
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

Predicting Autism over Large-Scale Child Dataset
Arpit Arya
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Arya, Arpit, "Predicting Autism over Large-Scale Child Dataset" (2015). Master's Projects. 452.
DOI: https://doi.org/10.31979/etd.mssw-m3f4
https://scholarworks.sjsu.edu/etd_projects/452

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/452?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Predicting Autism over Large-Scale Child Dataset

A Writing Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Arpit Arya

December 2015

© 2015

Arpit Arya

ALL RIGHTS RESERVED

The designated Project Committee Approves the Project Titled

Predicting Autism over Large-Scale Child Dataset

By

Arpit Arya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015

Dr. Thanh D. Tran (Department of Computer Science)

Dr. Thomas Austin (Department of Computer Science)

Ms. Saranya Venkateswaran (IT Security Consultant, Coalfire Systems Inc.)

Abstract

Data Analytics and Machine learning in healthcare are one of the most emerging

and needed fields in current time. Also, a lot of research has been performed and

is still being done in this field. In healthcare, gone are those days when only

doctor examines and patient listens. Now doctor has a lot of technologies which

can assist him and help in accurately diagnosing the disease with which his

patient is suffering. The backbone of such technologies is data analytics and

machine learning where we can make out a lot of inferences from tons of

patients‟ data already available. This project aims at performing research and

implementation of big data and machine learning techniques on the data related

to the patients suffering from the disease called Autism. Autism is a neural

disorder disease characterized by impaired social communication, verbal and

non-verbal interaction, restrictive and repetitive behavior [4]. Autism is majorly

noticed in children under or about the age of two years. One very important thing

to be observed here is that autism is highly heritable and the cause includes both

environmental factors and genetic susceptibility. Hence it is very important to

have such data which contains details of patients including their symptoms, lab

test data, history, vaccination details etc. which gives specific details of patients

and their history. The project ultimately aims at training the data model with the

set of training data and then testing and evaluating the data model using the test

data. In this way, it should be a research and solution for implementing machine

learning to detect and diagnose autism.

Acknowledgements

I am greatly indebted to my project advisor Dr. Thanh D. Tran for

suggesting me this topic and sparing me his valuable time for discussions in spite

of his busy schedule. It would not have been possible for me to complete this

project work without his valuable suggestions, critical analysis, constant interest

and persistent encouragement. His knowledge, experience, energy and vision

had been constant source of inspiration. I sincerely thank him and consider

myself extremely fortunate to get a chance to work under his supervision which

had been a learning and enjoyable experience.

I sincerely thank my committee members Dr. Thomas Austin and Ms.

Saranya Venkateswaran for their valuable time to review my report, important

suggestions and timely advice.

I take this opportunity to express deep sense of reverence and gratitude to

my parents and family members without whom love, affection, everlasting

patience, perpetual motivation and blessings I wouldn‟t have reached up to this

stage.

