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ABSTRACT 

For automobile insurance firms, telemetric analysis represents a valuable and 

growing way to identify the risk associated with each driver. The pricing decisions of an 

insurer are best accounted for if they are made considering the driver’s behavior instead of 

just the vehicle characteristics and the best way to understand a driver’s behavior is to 

leverage the telemetric analysis. Decisions made on such factors can eventually lead to 

increased premium or reduced liability for unsafe or reckless drivers and can also help in 

transitioning the burden to the policies that lead to increased liability.  

The dataset provided for this project by AXA has 50000 trips from anonymized 

drivers.  A small and varied number of false trips (trips that do not belong to the particular 

driver of interest) are accounted for each driver. These trips are picked from drivers not 

given in the dataset, in order to avoid similarity with the given drivers. Neither the number 

of such false trips, nor the trips with a labeled set of true positives are given. However, it is 

given that most of the trips do belong to the particular driver of interest. The goal of this 

project is to develop a driving signature of each driver and identify the trips which are not 

driven by the particular driver of interest by predicting a probability for each trip that is 

accounted for the driver. 
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1. INTRODUCTION 

Driving, in essence, is a multi-factor cognitive task that is perceived only in the 

context of its surrounding environment like the underlying traffic conditions, road layout, 

social behavior and weather conditions. Therefore the driving style of an individual driver 

is majorly influenced by the actions of motorcycle riders and other drivers that share the 

environment: the driver first understands the surrounding environment which includes the 

behavior of other vehicles sharing the environment like the distance from the leading 

vehicle, traffic conditions and road layout and utilizes this understanding in decision 

making about braking, steering and acceleration. As the driver gains experience, he 

develops a unique individual driving style that could impact road congestion, fuel economy, 

safety, and other factors. For instance, a driver may maintain a comfortable distance and 

time gap to the vehicle in front by monitoring his/her own behavior based on surrounding 

environment.  

Being able to analyze and recognize dynamically, the driving style doesn’t yield any 

valuable information for automobile insurers. More precisely, being able to analyze the 

driving style coupled with the contextual behavior of its surrounding environment, allows 

the automobile insurers to assess the risk associated with each driver. For instance, if the 

acceleration patterns of the drivers in specific road curvatures can be categorized taking 

into account the vehicle dynamics and compared with the speed limit and accident 

statistics of the particular road segment under study, confident decisions can be made 

which can eventually lead to increased premium or reduced liability for unsafe or reckless 
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drivers and can also help in transitioning the burden to the policies that lead to increased 

liability. 
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2. RELATED WORK 

The recent advancements in data mining and machine learning algorithms can be 

put to the best use to explore huge time-series data so as to discover underlying patterns 

and establish spatio-temporal associations among them. Also, the recent advancements in 

hardware/software help automotive on-board diagnostic systems and communications to 

capture the real time information about drivers and their styles. 

Some studies examined the relationship between the aggressive behavior of the 

driver and road characteristics like number of lanes, speed limit, presence of curbs and the 

type of road. Aggressive behaviors include lane violations, failure to stop, speeding, sudden 

raise of acceleration and severe other violations. Driving styles, most of the times, can also 

vary depending on weather/road conditions and the driving culture of the particular 

country where the data is recorded from. In such cases, the application of data mining to 

discover patterns and classify driving styles is highly preferable.  

Some studies modeled the drivers’ speed profiles at a curvature with average 

angular velocity and the particular location of maximum acceleration calculated based on 

Bayesian methods. It is revealed that speed profiles of different drivers differ significantly, 

just like the average speeds at the curves. The modeled speed profiles of the drivers can 

also be used to derive acceleration profiles, which in turn can be used to determine the 

aggressive behaviors of the drivers. The work of Spiegel et al. [6], utilizes a bottom-up 

Singular Valued Decomposition algorithm that identifies, time series segments which are 

internally homogeneous. The recurring patterns are recognized, by grouping the time 

series segments using agglomerative hierarchical clustering. Consequently, recurring series 
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of grouped segments that can be considered as classes containing high-level driving 

contexts can thus be retrieved.   

Some studies introduced two models which predict the recognition of driving 

events: the first model used multiple linear regression approach to predict whether a 

driver steers or eases up on the brake or accelerator; the second model used Bayesian 

Network to predict drivers’ decelerating patterns. The predictions on three driving actions 

made by the two proposed models were successful with the accuracy over 70%.  

