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ABSTRACT 

Solving recursive domain equations is one of the main 

concerns in the denotational semantics of programming 

languages, and in the algebraic specification of data types. 

Because we are to solve them for the specification of comput­

able objects, effective solutions of them should be needed. 

Though general methods for obtaining solutions are well known, 

effectiveness of the solutions has not been explicitly 

investigated~ The main objective of this dissertation is to 

provide a categorical method for obtaining effective solutions 

of recursive domain equations. Thence we will provide effective 

models of denotational semantics and algebraic data types. The 

importance of considering the effectiveness of solutions is 

two-fold. First we can guarantee that for every denotational 

specification of a progran~ing language and algebraic data type 

specification, implementation exists. Second, we have an 

instance of a computability theory where higher type computab­

ility and even infinite type computability can be discussed 

very smoothly. 

*While this dissertation has been written, Plotkin and Smyth 

obtained an alternative to our method which worked only for 

effectively given categories with universal objects. 



I.l 

INTRODUCTION 

I.l Histdrical Remarks 

Recursive domain equations play a crucial role in the 

denotational semantics of progra~~ing languages as developed 

by Scott and Strachey [21] and their followers (Tennent [27] 

and Stoy [25]). For example in denotational semantics of a 

language which allows commands to be stored,' the following 

domain equations should be solved as a recursive specificat­

ion of the domain of stores: 

S =[L+([S~S]+V')] -------- ( 1) 

where L is the d,omain of locations, V' is the domain of other 

store values and [S~S] is the domain of commands which is the 

space of functions from S to S. 

If we interpret + and ~ set theoretically, then by a 

straightforward cardinal argument, we can observe that there 

is no solution to (1). Indeed the right side becomes much 

bigger than the left side. Scott [16] indicated that if we 

restrict functions allowed in the function spaces so that 

we can make the cardinal of [S~S] the same as that of S, vie could 

solve equations like (1). This calls for structuring domains 

rather than regarding them as plain sets. 

In fact Scott [16] regarded domains as complete 

lattices where the partial ordering a~b means that the comp­

utaion a approximates the co~putation b. Thence he 'allowed 

only continuous, in the sense of directed limit preserving, 

functions in function spaces. This idea of Scott is based on 

a principle that every computable object should be a limit 

of a chain of finite approximations to itself. Indeed every 

., 

" 
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partial recursive function is such an object (see Kleene [6]). 

Later several authors (Milner [7],Markowsky and Rosen [l5J, 

Plotkin [lb], Smyth [22]) pointed out that complete lattices 

are too rich and a sufficient structure is the structure used 

by Scott in his earlier work (1969 private comunication). 

Roughly the structure is a poset with the least element which 

admits a lub for each directed subset. This structure is the 

so called cpo (Eomplete £artial Qrdering) • 

In order to discuss computability, the partial ordering 

structure is not sufficient. We need some kind of effectiveness 

structure •. 

Scott [16] proposed a notion of effectively given domains 

to tackle this problem. The essential idea of this approach 

is to handle only those cpo's (countably continuous cpo's) 

each of which has a countable substructure called a basis s.t. 

the whole structure can be regained from the basis by means 

of completion, i.e. by means of taking lub's of directed sub­

sets of the basis. Then assuming computability of the finite join 

operation on the basis, we define the computable elements to be 

the lub's of r.e. directed subsets of the basis. Roughly 

speaking, we regard an element to be computable iff it can be 

approximated effectively. In case the basis is the set of all 

compact (finite) elements of the cpo, we call such an effectively 

given cpo as effectively given algebraic cpo. 

This idea of Scott was further studied, for the algebraic 

case by Egli and Constable [l],and Markowsky and Rosen [15], 

and for the continuous case by Tang [26] and Smyth.[22]. 

The firs' solution by Scott [18] and Tang [26], for 

) 
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soJ_ving recursive domain equations like (1) used the idea of 

universal domains. They showed that a solution of the 

equation: 

D =[D+D] 

obtained as the limit T of: 
m 

TO = the two point lattice. 

Tn+l = [Tn+Tn ]· 

is a universal domain for the class of countably continuous 

lattices, i.e. every element of this class is a retract of 

T . m 
They developed a retract calculus which yields a 

continuous lattice solution to each recursive domain equation 

as the range of an idempotent which is a least fixed pojnt 

of a functional associated with the domain equation. Scott [15] 

also showed that Pw is a universal domain for the class of 

countably continuous lattices and developed a retract calculus 

which provides countably continuous lattice solutions to 

recursive domain equations. 

Furthermore Plotkin [12] and Scott [20] independently 

obtained a universal domain for the class of countably 

continuous bounded complete cpo's. 

Scott [17J sugqested that there should be a categorical 

method for obtaining lattice solutions to recursive domain 

equations. This idea was made explicit by Reynolds [13J and 

Wand [29]. Smyth [24] proposed a theory of w-categories which 

guarantees the initiality of the solutions of the domain 

equations. This theory relates to the leastness of the solu-

tions via retract calculus. Smyth and Plotkin [24] studied 

several interesting relations between the categorical approach 
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and the retract calculus approach. 

Even though not made precise, effective methods for 

obtaining solutions of recursive domain equations were. 

considered for the retract calculus approach as in Scott [18J, 

Scott [20J, and Plotkin [12J. On the contrary there has been 

no known categorical method for effectively solving domain 

equations. 

I.2 Recent Developments 

All methods, obtained so far, for yielding 

solutions to recursive domain equations like (1) used a 

rnathematlcal device to reduce the cardinality of the right­

hand side to that of the left-hand side by restricting func-

tions to be continuous. Recently the author [3,4J showed that 

we can play this game at the cardinality w. He proposed to 

handle only those partially ordered sets each of which can be 

recovered from its basis by means of "effective completion". 

This guarantees each structure to be countable. He then showed 

that these structures can be characterized as the sets of com­

putable elements of effectively given domains. Then by allow­

ing only effective functions from D to D' in [D~D'], he showed 

that the- resulting function space is also such a structure. 
. .' 

Notice that we have reduced both sides of (1) to count-

able sets. We call such structures effective domains. 

Furthermore the author [3,4] proposed a theory of 

effective w-categories (he called it "effective categories") 

which is an effective version of Smyth's w-categories and 

showed this categorical theory provides effectively initial 
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effective domain solutions to recursive domain equations. Also 

the author and Park [5] showed that this theory can be applied 

to obtain effectively initial solutions, which are effectively 

given domains. 

In parallel to these effectiveness results Smyth and 

Plotkin [24] developed an effective retract calculus in 

categorical setting. 

Apart from a denotational semantics, recent develop­

ment of Lehmann and Smyth [23] showed that the recursive 

domain specifications play an essential role in the algebraic 

specification of data types. In connection with this, the 

relat ion betv.Teen Wand's J-catego:t"y anc. Smyi:.h' f> w-C'ategory 

appeared to be important. Smyth and Plotkin [24] studied this 

problem in great detail • 

But they doubted the possibility of introducing effect­

iveness to O-categories in general. Instead they observed 

that every O-category with a universal object has a unique 

ordered monoid representation. Thence by introducing effect­

ivene5s to the ordered monoid representation they managej to 

consider effectively given O-categories with a universal 

object. Thus they developed an effective retract calculus. 

However following an idea of Park on effectiveness of 

O-categories, the author recently obtained a very natural 

notion of effective O-categories in general. He then studied 

relations between effective w-categories and effective 

O-categories. 
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1.3 The Objective of This' Dissertation 

In this thesis, we will be concerned ma:inly with the recent 

results 'of effective O-categories and effective w-categories. 

As a concrete ·instance of these effective categories, we 

will review the class of effectively given bounded complete 

algebraic cpo's (called effectively given (algebraic) 

domains) and emphasize a crucial point which has been over-

looked in the previous works. Namely the dependence of the 

computablity of elements on the indexing of the basis, as 

discovered by Park and the notion of effective embeddings 

and effective isomorphisms as developed by the author (see 

Kanda 3.::"'.d Parl( [5]). Furt'1ermor0. we will s·';.11dy the class of 

effective domains as an effective category. 

So far the effectiveness of domains is studied only for the 

bounded complete case. Plotkin [lOJ showed that this condit-

ion imposed to make function spaces of algebraic domains , 
algebraic can not be preserved under his power domain const­

r 

ruction, and proposed the so called SFP condition to compen-

sate for this deficiency. Thil:: condition is more gene-

ral than bounded completeness. We observe that the SFP 

condition is more natural than bounded completeness on account 

of effectiveness. Thence we will study effectively given 

SFP objects and observe that they form an effective category. 

It has been said that one of the biggest demerits of the 

categorical approach is lacY. of suitable effectiveness notion. In 

this dissertation, we will present an answer to this critic-

ism. Furthermore we argue that the categorical approach, as 

it is here, has generality in its application. In fact there 

is no known way of solving recursive domain equations 

" 
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which involve Plotkin power domain constructor, by means 

of the retract calculus. But the categorical method enables 

us to do so. 

We admit that the categorical approach still is not so 

developed as the universal domain approach, in the sense that 

it lacks in natural notation for the computable elememnts. This 

problem is left open. 

Finally notice that the results in thj,s dessertation 

supply an effective version of Lehmann and Smyth [23] 

data types. Also they provide a natural way of discussing 

computability over higher types and infinite types. 



1.1 

CIIi\PTER 1: NON-EFFECTIVE SOLUTlm~S 

I have not indicated in which 
degree the ~suLts in this work are 
or-iginal, which is aUiJCI1Js a difficu·U 
probZem when a uniform approach to a 
subject is p!'esented. 

J. Engelfl'iet 

In this chapter, before we study effectiveness, we briefly 

review results already known on non-effective do~ain theory. 

1. I Complete Partial Ordering 

By a rya~tially ordered set (poset), we mean a pair (D,e) 

whe"':"e :> is a set. and E. is a ~artia: orde~:ing, 1. e., refle:c' .. ve, 

anti-symmetric, and transitive relation on D. An element x of 0 

is an upper bound of a subset S~D, in synillols Sex iff x~y for 

all YES. An upper bound z of S is a least upper bou~d (lub) of 
. 

S, in symbols US, iff x~S implies x~z. A subset SeD is directed 

iff every finite subset F~S has an upper bound in S. 0 is 

directed (bounded)complete iff every directed (bounded) subset 

has a lub. 

Definition 1.1.1 

Given posets (D,e) and (0' ,C'): 

(1) A function. f: D-+D' is monotone iff xcy implies f (x)l::f (y) • 

(2) A function.f:D-+O' is continuous iff for every directed sub-

set S.=,o vlith a lub, f(S)={f(x) IXES} is directed and has a lub, 

and f(US)=U'f(S). o 
It is straight-forward to observe that every continuous 

function is monotone. Given two monotone Qaps f,g:D+D', we 

order them by pointVlise ordering, i.e., 

fcg iff f(x)Cg(x) for all XED. 

) 
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Definition 1.1. 2 

A monotor:e (continuous) map h:D·~D is a monotone (continu­

~) idempotent iff h=h·h. It is projective (inflative) iff 

h'CidD (h:JidD) where idD is the identity map on D. 

Definition 1.1.3 

Let (e:D+D' ,r:D'+D) be a pair of monotone functions: 

o 

(1) (e ,r) is a monotone retr?:.(~tion pair (from D to D') iff 

r.e is the identity map on D'. r is called a monotone re­

traction and e is called a monotone section. Ne also say that 

D' is a monotone retract of D (via (e,r». Notice that r is 

surjective, thus D'=range(r). Evidently h=e'r is a monotone 

iderrpotent c?nd \'1ill be r:::alled a mo"':"'.otonc retraction it'lE~m90teT't 

of (e,r). 

(2) (e,r) is a monotone projection pair iff it is a monotone re-

traction pair s.t. the monotone retraction idempotent h 

is· projective. In this case r is called a monotone proj·ection 

and e is called a monotone embedding. h is called.a monotone 

projection idempotent. 

(3) (e,r) is a monotonE>: inflation Ea.ir }f(it is a monotone 

retraction pair s.t. h is inflative. In this case, we say that 

r is a monotone inflation and e is a monot:one infbedding. Also 

h is called a monotone infl~tion idempotent. 

Lemma 1.1.4 

o 

(1) A monotone projection determines .a corresponding monotone 

embedding uniquely and vice versa. 

(2) A monotone inflation determines a corresponding monotone inf­

bedding uniquely and vice versa. 

proof (1) Let (e,r) and (e~ ,r) be monotone projection pairs. 

Then e'=e'·r·ece and·e=e·r·e'Ce'. Thus e=e'. Let (e,r) and 

(e,r') be monotone projection pairs. Then r=r'. e,rCI' and 
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r':::r.e·r'~r. Thus r=r'. 

(2) Let (e,r) and (e' ,r) be monotone inflation pairs. Then e'= 

e' ·r·e~e and e=e·r·e':::te'. Thus e=e'. Let (e,r) and (e,r') be 

monotone inflation pairs. Then r=r'·e·r~r' and r'=r·e·r'~r. 

Therefore r=r'. 0 

By virtue of this lemma, we will say that e(r) is the 

adjoint of reel whenever (e,r) is a monotone projection pair 

or a monotone inflation pair. 

Lemma 1.1.5 

(1) A monotone embedding preserves and reflects all existing 

least upper bounds. 

(2) A mcnot,:me inflation pre.5erves all existing lub' s. 

Eroof (1) Let (e,r) be a monotone projection pair from D to D'. 

Assume UXED. Then e(UX)=.e(X). Let v';!e(X}. Then r(v'):!r·e(X}=X. 

Thus r(v')~UX. Thus e(UX)Ce·r(v')cv'. Therefore e(UX)=Ue(X}ED'. 
- - . -

Thus e preserves 1ub's. Now let LJe(X} ED'. Then r(Ue(X} }2r·e(~O 

=X. Let u~X. Then e(u}~Ue(X) and r.e(u)=u~r(Ue(X». Therefore 

r(Ue(X»=UX. Therefore e reflects 1ub's. 

(2) Let {e,r) be a monotone inflation pair fI:om D to D'. AS:.mme 

UX'ED'. Then r(UX')~r(X'}. Let v~r(x'). Then e(v)~e·r(X')~X'. 

Thus e(v)~UX'. Thus r(UX')£r·e(v)=v. Therefore r(UX')=ur(X'). 

Therefore r preserves 1ub's. 

Notice that 1.1.5 is claiming that all monotone ernbeddings 

and monotone inflations are continuous. But we can not establ-

ish that every monotone projection and every monotone inf-

bedding are continuous. This calls for the following: 

Definition 1.1.6 

(1) A continuous retraction pair is a monotone retraction pair 

(e/r) s.t. both rand e are continuous. r is called a continu-

ous retraction and e is called a continuous section. h=e.r is 

). 
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a continuous retraction idemnotent. 

(2) A continuous projection pair, a continuous inflation pair are 

defined similarly. [J 

Notice that a continuous projection (inflation) is a monotone 

projection (inflation), which is continuous by 1.1.5, s.t. the 

corresponding monotone embedding (infbedding) is continuous. 

Definition 1.1. 7 

Given posets D and D', a monotone map f:D~D' is an J-somorphism 

(from D to D') iff there exists a monotone map fR:D'+D s.t. fofR= 

id
D

, and fR.f==idOo In this case we say that D and D' are .!somorphic 

(via f) and denote it by D~D'. 0 

Evidently an isomorphism f:D+D' is a monotone embedding s.t. 

the adj oin t fR is also a monotone embedding. Thus by 1. 1. 5 both f 

and fR are continuous. 

The combination of posets and monotone maps is not quite 

interesting although it is natural. But the combination of conti-

nuous functions and the so called cpo's (defined below) is inter-

esting. 

Oefini tion 1.1. 8 

A complete partial order (cpo) is a directed .complete poset 

with a least element (called bottom). He will denote the bottom 

of a cpn :D,~) by ID or simply by 1. 
Defihi tion 1.1. 9 

Given posets with bottoms D and 0', define DxD', D+D', and 

[D+O'J to be the following posets with bottoms: 

(1) DxD'=={(d,d') IdEO, d'ED'} together with the coordinate-wise 

ordering, i.e., (d l ,di)C(d2 ,di> iff d
l
Cd

2 
and diCdi. 

(2) D+D'=={(O,d) IdEON {(I,d') jd'ED'N {I} together with the 

following ordering: 

o 
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1 C (i,x) for all (i,x)ED+D' 

(i,x) t: (j,y) iff i=j and xc.y. 

(3) [D-+D'J is the set of all contin110US functions together with 

the point-wise ordering. n 

Fact 1.1.10 

If D and D' are cpo's then so are DxD' ,D+D', and [D-+D']. 

Definition 1.1.11 

(1) A family < Dm, (fm,f~) > is an w-sequence of continuous project­

ion pairs of cpo's iff Dm is a cpo and (fm,f~) is a continuous 

projection pair from Dm to Dm+l " 

. (2) The inverse limit of an w-sequence < D , (f ,fR) > of continuous 
. m m m 

nro]'€ction ~::3.i::-s of CI,:C'S is c.. SE.t D ={< x >Ix =fRex +'l)} tOl}etiler 
1':" co m m m m 

with the coordinate-wise ordering. We will denote the inverse limit 

by lim < D ,(f ,fR) > or liro:: D >. The universal cocone of < D ,(f ,fR) > mmm ~m mmm 

is a family < .(f I fR ) > where f : D -+D is defined by : 
m~ moo meo m eo 

R R' R 
f (x)=:fO· •. ·f l(x), .. ,f l(x),x,f (x),f +l·f (x), ••• > moo m- m- In m m 

and fR : D -+0 is defined by fR « x » =x • 0 moo co m moo n m 

Pact 1.1.12 

Given n.n w-sequen-:e < 0 ,( f I fR) > of continuous project.iop.. m m m 

pairs of cpo's: 

(1) The inverse limit 0 is a cpo. 
DO 

(2) (f fR) is ~ projection pair from D to D • moo I moo m co 

Fact 1.1.13 

Let 0 be a cpo and h:D-+D be a continuous idempotent. Then the 

range of h, which is the set of all fixed points of h is a cpo 

where the partial ordering is induced from D. IlJ 

Fact 1.1.14 

Let 0 and D' be posets with bottoms 1 and I' respectively. 
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(1) Let (A,r) be a monotone projection nair from f) to D'. Then 

both rand e are strict, i.e., they preserve bottoms. 

(2) Let (e,r) be a monotone inflation pair from D to D'. Then r 

is strict. 

proof (1) r(l)~ 1 and e(l)~ 1'· Thus l=r.e(l)~r(l') and l' ~e.r(l') 

::le (1)::1 I'. Thus r (I') = I and e (I) = I' • - --- - - - -

(2) r(I')~ I and e(l)~ 1'. Thus 1 =r.e(l)~r(l'). Therefore r(l')= 1· - -_.-

Notice that this fact implies that every continuous projection, 

continuous embedding, and continuous inflation from a cpo to 

another are strict. 

Fact 1.1.15 

Let D1 ,Di,D2 ," nnd Di be cpo's s.t. Dl~Di and D2~Di' then: 

( 1) 0 xD ~D'xD' 1 2 1 2 

(2) D1+D2~Di+Di 

(3) [Dl~D2J~[Di~Di] 

Definition 1.1.16 

R R 
Let<D ,(f,f» and<D' (f' f'-» be w-sequences of m m m rn' m' m 

171 

continuous projection pairs of cpo's. We say they are isomo~phic, in 

s"\TIT'bo1s, <D ,(f ,fR»~D',(f',f,R», iff there exists an isomorph-
~ .. " m m m m m m 

ism i :D ~D' with the adjoint iR:D'~D s.t. f'·i =i ·f m m m m m m m m m+1 m 

for eaeh m,;:N~ 

Fact 1.1.17 

< Dm' (fm' f m
R

) > ~ < D' (f' "'" R) m' m' .... m > 
,J 

implies D =D'. 
00 ClO 

o 

!.71 

1.1.15 and 1.1.17 indicates that the isomorphic relation is 

a good criterion for identifying two epo's. 
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1.2 Bounded Complete Countab1y Based Cpo's 

As indicated in Scott [16J, the first step towards effectivu-

ness is to think of those cpo's each of which has a countable sub­

set (called a basis) from which we can recover original structure 

by means of completion. Thus the notion of countably baseQ cpo's 

appears to be important. 

Definition 1.2.1 

Given a cpo (D,e), define a relation ~ on D by : 

x < y iff for every directed subset SeD with a lub, 

yr::LJS implies x~z for some ze:S. 

In case x-< x, we say' that x is compact (or finite). The set of all 

compact elements of D will be denoted by ED• 

Fact 1.2.2 

In a cpo (D,;) we have: 

(1) L~ x. 

(2) x-< ycz implies x~ z. 

(3) x£y-< z implies x{ z. 

(4) x< y and y-( z implies x -< z. 

(5) x< y and z-( y implies xUz-( y whenever xLJz 

(6) x-( y implies x!;y. 

o 

exists. 

(7) xEED implies x5Y iff x -< y. rZI 

Notice that ~ is a transitive and anti-symetric relation on D. 

Definition 1.2.3 

(1) A pair (B,~) is an w-basis of a cpo (D,e) iff B is a countable 

subset of D s.t. le:B and for every xe:D, Dx={bcBlb~ x} is directed 

and x=UBx • If (D,e) has an w-basis we say that (D,e) is w-basable. 

(2) An w-based cpo is a pair {(D,e), (B,{» where (B,{) is an 

w-basis of (D,e). We will abbreviate this pair as (D,B). 
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(3) An w-algebraic cpo is a cpo (D,e) s.t. ED is a countable set 

and for every xeD, Jx={ecEDlecx} is directed, and x=UJx . (ED,C) is 

called the extension basis of (D,e). o 
Notice that in the previous development of the theory of domains, 

the distinction between w-basable domains and w-based domains 

was never made explicit. Indeed it looks as though these two 

notions were assumed to be identical. We will observe th<lt they 

are different and the difference is intrinsic for effectiveness 

arguments. 

Fact 1.2.4 

(1) If (D,e) is an w-basable cpo, then for every deD, Dd={X€Dlx~ d} 

is directed and d=UDd • 

(2) A cpo (D,~) is an w-algebraic cpo iff (ED'~) is an w-basis 

0:: it. o 

The relation { on.an w-basable cpo enjoys more interesting 

properties than those listed in 1.2.2. 

Fact 1.2.5 

Let «D,~) ,(B,~» be an w-based domain. 

(1) For every directed subset S~D, we have: 

x.( US iff x-( z for some ZES. 

(2) x<y iff x~b and b~y for some bEB. 

(3) xfY iff for all bEB, b<x implies b~y. 

~roof (1) Sufficiency is true for any poset. For necessity we first 

prove the following lemma. 

Lemma For every directed s'ubset SeD, x{y&yCUS implies there exists 

Z € Ss. t. xoo( z. 

proof of the lemma For every ZeS, D ={t€Dlt~z} is directed and 
Z 

implies Dz eD z • Let S*=zU€sD Z and {al, ••. ,a
n

} eS*. Then a.Jz. for 
1- 2 l' 1 
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some z.€S (l~i~n). Since S is directed there is an upper bound ZES 
~ 

of {zl, •• ,zn}' Thus DZi~Dz (l~i~n). Thence {al, .• ,an)cDz ' By direct-

edness of Dz ' there is an upper bound aED
z 

of {al, •• ,an }. Evident­

ly a€~*, thus S* is directed. Also evidently US=US*. Thus for some 

t€S*, x~. But t€D for some ZES. Therefore x_ct<z and x<z. 0 
- Z 

Now we resume the proof of (1). Let x<US, then x{USCUS. Thus 

x<z for some Z€S by the above lemma. 

(2) Sufficiency is (4)-1.2.2. We prove necessity. Let x<y. Since 

y=U{b€Blb{y}, x~b<y for some b€D by (1). 

(3) Let x;y, then b<x implies b{y. Now assume that b<x implies 

b{y, Then B cB • Thus x_eye 0 
~y 

The following fact is the reason why ~e call (ED'~) the 

extension basis of (D,e). Also it is the reason why we are mainly 

interested in the extension bases of w-algebraic CpO's. 

Fact 1.2.6 

A poset (D,e) is an w-algebraic cpo iff ED is countable 
~ 

and 

for any cpo Q and every nlonotone map m:ED~Q there is a unique 

continuous extension m:D~Q of m. Indeed such extension m is given 

by: 

An w-transitively ordered set (w-toset) is a pair (E,<) where 

E is a countable set and < is a transitive relation on E. For 

w-tosets, we define the notion of upper bounds, lub's, bounded 

subsets, directed subsets, as we did for posets. To make the point 

that they are for an w-toset (E,<) explicit, we call them <-upper 

bounds, <-lub's, <-bounded subsets, and <-directed subsets res-

pectively. Also given w-tosets (E,<) and (E' ,<'), we say that a 

map f:E~E' is t-monotone iff x<y implies f(x)~f(y). Given a pair 

of t-monotone maps (i:E~E',j:E'~E), we say that this pair is an 

isomorphism pair iff i.j=idE, and j·i=id
E

. In this case we also 

say that E is isomorphic to E' {via (i,j», in symbols E~E'. 
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Defini t.ion 1.2. 7 

(1) An ~structure is an w-toset (E,<) with the least (w.r.t.< 

element 1 s.t. for any aEE, the set [aJ={bEElb<a} is directed. 

