= aiﬂ[(ar(m)_(aﬁ)r ﬂrn)+(arn —,B”')}
=aiﬁ[a'n+2 ( 1) B +a” ﬂrn] since aff = —

Since r is a positive odd integer, —(-1)" 87" — "= 0. Thus, we have

ﬂ[“' i }

™ |:a ':| since ff = -1, ris odd
= a “’“’W,. (*)

Thus, it follows that

1 1 r] r(n+1) +]
+
arnW ar(rH-l)W r(n+1 W W

rn r(n+1) rn’" r(n+t)
r(n+1)
a’"W,
o) by (*)
"W, W

r(n+l)
I/
w.W

rn’" r(n+l)

o0 1 -]
Therefore, it follows that + =
; arnW ; ar(”+1)W,(n+1) ; uyrn

RIS

(n+1)
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Since Z

rn+1W

r(n+1)

1
22 "nW

—+W,
n=l & aW/r

, it follows that

Lemma3.5.2 Suppose A=B =1, q=-1, and r is a positive odd integer. Then

(3.46)

= 1

=(a-

) L(B")-2L

(57)+22(8")]|

Proof. Using the Binet form for #,,, we have

i 1

= arnW

@

)

r
n=1 &

a-p
n(arn_ﬁrn)

=(a- ﬂ)Z e

ﬂ)rn
= (a _ﬂ)iawn _( l)rn SInce aﬂ =T
_ _ © a—2rn
=(e '3);1—(—1)’" @
=(a _ﬂ)gl—(—’i)+ﬂ2'" since B = —

© 2rn
Expanding the right hand side yields Z £

(ﬂzr )2n+1

0

ﬂ4rn

n=1 —( l)rnﬂzm

_Z—; Zl

n=1

Wi

Using (3.37) with x = %" and the definition (3.32) of the Lambert function with

x= S we get (3.46).
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Theorem 3.5.1 Suppose A=B =1, q=-1, and r is a positive odd integer. Then

o Foa—= () 2u(p) ()] + )

rn’7 r(n+l) r r

= (e 1 1
Z:‘W,,,W,(M,) Wr( ;a'"W W]

A —

) 2(a- p)
/4

r

— } by (3.46)

r

[L(B¥)-2L(p")+2L(p ] 7 ;——,B ris odd.

Here are some special cases of theorem 3.5.1.
With condition A=B =1, q=-1, and r is a positive odd integer, we can apply (3.47) to

the Fibonacci and Pell sequences.

, and

1-5
2

For the Fibonacci sequence, we have a — S = J5 , B=

(3.48) iF ; = 21:_/5[L(,Bz’)—ZL(,B4’)+2L(,38’):|+’B; .

r=l Srnd r(nt) r r

For the Pell sequence, we have a - § = 22 and p=1- V2, and

r

6o 33 }1( : - 8207 (g)-au(pv) 2z ()] 25|

r r

Lemma 3.5.3 Suppose A=-B=a -, q=-1, and r is a positive odd integer. Then
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1 = 1 a -f
3.50 2 +(a=-p)U, ) =——|where U, = .
( ) ;arnW arn/r (a ﬂ) r Z“:W,,,W,(M) where r a-ﬂ

Proof: Since A=-B =a - B, by the Binet form, it is easy to see that W,, =a™ + "

arnf,(m_l) + u/rn =a '(ar(nﬂ) +ﬂr(n+1))+(arn +ﬁrn)
= (@ +(ap) p7)+(a”+£7)
o' +(=1) B +a’"+ B’ since off =-
=gV 4+’ sincerisodd
ar(n-#l)(ar +_1;_]
a
a'("“)(a’ - ,B') since aff = -1, ris odd

e ar(m)(a,_ﬂ,)
I rEr)

(a-B)a™U,.  (*¥

Hence, it follows that

1 1 Wt W,
arnW + ar(n+1)W r(n+1 W W
rn r(n+1) r(n+1)
r(n+1
a a
( r n+1ﬂ) r by (**)
W Wr(n+1
_(a-B)U,
n/rnnyr n+l
- (a-H)0,
Therefore, it follows that + =
Z ; r("ﬂ Wr(n+l) ; W/’nm n+l)
Since i l i 1 , it implies that
= a oW, Wa

r(n+1)
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1 z:(oz B)U,

n=1 W Wr( n+l)

>3

e a"'W QW

Lemma3.5.4 Suppose A=-B=a-p,q=-1, and ris a positive odd integer. Then

(3.51) i L =L(p*)-2L(B")|

rn
el & Wr"

Proof: Using the Binet form for W, , with condition A =

- B =0a-f, we have

1Ms
Q\

rn

Z Substituting a = - and simplifying, we get
el z

© 2m

Z rnW Zl+( 1)m 2m'

Now, expand the right hand side of this equation; we get

o ﬂZrn ® (ﬂz’ )Z'H.1 ® ﬂ4rn
nzzll_(_l) 2rn ;1 ( )2n+1 §1+ﬂ4rn ’

Using (3.35) with x = % and (3.36) withx = S*", we get (3.51).

Theorem 3.5.2 Suppose A=-B=0a-f3,q=-1, and r is a positive odd integer. Then

= 1 2 2 8r §
(3.52) ;WnW, :(a—,B)U [L(,B )—ZL(,B )}+'B— where

e () ' (a-B)UW, T
U=-22F w-vip
a-B"

Proof. From (3.50), we have
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- 1 1 - 1 1
= 2 -
; H/rnn/r(nﬂ) (a - ﬂ)Ur [ ; a’"nfm a’¥, J

r

=w_—lﬁm,j{2(L(ﬁz')-2L(ﬂs'))‘;7!u7

r

} by (3.51).

Replacing 1__ [ in the right side of the above equation yields (3.52).
a

Here are some special cases of theorem 3.5.2.

With condition A = - B = o - 8, we can apply (3.52) to yield following results.

1-8

For the Lucas sequence, we have a — § = N B = — , U =F, and

. 1 _ 2 2ry _ 8r ﬂr
65 g )2

For Pell-Lucas sequence, we have a - f§ = 2J2, f=1-42, U =P, and

c 1 - 1 2ry _ 8r ﬂ’
639 o )2 My

If r = 1, then by (3.48) we have (3.55) and (3.56) by (3.53).

(3.55) Z

A A

e 21 (3-45 47-215)| 1-+/5
o B

More information about the applications of the Lambert series can be found in Andre —

Jeannin [2].
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