San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

Predicting Autism over Large-Scale Child Dataset

Arpit Arya
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Computer Sciences Commons

Recommended Citation
Arya, Arpit, "Predicting Autism over Large-Scale Child Dataset" (2015). Master’s Projects. 452.

DOI: https://doi.org/10.31979/etd. mssw-m3f4
https://scholarworks.sjsu.edu/etd_projects/452

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.


https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/452?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Predicting Autism over Large-Scale Child Dataset

A Writing Project Report
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Arpit Arya

December 2015



© 2015
Arpit Arya

ALL RIGHTS RESERVED



The designated Project Committee Approves the Project Titled

Predicting Autism over Large-Scale Child Dataset

By

Arpit Arya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015

Dr. Thanh D. Tran (Department of Computer Science)
Dr. Thomas Austin (Department of Computer Science)

Ms. Saranya Venkateswaran (IT Security Consultant, Coalfire Systems Inc.)



Abstract

Data Analytics and Machine learning in healthcare are one of the most emerging
and needed fields in current time. Also, a lot of research has been performed and
is still being done in this field. In healthcare, gone are those days when only
doctor examines and patient listens. Now doctor has a lot of technologies which
can assist him and help in accurately diagnosing the disease with which his
patient is suffering. The backbone of such technologies is data analytics and
machine learning where we can make out a lot of inferences from tons of
patients’ data already available. This project aims at performing research and
implementation of big data and machine learning techniques on the data related
to the patients suffering from the disease called Autism. Autism is a neural
disorder disease characterized by impaired social communication, verbal and
non-verbal interaction, restrictive and repetitive behavior [4]. Autism is majorly
noticed in children under or about the age of two years. One very important thing
to be observed here is that autism is highly heritable and the cause includes both
environmental factors and genetic susceptibility. Hence it is very important to
have such data which contains details of patients including their symptoms, lab
test data, history, vaccination details etc. which gives specific details of patients
and their history. The project ultimately aims at training the data model with the
set of training data and then testing and evaluating the data model using the test
data. In this way, it should be a research and solution for implementing machine

learning to detect and diagnose autism.
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1. Introduction

With the emergence of technology and science in every possible field,
there has been a need for automating the processes so as to make them fast
and efficient. Health care is one of those industries which are very complex in
terms of diagnosis and processes involved with human health issues. In terms of
diversity of diseases also, health care industry is quite vast as according to
WHO, there are about 30,000 known diseases and out of which there are
effective treatments available for only one-third of them i.e. about 10,000
diseases [5]. When it comes to the sensitive subjects like health and lives of
people, then it becomes more important to deliver the diagnosis and treatment
followed by diagnosis on time. The time taken in diagnosis is one of the other
major challenges which need to be taken care of because in some cases, even
the slight delay can deteriorate the situation of the patient or make his/her
recovery slow.

With all the complexities in the nature of diagnosis and time consuming
processes, there is an immense scope for inhibiting more technology solutions in
the health care industry. One such important inhibition can be leveraging the big
data and machine learning technologies to predict and fasten the complex and
time consuming processes of diagnosis and treatment. Such system can be
developed which utilizes immense amount of health / medical data available

towards predictive modeling and predictive analysis.



In this project, text classification is used as a machine learning technique.
In text classification, data is preprocessed so that prediction can be made on the
basis of different categories into which text is classified as. There are various
classification algorithms which can be utilized. Technically, every classifier is
different in its way of data accumulation, data filtering, feature extraction and
utilizing these processes towards learning the model.

To learn the data model, supervised learning technique has been used in
this project. Supervised learning is a technique in which there are two types of
data sets: Training data set and Test data set. Training data set contains the data
instances and a class or label is provided to each data instance. Test data set
contains the new data instances which are not there in training data set.
Additionally, test data set contains class or label because ultimately it is for the
purpose of evaluating the prediction results. To start with, training data set is
provided to the classifier so that it learns the data in its own way. Then to
evaluate, test and predict, the test set is provided to the classifier. It then predicts
the class or label of the data instances in the test data set and accuracy of the
prediction results is computed.

As this project focuses on predicting Autism, the data sets are related to
the patients’ details in the form of text containing the detailed explanation of the
symptoms from which they are suffering. The data sets contain details of both,
patients with Autism and without Autism so as to train with both kinds of

instances. There are various stages in the project such as data pre-processing,



data filtering, feature extraction, prediction (evaluation), testing the accuracy.

These stages are described in further sections.



2. Background

This project has been highly motivated from the idea and vision of Dr.
Tran as he has been doing research in this field and had a clear and precise goal
in his mind. During the course of the project, some research papers were studied
S0 as to research about the strategies that have been applied or research that
has been in progress towards detection and diagnosis of Autism.

The authors of research paper [1] focused on the idea of rapid detection of
risk of autism. They suggested that the current approaches which are used for
diagnosing autism have a high validity of diagnosing the disease but the
disadvantage is that it is very time consuming. This can result in high delays in
reaching to a decision. They focused on a relatively small set of children with and
without autism. The algorithm or method which is used currently to diagnose
autism is “gold-standard Autism Diagnostic Observation Schedule-Generic”
(ADOS-G). By using machine learning to derive a classifier, they were able to
reduce the length by 72% compared to ADOS-G.

Because of the nature of the disease, Autism is primarily diagnosed
through behavioral evaluations and to achieve the measure of impairments three
core developmental domains have been designed:

1. Language and Communication
2. Reciprocal Social Interactions

3. Restricted and Repetitive behaviors



The instrument used to ADOS-G and now its updated version is ADOS-2. To
examine, an exam has been devised which consists of four modules based on
the above mentioned domains. It is also devised to cover variety of ages and
behaviors. An updated version of exam has been designed for ADOS-2 which is
an updated version of instrument. In the updated version of exam, there are two
distinct domains:

1. Social affect, and

2. Restricted, Repetitive behaviors

Also in the updated version, there are five modules devised for different ages and
behaviors. ADOS-2 has overall higher accuracy than ADOS-G. 10 activities have
been designed for ADOS-G and 10 + 4 new activities for ADOS-2. On the basis
of these activities, ADOS uses a new scoring algorithm. It generates a
comparison score in the form of metric. All the domains or factors are considered
while calculating the comparison score which ranges on the scale of 1 to 10 (10
corresponds to the most severe).

The downside of ADOS exams is their length or the complexity because of
which they take a lot of time. They also require clinical facility administered by the
trained professionals. These factors cause a lot of delays in diagnosis process.
Also because of such lengthy and complex procedure, the diagnosis cannot be
provided to all the population which needs treatment. Hence this results in
unequal and inconsistent distribution or coverage. The clinical facilities and

trained professionals tend to be available more in major cities. They are overall



quite less than the population which needs treatment. Due to lack of resources
and time constraints, initial diagnostic screenings do not get conducted
consistently. It can be so severe that families might have to wait as long as 13
months from initial screening to clinical diagnosis. There is estimation that 27% of
the cases remain undiagnosed until the age of 8 years. In the US, the average
age of autism diagnosis is above 4 years [1].

If the diagnosis is delayed, it is quite obvious that the treatment therapies
will also get delayed. The treatment therapies consist of speech delivery and
behavioral therapies which are quite significant for improvements if delivered
under the right age, earlier in life. If delivered later than the particular age, its
impact does not remain as beneficial as before [1].

