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Abstract

RESULTS ON
CHROMATIC SUM OF GRAPHS

by Sundararajan Arabhi

The chromatic sum of a graph G is the smallest sum of colors on the vertices
among all the proper colorings with natural numbers. The strength of G is the number of
colors that are used to attain the chromatic sum. In this thesis, we study some
constructions of trees which demonstrate that the number of colors required to achieve
this chromatic sum may be far from trivial. We then extend this result to two other
constructions of general graphs that are not trees. We also compare and contrast these

classes of graphs in terms of their orders and strengths.
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Chapter One

Background

Introduction

Graph coloring is an area of Graph Theory that has received much attention over
the years. Its prominence is undoubtedly due to its involvement with the Four Color
Problem, which is easy to state and understand, but the proof of which remained
unknown from 1852 to 1976. The Four Color Theorem states that any map that can be
drawn on the surface of a sphere can be colored with four colors in such a way that each
country has exactly one color and any two neighboring countries have different colors.
We notice that with any map we may associate a planar graph whose vertices correspond
to countries and edges join two vertices if the corresponding countries share a common
border.

A coloring of a graph is an assignment of colors to the vertices so that adjacent
vertices have different colors. The minimum number of colors is given a special name —
the chromatic number.

In this thesis we study a new variation of the chromatic number of a graph.
Firstly, we use natural numbers 1, 2, ... instead of colors blue, red, ... on our graphs.
Secondly, instead of minimizing the numbers of colors in a coloring, we minimize the
sum of these colors over all vertices and call this sum the chromatic sum.

At first glance it may seem that the chromatic sum should be achieved by the

same number of colors as the chromatic number. But it is a surprising fact that there are

1



numerous examples of graphs whose chromatic sum is achieved by using a much larger

number of colors than the minimum (chromatic) number. A simple example follows.

1 2
2 /
le e ?
1 \2
1 1
2 /
: \=1
1 1

Figure 1.1. Example of trees.

In Figure 1.1 above, we notice that the sum of colors is 12 when we use two
colors, but the sum of colors is reduced to 11 by adding a color 3. From the example
above, it can be seen that although trees require only two colors to color them properly,
their chromatic sum can be achieved by using additional colors. In this study we shall
show that this result not only holds for trees but also for general graphs.

A generalization of the chromatic sum is the cost-chromatic number of a graph G
first studied by Supowit [8]. Instead of limiting the colors to just natural numbers, he

extends these to any positive rational number and calls them costs. This will not be



studied in this thesis and we are not going to consider it any further. The interested reader

can refer to [6], [7], and [8].

Terms and Definitions

We now formally introduce many of the basic terms, notations, and definitions
that will be used in this thesis. We shall define other more specialized terms as needed in
the body of the text.

A graph G is a finite nonempty set of objects called vertices, together with a
(possibly empty) set of unordered pairs of distinct vertices of G called edges. The vertex
set is denoted by V(G), while the edge set is denoted by E(G). The edge uv is said to join
the vertices u and v. If e =uv is an edge of a graph G, then u and v are adjacent vertices,
while u and e are incident, as are v and e. It is customary to define or describe a graph by
means of a diagram in which each vertex is represented by a point and each edge e = uv
is represented by a line segment joining the points corresponding to u and v. A graph H is
a subgraph of a graph G if V(H) < V(G) and E(H) ¢ E(G).

The cardinality of the vertex set of a graph G is called the order of G, and is

commonly denoted by | G| . The degree of a vertex v in a graph G is the number of edges
of G incident with v, and is denoted by d;(v). The maximum degree of G is the

maximum degree among all the vertices of G and is denoted by A(G).



A graph G, is iéomorphic to another graph G, if there exists a one-to-one
mapping ¢, called an isomorphism, from V(G,) onto V(G,) such that ¢ preserves
adjacency, that is, uv € E(G,) ifand only if ¢u¢pveE(G,).

A graph is said to be complete if every two of its vertices are adjacent. Such a

graph of order k is denoted by K, . A graph is said to be bipartite if its vertex set V can
be decomposed into two disjoint subsets V, and V, such that every edge in G joins a

vertex in V, with a vertexin V,.

A u-v walk of G is a finite, alternating sequence of vertices and edges

U= U,,€,U,,€,, -..,U,_;,€,U, =V, beginning with vertex u and ending with vertex v,
such that e;=u, \u, fori=1, 2, 3, ..., k. A u-v trail is a u-v walk in which no edge is

repeated while a u-v path is a u-v walk in which no vertex is repeated. A nontrivial
closed trail of a graph G is referred to as a circuit of G, and a circuit whose vertices are
all distinct (of course except the first and the last vertices) is called a cycle. An acyclic
graph has no cycles.

A vertex u is said to be connected to a vertex v in a graph G if there exists a u-v
path in G. A graph G is connected if every two of its vertices are connected. A graph that
is not connected is called a disconnected graph. A component of G is a connected
subgraph of G not properly contained in any other connected subgraph of G.

Among the connected graphs, the simplest yet very important, are the trees. A tree
is an acyclic connected graph, while a forest is an acyclic graph. Thus every component

of a forest is a tree. A bridge of a graph G is an edge which when removed from G leaves

4



the graph disconnected. We observe that a graph is a tree if and only if each of its edges
is a bridge.

Let u, and u, be non-adjacent vertices of graph G. Form a graph H from G by
replacing vertices u, and u, with a single vertex u,,. Any edge of G joining two vertices
different from u, and u, is an edge of H. Also if wu, or wu, is an edge of G, for any
vertex w different from u, and u,, then wu,, is an edge of H. We say H is formed from
G by identifying u, and u, .

The ceiling of any real number x, denoted by |-x] , is the smallest integer greater

than or equal to x, and the floor of x, denoted by | x |, is the largest integer less than or

equal to x. For example [4.32] =5,and | 432 ] =4.

Let N be the set of all positive integers. A proper coloring of the vertices of a
graph G is a function f: V(G)— N such that if u and v are adjacent then f(u) # f{v). We
call f{u) the color of u. The chromatic number, y(G), is the smallest number of colors
that can be used in a proper coloring of G. The chromatic sum, Z(G), is a recent
variation introduced in the dissertation of Ewa Kubicka [5]. It is the smallest possible

total over all vertices, Z f(v), that can occur among all proper colorings of G using
veV(QG)

natural numbers. For any coloring f, the sum Z f(v) is also called the cost of coloring
veV(G)

f. A proper coloring ¢ of a graph G is called a best coloring of G whenever



Z c(v) = Z(G). The strength s(G) of a graph G is the minimum number of colors

veV

needed to obtain a best coloring.

Preview

In this thesis, we study some aspects of the fairly new concept of chromatic sums.
As we have already seen, the minimum sum of colors might be achieved by using more
than the minimum number of colors. In Chapter Two we first describe the construction of
a family of trees which on one hand have arbitrarily large strengths and on the other hand
are of the smallest order. Then we go on to calculate the order and maximum degree of
these trees and compare these parameters for various constructions.

Even though the trees constructed in Chapter Two are the smallest possible, they
have a huge maximum degree. In Chapter Three we study a construction of trees with
arbitrarily large chromatic sums, large orders, but comparatively smaller maximum
degrees.

Lastly, in Chapter Four we describe the construction of two classes of graphs that
are not trees but still have arbitrarily large chromatic sums. At the end we compare the

strengths and orders of the two constructions.



Chapter Two

Kubicka’s Construction

Having introduced the idea of chromatic sum, it is interesting to note that the
minimum sum of colors might very well be achieved by using more than the minimum
number of colors, i.e. s(G) can be equal to or greater than %(G). One might think that a
minimum cost coloring can be obtained by selecting a proper coloring with the minimum
number of colors and then giving the largest color class color 1, the next color 2, and so
on. However, even among trees, which are bipartite and hence have chromatic number 2,
more colors may be needed to obtain a minimum cost coloring. On page 2 we have
shown such an example where s(T) = 3 > y (T) = 2. The example shows that sometimes
we are forced to use additional colors to obtain the chromatic sum. In fact s(G) may be

arbitrarily large even when (G) = 2.
In this chapter we will construct a family of trees T;" to demonstrate that for each

k, some trees need k colors to achieve their chromatic sum. In fact, we shall prove that in
our family of trees we have the smallest tree in which color k is forced to appear in every

best coloring. This work appeared in Kubicka and Schwenk’s paper [4].