(2) Given two R-structures (E,<) and (E' ,<'), we say that E is 

isomorphic to E' (in symbols E~E') iff E~E' as (u-tosets. 

(3) A cut of an R-structure (E,<) is a down-ward closed directed 

subset of E. More precisely, it is a subset XcE s.t. X is directed 

and X<Y&YEX implies XEX. The completion of (E,<) is a pair «E,~), 

([EJ,~» where E is the set of all cuts of Eand c is the set 

theoretical inclusion as a partial ordering, and [EJ={[eJI eEE} 

and~ is taken over (E,~). Note [aJEE for all aEE. o 

It is a7ident that an w-b~sis of an ~·ba3able cpo i3 an ~-

structure. 

Fact 1.2.8 
IV 

Given two w-basable cpo's (D,~) and (D' ,C'), (D,C)=(D' ,C') 

iff there are w-bases (B,~) and (B',~') of (D,!:) and (D',C:') res­

pectively s.t. (B,-<)~(B',-<'). 

proof If (i:B+B',j:B'+B) is an isomorphism pair s.t. (n,<) and 

(B' ,-{I) are w-'-,ases of (D,t:) and (0' ,'C') respectively, then (i:D+D', 

j:D'+D) is an isomorphism pair where i and j are continuous exten­

sions of i and j respectively s.t. i(x)=U{i(b) Ib(B,b~x} and j(x)= 

U{j (b') I b' EB' ,b'{'x'}. Conversely if (D/C) has an w-basis (B,~) 

and (f:D+D',g:D'+D) is an isomorphism pair, then (f(B) ,~') is an 

w-basis of (D',C') and (f:B+f(B) ,g:f(B)+B) is an isomorphism pair 

IZl 

By a strong R-structure (SR-structure)·, we mean an R-structure 

(E,<) satisfying: 

[aJc[bJ & b<c implies a<c , and [aJ=[b] implies a=b. 

In (1)-1.2.7, if 1 <1 then [lJ={bEElb<1}#~. If we allcw the empty set to be 

directed, as in Smyth [22J, then 1 is not the bottan vlrt c in (E,.=.). 
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Fact 1.2.9 (Park [9J) 

Let (E,<) be a strong R-structure. Then ([EJ,~) is isomorphic 

to (E,<), where «E,c), ([E],,» is the completion of (E,<). 

Fact 1.2.10 (Srnyth [22],Park [9]) 

(1) If (E,<) is an R-structure, then «E,~) ,([E],<» is an w-

continuous cpo. Furthermore for any x,y€E, 

(2) Let (D,e) be an w-basable cpo and (B,~) be an w-basis of it. 

Then (B/~) is an SR-structure. Therefore by virtue of 1.2.8 and 

'" -1.2.9, (D/C)=(B,~). 

Notice that given an R-structure (E,<), it is not necessarily 

isomorphic to ([EJ,~). It is so whenever (E,<) is an SR-structure. 

But it is easy to observe that (E,<)~(E',<') iff ([EJ,-<)~([E'J,<'). 

This leads to the following fact: 

Fact 1. 2 .11 

Given w-basable cpo's (D,~) and (D',C'). (D,C)~(D',C') iff 

there are R-structures (E,<) and (E' ,<I) s.t. (E,~)~(D/C) and 

(E' ,.s)~(D' ,1:') and (E,<)~(E',<'). 

Our arguments-about -completion seem to suggest that the w-

bases are reJu~nunt representations of w-based cpo' s, and R-

structures are rich enough. But later in this s~ction, we will_ 

III 

observe that R-stru~tures might be too poor to get strong results. 

To be prepared for this observation, we notice that the step from 

w-bases to R-structure is" throvli!1g - away E ordering'. 

For w-algebraic cpo's t.he T..,hole argument about com!,letion 

is nuch simpler, since 't.ve are interested only in extension 

bases. 

Definition 1.2.12 

A strict poset is a poset with the least element. The 
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algebraic completion of a strict poset (E,C) is a poset (i,~) 

where E is the set of all downward closed directed, w.r.t. C, sub­

se~of E and c is the set theoretical inclusion. We call each 

element of E an ideal. o 

Fact 1.2.13 

(1) The algebraic completion (E,~) of a countable strict poset 

(E,C) is an w-algebraic cpo. There is a canonical map .T:E+E s.t. 

T(E) is the extension basis of (E,~) and (E'~)~(T(E),~) as posets. 

Indeed T(x)={eEEleCx} for all XEE. 

(2) Given an w~algebraic cpo (D,e), the extension basis (ED,C) is 

a countabl~ strict poset and (D,C)~(E,~) 

(3) A poset is an w-algebraic cpo iff it is the algebraic comple-

tion of a countable strict poset. 

(4) Given two w-algebraic cpo's (D,~) and (D',C'), they are 
I 

isomorphic iff (ED,C)~(ED"C'). 

It has been well-known that given two w-basable cpo's D and· 

D', The function space [D+D'J need not be w-based. But if D and D' 

are bounded complete, then so is the function space and it has an 

w-basis. This leads to the following notion: 

Definition 1.2.14 

(1) An w-basable domain is an w-basable cpo which is bounded comp-

lete. 

(2) An w-based _ domain is an w-continuous cpo (D,B) s.t. D is 

bounded complete. 

(3) An w-algebraic domain is an w-algebraic cpo which is bounded 

complete. o 

Bounded completeness of w-basable cpo's can be characterized 

in terms of bases. 
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Fact 1.2.15 

(l) An w-continuous cpo «D,C), (B/~}) is an w-continuous domain 

iff every -<-bounded fini te subset of (B , .. 0 has a lub (w. r. t. C) 

in D. 

(2) Given an R-structure (E,<), (E,~) is an w-basable domain iff 

for every finite <-bounded subset ScE, u{[XJIXES} exists in E. 

We call such R-structures BR-structures. 

(3) An w-algebraic cpo (D,e) is an w-algebraic domain iff the 

extension basis (ED,C) has bounded joins ,i.e., every finite 

bounded subset of ED has a lub in ED• Notice that the lub of a 

finite subset of ED, if any, is compact in (D/C), thus is in En' 

proof (l) ·cn).y if· part is trivial. :1'1\2. prova "if' part. A 3sume X in 

a bounded subset of D with an upper bound z. Then {eEBle~x for 

some XEX}= uxB cB • Therefore every finite subset S of uXB is XE x- Z x~ x 

~-bounded. Thus by assumption USED. Let Y={USIS is a finite subset 

of x~XBx}' and {US1, •• "USn}~Y' Then Slu .•. uSn ~s a finite subset 

of uXB. Thus U(Slu .•• uS )EY. Evidently U(Slu ••. us ) is an upper XE x n 11 

bound of {US1, •• ,USn }. Thus Y is directed. Thus UYED. But evidently 

UX=UY. Tr.t's D is bounded comFlete. 

(2) Similarly to (1). 

(3) Notice that for every eEED, e-(x iff et:x. Also remember that 
( , 

for every finite subset XCED, if UX exists .then UXEED• 0 

~here is a qualitative. difference between (l) ,(2) of 

1.2.15 and (3) of 1.2.15. Indeed for non-algebraic case, the argu­

ment is not quite purely that of bases, since we have to refer to 

the completion of the basis in order to talk about the lub's of 

bounded finite subsets. This gives rise to a question if the notion 

of bases of 'w-based cpo's is quite adequate, 
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Fact 1.2.16 

(1) Given w-based domains «D,J:),(B,-<» and «D',r:'),(B',~'» 

the following pairs are also w-continuous domains. 

({DxD' ,t: ) I (BxB' ,0{ » -x x 

( (D+D' I E:r) , (B+B' ,-<+) ) 

« [D-+D' ] ,t:: ) I ([B-+B' ] 1-< » --+ -+ 

where ~X,E+,!.:-+ are partial orderings on DxD' ,D+n' ,[D-+D' J as in 

119 and ~ { < are take r DxD', D+D', [D-+D'J. BxB' and •• , x' +' -+ n ove 

B+B' are evident bases of DxD' and D+D' respectively. [B-+B'Jis the 

set of all possible lub's of finite subsets of the set {[b,b'JlbEB, 

b' EB'} where [b,b' ]=>"XED.if b"'\x then b' else 1D,. ~ve call such 

[b, b'] a step fur.ction [:corn (D, B) tc· (D', D' ) • 

(2) Given w-algebraic domains D and D', so are the following:cpo's: 

DxD', D+D', and [D-+D']. 

Indeed EDxD,=EDxED' ED+D,=ED+ED, , and E[D-+D'Jis the set of all 

existing finite joins of step functions from (D,ED) to (D' ,ED,). 

IZI 

For w-basable domains, we are interested only in ~hethcr they 

have w-bases, and we do not care which bases thase are. Therefore 

there should be no problem in defining embeddings and projections 

of w-basable domains as we did for cpo's. But for w-

domains, we are interested in particular bases, thus it is more 

natural to think of those embeddings which 'embed' bases. 

Definition 1.2.17 

Given w-based domains (D,B) and (D' ,B'), a pair of 

continuous maps (e:D-+D',r:P'-+D) is called a strong projection pair 

from (D,B) to (D' ,B') iff e(B)cB' - . r is called a 

strong projection and e is called a strong embedding. 

o 
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For w-algebraic domains, strong projection pairs and conti-

nUlUs projection pairs coincide. Indeed we have: 

Fact 1.2.18 

Let D and D' be cpo's and (f:D+D' ,g:D'+D) be a continuous 

projection pair. Then f(ED)~ED'. 

proof Let eE:ED an.d X' be a directed subset of D'. Assume f (e) C 

UX', then e=g·f(e}cg(UX'}:;::Uq(X'}. Therefore eC0(x') for some - - _0 

X'€X'. Thus f(e}Cf·g(x')~x'. This means f(e)€ED,. Now let e'E:ED , 

and XcD be directed s.t. g(e'}~Ux. Then f·g(e'}Cf(UX)=Uf(X). 

Therefore f·g(e')Cf(x) for some XE:X. Thus g(e')=g·f·g(e')~g·f(x}c 

x. This implies g(e'}EED• !Zl 

For w-algebraic domains, continuous projection pairs (thus 

strong projection pairs) can be characterized in terms of bases. 

Definition 1.2.19 

Given w-algebraic domains D and D', a map i:ED~ED' is an 

irnbedding from ED to ED, iff 

(l) i is injective, 

(2) for every finite subset SeED' US exists iff Ui(S} exists, 

(3) i(US)=Ui(S} for every finite subset SeED s.t. US exists. 0 

The following theorem establishes that imbeddings and cont­

nuous projection pairs of w-algebraic dOMains are the same. 
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Lenuna 1. 2.20 

Let D and D' be w-algebraic domains. 

(1) Let i:ED-+EO' be an imbedding, then the continuous extension 

i:D-+D' given by i(x)=U{i(e)leEED,ecx} is a continuous embedding 

with adjoint j:D'-+D s.t. j(x')=U{CEEDli(e)Cx'}. 

(2) Let (i:D-+D' ,j:D'-+D) be a continuous projection oair then the 

restriction of i to ED is an imbcdding from ED to ED,. 

proof (1) i evidently is continuous, well-defined and is an exten­

sion of i. Now let F be a finite subset of {eEEOli{e)Ci(x')}. Then 

i(F) is bounded by x', thus Ui(F)EED,. Since i is an imbedding, 

UFEE
D

. Evidently i(UF)=Ui(F)Cx'. Thus UFE{eEEDli(e)Cx'}. Thus 

{eEE !i(e)cx'} is directed. Thus j is well-defined. Let X'cD' be 
D -

directed. Then: 

j(UX')=U{eEEDli(e)CUX'} 

=U{eEEDli(e)~x' for some X'€X'}= j(X'). 

Thus j is continuous. Now: 

Also 

j. i (x ) =U{ eEED I i (e)CLH i (e) I e~?d} 

'=IHeEEDli(e)!:.i(e') for some e'c:x} 

=U{eEEOlcex} =x. 

i.j(x')=U{i(e) leEE~,eCU{eEEDli(e)Cx'}} 

=U{i(e) leEED,i(e)Cx'} ex'. 

(2) Evident. 

Note that if i is an imbedding then i preserves all existing 

(in EO) lub's of ED, for i is a continuous embedding. This suggests 

the following prospective notion of imbeddings among bases of w-

based domains. Given w-continuous domains (D,B) and (O',B'), 

an 'imbedding' from B to B' is an injection i:B-+B' s.t. for every 

ScB, USEB iff Ui(S)EB', and i(US)=Ui(S) once US exists in B. 

) 
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Evidently for every (weaker) strong projection pair (I,j) 

from D to D', the restriction of i to B is such an imbedding. 

Conversely,' given an imbedding i from B to B', let i:D~D' be 

i(x)=U{i{b) Ib€B,b~x}, then i is a continuous extension of i, 

since for b€B, 

i(b)=Ui(Bb)=i(UBb)=i(b). 

Thus i{B)~B'. Furthermore it can readily be seen that i is a 

continuous embedding with the adjoint j s.t. j{x')=U{b€Bli(b)cx'}. 

Therefore imbeddings of bases characterise strong :>rojection 

pairs among w-based domains. 

At this point, the idea of bases and that of R-structurcs 

seem to differ. Let E and E' be BR-structures. Define i:E4E' to 

be an injection s.t. u([SJ)€E iff u[i(S)J€E' for every S~E: and 

i{u[S])=u[i(S)] once u([S])EE. Notice that this map i was used 

as an embedding of BR-structures in Smyth[22]. But we do not know 

if i([EJ)~[E'] where i:E~E' is defined by i(x)=u{i([aJ) la€x} = 

ui[x] for all x€E. 

Given w-based domains (D,B) and (D',B'), let (i,j) be 

a continuous projection pa.ir v!.r.t. t: {not -() from D to B'. Then 

it can readily be seen that i is an imbedding and (i,) is a 

strong projection pair from D to D'. Thus co~tinuous projection 

pa1£~ ~mortg w-bases characterize str9ng projection pairs. 

So far we hav~ observed that the strong projection pairs 

can Le characterized_in-terms of bases. But we do not know 

if this can be done in terms of R-structures vet. ... All we can 

say is that it would'?otentially be problematic to get rid of 

~ orderin~from the w-bases and obtain R-structures. Precisely 

speaking a basis seems to be (B'~'E) rather than (B,~). 
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Fact 1. 2.21 

Let <D ,(f ,fR» be an w-sequence of continuous projection mm m 

pairs of w-basable domains. '1.1e inverse limit D of it is an 
00 

w-basable domain. Indeed if B is an w-basis of D for each mEN, m m 

then B =uf (B) is an w-basis of D • Evidently f (B )cB • But 
00 m moo m 00 moo m - 00 

fR (B ) is not necessarily a subset of B . 0 moo 00 m 

Definition 1.2.22 

. strong 

~rojection pairs of w-oased domains. By the inverse limit 

of it, we mean (D ~B ) where B =uf (B). 
00 00 00 m moo m o 

Fact 1.2.23 

If <~D ,B ), (f ,fR» is an w-sequence of m m m m 

projection pairs of w-based domains, then (D ,B ) 
00 00 

is an 

w-based domain. Furthermore (f , fR ) is a moo moo strong 

projection pair. 

Things are much simpler for algebraic cases since continuous 

projection pairs and strong projection pairs coincide. 

Fact 1.2.24 

R 
If <Dm,(fm,fm» is an w-sequence of continuous projection 

pairs of w-algebraic domains, the inverse limit Doo is an w-

algebraic domain. Indeed ED =~ED • 
• • 00 m 

o 

By almost the same argument as for cpo's, we can easily 

observe that isomorphism is a good criterion for identify-

ing two w-basable .(w-algebraic) domains. 

Given two w-based domains (D,B) and (D' ,B') we say they 

are isomorphic iff B~B'. Notice that by virtue of 1.2.8, (D,B)~ 

(D',B') implies D~D'. It is now very easy to observe that this 

isomorphic relation is a good criterion for identifying two w-

based domains, for it is preserved under domain'constructors. 
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Fact 1.2.25 (Scott [20J,Plotkin [12J,Smyth [22]) 

A poset D is an w-basable domain iff it is isomorphic to 

heX) for some w-algebraic domain X and some continuous idcmpotcnt 

h:X~X. Indeed D has an w-basis h(EX)' and there is a single 

w-algebraic domain, say P, s.t. every w-basable domain is iso-

morphic to h(P) for some continuous idempotent h:P~P. We call 

such P a universal domain of the class of w-basable domains. 0 

At this point, the notion of w-Lased domain seems to 

be less interesting than that of w-basable domains. In fact 

it is not known yet if such a universal domain exists for the 

class of w-based domains. The point here is that, given 

an w-basc~ domain (D,B), even if wc have h:P~P ~atisfying 

h(P)~D, we do not know if we have hsuch that h(Ep)~B or not. 

One could argue that if we require bases to be closed under 

finite jOins , we could avoid this difficulty and at the same 

time we could solve the problem for bounded completeness. But 

why (intuitively) must this be so? Can we find any convincing 

motivation (rather than technical reason) for this restriction? 

We have observed several problems on w-based domains. 

We claim that all of these problems are essentially due to the 

lack of concrete examples of w-based domains. So far most 

domains which appear to be important for computer science are 
(See Scott[32]) 

w-algebraic. Only the interval lattic~ems to be the one which 

indicates the necessity of w-based domains. Indeed there 

should always be some problems in obtaining abstract notions from 

only a few examples. In other words such attempts tend to be too 

arbitrary. 

We hope that these observations will justify our omission of 

the non-algebraic case in the rest of this dissertation. 
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1.3 SFP Objects 

Remember that in the previous section, bounded complete-

ness was introduced as a sufficient condition for making function 

spacES basable. But as Plotkin shm'led this condition is not pre­

served under Plotkin's power domain construction [la]. Further­

more he showed that there exists a weaker condition which can be 

preserved under all interesting domain constructions and which 

makes function spac~basable. We will review this condition in 

this section. 

Definition 1.3.1 

(1) Let D be a poset and X be a subset of D. We say u€D is a mini­

mal upper bound (mub) of X iff u is an upper bour.d of X and for 

every upper bound v of X, vE,u implies v=u. Ne will write UD(X) 

to denote the set of all mub's of X. Furthermore Uo(X) denote the 

least subset of D satisfying: 

Uo(X)~X, and 

Un(Y)~Uo(X) for all Y~U~(X). 

(2) Un(X) is said to be complete iff whenever v is an upper bound 

of XcD, then there exists U€UD(X) s.t. u£v. 

(3) A po~~t ~ is said to be bounded m-complete iff UD(X) is com­

plete for every subset Xr.D. Also D is said to have bounded m-jOins 

iff Uo(X) is complete for every finite subset X of D. [] 

.. Notice that if XcD has a lub UX, then U
D 

(X) ={UX}. Therefore 

bounded m-completeness is a generalization of bounded completeness 

and bounded m-join is a generalization of bounded jOin. 

Definition 1.3.2 

A countably algebraic cpo D is an SFP object iff for every 

finite subset X of ED, U,D(X) is complete and Uo(X) is finite. 

o 
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According to this definition, every finite cpo is an SFP 

object. 

Lemma 1.3.3 

Let D be an algebraic cpo and ED be the basis of D. Then 

we have: 

(1) For every finite subset X of EO' UO(X)SED and in case D is 

an SFP object, U~(X)~ED. 

(2) For every finite subset X of ED, UD(X)=U E (X). 
D 

(3) For every finite subset X of ED, UO(X) is complete in D 

iff it is complete in ED• 

dir<.!cted ar.d u~jJ • Since u 1s an ul.Jpe:r bou.nd of X, u 

subset of J . Thus there exists an upper bound v of u 

veu. By minimality of u, u=v. Thus UEE D· Therefore 

define: 
o 

VD(Y)= <j> 

v~+l(Y)={UD(Y') IY'~V~(Y)}UY 

where Y~ED. Then by induction on r we have: 

r r+l( * VD(Y)~VD Y)~VD(Y). 

X is a finite 

X in J . Thus 
u 

UD(X).=.ED• Now 

r r+l r 
Also if 0D(Y)=VD (Y), then U~(Y)=UO(Y). If D is SFP then U~(X) 

is finite, therefore UD(X)=V~(X) for some r€N. Therefore UD(X).=.E D• 

(2) Evident. 

(3) Evident. IZl 

Now we have the following alternative characterization of 

SFP obj ects, ~s an i.mmediate corollary to 1. 3. 3. 

corollary 1.3.4 

A countably algebraic cpo 0 is an SFP object iff ED has bound­

ed m-joins and for every finite subset X of E
D

, VB (X) is finite. 
D 

121 
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Remenber that an algebrnic cpo n is bounded complete 

iff ED has bounded joins. Furthermore we have observed that 

bounded join property implies bounded m-join property. Thence 

showing "every w-algebraic domain is an SFP object" amounts 

to showing that for every finite subset X of ED, V~ (X) is 
n 

finite. But bounded join property of En yields: 

VB (X)=v~ (X)=xu{UYIY~(xu{l})} 
D D 

for every finite subset X of En' Therefore VE (X) is finite. 
D 

Also the following finite cpo is not bounded complete: 

[><1 
"'./ 

In summary, we have esta.blished: 

Fact 1.3.5 

The class of SFP objects properly contains the class of 

w-algebraic domains. 

The follm'ling alternative characterization of SFP objects 

121 

due to Plotkin [10] is more comprehensive (at- least intuitively) 

and easier to handle in many situations. 

Fact 1.3.6 

A cpo D is an.SFP object iff it is the inverse limit of 

an w-sequence <D ,(f - ,fR) > of continuous projection pairs of m m m 

-finite cpo's. 

Readers are refered to Plotkin [10] for the details of 

this proof. Here vie will draw readers attention to the canonical 

sequence of projections which Plotkin introduced to prove 1.3.6. 

Assume we are given an SFP object D with an indexing £:N-+E
D 

of 
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the basis Eo s.t. e(O)=l. By the canoni~al sequence of D w.r.t. c 

we mean the w-sequence <D ,(f ,fR» of continuous projection pairs 
m m In 

of finite cpo's where D =UE~ ({e(o) , •• ,e(m)}) and f :D +D +1 is a 
m D m m m 

continuous embedding defined by f (x) =x \vi th the corresponding m 

projection f~:Dm+l-+0m s.t. gm(y)=U{X€Om1xt:y}. Notice that Dm=Pm+l~ 
D and D~D via n:Eo +ED s.t. n«x »=Ux . It is obvious that the 

00 ca m m 

adJ"oint (inverce) of n is nR·E +E given bv nR{x)=f (x) whe-e • D 1) ... r:100 .L 

00 

A countable poset E is called a finitary poset iff it has 

bottom and bounded m-joins and for every finite subset X of E, 

U*(X) is finite. By. 1.3.4 we have the fol1o~ling completion theorem. 
E 

Theorem 1. 3.7 

(1) If (E,C) is a finitary poset then the algebraic completion 

(E,s) is an SFP object. 

(2) If (D,e) is an SFP object then (ED,C) is a finitary poset and 

(iLc)=(D,t:) • - -
(3) A cpo is an SFP object iff it is isomorphic to the algebraic 

completion of a finitary poset. 

R R Let <P ,(r ,r » and <Q ,Cs ,s » be w-sequences of continu-m mm m mm 

ous projection pairs of cpo's s.t. P=~im<Pm) and Q=~<QJ. Assume 

«rm~,r~~» and «srn~'S~~» are universal coconcs of <Pm,(rm,r~» 
and <Qm,(Sm'S~» respectivel~l. Define continuous maps: 

by: 

Fm: [Pm4Qm]+[Pm+1+Qm+lJ 

Rm:PmxQm+Pm+1xQm+1 

Um:Pm+Qm+Pm+1+Qm+1 

R 
Frn(~)=sm·f.rm 

R =r xS m m m 

U =r +s • rn m m 

) 



Then they are continuous embeddings with the adjoints: 

pR(f) =sR. f· r , 
m m m 
R R R 

R =r x s , m m m 
R R R 

U =r +s . m m m 
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Therefore <[p -+Q J, (F ,pR» ,<P xQ , (R ,RR», and <P +Q , (U ,U
R» m m m m m m m m m m. m In 

are w-sequences of continuous projection pairs of cpo's. 

Fact 1. 3. 8 

(1) ~<[pm-+QmJ, (Fm/F~»~[P-~Q]. 

(2) tim <P xQ ,(R ,RR»~pxQ. m m m m 
R .., 

( 3) ~im <P +Q ,(U ,U »=p+o. m m m m -
R . R . R 

nroof (outline) Assume «F ,P »,«R ,R », and «U ,U » 
~ moo moo moo moo moo moo 

are universal cocones. 

R 
(1) Por each fe:[P-+QJ let f(m)=smoo·f·rmoo.Then f(m)€[Pm-+QmJand 

<f( »e:lim<[p -+Q J,(P ,pR». Define cl>:[P-+QJ-+j-im<[P -+Q]> by ~(f)= m ,- m m m m m m 

<f( ». Furthermore define cl>R:lim<[p -+Q J>-+[P-+QJ by: cl>R(f) (x)= 
m ~ m m 

Us ·f (x ) where f =FR (f)e[P -+Q J and x =rR (x)eP • It can moo m m m moo m m m moo m 

readi ly be seen that (~, ~ R) is an isomorphism pair. 