As the benefit of the therapies is quite significant and enormous, there is a
huge need of something immediate, significant and efficient so as to deliver
some method which is rapid with high accuracy and not much lengthy. By using
Machine Learning approach, machine learning classifier has been built we which
can utilize the large scale datasets and perform text classification with high

accuracy.
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3. Problem Definition

While doing study about the diagnosis of autism, it was clear that there is
a need of something fast and accurate so as to deliver the results of diagnosis on
time and then the related therapies and treatment can begin efficiently.

To contribute towards the problem, search for the reasonable datasets is a
very important step. After searching and finalizing the dataset, text classification
was chosen to perform machine learning technigues and steps. Text
classification is a kind of problem in which sentences are processed and then
classified under the labels or classes. For example, the classes in this project are
Positive and Negative. Positive refers that the patient has autism and negative
refers that the patient doesn’t have autism.

The dataset used for this project is the collection of data from “Vaccine
Adverse Event Reporting System” (VAERS) [6]. The raw dataset had been
downloaded from their government website [6]. Every data instance had to be
provided with certain label or class (Positive/Negative) so as to achieve text
classification on the data.

The main attraction towards the dataset was that it contained the
description of the symptoms (symptom_text) each patient was suffering from.
Also it contained other useful attributes such as lab_data, other_medications,
condition_history, prior_vaccination which seemed to be useful in performing text
classification towards prediction of autism. The dataset and its processing are

explained in the further sections.
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4. Data
The raw dataset had been downloaded from the government website of
“Vaccine Adverse Event Reporting System” (VAERS) [6]. It contains several
attributes and each attribute is a medical detail of the patient. Each instance
is a detail of one particular patient. The first attribute is vaers_id which can be
considered as unique id given to every patient.
Number of instances in the dataset are 145,000 and the size of the data is

approximately 2 GB.
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5. Proposed Solution
The main problem in the diagnosis of Autism today is the complexity and the
delay which is caused by that. So the solution proposed in this project is to
achieve predictive modeling with high accuracy of predicting if the patient has

autism or not.

5.1. Architecture

The architecture of the project can be described by considering the following

process flow:

1. Collecting the raw datasets related to both Autism and Non-Autism cases

2. Performing the data pre-processing on the raw datasets. Preprocessing
includes data cleaning and data sampling.

3. Loading the data over the usable storage.

4. Performing data operations towards feature extraction on the pre-
processed data. Feature extraction includes several steps.

5. Training and tuning the classifier to achieve high accuracy.

6. Testing or evaluating the classifier or predictive model.

13



The process flow can be understood pictorially from the following diagram:

Raw Datasets

h

Data Preprocessing Data Loading Feature Extraction

Training and Testing
the Model M

Figure 1: Architecture of Proposed Solution
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6. Implementation using Weka
Weka is open source software. It is a collection of machine learning
algorithms used for data mining. The machine learning algorithms can be
applied on the datasets directly. Weka contains tools and methods for data
preprocessing and predictive modeling. New machine learning schemes can

also be developed using Weka [7].

6.1 Data Preprocessing
Data preprocessing is one of the most important steps. When we have the
raw data, we have to transform it in such a way that it can be used
constructively towards accomplishing our task. Often the raw data is not
ready to use directly towards the application or towards the sub-processes
we want to design.

For every machine learning API, platform or framework, the

preprocessing of data can vary. The libraries and their usage are different

for different frameworks.

6.1.1 Data Cleaning
There were a lot of attributes in the data set and not all were important for
training the classifier. For text classification, attribute “symptom_text” has

been considered. There is one more attribute called “vaers_id” which is a
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unique id provided to every patient. “symptom_text” contains description of
the state of patients in the form of sentences.

There are several csv files for different years from 1991 to 2014.
First of all, we separated the dataset into two parts, one with positive (with
autism) instances and other with negative (without autism) instances.

For Weka, the instances of “symptom_text” had to be converted
into separate text files such that each text file contains the symptom_text
of one patient. To execute this, a python script was written to automate the
process. For example, the vaers_id of a particular instance is 22356.
Python script created text file with the name as “p0s22356” if it was
positive instance and “neg22356” if it was negative instance. The text files
with positive instances were stored in directory named “Pos” and text files
with negative instances were stored in directory named “Neg”.

After getting two separate directories for positive and negative text
files, next aim was to create an arff (Attribute-Relation File Format) file
which is efficiently supported by Weka. Arff file is less memory intensive
and faster. For converting text files into arff file, TextDirectoryLoader class
is used. TextDirectoryLoader loads the directory into an arff file. The exact
command used on Weka command line interface is:
> java.weka.core.conerters. TextDirectoryLoader —dir “Path of source

directory” > “Path of destination directory where final arff file is to be kept”

16



6.1.2

In this way, arff file containing the data was produced. Weka automatically
adds an attribute called “class” and provides a value of class to each
instance based on the directory in which they have been stored. For
example, names of directories here are Pos and Neg, so the values of
class attribute given to positive instances are “Pos” and to negative

instances are “Neg”.

Data Sampling
To ultimately achieve predictive modeling, the data must have to be
divided into training set and test set. Ideally, the training set consists of
66% of the whole data and test set consists of 34%. This is done because
model should get enough data (two-third of data) to get trained and after
that there should be completely new data (Rest one third of data) with
which model must be tested for calculating its accuracy towards
prediction.

Data Sampling in Weka is quite straight forward because when the
classifier is executed, it gives an option of splitting the whole data in

training and test set. So 66% can be chosen for training data.

17



6.2 Predictive Modeling

6.2.1 Importing Data and Feature Extraction
Feature extraction is first step towards the data modeling. Features can be
understood as the most important words in the data set which can be
considered as deciding factor behind the predictions, For example,
features in this project can be the most prominent words in the
“‘symptom_text”. Features play a significant and vital role in further
classification algorithms. There are several ranking algorithms which can
be used to select features out of the text.

After importing data (arff) in Weka, it looked like:

Relation: Y_ 515U Studies_SemS_CS298_Project_data_Data1000

HNo. text
String Nominal

1 |Ptvaccnated with HIB fiter developed meningitis & uveitis within 12 hours, Infection resolved w/Antbiotic therapy. Neg
2 |Ptvacdnated with FLUOGEN apparent cardiac arrest - no breath pulse 8PM - CPR initiated - ransparted to hosp where he expired. Neg
3 |Ptvacdnated with DTP/OPV developed fever 105 in first 24 hrs, decreasing to 104 at 48 hrs and 102-103 at 72hrs, Excessive irritability for 7 hours. MNeg
4 |Ptvacc. w/ Rabies developed backache, very painful back; entire body achy w/in 2 days; no appetite, very tired, slept about 40 hrs, weak. By 12/5, musdes achy over joints, appetite increased, but tires easily. Neg
5 |Ptvacdnated with Pneumococcal FLU ZONE developed malaise, vomited x 1, redness across site rt arm w/swelling. Improved by 12/26/80. Neg
6 [Pt vaccinated with DTP/OPY became apneic for approx 30 seconds, Became non-responsive; given 2 quick breaths w) resultant near cry. Fully recovered after 30 min, Was diaphoretic after episode. Treated w/ adrenalin 5Q. Neg
7 |Ptvacdnated with DTP developed fever of 103.0, pale, listless. Neg
8 |Ptvacdnated with FLUOGEN passed out at school. Taken to private MD for evaluation. MNeg
9 |Ptvacc, w/f DTPJHIB TITER fOPV; crankiness; irritability; painful rt thigh - red, hot; fever 103-105 (for several days); uncontrollable crying )6 hrs; would not eat for 2 days. Neg
10 Pt vacc. w/ DTP/MMR/HIB/OPY. Same day had a few red spots on abd. W /in a few days rash increased & went from white to purple- lie a bruise. Fever 12/10-12/11 w/ swollen ankles/wrists AM of 12/11. PMD said rash looked like viral hives. Neg
11 |Ptvacc, wf PEDVAC/DTR/OPV developed unusual high pitched cry & prolonged crying x1hr; pain to touch, sweling, redness in HIB leg; DTP leg was red & swollen. Neg
12 |Ptvacdnated with Pedvac/DTP/OPV developed unusual high pitched ary, pain to touch on the HIB leg, iritable, & tired., Neg
13 |Pt vaccinated with DTP/OPY developed high & prolonged crying & possible cyanosis; Hospitalized x 24 hours. A preuocardiogram was done. Neg
14 Pt vacdnated with MMR developed pain in elbow & weakness of arm. Unable to fully flex or extend limb. Aches 24 hrsa day. Still has deep joint pain. Neg
15 |Ptvacdnated with HIBMMR developed febrile seizures - hospitalized 130CT30 x 3 days for observation, Neg
16 |Pt vaccnated with FLU experienced vomiting (forceful); Diarrhea. Neg
17 Pt vacdinated w/FLU developed sore throat & stiff neck. Dr told pt that he'd seen 5 other peaple who had got flu shots (seen same day as pt). Neg
18 |Pt vaccnated with Influenza wife stated that her husband is allergic to He took the RU-Tuss from about SNOVSD terough 13MOVS0 symptoms were; SOB, swelling around the eyes, blurred vision & difficulty urinating. Neg
19 |Pt vaccnated with MMR/HIB TITER developed fever, listless x 2 days (102); 30NOV brokeout w/rash became cranky, arching her back, Dx virus. Neg
20 [Pt vaccinated with Recombivax developed nausea, diarthea progressing to tightness in throat & chest, "breathing was an effort” palpitations, Went to ER Given Benedryl; IV started; ABG's done &Iab work, Followed wf own MD - dx vactine . Neg
21 [Pt vacdnated with DTP developed screamed & cried for 5 hr; 2 seizures; temp 105; extreme localized swelling dx w/pertussis 70CT90. Neg
122 |Pt vacdnated with DTP/OPY cjo pain in leg Nov 9,10 & 11, Temp to 105 mother sponged child & gave tylenal & temp decreased, Child is foster child &not any family hx knawn. No redness or swelling in leg. MNeg
23 [Pt vaccinated w/DTP experienced feeling warm, halludnations in middie of right - was hot - temp never taken, would not eat, rash all over body, It eye swollen, temp 100; screaming & shaking & hives, listless becomes flash at times, pale. Neg
124 Pt vacdnated with OPV/DTP developed arying, screaming, prolonged (on & off for 3 days), top of mouth discolored - white; felt “warm®, Temp - not taken; Dr. advised mother to abtain DT next time. Neg
25 |MMR/HIB given - went to sleen, awoke screaming & crying, welts on back, face & stomach as reported by mom. Head banging irritable w/ vilent outbursts. MD phoned recommended cool bath & tylenol &Benadryl. Neg
26 [Pt vacdnated with DTP/OPY/MMR/HIB developed fever of 106, febrile seizure, no other ilness reported. MD states received too many vacanes at one time & caused adverse reaction, Possible viral seizure but not r/o possible reaction to vax., Neg
27 |Ptvac with Influenza developed puling in legs & arms about 4 days after shot. Also experienced weakness & nUmbness in arms, hands, legs 8 feet 7 days after shot. 5een by neurologist - no nerve damage, thinks may be caused by flu shot. Neg
28 [Pt vaccinated w/Influenza developed aggravation reaction. This invelved exacerbation of her polymyalgia rheumatica. Admitted to hosp w/severe painful weakness in her proximal musdes. Given steroidal therapy approx six months later, weaned. Neg
129 |Pt vacdnated with Influenza developed keratoacanthoma at the site of injection four wks after receiving influenza vacdne. Hospitalized and the lesion was surgically removed. Neg
30 [Pt vac w/FLUOGEN developed brain stem disorder, weakness of extremities & hypertension, biat ptosis, difficulty speaking & swallowing, Admitted to Hosp B 217/87, P 70min, R 20min, B5 225 mg/DL. Botulism suspected, Tension test neg, Neg
31 |Ptvacdnated with MMR developed arthritic lie symptoms. Sweling & pain in knes joints. 2nd day there was some improvement. Neg
32 Pt vaccnated with DTP/OPY developed unconsolable, high pitched cry longer than 5 hrs. Lt leg swollen, red warm to touch, temp 99, Mom gave tylenol. Neg
33 |Ptvac with DTP/OPY/MMR/HIB developed fever of 104, pain sweling rtleg. Body rash, Fever /temp cont until 21DECS0, Started on amexicilin for red throat”, Neg
34 |Ptvacdnated with DTP{OPV/HIB Titer experienced eyes deviated to rt, generalized tonic donic movement for 30-45 seconds CT scan - MRI -; EEG localized sporadic spike In rt temp post region & to lesser degree rt inferior temp region. . Neg
35 |Ptvacdnated with DTPJOPY sudden infant death, Neg
36 [Pt vacdnated with TD developed Cellulitis vs large local reaction, fever but cultures were negative. Neg
37 [Pt vaccnated with HIB Titer/DTP/OPY developed fever to 102 x 4 days, Leukocytosis 63,000/mm3; 68 polys, 25 lymphs, & mono, 1band. Neg
38 Became hot & dizzy n solid red rash over upper [tarm, nausea. Ice pack applied. P 138/80; P 100; 10 min later BP 140/60; P 9 ; R 24. No 508, Wheezing, rash becoming warse, extending to shoulder, cheeks, biat temporal area, chest, etc. Neg

Figure 2: Data after importing into Weka
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StringToWordVector:
String is a datatype which machine learning classifiers usually cannot
process. Hence using StringToWordVector, random text has to be
transformed into document vectors. Table is formed in which Text
Documents are rows (Document vectors), words as columns and values
as numbers. In this way, humbers can represent text. StringToWordVector
converts String data into numeric or nominal data which learning
algorithms can process. There are several settings or parameters which
are needed to be set according to the requirements of the problem.
Parameters are explained as follows:
» wordsToKeep
This is the total number of words desired to be considered in the data.
This value has to be decided on predicting the intensity of the data and
also on the basis of a particular number we want to deal with after the
first filter. Maximum 6-digit number can be assigned, so all the words
will be considered.
» outputWordsCount
If this setting is put true, then values in the table will be the number of

times that word occurs in that document.
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[ Viewer

Relation: ¥__515U_Studies_Sem5_C5298_review_polarity_twt_sentoken-weka. filters.unsu. ..

No. | @@dass@@ a about | after all also an and
MNominal MNumeric | Mumeric | Mumeric | Numeric | Mumeric | Mumeric | Numeric

1 neg 14.0 2.0 2.0 6.0 1.0 3.0 20,0 A

2 neg 13.0 0.0 0.0 1.0 0.0 0.0 8.0

3 neq 10.0 0.0 1.0 2.0 0.0 4.0 12.0

4 neg 11.0 0.0 0.0 1.0 0.0 2.0 11.0

5 neg 20,0 5.0 2.0 2.0 1.0 3.0 17.0

& neg 19.0 0.0 1.0 0.0 1.0 3.0 13.0

7 neg 14.0 7.0 1.0 4.0 0.0 1.0 13.0

Figure 3: Values as outputWordsCount

» doNotOperateOnPerClassBasis
If this setting is put true, then the number of “wordsToKeep” is
considered in total irrespective of class (Pos/Neg) otherwise the
number of “wordsToKeep” is considered on per class basis. For
example, if the number of “wordsToKeep” is 1000, then in case of true
the 1000 words will be considered otherwise 1000 from each class. But
this does not mean that the number will be 2000 because there might
be overlapping also as some words might be same in both the classes.
So the number might be between 1000 and 2000.