Construction of the tree T,

We recursively construct rooted tree T," and then show that T," has strength k,

that in any best coloring of T;" color k must be used on the root, and that any change
from color k on the root to a lower color will increase the total cost by at least m.

Let T} be the rooted tree with one vertex. We now construct T,", k > 2,

recursively by joining a root r to various copies of T/. Specifically T is the unique tree

k-1
such that T"~r= | J (m+k - i)T}. Some examples are shown in Figure 2.1 below.

i=1

T;:

Figure 2.1. Examples of T;".



m :_..
In general, T," is:

. . o .
m+k—1 times m+k-—2 times m+1times

Figure 2.2. General graph of T;".

Theorem 2.1. For k > 2, the tree T," is the unique smallest rooted tree for which the
Jfollowing hold:
a) The strength of T\ is k.

b) In every best coloring, color k is forced to appear at the root, and

¢) Any change of the color k at the root to a lower color must increase the total cost by
at least m.

Proof. (by induction on k)

Base Condition:

1

Note that T;"~r= | J(m+2 - i)T

i=1

=m+1)T.



Hence T, looks like the following:

A\ v

m +1 vertices adjacent to r

Figure 2.3. Graph of T,".

It is clear that the strength of T," is 2. Also, it is easy to see that T," has to have
color 2 at the root in any best coloring, and changing it to 1 increases the total cost by m.

To complete the base case, we have to show that T," is the smallest such tree. Note that

|T,'| =m+ 2. Let T be a smallest rooted tree of strength 2, with the root colored 2, such

that reducing the color on the root increases the total cost by at least m. Also let ¢ be the
corresponding best coloring of tree T, and b be the number of vertices colored 2 by c.
Lemma 1. Tree T has at least b + m vertices colored 1 by c.
Proof. On the contrary, we assume that T has b + m — s, s > 0, vertices colored 1.
Hence the total cost is 2b + (b + m — s) = 3b + m — s. After interchanging colors,
the total cost is 2(b + m —s) + 1b = 3b + 2m — 2s. The difference in cost is
(3b + 2m - 25) — (3b + m — s) = m — s < m, which contradicts the fact that
changing the color on the root costs at least m. Thus, T has at least b + m vertices

colored 1, which proves the lemma.

10



By Lemma 1 we obtain | T|>2b+ m2>m + 2. If2b + m > m + 2, we have a
contradiction to the fact that T is a smallest rooted tree, therefore | T |=2b+ m=m + 2,
and it follows that T = T,".

Induction Hypothesis:

Assume that the theorem is true for T" for each j, 2 <j <k. Let T(i, m) denote a
tree of smallest order of strength i, where color i must be used on the root and the use of
any smaller color on the root increases the total cost by at least m.

Induction Step:

Consider T(k + 1, m) and a best coloring c of it. We will show that T(k + 1, m)
must be T.},. After removing the root from T(k + 1, m), we are left with a forest of
rooted trees. Let F (k + 1, m) denote the subforest containing all those trees with roots

colored 1.
Lemma 2. F (k + 1, m) is a smallest forest with the property that changing the
color 1 at the roots to any other color increases the cost by at least k + m.
Proof. First we assume, on the contrary, that changing the color 1 at the roots of
E (k + 1, m) to any other color costs t which is less than k + m (i.e. t <k + m). Let
r be the root of T(k + 1, m). Now, change the color at r from (k + 1) to 1, thus
saving a cost k. Since the change of color on F (k + 1, m) costs t <k + m, the total

change in cost of coloring T(k + 1, m) is t — k < m which is a contradiction to the

definition of tree T(k + 1, m).

11



Now assume, on the contrary, that there exists a smaller subforest with the
property that changing the color 1 at the roots to any other color costs at least
k + m. Then there exists a smaller graph compared to the original graph
T(k + 1, m). This is a contradiction because T(k + 1, m) is the smallest tree of its

kind. Hence the lemma is proved.

We also notice that F, (k, m + 1), a subforest of T(k, m + 1), has the same
properties as F (k + 1, m). That is, changing color 1 at the roots to any other color costs at
least k + m. The proof is similar to the above. Assume, on the contrary, that changing the
color 1 at the roots of F (k, m+ 1) to any other color costs p which is less thank + m
(i.e. p <k + m). Now, change the color at the root of T(k, m + 1) from k to 1, thus saving

a cost (k — 1). Since the change of color on F, (k, m + 1) costs p < k + m, the total change
in cost of T(k, m + 1) is p— (k — 1) <m + 1 which is a contradiction to the definition of

tree T(k, m + 1). Also, F (k, m + 1) is a smallest forest such that changing color 1 at the
roots to any other color costs at least k + m. Now F (k, m + 1) and F (k + 1, m) each have

the property that it is a smallest subforest such that changing the color 1 at the roots

increases the cost by at least k + m. By the induction hypothesis we know that
k-1

Tk, m+ 1) = T;"", and because T = | J(m+1+k—i) T, , we have
i=1

F (k, m+1)=(k+m) T. That is F(k, m + 1) is simply a forest of k + m isolated
vertices. Since F (k + 1, m) has the same properties as F, (k, m + 1), it follows that
F(k+1,m)= F(k m+1).

12



Let E(k + 1, m), 1 <1<k, be the subforest of T(k + 1, m) containing all trees
with roots colored i. We have already shown that F(k + 1, m) = (k + m) T. If we show
Ek+1,m)y=(k+1+m-1)T for1<ic<k, thenclearly T(k + 1, m) = T}, which will
complete the proof of the theorem.

Specifically we show F, (k + 1, m) = (m + 1) T., the argument for other
E (k + 1, m) being analogous. Now similar to Lemma 2, E_(k + 1, m) is a smallest forest
with the property that changing the color k at the roots to other colors costs at least m + 1.
Also by the induction hypothesis the forest (m + 1) T, has all the roots colored k, and any
change of that color costs at least m + 1. Therefore | F&k+1, m)| <(m+1) | TI:I . Now
we will prove that | E (k+1, m) >(m+1)] TIH .

Consider the subtree T, of T(k + 1, m) consisting of the largest connected
component of T(k + 1, m) containing the root and only vertices colored k + 1 and k.
Among all possible T(k + 1, m), we select one which has the fewest number of vertices

colored k occurring in the corresponding subtree T,. Let b denote the number of vertices
of T, colored k + 1.
Lemma 3. T, must have at least m + b vertices colored k.

Proof. On the contrary, let the number of vertices colored k in T, bet<m + b.

Now, if we change vertices colored k + 1 to k then we save b, and changing
vertices colored k to k + 1 costs t <m + b. Therefore the net cost change for
T(k+1,m)ist—b<m+b—b=m, a contradiction to the properties of

13



T(k + 1, m). Hence, the lemma is proved.

Now, call the vertices colored k in T, as v,,v,,...,v,, 2m+b). Let S,denote
the subtree of T(k + 1, m) with root v, which is formed after deleting all edges between
v; and any vertex colored k + 1.

Lemma 4. There must be at least m + 1 of these subtrees S, ’s for which

RSk

Proof. Assume not, i.e. let there be fewer than m + 1 S, ’s for which| S,/ >| T!| .

Recall that T, is the smallest rooted tree with strength k in which color k is forced

to appear at the root and any change of this color k to a lower color must increase

the total cost by at least 1.

Thus | S,/ < | T!| means that S, has a best coloring ¢’ which uses a
different color at the root, either smaller than k or larger than k.
Case 1. At least one of the S;’s, where | Si| <| Tﬂ , has a best coloring ¢’ which
uses a color smaller than k on its root. In this case we can change our best
coloring of T(k + 1, m) by just using ¢’ on this S, obtaining a best coloring of
T(k + 1, m) with smaller number of vertices colored k in T,, a contradiction to
our definition of T, .
Case 2. The color on the root of one of these S, ’s, where | Si| <| Tlil , 1s at least

k + 2 in a best coloring ¢’. Then the strength of T(k + 1, m) is at least k + 2, a

contradiction.