(2) Given (x,y)ePxQ, evidently (x ,y )eP xQ • Furthermore «x ,y » m m m m m m 

belongs to lim<P xQ ~ Define 11 :pxQ-+lim<P xQ > by 11 «x,y) )=< (Xn1'Ym)> • <-mm mm 

conversely for every «a ,b » in lim<P xQ > define ~R«(a ,b »)= mm ~mm mm 

(~rmoo(am) ,~smoo(bm»· Evidently (11 ,lI
R

) is an isomorphism pair. 

(3) Define 0m: P+Q +Pm+Qm by: 

0m«i,x»=if i=O then (i,r~oo(x» else (i,s~oo(x». 

Define E:p+Q-+}im<Pm+Qm> by E«i,x»=<om«i,x»>. Furthemore define 

E R·lim<P +Q >-+P+Q by: 
.<-- m m 

R« (i,c »)=if i=O then (i,llr (c» m - m moo m 

else (i ,~smoo (cm» • 

Then evidently (E,ER) is an isomorphism pair. 
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In the above assume P and Q are finite cpo's, this means m m 

P and Q are SFP obJ"ects. Evidently [p ~Q J, P xo. , P +Q are m -m m 'JTl m-m 

finite cpo's. Thus by 1.3.8, [p~QJ, pxQ, P+Q are SFP objects. In 

summary we have established: 

Fact 1.3.9 

The class of SFP objects is closed under the domain 

constructors ~,x, and +. 

Even though the proof of 1.3.'9, which used the alternative 

characterization 1~3.6 of SFP objects is very simple, it does 

not tell much about how the domain constructors ~, x, and + ope-

rate on bases. In the next theor~m we will study this: 

Theorem 1.3.10 

Let P and Q be SFP objects. Then we have: 

(1) The basis of [P~QJ is the set of all possible finite joins of 

step functions 

(2) EPxQ =EpxEQ 

(3) Ep+Q =Ep+EQ• 
R R 

proof Let <Pm' (rm,rm)> and <Qm' (sm,sm» be w-sequences of cont-

inuous projection pairs of finite cpo's s.t. P~lim<P ,(r ,r
R» and 

.~ m m m 

,., " ( R) 
Q=~<Qm' sm,sm >. 

R R 
(1) Let ,~,~ , Fm' Fm be as in 1.3.8. It can readily be seen that 

~([rmco(a),smco(b)]);Fmco([a,b]) for every aEPm and bEQm. Notice that 

every compact element of *im<[P ~Q J, (F ,FR» is Fm_(f) for some mm mm -

fE[Pm~Qm] and some mEN. But evidently for every fE[Pm~Qm] we have: 

f=U{[xl,f(x l )], .. ,[x ,f(x ) ]1) 
n n 

where P ={xl' .• ,x }. Therefore we have: m n 

e=Fmco(f)=Fmeo(U{[Xl,f(xl)J,··,[xn,f(xn)J}) 

=U{Fmto([xl,f(x1)]}, •. ,F ([x ,f(x }])}. meo n n 
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Thus $R(e)=U{I!>R. Fm ([xl,f(x
l
)]), •. ,.~R.F ([x,f (x )])} 

00 moo n n 

=U{[rm (xl),s .f(xl)], •• ,[r (x ),s ·f(x )]}. 
00 moo moo n moo n 

Therefore every compact element of [P+QJ is a finite join of step' 

functions. 

Conversely every step function of [P+Q] is compact in [p+qJ. 

Therefore every finite join which exists of step functions is 

compact in [P+Q]. 

(2), (3) Evident. 

The following lemma is a generalization of (1)-1.1.5. 

Lemma 1. 3.11 

Let D and D' pe cpo's. Let (i:D+D' ,j:D'+D) be a monotone 

projectiorl pair. Then for every XcD: 

UD, (i(X})=i(UD(X». 

III 

proof Let UEUD, (i(X». For every XEX, u~i(x). Thus j(u)~j.i(x)=x. 

Thus j (u)::lX. If v.:!X and v=j (u) then i· j (u)~i (v). Thus u:ti (v). But. 

i(v)~i(X). Thus by the minimality of u, u=i(v). Therefore v=j (u). 

Thus j(U)EUD(X). Since i·j£idD" i·j(u)ru. But i·j(u)~i(X) for 

j(u)~X. Thus by the minimality of u, i·j(u)=u. Therefore uEi(UD(X}} 

for u=i·j(u) and j(U)EUD(X). Thence we have established UD' (i(X»~ 

i(UD(X». Conversely let UEUD(X). Evidently i(u)~i(X). Let v~i(X) 

and vEi(u}. Then j(v)cj-i(u)=u. Evidently j(v)~X=i-j(v) - By the 

minimali ty of u, u=j (v). 'rhus i (u) =i· j (v)t:v. Thus i (u) =v_ 

Therefore i(u) is a minimal u~ger bound of i(X). Therefore we 

We will define continuous projection pairs among SFP objects 

as we did for cpo's, since every SFP object is a cpo. By virtue 

of 1. 2 • 18, every continuous errbedding does embed bases of SFP 

objects which it embeds. 
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Fact 1.3.12 

R Let <D ,(f ,f » be an w-sequence of continuous projection m m m 

P airs of SFP objects. Then the inverse limit D =(_im<D ,(f ,fR
» 

00 m m m 

is again an SFP object. Indeed ED = Mfm (EO) where «fmoo,f~oo» 
00 R m 

is the universal cocone of <0 , (f ,f ) >. !ZJ m rn m 

By the same arguments as for cpo's, it can readily be seen 

that the isomorphic relation is a good criterion for identifying 

two SFP objects. 

It shoud be noted that the continuous projection pairs can 

be characterized as "imbcddings" of bases. 

Definition 1. 3 .13 ' 

Let O'and 0' be SFP objects. A map i:ED~EO' is an imbedding from 

iff ED to ED, 

(1) i is injective, 

(2) For every finite subset S~ED' Card(UE (S»=Card(UE (i(S») I 

D D' 
( 3) e E U E (S ) if f i (e) E U

E 
( i (S) ) • 

D D' 

Notice that this definition coincides with 1.2.19 if D and 

D' are w-algebraic domains. 

LeITIma 1. 3.14 

Let D and 0' be SFP objects. 

(1) Let i:ED~EO' be an imbedding, tnen the continuous extension 

i:O~D' given by i(x)=U{i(e) leEED,eCx} is a continuous embedding 

with the adjoint j:O'~D s.t. j(x')=U{eEE li(e)Cx'}. 
. ,D-

(,2) l=I1 E
D 

is an imbedding if i:D~D' is a continuous embedding. 

o 

Eroof Except the vlel1-definedness of j the proof is the same as 

for 1.2.20. Let F be a finite subset of R ,={e€E li(e)Cx'}. Then 
x 0 -

there is a mub m' ,of i(F) and m'€E D,. Since i is an imbedding 

there is a mub m of F s.t. mEE D and i(m)=m'. Since m'=i(m)Cx' I 

mER ,. Thus R , is directed. x x 
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Now we review P10tkin power domain construction t10J. 

Definition 1.3.15 
non-empty 

Let D. be an w-a1gebraic cpo and T be ~node-)labe1ed 

finitary tree satisfying: 

(1) For each node t, the label Z(t)EEO; 

(2) T has no terminating branches; 

(3) If t' is a descendant of t in T then l(t)cl(t'). 

Let L be the function which assignes to each (infinite) path 

n through, the 1ub of labels occuring along n. We say that T 

is a senerating tree over 0, which generates t~e set ST= 

{L(n) In is a path through T}s.0. A sot SeD is finit.ely 

generab1e (f.g.) if it is generated by some tree T. The class 

of f.g. subsets of D' is denoted by F(D). o 
Notice that every finite subset of D is in F(D). By M(D), 

we denote the set of all non-empty finite subsets of En' 

Definition 1.3;16 

Let D be an w-a1gebraic cpo, AEM(D) . and S,S'EF(D). 

o 

It can readily be seen that for A,A'di(D), AJ:MA' iff 

A~MA'. Also (F(D),SM) is a pre-ordered·set. Given a pre-ordered 

set (P,s), rp] denotes the quotient poset (P/Sp,s/=p) ~There 

;P is the canonical esuivalence relation over P. [x]denotes the 

equivalence class of x and for S~P, [SJ={[x]1 XES}~(P]. For 

every monotone f:P+P', [f]:[p]+~r')is given by [fJ[xJ=Ef(x»). 
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'l'heorem 1. 3. 17 

[ (F (D) 'RM)]' in short FED], is an w-algebraic cpo with 

the basis [(M(D),CM}J, in short MeDJ. He call FLDJ the 

(strong) power domain of D. 

Srayth [30J presented a weaker power domain construction 

\lhich has the advantage of preserving the bounded complete-

ness. But this construction identifies too many elements. 

Plotkin power domain construction does preserve not 

bounded completeness but SFP condition. 

Theorem 1.3.18 

If D is the inverse limit of an w-sequence <D ,(p ,pR)> m m In 

of projection pairs ':>£ w-algebraic cpo's, then < F[Dm], 

([Pm],[p~J) > is an w-sequence of projec,tion pairs of ,w­

algebraic cpo's and FlD] is isomorphic to the inverse limit 

of it. 

corollary 1.3.19 

If D is an SFP object, then so is F(D]. 

IlL 

IZl 
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1.4 Initial Non-effective Solutions 

In the previous sections, we studied several classes 

of domains, namely cpo's, w-basable domains, w-algebraic uomains, 

and SFP objects. All of these classes admit canonical solutions 

to recursive domain equatlons. Smyth and Plotkin [24] developed 

a categorical theory \-lhich uni fies the arguments for all of these 

classes. We will briefly review their theory. 

Definition 1.4.1 

Let K be a category and F:K-+K be an endofunctor. A fixed 

point of F is a pair (A,a) v.,rhere A is an· object of 1<. and a: FA-+A 

is an ~somorphism9f K. An F-algebra is a pair (A,a) where A€K 

and a:FA-rA is a· K-morphism. Given :?-algebras (A,a) and (A' ,a'), 

an F-homomorphism f:(A,a)-+(A' ,a') is a ~-morphism f:A-+A' s.t.: 

f· a=a ' • Ff. 

It can readily be seen that the class of F-algebras and the class 

of F-homomorphisms form a category. 

Fact 1. 4.2 

The initial F-algebra, if it exists, is also the initial 

fixed point of F. 

Fact 1. 4. 3 

Suppose K has the initial object 1. Let A be an w-codiagram 

<Fn (1) ,F
n 

(lFl) > where IFl is the unique lS,-morphism from I to FI· 

Also suppose that(~n:Fnl-+A> is a colimiting cocone. Suppose too 

that <F~n:Fn+ll-+FA> is a co1imiting cocone of the w-codiagram 

o 

IZI 

n+l n+1 
F6=<F l,F IFl>. Then the initial F-algebra exists. IZI 

Definition 1.4.4 

A category K is an w-category iff it has an initial object 

denoted by 1K, and every w-codiagram has a colimit. A functor 
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F:K+L is w-continuous iff it preserves all existing colimits 

(more precisely, colomiting cocones)'. 

Corollary 1. 4.5 

Let K be an w-category and F:K+.!5, be an w-continuous functor 

then'the initial F-algebra exists. 

Fact 1. 4. 6 

( 1) 

(2) 

Let K and ~ be w-categories, then so is KXL.-

A functor F:KxL+M is w-continuous iff it is w-continuous in 

both K and IJ. 

p P P P By CPO , w-BD , w-AD I SFP we denote the category of cpo's 

o 

!Zl 

!Zl 

and continuous projection pairs, the category of w-basable domains 

and continuous projection pairs, the category of w-algebraic 

domains and continuous projection pairs, and the category of SFP 

objects and continuous projection pairs respectively. 

It can readily be seen that CPoP, W-BDP , w-ADP , and SFpP are 

all w-categories. Indeed for each of them, the initial object is 

the singleton, w-codiagrams are w-sequences of continuous 

projection pairs"w-colimits are the inverse limits, and the 

colimiting cocones are the universal cocones. Furthermore the 

domain constructors x,+, and + are all w-continuous functors. 

Hore precisely, for example, the functor +:CpoPXCpoP+CPOP defined 

onobjectb by -~(DI,D2)=[DI+D2J and defined on morphisms by 

+(p,pR) :DI~D2,(q,qR) :Di+D2)=(Af€[DI+DiJoqofopR,Ah€[D2+DiJ.qRohoP) 

is an, . w-con tinuous functor. Therefore we can solve recursive 

, t' 'th' C P P P d P domaln equa lons Wl ln PO, w-BD , w-AD , an SFP 0 

Let cpd*), w-BrJ*), w-ArfoJ, and SFP{!.-! denote the category of cpo' s 

and continuous (strict) functions, the category of w-basable domains 

and continuous ~tric~ functions, and the category of ~-algebraic 
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domains and continuous ~t~ic~ functions, and SFP objects and 

continuous ~trict)functions. In the previous section we stressed 

that these combinations are very natural and interesting. Also 

in the above we showed that CPoP , w-BDP , w-ADP , and SFpP 

enable us to solve recursive domain equations. Recent develop-

ment of Smyth and Lehmann [23J showed that i.nitial solutions of 

recursive domain equations associate operations to solution 

domains, thence derive data types. In this context, relations 

between CP~) and CPO
P

, w-Bd~and w-BDP , w-AD~)and w-AD
P

, and 

SFP~} and SFpP appear to be important. Smyth and Plotkin [24J 

studied this problem in great detail • We will review their work. 

Hand L 29 J noticed that cpol-kJ, ~""BDb:), w-AD(*) and SFI'~) have richer 

information in the morphism sets, ana. presented a notion of 0-

categories 'Vlhlch enable us to make use of these informations. 

Definition 1.4.7 

A category ~ is an O-category iff every horn-set is a poset 

. h d' non-emnty h 1 b d th . t . in wh~c every ascen ~n~w-cna1n as a u an e compos1 10n 

of morphisms is w-continuous w.r.t. this partial ordering. 0 

Note that if K is an O-category, so is KOP where fOPegOP 

iff fCg for every K-morphism f and g. Also if L is an O-category 

then so is KxL where (f,g)t:(f',g') iff fef' and g!;gl. 

Definition 1.4.8 

Let K be an O-category and let A i B ~ A be arrows s.t. 

g.f=id
A 

and f.g~idB· Then we say that (f,g) is a projection ~ 

from A to B. g is called a projection and f is called an embedd-

Note that this categorical formulation of projection pairs 

reflects the remarks just before 1.1.6. First we fix up a cate­

gory K and define projection pairs in this category. Therefore 

o 
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we will not obtain a pair (f,g) of monotone maps s.t. g.f=idA , 

r-geidB and g is not continuous from the category CPO*, as 

a projection pair. Indeed in CPO* the projection pairs are 

exactly continuous projection pairs. 

Fact 1.4.9 

Let (f,g) and, (fl,gl) be projection pairs from A to B in an 

O-category K. Then fef l lff gr~g. 

Notice that it follows from 1.4.9 that one half of a 

projection pair uniquely determines the other. Thus if (f,g) 

is a projection pair in an O-category K then we say that 9 is 

the (right) adjoint of f and f is the (left) adjoint of g. 

~i.niticn 1.4.] 0 

Given an O-category K, the category of projection pairs 
I 

P of K, in symbols K is defined by: 

Ob (KP)=Ob(K) 

HomKP(A,B)=the set of all projection pairs from A to B, 

P 
1.dK = (idA idA), 

A , .. 

(f' ,gl). (f,g)=(f' 'f,g' 'g). 

o 

[] 

Notice that in the definition of O-categories,the lub of the empty 

chain is not considered. If we take this into account we have the 

following notion; An a-category is said to be empty chain complete 

-iff (1) Hom(A,B) has a least element lA,B for every A,BEK. 

(2) lB,c'f=lA,c for all f:A~B. 

abviously lA,B is a lub of the empty chain in Hom(A,B). (2) is 

concerned with the continuity of composition vlrt the empty chain. 

Fact 4. '1.11 Let K be an empty chain complete a-category with a 

terminal object 1 then'l is an initial object in KP • 0 

Definition 4.1.12 

An a-category K has the S-property iff for every w-codiagram 
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~=<A I (f IfR» in ~P, there is a cocone <~I~R>=<~ :A ~A,~R:A~A > 
n nn nn n n 

of 6 s.t. \.1R=<\.1~:A~An> is El limiting cone of the w-diagram 

6P=<A IfR> in K. <j.llj.lR> is called an S-cocone of 6. 0 n n -

Note that Plotkin and Smyth [24] emphasized the O-categories 

which admit limits for every w-diagraw 1 to gaurantee w-colimit for 

the.projecti6npair categories •. But thi3 restriction is too strong 

for w-BD*,w-AD*,SFP* are not this t~{~e of cate<;ories, vlhile they 

have S-property. As can be seen in the next fact, the notion of 

s-uronerty reflects the limit-colimit coincidence of Scott [17J. .. .. 
Fact 1.4.13 

Every R 
Let K be un o-c:ategory with S-property. w-codiagram 6=<A , (f ,f ) > 

- " /"" n n n 

in KP has a colimiting cocone. Indeed if <~I\.1~>=<j.ln:An~A,j.l~~A~An> 

is a co cone of 6 then the following statements are equivalent: 

(l)<j.llj.lR> is a co1imiting co cone of 6 in KP 

(2) :A ~A> is co1imiting of 
L f > in K. lJ=<j.l a cocone h =<A n n n' 11 

(3) 
R R is limiting of R R in K • . \.1 =<lJ :A~A > a cone 6 =<A ,f > 

n n n n 
R is w-chain in Hom(A,A) R 

(4) <lJ • lJ n 
> an s.t. id =UlJ ·lJ • n Ann 

Definition 1.4.14 

An O-category K is said to have locally determined co~imits 

of embeddings iff whenever 6 is an w-codiagram in KP and <lJIlJ R> 

:6~A is a co cone of 6 in K
P

, then <lJIlJ R> is a colimiting cocone 

It immediately follows from 1.4.14 and 1.4.13 that every 

o-category with S-property has locally determined co1imits. 

We will consider three 

OP 
a covariant functor T:K xL~M. 

"Definition 1.4.15 

O-categories K,~, and M and 

The functor T is locally monotone iff for every f,f':A~B 

in KOP and g,g':C~D in ~; fef' & gcg' implies T(f,g)CT(f' ,g'). 

IZl 

o 
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In case T is locally monotone, then we can define a functor 

P p P P T :K xL -+~ by: 

p 
T (A,B)=T(A,B), 

TP «f ,fR) , (g ,gR» = err efR ,g) ,T (f ,gR» • 

Definition 1.4.16 

The functor T is locallY continuous iff it is continuous on 

morphism sets, i.e. if <fn > is an w-chain in liomKOP(A,n) and 

<g > is an w-chain in HomL(C,D) then T(Uf ,Ug )=Urr(f ,g ) where n _ n n n n 

T(f ,g ) is an w-chain in HomM(T{A,C),T(B,D». 0 n n 

Fact 1.4.17 

Suppose T is locally ~ontinuous and both K and L have 

locally determined colimits of embeddinqs, then TP:KPxLP-+MP 

is an w-continuous functor. 

It immediately follows from 1.4.17 and the remark right 

after 1.4.14 that if K and L have S-property then TP is an 

w-continuous functor. 

Definition 1.4.18 

An empty chain complcte a-category which has S-property and 

a final object is called a Dom--cate9:0ry. 

Notice that in the definition of empty chain completeness 

the right half of the continuity of composition wrt the lub of the 

empty chain was omitted, namely, 

f.1A,B=lA,c for all f:B-+C. 

This condition has the effect of restricting morphisms to strict 
. . 

maps. Given a Dam-category K let K* be the a-category obtained 

from K by restricting morphisms to those satisfying the above 

condition. 

Lemma 1. 4 • 19 

Let K be a Dom-category. Then the terminal 

object 1 in K' is'the initial object in K*. 
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proof 11,A:l~A. Let f:l~A in K*. Then fo11,1=11,A. But since 1 

is terminal in K and hence in K*, 11,1=idl. Thus f=ll,A. This 

implies that 1 is initial in K*. 

Lemma l. 4 • 20 

If K=L*for some Dom-category L then K=K*. 

Dom-categories are the categories which possess a lot of 

interesting properties of the concrete categories of .domains 

like CPO, w-BD, w-AD, and SFP. In fact all of these are Dom-

IZJ 

categories and ~,+, x are locally continuous functors. For example 

~:CPoOPXCPO~CPO is defined by: 

~(A,B}=[A~BJ, 

~(f:A'~A,g:B~B')=AhE[A~BJ.g·h·f. 

Also it should be noted that one of the simplest example of 

O-category is the category of sets and partial functions with the 

set inclusion as the ordering on horn sets. 

Notice that if K is a Dom-category then KP=(~*)p is an 

w-category. In swrunary, we have observed how an O-category 

yields an w-category and a locally continuous functor yields 

an w-continuous functor. The following fact . states this: . 

Facts 1.4.21 . 

(1) If K is a Dom-category then KP=(K*)P is an w-category. 

(2) If K,~ and M are Dom-categories then T:KoPxL~M is w-continuous 

whenever T is locally continuous. fZl 

, . 
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CHAPTER 2: EFFECTIVELY GIVEN D01-1AINS 

"In order to make a definition preci8e~ 
sharp boundaries must be imposed on some-' 
thing. This forces us to become aware of 
those areas in which our intuition itoelf 
is uncertain. This is why finding appropri­
ate definitions is so often the major effort 
involved in creative scientific work. If a 
new definition helps classify objects whose 
Rtatus was formerly uncertain~ then some 
new notion must be involved. While on the 
Burface a definition is just a convention~ 
intellectually its aooeptance may have a 
much more active role" 

Marvin L. Minsky~ 1967 
in Computation:Finite 
and Infinite Machines. 

In this chapter, we will present further developments to 

the theory of effectively given domains. This involves the obser-

vation that the notion of computability in an effectively given 

domain is dependant on the indexing of its basis, as discovered 

by Park. This indi~ates that we cannot identify two effectively 

given domains just because they are onbr isomorphic. We propose 

a suitable notion of effective embedding and effective isomor~ 

phism to compensate for this deficiency. A less detailed version 

of this chapter appeared in Kanda and Park [5]. 

2.1 Effectively Given Domains 

'The fundam~ntal idea of effectively g~ven domains is to 

assume effectiveness of finite join operations on a basis of each 

w-algebraic domain and to define computable elements as the lub's 

of r.e. chains of basis elements. For details of the results, 

obtained so far, based on this idea, see Scott [16,20], Tang [26], 

Egli and Constable [1], Markowsky and Rosen [15], and Smyth [22]. 

In this theory it is tempting to avoid questions of indexing. 

In fact, it has not been clear whether an effectively given domain 
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is to be a domain which can be effectively given in some unspeci-

fied way or is to be a domain where this is specified. One could 

ask if it makes any difference. We will show it does in this 

chapter. This calls for a rather "tedious" definition of 

effectively given domains. 

Throughout, we assume a fixed acceptable indexing <4>,>and 
1. 

<Wj> of partial recursive functions and r.e.sets s.t. wi=range{t
i
). 

Definition 2.1.1 

(1) Let D be an w-algebraic domain. A total indexing E:N~ED is 

effective iff there is a pair of recursive predicates (b~l) call-

ed the characteristic pair of E, s.t.: 

b (x) iff £(fs(x» is bounded in E
D

, and 

Z(k,x) iff E{k)=Ue(f (x» 
. S 

where f is the standard enumeration of finite subsets of N. 
s 

(2) An indexed domain is an ordered pair (D,£) where D is an w-

algebraic domain and e:N~ED is a t~tal indexing. An 'indexed 

domain (D,£) is an effectively given domain iff £ is effective. 

We will write DE for (O,E). In case DE is an effectively given 

domain, the characteristic pair of DE is that of E. (Eli,E) is 

called the effective basis of the effectively given domain DE. 

(3) Given an effectively given domain DE, XEO is computable w.r.t. 

( t bl ' DE) 1.'ff for some E or compu a e ~ r.e. set W, E(W) is directed 

and x=U£(W). We say that an r.e. set W is (-directed iff E(W) is 

directed. The set of all computable elements of DE with the 

induced partial ordering is denoted by Comp(DE) • 

• (4) Given effectively given domains DE and DIE, a function f:D~D' 

t bl t ( ~,£I) 1.'ff th is compu a e w.r.. ~ e graph of f which is r(f)= 

o 
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It is obvious that there are only counyably many effecively 

given w-algebraic domains but there are continumly , man~ 

w-algebraic domains. This means most of the w-algebraic domains 

are impossible to have effective bas~s at all. Paterson and 

Plotkin indegendentl~ obtained such examples. 

£ £1 E 
In case D and DI have the same characteristic pair, D is 

, 
merely a" r'enaming" of D' £ • More formally, there is an order 

isomorphism f:D~DI s. t. f 0 £=£ '0 We denote this relation by' 
r r I 

DE~DI£ To wi thin ~, vIe can introduce the follmdng partial 

indexing ~ called the acceptable indexing of the class of effect­

ively given domains s.t. i«i,j» is the effectively given domain 

whose characteristic pair is (<Pi,<P j ). Note that if T is a partial 

function then we write T{X) iff L is defined on x. 