Although majority of the studies dealt the prediction of driving style with the 

classification approach, dealing the problem with a regression approach is treated very 

useful. The reason is that it provides valuable insights into the recognition problem by 

providing an estimation of every factor that contributes to the event that needs to be 

recognized.  
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3. PROJECT DESCRIPTION 

The dataset provided for this project by AXA has nearly 50000 trips from 

anonymized drivers.  These trips are divided among 2736 drivers with each driver 

accounting for 200 trips of which majority of them have actually taken by the driver. The 

trips are provided in the form of .csv files.  

Each trip is recorded by capturing every second, the position of the car (in meters). 

To protect the drivers' privacy of their locations, the trips were randomly rotated, centered 

to initiate at the origin (0, 0) and data accounting for short trip lengths were removed from 

the trips’ start/end positions. 

A small and varied number of false trips (trips that do not belong to the particular 

driver of interest) are accounted for each driver. These trips are picked from drivers not 

given in the dataset, in order to avoid similarity with the given drivers. Neither the number 

of such false trips, nor the trips with a labeled set of true positives are given. However, it is 

given that most of the trips do belong to the particular driver of interest.  

The intent of this project is to develop a driving signature to answer the following 

questions about each driver. Does he drive short trips? Does he drive long trips? Does he 

take Highways? Does he take back roads? Does he accelerate hard and sudden from stops? 

At what speed does he take turns? The answers to the above questions can be combined to 

form an aggregate and unique driving profile that differs from other drivers and eventually 

help to identify the trips which are not driven by the particular driver of interest by 

predicting a probability for each trip that is accounted for the driver. 
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A sample trip looks like the following: 

       

Figure 1: Sample Input .csv file 
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The following are the trips driven by the driver (with id =1), as per the given dataset. 

 

 

Figure 2: Plots showing the trips taken by the driver with id = 1 
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4. TOOLS AND PACKAGES 

The following are the tools and packages used to accomplish the project. 

4.1 PyDev with Eclipse: This project uses Eclipse 4.3 which is configured with PyDev 

plug-in to support the development of python modules. All the code for this project is 

developed using python with the python interpreter version of 2.7. 

4.2 Packages: This project uses the following packages available in python to accomplish a 

variety of tasks. 

4.2.1 SciPy: SciPy is a python library which is a collection of many open source 

software packages like NumPy, Matplotlib among many others to provide scientific 

computing in Python. 

 

Figure 3a: Scipy Version Information 

4.2.2 NumPy:  NumPy is a fundamental package used for numerical computation 

and is one of the core packages available in SciPy. It provides methods to represent 

data in matrix types and numerical arrays and support methods to perform basic 

operations on them. 
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Figure 3b: Numpy Version Information 

4.2.3 Matplotlib: Matplotlib is one of the most popular plotting packages available 

as one of the core packages in SciPy. It provides 2D plotting in python with the 

quality worth of publication. It also provides rudimentary 3D plotting. 

 

Figure 3c: Matplotlib Version Information 

4.2.4 Multiprocessing: Multiprocessing is a python package which provides both 

remote and local concurrency by spawning processes. It uses an API which is similar 

to the “threading” module in python to achieve this. 

 

Figure 3d: Multiprocessing Version Information 
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4.2.5 Scikit-learn: Scikit-learn is an open source python library that features 

various machine learning algorithms of supervised learning (Classification and 

Regression) and unsupervised learning (Clustering). 

 

Figure 3e: Scikit-Learn Version Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Driver Telematics Analysis 
 

Karthik Vakati 
SID: 008665189 Page 17 
 

5. MACHINE LEARNING ALGORITHMS 

The following machine learning algorithms are used to accomplish this project. 

5.1 Random Forest: Random Forests is an ensemble of many classification or regression 

trees. The class label of a new data point is obtained by passing the input vector down each 

classification or regression tree of the forest. A classification is obtained from each 

individual tree and a vote is obtained for that particular class. The forest finally chooses the 

class label which has the highest number of votes.  

Each tree in the forest is generated as follows: 

i. If N is the number of entrees in the training data, then a random sample with 

replacement is chosen from the initial training data and this small random sample 

serves as the training data for this tree. 

ii. If M is the number of features or input attributes, a small number m (far less than M, 

m<<M) is chosen in such a way that at each individual node of the tree, m out of M 

features are chosen at random and the node is split based on the best value of m. m is 

treated as constant during the process of growing forest. 

iii. Each tree of the forest is developed to the largest depth possible. No pruning is 

applied. 