14



Case 3. Each S, with| S,/ <| T!| has a best coloring ¢’ with root colored

k + 1. Thus the color on the roots of these S;’s can be changed fromk to k + 1 at
no cost. So we swap colors k + 1 and k throughout T, . This produces no change
in cost on these smaller S.’s, whereas it produces a total change of at most m on

the other S;’s, and reduces the cost at each vertex colored k + 1 by 1. Thus the

change in cost is less than m, a contradiction to our definition of T(k + 1, m).

Thus the lemma is proved.

Therefore | Ek+1, m)| >(m+1)| TH . Hence we can now conclude that
| E (k+1, m)=(m+1)| Tl:| . Furthermore we now know that T(k + 1, m) has exactly
(m + 1) copies of S, and for each i, | S, | = | T, | and the root of each S, is colored k.
Lemma5. S, =T, Vi

Proof. Assume otherwise. Recolor the root of T(k + 1, m) with k and recolor all

roots of the S,’s with a color smaller than k. For each S, which is a T}, the cost of
recoloring is at least 1. For each S, which is not a T|, the cost is at least 2

because T, is unique. Therefore the total cost of the recoloring is at least m + 1,
contradicting the definition of T(k + 1, m). Thus Lemma 5 is proved.
Therefore F, (k+ 1, m)=(m+ 1) T, which implies T(k + 1, m) = T.:,, and this

completes the proof of Theorem 2.1.00J

15



Denote by T, the unrooted tree formed by adding an edge between the roots of

two copies of T ,.

Figure 2.4. Graphof T, .
We let t,' denote ‘T:"

Theorem 2.2. T, is the unique smallest tree in which color k is needed in every best

coloring.

Proof. Let F_be a smallest tree that requires k colors in every best coloring, and suppose
we have a best coloring of F, . Let e = v,v, be an edge joining v, (colored k) with vertex
v, (colored k — 1). Such an edge exists, since if not, then v,can be recolored k — 1, a
contradiction to the fact that we started with a best coloring of F . Removing edge e
leaves two trees S, and S, which contain vertices v, and v, respectively. Now in order
to prove that T, is the smallest tree in which color k is needed in every best coloring (i.e.
T, = E ), the following lemmas are proved.

Lemma 1. There is a best coloring of F_, with exactly one vertex, say v,,
colored k.

Proof. Suppose, on the contrary, that there exist two such vertices u, and v,

colored k. Remove u, from the graph F, and let S be the component containing
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v,. Then S is smaller than F,_which is a smallest tree requiring (at least) k colors
in every best coloring. Therefore there exists a best coloring of S that uses less
than k colors. Keeping this best coloring on S and the original coloring on F, — S,
we now have a best coloring of F, which is either less costly than the original

coloring, a contradiction, or has the same cost as the original best coloring, but

with one less vertex colored k. If there are more than two vertices colored k, then
by continuing this process we can find a best coloring of F, using k colors which

has only one vertex colored k. Hence Lemma 1 is proved.

Lemma 2. Each best coloring of F, with only one vertex v, colored k, has only
one adjacency of v, colored k — 1.

Proof. Suppose, on the contrary, that u, and u, are adjacent to v, and have color
k — 1 in some best coloring ¢ with v, the only vertex colored k. Now form a new
tree F from E_ by identifying u, and u,, and call this new vertex u,,. Tree F is
smaller than E_ by one vertex and thus has a best coloring ¢’ which requires less

than k colors. Since c¢'is a best coloring, the total cost of it on F is less than or

equal to the cost of applying ¢ to F. Now split u;, back to u, and u, to reform F,

keeping the coloring ¢’ on F, . The resulting coloring uses less than k colors.

Let C(G) be the total cost of the coloring ¢(G), where G is any arbitrary graph.

Then C'(F) < C(F). Therefore

C'(F) = C(F)+c'(u,,) < C(F)+c'(u,,) < C(F)+k-1=C(E,).
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This contradicts the fact that every best coloring of F, uses k colors, thus Lemma

2 is proved.

Lemma 3. Given any best coloring ¢ of F,_ with only one vertex v, colored k and
only one vertex v, colored k — 1, we still have a best coloring of S, when edge

€ = v,v, is removed.

Proof. Assume we do not have a best coloring of S,. Then the following cases
arise:

Case 1. If a best coloring of S, uses fewer than k — 1 colors, then recolor v, with
k — 1. Thus the cost of coloring F, has been reduced, a contradiction.

Case 2. If a best coloring ¢'of S, uses more than k — 1 colors, then since ¢
applied to S, is not a best coloring, it follows that ¢’has smaller cost than c
applied to S,. Applying ¢'to S, and ¢ to S, reduces the cost of coloring F,, a

contradiction.

If neither case 1 nor case 2 occurs, then every best coloring of S, uses k
colors, which contradicts the minimality of F, . Thus Lemma 3 is proved.
Lemma 4. Any best coloring of S, has v, colored k — 1.
Proof. Assume otherwise. Then there exists a best coloring of S, with v, colored
more than k — 1 or v, colored less than k — 1. In the latter case we have a
contradiction since we can use this best coloring of S, together with ¢ applied to

S, to give a best coloring of F, with less than k colors.
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In ¢(S,) there is no vertex colored k — 1 adjacent to v,. Therefore we can
use k — 1 on v, and reduce the cost of coloring S,. Thus if there exists a best
coloring of S, using a color greater than k — 1 on v, then this best coloring is as

cheap as that given in the previous sentence. Therefore use it together with ¢ on

S, to reduce the cost of F, a contradiction. Hence Lemma 4 is proved.

Using Lemmas 3 and 4 and starting with ¢ applied to S, and any best coloring of
S,, the following lemmas are proved.

Lemma 5. If we change the color of v, to a smaller color, the cost increase is at

least 2 on S,.

Proof. On the contrary, if the increased cost is one or less, then by Lemma 4 the

cost increase has to be 1. Now rejoin v, and v, with edge e. Using coloring ¢ on

S, and this new coloring of S, F,_now has a coloring with less than k colors at a

cost no more than that of a best coloring, a contradiction.

Lemma 6. If we change v, to a smaller color than that given by ¢, then the cost

increase is at least 2 on S, .

Proof. Note that there is a cost increase, for otherwise we can use the new

coloring on S,, k — 1 on v,, and c on S, — v,. This results in a smaller cost

coloring of F,, a contradiction. If the cost increase is only 1, then again using

k—1on v, and c on S, — v; we have a best coloring of F, with k — 1 colors, a

contradiction, which proves Lemma 6.
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Hence from Lemmas 5 and 6, S, and S, have the properties of T ,. Also, since
E_ has minimum order, S, and S, are the same as T ,. Hence E = T,, which proves

Theorem 2.2.0J

Order of Kubicka’s Graphs

Theorem 2.3. For k > 2, the order of T, is given by
212 = 22, = =[N ) - 2-NE ).
J2
Proof. The equation defining these trees immediately gives the recurrence

k-1
T R S N @.1)

i=1
We show, by induction on k, that the recurrence relation t; =4t>  —2t2 , holds.
Base Condition:

We know from equation 2.1 above that t; =4, t; =14, and t2= 48, and we

notice that 4t — 2t = 48 = t. Hence the recurrence relation holds for k = 4.