1

Table of Contents

1. Introduction …………………………………………………………………… 5

2. Background …………………………………………………………………… 8

3. Problem Definition …………………………………………………………… 11

4. Data ……………………………………………………………………………. 12

5. Proposed Solution ……………………………………………………………. 13

5.1 Architecture ………………………………………………………………. 13

6. Implementation using Weka ………………………………………………… 15

6.1 Data Preprocessing ……………………………………………………… 15

6.1.1 Data Cleaning ……………………………………………………. 15

6.1.2 Data Sampling …………………………………………………… 17

6.2 Predictive Modeling ……………………………………………………… 18

6.2.1 Importing Data and Feature Extraction ………………………… 18

6.2.2 Executing the Classifier Model ………………………………… 30

7. Implementation using Apache Spark ……………………………………… 32

7.1 Data Preprocessing ……………………………………………………… 34

7.1.1 Data Cleaning, Validation and Sampling ……………………… 34

7.2 Predictive Modeling ……………………………………………………… 37

7.2.1 Loading Data ……………………………………………………… 37

7.2.2 Feature Extraction ……………………………………………….. 40

7.2.3 Train Model ……………………………………………………….. 43

7.2.4 Parameter Tuning and Evaluation ……………………………… 45

2

8. Implementation using Apache Spark over Amazon EMR ……………….. 51

9. Conclusion and Future Work ………………………………………………… 57

3

List of Figures

Figure 1: Architecture of Proposed Solution ………………………………….. 14

Figure 2: Data after importing into Weka ……………………………………… 18

Figure 3: Values as outputWordsCount ……………………………………….. 20

Figure 4: Values as TF-IDF Score ……………………………………………… 21

Figure 5: Words after Stemming ……………………………………………….. 22

Figure 6: Words after applying Alphabetic Tokenizer ………………………… 24

Figure 7: Words after applying AttributeSelectionFilter ……………………… 25

Figure 8: (Value, Frequency) distribution of word “autism” ………………….. 26

Figure 9: (Value, Frequency) distribution of word “received” ……………….. 27

Figure 10: (Value, Frequency) distribution of some other words …………… 28

Figure 11: StringToWordVector Settings ……………………………………… 29

Figure 12: AttributeSelectionFilter Settings …………………………………… 30

Figure 13: Major libraries in Apache Spark …………………………………… 32

Figure 14: Basic Workflow ……………………………………………………… 33

Figure 15: Snapshots of code and its results for loading data ……………… 40

Figure 16: Feature Extraction …………………………………………………… 41

Figure 17: Snapshots of code and its results for feature extraction ………… 42

Figure 18: Training Model ………………………………………………………. 43

Figure 19: Snapshots of code and its results for training model ……………. 45

Figure 20: Parameter Tuning …………………………………………………… 47

4

Figure 21: Snapshots of code and its results for parameter tuning and

evaluation ………………………………………………………………………… 50

Figure 22: Amazon EMR Workflow ……………………………………………. 52

Figure 23: Screen after connecting to Master Node …………………………. 55

Figure 24: Running spark-shell over EMR ……………………………………. 56

5

1. Introduction

With the emergence of technology and science in every possible field,

there has been a need for automating the processes so as to make them fast

and efficient. Health care is one of those industries which are very complex in

terms of diagnosis and processes involved with human health issues. In terms of

diversity of diseases also, health care industry is quite vast as according to

WHO, there are about 30,000 known diseases and out of which there are

effective treatments available for only one-third of them i.e. about 10,000

diseases [5]. When it comes to the sensitive subjects like health and lives of

people, then it becomes more important to deliver the diagnosis and treatment

followed by diagnosis on time. The time taken in diagnosis is one of the other

major challenges which need to be taken care of because in some cases, even

the slight delay can deteriorate the situation of the patient or make his/her

recovery slow.

With all the complexities in the nature of diagnosis and time consuming

processes, there is an immense scope for inhibiting more technology solutions in

the health care industry. One such important inhibition can be leveraging the big

data and machine learning technologies to predict and fasten the complex and

time consuming processes of diagnosis and treatment. Such system can be

developed which utilizes immense amount of health / medical data available

towards predictive modeling and predictive analysis.

6

In this project, text classification is used as a machine learning technique.

In text classification, data is preprocessed so that prediction can be made on the

basis of different categories into which text is classified as. There are various

classification algorithms which can be utilized. Technically, every classifier is

different in its way of data accumulation, data filtering, feature extraction and

utilizing these processes towards learning the model.

To learn the data model, supervised learning technique has been used in

this project. Supervised learning is a technique in which there are two types of

data sets: Training data set and Test data set. Training data set contains the data

instances and a class or label is provided to each data instance. Test data set

contains the new data instances which are not there in training data set.

Additionally, test data set contains class or label because ultimately it is for the

purpose of evaluating the prediction results. To start with, training data set is

provided to the classifier so that it learns the data in its own way. Then to

evaluate, test and predict, the test set is provided to the classifier. It then predicts

the class or label of the data instances in the test data set and accuracy of the

prediction results is computed.

As this project focuses on predicting Autism, the data sets are related to

the patients‟ details in the form of text containing the detailed explanation of the

symptoms from which they are suffering. The data sets contain details of both,

patients with Autism and without Autism so as to train with both kinds of

instances. There are various stages in the project such as data pre-processing,

7

data filtering, feature extraction, prediction (evaluation), testing the accuracy.

These stages are described in further sections.

8

2. Background

 This project has been highly motivated from the idea and vision of Dr.

Tran as he has been doing research in this field and had a clear and precise goal

in his mind. During the course of the project, some research papers were studied

so as to research about the strategies that have been applied or research that

has been in progress towards detection and diagnosis of Autism.

 The authors of research paper [1] focused on the idea of rapid detection of

risk of autism. They suggested that the current approaches which are used for

diagnosing autism have a high validity of diagnosing the disease but the

disadvantage is that it is very time consuming. This can result in high delays in

reaching to a decision. They focused on a relatively small set of children with and

without autism. The algorithm or method which is used currently to diagnose

autism is “gold-standard Autism Diagnostic Observation Schedule-Generic”

(ADOS-G). By using machine learning to derive a classifier, they were able to

reduce the length by 72% compared to ADOS-G.

 Because of the nature of the disease, Autism is primarily diagnosed

through behavioral evaluations and to achieve the measure of impairments three

core developmental domains have been designed:

1. Language and Communication

2. Reciprocal Social Interactions

3. Restricted and Repetitive behaviors

9

The instrument used to ADOS-G and now its updated version is ADOS-2. To

examine, an exam has been devised which consists of four modules based on

the above mentioned domains. It is also devised to cover variety of ages and

behaviors. An updated version of exam has been designed for ADOS-2 which is

an updated version of instrument. In the updated version of exam, there are two

distinct domains:

1. Social affect, and

2. Restricted, Repetitive behaviors

Also in the updated version, there are five modules devised for different ages and

behaviors. ADOS-2 has overall higher accuracy than ADOS-G. 10 activities have

been designed for ADOS-G and 10 + 4 new activities for ADOS-2. On the basis

of these activities, ADOS uses a new scoring algorithm. It generates a

comparison score in the form of metric. All the domains or factors are considered

while calculating the comparison score which ranges on the scale of 1 to 10 (10

corresponds to the most severe).

 The downside of ADOS exams is their length or the complexity because of

which they take a lot of time. They also require clinical facility administered by the

trained professionals. These factors cause a lot of delays in diagnosis process.

Also because of such lengthy and complex procedure, the diagnosis cannot be

provided to all the population which needs treatment. Hence this results in

unequal and inconsistent distribution or coverage. The clinical facilities and

trained professionals tend to be available more in major cities. They are overall

10

quite less than the population which needs treatment. Due to lack of resources

and time constraints, initial diagnostic screenings do not get conducted

consistently. It can be so severe that families might have to wait as long as 13

months from initial screening to clinical diagnosis. There is estimation that 27% of

the cases remain undiagnosed until the age of 8 years. In the US, the average

age of autism diagnosis is above 4 years [1].