The error rate of the forest depends on two important things: 

i. Correlation: If any two trees are correlated in the forest, then it results in the increase 

of forest error rate.  
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ii. Strength: Weak classifiers tend to increase the error rate. So as the trees become 

strong, error rate of the forest decreases. 

Selecting a small m reduces both strength and correlation and large m increases both of 

them. Random Forest works at its best when an optimal value of m is determined. This is 

done by leveraging the out-of-bag error rate. This is the only parameter which is adjustable 

and to which random forests are sensitive to an extent. 

5.2 Gradient Boosting: The basic idea of Gradient Boosting is to generate a series of 

simple classification trees, wherein the prediction residuals from the preceding tree are 

used to build the successive tree. Each tree that is built is a binary tree which partitions the 

data into two different samples at every node split. At every step of boosting, a best and 

simple partitioning of the input data is determined. Each partition results in a residue 

which helps in computing the standard deviations of input values. The next successive tree 

is grown to fit the residuals from the previous tree, to derive a new partition of the data 

that further reduces the error rate of the data. 

It is proved that this process of building the trees with weights added in each step of 

boosting can eventually result in a best fit of the observed values to the predicted values. 

This is true even if there is complex or non-linear relationship between dependant and 

independent variables.  

5.3 Linear Regression: In the field of statistics, linear regression is a methodology to 

model a relation between a variable y, which is a scalar and dependant on one or 

more independent variables denoted by X. Linear Regression is Simple if the dependant 
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variable depends only on one independent variable or Multiple (not Multivariate) if the 

dependant variable depends on more than one independent variable.  

In this algorithm, the parameters of model are estimated by modeling the data with 

predictor functions which are linear. Models thus estimated are known as linear models. In 

majority of the cases, linear regression relies on y’s conditional mean which is an affine 

transformation of X and in some cases it relies on y’s conditional median or some measure 

which is a linear transformation of X. Similar to various kinds of regression analysis, the 

focus of linear regression is on the probability distribution of the dependant variable 

y given the independent vector X which is conditional, rather than on the combined 

probability distributions of dependant variable y and independent vector X, which forms 

the cause for multivariate regression analysis. 

5.4 Support Vector Machines (SVM): SVM belongs to the class of classifiers that achieve 

classification by the construction of hyperplanes which separate data points of different 

categories or classes in a multidimensional space. SVM is capable of performing both 

classification and regression tasks and also handling multiple categorical and continuous 

variables. For categorical attributes, a variable (often dummy variable) is assigned with 

class label either 1 or 0. Thus, a dependent categorical variable depending on three 

attributes, (X, Y, Z), can be represented as X: {0 1 0}, Y: {0 0 1}, Z: {1 0 0}. 

SVM utilizes an iterative approach in its training algorithm, which minimizes the 

error function in order to obtain a hyperplane which is optimal.  

http://en.wikipedia.org/wiki/Conditional_expectation
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5.5 Ramer Douglas Peucker (RDP) Algorithm: The RDP algorithm reduces the number 

of points of a curve by approximating common sets of points. The algorithm works by 

iteratively or recursively drawing lines between current and last points of the curve. At 

each iterative step, it checks for the points that are farthest from the line drawn above. It 

deletes all these points from the resulting curve whose distance from the line is smaller 

than a threshold value “epsilon”. If the distance of the points from the line is greater than 

the threshold value “epsilon”, the curve is divided into two parts: 

i. Starting from the first point and including these distant points 

ii. The distant and rest of the points 
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6. SYSTEM ARCHITECTURE 

The input data, as described above, is provided in .csv files. In order to apply any 

machine learning algorithm to this data, features need to be identified and extracted from 

this data. A feature is any measurable property of the phenomenon that is being observed. 

A group of features can represent the whole phenomenon as such. The process of deriving 

the values of such features is called Feature Extraction. Feature Extraction is intended to 

reduce any redundant information and require fewer resources to represent the whole set 

of data. The features of this project fall into various categories like the Movement features, 

Trip features and Segment features. 