Induction Hypothesis:
Assume that k > 5, and that the recurrence relation has already been proved for all

L,4<i<k
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Induction Step:

Note that
t2—4t2 4262, = 1+ kZ_E(ku—i)t‘—4—4§(k+1—i)t‘+2+2§(k—i)t.‘
k k-1 k-2 { i ¢ i = [
i=1 i=1 i=

Adjusting the indices in the second and third summations and collecting the isolated

terms, we get

k-1 k-1 k-1
2 —4t2 4202, == 1+ 3 (k+2- Dt =43 (k+2- Dt +23 (k+2- DL,
i=2

i=1 i=3

=1+ (k+Dt;+kt), +(k-1)t; —dkt; — 4k - Dt,+2(k - Dt

k-1 k-1 k-1
+ Y (k+2-D)t; - 4> (k+2-Dt, +2) (k+2-i)t],
i=4 i=4

i=4
k-1
=0+ Y (k+2-i)(t; -4t +2t],), because t;=1, t,=3, t;=10.
i=4
The final summation equals zero since the induction hypothesis guarantees that all the
terms of the form t -4t +2t!, have value 0 for all i, 4 < i < k. Hence,
tr =4t —2t2,.
Now, it’s left to solve the recurrence relation t; =4t2_ —2t> , with the initial
conditions t;=4,and t; =14, k > 2. The characteristic equation we obtain is
x*?(x*-4x+2) = 0, ie. x*—4x+2=0, the rtoots of which are

A =2+v2, and &, = 2—+/2.. Therefore the recurrence relation t> =4t2_ 22, has the
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general solution t2 =(2++/2)*A, +(2—+2)*A,. With the initial conditions we get the
following system of linear equations:
2 =4=2+2)’A,+(2-+2)*A,

2 =14=2+2) A, +2-2)A,.
1 1
The solution to the above is given by A, =—=, and A, =———=. Hence the exact
SR TR T T Tk

solution to the recurrence relation with the given initial condition is

2 1
| TZ|=t; =EJ—§—[(2+J'2')“—(2—J5)“].

Of course, by definition of T, | T,| = 2t} , = ?/1—_2—[(2+\/_2_)k'1—-(2—\/§)k‘1]. Hence

Theorem 2.3 is proved.[]

k(k-1)

Theorem 2.4. Tree T", k > 2 has maximum degree m(k — 1) + p

Proof. The root of T clearly is the vertex of maximum degree.

k-1

k-1
Since, Ty —r = [Jm+k - DT, dpm (r) = 2 (m+k-i)
i i=1

i=1

= (m+k-1)+(m+k-2)+...+(m+1),m=>1
= mk-1)+ Wk(l(z_l) 0

2
Corollary 2.5. Tree T, , k > 2, has maximum degree approximately —.
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For the various values of m, the smallest T is clearly T. We first find a simple

upper bound for the order of T, and then find a somewhat more complicated exact value

for the number of vertices in T; . Let t, denote Ti" :

k
Theorem 2.6. For all integral values of k, t, < (gj .

Proof. It can be easily verified that t,= 1, t, = 3 and t, = 10. From the definition of T}

k-1
we know t,=1+ > (1+k-Dt,

i=1
=1+kt,+(k-1Dt, +(k-2)t; +(k-3) t,+... +3t_,+2t,_,
=1+k-Dt,+k-2)t,+(k-3)t;+...+2t,,)
+(t Ht, Lt ) 28
=ty Tt F, Lt )+ 28,
=(t, +t,+t,+ ..+t )+ 3t .
Sincek—i>2for0<i<k-2andk>2,
t, =l+k=Dt +k-2t, +(k-3)t, +...+2t_, 22(t, +t, +t, +... +t,_,).

This yields,

1
tk < Etk—l +3tk-—1 =

SN RN

k-1 k-1 k-1
7.7 7 7 7
tey < 5(5 te,)S . < (5) te gty = (5) t, =(5) .

k-1
Hence an upper bound for t, is (%) .0
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Before calculating an exact value of t, , we look at some initial t;’s:
t, =1;
t, =1+2t, =3;
t, =143t +2t, =1+3+6=10.
We will look at the next few t,’sinterms of t,, t,, and t,.
t, =1+4t, +3t, +2t, =1+4+9+20=34;
t, =1+5t, +4t, +3t, +2t,
=3+13t,+10t, +7t, =3+13+30+70 =116;
t, =1+6t, +5t, +4t, +3t, +2t,
=10 +44t, +34t, +24t,=10 + 44 +102 + 240 = 396.
We notice that t, =t,_; +(t,_, +t, )t +t,_,t, +(t,_, —t, _)t; =14t _, — 8t for
k=4, 5, and 6, which leads us to the following theorem.
Theorem 2.7. t, =14t, ,—8¢,_;, for k >4.
Proof. In order to prove the theorem, we simply show that the right-hand side (RHS) and
left-hand side (LHS) are equal.
RHS
=14t , - 8t,
k3
=141+ Z(k—i—l)ti )-8t
i=1

= [140+ (k= 2)t, + (k= 3)t, +...+ (k—i—Dt, +...+2t,_;)] - 81,
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= 141+ (k- 2)t, + (k= 3)t, +...+ (k—i—Dt, +...+3t,_,)+28t,_; — 8t ,
k-4 k-4
=141+ Y (k-i-Dt, )+ 20(1+ Y (k—i-2)t,)
i=1 i=1
k-4
=14+20+ Y [14(k -i-1)+20(k —-i-2)]
i=1

k-4

=34+ ) (34k-34i-54)t;.

k-1
=1+ Y (k—i+y
i=1
k-4
=(1+ > (k—i+Dt;) + 4t,_, +3t,_, +2t,,
i=1
k-4 k-4 k-4
=1+ D (k=i+Dt;) +4(1 + Y (k—-i-2)t;) +3(1 + D> (k—i-Dt; +2t,_;)
i=1 i=1 i=1
k-4
+2(1+ 3 (k=i)t; +3t,_; +2t,_,)
i=1
k—4 k-4 k-4
=1+ Y (k—i+Dt) +4(1 + D (k—-i-2t;) +3(1 + D (k-i-Dt;)
i=1 i=1 i=1
k-4
+2(1+) (k=i) ;) + 12t +4t,_,
i=1
k—4 k—4 k-4 k-4
= 1+ ) (k=i+Dt)+4(1+ D (k-i-2)t)+301+ Y (k—i-Dt)+2(1 + Y (k-i)t;)
i=1 i=1 i=1 i=1

k-4
+ 12t 5 +401+ ) (k—i-Dt, +2t,_,)

i=1
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- - — k-4
= (1+§(k—i+1)ti)+4(l+§(k—i—2)ti)+3(l+§(k—i—1)ti)+ 2(1 + Z(k-—i)ti)
i=1 i=1 i=1 i=1
+20t,_, + 4(1+§(k—i—1)ti)
k-4 k-4 k-4 k-4
= (1+Z(k—i+1)ti)+4(1+Z(k—i—2)ti)+3(l+Z(k—i—1)ti)+2(l +> (k-i)t;)
i=1 i=1 i=1 i=1

k-4 k-4
+20(1 + Y (k=i-2)t,) + 401+ (k—i-Ix,)
i=1 i=1
=(1+4+3+2+20+4)

+ g[(k—i+1)+4(k—i—2)+3(k—i—1)+2(k—i)+20(k—i—2)+4(k—i—l)] t.

i=1
k-4
=34+ ) (34k—34i-54)t,
i=1

= RHS.

Hence the theorem is proved.(]

k
Theorem 2.8. For each k > 1, 1, = [.25(2+\/§ ) ]

Proof. We solve the recurrence relationt, =14t, , — 8t, ; to find an exact value of t, .
The characteristic equation we obtain is x*(x>—14x+8) = 0, ie. x>—14x+8=0,
which can be factorized into (x + 4)(x*> —4x+2) = 0. The roots of the characteristic

equation are A, =-4, A, =2+ V2, and Ay = 2-+/2. Therefore the recurrence relation
has the general solution t, =-4%A, +(2+\/—2-)“A2 +(2—\/_2_)kA3. With the initial

conditions t,=1, t, =3, and t; = 10, we obtain the following system of linear equations:
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t

1=—4A,+2+V2)A, +2-2)A,

t,=3=—4A,+(2+2)’A, +(2-2)’A,
t,=10=—4°A, +2+V2)’A, +2-V2)’A,.
The solution to the above is given by A, =0, A, = A; =0.25. Hence the exact solution to

the recurrence relation with the given initial condition is t, = 0.25[(2+ 2 Y +Q2- 2 )*1.