 If the diagnosis is delayed, it is quite obvious that the treatment therapies

will also get delayed. The treatment therapies consist of speech delivery and

behavioral therapies which are quite significant for improvements if delivered

under the right age, earlier in life. If delivered later than the particular age, its

impact does not remain as beneficial as before [1].

 As the benefit of the therapies is quite significant and enormous, there is a

huge need of something immediate, significant and efficient so as to deliver

some method which is rapid with high accuracy and not much lengthy. By using

Machine Learning approach, machine learning classifier has been built we which

can utilize the large scale datasets and perform text classification with high

accuracy.

11

3. Problem Definition

While doing study about the diagnosis of autism, it was clear that there is

a need of something fast and accurate so as to deliver the results of diagnosis on

time and then the related therapies and treatment can begin efficiently.

To contribute towards the problem, search for the reasonable datasets is a

very important step. After searching and finalizing the dataset, text classification

was chosen to perform machine learning techniques and steps. Text

classification is a kind of problem in which sentences are processed and then

classified under the labels or classes. For example, the classes in this project are

Positive and Negative. Positive refers that the patient has autism and negative

refers that the patient doesn‟t have autism.

The dataset used for this project is the collection of data from “Vaccine

Adverse Event Reporting System” (VAERS) [6]. The raw dataset had been

downloaded from their government website [6]. Every data instance had to be

provided with certain label or class (Positive/Negative) so as to achieve text

classification on the data.

The main attraction towards the dataset was that it contained the

description of the symptoms (symptom_text) each patient was suffering from.

Also it contained other useful attributes such as lab_data, other_medications,

condition_history, prior_vaccination which seemed to be useful in performing text

classification towards prediction of autism. The dataset and its processing are

explained in the further sections.

12

4. Data

The raw dataset had been downloaded from the government website of

“Vaccine Adverse Event Reporting System” (VAERS) [6]. It contains several

attributes and each attribute is a medical detail of the patient. Each instance

is a detail of one particular patient. The first attribute is vaers_id which can be

considered as unique id given to every patient.

Number of instances in the dataset are 145,000 and the size of the data is

approximately 2 GB.

13

5. Proposed Solution

The main problem in the diagnosis of Autism today is the complexity and the

delay which is caused by that. So the solution proposed in this project is to

achieve predictive modeling with high accuracy of predicting if the patient has

autism or not.

5.1. Architecture

The architecture of the project can be described by considering the following

process flow:

1. Collecting the raw datasets related to both Autism and Non-Autism cases

2. Performing the data pre-processing on the raw datasets. Preprocessing

includes data cleaning and data sampling.

3. Loading the data over the usable storage.

4. Performing data operations towards feature extraction on the pre-

processed data. Feature extraction includes several steps.

5. Training and tuning the classifier to achieve high accuracy.

6. Testing or evaluating the classifier or predictive model.

14

The process flow can be understood pictorially from the following diagram:

Figure 1: Architecture of Proposed Solution

15

6. Implementation using Weka

Weka is open source software. It is a collection of machine learning

algorithms used for data mining. The machine learning algorithms can be

applied on the datasets directly. Weka contains tools and methods for data

preprocessing and predictive modeling. New machine learning schemes can

also be developed using Weka [7].

6.1 Data Preprocessing

Data preprocessing is one of the most important steps. When we have the

raw data, we have to transform it in such a way that it can be used

constructively towards accomplishing our task. Often the raw data is not

ready to use directly towards the application or towards the sub-processes

we want to design.

 For every machine learning API, platform or framework, the

preprocessing of data can vary. The libraries and their usage are different

for different frameworks.

6.1.1 Data Cleaning

There were a lot of attributes in the data set and not all were important for

training the classifier. For text classification, attribute “symptom_text” has

been considered. There is one more attribute called “vaers_id” which is a

16

unique id provided to every patient. “symptom_text” contains description of

the state of patients in the form of sentences.

 There are several csv files for different years from 1991 to 2014.

First of all, we separated the dataset into two parts, one with positive (with

autism) instances and other with negative (without autism) instances.

 For Weka, the instances of “symptom_text” had to be converted

into separate text files such that each text file contains the symptom_text

of one patient. To execute this, a python script was written to automate the

process. For example, the vaers_id of a particular instance is 22356.

Python script created text file with the name as “pos22356” if it was

positive instance and “neg22356” if it was negative instance. The text files

with positive instances were stored in directory named “Pos” and text files

with negative instances were stored in directory named “Neg”.

 After getting two separate directories for positive and negative text

files, next aim was to create an arff (Attribute-Relation File Format) file

which is efficiently supported by Weka. Arff file is less memory intensive

and faster. For converting text files into arff file, TextDirectoryLoader class

is used. TextDirectoryLoader loads the directory into an arff file. The exact

command used on Weka command line interface is:

> java.weka.core.conerters.TextDirectoryLoader –dir “Path of source

directory” > “Path of destination directory where final arff file is to be kept”

17

In this way, arff file containing the data was produced. Weka automatically

adds an attribute called “class” and provides a value of class to each

instance based on the directory in which they have been stored. For

example, names of directories here are Pos and Neg, so the values of

class attribute given to positive instances are “Pos” and to negative

instances are “Neg”.