» IDFTransform and TFTransform
TF-IDF is a way to find words and documents that are strongly related.
For example, if a word “super” appears in 3 of the 2000 documents,
that’s low document frequency (DF). Out of the 3, which document is

“super” related the most? “super” appears 100, 2, 5 times in 3

20



documents respectively. So “super” has high term frequency (TF) in
the first document as it appears 100 times and a very high TF-IDF
ranking. Higher value of TF-IDF score means the word is important for
that document.

Words that rarely appear in document collection and frequently appear
in particular documents:

IDFTransform: True (Low DF)

TFTransform: True (High TF)

£ Viewer

Relation: ¥__S15U_Studies_Sem5_CS5298_review _polarity_twt_sentoken-weka. filters.unsu. ..

Mo. | @@dass@@ a about | after all also an and
Mominal Mumeric | Mumeric | Mumeric | Mumeric | Momeric | Mumeric | NMumeric

1 neg 0.005...| 0.345...| 0.694...| 0,450... 0.433...| 0.159...]| 0.003.. »

2 neg 0.005... 0.0 0.0| 0.150... 0.0 0.0| 0.002.,

3 neg 0.004... 0.0| 0.438...| 0,254... 0.0| 0.184.,.| 0.002.,

4 neg 0.004... 0.0 0.0| 0.150... 0.0 0.126...| 0.002.,

5 neg 0.00&.,.| 0,563...| 0,694...| 0,254,..| 0,433...| 0,159,..( 0.002..

= neg 0.005... 0.0] 0.433... 0.0| 0.433...| 0,159.,.| 0,002,

7 neg 0.005...| 0.654...| 0.438...| 0,372... 0.0 0.079.,.| 0.002.,

Figure 4: Values as TF-IDF Score

» normalizeDocLength
Normalization refers to measurements taken on different scales and
re-measuring them on a common scale. For example, There are two
documents: doc1=100 words and doc2=150 words. The word “about”

appears 2 times in both but the normalization value of “about” for docl
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will be more than in doc2 because docl has less words and effect of
“about” is more in doc1.

» Stemmer
Stemming tries to use words better by breaking them into a smaller
form called stem. To perform stemming, it can inspect both sides of a
word to try to remove letters from either of side and typically it removes
from the suffix side. In Weka, default is NullStemmer which doesn’t do
any stemming. Lovins Stemmers and Porter Stemmers are two popular
types. The stem is not necessarily a linguistically valid word. E.g. the

word “have” may lose “e” and become “hav”.

Ma.

Figure 5: Words after stemming

» Stop words

Stop words may tend to be irrelevant for classification. “the”, “is”, “at”,
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‘on” etc. are stop words. StringToWordVector by default uses an
English language stop words list in Weka.

Tokenizer

Tokenizer algorithms have different ways of splitting up the text. They
split into tokens.

Ngram Tokenizer

Finding potentially predictive unigrams, bigrams, trigrams, ..., five-
grams. It's about the unit of measurement. Ngram Tokenizer in Weka
by default tries to find predictive single word units, predictive two word
units, predictive three word units. Using Ngram Tokenizer, output is
words and phrases.

Alphabetic Tokenizer

With the default word tokenizer, some words contain signs like @, &,
~, -, --, Whereas using Alphabetic Tokenizer, all of those get eliminated
and every token is 100% letters in the alphabet. Alphabetic Tokenizer
would have unigrams only, unlike the Ngram Tokenizer where there
are words and phrases both. We can see in the fig. that there are only

unigrams with only English words and without any signs.
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Figure 6: Words after applying Alphabetic Tokenizer

» minTermFrequency
minTermFrequency is the minimum number for which any word has to
appear to be considered as an attribute. This can be set as per the
requirement of the data.

> lowerCaseTokens
If lowerCaseTokens setting is off, both lower case and upper case
words are considered different attributes.
If lowerCaseTokens setting is on, both lower case and upper case
words are considered to be lower case and as a same attribute.
This setting is important because many a times, words mean same but

they have just been written in different cases.
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AttributeSelectionFilter

The AttributeSelectionFilter often compliments the StringToWordVector as
high quality input data is created. StringToWordVector changed all the
symptom_text and their words into document vectors. AttributeSelection is
different. It does not change characters into different numbers. It ranks the
attributes and further improves the input data.

Under the settings of AttributeSelectionFilter, Evaluator and Search can
be chosen which are explained as follows:

Evaluator — InfoGainAttribueEval

Evaluator is the judge for judging the predictive quality of the attribute.
Search — Ranker

Search consults the Judge (Evaluator) to make the final decision to accept

or reject the attribute.

Ma. Marme

3 diagnosed
4Informaﬁnn

11| Jconsidered

Figure 7: Words after applying AttributeSelectionFilter
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Figure 8: (Value, Frequency) distribution of word “autism”

From figure 7, we can see that “autism” is ranked # 1. “received” is ranked
# 2 and so on. Figure 8 is the (value, frequency) distribution. The value is
word count. Hence x-axis is word count and y-axis is frequency. The word
“autism” appears 5 times in 11 docs, 4 times in 44 docs, 3 times in 141, 2
times in 386 docs, 1 time in 507 documents, 0 times in 2077 documents.
Blue color represents Negative class and Red color represents Positive
class. In all the documents in which “autism” appears, it can be seen that
the bar is red (Positive). It becomes the deciding factor that “autism” word

is always contributing towards Positive and hence it is kept on rank # 1.
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Figure 9: (Value, Frequency) distribution of word “received”

From figure 9, it can be seen that in all the documents in which “received”
appears, the maximum percentage of bar is red (Positive). It becomes the
deciding factor that “received” word is mostly contributing towards Positive
and hence it is kept on rank # 2.

In this way, words are ranked on the basis of their one-sided contribution
and decisive capability towards any one of the classes. All of the words’

distribution can be seen and analyzed as shown in figure 10.
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autism received diagnosed Information

| 1. . la. . | [ _ I 1
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medical MMR. important review
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T T 1 T T 1 T T 1 T T
1] 24 5 1] 3 i 1] 1 I 1] z
internal speech considered age
| [ | R | 1 - | . -
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child Autism months consumer
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Figure 10: (Value, Frequency) distribution of some other words
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The settings applied to the data in this project are as shown below:
The settings for StringToWordVector applied to the data in this project are

as shown below in figure 11:

weka. filters.unsupervised. attribute . StringToWardVector

About
Converts String attributes into a set of attributes Mare
representing word accurrence (depending an the tokenizer) Capabilities

infarmation from the text contained in the strings.

IDFTransfarm
TFTransform
attributeIndices
attributeMamePrefix
doMotOperateCnPerClassEBasis
invertSelection
lowerCaseTokens
mirTermFreg
normalizeDocLength
outputWordCounts
periodicPruning
stemmer

stopwords

tokenizer
useStoplist

wordsTokeep

Figure 11: StringToWordVector Settings

True
True

firstdast

True

False

True

3

Mormalize all data

True

-1.0
Choose  |MullStemmer

Weka-3-6

Choose | AlphabeticTokenizer

True

110
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The settings for AttributeSelectionFilter applied to the data in this project

are as shown below in figure 12:

weka. filters. supervised. attribute. AttributeSelection

About
A supervised attribute filter that can be used to select Maore
ol Capahilities
evaluator Choose | InfoGainAttributeEval

search [ Choose {|Ranker -T 0.0 -M -1

Figure 12: AttributeSelectionFilter Settings

6.2.2 Executing the classifier model
After performing data preprocessing and feature extraction, final set of
features have been retrieved. Now in this stage we can execute the
classifier of our wish. For this project, Naive Bayes classifier and Logistic
Regression have been chosen.