Notice that there is a well-known recursive isomorphisTIl 

between Nand NxN. One way is the pairing function'<n,m>=~(n+m) 

(n+m+l)+m and the inverse is' the standard enumeration Pr(n)= 

<11' 1 (n) ,11'2 (n) > \-lhere 11' land 11' 2' are the associated projections. 

We also review how acceptable indexing provides finite repre-

sentations for the partial recursive functions. For details of 

this argument readers are refered to Rogers [14]. 

We assume a suitable symbolism (i.e. syntax o~ p~ograms) 

s.t. there is a constructive evaluation process Eval s.t. given 

a k-ary program R and a tuple (nl, •• ,nk ) of natural numbers, 

Eval may yield a natural number within finite steps. Thence 

defines a partial recursive function (via Eval). Let <R.> be a 
~ 

constructive enumeration of all programs and <Pi the partial 

recursive function defined by RiO Then: 

(1) i represents $i in such a sense that Ri can constructively 

be transformed into ~dVl(i) which constructively enumeratesthp 
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g ranh of <p •• Indeed the so called IIdove tailingll is the construct-- ~ 

ion needed to do this transformation. 

(2) i represents W.=range(<p.) in such a sense that we can uniform-
~ J. 

1y transform Ri into ~dV2 (i) which constructively enumerates v1 i · 

Essentially the same dove tailing technique is needed to do this 

transformation. 

In the following ..,10 use the usual convention to identify 4>. to R .• 
J. J. 

Since our indexing 4>i is constructive (acceptable) we can regard 

dvl and dv2 as recursive functions. 

Now <i,j> represents<9. ,4>.> which characterizes the effective­
J. J 

1y given domain t«i,j». In this sense <i,j> is a finite repre-

sentatior. 0f i«~,j~). 

Given an effectively given domain De: and a computable element 

x in DE: s.t. W is e:-directed and x=Uc(W), it is quite natural to 

regard a program of a recursive function p s.t. N=range(p) as a 

representation of x. We will pursue this idea and will introduce 

a total indexing to the set of all computable elements of De:. 

Lemma 2.1.2 

For every effectively given domain De:, there is a recursive 

function de::N+N s.t. for every jeN, Wd (j) is directed and in 
e: 

case W. is already e:-directed Ue:(W.)=Ue:(Wd ('». 
J J e: J 

proof Remember that cf>aV2(j) recursively enumerates Wj • Think of 

a recursive function p:N+N defined by: 

p (0) =cj> dv2 (j) (0) 

p(n+I)=if·{e:(p(0», •• ,e:(p(n»,e:(cj>dv2(j) (n+l»} is not 

bounded in ED 

then pen) 

else ~k.e:(k)=Lj{e:(p(O» , •• ,e:(4)dV2(j) (n+l»}. 

Evidently p enumerates a e:-directed set W'. Since this construct­

ion is uniform in dv2(j), there is a recursive function d :N+N s.t. ) e: 
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P=4>d (')" 
E J 

In case Wj is £-directed evidently Uc(W,)=Ue:(Wd ('»' 
J E J 

We will call dE a e:-directing function (or simply a directing 

function). The above lemma gives us the follmrling total indexing 

j and denote it by 

x=Ue:(Wd (j» we say 
E 

Z; (j) =x. If x='r; (j ) 
E E 

that x has a directed index 

then Pd (j) is a program 
E 

which recursively enumerateswdE(j),and x:::LJO-ldE(j»' Therefore j 

can naturally be regarded as a finite representation of x. 

Egli and Constable introduced an alternative to the directed 

indexing. They tried to trans form every r. e. set l-l to another W' 

whicb admi ts lub's in th0. sense th<lt 1Je: (vT') E'x.i..sts, vy making 

every finite subset of E(W') have an upper bound (not necessarily 

in E(W'». But the existence of lJe:(W') can be: guaranteed only if 

D is bounded complete. On the other hand our directed indexing 

method is based on' the directed completeness of D, hence should 

work out even for the SFP case. 

Since 1I1e took the vielll that an effectively given domain is 

... domain ,..,ith a specified effective basis, doma.in constructors 

must relate not only po-structure but also effective structure. 

Thus we have to be explicit about constructed bases. 

Definition 2.1.3 
, " Given indexed domains DE and D,E ,define De:~D,e: , DE+D,E I 

. , 
and DExD,E to be the following indexed domains: 

, 
(1) DExO,E =(DxO', EXE') where EXE'(n)=<E·1Tl(n),E'1T2(n». 

, 
(2) OE+O,E =(D+D', E+E') 

where e:+e:' (n)= if n=O then I else ---
if n:::2m+l then <O,E(m» else 

if n:::2m ~ <l,E' (m». 



(3) [D£-+D'£']= ([D-+D'],[£-~£']) 

where [E-+E'](n)=if a(n) has a lub then ua(n) elsej, 

and a(n)={[£(i),~Cj)]I<i,j>€P (n)}, 
r 
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where P is the standard enumeration of finite subsets of 
r 

NxN. 0 
, 

It is well known that if DE and D,E are effectively given 

E £' E E' E E' domains then so are D xD' , D +D' ,and [D -+D' ]. Indeed the 

proof of this closure property involves uniform construction 

of the characteristic pairs of EXE', E+E', and [E-+E'] from those 

of £ and £'. Therefore we have: 

Theorem 2.1.4 

There are recursive functions Prod~ Sum~ and Funa s.t.: 

Cl) ~(i)x~(j)= tcppod(i,j». 

(2) t(i)+tej)= t(Sum(i,j». 

(3) [tci)-+tej)]= teFuna (i,j». 

proof (1) Let (b,l) and (b' ,l') be characteristic pairs of C(i) 

and ~(j) respectively. The characteristic pair (bxb' ,lxl') of 

t(i)xt(j) can be defined by: 

b x b' (x) =b (1T 1 (x) ) & b' (1T 2 (x) ) 

=b (1T 1 (x» xb' (1T
2 

(x», 

Zxt' (k,x)=Z('lf1Ck),1Tl(x»&Z' (1T
2

(k),1T
2

(X» 

=Z (1f i (k) , 1T1 (x» xl' (1T
2 

(k) , 1T2 (x» 

where the right side x is the art~tetic multivli~ation and & is 

the logical and. (2), (3) can be proved similarly. 

Notice that essentially the above proof involves a proqram 

transformation which yields a program for bxb' from the programs 

°for band b'. In case input to this transformation is not a pair 

of pairs of programs for aO pair of chara~teristic pairs, so~e 

program systemo • is still formally obtained. 
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Smyth [22] showed that a function f:D-+D' is computable 

w.r.t. (e:,e:') iff fEComp([DE+D,E']). This proof involves a 

construction of [E+E']-directed r.e. ~et W s.t. f=U[e:+e:']{W) 

from the graph of f and vice versa'. In order to observe that 

this uniformity induces recursive functions between directed 

indexing and graph indexing, 'which is a partial indexing of the 

class of computable functions by means of the acceptable indices 

of the graphs of them, we will examine this proof in detail~ 

Fact 2.1.5 

A function f:D+D' is co~putable w.r.t (e:,E') iff f is a 
, E E' 

computable element of [D -+D' ]. 

pro0f Let r{f)={<m;n>Ie:~n)Cf'E(m)} be r.e. Noti~e that the~e are 

recursive functions Step andEpp s.t. P (S~ep«m,n»~{<m,n» and r 

f (Epp(m,n»={m,n). Then we have:, (c+c'](Step«m,n»)= 
s 

[e: (n) , e:' (n) J. Remember that E' (n) t:.f· c (m) iff 

[c+s']{Step«m,n»)Cf. Therefore [s+s'](Step(r(f»)~E[D-+D'] and 

f=U[E+e:'](Step(r(f»). Since r(f) is r.e. Step(r(f» has a 

recursive enumeration ra,rl , •••• Define a chain <Yn> in 

E by: 
[0+0' ] 

yo=[e:+e:'] (rO) 

Yn+l~ ynU[s+E'](rn +l )· 

This is well-defined because every finite subset of [E+E'](Step( 

r(f») has a lub in E[D+O'J for [D-+D'] is bounded complete. 

Furthermore there is a recursive function p s.t. Yn=[e:+e:'](p(n». 

Indeed p(O)=ro and p(n+l)=~k.[l+l'](k,h(n» where h is a recur­

sive function satisfying Pr(h(n»={<p(n) ,rn +
l

>} .Therefore <Yn> 

is an [e:+e:']-effective chain. Thus f=Uy 'is computable in [D+D']. 
n 

conversely let W be [E+e:']-directed s.t. f=U[E+E'](W). Evidently 

[e:'(m),e:'(n)]Cf iff [Z+Z'](x,Epr(x,Step«ffi,n»»=a for sor.~e XEW 
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Thus" {<m, n> I [ c (m) , f:' (n)J [f} is r. e. Therefore f is computable 

w.r.t. (c,c-). Note that [Z+Z'] is the second coordinate of the 

characteristic pair of [e+€']. IZI 

Theorem 2.1.6 

There are recursive functions Dg~Gd:N+N s.t.: 

(1) If k is a graph index of f which is computable w.r.t. (~(i), 

~(j» then f=~[~(i)+~(j)J(Do(k,i,j». 

(2) If f=~[~(i)+~(j)](k) then f has a graph index Gd(k,i,j), where 

~(i) denotes the effective basis of ~(i). 

proof (1) Given kEN, r==Step· 4>a"V2 (k) recursively enumerate Step (Wk ) • 

Given i,jEN, define p by: 

p(O)=.r(O), 

p (n+1) =llk. 4> F (..) (k,h (n) ) 
11" 2' una 1., J 

where h is as before, i.e. as in the proof of 2.1.5. Then p is 

a partial recursive function. Since the construction of p is 

uniform in i,j,k, there is a recursive function T(k,i,j) s.t. 

4> (k . ,)=p. This T is the desired Vg. Notice that if k is a 
T ,1.,J 

graph index of a computable function then the above p is recur-

sive and behaves as the p in the previous proof. 

(2) Similarly. III 

Notice that in the above proof again a program trans-. " 

formation was involved. In fact we transformed any given program 

Indeed we can claim that for most cases of 

constructing an r.e. set from some other r.e. set in a certain 

class of r.e. sets, unless we do somehow very sophisticated 

things, involved is a simple always terminating program trans­

formation. So in the rest of this dissertation, whenever we come 

across this sort of situation, we will indicate constructive 

transformation of r.e. sets into r.e. sets and omit details of 
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proofs of results on indices like 2.1.4 and 2.1.6. 

e:: e:: ' E" Given effectively given domains D ,D' , and D" , let 

f:D+D' and g:D'+D" be computable w.r.t. (E,E') and (E',E") res-

pective1y. By uniformly constructing the graph of g·f, we can 

show that g·f again is computable w.r.t. (E' ,E"). The uniformity 

of the construction and (1)-2.1.6 establish: 

Theorem 2.1.7 

There exists a recursive function Compose s.t. 

~[~(k)~~(m)](i)·~[~(m)~~(n)](j) 
=~[~(k)~~(n) ](Compose(i,j,k,m,n}) 

IZI 

Theorem 2.1.8 

A continuous function frorn an effectively given domain to 

another is computable w.r.t. their effective bases iff it maps 

computable elements to computable elements recursive1y in directed 

indices. 

proof (only if part): Notice that if f:D+D' is computable w.r.t. 

(E,E'), then we can uniformly construct an r.e. set W~~(k) = 

{nIE' (n)Cf.e::(m) for some mEWk } for every kEN. Thus ~f is a recur-

sive function. It is evident that if 

is E '-directed. 

(if part): Assume that ~f is a recursive function s.t. ~E' (~f(k» 

= f(~ (k». Notice that there exists a recursive function Bd s.t. 
E 

E (m) =1; (Bd (m». Now f· E (m) =Z; ,. '¥f·Bd (m). Therefore E' (n)I:f· e: (m) 
E e:: -

is r.e. Therefore f is computable w.r.t. (E,E'). 

The proof of 2.1.8 has a further implication. 

Theorem 2.1.9 

III 

There exists a recursive function Apply s.t. if k is a graph 

index of fEComp([~(i)+~(j)J) then: 
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l;E;(j) (AppZy(i,j,k,m)=f(l;E;(i) (m». 

It is evident that we have a recursive function AppZy' 

which takes directed indic~s of functions rather than graph 

indice~ , for we have 2.1.6. 

Let COMPOSE:[~(k)+~(m)Jx [·~(m)+~(n)]+[F.(k)+t(n)] be defined 

by :OMPOSE(f,g)=g·f •. Then it can readily be seen that COMPOSE 

is computable. Thence we can obtain 2.1.7 as a corollary to 2.1.9. 

Before ending this section, we will observe one important 

effectiveness result which will play an essential role in the 

categorical argument in the last chapter. 

D~f!nition 2.1.10 

Given an effectively given domain DE, an effectively directed 

(ef-directed) subset of DE is a directed subset zcComp(DE) s.t. 

Z=l;tW) for some r.e. set W. We say this W is l;;c-directed. If Wj 

is r -directed then we say that r;; (W) has a r;; -directed index j. 
~E E ~---------- ~~~ 

o 
Theorem 2.1.11 

€ 
(1) Let Z;;~N) be an ef-directed subset of D • 'Ihen Ur;;e:(W) is a 

e: 
computable element of D • 

(2) There is a recursive function Lub s.t. if r;e:(W;) has a r; -
J € 

directed index j then te:(Lub(j»=Ur;;e:(w j ), Intuitively speaking 

taking ef-~irected limit is an effective operation. 

Given an r.e. set Wj , we can construct an r.e. set W' 

·s.t. Y=*e:(WX)=e:(W'), with X€l;e:(N j ) and e:(vlx)={e€e:oles.x}. If 

W. is t~-directed then W' is tE-directed and UY=Ur; (W.). Thus 
J ~ e: J 

we have proved both (1) and (2). III 

Intuitively, (2)-2.1.11 means that given effective enumeration 

of programs each of which effectively approximates an element of 

r;; (W), we can construct a program which approximates ur;; (W). e: e: 
) 
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2.2 Effective Embeddings 

In this section, we will observe that po-structure of a 

domain can't uniquely determine effective structure, even if 

it can be effectively given. 

Theorem 2.2.1 (Park) 

(1) There is a countab1y algebraic domain D with two different 

effective bases Eand E' s.t. Comp(D£)=comp(D£') but s.t. 

Comp([D£+O'IT])r Comp([D£'+O'IT]) where 0 is the two point lattice 

and 'IT is an arbitary effective basis of O. 

(2) There is a countab1y algebraic domain D with two different 

£ IS ' effective bases E and. e:' s.t. Comp(D )tComp(D ). 
, 

proof (1) Let (D,!;) be the following countab1y algebraic domain: 

I I I 
\11 

... 
® 

• 
I •• ••• 

·IIY 
\I&?,I ... 

Note that D has only one limit point·®. Thus the basis of D is 

the poset obtained from D by removing the limit point. Think of 

the following poset (Nu (NxN) ,C) where i!:j iff i~j, iC<m,n> iff 

4>m (n) takes. at 1ea.st i steps, and <m,n>t:<m' ,n' > iff m=m' and 

n=n'. Then the partial ordering C is decidab1e in terms of the 

Godel numbering of Nu(NxN). Thus this Godel numbering provides 

an effective indexing e:' of EO. Now think of the following poset 

(Nu(NxN)u({w} N) ,~) s.t. i~j iff i~j, iE<m,n> iff i~m and 

<m,n>£<m' ,n'> iff m=m' and n=n'. Evidently the Godel numbering 

of Nu(NxN)u({w}xN) provides an effective indexing £ of EO. 

£ E ' 
Obviously Comp(D )=Comp(D )=D. Now let f:D+O be a continuous 

map s.t. f(x)=if x~® then T ~ 1. Then f is computable w.r.t. 
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<e:,1T> but not so w.r.t. <c',7f>. Now let M={hc[D-t-o]I{c::r-=[D-~OJI 

gEh} is finite}. Then M~{hxIX is a finite set of leaves above 

compact elements of D} where hx=if XfYEX then 1 else T. It 

e: 'IT e:' 'IT 
can readily be seen that McComp([D +0 J) and McComp([D +0]). 

e: 1T c' 1T 
Let ~:Cornp([D +0 J)+Comp([D +0 J) be an isomorphism. Then 

~ (M)=M. Notice that f=nM. Therefore rlMEComp([De:+O'IT J ). Since 

e:' 'IT 
~ is an isomorphism, ~mM)=n'MEComp([D +0 J). But M should 

e: ' 'IT 
have no greatest lower bound in Comp([D +0 J). 

Notice that 2.2.1 is more than a counter example to a care-

less definition of effective ly given domains. In fact (1) - 2.2.1 

indicates that Comp(De:)=comp(De:') is not sufficient to identify 
e: I 

[, e: and D • R~member that in d()ma~_n theory, d0main constructors 

must preserve equivalence of domains, more technically, they 
e: e: I 

must be functors. But if we assume that D and Dare equ-
e: e: I 

ivalent iff Comp(D )=Comp(D ) then "+" does not preserve this 

equivalence as shown in (1)-2.2.1. We claim that the following 

equivalence of effectively given domains is appropriate. 

Definition 2.2.2 
r 

Let De: and De: be indexed domains. We say that e: and e: ' a 

are ~£fectively equivalent (in symbol e:~e:') iff there are 

recursive fun~tj,ons r,s:N+N s.t. e:'=e:·s and e:=e:'·r. o 

It can readily be seen that if either e: or e: ' is effective 

then e:~e:' implies both e: and e:' are effective and Comp(O£)= 

e: I 
comp(D ). 

e: e: ' 
Notice that D and D of the proof of 2.2.1 are not effectively 

equivalent. In fact if e: and e:' were effectively equivalent 

then there could exist a recursive function c:N+N s.t. ~m(n) 

terminates iff c«m,n»=<m' ,n'> with m'tw and we could solve 

the halting problem. 
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We can easily ex:end the notion of effective equivalence 

to isomorphisms. 

Definition 2.2.3 
. I 

(l) Let DE and D,E be indexed domains. A function foE ~E oDD' 

is an effective imbedding from E to E' (in symbols f: E~E ') iff 

1. f is an imbeduing from ED to ED,. 

2. there is a recursive function Pf s.t. 

Remember 11 imbeC:ding'; ~laS c.efined in.:.l. 2.19. 

f.--e:=e:'·P.c: • 
.4.. 

(2) We say that E and E' are effectively isomorphic (in symbols 
e , 

or DE ~D,E ) iff there exists an effective imbedding f:E~£' 

s. t. f-l:E ,-+E is also an eff:!.:..tive Lnbeddi:.1g fron £1 to E DD· 

Lemma 2.2.4 
E E' 

(1) Let D and D' be indexed domains and f be an effective 

imbedding from e: to E'. Then the unique continuous extension 

o 

f:D-+D' of f is a continuous embedding vlith the adjoint g:D'~D 

- - - -1 
given by g(y) =U{e€E D' f (e)c;y}. Furthermore 91 f (E D) =f • 

e: e: I 
(2) In case D and Vi are effectivel.y given domains, f is 

computable w.r.t. (e:,e: ') and 9 is computable w.r.t. (E I,d. 

- e: e:' Furthermore f(Comp(D »cComp(D' ), in words, f embedds 

computable elements. 
e I . 

(3) If De:~D,e: and either of them is effectively given, then 

E ~ E' both of them are effectively given and Comp(D )=Comp(D ' ). 

Eroof (1) f=f1E D is obviously an imbedding. Thus by 1.2.20. 

(2) E' (m)ef'e: (n) iff e: I (m)t:.e: '·rfen). Therefore f is computable 

w.r.t. (E,e:'). Since g'EI(n)=U{e:(j)lf'e:(j)~e:I(n)} 

=U{e:(j)IE ' (pf(j»~EI (n)} and e:(m) is compact, we have: 

E(m)!::.9·e:'(n) iff E(m)C'e:(j) for some j s.t. e:1'rf(j)Ce:'(h). 

Thus E(m)cg'e: ' (n) is r.e. in m and n. Therefore g is computable 
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w.r.t. (£',e:). "By the computability of f and 2.1.9, we 

- £ £' obviously have f(Comp(D »~Comp(D' ). 

(3) "Evident. !7J 

Definition 2.2.5 

(1) If f: ED -+ED I 1s an effective imbedding from £ to El, then 

we say that f:D-+D' is an effective embeddins from DE to DIE'. 
, 

(2) Let DE "and D' E be effectively given domains. A continuous 

E E' embedding f:D+D' is a computable embedding from D to D' iff 

f is computable ",. r. t. «(:, E') and the adj oint g: D"~D is comput-

able w. r. t. (E', d. 9 is called a computable projc"ct"i"on and 

(f,g) is called a"computable projection pair. o 
Let vi be an non-recursive r .e. set. and (N,E), (N' ,F:') be the follOtling 

effectively given domains: 

o l' 2 
N: '1/ 

1 
E(O)= 1 
e:(n+l)=n , 

0 1 I' 2' 
I I I 

N': 0 1 2 .. ·• 
"",.j ....-

.1 

El (0)=1 

El (2(n+1»=(n-1)' 

El (2n+l)=n • 

'l'hen f: N+i~ I defined by f (x) =if x= 1 then 1 else if x{ \'1 then x else x' is an 

embedding canputable wrt "(E,E.'). But it is not an effective embedding since 

t; is not a recursive set. This exar.1};"lle due to Plotkin indicates that not 

all er.~dings which are c~utable are effective embeddings. 

Theorem 2.2.6 
E E' Let D and DI be effectively given domains s.t. f:D-+D' 

is a computable embedding, then"f is an effective embedding. 

proof Let g:D'+D be the adjoint of f. Then both E' (n)sf·E(m) 

and E(n)Cg·~' (m) are r.e. in indices i We will show the exist-

ence of a recursive function r s.t. f·£=e:'·r. We claim that 

the following terminating program computes such rem) for mEN. 

- enumerate n s.t. E' (n)cf·E(m). 

for each enumerated n, enumerate k s.t. E(k)cg.E I (n). 

- continue until we obtain a k s.t. E(k)=E(m). 
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The n for which this k is pzoduccd is the desired r(~). 

By a "dove-tailing" technique, we can compute the above 

process. ~'Je n0"1 check that such X' is actually the one desired. 

Assume k and n are the values when the above process terminates. 

Then E (k)Cg· E' (n)cg· f (E (m» =E (m). Since E (k) ==E (m), we have: 

g. e:' (n) =E (m). But e:' (n):lf·g· e:' (n) =f· E (m). 

Therefore £' (n)=f·£(m). !ZJ 

In summary, we have observed that the effective embeddings 

of effectively given domains are exactly the computable embedd-

ings. This coincidence indicates the naturalness of the notion 

of computable embeddings. It immediately follows from these 

observations that an =.somorphism between two effectively given 

domains is an effective isomorphism iff both itself and its 

adjoint are computable. Also this coincidence implies that the 

composition of two effective embeddings is again an effective 

embedding. 

The coincidence of effective embeddings of effectively 

given domains and computable ernbeddings is in fact "effective". 

r,iven an effective irnbedding f:e:+e:', if X'f=<I>j then we say that 

f has a ,acursive index j .. Also we say that the effective 

embedding f has 9 recursive index j. Now we have: 

Theorem 2.2.7 

(1) There is a recursive function Rd s.t. if i and j are direct­

ed indices of a computable embedding fEComp([~(k)+~(m)]) and 

the adjoint g€comp([~(m)+~(k)]) respectively then Rd(i,j,k,m) 

is a recursive index of f. 

(2) There are recursive functions De and Dp s.t. if i is a 

recursive index of an effective embedding fEComp([t(j)+T(k)]) 
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then De(i,j,k) is a directed index of f and Dp(i,j,k) is a 

directed index of the adjoint g€Comp([~(k)~~(j)]) of f. 

proof By the effectiveness of the proof of 2.2.4 and 2.2.6. 

flI 

If i and j are directed indices of a computable embedding 

f and its adjoint g respectively, then 'tile say that <i,j> is 

a directed index of the computable projection pair (f,g). 

Remember that we have claimed that the notion of effective 

isomorphism gives an appropriate criterion for identifying two 

effecti vely given domains. ~ve can provide quite convincing 
e 

evidences for this claim. First, eVidently'" is an equivalence 
e 

relation. Furthermore we can ShOVl that ~ is invariant un de 1.' 

the domain constructors x,+, and -+. Hore formally we have: 

Theorem 2.2.8 
e 

Let A a ,BB , C Y, and DO be indexed domains s. t. A a~C Y and 
e 

BB "==0°. Then 'tile have: 

(1) 

(2) 

(3) 

8 e 0 
AaxB ~CYxD 

e 
Aa+rf ~CY +00 

e 
[Aa~BB ]~[CY~Oo J. 

proof (1) and (2) are easy_ 

We will prove (3). For the sake of simplicity we prove this 

theorem for ~. Assume r~r'~s~s' are recursive functions s.t. 

y=~.r', 15 =3 .s', a=y·r, arid S =S ·s. Notice that we have assumed 

A=C and B=O. Then it can readily be seen that there is a 

recursive function i:N~N s.t.: 

([ a (i) ,3 (j) ] I < i , j > E Pr (n) } = ([ y.1" (i) ,S.s (j) ] I <1" (i) , s (j ) > E P i (n) } 
r 

Thus [a43 ](n)=if.U{[a(i),B(j)JI <i,j>e:P (n)} exists then this lub 
- r 

else 1 =[y~ J (i (n»)_ 

. Similarly we have a recursive j s.t. [y~oJ(n)=[a~BJ(j(n»_ 
fZI 
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2.3 Algebraic Completion 

Smyth [22J characterized effectively given continuous 

domains as the completion of computable R-structures. The index-

. ing problem was not considered. We will characterize effectively 

given algebraic domains as the algebraic completion of effective 

posets, taking care of effective isomorphisms. 