6.1.2 Data Sampling

To ultimately achieve predictive modeling, the data must have to be

divided into training set and test set. Ideally, the training set consists of

66% of the whole data and test set consists of 34%. This is done because

model should get enough data (two-third of data) to get trained and after

that there should be completely new data (Rest one third of data) with

which model must be tested for calculating its accuracy towards

prediction.

 Data Sampling in Weka is quite straight forward because when the

classifier is executed, it gives an option of splitting the whole data in

training and test set. So 66% can be chosen for training data.

18

6.2 Predictive Modeling

6.2.1 Importing Data and Feature Extraction

Feature extraction is first step towards the data modeling. Features can be

understood as the most important words in the data set which can be

considered as deciding factor behind the predictions, For example,

features in this project can be the most prominent words in the

“symptom_text”. Features play a significant and vital role in further

classification algorithms. There are several ranking algorithms which can

be used to select features out of the text.

After importing data (arff) in Weka, it looked like:

Figure 2: Data after importing into Weka

19

StringToWordVector:

String is a datatype which machine learning classifiers usually cannot

process. Hence using StringToWordVector, random text has to be

transformed into document vectors. Table is formed in which Text

Documents are rows (Document vectors), words as columns and values

as numbers. In this way, numbers can represent text. StringToWordVector

converts String data into numeric or nominal data which learning

algorithms can process. There are several settings or parameters which

are needed to be set according to the requirements of the problem.

Parameters are explained as follows:

 wordsToKeep

This is the total number of words desired to be considered in the data.

This value has to be decided on predicting the intensity of the data and

also on the basis of a particular number we want to deal with after the

first filter. Maximum 6-digit number can be assigned, so all the words

will be considered.

 outputWordsCount

If this setting is put true, then values in the table will be the number of

times that word occurs in that document.

20

Figure 3: Values as outputWordsCount

 doNotOperateOnPerClassBasis

If this setting is put true, then the number of “wordsToKeep” is

considered in total irrespective of class (Pos/Neg) otherwise the

number of “wordsToKeep” is considered on per class basis. For

example, if the number of “wordsToKeep” is 1000, then in case of true

the 1000 words will be considered otherwise 1000 from each class. But

this does not mean that the number will be 2000 because there might

be overlapping also as some words might be same in both the classes.

So the number might be between 1000 and 2000.

 IDFTransform and TFTransform

TF-IDF is a way to find words and documents that are strongly related.

For example, if a word “super” appears in 3 of the 2000 documents,

that‟s low document frequency (DF). Out of the 3, which document is

“super” related the most? “super” appears 100, 2, 5 times in 3

21

documents respectively. So “super” has high term frequency (TF) in

the first document as it appears 100 times and a very high TF-IDF

ranking. Higher value of TF-IDF score means the word is important for

that document.

Words that rarely appear in document collection and frequently appear

in particular documents:

IDFTransform: True (Low DF)

TFTransform: True (High TF)

 Figure 4: Values as TF-IDF Score

 normalizeDocLength

Normalization refers to measurements taken on different scales and

re-measuring them on a common scale. For example, There are two

documents: doc1=100 words and doc2=150 words. The word “about”

appears 2 times in both but the normalization value of “about” for doc1

22

will be more than in doc2 because doc1 has less words and effect of

“about” is more in doc1.

 Stemmer

Stemming tries to use words better by breaking them into a smaller

form called stem. To perform stemming, it can inspect both sides of a

word to try to remove letters from either of side and typically it removes

from the suffix side. In Weka, default is NullStemmer which doesn‟t do

any stemming. Lovins Stemmers and Porter Stemmers are two popular

types. The stem is not necessarily a linguistically valid word. E.g. the

word “have” may lose “e” and become “hav”.

Figure 5: Words after stemming

 Stop words

Stop words may tend to be irrelevant for classification. “the”, “is”, “at”,

23

“on” etc. are stop words. StringToWordVector by default uses an

English language stop words list in Weka.

 Tokenizer

Tokenizer algorithms have different ways of splitting up the text. They

split into tokens.

Ngram Tokenizer

Finding potentially predictive unigrams, bigrams, trigrams, …, five-

grams. It‟s about the unit of measurement. Ngram Tokenizer in Weka

by default tries to find predictive single word units, predictive two word

units, predictive three word units. Using Ngram Tokenizer, output is

words and phrases.

Alphabetic Tokenizer

With the default word tokenizer, some words contain signs like @, &,

~, -, --, whereas using Alphabetic Tokenizer, all of those get eliminated

and every token is 100% letters in the alphabet. Alphabetic Tokenizer

would have unigrams only, unlike the Ngram Tokenizer where there

are words and phrases both. We can see in the fig. that there are only

unigrams with only English words and without any signs.

24

Figure 6: Words after applying Alphabetic Tokenizer

 minTermFrequency

minTermFrequency is the minimum number for which any word has to

appear to be considered as an attribute. This can be set as per the

requirement of the data.

 lowerCaseTokens

If lowerCaseTokens setting is off, both lower case and upper case

words are considered different attributes.

If lowerCaseTokens setting is on, both lower case and upper case

words are considered to be lower case and as a same attribute.

This setting is important because many a times, words mean same but

they have just been written in different cases.

25

AttributeSelectionFilter

The AttributeSelectionFilter often compliments the StringToWordVector as

high quality input data is created. StringToWordVector changed all the

symptom_text and their words into document vectors. AttributeSelection is

different. It does not change characters into different numbers. It ranks the

attributes and further improves the input data.