After executing Naive Bayes Classifier and Logistic Regression

model, accuracies are as follows:
Naive Bayes Classifier: 84.73% (Correctly classified instances)

Logistic Regression Model: 89.17% (Correctly classified instances)
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Confusion Matrix (Naive Bayes)

(Neg) (Pos)
86501 10166 Neg error: 10.51%
11976 36357 Pos error: 24.77%

Confusion Matrix (Logistic Regression)

(Neg) (Pos)
90793 5874 Neg error: 6.07%
8771 39562 Pos error: 18.14%
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7.

Implementation using Apache Spark

Apache Spark is an open source framework used primarily for cluster
computing. Spark allows user to load data into cluster memory and also it’s
quite efficient in querying the data repeatedly. Because of high efficiency of
Spark, it is very well suited for machine learning algorithms.

Spark MLIib is one of the four big libraries built on the top of Spark.

Spark

Streaming GraphX

SparkSQL

Apache Spark

Figure 13: Major libraries in Apache Spark

Spark has a number of algorithms and it allows users to quickly tie those

algorithms and use their custom algorithm.
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The basic workflow adapted in this project is as shown below in figure 14:

Load Data

b

"
Test and Evaluate

Figure 14: Basic Workflow

O

Version and system requirements:
For this project, when running locally, Spark 1.4.1 has been used and when
running on cluster, Spark 1.5.0 has been used. Spark provides high-level
API’s for Java, Scala, Python and R. For machine learning, Spark provides
higher-level tool or library “MLIib”.

For this project, Scala has been used as programming language and Spark
has been installed on Linux based system Ubuntu 14.04.

Java must be installed on the system and it’'s environment variables must be
set properly. Spark supports Java 7+, Python 2.6+, R 3.1+. In case of Scala
API, Spark uses Scala 2.10. Hence it is needed to be compatible with Scala

2.10.x version.

33



Spark can be run interactively through spark-shell. Once spark-shell is
launched, interactive programs can be written in Scala.
Command to launch spark-shell after installation:

$ ./bin/spark-shell

7.1 Data Preprocessing

7.1.1 Data Cleaning, Validation and Sampling
As mentioned earlier, we have csv files containing data about patients
from 1991 to 2014. It has both positive and negative instances. The csv
files have several attributes.

The data operations were performed on Linux environment. Hence

the commands on Linux terminal and their explanation are as follows:
To start with, first the total number of lines/instances is counted in total.
This will be useful for validating the data.
To count the number of lines in each csv files:
$ wc -l *.csv (Also outputs total number of instances in all the files)
Now all the files will be concatenated into one file.
To concatenate all the csv files and store the concatenated result in
output.csv:
$ cat *.csv > outputpos.csv

$ cat *.csv > outputneg.csv
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To validate the data of output.csv, the command for counting the
instances is run again and it should output double the total number
of instances because now there is one more concatenated file which
contains all the instances:

$ we -l *.csv

For text classification, only the relevant attributes have to be considered
and other attributes have to be removed.

To remove the extra attributes and consider only those required for
text classification (vaers_id and symptom_text):

$ cut —d, -f1,9 outputpos.csv > outputposl.csv

$ cut —d, -f1,9 outputneg.csv > outputnegl.csv

(vaers_id and symptom_text were 1% and 9" attributes)

So now we have two final csv files (with two attributes): one with positive
instances and second with negative instances.

Now we would remove duplicates and sort the instances so that they get
randomized and don’t remain in sequence of their years. In this case, as
we have merged the files, so duplicates are header names vaers_id,
symptom_text. So they will be removed.

To remove duplicates:

$ sort —u outputposl.csv —0 outputpos2.csv

$ sort —u outputposl.csv —0 outputpos2.csv

So now we have files in which there are no duplicates.
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Also we have to define headers while loading the data in Spark. So this
time we have to remove headers, otherwise after loading data into Spark
headers will be included two times.

To remove header information:

To search if line exists:

$ grep YVAERS _ID/d’ outputpos2.csv

$ grep /VAERS_ID/d’ outputneg2.csv

To remove line:

$ sed “/VAERS _ID/d’ outputpos2.csv > outputpos3.csv

$ sed “/VAERS _ID/d’ outputneg2.csv > outputneg3.csv

An attribute called “label” has to be added which will be decisive for text
classification. For positive instances (with autism) the value of “label” is
given 0. For negative instances (without autism) the value of “label” is
given 1.

To add the attribute “label” with values 0 and 1:

$ awk —F”,” ‘BEGIN{OFS=","}{$3=0;print}’ outputpos3.csv >
outputpos4.csv

$ awk —F”,” ‘BEGIN{OFS=","}{$3=1;print}’ outputneg3.csv >
outputneg4.csv

So now the whole usable data has been created. We have two csv files,

one with positive instances and another with negative instances.
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Now we have to create training dataset and test dataset. For this purpose,
66% of data is kept for training the model and 34% for testing and
evaluating the model.

To sample data for training and testing:

$ head -1050 outputpos4.csv > training_positive.csv

$ head -1050 outputneg4.csv > training_negative.csv

$ tail -540 outputpos4.csv > test_positive.csv

$ tail -540 outputneg4.csv > test_negative.csv

$ wc I training_*.csv test_*.csv

cat training_*.csv > trainingData_LabelO1.csv

cat test_*.csv > testData LabelOl.csv

7.2 Predictive Modeling

7.2.1 Loading Data
In Spark, the data has been loaded by using DataFrame API. DataFrame
can be understood as a data collection in distributed manner organized
into named, specified columns. DataFrame can also be thought of as
conceptually equivalent to a table in relational database. There are several
formats or sources using which DataFrames can be built such as tables in
Hive, existing RDDs (Resilient Distributed Datasets), external databases

or structures data files.
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First of all, after importing relevant libraries, training data is loaded
from the location where it is kept locally and stored into trainData. While
building case class, the structure or attributes (with data types) of data is
defined. Then according to attributes, the values have been split using “,”
and also the values have been mapped with attributes. The result is stored
in “autismtrain”. “autismtrain” is then converted into DataFrame using
toDF() method to perform further operations on DataFrame. Hence
autismtrain_DF is the DataFrame created. To view the data and schema
of DataFrame, show() and printSchema() methods have been used.