Since 0 < (2-+2)*<landk>1, tk=[ 0.25(2+\/'2')k], and thus the theorem is

proved.[]
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Chapter Three

The Construction of Jiang and West

In Kubicka’s construction in Chapter Two, the tree with strength k has maximum

2
degree about k? In the following theorem, by Jiang and West [4], we construct for each

k> 1 atree T, with strength k and maximum degree 2k — 2. Given a proper coloring f of

atree T, weuse ) ftodenote Y f(v).

veV(T)

Construction

Linearly order the pairs of natural numbers so that (p, q) <(i, j) ifp+q<i+]}, or

if p+q=i+jand q <j. With respect to this ordering, we inductively construct, for each
pair (i, j) € NxN, arooted tree T' and a coloring £’ of T/. In other words, we construct
trees in the order T, T, T’,T;, T/, T;, .... Our desired tree with strength k will be T,.
Let [n]={keZ:1<k<n}.

Let T be a tree of order 1, and let f;' assign color 1 to this single vertex.
Consider (i, j) = (1, 1), and suppose that for each (p, q) < (i, j) we have constructed tree

T and coloring f,/. We construct T) and f/ inductively as follows. Let u be the root of

Tij . Foreachk such that 1 <k <i+j—1 and k # i, we take two copies of T,", where
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m=[(i+j-k)/2]. Note that we will have (i+j— 1) — 1 =i+ j— 2 different values of k.
We join each root of these trees to u to form T/ (see Figure 3.2). We define the coloring
f/ of T! by assigning i to the root # and using f;" on each copy of T;" rooted at a child

of u. See Figure 3.1 for examples of T’s.

Tllt le

Figure 3.1. Specific examples of T'.
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2 copies 2 copies 2 copies
1<k<i+j-1 and k= i
Figure 3.2. Construction of T.
Lemma 3.1. For (i, j) € NxN the construction of T/ is well defined, and f’ is a
proper coloring of T/ with color i at the root.
Proof. To show that T is well defined, it suffices to show that when (i, j) # (1, 1), every
tree used in the construction of T’ has been constructed previously. We use trees of the

form T, where k € [i+j— 1] - {i} and m=[(i +j—k) /2. It suffices to show that

k+m<i+jand that m<jwhenk+m=i+j.
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For the first statement, we have
k+m=k+[@+j-k/2]=TQk+{i+j-k)/2]

=[i+j+k)/2]

<[G+j+@G+j-1))2],since 0 <k < i+j—1

=i+].

Now let k + m =i+ j, which implies k =i+ j — m. Also from above,k + m=1i+j
impliesi+j—1=k. Hence m=1. Thusk =i+ j— 1 and hence j > 2 because k # i, which
yields m < j. Since the trees whose indices sum to i + j are generated in the order

Thit> - I, the tree Ty exists when we need it.

Finally, £ uses color i at the root of T/, by construction. Since the subtrees used
as descendants of the root have the form T* with k = i, by induction the coloring £ is
proper.

Theorem 3.2. The graph T and the coloring f;’ have the following properties:

a) If f' is a coloring of T/ different from f/, then > f' > Z f; . Furthermore, if
/" assigns a color different from i to the root of T/, then ) f'=>" f/ > j.

b) If j = 1, then A(T’)=2i-2, achieved by the root of T'. If j > 2, then
AT )= 2(i+]) -3.

¢) The highest color used in f is (i +j— ).

Proof. a) We use induction through the order in which the trees are constructed.
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Base Condition:

T, is just a single vertex, and f;' gives it color 1. Conditions (a), (b), and (c)
automatically follow.
Induction Hypothesis:

Properties (a), (b), and (c) hold for any tree T," where (1, 1) <(k, m) <(j, j).
Induction Step:

We consider T/ where (i, j) # (1, 1). For simplicity, we write T for T and f

for f/. To verify (a), let f’ be a coloring different from f. The following two cases
arise:
Case 1. f”assignsitotherootuof T.

In this case, f’ and f differ on T — u. Recall that T — u is the union of 2(i + j — 2)
previously constructed trees. The colorings f'and f differ on at least one of these trees.
By the induction hypothesis, the total under f’ is at least the total under f on each of
these 2(i + j — 2) subtrees, and it is larger on at least one. Hence Z f! >Z f.

Case 2. f” assigns a color different than i to the root u.

In this case, we need to show that Z I —Z f/ =2 j. Again the induction
hypothesis gives f” a total at least as large as f on each component of T — u. If
S'(u) zi+ j, then the difference f'(u) — f(u) = @i+ j)—i=j. Hence the difference on u
itself is large enough to yield )" /=" f/ > j. So, we may assume that f'(«)= k, where
1<k<i+j—1andk+i. Since f”is a proper coloring, it assigns a color other than k to
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the roots v and V' of the two copies of T" in T — u, where m = [(i+j—k)/2] Since f
uses f;" on each copy of T,", we have f(v)=f(¥)=k. Since f'(v) and f'(v') differ
from k, the induction hypothesis implies that on each copy of T;" the total of f” exceeds

the total of f by at least m. Since the total is at least as large on all other components, we

have

, ; . . i+j-k . i+j—k) )

=) f/2k-it2m=k-i+2 > k—-i+t2l———|=].

DI/ i [ > ] i ( )
Hence part (a) of Theorem 3.2 is proved.

Proof. b) In the construction of T = T’, we join the roots of 2(i + j — 2) subtrees to the

root u. These subtrees have the form T;" for ] <k <i-landi+1<k<i+j—1, and
alwaysm=[(i+j—-k)/2]. We note that m=1 only whenk =i +j—lork=1i+j—-2.
By the induction hypothesis, the subtrees have maximum degree 2k — 2 when m = 1, and

2(k + m) — 3 when m > 1. Also note that in any case when m > 1, 2(k + m) — 3 > 2k — 2.

Thus,
S L
AT <2(k+m)—3=2 1<+[““J ] _3=2 [M 3
2 2
=2Fi+j+k 3
2

Also, we always have k + m =[ (i + j +k) / 2] for the subtree T
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Casel.j=1.

We have k < i 1, and thus A(T{") < 2[(i+1+k)/2 |- 3 < 2i — 3 because
maximum value that k can take is i — 1. Hence each vertex in T — u has degree at most
(2i-3)+1=2i-21in T. Since j = 1 and the number of subtrees is 2(i + j — 2),

dp(#)=2i—-2 which implies that A(T) = 2i — 2, achieved by the root.
Case2.j=2.

The values of k for the subtreesT;" noware ] <k<i-landi+1< k< i+j-1.
, 182(i+j—1)—2 which is

By the induction hypothesis, the maximum degree of T

i+j—
2(i+j) — 4, and is achieved by its root. In T these vertices have degree 2(i + j) — 3, which
exceeds degree of u in tree T, d;(»), which is 2(i + j) — 4. For k < (i + j — 2), we have

AT < 2[(i+j+k)/2] -3 < 2(i+j) - 5. Hence A(T) = 2(i + j) — 3, achieved by the

roots of the trees that are isomorphic to T}, 1
Proof. c) In order to prove that the maximum color used in £’ is i+ j— 1, we consider
two cases. First, however, we note that by the induction hypothesis, the maximum color
used by f” oneach T™ within f’ isk+m—1=[(i+j+k)/2]-1.
Casel.j=1.

The maximum value of k is i — 1, so that the maximum color used on the various

T is[(i+j+k)/2] —1=1i- 1. Thus our coloring //, which assigns color i to root u,

has i as its maximum color and iis (i+j—1).
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Case2.j>2.

The maximum value of k is (i + j — 1), so that the maximum color used on the
various T™ is[(i+j+k)/2] —1=[(2i+2j-1)/2] —1=1i+j— 1. This color is bigger
than i (the color used on %), thus the maximum color used on T is (i + j — 1). This
verifies (¢) and completes the proof of Theorem 3.2.01

We have proved that f/ is the unique minimal coloring of T and that it uses
(i+j—1) colors. Hence s(T!) =i+ j — 1. The maximum degree is 2i — 2 or 2(i + j) — 3,
depending on whether j = 1 or j>2. In particular, T' is a tree with strength i and

maximum degree 21 — 2.