Definition 2.3.1 

Let (E,~) be a countable poset with bottom and bounded 

joins and E:N+E be a total indexing. We call (ErE) an indexed 

poset. In case E is effective, i.e. £ satisfies (l}-2.l.l, 

we call (E,E) an. effective poset. The (~ebraic) completion 

of an indexed poset (E,E) is an indexed domain (E,c) where E 

is the algebraic completion of E and c:N~~~) is given by ~(n)= 

T.E(n) where T is the canonical map from E to E .. 

Theorem 2.3.2 

(1) Let (E,£) be an effective poset. Then the completion of 

it is an effectively given domain. 

(2) Given an effectively given domain DE , the effective basis 
r 

E~ is an effective poset.and (ED,'E)=(D,£) (to within ~). 

(3) An indexed domain is an effectively given domain iff it is 

. ~ 
the completion of some effective poset (to within =). III 

The above theorem indicates that the effective bases of 

effectively given domains are exactly effective posets. This 

point can be made more explicit. It is obvious that we can 

introduce the renaming relation on the class of effective posets 
r 

and to within ~ associate acceptable indices to each effective 

poset. We will use ~ to denote the acceptable indexing of 

effective posets. Now let ~«i,j» denote the algebraic 
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completion of the effective poset ~«i,j». Then we have: 

Theorem 2.3.3 (The Acceptable Indexing Theorem) 

r 
~«i,j» = ~«i,j» (to wi thin ~) . 121 

By virtue of the above theorem, we can say that ~«i,j» 

is the effective basis of ~«i,j». 

2.4 Inverse Limits 

£ R 
Let <Dmm, (fm,fm)> be an w-sequence of continuous project-

ion pairs of indexed do~ains. By the i~se limi~ of this 

sequence, in symbols !im<o~m,(fm,f~» or !im<D~m>, we mean an 

indexed domain (Om'£oo) where Doo=iim<Dm' (fm,f:» and £00 is 

given by: 

£oo(O)=fOoo(EO{O» 

Em(2)=f loo {El(0» 

£00 (1) =fOoo (EO (1» 

£00 (3) =fOoo (EO (2 ~ ) 

r.lor~ precisp.ly, £",,«n,rr»=fnoo(En{m). 

In case OEm are effectively given domains, even if (f ,fR) m . m m 

are computable projection pairs, lim<D~m> need not be so. This 

immediately follows from the observation of effectiveness of 

SFP objects. For establishing closure under' limit, we need the 

notion of. effectiveness of the sequences. 

Definition 2.4.1 

E R 
Let <0 m , (f ,f » be an w-sequence of computable pro]'ect-m m m 

ion pairs of effectively given domains. In case there exists 

a rec~rsive function q:N~N s.t. nl'q(m) is a recursive index 

of fro and n 2
o q(ro) is an acceptable index of D~m , we say that 

this sequence is effective. o 
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By virtue of 2.2. 7, "le inunediately have the following 

alternative characterization of effective sequences: 

Lemma 2.4.~ 

An w-sequence <O~m,(fm,f~» of computable projection 

pairs of effectively given domains is effective iff there is 

a recursive function q s.t. nlonloq(m) is a directed index of 

fm' n 2 '1f l
oq(m) is a directed index of f~, and 1T 2

o q(m) is an 

E acceptable index of 0mm. 

Theorem 2.4.3 (The Inverse Limit Theorem) 

IZJ 

Let <o€m, (T ,IR» be an effective sequence of computable 
m m m 

projection pairs of effectively given domains. Then the inverse 

limit (0 ,E ) is an effectively given domain. Also T is an 
m m mm 

effective embedding from E to E , thence (T ,IR) is a m m moo moo 

computable projection pair. Furthermore there exist recursive 

functions Aa and od s.t. Aa(m) and 0a(m) are directed indices 

of I and fR respectively~ moo moo 
R R R -=R 

proof Let fm=Tm1Eo ,fm=Tm1Eo'· ,fmoo=Im001En ' and fmw=fm001ED • 
m m+l m m 

Assume {E (il),··,E (i )}CED • There are recursive functions 
m. 00 n- "" 

a and b s.t. Eoo(m)=faCm)",,'Ea(m) (b(m». Let Deg({E",,(i 1 ) , ••• , 

E",,(in)})=max{a(i1),o.,a(in )}. Then there exists a recursive 

function Deg s •. t. Deg(i1 ,·· ,in)=Deg({E",,(i1 ) , •• ,Eoo{in )}). Let 

f ij =fj 0 000 0 f i (i~j): Since 'fm are imbeddings, {gm (1 1 ) , 0 • ,E"" (in) J: 

is bounded iff {fa(il)DegCil, .. ,i
n

) (Ea(i
l

) (b(i l », ... , 

fa(i )Deg(i1, .. ,i ) (E aCi ) (b(in »} is bounded. Since the given 
n n n 

~equence i$ effective, there ~s a recursiv~ function M~g.~.t. 

Mrg(k,i1, .• ,in ) is a recursive index of f 
a(ik)Deg(il,··,i ) 

for every kEn. Thus there is a recursive function Rea s~t. 
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f:.Deg(i , •• ,i ) (Red(il,··,in,k»=fa(i )Deg(i , •• ,i ) (ca(i ) ( 
1 n k 1 n k 

b(i
k
»), for every k~n. Therefore "{E (i

l
) , •• ,E (i )} is 

00 DO n 

bounded" is recursive in il, .. ,i
n 

since E are effective bases. 
m 

Similarly e; (k)=U{E (il), .. ,E (i )} is recursive in indicies. 
DO DO 00 n 

Therefore E is an effective basis of D • 
00 00 

By the definit.ion of Coo we can effectively find n for each k 

s.t. e; (n)=f ·c (k) for some m. Therefore there is a recursive m mm m 

function r s.t. E (r(k»=I 'f:. (k). Therefore I is an effect-
m men m moo 

ive embedding. 

The existence of recursive functions >'d and od immediately 

follows from the.definit.ion of E • 121 
00 

Notice that in tne above proof, we have constructed a 

characteristic pair of the inverse limit from a program which 

enumerates the characteristic pairs of the sequence. This 

point can be made explicit. 

E R 
Given an effective sequence <Dmm,(fm,fm» of computable 

projection pairs of effectively given domains, we say it has 

a ~equence ind~ j iff ~j is a recursive function s.t. 

1fl'1fl'~j(m)'1f2'1fl'~j{m) ,are directed indices of fm and f~ 
E 

respectively, and lT2':~j (m) is an acceptable index of Dmm. 

Theorem 2.4.4 

There is a recursive function Ivlim s.t. if j is a sequence 

E R) index of <D m,(f,f > then Iv.lim{j) is an acceptable index of m m m 

the inverse limit (D ,E ) 
00 00 III 

To obtain further affirmative evidence for the notion of 

effective isomorphisms, let us examine if it is invariant 

under the inverse limit construction or not. Notice that unlike 

previously studied domain constructors, the inverse limit 
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construction works not only on domains but also on computable 

projection pairs among them. Therefore we need the following 

notion to be preserved under the construction. 

Definition 2.4.5 

Given two effective sequences <DE:m,(f ,fR» and m m m 

<D~Eb,(f~,f~R» of computable projection pairs, we say that 
e 

they are effectively isomorphic (in symbols <Dcm,(f ,fR»~ m m m 

<DIE~, (f',f ,R » ) iff there ~re recursive functions u~v s.t. m m m 

u(m) is a recursive index of an effective isomorphism i :D +D' m In m 

and v(m) is a recursive index of the adjointj :D'+D ; and m m m 

o 

Theorem 2.4.6 
ERe IRE 2 El 

<Dm,(f ,f »~<D,E:m (f' f' »impliesJim<Dm>=lirn<D' m>. 
m m m m' m' m m <--- III 

proof For the sake of simplicity we will prove this theorem for 
e 

~ rather than ~. Notice that we have assumed D =D', f =f' , 
m m m m 

R R 
and f =f' • Let r rl be recursive functions s.t. e:I=e: 'r 

m m m' m m m m 

and E =E'-r l for every m. By the effective isomorphism of the m m m 

sequences, there are recursive functions u,v s.t. ~ ( )=r 
u m m 

~ ( )=r'_ Let a and b be as in v m m the proof of 2.4~3. Then: 

e: (n);:-f ( ) 'E' ( ) (rl ( ) -b (n» 
~ ~ n m a n a n 

=f' -e: I (r' -ben»~ . a(n)~ a(n} a(n) 
R R 

(-:f =f.' and f =f' ) . 
m m m m 

But there is a recursive Emb s.t. e: (Emb(n,m»=f'i E l (m). 
~ n n 

Since ~v(m)=r~, we have a recursive function r~ s.t.: 

e: (n) =e: I (1" (n»_ 
~ 0> ~ 

Similarly e:~(n)=e:o>(r~(n» for some recursive function r • 
~ 

and 

IZl 
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Notice finally that the proof of 2.4.3 has a further 

implication. Indeed we have constructed I and IR . from the moo moo 
e: R 

effective sequence <D m,(f If ». Thus we have: m m m 

Theorem 2.4.7 

There is a recursive function Ucone s.t. if j is a sequence 

e: R 
index of <D m,(f ,f » then TIl'Ucone(j) is an acceptable index m m In 

of Ad and TI
2

·Ucone(j) is an acceptable index of 5
d

• 

IZJ 

2.5 Adaendum 

It should be noticed that if UJO effectively given domains 

are effectively isomorphic then we can effectivel~{ go from an 

acceptable index of one to that of the other. More formally: 

'i'heorem 2. 5. 1 
e , 

There is a recursive function Trv s.t. if DE=D,e: via a 

conputable isomorphism pair (h, hR) with a airected index < i, j > 
, 

and DE has an acceptable index n, then DIe: has an acce~table 

index Trv(n,i,j). 

'rhe effective isomorphi.sm also has . the follovling effect: 

Theorem 2.5.2 
e I 

There is a recursive function Tr! s.t. if DE=D,E via a 

computable projection pair (h,h
R

) with a directed index < i,j > 

E E ' and xEComp(D ) has a directed index n then h(x)€Comp(D I ) has 

a directed index Trf(n,i,j). IZJ 
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One could ask if our notion of computability is really 

adequate. To answer this question, we exhibit how the convent-

ional notion of computability can be embedded into our theory 

of effectively given domains. 

Definition 2.5.3 

Let N be the following w-algebraic cpo: 

012 

\1/ 
1 

All elements of N are finite and so EN=N. Let us index EN by 

s. t. : 

£(0) =1 
E(n+l)==n n=O, I, 2, •••• o 

It is evident that (N,E) is an effectively given domain 

and all elements of N are computable wrt E. 

The following theorem ensures that the conventional 

notion of computability is embedded into our notion of computa-

bility. 

rrheorem 2.5.4 

(1) For every partial recursive function f:N-+N, there is a 

computable (wrt (E,e») extension f:N+N of f. 

(2) For every function f:N-+N computable wrt (e,E), there is 

a partial recursive function f:N-+N s.t. f is the restriction 

(on both domain and codomain) to N of f. 

proof (1) Let f:N-+N be a partial recursive function. Define 

f:N-+N to be the following function: 



f(x)=if x=l then 1 

Then we have: 

else if f(x)~ then f(x) 

else 1. 

£ (n)ef (£ (m» 
( 

£(n)~ if m=O then £(m) 

else if f(m-l)+ then e:(f(m-l)+l) 

else £(0). 

Therefore £(n)~f(e:(m» is r.e. in nand m. Thus f is a 

computable extension of f. 
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(2) Let f:N~N be computable wrt (~,E). Let f=N+N be the 

following partial function: 

Obviously f is a partial recursive functionand f is a computable 

extension of f to N. 

Lehmann and Smyth [23J proposed the following w-algebraic 

domain N' as a substitute to N' 

ssO " 

sO ~sl"'" , 
o sl/ 
, 1/ 

00 

<# 

n 
Here we regard s 0 as a natural number nEN. Therefore we have: 

N={snolnEN}~N'. The basis of N' in symbols E , is the poset 
N 

obtained from N' by removing its limit point 00. Let us index 

E , by: e:': N+E , s. t. : 
N N 
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E' (2n)=snl 

E' (2n+l)=snO• 
n=O, 1,2, ••. 

It is evident that (N',E') is an effectively given domain 

s • t. N' =Comp ( (N ' , E ' ) ) • 

Il. reasonable 
Can we es6a.blisXesult similar to 2.5.4 for (N',E')? 

Most likely the answer is negative. Indeed we can not show 

reasonalble continuous extension to N' of the number theoretic 

subtraction ~ s.t.: 

n~m=if n~m then n-m else o. ---
This difficulty is essentially due to the fact that, while N! 

has a structure which refl~cts the natural total ordering n~n+l 

of natural numbers, most partial recursive functions are not 

monotone wrt ~. 
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CHAPTER 3: EFFECTIVE DOMZ\INS 

"In the end the program must still be run 
on a machine --- a machine which does not 
possem the benefit of 'abstract' human under­
standing, a machine that must operate with 
finite configurations." 

Dana Scott, 1970 
in Outline of a Mathematical 
Theory of computation. 

For a theory of computation it is at least desirable to 

handle only computable objects. In this chapter, we will 

e: 
observe that (Comp(D ) ,E) behaves very well as a domain. A 

preliminary version of this chapter appeared in Kanda [3,4]. 

3.1 Effective Domains 

An effectively algebraic (ef-algebraic) domairi is a pair 

(X,e:) where X is a poset and e: is a total indexing of Ex s.t.: 

(1) EX has bounded joins. 

(2) If e:(W.) is directed then Ue:(W.)eX. We call such r.e. set 
J J 

W. e:-directed. 
J 

(3) For every XEX, there is a e:-directed r.e. set WX s.t. 

x 
x=!J£ (W ). 

We assume X has:-l •. :' We call e:(or E~) an "ef-algebraicbasis of X • 

Definition 3.1.1 

An ef-algebraic domain (X,e:) is an effective domain iff 

the ef-algebraic basis E~ is an effectiveposet. In this case 

EE is called an effective basis of X. The characteristic pair 
X 

of Ei will be called a characteristic pair of (X,e:). o 
r 

Notice that to within the renaming relation ~, a character-

istic pair uniquely determines an effective domain. Indeed 

we have: 
r 

(EX,£)~(EX,~e:'} iff 
r 

(X,£)~ (X' ,e:'). 
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In case (~.,~.) is a characteristic pair, then we will write 
1 J 

~«i,j» to denote the effective domain determined by (~i,<I>j). 
,... 

We say <i,j >is an acceptable index of ~ «i,j». 

The "directing function" does exist for every effective 

domain. Thus we can introduce the "directed indexing" X£ to 

E: every effective domain as we did for Comp(D ) (See 2.1.2). 

More precisely x£(i)=ue(Wd £ (i». 

By an effectively directed (ef-directed) subset of an 

effective domain x£, we mean a directed subset zcx s.t. Z= 

x (W) for some r.e. set W. We say that this W is X -directed. 
£ e 

If W. is X -dire~tcd then we say that X (W].) has a X -directed J £ £ ---e-----

index j. 

By exactly the same argument as 2.1.11, we have: 

Theorem 3.1.2 

(1) An effective domain is ef-directed complete, i.e. 

every ef-directed subset has a lub. 

(2) There is a recursive function Lub s.t. if X (W.) has a 
£ J 

X -directed lndex j, then X (Lub(j»=ux (W.). 
€ £ £ J 

Notice that effective domains are not necessarily directed 

complete. Indeed RE, the set of all r.e. subsets of N with the 

set theoretical inclusion as a partial ordering is an effective 

domain but not directed complete, where the indexing of the 

basis is Pr. 

Definition 3.1. 3 
, 

Let X£ and X,£ be effective domains. A function f:X~X' 

is fully computable(f-computable) w.r.t. (£,E') iff r(f) is 

r.e. and f is ef-continuous w.r.t. (E,E') i.e. f preserves 

lub's of ef-directed subsets. o 

) 
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3.2 Effective Isomorphisms 

Notice that the DE 
, 

and D,E used in the proof of 2.2.1 are 

not only effectively given domains but also effective domains. 

Therefore we need the notion of effective isomorphisms as a 

criterion for identifying effective domains. 

We define imbeddings and effective isomorphisms among the 

ef-algebraic bases of ef-algebraic domains exactly as we did 

in 2.2.3 for indexed domains. Given ef-algebraic domains XC and 
, ~ 

X,e , and an effective imbedding f:e+E', let f:X+X' be the 

following extension: f(Uc(W»=Uf(c(W» for every c-directed W. 

Notice that 1 is well-defined since f is an effective imbedding. 

We call 5uch 1 an eft~ctive embedding 
, 

from XE' to X,C 

For an effective embedding of ef-algebraic domains, we can 

not expect more than monotonicity. In fact it could not be even 

an embedding though it is called an "effective embedding". But 

effective embeddings of effective domains enjoy much more inter-

esting properties. 

Definition 3.2.1 
, 

Let XE and X,C be effective domains. We say that a funct-

ion f~X+Xt is a fully computable (f-computable) embedding from 

£ to E' iff f is f-computablew.r.t (e,E') and there is a unique 

f-computable 

R 'd fR f ·f=1. X· 

w.r.t. (c,c') map fR:X'+X s.t. f'fR~id , and 
- X 

is called a f-computable projection and (f,fR) is 
, 

called a f-computable projection pair.from Xe to X,e • 0 

Theorem 3.2.2 
, 

Let XC and X,E be effective domains with an effective 

imbedding f:c+c', then the effective embedding f is an 

£-computable embedding. 
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Eroof Obviously f is monotone. We have: 
,.., ,.. 
f(Xe:(i»=f(U£(Wd (i») 

e:: 
=Ufoe:(Wd (i» 

e:: 
=Ue::'°l"f(Wd (i» 

£ 

=~ e:: ' 0 1" f 0 cl> d v 2 (d ( i ) ) (n) 
£ 

=Ue:: ' 0 cl> ..• Cn) 
n t(1)· 

=U£' (W t (i» 

=Ue: ' (W d I (t (i) ) ) 
e: 

=X ,(t (i) ) 0 e:: 

for some recursive function t 

(-:Wt (l) is E'-directed) 

Therefore given any X -directed set W, f(x (W» is an effective-
E E , 

ly directed subset of X,e:: • Furthermore: 

l(UXe::(W»=f(UE(i~WWd (i») 
e:: 

=Ufoe::(i~WWd (i» 
E 

=U{Uf'£(Wd (i»li€W} 
e:: 

=U{l(LJe:(Wd (i»)li~W} 
e> 

=Uf (X (W» 0 

£ 

Therefore f is ef-continuous w.r.t (e::,£'). Let F be a finite 

subset of {e:(i) Ifoe::(i)£.IJE' ~W)} where W is e:'-direct'?do Thu'3 f(F) 

is bounded by Ue::' (W). Therefore Uf(F)€EX'o Since f is an effect­

ive imb()ding UF€EX' Evidently f(UF)=Uf(F)=~U£' (W) 0 Thus UF€ 

{e::(i)lfoe::(i)~Ue::'(W)}o Thus {e::(i)lfoe::(i)CUE'(W)} is directed. 

Furthermore {ilf'e::(i);Ue::' (W)}={ile::'·l"f(i)~e:' (n) for some nEN}o 

Thus this set is r.eo Therefore {e:(i) Ifoe:(i)CUe:' (W)} is ef­

directed subset of E~o Now define lR:X'~x by: 

'fR(LJe::' (W»=U{e::(i) If'e::(i);tJe:' (W)} 

where W is e::'-directed. Thence we have: 

1R.'f(ue::(W»=r
R

(Uf(e:(W») 

=U{e:: (i) Ifoe: (i)CUfoe: (W)} 
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==U£ .(W) . 
- I"ooIR ,...., 

Also f· f (U£ I (W» =f (U{ £ (i) If· £ (i)t:.U£ I (W) }) 

=L1{ f· £ (i) If· E (i)CUe: I (W) }CUe: I (W) • 

It can readily be seen that fR is ef-continuous w.r.t. (£1,£). 
,w 

It is evident that E' (m)Cf(e:(n» is recursive in m and n. 
,..; 

Therefore f is f-computable w.r.t. (£,e: ' ). Also we have: 
~R 

e:(m)Cf ·E'(n). 

~ £(m)CU{£(i) If·£(i)Ce ' (n)}. 

~ e (m)C£ (i) and f· £ (i)r.£ I (n) for some i . 

. ~ £(m)~£(i) and E'.Pf(i)Ce:'(n) for some i. 
~R 

Therefo'::'e E(m)r:f .·E'{n) is r.:e,.' i!'. 111 and n. 

Thus fR is f-computable w.r.t. (e: I ,E). 

By exactly the same argument as in 2.2.6 we have: 

Theorem 3.2.3 
I 

Let XE and x ,E be effective domains s.t. f:X~X' is an 

f-computable embedding then f is an effective embedding. 0 

Despite discouragingly poor character of effective embedd-

ings of ef-algebraic domains, effective isomorphisms of them 

are quite interesting. 

Lemma 3.2.4 

£ E ' Let X and X' be ef-algebraic domains s.t. f:£+e:' is an 
~ ~ ~ 

effective isomorphism. Then Ex==EX' via f and X=X' via f. 

proof Evidently f,f-
l ,1,1-1 are monotone. Since both f and f- 1 

. f f- l 'd d f- l 
are inJ'ect1ve, • =1 E an ·f=id. Thus E =E via f 

• X' EX X X I • 

Now we have 1.1-
1 

(Ue: I (W» =1 (Uf- l
. £ I (W» =U·f.'f- l . £' (W) =U£' (W). 

row-I ~ . _ 
Similarly f ·f(U£(W»=U£(W). Thus X=X ' via f. 
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, 
In case either x

E 
and X,C is an effective domain and 

e e 
Er1E' via f then both of them are effective domains and X~X' 

via f. Notice that an f-computable isomorphism is an isomorph-

ism which is f-computable as well as its adjoint. 

3.3 Effective Completion 

In this section, we will observe that every effective 

domain can be characterized as (Comp(n
E

) ,E) for some effectively 

given domain DE. 

Definition 3.3.1 . 

The effective complet}on of an effective poset (B,E) is 

"'c 
a poset (B ,~) together with a total indexing E:N+T(B) where 

e: is as in 2.1.1, and IiE={E(V1) Iw is E-directedL We will write 

,..., '" e; 
B for B if E is evident from the context. o 

Theorem 3.3.2 (The Effective Completion Theorem I) 

Given an effective poset (B,E) we have: 

(1) T (B)=EB and Ct (B) ,e:)=(B,e:). 

(2) For every XEB, there is a E-directed r.e. set W
X 

s.t.: 

- x x 
X=UEn'l )=LJT·E(W). 

( 3) (B , E ) = (Comp (B , :: I , ~) • 

(4) (B, El is an effective domain. 

proof (1) {t (B) ,d is evidently a renaming of (B, El. For t (B) = 

Eg notice that T(B)=EB 
"'E -and B cB. 

(2) x={E(i) liEW} for some E-directed r.e. set W. Let J =T(X)= x 

{T.E(i) liEW}. Since T(B)= B, W is E-directed. Also we have: 
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{3} By {2} we have B£~Comp CB,£"}. But by· the definition of BC, 

- - "'e: Comp {B , e:).=.B • 

( 4) By (1) and ( 2) • !Zl 

Theorem 3.3.3 (The Effective Completion Theorem 11) 

Let (X,e:) be an effective domain. Then (Ex,e:) is an 
,.., 

effective poset and (EX'c)={X,c). 

-proof D fine O:X~Ex by e(x)={eEExlefx}~ Evidently e is an iso-

'" 
morphism and e·e:=e:. Therefore (Ex,e:)=(X,e:). 0 

The following Corollary immediately follows from 3.3.2 

and 3.3.3: 

C.')rollary 3.3. 4 ~The Chara..::leri zaticm '_'heorem) 

An ef-algebraic domain is an effective domain iff it is 

the effective completion of an effective poset iff it is 

(Comp{De:),e:) for some effectively given domain De:. 

Notice that we have observed that effective posets are 

exactly the effective bases of effective(ly given) domains. 

We can make this more explicit as follows: 

~heorem 3.3.5 (The Acceptable Indexing Theorem) 

.~ (i) = ~ (i) = C omp ("f (i » 
,...,,~t'Oo,I~ 

where ~(i) is the effective completion of ~(i) • 

.. 