Code Snippet for loading data
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

import sqlContext.implicits.__

import org.apache.spark.sql._

val trainData = sc.textFile("/media/arpitarya07/New
Volumel/SJSU_Studies/Sem5 CS298/Project_data/Filtered_csvs/training

Data_Label01.csv")

case class AutismTrain(vaers_id: String, symptom_text: String, label:

Double)

val autismtrain = trainData.map(_.split(",")).map(p =>

AutismTrain(p(0),p(1),p(2).toDouble))
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val autismtrain_DF = autismtrain.toDF()
autismtrain_DF.show()
autismtrain_DF.printSchema()

Snapshots of code and its results

scala> val sqlContext = new org.apache.spark.sql.SQLContext(sc)
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@4d

import sqlContext.implicits._
sqlContext.implicits._

import org.apache.spark.sql._
org.apache.spark.sql._

scala> wval trainData = sc.textFile("/mediafarpitarya®7/New Volumel/SJISU_Studies/

Sem5_CS298/Project_data/Filtered_csvs/ftrainingData_Label@l.csv")

15/09/23 23:04:46 INFO MemoryStore: ensureFreeSpace(110248) called with curMem=@
, MaxMem=278019440

15/09/23 23:04:46 INFO MemoryStore: Block broadcast_© stored as wvalues in memory
(estimated size 107.7 KB, free 265.0 MB)

15/09/23 23:04:46 INFO MemoryStore: ensureFreeSpace(10090) called with curMem=11

0248, maxMem=278019440

15/09/23 23:04:46 INFO MemoryStore: Block broadcast_6_piece® stored as bytes in

memory (estimated size 9.9 KB, free 265.0 MB)

15/09/23 23:084:46 INFO BlockManagerInfo: Added broadcast_6_piece® in memory on 1

ocalhost:37648 (size: 9.9 KB, free: 265.1 MB)

15/09/23 23:04:46 INFO SparkContext: Created broadcast ® from textFile at <conso

le>:29

trainData: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at textFile at
<console>:29

scala> case class AutismTrain(vaers_id: String, symptom_text: String, label: Dou
ble)

15/09/23 23:20:49 INFO BlockManagerInfo: Removed broadcast_1 piece® on localhost
:48303 in memory (size: 1902.0 B, free: 265.1 MB)

defined class AutismTrain

scala> val autismtrain = trainData.map(_.split(",")).map(p => AutismTrain(p(@),p
(1),p(2).toDouble))

autismtrain: org.apache.spark.rdd.RDD[AutismTrain] = MapPartitionsRDD[3] at map
at <console=:33

scala> val autismtrain DF = autismtrain.toDF()
autismtrain_DF: org.apache.spark.sql.DataFrame = [vaers_id: string, symptom_text
: string, label: double]
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scala> autismtrain_DF.show()

+
| 86871| "fever -103|
| 289963 |Fever -99 2 day a...|
| 375612 |Partial -40%- sud...|
| 113848 | "18AUG28 -24AUG98...|
| 227559|"15 -20 minutes a...
| 408035|"10/12 -16/14: 10...
| 182167 |"Hives -9-10 days...
| 379202|"01/26/2010 -8:40...
| 501528|"3 -4 hrs after v...
| 249228|"12/06/05 -3rd va...
| 378079|"2 -3 hours after...
| 464695|"2 -3 hrs after wv...
| 278736|"1/2 -1 hour afte...
| 301377 |"1:360pm -1:45pm e...
| 351455|"1 -1/2 hrs after...
| 27274 |Pt vaccinated wit...
| 27275|Pt vaccinated wit...
| 27276 | "Pt vaccinated wi...
| 27277 |"Pt vacc. w/ Rabi.
I

I
I
I
I
I
I
I
I
I
I
I
I
I
27278 |"Pt vaccinated wi...|

-
-

scala> autismtrain_DF.printSchema()

root
|-- vaers_id: string (nullable = true)
| -- symptom_text: string (nullable = true)
| -- label: double (nullable = false)

Figure 15: Snapshots of code and its results for loading data

7.2.2 Feature Extraction
Features have to be extracted from the text such that machine learning
algorithm can understand. There are basically two steps in feature

extraction:
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1. Tokenizer

2. Hashed Term Frequency

Tokenizer and Hashed Term Frequency:

Tokenizer takes the entire text and breaks it into a bunch of words. In this

way, a new column called “Words” gets appended to this DataFrame. This
DataFrame is then passed to the next module “Hashed Term Frequency”

and it outputs a new column called “Features”. It is a fixed length vector

which is numerical and easily understood by machine learning algorithms.

Extract Features

Current data schema
Tokenizer itaFrame

v

Hashed Term F.r\;eq.

v

[ Train model ]
v
Evaluate

Figure 16: Feature Extraction

Code Snippet for feature extraction

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.classification.LogisticRegression

41



import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.mllib.linalg.Vector

import org.apache.spark.sgl.Row

val tokenizer = new
Tokenizer().setinputCol("symptom_text").setOutputCol("symptom_words")
val hashingTF = new
HashingTF().setNumFeatures(1000).setinputCol(tokenizer.getOutputCol).
setOutputCol('features”)

Snapshots of code and its results

import org.apache.spark.ml.Pipeline
org.apache.spark.ml.Pipeline

import org.apache.spark.ml.classification.LogisticRegression
org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
org.apache.spark.ml.feature.{HashingTF, Tokenizer}

scala> import org.apache.spark.mllib.linalg.Vector

15/09/24 14:23:56 INFO BlockManagerInfo: Removed broadcast_16_piece® on localhos
t:48303 in memory (size: 4.9 KB, free: 265.1 MB)

15/09/24 14:23:56 INFO ContextCleaner: Cleaned shuffle 2

import org.apache.spark.mllib.linalg.Vector

scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row

scala> val tokenizer = new Tokenizer().setInputCol("symptom_text").setOutputCol(
"symptom_words")
tokenizer: org.apache.spark.ml.feature.Tokenizer = tok_d519aa52e652

scala> val hashingTF = new HashingTF().setNumFeatures(1000).setInputCol(tokenize
r.getOutputCol).setOutputCol("features")
hashingTF: org.apache.spark.ml.feature.HashingTF = hashingTF_b4f2e85cad3d

Figure 17: Snapshots of code and its results for feature extraction
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7.2.3 Train Model
Now features have been transformed and all the data can flow to the
training module and “Logistic Regression” is used for that. It selects the
useful columns which are “label” and “features”, train on those to learn
how to predict that label and produce a logistic regression model which
can then make predictions on every instance of the dataset and in turn a

new column called “Predictions” is added.

Train a Model
([Load data ] Cutrent data sshema

& S e e Estimator
J' Cexcs £Erin
Tokenizer I’ DataFrame

¢ ” words: Seq[String ﬂ

Hashed Term Fr\ec

/
I Logistic Regression ] .
v T

Evaluate

Figure 18: Training model

One important thing to be noticed here is that any of these modules can
basically select from any of the previously generated columns and also
they can output one or more columns as necessary. Hence in this way,

new columns are always appended as and when data flows through the
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work flow. This is always useful because we can always go back and
inspect the intermediate results. All of these data is not necessary to be
kept physically around or in memory. This process has been made
efficient by DataFrames, which is one more reason for choosing to use
them. In DataFrames, if it is needed to inspect a column at some point, it
can be materialized as needed.

ML Pipelines

Pipeline can be termed as the combination of the three modules:

1. Tokenizer

2. Hashed Term Frequency

3. Logistic Regression

If we wrap these into a single object, then it can be run again on some
new data in exactly the same way with a single call. Also it can let us
avoid mistakes.

After the pipeline is created, it can be applied on the data to get the
predictions.