Under the settings of AttributeSelectionFilter, Evaluator and Search can

be chosen which are explained as follows:

Evaluator – InfoGainAttribueEval

Evaluator is the judge for judging the predictive quality of the attribute.

Search – Ranker

Search consults the Judge (Evaluator) to make the final decision to accept

or reject the attribute.

Figure 7: Words after applying AttributeSelectionFilter

26

Figure 8: (Value, Frequency) distribution of word “autism”

From figure 7, we can see that “autism” is ranked # 1. “received” is ranked

2 and so on. Figure 8 is the (value, frequency) distribution. The value is

word count. Hence x-axis is word count and y-axis is frequency. The word

“autism” appears 5 times in 11 docs, 4 times in 44 docs, 3 times in 141, 2

times in 386 docs, 1 time in 507 documents, 0 times in 2077 documents.

Blue color represents Negative class and Red color represents Positive

class. In all the documents in which “autism” appears, it can be seen that

the bar is red (Positive). It becomes the deciding factor that “autism” word

is always contributing towards Positive and hence it is kept on rank # 1.

27

Figure 9: (Value, Frequency) distribution of word “received”

From figure 9, it can be seen that in all the documents in which “received”

appears, the maximum percentage of bar is red (Positive). It becomes the

deciding factor that “received” word is mostly contributing towards Positive

and hence it is kept on rank # 2.

In this way, words are ranked on the basis of their one-sided contribution

and decisive capability towards any one of the classes. All of the words‟

distribution can be seen and analyzed as shown in figure 10.

28

Figure 10: (Value, Frequency) distribution of some other words

29

The settings applied to the data in this project are as shown below:

The settings for StringToWordVector applied to the data in this project are

as shown below in figure 11:

Figure 11: StringToWordVector Settings

30

The settings for AttributeSelectionFilter applied to the data in this project

are as shown below in figure 12:

Figure 12: AttributeSelectionFilter Settings

6.2.2 Executing the classifier model

After performing data preprocessing and feature extraction, final set of

features have been retrieved. Now in this stage we can execute the

classifier of our wish. For this project, Naïve Bayes classifier and Logistic

Regression have been chosen.

 After executing Naïve Bayes Classifier and Logistic Regression

model, accuracies are as follows:

Naïve Bayes Classifier: 84.73% (Correctly classified instances)

Logistic Regression Model: 89.17% (Correctly classified instances)

31

Confusion Matrix (Naïve Bayes)

(Neg) (Pos)

86501 10166 Neg error: 10.51%

11976 36357 Pos error: 24.77%

Confusion Matrix (Logistic Regression)

(Neg) (Pos)

90793 5874 Neg error: 6.07%

8771 39562 Pos error: 18.14%

32

7. Implementation using Apache Spark

Apache Spark is an open source framework used primarily for cluster

computing. Spark allows user to load data into cluster memory and also it‟s

quite efficient in querying the data repeatedly. Because of high efficiency of

Spark, it is very well suited for machine learning algorithms.

Spark MLlib is one of the four big libraries built on the top of Spark.

Figure 13: Major libraries in Apache Spark

Spark has a number of algorithms and it allows users to quickly tie those

algorithms and use their custom algorithm.

33

The basic workflow adapted in this project is as shown below in figure 14:

Figure 14: Basic Workflow

Version and system requirements:

For this project, when running locally, Spark 1.4.1 has been used and when

running on cluster, Spark 1.5.0 has been used. Spark provides high-level

API‟s for Java, Scala, Python and R. For machine learning, Spark provides

higher-level tool or library “MLlib”.

For this project, Scala has been used as programming language and Spark

has been installed on Linux based system Ubuntu 14.04.

Java must be installed on the system and it‟s environment variables must be

set properly. Spark supports Java 7+, Python 2.6+, R 3.1+. In case of Scala

API, Spark uses Scala 2.10. Hence it is needed to be compatible with Scala

2.10.x version.

34

 Spark can be run interactively through spark-shell. Once spark-shell is

launched, interactive programs can be written in Scala.

Command to launch spark-shell after installation:

$./bin/spark-shell

7.1 Data Preprocessing

7.1.1 Data Cleaning, Validation and Sampling

As mentioned earlier, we have csv files containing data about patients

from 1991 to 2014. It has both positive and negative instances. The csv

files have several attributes.

 The data operations were performed on Linux environment. Hence

the commands on Linux terminal and their explanation are as follows:

To start with, first the total number of lines/instances is counted in total.

This will be useful for validating the data.

To count the number of lines in each csv files:

$ wc -l *.csv (Also outputs total number of instances in all the files)

Now all the files will be concatenated into one file.

To concatenate all the csv files and store the concatenated result in

output.csv:

$ cat *.csv > outputpos.csv

$ cat *.csv > outputneg.csv

35

To validate the data of output.csv, the command for counting the

instances is run again and it should output double the total number

of instances because now there is one more concatenated file which

contains all the instances:

$ wc -l *.csv

For text classification, only the relevant attributes have to be considered

and other attributes have to be removed.

To remove the extra attributes and consider only those required for

text classification (vaers_id and symptom_text):

$ cut –d, -f1,9 outputpos.csv > outputpos1.csv

$ cut –d, -f1,9 outputneg.csv > outputneg1.csv

(vaers_id and symptom_text were 1st and 9th attributes)

So now we have two final csv files (with two attributes): one with positive

instances and second with negative instances.