* This e is well-defined because e:(i)cx=Ue:(Wx ) iff e:(i)Ce:(j) 

for some jEwX;since c{i) is compact. 
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3.4 Domain Cons~ructors 

£ £' , 
Let X and X' be effective domains. He define X£xX'£ 

, 
and X£ +x, E by: 

x£xx,£'=(xxX,)£x c ' • 

. £ --vlhere £x£' and £+e:' are. as before. By 3.3.5 X =comp(Ex,e:). 

- - --- - - e: - C' ' C F ' But evidently Comp(Ex,e:) xComp(Bx ' ,E' )=comp(Ex EX')' 'rhus x'xx' . 

is an effective domain. Similarly xe:+x,e:' is an effective 

domain. 

The problem of functlon space is not so straightforvlard 

because effective' domains are not necessarily cpo's. 

Definition 3.4.1 
, , 

Let x£ and x,£ be effective domains. Define (XE+ X,e: ) 

(e:+e: ' ) to be (X+X') _ where (X+X') is t he set of all f-computable 

(w.r.t. (e:,e:'» functions vlith the pointvlise ordering, and 

(E->E') is the follOl..,ing total indexing of E (x+X' ) : 

(e:+e:') (n)= if o(n) has a lub then Uo(n) else _ 

where a(n)~{(£(i),e:(j» l<i,j>EPr(n)} and 

(e,e') (x)= if X:::1e t.hen e' ~ 1. 

Lemma 3.4.2 
, 

Let X£ and x,£ be effective domains. h:X~X' i~ f-

[] 

computable w.r.t (E,E') iff it is the restriction to X=Comp(EE) 
X 

of a function EX+EX' which is computable w.r.t. (E,E'). 

Eroof Necessityi~ trivial. Ne prove sufficiency. Assume h: - -, -e: -e: comp(Ex)+comp(Ex ,) is f-computable vl.r.t. (E',E'). Evidently 

h1T(EX):'r(EX)+EX' is monotone. Thus IJIh:EX+EX' s.t. IJIh(U7(~7»= 

Uh ;; 0·1) '. for aJ,l "£'-directed \';, is the unique continuous extens­

ion of h1 T (EX)' Since h is f-computable w.r.t. (E,E'), IJI
h 

is 

computable vl.r.t. (-;;,"£").Also IJIh(U£(~'l»=LJh'€(W)=h(U£n\T» for 
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every E-directed W. Notice that the second equality is due to 

the fact that we can effectively go from the effective index-

ing £" to the directed indexing X-a Thus 'l'h is the computable E _ 

ey.t-~nsion of h. 

Thcoren 3.4.3 

Let Xe: imd X, e: I be effective dOIT\ai~s ~ He have: 

(Xc -+ X'EI)=(cOmp([E~+E~:]) ,(£'-10-£']). 

Therefore (XE-+X,e:') is an effective domain. 

--7-7' -e -7' proof Define a:Comp([Ex+Ex,J)-+«Comp(Ex)-+Comp(Ex'» by a(h)= 

-e: h1 Comp{Ex)' Then a 

B (h)='I'h' Evidently 

is an isomorphism with the adj oint i3 s. t. 
r 

a[£-+€']=(€+€'). Therefore up to ~ we have 

established the theorem. 

By 2.1.4, 2.3.3, 3~4.3. and 3.3.5, we immediately have: 

Theorem 3.4.4 

Let P:rood, Sum, and Puna be as in 2.1. 4. Then \'le have: 

(1) ~(i)x~(j)=~(Prod(i,j». 

(2) '(i)+~(j)=~(Sum(i,j». 

(3) (~(i)-+~(j»=~(Func(i,j». 

IZI 

-'; -';' Notice that the directed indexing r;; (£'-+€' J of (Comp[Ex-+Ex' J , 

[7-+7'J) is equi7a1ent to the directed indexing X of (e:-+e:' ) , 
(xe:-+x,e: ) in such a sense as a(r;;(i»=X(i). Therefore from 

2.1.7 and 2.1.9 we immediately have: 

Lemma 3.4.5 

(1) Every f-computab1e function maps recursive1y in directed 

indices. Indeed we have: 

XE;(i) (Apply'(i,j,k,m»=x(E;(i)-+E;(j» (k) (XF;(i) (m». 

(2) Given· effective domains Xe: and X' e:', an ef-continl'01:!.s func-' 

tion X-+X' which maps recursive1y in directed indic~s is an 
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f-computable function v!.r.t. (e,c'). 

(3) The composition of f-computable function is recursive in 

directed indice5 uniformly in the ranges and domains of the 

functions to be composed. I7.l 

!2)-3.4.5 immediately implies that the composition of hJO 

effective embeddings is again an effective embedding for we 

have 3.2.2 and 3.2.3. 

We can introduce the recursive indices of effective em­

heddings of effective domains as we did for effedtively given 

domains. Remember that in 3.2.2 and 3.2.3, vle have estabilish­

ed the equivalence of effective embeddings and f-computable 

embeddings ·of effective domains. Now with directed indexings 

for effective domains, by exactly the same arguments as in 

2.2.7, we can establish the "effective" equivalence of 

effective ernbeddings and f-computable embeddlngs. Indeed 

We have: 

Lemma 3.4.6 

Let Rd, De, ard Dp be as in 2.2.7. Then we have: 

(1) If i and j are directed indices of an f-computable embedd­

ing fE(~{k)~~{m» and the adjoint gE(~(m)+~(k» respectively 

then Rd(i,j,k,m) is a recursive index of f. 

(2) If i is a recursive index of an effective embedding f( 

(~(j)+~(k», then De(i,j,k) is a directed index of f and 

Dp(i,j,k) is a directed index of its adjoint. 

It is obvious that we have similar results to 2.5.1 and 

2.5.2 for effective domains. 

I7.l 
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3.5 Effective Inverse Limitss 

We can characterize the effectiveness of w-sequences of 

f-computable projection pairs of effective domains as in 2.4.1 

and 2.4.2. Even though an w-sequence of f-computable project-

ion pairs is effective, the inverse limit construction gives 

us a poset which is not countable. Therefore we need a notion 

of "effective" inverse limits which will cut down the cardinal 

of the limits to ~w. 

Definition 3.5.1 

The effective inverse limit of an effective sequence 

<X£m,(f ,fR» of i-computable projection pairs of effective 
m m m . 

. domains iE: a pair (X ,E )where X is a poset {<x >Ix =g (x +1)' 
00 00 00 m mmm 

there is a recursive function q s.t. q(rn) is a directed index 

of x } 
ID 

with the coordinatewise ordering, and e: is defined as 
"" 

in section 4 of capter 2. We will write ef-limeXEm,(f fR» 
~ m rn, m 

or ef-lim<X > for (X ,E ). 
~rn "" "" 

Evidently ef~irn<X£m,(f ,fR»is 
m m m 

an ef-algebraic domain. 

Theorem 3. 5.2. 

Let <~m,(f ,f
R

» be an effective sequence, then the m m m 

effective inverse limit of it is an effective domain. 

1 f l ' E R -"E € Eroof Evident y e 'P".c2-.!!! <Xmm, (fm,fm) >=ef-,lim<Comp(EXm) ni, 
m 

(f ,fR». Thus it is sufficient to show: m m _ _ 

o 

ef-~<comp(E~m)Em,(fm,f~»=(COmp~lim<E~m, (~f '~fR») ,;",,) 
-In m m m 

\<lhere 'I' f 
m 

is the unique com)utable extension of f • To simpli­
m 

fy notations we will write 7 for m 

<comp(E~m)£m,(fm,f:». There is a 
m 

'I'f • Let d=<d >€ef-lim 
m m-<--

recursive function q s.t. 

d =x- (q (m) ). Also d=L]f (d). Notice that f =f jComp (Ex£m) • m Em m moo m moo m 
m 
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Also by 2.4.3 there is a recursive funct.ion Ad s.t. Ad(m) is 

a directed index of f • Therefore \tIe have: mOo) 

f (d) =f Cd) moo m moo m 

=(r;[- - ](Ad(m»(r;- (q(m» 
£ 4£ £ m ~ m 

=~ (t(m» for some recursive t. 
E: _ 00 

-c --R 
Thus dEComp <.t1im<Exm, (fm' fm) » • 

-:::E: --R conversely let ~c=<crn>ECompVim<E~ , (fm,fm) ». By the 
m 

computability of I!o,' '\tIe hilve: cm=f!oo(c)ECOmp(E~m~. Therefore 
m 

c =fR(c +1) for every m. m m m 
By 2.4.3. there is a recursive od s.t. 

o d (m) is a direct~d index 
-R R -R -£ of f • Therefore f =f 1Comp(E m)= moo m"" moo X 

Thus \'le have: 

-R R c =f (c)=f (c) m meo moo 

=X(€" 4£ ] (0 d (m) ) (c) 
(l() m 

=X[- -] (8 d(m» (X- (k» 
€: 4e; E: 

00 m (l() 

=x- (g(m» for some recursive function g. 
E 

00 

. 
where -:;-==x- (k). Therefore ,,,e have; 

£ 
(l() 

e 

m 

The invariance of ~ under the domain constructors x,+,~ 

and the effective inverse limits can be checked by almost the 

same arguments as in the previous chapter. 

IZI 

AlsO notice that exactly the same recursive function IvZim 

as in 2.4.4 establishes the same theorem for effective domains. 

Furthermore the same recursive function Uaone establishes the same 

theorem as 2.4.7 for effective domains. 
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CHAPTER 4: EFF'ECTIV1~NESS IN SFP OBJECTS 

In 1.3, we have observed that the class of SFP objects 

properly contains that of w-algebraic domains. In this chapter 

we will establish a class of effectively given SFP objects 

which properly contains that of effectively given domains. 

This generalization has a significance. Our intuitive under­

standing of computability requires every finite object to be 

computable in some suitable sense. Therefore every finite cpo 

should be effectively given by some suitable effective indexing. 

But this is not the case in the theory of effectively given 

domains , because most of the finite cpo's are not bounded 

complete. Remember that every finite cpo is an SPP object. 

Therefore SFP is a more appropriate class on \vhich effectiveness 

should be studied. Effectiveness arguments for SPP objects were 

predicted as routine extensions of those for effectively given 

uoraains by several people, but as we TIli1l observe later, it 

turned out to be a far from routine extension and to involve 

substantial developments. 

4.1 Effectively Given SPP Objects 

Since SFP objects can be characterized as w-algebraic 

cpo's satisfying the SFP condition on bases, the following 

definition is natural. 

Definition 4.1.1 

(1) An indexed SFP object is a pair (D,E) where D is an SPP 

object and €:N~ED is a total indexing. E is said to be effective 

iff there is a pair (c,d) of recursive predicates (called 

the characteristic pair) s.t. 



o(x,m) iff Card(UE (c(fs(x»)=m 
D 

d(k,x) iff E(k)EUE (E(fs(x») 
D ' • 

4.2 

(2) An indexed SFP object (O,E) is effectively given iff E is 

effective. E~ will be called the effective basis of DE. 

(3) Given an effectively given SFP object DE, X€O is computable 

w.r.t. E (or computable in DE) iff for some r.e. set W, c(W) is 

directed and x=Uc(W). We say that an r.e. set W is c-directed 

if E(W) is directed. The set of all computable elements of 

DE will be denoted by Comp(DE). 

• (4) Given effectively given SFP objects Dc and O,e , a 

continuous function f:D-tD' is computable w.r.t. (E,E') iff 

r(f)={<n,m>le' (m)Cr·t:I,n)} is r.e. 

As for effectively given domains, to within the renaming 
r 

relation ~, a characteristic pair uniquely determines an effect-

ively given SFP object. If <~. ,~.> is a characteristic pair, we 
~ J 

will write p«i,j» to denote the effectively given SFP object 

determined by this' characteristic pair. Also we say that ~«i,j» 

has an acceptable index <i,j>. 

Notice that if DE is an effectively given SFP object, then 

the predicate "Card(UE* (c(f (x»)=m" and "c(k)eU* (c(f (xi))" 
s E S D 0 

are recursive in (x,m) and (k,x) respectively. 

Lemma 4.1.2 There is a recursive function C-onv s.t. if n is an 

acceptable ir.uex of an effectivel~ given domain then Conv(n) is 

an acce~table index of it as an effectively given SFP object. 

Eroof Let De: be an effectively gi ven domain wi th the character:­

istic pair (b~Z). Card(UE (e:(fs(x»)=m>o iff m=l. And indeed 
D 

m=l iff c(fs(x» is bounded iff b(x) is true. 



Thus c (x,m)<~ if m>l then 0 else m""l & b (x) • 

Thus a is a recursive predicate. Also we have: 

d(k,x)<:> e(k)~U (e(f (x» 
EO s 

~ e: (k) =Uc (f (x» 
s 

~ Z (k ,x) . 

Thus d is a recursive predicate. 

4.3 

We have an alternative characterization of the effective 

bases of SFP objects. In fact f:N~ED is effective iff there are 

recursive [unctions rand s s.t.: 

r (m,n) ~ £: (m)=e: (n), 

Lemma 4.1.3 

For every-effectively given SFP object De there is a 

recursive function, called the directing function, d :s.t. for 
---------- e: 

every jEN, Wd (j) is e:-directed and if Wj is already £:-directed 
e: 

thenUe:(Wj)=Ue(Wd (j»' 
e: 

proof e(f (x» bounded iff Card(u (e:(f (x»}»O. Also 
s EO s _ 

£!k)=Ue(fs(X» iff Card(UE (e:(f
s

(x»»=l and e:(k)EU
E 

(£:(f (x»). 
o '0 s 

Thus the same proof as for 2.1.2 establishes this lemma. In fact 

this de: 1s the same as in 2.1.2. 121 

By virtue of the above lemma, we can introduce a total 

indexing called the directed indexing to Comp(o£) for every 

e ' 
effectively given SFP object 0 . If x=Ue:(Wd (j» we say that x 

e 
has a directed index j and denote it by x=~ (j). Notice that 

e: 

this indexing coincied with 'the ~e for effectively given 

domains in case DE is an effectively given domain. 
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By exactly the same arguments, ·we have the same results 

as 2.1.9 and 2.1.11 for effectively given SFP objects. Also 

th~ composition of computable functions is recursive in graph 

indicies. 

4.2 Effective Embeddings& Effective Isomorphism~ 

Since every effectively given domain is an effectively 

given SFP objeet, the theorem 2.2.1 call for effective em-

beddings and effective isomorphisms for effectively given 

SFP objects. 

Definiticn 4.2.1 

e: £' 
(1) Let D and D' be indexed SFP objects. A function f:ED+E

D
, 

is an effective imbedding from e: to e:' (in symbols f:e:+e:') iff. 

1. . f is an imbcdci.ing from ED to E
D

" 

2. There is a recursive function r
f 

s.t. f'£=e:"r
f

• 

Remember It ir.lbecici.ings" are defined in 1.3.13. 

, 
(2) Let.De: and D,e: be indexed SFP objects. We say that they are 

effectively isomorphic 
E:x, e:' e 

(in symbols D =D' or e:~e:') iff there 

exists an effective imbedding f:£+e:' s.t. f- l is also an effect-

ive imbedding from e:' to e:. a 
It is quite clear that 4.2.1 coincides with 2.2.3 whenever 

, 
DE: and D,E: are effectively given domains. 

As for effectively given domains, we can define effective 

embeddings to be the unique continuous extensions of effective 

imbeddings. Also a computable embedding is an embedding which is 

computable as well as its adjoint, which is called a computable 
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]2!ojection. A computable projection ~'1ir is a pair of a com~.,ut-

able embedding and its adjoint. Evidently all of these notions 

coincide with 2.2.5 whenever we are considering effectively 

given domains. 

Theorem 4.2.2 
, 

(1) Let DC and D'c be indexed SFP objec~ ,and f:ED+E
D

, be 

an effective imbedding. Then the continuous extension f of f 

to D is a continuous embedding with the adjoint given by: 

-1 -
g(y)=U{eEEDlf(e)~y}. Furthermore f :g1f(ED). 

, 
(2) In case DC and D'c are effectively given SFP objects, f 

is computable w.;r.t. (E,C') and g is computable w.r.t. (c',d. 

c c' (3) Le~ D and D' be effectively given SFP oDjec~s s.t. f:D+D' 

is a computable embedding, then f is an effective embedding 

from e: to e:'. 

proof Similarly to the proofs of 2.2.4 and 2.2.6. IZI 

Note that 4.2.2 irrmediately implies that the class of 

effective embeddings is closed under composition for the 

class of computable maps is closed under it. 

e , 
It is quite obvious that if D£~D'c and either of them 

is un effectively given SFP object then both of them are, 

c • e: ' and Comp(D )~Ccmp(D' ). 

The coincidence of Bffective embeddings and computable 

embeddings is "effective". 

Theorem 4~2.3 

(1) There is a recursive function Rg s.t. if i and j are graph 

i.ndices of a computable embedding f:p(k)+p(m) and its adjoint 

fR:p(m)+p(k) respectively, then Rg(i,j,k,m) is a recursive 

index of f. 
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(2) There are recursive functions Ge,Gp s.t. if i is a recurs-

ive index of an effective embedding f:p(j)+p(k) then Ge(i,j,k) 

is a graph index of f and Gp(i,j,k) is a graph index of the 

R - -adjoint f :p(k)+p(j). 

Notice that at this moment, we can not make 4.2.3 as in 

2.2.7 because we do not know if the function spaces of effect-

ively given SFP objects are effectively given or not yet. But 

4.2.3 is a generalization of 2.2.7 since wc can effectively 

go back and forth among directed indexing and graph indexing 

in effectively given domains. 

Definition 4.3.1 

A finitary poset (E,~) together with a total indexing 

e:N+E is called an indexed finitary poset. An indexed finitary 

poset (E,e) is an effective finitary poset iff E is effectj.ve 

in such a sense that it has a characteristic pair. By the 

(algerraic) c0TI121etion of an indexed poset (E,e), we mean an 

indexed SFP object (E,€") where E is the algebraic completion 

of E and €":N+T(E) is defined by: €"(n)~T·E(n) where T is the 

canonical map. from E to E. 

Theorem 4.3.2 

(1) Let (E,e) be an effective finitary poset. Then the complet­

ion of it is an effectively given SFP object. 

(2) Given an effective~y given SFP object DE, (ED,c) is an 

effective finitary poset and (D,e)=(ED'~). 

(3) An indexed SFP object is an effectively given SFP object 

iff it is the completion of some effective finitary poset. 0 
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The above theorem indicates that the effective bases of 

effectively given SFP objects are exactly effective finitary 

posets. We will make this point more explicit. To within the 
r 

renaming relation ~, i.e. having the sume characteristic pair, 

we can introduce an acceptable indexing of the class of 

effective finitary posets. If (~. ,~.) is the characteristic 
]. J 

pair of an effective fini tary poset EE:, then '\tIe say' that Ee: 

has an acceptable index <i,j> and denote it by EE:=p «i,j». 

Nmv let p «i,j» denote the completion of p «i,j». Then: 

Theorem 4.3.3 (The Acceptable Indexing Theorem) 

Therefore by virtue of 4.3.3, 'VIC can say that p«i,j» 

is the effective basis of p«i,j». 

4.4 Effectively Given SFP Objects as Effective Sequences 

Remember that SFP objects have a characterization in 

terms of w-sequences of continuous projection pairs of finite 

cpo's. In this section, we will obtain an effective version 

of this. 

R 
Let <D~m,(fm,fm» be an w-sequence of computable project-

ion pairs of effectively given SFP objects. If there, is a 

recursive function q :N.+N s.t 'ITl.q (m) is a recursive index of fro 

'and 'IT 2.q (m) is an acceptable index of D~m, then we say that 

this sequence is effective. Obviously this sequence is effect-

ive iff there is a recursive function q , 

'IT 2· 'IT 1 .q , (m) 

'IT2 oq '(m) is 

are graph indices of f and m 
an acceptable inde~{ of D Em. 

m 

s. t. 'IT 1 0 'IT loq '(m) and 

R 
fm respectively and 
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If an effectively given DFP o;-;j ect is Cl. finite cpo, 

then we call it an effcctivelygivenfinite cpo. 

Theorem 4.4.1 

An indexed SFP object De: is an effectively given SFP 

e R object iff there is an effective sequence <D m,(f ,f » of m m m 

computable projection pairs of finite cpo's s.t.: 
e 
N 

(D ,d = (D ,e: ). 
co co 

Eroof (Sufficiency) By the same arguments as in 2.4.3, we can 

establish that £"" is an effective basis of Dco. Thus (Dco,e:co ) 

is an effectively given SFP object. 

(Necessity) Assum~ De: is an effectively given SFP object. He 

will construct a~ effective sequence of effectively given finite 

cpo's 'V1hose inverse limit is effectively isomorphic to De:. 

First notice that for every effective basis e:N+E
D

, there is 
e 

an effective basis £' :N+ED s.t. £!t£, and £' (0)=1. Therefore 

without loss of gener~lity we can assume £ (0) = I. I~e t < D. , . 
- m 

(f ,fR» be the Plotkin 
m m 

can'oni cal sequence of D \'1. r. t. e:. 

We will introduce an effective indexing e: of Dm and show that 
e m 

is an effective indexing s.t.e: ~e: • Define by: £0<) co e:m 

EmU)= if i:::;m then e: (i) else 

if {c (0), •• ,£ (i-l)}=IcD then m m . m 

£(~k.[e(k)E~m~c(k)' I) else 

if I=D then £(0). m-

Notice that there is a recursive function p s.t. £m(i)=e:(p(i,m». 

Evidently De:m is an effectively given finite cpo. Also f :D +D 
m m m m+l 

is an effective imbedding (and an effective embedding at the 

same time). Indeed fm·e:m=em+l • Effectiveness of the sequence 

<De: ,(f ,f
R

» is obvious. Therefore by the sufficiency, (D ,e: ) m mm co co 
e 

is an effectively given SFP object. Now we prove DEco~D£. 
co 
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Rcmem}:,er ED ~ED via n as in p.1.23. First we vlil1 shm'l 
Q) 

R 
that there is a recursive function 2':N-+N s.t. nO£=E: co °2'. 

Notice that E (n) ~ Dm is decidable thus there is a recursive 

function h:N-+N s.t. h(n)=pk.[f;(n)€DkJ. Also there is a recur­

sive function i:N-+N s.t. i(n)=Pk.[Eh(n) (k}=£(n}J. Thus 

\\Te have E « i (n) I h (n) » =nR. f.: (n) • 
00 

Thus An.c(i(n),lz{n» is such 2'. 

conversely we shall show the existence of a recursive function 

2" s.t. no£ =f.: 0 2' , • Remember that there are recursive functions 
co 

a,b:N-+N s.t. £ (n)=f ( ).£ () (b(n}). Define 2" by: 
00 anoo an 

I"(n}= if b(n}~a(n)then ben) else 

if J={ f.: ( ) (0) I •• " ( ) (n-I) }-::D ( ). ther. a n a n a n 

pk.[£(k)EDa(n)&£{k)IJJ else 

if J=D ( ) then O. an -

Since D =U~ ({E(O) , •• ,f.:{m)}}, 2" is recursive. Evidently 2" 
m D 

IZl 

Definition 4.4.2 

Given a finite cpo D, we say that an effective indexing 

£:N+D is normalized iff £ is under the following constraint: 

£(0)=1 

£(i)#E(j) if iij ~ i,j~Card{D) 

£(i)=E{O) if i>Card{D). 

£ 
If £ is normalized, we call D a normalized effectively given 

finite cpo. o 

Normalized effectively given finite cpo's enjoy interest­

ing properties some of which vlil1 be listed below. 



4.10 

Lemma 4.4.3 

(1) Given a normalized effectively given finte cpo DE, wc can 

effectively obtain Card(D). More precisely there is a recursive 

function Card s.t. if m is an acceptable index of DE, then 

Card(D)=Cal1 d(rn) • 
, 

(2) Let DE and D,E be normalized effectively given finite cpo's 

s.t. f:D-+D' is an effective embedding from c to E'. Then for 

every x€D', we can decide x€f(D). 

(3) Let f be an effective imbedding from a normalized effect­

ively given finite cpo nE to another D,E', the adjoint fR:D'-+D 

maps effectively in directed indices , i.e. fR. E, (n)=E'PfR(n) 

fnr 50m9 recursive flm ctio"1 V fR. 

(4) There exists a recursive function Apr s.t. if k is a recur­

sive index of an effective embedding f:p{i)-~p(j) of effectlve-

ly given finite cpo's then PfR=~A 
if P r ( i , j , J:: ) 

Eroof (1) Card(D)=llk.[E(k)=E(k+1)]. 

(2)E' (n)€f(D) iff E' (n)=e:'Pf(m) for some ms;Card(D). 

(3) fR(x')=u{e€Dlf(e)~x'}. Then: 

fR.e:' (n)=U{E(m) lE' (Pf(m»E,E' (n)} 

=U{E(m) lE' (Pf(m»t:E' (n)· & ms;Card(D)} 

=E'PfR(n) for some recursive VfR. 