Code Snippet for training model

val Ir = new LogisticRegression().setMaxlter(10).setRegParam(0.01)
val pipeline = new Pipeline().setStages(Array(tokenizer,hashingTF,Ir))
val model = pipeline.fit(autismtrain_DF)

val predictions = model.transform(autismtrain_DF)
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predictions.select("vaers_id","symptom_text","label","symptom_words","fe

atures","prediction”).collect().foreach(println)
Snapshots of code and its results:

scala> val 1r = new LogisticRegression().setMaxIter(10).setRegParam(0.01)
1r: org.apache.spark.ml.classification.LogisticRegression = logreg fdc4e6ee348e

scala> val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF,1r))
pipeline: org.apache.spark.ml.Pipeline = pipeline_f2efbbb35998

scala> val model = pipeline.fit(autismtrain_DF)

model: org.apache.spark.ml.PipelineModel = pipeline f2efbbb35998

scala> val predictions = model.transform(autismtrain_DF)

15/09/24 14:52:53 INFO BlockManagerInfo: Removed broadcast 22 piece® on localhos
t:48303 in memory (size: 17.1 KB, free: 265.1 MB)

predictions: org.apache.spark.sql.DataFrame = [vaers_id: string, symptom_text: s
tring, label: double, symptom words: array<strings>, features: vector, rawPredict
ion: vector, probability: vector, prediction: double]

scala> 15/09/24 14:52:53 INFO BlockManagerInfo: Removed broadcast 21 piece® on 1
ocalhost:48303 in memory (size: 17.1 KB, free: 265.1 MB)

15/09/24 14:52:53 INFO BlockManagerInfo: Removed broadcast 20 piece® on localhos
t:48303 in memory (size: 17.1 KB, free: 265.1 MB)

15/09/24 14:52:53 INFO BlockManagerInfo: Removed broadcast 19 piece® on localhos
t:48303 in memory (size: 17.1 KB, free: 265.1 MB)

scala> predictions.select("vaers_id","symptom text","label","symptom words","feat

res", prediction"}.collect().foreach(println)l

[314995,"3-4 days after vaccine,0.8,ArrayBuffer("3-4, days, after, vaccine), (100
®,[183,352,909,940],[1.6,1.6,1.0,1.0]),0.0]

Figure 19: Snapshots of code and its results for training model

7.2.4 Parameter Tuning and Evaluation
Each of these components may have various parameters. For example,

logistic regression takes the regularization parameter and adjusting that
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can significantly affect performance on new data. This may not be
experienced during training. So while tuning, we may want to sweep over
a few values of regularization, experiment and see which do the best on
held out data and choose a data dependent idea of regularization
parameter.

In case of Hashed Term Frequency, we now know that it outputs
the fixed length feature vector but we don’t know that how long that
feature vector should be. You need 100 numbers to represent a text or 10
billion? You may not know and this depends on your dataset. We would
like to optimize the performance by experimenting or tuning these values.
There is one more important concept worth noticing here. It's Cross
Validation. To be more precise we would like to term it as “k-fold cross
validation”. In “k-fold cross validation”, the data set is equally split into k
parts and the model is trained on k-1 parts and tested on remaining patrt.
And all the k parts become a part for testing once. So the part which
behaved as a test part in first run becomes a training part in next run. So
for example, if it is a 5-fold cross validation, then the model is trained 5
times with all the combinations of 4 parts and all the 5 parts behave as a
test part once in each run. In this way, model calculates the accuracy in
each run and then it may take the average of all the accuracies or the best
accuracy. For managing parameters, CrossValidator has been provided in

this API which takes an Estimator (in this case the pipeline), Parameter

46



Grid and an Evaluator (letting you compare the models that you have
learnt). It then automatically finds the best parameters.

Evaluation is a very important stage because we want to evaluate
how well model has performed. It uses “Label” column which is the true
label from the dataset as well as “Prediction” which is the predicted label.
It can compare them and tell how well model has performed. For
evaluation “area under ROC” has been considered. More the value of
“area under ROC” is near 1.00, more is the accuracy. For Logistic
Regression Model, area under ROC for training dataset is 0.9994 and for

test dataset is 0.8996.

Parameter Tuning

~

Tokenizer : = I CrossValidator

\ N

Hashed Term Freq.
¥ .

\[ Logistic Regression ]j

¢ . ' .-ap . v

Figure 20: Parameter Tuning
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Code Snippet for parameter tuning and evaluation

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.ml.regression.LinearRegression

import org.apache.spark.mllib.util. MLUTtils

import org.apache.spark.ml.tuning.ParamGridBuilder

import org.apache.spark.ml.tuning.CrossValidator

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
val paramGrid = new
ParamGridBuilder().addGrid(hashingTF.numFeatures,
Array(1000,10000)).addGrid(Ir.regParam, Array(0.05,0.2)).build()

val crossval = new
CrossValidator().setEstimator(pipeline).setEvaluator(new
BinaryClassificationEvaluator).setEstimatorParamMaps(paramGrid).setNu
mFolds(2)

val cvModel = crossval.fit(autismtrain_DF)

val evaluator =
newBinaryClassificationEvaluator().setMetricName(“areaUnderROC”)

evaluator.evaluate(cvModel.transform(autismtrain_DF))
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Snapshots of code and its results:

import org.apache.spark.ml.evaluation.RegressionEvaluator
org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.ml.regression.LinearRegression
org.apache.spark.ml.regression.LinearRegression

scala= import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainvalidationSplit}
<console>:36: error: object TrainValidationSplit is not a member of package org.ap
ache.spark.ml.tuning
import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
N

scala> import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.util.MLUt1ils

scala> import org.apache.spark.ml.tuning.TrainvValidationSplit
<console>:37: error: object TrainvalidationSplit is not a member of package org.ap
ache.spark.ml.tuning
import org.apache.spark.ml.tuning.TrainvalidationSplit
Fal

import org.apache.spark.ml.tuning.ParamGridBuilder
org.apache.spark.ml.tuning.ParamGridBuilder

import org.apache.spark.ml.tuning.CrossValidator
org.apache.spark.ml.tuning.Crossvalidator

scala> val paramGrid = new ParamGridBuilder().addGrid(hashingTF.numFeatures, Array
(1000,10000)).addGrid(1r.regParam, Array(0.65,08.2)).build()
paramGrid: Array[org.apache.spark.ml.param.ParamMap] =

Array({
hashingTF_b4f2e85cad3d-numFeatures: 1000,

logreg_fdc4e6ee348e-regParam: 0.05

hashingTF_b4f2e85cad3d-numFeatures: 10000,
logreg_fdc4e6ee348e-regParam: 0.05

hashingTF_b4f2e85cad3d-numFeatures: 1000,
logreq_fdc4e6ee348e-regParam: 0.2

hashingTF_b4f2e85cad3d-numFeatures: 10000,
logreg fdc4e6ee348e-regqParam: 0.2

scala> import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

scala> val crossval = new CrossValidator().setEstimator(pipeline).setEvaluator(new
BinaryClassificationEvaluator).setEstimatorParamMaps(paramGrid).setNumFolds(2)
crossval: org.apache.spark.ml.tuning.CrossValidator = cv_f806b3c21378
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cvModel: org.apache.spark.ml.tuning.CrossvalidatorModel = cv_f806b3c21378

scala> val evaluator = new BinaryClassificationEvaluator().setMetricName("arealUnde
rRoC")

evaluator: org.apache.spark.ml.evaluation.BinaryClassificationEvaluator = binEval_
38919f267b6d

scala= evaluatur.evaluate{cvMudel.transfurm{autismtrain_DF)}l

resl?2: Double = 8.9994757369614513

scala= evaluatur.evaluate{cvModel.tranSFDrm{autiSNtEEt_DF}}I

resll: Double = 0.8996776406035667

Figure 21: Snapshots of code and its results for parameter tuning and

evaluation
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8.

Implementation using Apache Spark over Amazon EMR

Amazon EMR (Elastic MapReduce) provides the managed framework that
distributes the computation of data over multiple Amazon EC2 (Elastic
Compute Cloud) instances.