The data thus obtained by deriving the values for the features is divided into two 

sets of values. The first set of data is called the “train data” and the second set of data is 

called the “test data”. The train data serves as the actual input data to the machine learning 

algorithm. The algorithm analyses the input data for any repeated patterns and builds 

models that capture these patterns. The models built for this project made use of the 

machine learning algorithms like Random Forest, Gradient Boosting, Support Vector 

Machines and Linear Regression to study the driving behavior of all the drivers.  

Once the models are built, the goal is to predict some phenomenon of interest from 

the test data. It does so by leveraging the models that are built on the train data. The goal of 

this project is to predict the probabilities of each trip that belong to the drivers. 

  



Driver Telematics Analysis 
 

Karthik Vakati 
SID: 008665189 Page 22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: System Architecture 
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7. FEATURES 

Features are any measurable properties that best describe or represent any 

phenomenon. Feature Extraction (the process of deriving values for the features) is one of 

the crucial steps to predict the behavior of interest about the phenomenon. For any 

analytics problem, if the extracted features can capture the exact and complete behavior of 

the phenomenon, then majority of the problem is solved. The rest of the problem lies on 

building an appropriate model out of these features.  

For Driver Telematics problem, features need to be extracted that best describe the 

driving behavior of the driver and also the road conditions. The research about the driving 

behavior has started in 1978 when Karstens and Kuhler [7] introduced 10 behavior 

parameters that account for aggregate driving profile: mean speed, mean speed excluding 

the stops, mean acceleration, mean deceleration, average length of a trip, mean number of 

acceleration/deceleration changes within a trip, standstill time proportion, acceleration 

time proportion, deceleration time proportion and constant speed time proportion. Later 

on, many studies also revealed several other interesting features pertaining to the driving 

behavior. Although all such features are taken into consideration, in the context of this 

problem, some features were excluded and the resulting features formed the final feature 

set for building the model. These features fall into 3 categories. 

7.1 Trip Features 

These are the features that represent the properties of the trip. The features that fall 

under this category are as follows. 
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7.1.1 Ride Length: This gives the total length of the trip in meters. It is calculated as 

follows. The distance between every two consecutive points is calculated and 

summed up to give the final length of the trip. The distance measure used to 

calculate the distance between two points is the Euclidean distance measure. 

7.1.2 Ride Speed: This is the average speed for the total trip. It is calculated by 

dividing the total length of ride (calculated from above) with the total trip time 

(calculated by summing up all the rows in the excel file except for the first row 

which are labels). 

7.1.3 Ride Length without stops: This gives the total length of the trip for which 

there are no stops. In order to measure this, Euclidean distances are first measured 

between every two consecutive points and distances which are less than certain 

threshold like 2 meters (as they can be considered as stops) are removed. The 

resulting distances are summed up to give the total length of the trip without stops. 

7.1.4 Ratio of Stops: This gives the ratio of total number of stops over length of the 

trip for a particular trip. It is calculated by dividing the total number of distances 

whose Euclidean distance measure is less than certain threshold like 2 meters with 

the length of the trip. 

7.1.5 Angle: This gives the angle of the trip at a particular position with respect to 

the coordinate system. It is calculated using the standard geometric formulas.  

7.1.6 Other Features: These features include percentiles and histograms over 

speeds, angles, accelerations, speed*angles. 

 



Driver Telematics Analysis 
 

Karthik Vakati 
SID: 008665189 Page 25 
 

7.2 Trip segment features 

A good idea to identify matching trips is to use Euclidean distances. But a better idea 

to identify matching trips is to identify common road segments between trips. This 

approach should eventually identify redundant trips. The algorithm that is helpful in this 

regard is the Ramer-Douglas-Peucker algorithm which simplifies trajectories.  

7.3 Driving features 

These features can best describe the driving style of the driver, although to some 

extent they can also capture certain road features and junction shapes. The features that 

fall under this category are as follows.  

7.3.1 Mean acceleration: This gives the mean acceleration for each acceleration 

window.  

7.3.2 Mean deceleration: This gives the mean acceleration for each deceleration 

window. 

7.3.3 Average number of acceleration/deceleration changes: This feature gives 

the average number of changes from acceleration to deceleration and vice-versa. 