Now we would remove duplicates and sort the instances so that they get

randomized and don‟t remain in sequence of their years. In this case, as

we have merged the files, so duplicates are header names vaers_id,

symptom_text. So they will be removed.

To remove duplicates:

$ sort –u outputpos1.csv –o outputpos2.csv

$ sort –u outputpos1.csv –o outputpos2.csv

So now we have files in which there are no duplicates.

36

Also we have to define headers while loading the data in Spark. So this

time we have to remove headers, otherwise after loading data into Spark

headers will be included two times.

To remove header information:

To search if line exists:

$ grep „/VAERS_ID/d‟ outputpos2.csv

$ grep „/VAERS_ID/d‟ outputneg2.csv

To remove line:

$ sed „„/VAERS_ID/d‟ outputpos2.csv > outputpos3.csv

$ sed „„/VAERS_ID/d‟ outputneg2.csv > outputneg3.csv

An attribute called “label” has to be added which will be decisive for text

classification. For positive instances (with autism) the value of “label” is

given 0. For negative instances (without autism) the value of “label” is

given 1.

To add the attribute “label” with values 0 and 1:

$ awk –F”,” „BEGIN{OFS=”,”}{$3=0;print}‟ outputpos3.csv >

outputpos4.csv

$ awk –F”,” „BEGIN{OFS=”,”}{$3=1;print}‟ outputneg3.csv >

outputneg4.csv

So now the whole usable data has been created. We have two csv files,

one with positive instances and another with negative instances.

37

Now we have to create training dataset and test dataset. For this purpose,

66% of data is kept for training the model and 34% for testing and

evaluating the model.

To sample data for training and testing:

$ head -1050 outputpos4.csv > training_positive.csv

$ head -1050 outputneg4.csv > training_negative.csv

$ tail -540 outputpos4.csv > test_positive.csv

$ tail -540 outputneg4.csv > test_negative.csv

$ wc –l training_*.csv test_*.csv

cat training_*.csv > trainingData_Label01.csv

cat test_*.csv > testData_Label01.csv

7.2 Predictive Modeling

7.2.1 Loading Data

In Spark, the data has been loaded by using DataFrame API. DataFrame

can be understood as a data collection in distributed manner organized

into named, specified columns. DataFrame can also be thought of as

conceptually equivalent to a table in relational database. There are several

formats or sources using which DataFrames can be built such as tables in

Hive, existing RDDs (Resilient Distributed Datasets), external databases

or structures data files.

38

 First of all, after importing relevant libraries, training data is loaded

from the location where it is kept locally and stored into trainData. While

building case class, the structure or attributes (with data types) of data is

defined. Then according to attributes, the values have been split using “,”

and also the values have been mapped with attributes. The result is stored

in “autismtrain”. “autismtrain” is then converted into DataFrame using

toDF() method to perform further operations on DataFrame. Hence

autismtrain_DF is the DataFrame created. To view the data and schema

of DataFrame, show() and printSchema() methods have been used.

Code Snippet for loading data

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

import sqlContext.implicits._

import org.apache.spark.sql._

val trainData = sc.textFile("/media/arpitarya07/New

Volume1/SJSU_Studies/Sem5_CS298/Project_data/Filtered_csvs/training

Data_Label01.csv")

case class AutismTrain(vaers_id: String, symptom_text: String, label:

Double)

val autismtrain = trainData.map(_.split(",")).map(p =>

AutismTrain(p(0),p(1),p(2).toDouble))

39

val autismtrain_DF = autismtrain.toDF()

autismtrain_DF.show()

autismtrain_DF.printSchema()

Snapshots of code and its results

40

Figure 15: Snapshots of code and its results for loading data

7.2.2 Feature Extraction

Features have to be extracted from the text such that machine learning

algorithm can understand. There are basically two steps in feature

extraction:

41

1. Tokenizer

2. Hashed Term Frequency

Tokenizer and Hashed Term Frequency:

Tokenizer takes the entire text and breaks it into a bunch of words. In this

way, a new column called “Words” gets appended to this DataFrame. This

DataFrame is then passed to the next module “Hashed Term Frequency”

and it outputs a new column called “Features”. It is a fixed length vector

which is numerical and easily understood by machine learning algorithms.

Figure 16: Feature Extraction

Code Snippet for feature extraction

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.classification.LogisticRegression

42

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

import org.apache.spark.mllib.linalg.Vector

import org.apache.spark.sql.Row

val tokenizer = new

Tokenizer().setInputCol("symptom_text").setOutputCol("symptom_words")

val hashingTF = new

HashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOutputCol).

setOutputCol("features")

Snapshots of code and its results

Figure 17: Snapshots of code and its results for feature extraction

43

7.2.3 Train Model

Now features have been transformed and all the data can flow to the

training module and “Logistic Regression” is used for that. It selects the

useful columns which are “label” and “features”, train on those to learn

how to predict that label and produce a logistic regression model which

can then make predictions on every instance of the dataset and in turn a

new column called “Predictions” is added.

Figure 18: Training model

One important thing to be noticed here is that any of these modules can

basically select from any of the previously generated columns and also

they can output one or more columns as necessary. Hence in this way,

new columns are always appended as and when data flows through the

44

work flow. This is always useful because we can always go back and

inspect the intermediate results. All of these data is not necessary to be

kept physically around or in memory. This process has been made

efficient by DataFrames, which is one more reason for choosing to use

them. In DataFrames, if it is needed to inspect a column at some point, it

can be materialized as needed.