To get started, data is loaded into Amazon S3 (Simple Storage Service).
Then Amazon EMR cluster is launched and cluster starts processing the data.
When the job is completed, output can be retrieved from Amazon S3. Cluster
can be left running if more data processing is needed. The data in Amazon
S3 can be accessed by multiple EMR clusters. Clusters can also be
terminated when they are not needed anymore.

With Amazon EMR, a variety of powerful applications and frameworks can

be used and Apache Spark is one of those.
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Figure 22: Amazon EMR Workflow

AWS (Amazon Web Services) Account
AWS account has to be created to leverage the above mentioned services.

While creating a new user account on AWS, “Access key id”, “Secret access
key” and “Password” is provided which are useful in further processes.
Installing AWS CLI (AWS Command Line Interface)

To work on CLI, AWS CLI has to be installed using the following command.

$ pip install awscli

$ sudo pip install --upgrade awscli
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Configuring AWS CLI

Following command is the fastest way to setup AWS CLI installation:

$ aws configure

By running this command, following details have to be entered:

AWS Access Key ID, AWS Secret Access Key, Default region name (us-
west-2), Default output format (json)

The CLI stores credentials specified with “aws configure” in a local file named
“credentials” in a folder named .aws in your home directory.

Create a cluster with Spark

First there is a one-time step required to create the default roles necessary for
creation of cluster:

$ emr create-default-roles

Cluster can be created with the following command:

$ aws emr create-cluster —name “SparkCluster” --ami-version 3.9 --
applications Name=Spark --ec2-attributes KeyName=myKey --instance-type
ma3.xlarge --instance-count 3 --use-default-roles

Create Amazon S3 bucket

Amazon EMR can use Amazon S3 to store input data, output data or log files.
In the “Create a bucket wizard”, bucket can be created by providing “Bucket
name”, “Region”. After this, folder can be created in the bucket and the data

which we want to use can be uploaded.
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Create EMR Cluster

There is .pem file containing key value pair which was created. That file is to
be copied into .aws folder and its permissions have to be changed:

$ chmod 400 mykeypair.pem

Connect to master node using SSH

To connect to the master node using SSH, public DNS name of the master
node and Amazon EC2 key pair private key are needed.

$ ssh hadoop@ec2-##H-##-##t-###.us-west-2.compute.amazonaws.com -i
~/mykeypair.pem
hadoop@ec2-###-##-H##-###.Us-west-2.compute.amazonaws.com:

Master public DNS name

~/mykeypair.pem:

Location and file name of .pem file
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Then following screen will appear which shows that we are connected:

arpitarya@7@Arpit-PC:~/.aws$ ssh hadoop@ec2-54-153-168-241.us-west-1.compute.amazonaws.com -i ./keypairncala.pem

The authenticity of host 'ec2-54-153-10-241.us-west-1.compute.amazonaws.com (54.153.10.241)' can't be established.

ECDSA key fingerprint is 15:bc:bd:c9:fe:24:2f:cd:5c:60:9b:d3:1b:35:baz26.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-54-153-10-241.us-west-1.compute.amazonaws.com,54.153.16.241" (ECDSA) to the list of known hosts.
Last login: Fri Oct 9 21:38:44 2015

1)

/ Amazon Linux AMI

https://aws.amazon.com/amazon-linux-ami/2015.083-release-notes/
No packages needed for security; 1 packages available

Run "sudo yum update" to apply all updates.

Amazon Linux version 2015.89 is available.
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Figure 23: Screen after connecting to Master Node
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Access the spark shell on Master Node
Run:
$ spark-shell

Then following screen will appear:

4 INFO S

4 INFO S

4 INFO S ity - yManz E ication disabled; uil acls disabled; users with view permissions: Set(hadoop); users with modify permissions: Set(hadoop)
4 INFO Starting HTTP Ser

4 INFO Utils: Successfully started service 'HTTP class server' on port 5

version 1.5.8

Using Scala version 2.10.4 (OpenJDK 64-Bit Server WM, Java 1.7.6_85)
Type in expressions to have them evaluated.
Type :help for more information.
15 @ INFO SparkCont Running Spark versien 1.5.
:30 INFO S i : Changing view acls to: hadooj
@ INFO S i 1s to: h
9 INFO S ity S y ge
1 INFO S1f4jLogger: Slf4jLogger started
1 INFO Remoting: Starting remoting
1 INFO Remoting: Remoting started; listening on
1 INFO Utils: Successfully rted service 'sparkDriver' on port 4!
1 INFO SparkEnv: Registering MapOutputTracker
:31 INFO SparkEnv: Registering B gerMaster
1 INFO DiskBlockManager: Created local directory at ckmgr -7de90bb4 - 3f2b-4259-8d75- f61f49cdeb24
MemoryStore: MemoryStore started with c i 0 MB
HttpFileServer: HTTP File server directory k-42bBed34-d586- dees- adbc - 7deb3e64bbcd/hitpd- 4496 7eS-e3be - 4b29- bd60- 672deacd2:
HttpServer: Starting HTTP Server
Utils: Successfully started service 'HTTP file server' on port 66677.
SparkEnv: Registering OutputCommitCoordinator
Utils: Successfully started service 'SparkUI' on port 4648.
172.31.4.1 040
stem: Using default name DAGScheduler source because spark
Connecting to Resourcel ger at ip-172-31-4-168.us-west-1.compute.inter
h 2 NodeManagers
ng our application has not requested more than the maximum memory capability of the cluster (11520 MB per container)
allocate AM container, with 896 MB memory including 384 MB overhead
: Setting up contalner launch context for our AM
Setting up the launch environment for our AM container
Client: Preparing resources for our AM container
15/10/09 23:41:08 INFO metastore: Trying to connect to metastore with URI thrift://ip-172-31-18-67.us-west-1.compute.internal:9083
15/16/69 23:41:08 INFO metastore: Connected to metastore.
15/16/69 23:41:09 INFO SessionState: Created local directory: [tmp/793bel16b-283d-49c3-8ef1-dBe1a5529067_resources
15/16/69 23:41:09 INFO SessionState: Created HDFS directory: [tmp/hive/hadoop/793be16b-283d-49¢c3-8ef1-dBe1a5529067
15/10/09 23:41:09 INFO SessionState: Created local directory: /tmp/hadoop/793be16b-283d-49c3-8ef1-d0e1a5529067
15/10/09 23:41:089 INFO SessionState: Created HDFS directory: /tmp/hive/hadoop/793bel6b-283d-49c3-8ef1-d0e1a5529067/ tmp
15/10/69 23:41:09 INFO SparkILoop: Created sql context (with Hive support)..
SQL context available as sqlContext.

n disabled; ui acls disabled; users with view permissions: set(hadoop); users with modify permissions: Set(hadoop)

Figure 24: Running spark-shell over EMR

Machine learning programming can be performed using Scala. Data can be

utilized from Amazon S3.
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9. Conclusion and Future Work
The project work proposes a new aspect and approach to fasten the
procedure of detecting and diagnosing a complex disease called Autism. This
approach uses Machine Learning or Predictive Modeling techniques. If this
approach gets to be adapted in real life scenario, then doctors can get
immensely assisted by technology towards diagnosing this disease efficiently,
accurately and in lesser time.

In this project, two open source frameworks were used: Weka and Apache
Spark. Weka is good to understand the concepts of machine learning as it is
simpler than Spark. But when it comes to complex, large-scale data
processing and predictive modeling, Spark is faster. Also for cluster
computing, Spark becomes quite compatible and scalable.

In future, several different kinds of datasets can be consumed and utilized
towards building data models and perform predictive modeling. The major
advantage of such technique is that it has immense potential to get utilized in

other areas of medical science or any other field.
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