7.3.4 Other Features: Other features include standard deviations of average, 

minimum and maximum values of speed*acceleration and mean and standard 

deviation of acceleration and deceleration windows. 
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Figure 5: Sample input feature file for Train data 
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8. PROJECT IMPLEMENTATION 

This project is implemented as follows. For every driver, 180 out of 200 trips are 

chosen at random and labeled as “1” (probability that this trip was taken by the driver of 

interest). Then a driver is randomly selected and 180 from 200 trips of this driver are 

chosen at random and labeled as “0” (probability that this trip was not taken by the driver 

of interest). The features were then extracted for these trips and the data that is generated 

forms the Train data. The remaining 20 trips from both the drivers form the Test data.  

To further improve the efficiency of the model that is built, some modifications to 

this execution plan were carried out. Instead of just taking 180 trips from a single driver, 

180 trips from more than 4 drivers are chosen. Since this modification results in 

unbalanced training data, data from the driver of interest is duplicated. 

For the purpose of cross validation, a slightly modified approach can be followed. In 

this approach, the process of model building (from 180 out of 200 trips from the current 

driver and 180 out of 200 trips from the other drivers) is repeated 10 times so that every 

trip falls into train and test datasets atleast once. This removes any factor of bias that was 

generated from the previous approach.  

Once the Train data is generated, features of each category type are extracted. 

Individual models are built by running machine learning algorithms like the Random 

Forest Classifier, Gradient Boosting Classifier, Linear Regression and Support Vector 

Machine on each set of features.  
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8.1 Ensemble:  

Ensembling is the process of joining individual machine learning models, with each 

individual model assigned a weight, in order to gain better prediction results. This project 

uses a linear model to combine all the individual models and proved to be successful. 

8.2 Caching: 

 It is always a good idea to cache the results from the models that are built. Caching 

enables easier access to the models built earlier and save huge amounts of time by 

eliminating the need to rebuild the model. As the data provided is very huge, at times, 

caching definitely improves the efficiency of the project by reducing the build time of the 

project.  
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9. EVALUATION 

The performance metric used to evaluate this project is the area measured under 

ROC curve. ROC is an acronym for Receiver Operating Characteristic. ROC curve is 

a graphical plot, which elucidates the performance measure of a binary classifier against its 

corresponding discrimination threshold. The curve is generated by plotting the rates of 

true positive against false positive at various settings of the threshold. (In machine 

learning, the true-positive rate is termed as “recall” and the false positive rate is termed as 

“false alarm rate”). The ROC curve is thus the recall as a function of false alarm rate. 

Generally, once the probability distributions of both recall and false alarm are generated, 

ROC curve can be plotted with the cumulative distribution (area measurable under the 

probability distribution curve from -∞ to +∞) of the probability of recall on y-axis against 

the cumulative distribution of the probability of false alarm on x-axis. 

The Scikit-learn package in python provides the methods roc_curve() and auc() as 

part of the module sklearn.metrics. The method signature of roc_curve() is as follows. 

roc_curve(test_true, test_score, position_label=None, sample_weight=None) 

where test_true is an array of n samples containing true binary labels either in 

the range {0, 1} or in the range {-1, 1}. Position_label should be given 

explicitly if the provided labels are not binary. 

test_score is an array of n samples containing the predicted scores which 

can be probability estimates of either the positive class or the confidence 

values. 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29
http://en.wikipedia.org/wiki/Sensitivity_(tests)
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position_label is an integer representing the positive label while all the 

other values represent negative values 

sample_weight is an array of n samples which contains sample weights 

This method returns the tuple (fpr, tpr, thresholds) 

fpr is an array containing the increasing rates of false positives such that 

ith element represents the predictions’ false positive rate with 

predicted_score is greater than or equals to thresholds [i] 

tpr is an array containing the increasing rates of true positive such that 

ith element represents the predictions’ true positive rate with 

predicted_score is greater than or equals to thresholds [i] 

thresholds is an array containing n thresholds decreasing with the 

decision function which is used to compute tpr and fpr.  

In this project, once the model is built, it is tested on the test data to form the 

predictions which are the probabilities of each trip taken by the driver of interest. The 

predictions along with the test labels (180 out of 200 trips by the driver of interest and 

other drivers selected at random are labeled as ‘1’ and the remaining 20 trips from each of 

those drivers are labeled as ‘0’) are fed as input to the roc_curve() method which returns 

the parameters fpr (false positive rate) and tpr (true positive rate). These parameters are 

fed as input to the method auc() which measures and returns the value of the area under 

ROC curve. 