Corollary 3.3. There exists, for each positive integer i, a tree T, with s(T;) =iand

A(T)=2i-2.
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Chapter Four

Erdos, Kubicka, and Schwenk’s General Constructions

We have already seen in Chapter Two that for trees we may need arbitrarily many

colors to achieve the chromatic sum, but the unique smallest tree requiring k colors is of
k
order O(2+\/§ ) . In other words the number of colors used in a best coloring can

exceed the chromatic number by an arbitrarily large value.

In this chapter we will see that this unexpected result is not only true for trees but
also for graphs with higher chromatic numbers. The work in this chapter originally
appeared in [3]. We will be looking at graphs that require t colors more than their
chromatic number k. We will present two different constructions.

Theorem 4.1. For every integer k > 2 and every positive integer t, there exists a graph
G, which is k-chromatic and which must use at least k + t colors to obtain its chromatic
sum.

Proof. We will construct an instance of G, by using the rooted tree T™, which was

defined recursively in Chapter Two as follows:
i~1
T, is the trivial tree with one vertex. T™ —r = U(m +1—n)T! , where r is the root

n=1

of tree T;". It was proved that T" is the smallest tree for which in every best coloring i is
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forced to appear at the root and any change of that color to a lower color must increase

the cost of coloring by at least m.

Construction A
Al . .
X1 X9 X3 ...

Kk

Figure 4.1. K-chromatic graph that requires t extra colors.

Xk

We obtain A by attaching at each vertex x; of a complete graph K, the rooted
tree T,,;. Since the best coloring of each T., requires color t + i at any root and k
different colors on the vertices of K, , the union of these colorings yields a proper
coloring. This coloring is a best one for A, because in any best coloring of T, t + i
must appear at the root. Hence any change of color on x; will not reduce the total cost on
A, . This coloring is also a best one since changing the color at the root costs at least 1 at
each tree T},,.0)
The graph A, is very simple but very costly. It produces graphs of unnecessarily

large order. Following the notation defined earlier, let t! = ‘Til‘. We know from Chapter

Two that t' = 0.25[(2 ++/2) +(2—+2)']. Therefore the order of A} is equal to
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’Altc‘ =1, +t,, +...+ t,, , and substituting the values of each t! in the equation, we

obtain the following:

Al

= 22 v2) " 2= 2) |+ 2 (23] 2= 4E)
+%{(2+\/§)t+k +(2—x/§)t+k}

= ;11.(2+\/5)t+1 [1+...+(2+\/§)H]+%(2—\/5)t+l [1+...+(2—\/§)k_1}

[2+2)" H—(M)“}(2—@‘“{1—(2—@“}
4 —1—(2+\/:—Z_) 4 1_(2_J§)

(2++2)" (2-v2)"

y Kl—(z—«/i)k)(nxfz_)}
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Al:

Figure 4.2. Graph of A].

For example |A}| =|T3|+|T;| +| ;| +[T;| =10+ 34 +116+396 = 556 . We notice that

the order of A, grows exponentially in (k + t). Therefore we want to find a better

construction that produces a k-chromatic graph with strength at least k + t of a much

smaller order. In fact in the following example, we are able to construct a 4-chromatic

graph, BZ, requiring 6 colors on only 24 vertices, a 23-fold improvement on Aﬁ in the

figure above. In this graph we have 10 copies of K, connected to one copy of K, as

shown in Figure 4.3.

Figure 4.3. Graph of B:.

Proposition 4.2. Strength of B? is 6.
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Proof. We color the graph by using colors 1 and 2 on the vertices of K,, and colors 3, 4,
5, and 6 on the four vertices of K, for a total cost of 10(1 +2) +3 +4 + 5+ 6 = 48.

Clearly the various K, ’s are colored most efficiently using 1 and 2. If we use more than
6 colors, it is obvious that the cost increases. If we use less than 6 colors, then color 2 or

1 must be used on K, .

Case 1. If 2 is used on K,, then we save 6 — 2 =4 on K,, but this increases the cost of
coloring K, by at least 5.

Case 2. If, on the other hand, 1 is used on K,, then we save 6 — 1 =5 on K,, but this
increases the cost of coloring K, ’s by at least 10.

Case 3. If both 1 and 2 are used in K, , then maximum saving is (6 — 1) + (5§ —2) = §, but
this costs at least 20 on the K, ’s. Therefore the proposition is proved.

Construction B
m copies

i

Kk

Figure 4.4. Description of construction B.
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Each of the m copies of K, in Figure 4.4 is joined to k — t carefully selected
vertices in K, below, k > t. This forms a k-chromatic graph because t colors are available
to color each copy of K; after coloring the K, with colors 1, 2, ..., k. For the j-th copy of
K,, we specify this selection by identifying the t vertices of K, not joined to copy j.
Every vertex in copy j is joined to all but vertices X, through x, where all
subscripts are taken modulo k. We show that there are values of m for which the graph
B, obtained by construction B requires k + t colors in its best coloring and that there are

small m’s which yield a B, of relatively small strength.

Let Z(G) denote the minimum possible cost of coloring the vertices of G using

1

all colors 1 through i. When the graph G is obvious from context, we shall just write Z

Thus we seek small values of m for which Z <Z for all s <t.

k+t  k+s
Definition 1: Given s < t, an EKS coloring of B; is a coloring which assigns 1, ..., s to
vertices in each copy of K,, s+ 1, ..., s + k to vertices in K, , and the remaining vertices

of the copies of K, are colored as cheaply as possible.

Theorem 4.2. For s <t, and m(k —t) 2 k, Z is achieved by an EKS coloring of B;.

k+s
Proof. Assume Theorem 4.2 is not true. Let us consider a best coloring ¢ of B, with

k + s colors which has the biggest possible sum of colors when restricted to just the

vertices of K, . Let r < k + s be the biggest color not used in K, . Then two cases arise.
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Case 1.r<t.
Lemma 1.r>s.

Proof. Let on the contrary r < s. Then by definition of r, all colors froms + 1 to

s+ k are used in K, , a contradiction to our assumption.

Lemma 2. There exists a vertex x of K, colored with some color smaller than r,

say n.

Proof. From Lemma 1 we know that the biggest color r not used in K, is greater

than s. Hence, colors r + 1 through k + s are used in K, , but k different colors

from 1 through k + s have to be selected to color K, , therefore the lemma is

proved.

Since m (k — t) > k, each vertex of K, is adjacent to at least one copy of K, .
Now consider a copy of K,, say H, connected to x in K, . Now every vertex of H is

adjacent to x and H uses the t cheapest available colors. For H, color r < t is available,
and thus H contains a vertex colored r and no vertex colored n. Now we can interchange

colors r and n for the vertices v and x. If there is any vertex v, in some other copy of K;
colored r and adjacent to x, we may also change that color to n which was not available

before. Thus we can obtain an equal or cheaper coloring of B, with a bigger sum of

color on K, , which gives a contradiction.
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Case2.r >t.

Consider a vertex v in some copy of K, colored with r (color r has to be used somewhere)
together with all its (k — t) neighbors from K, .
Subcase (a): There exist one or more vertices in copies of K, ’s colored r, which
have an adjacent vertex in K, colored n <r as in case 1. Interchange these colors
n and r. Thus we obtain an equal cost or even cheaper coloring of B, with a
bigger sum of colors on K, , which gives a contradiction.

Subcase (b): All vertices colored r have all the adjacencies in K, colored larger

than r. If there exist two such vertices colored r, we recolor one of them with a

color from {1, ..., t} which is not used on the K, (since r > t, such a color exists).