ML Pipelines

Pipeline can be termed as the combination of the three modules:

1. Tokenizer

2. Hashed Term Frequency

3. Logistic Regression

If we wrap these into a single object, then it can be run again on some

new data in exactly the same way with a single call. Also it can let us

avoid mistakes.

After the pipeline is created, it can be applied on the data to get the

predictions.

Code Snippet for training model

val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.01)

val pipeline = new Pipeline().setStages(Array(tokenizer,hashingTF,lr))

val model = pipeline.fit(autismtrain_DF)

val predictions = model.transform(autismtrain_DF)

45

predictions.select("vaers_id","symptom_text","label","symptom_words","fe

atures","prediction").collect().foreach(println)

Snapshots of code and its results:

Figure 19: Snapshots of code and its results for training model

7.2.4 Parameter Tuning and Evaluation

Each of these components may have various parameters. For example,

logistic regression takes the regularization parameter and adjusting that

46

can significantly affect performance on new data. This may not be

experienced during training. So while tuning, we may want to sweep over

a few values of regularization, experiment and see which do the best on

held out data and choose a data dependent idea of regularization

parameter.

 In case of Hashed Term Frequency, we now know that it outputs

the fixed length feature vector but we don‟t know that how long that

feature vector should be. You need 100 numbers to represent a text or 10

billion? You may not know and this depends on your dataset. We would

like to optimize the performance by experimenting or tuning these values.

There is one more important concept worth noticing here. It‟s Cross

Validation. To be more precise we would like to term it as “k-fold cross

validation”. In “k-fold cross validation”, the data set is equally split into k

parts and the model is trained on k-1 parts and tested on remaining part.

And all the k parts become a part for testing once. So the part which

behaved as a test part in first run becomes a training part in next run. So

for example, if it is a 5-fold cross validation, then the model is trained 5

times with all the combinations of 4 parts and all the 5 parts behave as a

test part once in each run. In this way, model calculates the accuracy in

each run and then it may take the average of all the accuracies or the best

accuracy. For managing parameters, CrossValidator has been provided in

this API which takes an Estimator (in this case the pipeline), Parameter

47

Grid and an Evaluator (letting you compare the models that you have

learnt). It then automatically finds the best parameters.

 Evaluation is a very important stage because we want to evaluate

how well model has performed. It uses “Label” column which is the true

label from the dataset as well as “Prediction” which is the predicted label.

It can compare them and tell how well model has performed. For

evaluation “area under ROC” has been considered. More the value of

“area under ROC” is near 1.00, more is the accuracy. For Logistic

Regression Model, area under ROC for training dataset is 0.9994 and for

test dataset is 0.8996.

Figure 20: Parameter Tuning

48

Code Snippet for parameter tuning and evaluation

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.ml.regression.LinearRegression

import org.apache.spark.mllib.util.MLUtils

import org.apache.spark.ml.tuning.ParamGridBuilder

import org.apache.spark.ml.tuning.CrossValidator

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

val paramGrid = new

ParamGridBuilder().addGrid(hashingTF.numFeatures,

Array(1000,10000)).addGrid(lr.regParam, Array(0.05,0.2)).build()

val crossval = new

CrossValidator().setEstimator(pipeline).setEvaluator(new

BinaryClassificationEvaluator).setEstimatorParamMaps(paramGrid).setNu

mFolds(2)

val cvModel = crossval.fit(autismtrain_DF)

val evaluator =

newBinaryClassificationEvaluator().setMetricName(“areaUnderROC”)

evaluator.evaluate(cvModel.transform(autismtrain_DF))

49

Snapshots of code and its results:

50

Figure 21: Snapshots of code and its results for parameter tuning and

evaluation

51

8. Implementation using Apache Spark over Amazon EMR

Amazon EMR (Elastic MapReduce) provides the managed framework that

distributes the computation of data over multiple Amazon EC2 (Elastic

Compute Cloud) instances.

To get started, data is loaded into Amazon S3 (Simple Storage Service).

Then Amazon EMR cluster is launched and cluster starts processing the data.

When the job is completed, output can be retrieved from Amazon S3. Cluster

can be left running if more data processing is needed. The data in Amazon

S3 can be accessed by multiple EMR clusters. Clusters can also be

terminated when they are not needed anymore.

With Amazon EMR, a variety of powerful applications and frameworks can

be used and Apache Spark is one of those.

52

Figure 22: Amazon EMR Workflow

AWS (Amazon Web Services) Account

AWS account has to be created to leverage the above mentioned services.

While creating a new user account on AWS, “Access key id”, “Secret access

key” and “Password” is provided which are useful in further processes.

Installing AWS CLI (AWS Command Line Interface)

To work on CLI, AWS CLI has to be installed using the following command.

$ pip install awscli

$ sudo pip install --upgrade awscli

53

Configuring AWS CLI

Following command is the fastest way to setup AWS CLI installation:

$ aws configure

By running this command, following details have to be entered:

AWS Access Key ID, AWS Secret Access Key, Default region name (us-

west-2), Default output format (json)

The CLI stores credentials specified with “aws configure” in a local file named

“credentials” in a folder named .aws in your home directory.