Since this project was hosted by kaggle.com, many users submitted their final 

entries and the entry which secured the first place has an auc score of 0.97984. However, 
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this project has an auc score of around o.9161 which could have stood around 92nd place 

out of 1528 teams that participated.  
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10. RESULTS 

The algorithm developed in this project predicts the probabilities of each trip 

from all the drivers. For a particular driver of interest, in order to differentiate the trips 

which are actually taken from the trips which are not taken, a good measure of the 

probability >= 0.85 is chosen. This section of the report illustrates the results of the 

algorithm by comparing trips of a driver from the actual data with those derived from the 

algorithm. 

This section flows as follows. In the first phase, it considers two trips from the 

driver with id = 2 (random driver chosen to illustrate the results) whose probability < 0.85 

which indicates that these trips are not taken by this driver. It then considers two other 

trips from the same driver whose probability >= 0.85 which indicates that these trips are 

actually taken by this driver. In the second phase, it illustrates the trips which are actually 

taken and which are not taken by the drivers with id = 1 and id = 3 in different plots. 
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The following two plots represent trips with probability < 0.85 for the driver with id= 2. 

 

Figure 6a: This plot represents the trip with id = 47, which belong to the driver with id = 2 

and whose probability < 0.85. The part of the trip shown in oval contains repetitive data 

points which indicate that it was driven multiple times. 
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Figure 6b: This plot represents the trip with id = 153, which belongs to the driver with id=2 

and whose probability < 0.85. The parts of the trip shown in ovals contain repetitive data 

points which indicate that they were driven multiple times. 

 

 



Driver Telematics Analysis 
 

Karthik Vakati 
SID: 008665189 Page 35 
 

The following two plots represent trips with probability >= 0.85 for the driver with id= 2. 

 

Figure 6c: This plot represents the trip with id = 25, which belong to the driver with id = 2 

and whose probability >= 0.85 
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Figure 6d: This plot represents the trip with id = 61, which belong to the driver with id = 2 

and whose probability >= 0.85 

 From the figures Figure 6a, Figure 6b, Figure 6c and Figure 6d it is clear from Figure 

6a and Figure 6b that the driver with id = 2 doesn’t take shorter trips which have repetitive 

data points. On the other hand the same driver takes longer trips which don’t have 

repetitive data points. 
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The following section illustrates trips from drivers with id = 1 and id = 3. 

 

Figure 5: This plot shows all the trips taken by the driver with id = 1 as per the given 

dataset. The trips shown in ovals are the trips removed from the next plot which contains 

all the trips whose probability >= 0.85  
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Figure 5: This plot shows all the trips of the driver with id = 1 whose probability >= 0.85. 

The probabilities are obtained by applying the algorithm on the test data. This plot also 

shows that this driver is open to both short and long trips. 
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Figure 5: This plot shows all the trips taken by the driver with id = 3 as per the given 

dataset. The trips shown in ovals are the trips removed from the next plot which contains 

all the trips whose probability >= 0.85 
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Figure 5: This plot shows all the trips of the driver with id = 1 whose probability >= 0.85 

The probabilities are obtained by applying the algorithm on the test data. This plot also 

reveals that this driver doesn’t take long trips. 
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11. CONCLUSION 

The machine learning model built in this project has achieved an auc measure of 

0.9161. Though this algorithm is not the best among all the entries, it achieved a decent 

score when compared with the others. This algorithm could have done even better if more 

diverse data was provided. Though the data is limited in terms of diversity, this model has 

performed better. Based on this model built, automobile insurers can know the routes 

taken by the driver and if the routes are riskier like the ones on steep mountains and make 

decisions on premium and other policies. On the other hand, if a driver always takes safer 

routes and when combined this profile with his/her experience in driving, the premium 

can be reduced for the driver or the liability can be increased with the same premium. 
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12. FUTURE WORK 

The road segment features in this project, which are used to identify common road 

segments by a driver of interest, are generated using the RDP algorithm. One drawback 

with the RDP algorithm is the difference in segmentation process of similar curves because 

of the effect of movement noise on the threshold used by the algorithm. The future work of 

this project might include the way to encode each trip as a list of segments along with the 

driving instructions just like the directions of Google Maps. This advancement of the 

feature extraction of segments along with the driving instructions helps in obtaining better 

results. 
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