This reduces the total cost, a contradiction.
On the other hand, if there exists exactly one vertex v colored r, then there exists

some color i <t which is not used on any vertex adjacent to v. Use color i on v. If i is
used on K, , then recolor that vertex with r. This results in the same cost coloring of B,
and a bigger cost on Ky, a contradiction. If i is not used on K, , then i is used on all
K,’s. Find aniin K, adjacent to a vertex colored less thanr in K, . Such a vertex in K,

exists since m(k — t) 2 k. Recolor that i-vertex with r. Now the cost of recoloring has not

changed but we are again in subcase (a).[]

Corollary 4.3. If strength of B, is k + t, then a minimum cost coloring uses t + 1, ...,
t+kon K, and 1, ..., t on the various K, ’s.
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Theorem 4.2 as stated in [3] does not include the condition m(k — t) > k. In the

simple example of Bl withm =2 and s =2 (ie. m(k —t) =4 <5 = k), Z is not

k+s

achieved by an EKS coloring. In Figure 4.5, B. (with m = 2) is 7-colored at a cost of 35,
whereas in an EKS coloring with 7 colors, the color 1 in K, is replaced by the color 3

while leaving all other colors unchanged. Thus the EKS coloring of B} with 7 colors is

not the most efficient.

[ ]

Figure 4.5. Graph of BZ.

In fact, contrary to the claim in [3] that Z is always achieved with an EKS

k+s

coloring, we prove the following theorem.

Theorem 4.4. Let s < t < k and m be given such that m(k — t) < k, then Z is not

k+s

achieved by an EKS coloring.

Proof. Given an EKS coloring of B, , assume Z is achieved by this coloring. Therefore

k+s

colorss + 1, ..., s + k are used on K, . But since m(k — t) <k some vertices x,, ...,x, of

T

K, are not adjacent to any vertex in the copies of K, ’s. If any x. is colored with a color
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used more than once, we recolor it with 1. We now have a less expensive coloring, but it
still uses all k + s colors, a contradiction. Otherwise each of the vertices x;, ...,X, is the
only vertex of its color. Now, if m > 1, one of the x.’s has color larger than (s + 1).
Recolor that x, with color 1. Since m > 1, color s + 1 is used on at least one copy of K,.
So recolor the vertex of K, colored s + 1 by the color of x;. This results in a cheaper
coloring using all colors 1, ..., k + s, a contradiction.

On the other hand, if m = 1, then clearly in the EKS coloring with total cost Z,

k+s

the s + 1 is used on x; for some i and on the single K, . Therefore s + 1 occurs twice and
we can recolor x; with 1, thus achieving a less costly coloring which uses all color
1, ..., s + k. Hence the proof is complete.[]

Our next theorem shows that there are many B, graphs with strengths less than

k + t . These graphs occur when m is not sufficiently large. For a simple example,
consider k = 3, t=1, m = 1. Then we have the following graph which has strength

3<t+k=4.

[—

[

N g
(V8
W

Figure 4.6. Graph of B}.
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Theorem 4.5. Let 1 < t < k. Then for any m such that m (k—t) < k, the strength of By is

less than k + t.

Proof. We color B, as follows. Use colors 1, ..., ton each K,. There exists
r =k — m (k - t) vertices of K, which have no adjacencies in the K,’s. Color these r
vertices with 1, ..., r. Color the remaining k —r vertices of K, witht+1, .., t+k-r.

Lemma 1.1 <t.

Proof. In order to show this, assume that r > t. Then k — (m (k — t)) >t which can

be simplified to mt — t > mk ~ k, or t(m — 1) > k(m — 1). This is a contradiction

since when m = 1 we get 0 > 0 and when m > 1, then t > k, which proves the
lemma.

Our coloring uses each color 1, ..., r exactly m + 1 times. Also our coloring uses
each color r + 1, ..., t exactly m times and uses each colort + 1, ..., t + k —r exactly once.
Suppose there exists a less costly coloring using k + t colors. This coloring must decrease
the number of times some of the colors 1, ..., t occur. But since the k + t coloring is less
costly than our coloring, some of the colors among 1, ..., t must occur more frequently

than in our coloring. But this is impossible, which is a contradiction to the assumption.[]

Theorem 4.6. For sufficiently large m, the graph B, has strength >k + t.

Proof. First we color B, with k + t colors using an EKS coloring. Suppose we change

the above coloring so that we do not use color k + t or any color larger than k + t.

Suppose also that r vertices of K, , x,, X,, ..., X,, 1 2 1, are colored with colors less than

or equal to t, thus saving at most r(t + k — 1). But each x;, 1 <i <r, is adjacent to a large
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number of K, ’s. Each such K, had a vertex colored with the color now used on x; and
therefore this color has to be increased to a color larger than t. For a sufficiently large
value of m the increased cost on the K,’s is greater than the saving on Ky, a
contradiction.[]

Theorem 4.7. For every value of m, the strengthof B, < k+ 1t

Proof. Color the graph B, with an EKS coloring with k + t colors. Thus each copy of
K¢ usescolors 1, ..., t and the K, uses colorst + 1, ..., t + k. This means that each color

1, ..., tis used m times and each color t + 1, ..., t + k is used exactly once. Suppose there
is a less costly coloring ¢ using more than k + t colors. Since ¢ is less costly than the EKS
coloring, some color from 1 to t must be used more than m times. However, by Theorem

4.5, m(k — t) > k. Therefore each vertex of K, is adjacent to at least one K,. Hence, no

color can be used more than m times. This contradiction completes the proof of the

theorem.[]
Corollary 4.8. For sufficiently large m, B, has strength equal to k + t.

Proof. This follows immediately from Theorems 4.6 and 4.7.

Theorem 4.9. Let m be an integer such that B, has strength k + t. Let integer m'>m,
and let B,' have m' copies of K,. Then B.' also has strength k + 1.

Proof. On the contrary, assume that B, has strength less than k + t, where coloring
¢’ gives minimum cost. Then apply ¢’ to B, . Thus we have a color less than or equal to t

on a vertex x of K, , and a color greater than t on some copies of K, adjacent to x. Let c
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be a coloring of B, which yields a minimum cost. By the assumption, ¢ must use k + t

colors. Also, by Corollary 4.3, ¢ uses colors t + 1, ..., t + kon K, and ¢(B}) < ¢ (By).

Now extend ¢ to B} by coloring each additional copy of K, with 1, ..., t. Clearly

¢’ applied to these m’'—m extra copies of K, cannot cost less than the cost of ¢ applied to

these K,’s, thus c applied to B} is cheaper than ¢’ applied to B}, a contradiction.
Hence the theorem is proved.[]

Now we show that for certain values of m, > <)’ Vs <t. Thus, using Theorem

k+t  k+s

4.7 for these values of m, graph B, has strength (t + k). Furthermore, by Theorem 4.9,

once a value of m is determined for which B, has strength t + k, each larger value of m
¢ . t+1
corresponds to a B, with strengtht +k. Weknowthat 1 +2+3+ ... +t= 5 |

Thus D" =m(1+2+..+)+ () + (T +2) +... +({t +k))

k+t
—m t+1 ikt k+1 .
2 2
When using only k + s colors, the sum is

Y o=mA 42+ .5+ L+ (1) +(5+2) + ... +(s+K)

k+s

s+1 k+1 . .
=m 5 + L, +ks+ 5 | Here L, is the cheapest possible sum of colors over

m(t — s) vertices of the copies of K, when in every copy the first s vertices use color 1
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through s, and the vertices of K, use colors s + 1 through s + k. We want to show that for
certain values of m, the coloring ¢, (which uses k + s colors) is more costly than the
coloring ¢, (which uses k + t colors), s <t. The difference of the cost of coloring K,
with ¢, and the cost of coloring K, with c, is kt — ks = k(t — s). Therefore, for the total
cost to be larger using c, rather than c,, the increase of the sum of colors over the

m(t — s) vertices of the various K, ’s (called D, ), must be bigger than k(t — s). Therefore,

we need to show that for certain m, D,> (t — s)k, and thus we will have > <)".

k+t  k+s

Let G, denote the graph obtained from B by deleting s vertices from every copy
of K,. Notice that the coloring c,, where the colors 1 through s are assigned to the
removed vertices, can be transformed to a best coloring ¢, of G, by diminishing every
color by s. We will show that for certain values of m to be determined, > =~ < > .
Let v, be a vertex in the i® copy of K, which is colored t by ¢, and colored c,_,(v;) by

the coloring c, ;. Thus when we summate the difference between the colors assigned to

v; in ¢, and the color t assigned in c, over all m copies of K,, we get
m

Dt_lzz(ct_l(vi)—t)>k, since we are assuming Zk+t< Zk+t-1' Consider now the
1=

graph G, .
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YT G

Figure 4.7. Graph of G, .