Create a cluster with Spark

First there is a one-time step required to create the default roles necessary for

creation of cluster:

$ emr create-default-roles

Cluster can be created with the following command:

$ aws emr create-cluster –name “SparkCluster” --ami-version 3.9 --

applications Name=Spark --ec2-attributes KeyName=myKey --instance-type

m3.xlarge --instance-count 3 --use-default-roles

Create Amazon S3 bucket

Amazon EMR can use Amazon S3 to store input data, output data or log files.

In the “Create a bucket wizard”, bucket can be created by providing “Bucket

name”, “Region”. After this, folder can be created in the bucket and the data

which we want to use can be uploaded.

54

Create EMR Cluster

There is .pem file containing key value pair which was created. That file is to

be copied into .aws folder and its permissions have to be changed:

$ chmod 400 mykeypair.pem

Connect to master node using SSH

To connect to the master node using SSH, public DNS name of the master

node and Amazon EC2 key pair private key are needed.

$ ssh hadoop@ec2-###-##-##-###.us-west-2.compute.amazonaws.com -i

~/mykeypair.pem

hadoop@ec2-###-##-##-###.us-west-2.compute.amazonaws.com:

Master public DNS name

~/mykeypair.pem:

Location and file name of .pem file

mailto:hadoop@ec2-
mailto:hadoop@ec2-

55

Then following screen will appear which shows that we are connected:

Figure 23: Screen after connecting to Master Node

56

Access the spark shell on Master Node

Run:

$ spark-shell

Then following screen will appear:

Figure 24: Running spark-shell over EMR

Machine learning programming can be performed using Scala. Data can be

utilized from Amazon S3.

57

9. Conclusion and Future Work

The project work proposes a new aspect and approach to fasten the

procedure of detecting and diagnosing a complex disease called Autism. This

approach uses Machine Learning or Predictive Modeling techniques. If this

approach gets to be adapted in real life scenario, then doctors can get

immensely assisted by technology towards diagnosing this disease efficiently,

accurately and in lesser time.

 In this project, two open source frameworks were used: Weka and Apache

Spark. Weka is good to understand the concepts of machine learning as it is

simpler than Spark. But when it comes to complex, large-scale data

processing and predictive modeling, Spark is faster. Also for cluster

computing, Spark becomes quite compatible and scalable.

In future, several different kinds of datasets can be consumed and utilized

towards building data models and perform predictive modeling. The major

advantage of such technique is that it has immense potential to get utilized in

other areas of medical science or any other field.

58

References

[1] „Testing the accuracy of an observation-based classifier for rapid detection of
autism risk‟, Nature Publishing Group (accessed Nov, 2015)

[2] Chaturvedi, V., „The potential of accelerating early detection of Autism through

content analysis of YouTube Videos‟, Public Library of Science (accessed
Nov, 2015)

[3] Rogers, S., „Use of artificial intelligence to shorten the behavioral diagnosis of

Autism‟, Public Library of Science (accessed Nov, 2015)

[4] „Autism, Wiki‟, https://en.wikipedia.org/wiki/Autism (accessed Nov, 2015)

[5] „Disease Information‟,
 http://answers.google.com/answers/threadview?id=492472
 (accessed Nov, 2015)

[6] „Vaccine Adverse Event Reporting System‟ (VAERS),
 https://vaers.hhs.gov/data/data (accessed Nov, 2015)

[7] „Weka – The University of Waikato, New Zealand‟,
 http://www.cs.waikato.ac.nz/ml/weka/ (accessed July, 2015)

[8] „Weka Text Classification‟,
 https://www.youtube.com/watch?v=IY29uC4uem8 (accessed July, 2015)

[9] „Apache Spark Documentation‟, https://spark.apache.org/docs/latest/

(accessed Nov, 2015)

[10] „Apache Spark, Wiki‟, https://en.wikipedia.org/wiki/Apache_Spark

(accessed Nov, 2015)

[11] „Building, Debugging and Tuning Spark Machine Learning Pipelines‟,

https://www.youtube.com/watch?v=OednhGRp938&list=PLIxzgeMkSrQ8Pq3
0lCaHmYA7r_Qprg6-H (accessed Nov, 2015)

[12] McDonald, C. (2015), „Using Apache Spark DataFrames for processing of

Tabular Data‟, 2015

[13] „Amazon EMR Documentation‟, https://aws.amazon.com/elasticmapreduce/

(accessed Nov, 2015)

https://en.wikipedia.org/wiki/Autism
http://answers.google.com/answers/threadview?id=492472
https://vaers.hhs.gov/data/data
http://www.cs.waikato.ac.nz/ml/weka/
https://www.youtube.com/watch?v=IY29uC4uem8
https://spark.apache.org/docs/latest/
https://en.wikipedia.org/wiki/Apache_Spark
https://www.youtube.com/watch?v=OednhGRp938&list=PLIxzgeMkSrQ8Pq30lCaHmYA7r_Qprg6-H
https://www.youtube.com/watch?v=OednhGRp938&list=PLIxzgeMkSrQ8Pq30lCaHmYA7r_Qprg6-H
https://aws.amazon.com/elasticmapreduce/

59

[14] „Amazon S3 Documentation‟, https://aws.amazon.com/s3/
(accessed Nov, 2015)

[15] „Amazon EC2 Documentation‟, https://aws.amazon.com/ec2/

(accessed Nov, 2015)

https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	Predicting Autism over Large-Scale Child Dataset
	Arpit Arya
	Recommended Citation

	tmp.1450749077.pdf.Xjj3F