(4) Immediatp. from the construction in t~e proof of (3). 0 

In the proof of 4.4.1, we constructed an effective sequ­

ence of computable projection pairs of effectively given finite 

cpo's, for every effectively given SFP object. t'Je vlill present 

a normalized version of this. Given an effectively given SFP 

object De:, let <Dm ,(fm,f~» be the Plotkin· canonical 

seqll~nce "-11. r. t. E. Define the fo11ovling indexing € for each D : 
m m 



~ (0)=e:(0)=1 m -

E (i)= if I={~ (O), •• ,~ (i-l)}cD then m -- m m m 

e(~k.[£(k)ED & e(k)/-I]) elne 
m 

if I=Dm then E(O). 

4.11 

Obviously Em is normalized and c~~e:~e:oo. We will call the effect­

i ve sequence <D~llJl' (fm' f~) > the canonical effective sequence of 

DC and call € the canonical 
00 

e: effective basis of D • 

Corollary 4.4.4 

An indexed SFP object De: is an effectively given SFP object 

iff there is an effective sequence <De:m,(f ,fR» of computable m m m 

projection pairs 6f effectively given normalized finite cpo's 
e 

s.t. De:~(D~,e:oo)·· 

With 4.4.1 and 4.4.4, we can now present an alternative 

characterization of computable elements in effectively given 

SFP objects. 

Theorem 4.4.5 

(1) Let <De:m,(f ,f » be an effective sequence of computable m m m 

projecticn pairs of finite cpo's. Then xEComp(lim<D~m» iff 

there is a recursive function a :N+N s.t. a (m) is a directed x x 
R 

index of f (x)=x. moo m 

(2) Let De: be an effectively given SFP object with the canonic-

e: R € al effective sequence <D m,(f ,f )>, then xEComp(D ) iff there m m m 

is a recursive function a :N+N s.t. a (m) is a directed index x x 

of fR (x)=x • moo m 

proof Cl) By almost the same arguments as in the proof of 3.5.2. 

(2) Immediate from (1). 0 

It is at least worthwhile to note that the equivalence in 

4.4.5 is "effective". 
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4.5 Domain Constructors 

I 

Let DE and DIE be effectively given SFP objects. Define 
I I 

indexed SFP objects DExDIE , and D£+DIE similarly to 2.1.3. 

We will observe that they are effectively given. 

Lemma 4.5.1 

Let D and D' be CpOIS. 

(1) For every XcDxD ' , (x,y) EUDxDI (X) iff x€UD (1T l (X» & 

Y€UD , ( 1T 2 (X». 

(2) For every XcD+D': 

(O,u) €U
D

+
D

, (X) iff r l (X) ={O} and u€U
D 

(r2 (X» 

(l,u')€UD+D, (X) iff rl(X)={l} and u'€uD (r 2 (x» 

v-lhere r.{{u,b»=1T.{(a,b» and rl..{{l})= ft1. 
1. 1. 

Theorem 4.5.2 
, 

Let DE and D,e: be effectively given SFP objects, then so 
, I 

are D£xD'E and DE+D'E • 

proof It is sufficiffilt to show that e:xcl and e:+E' are effective 

indexings. First we have: 

=UE ({E'n:(xl),··,E·1Tl(xn)})xUE ({e:'·1T2(xl),··,E'·1T2(x )}). 
D '1 D' n 

The last line is due to 4.5.1. Therefore e:Xe: 1 is an effective 

indexing. For £+EI, we have three cases to be considered. 

(Case 1) X={!E+£' (Xl) , •• , e:+€' (xn )} contains no element from 

ED and E ,. In this case UE +E (X)={l}. 
D D D' 

(Case 2) X contains no element.from ED,. In this case X= 

{(o,£(kl», •• ,(O,E(kn »} where X j =2k j +l (1:;;jsn). Thus by 4.5.1 

we have: 

U E + E ( X) = { (O, u) I UE U E {e: (k 1) , •• , £ (k )}. 
D D' . D n 



4.13 

(Case 3) X={E+E'(x1 ),··, £'h'(xn )} ={(l,E'(kl), .. ,(l,c'(kn »} 

where x.=2k. (lsj~n). By 4.5.1 we have: 
J J 

Under any of these cases, Card(UE +E (X»=m is recursive in 
D D' 

x 1 ""xn and ID. Also E+C' (k)ePED+ED' (X) is recursive in xl, •• ,xn ' 

and k. Thus E+C' is an effective indexing. 0 
, 

Notice that in case DE and D,E are effectively given 
, , 

finite cpo's then so dre OE+D,E and DExD,E • 

ERE' R i 1 Let <D m,(f ,f » and <D' m,(f' ,f' » be the canon ca m mm m mm 
E E ' sequences of D a,nd D' respectively. It is quite straight-

fonlard to observe that <D~m~D~ z~, (fIDXi~,f~xf~ R) > und 

<DEm+D,E~,(f +f' ,fR+f,R» arc effective sequences of computable 
ID m m m ID m 

projection pairs of effectively given finite cpo's. Indeed 

we have: 

!;. E E' R H = Ilm<D mxD' m,(f xf',f xf' » and 
~- m m m m m m 

e 
,., E E' R R = lim<D m+D' m,ef +f',f +f' ». 
~ m m m m ID m 

Therefore we can provide an alternative proof to 4.5.2. But 

since the proof of 4.5.2 is very simple, there is very little 

point in showing details of this alternative proof. 
, 

Given effectively given SFP objects DE and D,E , define 
, 

an indexed SFP objects [DE~D,E ] by: 

[DE~D,E']=[D~D,][E~~'] 

where [E~E'] is as in 2.1.3. 

In contrast to x and +, the direct attempt to establish 

effectiveness of [E~E'] is not easy at all. Remember that 

this task was not so easy even for the bounded complete case 

(See Eg li and Constable [1] and Rosen and Harkowsky [15]). 
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, 
HO~/leVer it is fairly easy to observe that if DE and D' f.: aH~ 

. , 
"normalized" effectively given finite cpo's, then [D£+D'£ ] is 

an effectively given finite cpo. Thence we can establish t.hc 

closure under + of the class of effectively given SFP objects 

.usinC] 4.4.1. 

Lemma 4.5.3 

£ £' 
Let D and D' be normalized effectively given finite 

cpo's. Then [OE+O,E'] is an effectively given finite cpo. 

proOf It is sufficient to show that [£+E'Jis effective. 

£ E' 
Because D and D' are normalized, we can effectively obtain 

e: e: ' Card(D) and Card(O' ). Furthermore we have: 

D={E (i) ji~Card(Dr.)} 
. ) 

D'={e:' (i) Ii~Card(D' e: )}. 

Oefine a predicate funa by: 

. £ £ ' funa(n)= if P (n}1Card(D )xCard(O' ) then 0 else 
r -

if {(c(i),e:'(j»j<i,j>EP (n)}E[D+O'Jthen 1 
r -

else O. 

Evidently funa is a recursive predicate. Now we introduce a 

partial indexing y of [D+D'J by: for every fE[D+D'J, 

f=y(k) if f';'{(e:(i),£(j»'!<i,j>EP (n)} 
r 

where n is the kth integer satisfying funa(n). It is straight­

fon-lard to observe that y(i)CY'(j) is recursive in 1 and j. 

Since we know an upper bound of the cardinal of [O+D'] , and 

there is an effective way of obtaining k from <i,j> s.t. 

!Zl 

Lemma 4.5.4 

£ £ E' £' 
Let Dl l'02 2 ,Di 1,Di 2 be normalized effectively given 

finite cpo's. Furthermore let U:D1+0
2 

and u':Oi+Di be effect­

ive embeddings from El to E2 and £i to £2 respectively. 



Then (u~u') :[D1+DiJ+[D2+D~J defined by: 

(u+u') (f)==u' .f'uR 

Dl 
f :;;rD' 

u'R( u
R 1l u u' 

D2 7"D' 2 
(u+u') (f) 
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Eroof It is sufficient to show that there is a recursive 

function r(U7U') s.t. (u~u') '[El+EiJ=[E2+£2J'r(u~u')' 

Given neN, we can effectively obtain il, ••• ,im s.t. 
n 

Yl(il)==[El(kl),Ei.(ki)J'··'Yl(im )=[E1(km ),Ei(im )J, where 
n n n 

{<kl,kl'>, ••• ,<k ,k'>l € P (n). Therefore, from il, •• ,i , m m r m 
n n n 

we can effectively obtain nl(n)EN s.t. [El+EiJ(n)=Yl(nl(n». 

BY the effectiveness of the construction, we can regar~ n l 

as a recursive function. Therefore we have: 

Remember that there are recursive functions r , and p r s.t. u u 
R 

u"e:i(m)=e:i'ru' (m) and u ··e:2(m)=El·puR(m). Therefore there 

is a recursive function w:N+N s.t. 

(u+u') ([El+£iJ(n»=u"yl(nl(n» .uR 

=y 2 (w (n) ) • 

Hm'lever we have a recursive function n2 :N+N s. t. 

[£2+ E2 J (n)=Y2(n 2 (n». 

No .... ' take r (u+u' ) (n) =~k. [y 2 (n 2 (k» =y 2 (w (n) ) ]. 

Notice that in the above proof, we have constructed a 

IZI 

recursive function w from ru' and puR. Thence we have const­

ructed r( ') from w. Furthermore p R was constructed from u+u u 

r Via 4.4.3. Therefore we have constructed f u r(u+u') ram 
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l' and l' ,. More precisely there is Cl recursive function fn. 
u u , 

s.t. if i,j,i',j' are accept~ble indicies of D11,D~2,Diel, 
, 

D~£2, and k, m are recursive indicies of u and u' respective-

ly then fn(i,j,k,m) is a recursive index of (u+u'). 

Furthermore it should be noticed that due to the cffect-

iveness of the construction for +, we can effectively obtain 

c e: ' an acceptable index of [D +D' ] from the acceptable indices 
, 

of normalized effectively given finite cpo's D£ and D,E: • 

These observations establish the following theorem: 

Theorem 4.5.5 (The Function Space Theorem I) 

L t D € ( f' fR) d ' £' ( f ' f ' R) h h . 1 e < mm, IT"m > an <Dm m, m' m > e t e canonlca 

£ £' 
effective sequences of D and D' respectively. Then 

£ E' R 
<[Dmm+D~ m], ((fm-+fl ;.) ,(fm+fIh) ) > is an effective sequence of 

computable projection pairs of effectively given finite cpo's. 

Then ~ im<[D~m+D~€~] I «fm+fIh) , (fm +f~) R) > is an effectively 

given SFP object. 

The next theorem ensures that we get the right function 

space. 

Theorem 4.5.6 , 
Let D£ and D'€ be effe~tively given SFP objects with the 

canonical effective sequences <Dcm,(f ,fR» and <D'c~ (f' fIR» m m m m I m' m 

respectively. Let n:ED +ED and n':ED,+ED, be effective iso-
co co 

morphisms. Then g€[D~D'] is computable wrt (£,£') iff ~(g)~ 

€ £:' R comp(lim<[Drnm~D~ m],«frn+f~) ,(fm+f~) ») where ~=~,R.g.~ and 

~ is as in the proof of 1.3.8. 

Proof g is computable wrt (e,e') iff g is computable wrt 

( e: ,c'). 
co co 
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, 
be the cannonica1'effective sequence of Jjm<[ De:m'~D'ElIIJ, 

~- m m 

«f +f'), (f +fm') R) >. Assume there is a recursive function m m m 
" R 1\ R A 

C g s.t. gm=Z;;y .cg=hmoo(g) ltlhere gEr oo • ,'Ne will show that 11> (g)= 
m 

A ' 
~x.Uf' .g (x ) is computable w.r.t. (e: ,E'). In fact 

m moo m m Q) 00 

RA) ) _I 1 f ' • '" ( R • '() R 1\ ) • (g) (EQ)(m -~ noo gn f noo Eoo(m». Thus Eoo n ct (g) (Eoo{m) iff 
1\ R 

e:!(n)~f~oo·gk(fkQ)·Eoo(m» for some kEN. Before we prove further 

we will prove the following lemma: 

Lemma 4.5.7 

There is a recursive function v s.t. fR 'e: =E 'V m moo 00 m m 

whenever <D£m,(f ,fR» is the canonical sequence of D~. m m m 

proof There are r.ecursive functions a,b s.t. £oo{n)= 

f ( ) • £ (. ) (b (n». Therefore we have: a n GO a n 

fR.£ (n)= if m<a(n) then fR ••••• fR{.) 1(£ ( )'b(n» moo 00 m a n - a n 

else if m=a (n) then e: a en) (b (n) ) 

else f l· ... ·f ( ) (E ( ) (ben»~). m- a n a n 

But since f is an effective embedding and 4.4.3 holds we have: 
m 

f~oo'£oo(n)= if m<a{n) then e:m·PfR· ... ·PfR(b(n» 

else if m=a{n) then e:m(b(n» 

else e:m·r f • ... ·r f (ben»~. 
m-l a(n) 

Remember that since <D£m, (f ,fR» is an effe dive sequence, 
m m m 

there is a recursive function q s.t. TIl'q(m) is a recursive 

index of fm and TI 2 'q(m) is an acceptable index of D~m. Let 

Apr be as in 4.4.3, then q':N+N defined by: 

q' (m)=Apr(TI
2

'q (m) ,TI
2
'q (m+l) ,TIl'q (m» 

is recursive and q' (m) is a recursive index of 

Define v by: 
m 

v (n)= if a{n»m then m <jlcp'(m,n) (b(n» 



else if a(n)=m then ben) 

else </> ( )(b(n» -- ep m,n 

4. ] 8 

where ep I (m, n) =A -ep (q I (m) ,A -ep"( ••• , A -ep (q I (a (n) ) , q I (a (n) -1) ) .• ) ) 

and ep (m,n)=A-ep (1f l"<l (m-I) ,A-ep ( •• , (A-ep (1fl·q (a (n) +1) , 

1fl·q(a(n») .. ». 

where A-pp(i,j) is an acceptable index of tJ>i·</>j. Evidently 

vm is recurs i vc and fR • c =£ • v IZI moo co m m· 

Now we resume the proof of 4.5.6. There is a recursive 

function Z s.t. £k(Z(k,m»=f~oo·£oo(m), indeed Z(k,m)=vk(m). 

Also there is a recursive function z s.t. 

because of the definition of C I 
00· Remember 

Thus c~(n)Cfkoo·gk·f~oo·coo(m) iff 

El (n)t:f' ·'Y (i) ·fR ·c (m) for 
00 - kw k km co some iEWd (c (m»" 

Ym x 

But yk(i) (ck(j»=ck(y(k,i,j» for some recursive functil"'n y. 

Therefore there is a recursive function x s.t. 

f' ·Y (i).fR. E (m)=£'(x(k,m». k oo k k 00 

A R 
Thus E~(n)~f~co·gk·fkm·cco(m) is r.e. in n,m,k. 

R f\ 
Thus c!(n)C~ (g) (coo(m» is r.e. in nand m. 

Thus ~R(~ is computable w.r.t. (Eoo'£':)" 

conversely let 9 be computable w.r.t. (£oo;E':'). We will show 
A E Cl R 

that ~(g)EComp~lim<[Dmm+D~ m], «fm+f~) ,(fm+f~) »). Notice 

that ~ (g) =<g (m) > (see 1. 3.3). By virtue of 5.4.5 it is sufficient to 

show that we can,:effectively obtain a procedure which enumerates 
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1\ 
the graph of gem) for every m. Since f~oo is an embedding wc 

have: 

e:1(k)Cg 0e: (n)=fIR.~of 0e: (n) 
m - (m) m moo moo m 

R A fl oe:'(k)Cf l .f' .gof .e: (n). 
moo m - moo moo moo m iff 

Therefore we have the following procedure which enumerates 

the graph of gem): 

enumerate N: 0,1,2, •.••• 

for each n enumerated, enumerate k s.t.: 

R 1\ R 1\ El (k)t:f l ofl • g·f .e: (n)=f' ·fl .goe: (Yf (n». 
00 _ moo moo moo m moo moo 00 

moo 
Since f' .f,Ro~ is Computable we can recursively entU1lerate moo moo 

such k. 

--- for each k ~numerated, if a(k)=m then output (n,b(k» 

where k is enumerated for n. 

Notice that the above procedure is constructed uniformly in Ill. 

Thus we have established the theorem. !Zl 

It must be at least mentioned that the equivalence 

established above is "effective". Indeed we can effectively go 

back and forth among graph indicies of gls and the directed 

indices 
A of cl>(g)'s. 

Theorem 4.5.8 (The FunQ!Jon Space Theorem II) 

e: e:' (1) Let D and D' be effectively given SFP objects with 

the canonical sequences <De:m,(f ,fR» and <Dle:~,(f' ,fIR»~ 
me mm m mm 

e: e:' fJ e: e:' R respectively. Then [D -+D' ] = lim<[D m-+D' m], «f -~f.' ),(f -+£') ) >. 
<:-- m m m m m m , 

Thence [De:-+D,e: ] is an effectively given SFP object. 

€: e:' 
(2) g€Comp([D -+D' ]) iff g is computable w.r.t. (e:,e:'). 

proof (1) ~ is an effective isomorphism. 

(2) By 4.5.7. IZl 
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Theorem 4.5.~ 

There are recursive functions s-Prod 3 s-Sum 3 a-Funa s.t. 

(l) p(i) xp(j} = p(s-Prod(i,j» 

(2) p(i)+p(j) = p(a-Sum(i,j» 

( 3) [p (i) -+; (j )] = ; (s - Fun c (i , j ) ) 

The follovling relations can immediately be observed: 

(1) Conv(Prod(i,j»=s-Prod(Conv(i) ,Conv(j» 

(2) Conv(Sum(i,j»=s-Sum(Conv(i) ,Conv(j» 

(3) Conv (Funa (i,j) )=s-Func(Conv (i) ,Conv (j», 

where i and j are acceptable indicies of effectively given 

SFP objects. 

Lpaces and 
I 

index-' 

. ~ h C n(rD£-+D'£ 1) Tt ~'l ~ th t l.ng .. or eacom.. .. .. •.. can re?v.l. ~! ne seen a ,"e 

can effectively go back and forth between directed indexing 

and graph indexing of computable functions. This allows us to 

have similar results to 2.2.7 for effectively given SFP objects 

in place of 4.2.3. Also it can readily be seen that results 

similar to 2.5.1 and 2.5.2 hold for effectively given SFP objects. 

4.6 Inverse Limits 

Effective sequence of computable projection pairs of 

effectively given SFP objects can be defined as in 2.4.1. Since 

we can effectively go back and forth among recursive indexing and 

directed indexing, we can obtain an alternative characterization 

of effective sequences in terms of directed indices of 

effective embeddings as in 2.4.2. 

By almost the same arguments as in 2.4.3, we have: 
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Theorem 4.6.1 (The Inverse r.l~:,:L t 'rheorem) 

Let <Dl~m,(fm,f~» be an effective sequence of computablc 

projection pairs of effectively given SFP objects. Then: 

(1) lim<DEm,(f ,fR»=(D ,E ) is an effectively given SFP obJ·cct. <---" m m m 00 00 

'(2) f is an cffectlve embedding from E to c • 
lTI"" III "" 

(3) rrhere <1rc recurs! vc functions Ad and IS d s. t. "d (m) and. 

(, d (m) are directed indicies of f and f
m
R respective ly. 0 

meo co 

'Wc have theorems like 2" -1.11 and 2.4.7, for effecti vcly 

given SFP objects.' Furthermore \'/e can define effective isomor-

phisms of effective SQqucnces of computable projection 

pain:; of effect! voly given SFP objects and ShOvl the 

inv':Ir:i,ance of effecti ve isomorphisrn~; under 1imi t constrne'tion. 

4.7 The ,power Domain Construction 

In' this section, we study that the power domain of an 

effectively given SFP object again is an effectively given SFP 

object. 

Definitio~ 4.7.1 

Given an indexed SFP object (D,e), define F(e):N~M(D) and 

F[e:]:N~M[O] by: 

F(e) (n)=e(fs(n» 

F[e:] (n)=[F(e:) (n)] 

where M(D) and M[O] are as in 1.3 between 1.3.15 and 1.3.17. 

(F[OJ,F[e:]) is called the (strong) power domain of (D,e:). We 

write F[Oe:] to denote (F[O],F[e:])· o 
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Lemma 4.7.2 

Let (D,e) be a: normalized effectively given finite cpo. Then 

F[De ] is·an effectively given finite cpo. In fact there is a 

recursive function f-Power s.t. if n is an a~ceptable index 0$ 

(D,e) then f-Power(n) is an acceptable index of F[D£J. 

proof It can readily be seen that there is a recursive function 

Mt s.t. if n is an acceptable index of an effectively given SFP 

object then ~Mt(n) is a recursive predicate satisfying: 

~MZ(n) (x,y)=O ~ e(fs(x»~He(fs(Y»' 

Notice that (M{D)'~M) is a pre-ordering and so [xJ£M/;[Y] iff 

xCMY where == is the canonical equivalence obtained from ~M' Thus 

\le have: 

[e(fs(a»J~M/;[e(fs(b»] 

<====> £ (f s (a) ) ~M f; (f s (b) ) 

... ~. 4>UZ (n) (a,b) =0. 

Since (D,£) is an e fectively given :normalized" finite cpo, 

there is a recursive function C s.~:. C (n)=Card(F[D]). Now pw pw 

we can decide ~M/~ via 4>UZ(n) and we can check if we exhausted 

the whole elements of F[D], for CM/;. check, via C (n). Thur; - pw 

there are: recursive functions hand k s.t. <l>h·(n) and <l>k(n) are 

recursive predicates satisfying: 

4>h(n) (x,y)=O~ Card(UM[D](F[E](fs(x»)=y 

~ k (n) (x, Y) =0 ~ F [ E ~ (x) E U M [ D] (F [ f; ] f f s (y) ) ) • 

Let f-power be a recursive function given by: 

f-Power(n)=<h(n),k(n». 

Lemma .4 • 7 . 3 

There is a recursive function Ppr s.t. if (D,£) and (D',e') 

are normalized effectively given finite cpo's and (P:D~D',pR:D'+D) 



is a computable projection pair with a directed index x then 

([p] ,[pR] ) : [D] -)o[ D'] is a computable proj ection pair with a 

directed index P (x). pr 
proof Let x be a directed index of (p,pR). By the remark after 

4.5.9, p has a recursive index Rd(X) for some recursive function 

Rd' Thus c!>Rd(X) is a recursive function s.t. p,c=c'·c!>Rd(X)· 

Remember [p] ([x])=[p(x)]. Thus we have: 

[p] (F[£] (n) )=[p] ([c (f (n»]) 
. . s 

=[p'£ (f (n»] 
. s 

=[ E: '<P
Rd 

(x) (fs (n) )] 

=F[C'] (<1>a(x) (n» 

wher.e g jg a re~ur~ive function s.t. ~g(x) is 3 ~~cursive frnction 

and fs{c!>g(x) (n»=cI>Rd(X) (fs(n». Thus [p] has a recursive index 

g(x), By the remark after 4.5.9, we have established the lemma. [';J 

Theorem 4.7.4 
I:: R 

Let (D,c) be an effectively given SFP object and <Dmm, (f ,f » m m 

( 
. E: 

be the canonical effective sequence of D,E). Then <F[DmmJ, 

([f ],[fR] » is an effective sequence of computable projection 
m m 

pairs of effectively given finite cpo's. 'rhus }im<F[D~mJ, 

([f ],[fR] » is an effectively giv~n SFP object. Furthermore: 
m In e 

F[Dc ] ~ lim<F[Dcm],([f ],[fR]». 
<- m ID m 

Also there is a recursive function Power s.t. if n is an 

acceptable index of an effectively given SFP object then Power(n) 

is an acceptable index of the power domain of it. 

ER· 
proof By 4.7.2 and 4.7.3, <F[Dmm], ([fm] [fm]» is an effective 

sequence of computable projection pairs of effectively given 

finite cpo's. Thus by 4.4.1, lim<F[DEm], ([f ],[fR]» is an <--- ID m m 
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effectively given SFP object. The basis of F[lim<DEm, (f ,fR»] 
m m m 

is B=[ M (Do:»] =[~ f mco (M (Om) )] while the basis of }im<F [ Dm] , 

([ fm] n f~» is B'=~[ fmoo ] [M(Dm)] . It can readily be seen that 

h:B~B' defined by: 

h ([ f mco (Fm)] ) =[ fmoo] [Fm] 

where F cM(D ),~is an isomorphism. Since we have: m- m 

F [ e: 0:>] ( f s (x) ) =[ e: 0:> (f s (x) ) ] 

=[fmco(Em(fs(x»)] 

where m=~k.[Ek(fs(x»~Dk]' we can readily see that h is an 

effective isomorphism. Thus we have: 
e 

E ru • E R 
F[D ]=F[}l.m<Dnf1 , (fm,fm»] 

e -
'}:lim<F [nE m). (ef J, [fR] ) >. 
~ m m m 

Notice that we can effectively obtain a sequence index of 

<F[D~m], ([fm],[f!]» from an acceptable index n of (D,E). 