Subtracting the value (t-1) from every c, ,(v,), we obtain c,_,(v,) = c;_(v;,) + (t—1)

which yields D, |, = Z[c;_1 (v))—(t—(t-1))] >k. This implies that Z ¢, ,(v,)>k+m.

N O W
0

Kk

Figure 4.8. Graph of G, , .
Let w, be the vertex in the i copy of K¢ which is colored (t — 1) by ¢, and

colored c,_,(w;) by coloring c,_,. For the graph G,_,, in every best coloring, we cannot

color w; cheaper than using the color of v, increased by one. Hence, Zc;_z (v))>k+m

i=1

m
and Z c;_,(w;) >k +m+m. Therefore, we obtain

i=1

i[c;_z (V) +¢, (W) > (K +m) + K+ (M) cererrereeereeeeeerees e, A.1)
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The term 2m appears because the color on w; is at least one more than that on v; . Thus,

in the graph B, we obtain D,_, = Z [e,, (V) +c, ,(w)—t—(t-1)]
i=1
= D [ci, (V) +ei, (W) +2(t-2) -2t D]
i=l

= Y [cl, (V) +¢\,(W)]-3m > 2k.
=

The second equality above follows from the equations ¢, ,(v,) — (t—2) =c;_,(v,) and
c,,(w;) — (t-2) = c;_,(w,), and then the inequality follows from equation 4.1 above.
Similarly, for any s <t we obtain D, > (t — s)k. Hence, in order to verify that B, has

strength k + t, it is enough to show that for our certain m the inequality

Z ¢, (v;))—mt >k holds.

i=1

1+1+8k

Theorem 4.10. If m and t are positive integers such that mt <k and m > —

1+8k

then the strength of B, isk +tandt < y

1
R
Before proving the theorem for some fixed k, we consider if such an m and t can

J1+8k 1++1+8k

2 ~ %\/Zk and m > — ~ 2k . For example,

. 1
exist. Note t < —Z +

when k = 200 and m > 21, then 0 <t < 10. Thus there are many values of m and t such

that mt <k.



Proof. Recall that the 1% copy of K, is not adjacent to x,, ...,X,,
the 2™ copy of K, is not adjacent to X,,;, «..,X,,»

the 3" copy of K, is not adjacent to x,,,,, ., X5,
the i" copy of K, is not adjacent to Xipyiens e Xig»

the m™ copy of K, is not adjacent to X(mot)ts1s s Xt -
Since mt < k, each vertex x; (1 <i< mt) is not adjacent to exactly one copy of K,, and
each vertex x;, 1> mt, is adjacent to all the copies of K, . Thus, in coloring c,_,, the v;’s

(as described in Figure 4.7) in the various copies of K, have to be assigned different

colors and have to be colored with the cheapest colors available. Now, according to the

coloring c,_,, we color vertices in each copy of K, with colors 1 to t — 1, and then color
the k vertices in K, with colors t to t + k — 1. Therefore, the vertices v; in the various
copies of K, can be colored cheaply with colors t to (t + m — 1) such that

m(m-1)

th_l(vi)=t+(t+l)+ v +(t+m~—1) =mt + [Z‘J =mt + ;
i=1

As mentioned immediately preceding the statement of this theorem, we want a

value of m such that Z C,;(v;)>k+mt, hence th_l (v;)=mt+ m(Lz—l)— >k+mt,

i=1 i=1

-m
> k, or m>—m> 2k.

which simplifies to =
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Now we need to show that m?> —m> 2k or m*>-m-2k>0.

Notice that our hypothesis is m > I+v1+8k V;"'8k
- [m_lj ek
2 2
Therefore, [m_l)_ v1+8k (m_l)+\/1+8k -0
2) 2 2 2

12 (e )
= (m——) - >0

2 2
— m?— +_1__(1+8k) 0
= m’-m-2k>0 asrequired.
Now, since m > I+1+8k “;+8k and k > mt, we obtain the following inequality:

t [t )
k>2mt> —+,/—+2kt
2 V4
2
or,k>1+,’t—+2k‘c2
2 4

or, 2kt +kt —-k*<0

)

4 4
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1+ 8k

Sincet>0,weobtaint<—% + 7

Hence the theorem is proved.[]

Theorem 4.11. [f m > k(llg +t]) then B, has strength k + t.

Proof. Since ki > 1, it follows that m > M > k+1 >k, and therefore mt > k.

Thus, we have one or more vertices of K, non-adjacent to at least two of the K, ’s.
By the discussion between Theorems 4.9 and 4.10, in order to prove B, has

strength k + t, it suffices to show that Z < Z . Now, suppose on the contrary, the

k+t k+t-1

strength of B, is less than k + t. Let the vertices of each copy of K, be colored from 1 to
t — 1 leaving one vertex uncolored in each K, . Color the vertices of K, fromt to

t +k — 1. We will now color the uncolored vertices in K, as cheaply as possible. Let v;’s
be the single uncolored vertices left in K, ’s, and x;’s be the vertices in K, . Each v, is
adjacent to (k —t) x;’s by the construction of B, . There are m v, ’s, therefore the number

k(k+1)
k—t

of edges from the v;’s to the x;’s is m(k —t) > ( )(k—t) =k (k+1). Also,

there are k x;’s, so each x; on average is adjacent to at leastk + 1 v, ’s.
Lemma 1. Each x; is adjacent to at least k + 1 v; ’s.
Proof. Assume the contrary. Then some x; is adjacent to at most k v;’s and some
other x; is adjacent to at least k + 2 v;’s. But from the definition of B, (the
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difference between the number of adjacencies of any two X;’s to the vertices in

K, can at most be 1), this cannot occur. Hence, Lemma 1 is proved.

Recolor the x;’s starting from tto t + k — 1. The v;’s, at least k + 1 in number,
adjacent to the x; colored t have to be colored t + 1. Although we save a cost ofk on K,

we increase the cost on the v,’s by k + 1, a net increase of at least 1. Therefore the

strength is k + t and the theorem is proved.O

Order
All A} graphs have strength k + t. We have already seen at the beginning of this

chapter that the order of A, grows exponentially in (k + t) because it is equal to

] = 2] (Be2)" - (2] - (2-42)" - (22|

4
On the other hand, the order of B, is ‘B}c’ = k + mt, which clearly depends on
m. When m is sufficiently small, the graphs B, have strengths less than k + t. From
Corollary 4.8, however, we know that there are infinitely many B, ’s with strength k + t.

Each such B, has order k + mt. So we consider B} of small order i.e. with m being

. . k(k+1
relatively small. By Theorem 4.11, if m = { ——(—+—)—|, then B, has strength k + t.
k(k+1) .
Furthermore k —t > 1, therefore m = e <k (k + 1). Hence, the order of B, with
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this value of m is

B,

=k+mt < k+(k(k+1))t =k + k’t + kt < k+k>+k. Thus, the
order of these By ’s is only a cubic in k. Hence, in terms of order, the construction B! is

smaller than the construction A; .

Strength
The chromatic number of Aj, x(A}) is k, and the strength of A! is k + t, where

strength(A})

- has no bound. In other words, the
x(AL)

there is no restriction on t. Therefore

strength of A can be made arbitrarily larger than the chromatic number y(Al) . In case
of construction B;, % (B,) = k and strength of B! <k +t where t + k < k + k = 2k.

strength(B; )

<2.In
x(By)

Hence, the strength of B, <2 y (B, ), which can be expressed as

other words, the strength of B, can never be as large as twice its chromatic number. We
notice that although B, uses fewer vertices than A! to achieve a strength of k + t, the

A, construction works for all t > 1, where as in the construction B!, t must be less than

k.
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