Therefore by the remarks after 4.5.9 and 4.6.1, we have a 

recursive function Power s.t. Power(n) is an acceptable index 

IZI 

Theorem 4.7.5 _ ... --.. - -

Given two effectively given SFP objects (D,E) and (D',E'), 

for" every computable function f:D+D', let r:F(DE)~F(D'E') be 

defined" by f(X)=f(X)={f(x) \XEX}. Then i=[f] is a computable 

function. Indeed there is a recursive function Ext s.t. if n 
, 

is a directed index of a computable function f:DE~D,E and 
, 

i and j are acceptable indices of DE and D,e: respectively, 

then Ext(i,j,n) is a directed index of t. 



proo f We have: 

< 

< 
~ 

,. 
> 
> 

F[ e: '] (x)£ M 1/=:::£ (F[ e: ] (y) ) 

re: I (fs (x» J£M,/:::[f (e: (fs (y») ] 

e: I (fs (x) )EMf (e: (fs (y») 

. 'tjf ZEN. [ e: I (f s ( z) ) CM' t. I (f s (x» im p l.1. e s 
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E' (fa (z) )~M' f· e: (fs (y» J. 

< > For all z s. t. E I (f ( z) ) CM I E I (f (x», s - s 

E' (fs (z) reM' f· E (fs (y». 

Notice that there is a .recursive function r s. t. 

f (r (x» = { ZEN I e: I (f ( z) ) CM' E I (f ( x) ) } • s s - s 

Furthermore we have: 

e: I (f 5 ( z) ) ~M If· e: (f s (y» 

< ;>" a E f s (z) • 3b e f s (y) . e: I (a) 1: f • e: (b) , & 

'V'bEfs (Y) .3a e-f s (z). e: I (a)~fo e: (b) • 

Since f is computable, E' (a)~f·e:(b) is r.e. in a and b. Thus 

E' (fs(z»CM,foE(fs(Y» is r.e. in z and Yo Notice that the above 

argument involves a recursive generation of a set {<z,y>1 

E'(fS(Z»CM,foE(fS(Y»} from that of {<a,b>Ie:'(a)~f.e:(b)}. 

Thus we can effectively obtain a graph index of ~ from 

that of f. 

The next theorem states that the power domain constructor 

preserves the effective isomorphism. 

III 
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Theorem 4.7.6 
, 

Let DE: and D,E: be effectively given SFP objects s.t. 
e , 

DE:~D,E: . Then we have: 
e , 

F[DEJ ~ F[D,E: J. 

. R 
proof Let (h:D+D',h :0'+0) be a computable isomorphism pair. 

It can readily be seen that (~,~R) is an isomophism pair from 

F[D] to F[D']. By the pr.eviol1S theorem (~,fi.R) is a computable 

isomorphism pair. 

By almost the same arguments as in 2.2.8, we. can observe 

IZI 

that x,+,+ preserve effective isomorphism •. Thus, with 4.7.6, 
, 

we can identify DE: and D,e if they are effectively isomorphic. 

I~ ~heory, we should ba able to prove t~at the power ef 

an effectively given SFP object is again an effectively given 

SFP object, by showing M[D£] is an effective basis. As far as 

the author can see, our method seems to be simpler. 

4.8 Effective SFP Objects 

By essentially routine extension of the arguments in 

chapter 3, we can obtain the notion of effective SF~ objects, 

each of which is the set of all computable elements of an 

effectively given SFP object, or is the 'effective completion' 

of an effective finitary posct. 

One outstanding point about effective SFP objects is 

that we can characterise this notion as the 'effective inverse 

limlit' of effective sequences of ,computable projection pairs 

of effective(ly given) finite cpo's. Notice that every effecively 

given finite cop is an effective finite cpo as it is. 
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CHAP'rER 5: EFFECTIVE CA'l'EGORIES 

"Was sich ii.bel~haupt sagen Zasst~ 
Zasse sich kZar.sagen; und wovon man 
niaht reden kann~ davaber muss man 
schweigen. " : 

Ludwig W·ittgens tein. 

"Whenever I pZayed for Richter~ he 
Zooked immovabZy at my finguves and one 
day he said; 'My Godl .how I am oblidged 
to.torment myself and'sweat~ and yet 
witJwut obtaining. appZause; and for you~ 
my friend~ it is mere pZayJ u "Yes' said 
I, 'I had to Zabor once in order not to 
Zabor now." 

. . W. A.Mozart. 

Plot:ci.n c.lnd smyt.h [24] emt-,t.dsized the in.portance of catc-

gory theory for solving recursive domain equations. They showed 

that a single theory based on categorical notion could allow 

us to solve recursive domain equations over various classes of 

non~effective domains. 

This chapter is concerned with an attempt to make effective 

Plotkin and Smyth's categorical approach. Such an attempt is 

important for the pu~pose of considering solutions of recursive 

domain equations over the class of effectively given domains, 

effective domains, effectively given SFP objects, r.e. sets etc, 

which are under the effectiveness constraint. 

5.1 Effectively Initial Algebras 

It immediately foll~ws from the previous chapters that 

effectively given domains & either computable functions or 

computable projection pairs, effective domains & either f­

computable functions or f-computable projection pairs, effective­

ly given SFP objetcs & either computable functions or computable 

projection pairs, and effective SFP objects & either f-computable 
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functions or f-computable projection pairs form categories. 

All of them which are under the constraint of effectiveness, 

have indexings associated to their object sets and morphism 

sets. Furthermore we have observed that almost all 

interesting effective properties of these categories can be 

described only in terms of these indexings. So we will start 

with those categories with which are associated indexings of 

object sets and morphism sets. Thence we characterize effect-

iveness of categorical constructions in terms of these 

indices. The most primitive categorical construction obviously 

is the composition of morphisms. This gives rise to the 

followin7 ~oticn: 

Definition 5.1.1 

(1) An indexed category is a triple (~,K,a) where ~ is a cate­

gory, K is a partial indexing (called an obj ect indexing) 'of 

Ob(K) and a is a partial family of partial indexings (called 

morphism indexings) s.t. a partial indexing a(i,j) is defined 

iff both K(i) and K(j) are defined; and it is a partial 

indexing of Hom(K(i},K(j» wheneve: it is defined. 

(2) An indexed category (~,K,a) is an effective category iff 

there are recursive functions a-Compose and Idt s.t. 

a ( i , k) «() - Co mp 0 s e (i , j , k , m , n) ) = a (j , k) ( n) • a (i, j) (m) 

id (,}=()(i,i)(Idt(i» 
K ]. .' 

Notice that we are using the usual convention for equations 

involving partial functions. More specifically, if f and g are 

partial functions, by f(x)=g(y) we mean that both f(x) and g(y) 

are defined and equal, or both of them are undefined. 
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A.Possible alternative to the above is to assume that the 

indexing of Hom(A,B) is independent to the representations 

(indices) of A and B. For our primary models like the category 

of effectively given domains and computable functions together 

with the acceptable indexing as an object indexing and the 

directed indexings as morphism indexings, this assumption is 

true. But Plotkin [31] indicated that this might lack in 

generality. Indeed the author discovered an interesting example 

where this assumption collasps. We can define the notion of 

partial computable functions from an r.e. set to another, thence 

obtain a reasonable category of r.e. sets and partial computable 

functions. We can present a natural way of indexing this cate~ 

gory to make it effective and show that it can happen that: 

a (i,j) (k)~a (m,n) (k) 

even if K(i)=~(m)and K(j)=K(n). 

Before studying this problem, remember that for each 

indexd r.e. set Wi , there is a canonical enumeration $d~2(i) 

s.t. if Wi=~ then ~d~2(i) .is everywhere undefined and if Wii~ 

then ~d~2(i) is total. Also remember that our acceptable 

indexing system satisfies Wi=range($i). 

Definition 5.1.1.1 

A function f:Wi-+-W j is partially computable and has a 

cl-index k iff the following diagram (0f partial functions) 

commutes: N ~d~2 (1) >W. 
. l. 

~kl ~dV2(j) 1 f 
N .. W. 

J 
o 
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Notice that each k determines a unique partial computable 

function from Wi to Wj since ~dv2(i) and ~dv2(j) are surjective. 

There are several cases to be checked. If Wj=~ then ~dv2 (j) 

is everywhere undefined and f is an empty function, thus for 

each kEN the above diagram commutes. In case W.=~ and W1.i~, f 
. J 

is everywhere undefuned and is not total. If W.=~ then f is 
1 

total and is the empty function. In case Wi=~ and Wji~ then 

~k is the empty function N-~N, for CPdv2 (i) is everywhere 

undefined. 

The following lemma indicates that our notion of partial 

CUlilputabili ty :...s a nut-ural one. 

Lemma 5.1.1.2 

(1) A function f:Wi4Wj is partially computable iff it is the 

restriction to W. of a partial recursive function f:N4N. 
1 

(2) If f=CPk' we say that f has a c 2-index k. There are 

recursive functions at and To s.t. if k is a cl-index of 

f:Wi4Wj then To(k) is a c 2-index of f and if k is a c 2-index 

of f then Ot(k) is a cl-index of f. 

proof !or each (i,j)ENxN, define To:N4N and Ot:N4N to be recur­

sive functions satisfying: 

CPTo (x) (n)=~dv2 (j) ·CPx(IJm·[~dv2 (i) (m)=n) 

CPOt(x) (n)=IJrn·[~dV2(j) (m)=cpx·rf>dv2(i) (n) J. 

Assume f:Wi4Wj is partially computable and has a cl-index ~. 

Then ~To(k) is a partial recursive function which extends f 

to N. To observe this we show, 

cpTo(k) (n)=~dV2(j5·cJ>k(IJm·[rf>dv2(i) (rn)=n]) 

=f·cJ>dv2(i) (IJrn. [rf>dV2 (i) (m)=n) 

=f(n). 
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Notice that the above equations are equations of partial func-

tions. Conversely assume that f is the restriction to Wi of a 

partial recursive function ~k:N+N. Then we have: 

. $dv2 (j)' </lOt (k) (n) 

=</ldV2(j) (\lm:[$dV2(j) (m)=~k'<Pdv2(i) (n)]) 

=</lk· <P dv2 (i) (n) 

=f'</ldv2(i) (n) 

The above proof states that from a cl-index k of a 

partially computable function f:W.+W., w~ can construct a 
1 J 

IZJ 

program f=<POt(k):N+N which computes f as the restriction to 

w .. In this sense ok is a good finite representation of f. 
1 

It can readily be seen that the category REC of r.e. sets 

and partially computable functions is well defined. There should 

be no objection to indexing the object set of this category by 

the acceptable indexing <W.>. There are two natural ways of 
1 

indexing morphism sets. When we take cl-indexings for the 

morphism indexings, we denote the resulting indexed category 

by REC1. REC2 denotes the indexed category where c~-indexings 
~ 

are taken for morphism indexings. 

It is very important to notice that in REC2, K(i) =K(n) 

and K (j) =K (m) implies d (i, j) (k) =d (n ,m) (k) o. But this is not 

the case in REC1. This is an example where the generality of 

inde~ing ~om(K(i),K(j» by a(i,j) is need~d. But by virtue 

of 5.1.1.2, we can do every interesting things of RECl in REC2. 

Therefore we still are in search of more convincing examples 

which require the full generality of 5.1.1. 
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Theorem 5.1.1.3 

Both RECl and REC2 are effective categories. 

proof Let C be a recursive function s.t. ~C ( )=~.~. 
p p m,n n m 

Define a-Compose(i,j,k,m,n)=C (m,n). It can readily be seen 
p 

that a(j,k) (n)·a(i,j) (m)=a(i,k) (a-Compose(i,j,k,m,n» in 

both RECl and REC2 by easy diagram chasing. Let idN be the 

idientity function from N to N. Let Idt be a recursive function 

s.t. ~Idt(n)=idN' It can readily be seen that i~ =a(n,n) (Idt(n» 
n 

in both RECl and REC2. 0 

In order to observe the naturalness of the assumption that 

the composition of morphisms is recursive in indices, remember 

that the composition of two partial recursive functions is 

recursive w.r.t. the acceptable indices. In fact the category 

whose object is a singleton {N} and whose morphisms are partial 

recursive functions, together with an obvious object indexing, 

say {(n,n)}, and acceptable indexing as the morphism indexing 

is an effective category, whose object indexing is not total. 

We will writ~ PR to denote this effective category. 

Now we will define effectiveness of various universality 

of category theory. 

Definition 5.1.2 

Let (K,K,d) be an effective category. 

(1) An object I€Ob(K) is said to have initiality index <i,j> 

iff K(i)=I and ~j:N~N is a recursive function s.t. for every 

object index a, d(i,a) (~j(a» is the unique morphism from K(i) 

to K(a). An object I is an effectivel~ initial object iff it 

it has an initiality index. We sometimes write Int. for t .• 
]. J 
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Effectively final objects can be defined as a dual to this. 

(2) A triple (X,'lT l :X+A,'lT 2 :X-+B) has a (binary) Eroduct index 

«x,a,b,PI,P2>,j> iff X=K(X) , A=K(a) , B=K(b), 'lT 1=3(x,a) (PI)' 

'IT 2=3 (x,b) (P2)' and ~j is a recursive function s.t. for any 

indexed morphisms f=a(c,b) (m) and g=a(c,a) (n), 

<f ,g>=C3 (c,x) (4)j (c,m,n» 

is the unique morphism which con~utes the following diagram: 

We write AxB for X. A triple (X''lTI~X+A''lT2:X+B) is an effective 

(binary) product· (of A and B) iff it has a product index. 

(K,K,a) is effective (binary) product closed iff there are 

recursive functions Prod~Pl~P2~ and P-Med s.t. for every pair 

of object indicies (a,b), 

(I( (Prod(a,b», a (Prod (a,b) ,a) (PI (a,b» ,a (Prod(a,b) ,b) (P2 (a,b») 

is an effective product with a product index: 

«Prod(a,b),a,b,PI (a,b),P2 (a,b) ,P-Med(a,b». 

Effective binary coproducts can be defined as dual to this. 

(3) Assume (K,I(,a) is effective binary product closed. An 

ordered pair (z€Ob(~),applY:ZxD+E) has an exponentiation index 

«z,d,e,ap:>,j~ iff Z=K (z) ,D=K (d) ,E=K (e) ,apply=a (Prod(z,d) ,e) (ap) , 

and for any f=a (Prod(k,d) ,e) (m), 

curry (f) =a (k, z) (Ijl • (k,m) ) 
) 

is the unique morphism which commutes: 
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curry(f)xid
D ZXD <. K (k) XD 

apply ~ /f 
E 

We write (D E) for Z. Also we write Curry d for ~ .• <z, ,e,ap> J 

An ordered pair (Z,apply:ZxD+E) is an effective expo~~~i~~tion 

of (D and E) iff it has an exponentiation index. (K,K,a) is 

said to be effectively Cartesian closed iff it ha~' effectively 

final object and there are recursive functions Apply~Curry~Exp 

s.t. for any pair (d,e) of object indices a pair: 

(K (Prod(Exp (d,e) ,d», a (Prod (Exp (d,e) ,d) ,e) (Apply (d,e») 

is an effective' exponentiation with an exponentiation index: 

< <Exp (d,e) ,d,e,Apply (d,e) >,Curr'y (a,b) >. 

It is a common exercise to represent objects subject to 

computation as partial recursive functions. For example, an 

r.e. set can be r~presented by a partial recursive function 

whose range is the r.e. set. In this way even the set of 

natural numbers can be indexed by a (non-r.e.) subset of 

natural numbers whenever we identify n={n}. Our fundamental 

o 

philosophy is that when. we talk about effective categories, we 

are esseritially talking about systems of partial recursive 

functions (or programs). We claim that almost all categorical 

constructions are program transformations which always 

terminate. This observation support our decision to take 

a-compos.e~Pl~p2~prod~p-Med~Exp~Apply~ Curry. etc. as IIrecursive" 

functions. 
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One might worry about the notion of recursive functions 

from non-r.e. set to another, which we might be forced to 

consider for K and a could be partial. But this notion is 

quite natural. Indeed this notion is a quite natural extension 

of the notion of partially computable functions from an r.e. 

set to another. For example, let S.cN and F.={t.lieS.}, j=1,2. 
)- - );t ) 

We know: •..• ·=tc ( .. ) for all i and j. Regardless of whether 
1. ) P 1.,) -

Sl and S2 are r.e. or not, Cp maps from SlxS 2 to Cp (SlxS 2), 

This states that the composition of functions in Fl and F2 

is recursive in indices. 

Definition 5.1.3 -

Let (K,K,a) be an effective category. 

(1) -An w-diagram is a functor G:w+K, where K is the category: 

O~1~2~····· . It has a codiagram index jiff t. is a recursive 
J 

function s. t. : 

G(n)=K(1T l 'cjlj(n» 

G(n~n+l)=a(1Tl·.j (n) ,1Tl·.j (n+l» (1T 2 ·cjlj(n». 

The ordered pair (G,j) is called an indexed w-codiagram. 

Indexed w-diagrams can be defined as dual to this. 

(2) Given an indexed w-codiagram (G,j), a cocone A=<An:G(n)+c> 

is said to have a co cone index <c,k> iff C=K(C) and tk is a 

recursive function s.t.: 

An=a (1T l
o tj (n) ,c) (tk (n». 

The ordered pair (A,<c,k» is called an indexed w-cocone of 

(G,j). Notice that the effective generation of An is dependent 

on the index ot G. As dual to the above, we can define indexed 

~-cone of an indexed w-diagram. 

-, 
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(3) An w-cocone ~ of the indexed w-codiagram (G,j) has an 

w-colimit index «c,k>,i> iff (~,<c,k» is an indexed w-cocone 

of (G,j) and ~i:N4N is a recursive function s.t.: for each 

indexed w-cocone (~,<x,y» of (G,j), 

6=0 (c,x) (~i (x,y» 

is the unique morphism which makes the following diagram 

commute : • 
G (0:;1) . . . . . . 

An w-cocone of an indexed w-codiagram is an effective 

w-colimiting cocone of the indexed w-codiagram iff it has an 

w-colimit index. As dual to the above, we can define effective 

w-limiting cones of indexed w-diagrams. 

(4) (~, K, a) is effectively w-cocomplete iff there are recursive 

functions w-CoZim~w-Coaone~ and w-Comed s.t. for every indexed 

;~-codiagram (G,j), there is-an effective w-colimiting co cone 

with an (;.·-colimit index «w-CoZim(j) ,w-Coaone (j) >,w-Comed(j) >. 

As dual to this, we can define effective w-completeness. 

o 
NOTE To make the dependence of w-Colim;w-Coaone and w-Comed on -
(K,K,a) explicit, we write w-CoZim(~),w-Coaone(K) and w-Comed(~). 

The same convention will be applied for Prod~Pl~P2,P-Med~AppZy, 

Curry~Exp,a-Compose,Idt etc. 

In non-constructive category theory, it is a common 

exercise to identify objects to within isomorphism. The reason 
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why we can do this is that the universaity is invariant under 

the isomorphism. For example, let I be an initial object in K 

and f:I+J is an isomorphism with the inverse g:J+I. Let x be 

the unique morphism from I to x. 

f 

f obviously is the unique morphism from I to J. We claim that 

x g:J+X is the unique morphism from J to X. Let c:J+X be ·a 

morphism from I to J. By the uniqueness of x, c·f=x·gof. Since 

f is an isomorphism it is an epimorphism. Thus c=xog. Therefore 

J is an initial object. 

Our question is, when we can identify two objects in 

effective categories. Shall vie ask some kind of effectiveness 

for this purpose? More specifically, need we have recursive 

functions Ism 1 and Ism 2 s.t. a (i,j) (Ism
1 

(i,j» is an isomorphism 

from K(i) to K(j) with the inverse (adjoint) a(j.i) (Ism2 (j,i»? 

We claim that this condition is too strong. In fact two 

effectively given domains ~(i) and ~(j) are identical iff 

there exists a pair (f:~(i)+~(j),fR:e(j)+~(i» of computable 

functions s. t. f· fR=id~ (i) and fR 0 f=id~ (j ). We do not need to 

be able to obtain directed indices of f and fR from the accept­

able indices i and j. As this case of effectively given domains 

indicates, we will identify two objects of an effective category 

to within isomorphism. We will demonstrate, in the following, 

that this identification is natural. More specifically, we will 

observe that effective universality is invariant under the 

isomorphism. Rather than proving this claim in general setting,' 
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we will check an important example. 

Let (h=<An,fn>,i) ~e an indexed w-codiagram of an effect­

ive category (K,K,a). Let p be an effective w-colimiting 

cocone of (h,i) with an index «a,k>,j>. Furthermore let A'= 

K(a') be an object isomorphic to A=K(a), via an isomorphism 

pair (h,hR) :K(a)+K(a'). Then for some recursive function 

r:N+N, 'V=<'V =h·p :A +A'> is an effectively generable cocone of n n n 

(h,i) with an index <a',r(k», for the composition is recursive 

in indices. Since J is an effective w-colimit with an index 

«a,k>,j>, h is the unique mediating morphism from p to 'V. 

Also h=a(a,a') ~<pj(a'Ir'(y.»). Nov." let (o:h+B,<~>.x» be an indexed 

cocone of (h,i) Then O=a(a,b) (cp, (b,x» is the unique mediating 
J 

morphism from 11 to <5. But e· hR is the unique mediating morphism 

from 'V to o. Let hR=a(a',a) (n) for some n. Then we have: 

R e • h = a (a ' , b) (a - Co mp 0 se (a ' , a, b , 4> j (b, x) , n) ) 

=a(a',b)(cp (,)(b,x» s ) 

where s is a recursive function s.t.: 

cp (') (b,x)=o-CoT'lpose (a' ,a,b,~, (b,x) ,n). 
s J J 

Therefore 'V is an effective w-colimitimg cocone of (h,i) with 

an index «a',r(k»,s(j». 

We are now in a position to define effectiveness of 

functors. Plotkin and Beynon kindly indicated to the author 

an error in the previous definition of effective (it was called 

semi-effective) functors. 

Definition 5.1.4 

Given effective categories (~'K,a) and (K',K',a'), a 

functor F:K+K' is effective (wrt (K,a) and (K',a'» iff there 

are recursive functions fOb(F) and fmr(p) s.t.: 
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F(K(n) )=K' (fob (F) (n» 

F(a (i,j) (rn) )=d' (fob(P) (i) ,fob(p) (j» (fmr(F) (i,j,m», 

In case fob(P)=~i and fob(P)=~j' we say that <i,j> is a 

functor index of p, We write P:(K,K,a)4(K',K' ,d') to denote 

that F is an effective functor. o 

The following lemma states that an effective functor maps 

effectively, indexed w-codiagrams to indexed w-codiagrams and 

indexed w-cocones to indexed w-cocones, 

Lemma 5.1.5 

Let (K,K/a) and (K',K'ra') be ef~ective categories. 

(1) There is a recursive function fag s.t. if F:K~K' is an 

effective functor with a functor index <x,y> and (G,i) is an 
I 

indexed w-codiagram then (F'G,fag(i,x,y» is an indexed 

w-codiagram in (~',K',a'), 

(2) There is a recursive function faoaone s.t. if (G,i) is an 

indexed w-codiagram, (p:G+A,<a,j» is an indexed w-cocone of 

(r;,i) i'md P:Y4K' is an effective funC't.or with a fnnctor. jndex 

<x,y> then Pp:F'G~FA is an effectively generable w-cocone of 

(p"G,fa (i,x,y» with an index f (x,y,a,j), g aoaone 

proof (1) p"G{n)=K'(~x''lf1'~i(n» 
, 

F"G(n~n+l)=a(~ "1T 1 "cp.(n),cp "1T 1 "cp.(n+l» x 1 x 1 

(Qy (<l>x' 1T l' 4>i (n), 4>x"'lf 1 ' 4>i (n+l) ,1T 2 " 4>i (n») 

Def ine g' (n) =< cP x' 1T 1 " 4> i (n) , 4>y (cp x" 'If 1 " </l i (n) , </l x" 1T 1 " ~ i (n + 1) , 'If 2 • </l i (i) ) ~ . 

Then we have: 

p"G(n)=K' (n 1 'g'(n» 

F·G(n~n+l) =a' (1T 1 'g' (n) ,1T 1 "g' (n+l» (1T 2 "g' (n». 

The construction of g' is uniform in i,x and y. 
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( 2 ) F J.l n = d ' (4) x . 1f 1 • 4> i (n) I <P x (a) ) (cf> y (cf> x • 1T 1 • <P i (n) ,<I> x ( a) , 1T 2 • <P j (n) ) ) 

= a ' (1T 1 • 4>f ( " ) (n) I <fJ ( a) ) dg 1., X ,y X 

( <I> y ( 1f 1 • <I> f dr ( i , x , y) (n) I <I> x (a) I <I> x (a) ,1T 2 • <I> j (n) ) ) • 

Define f (x,y,a,j)=<tj> (.a),h(y,j», where h(y,j)=C (y,C (e,j» cocone x p p 

and <I> =1T 2 • Then f is a recursive function and: e cocone 

F (J.ln ) =a ' (1T 1 . <I> f dg ( i, x, y) (n) I 1T 1 . f co cone (x, y I a I j ) ) 

(<I>1T ·f (x y a J") (n». 
2 Cocone ", 

Definition 5.1.6 

Let (~,K,a) ~nd (K',K' ,d') be effective categories and 

F:K-+K' be an effective (wrt (K,a) and lK',a',) iunct.or with a 

functor index <i,j>. F has a continuity index «i,j>,k> iff <l>k 

is a recursive function s.t. whenever J.l is an effective 

III 

w-co1imiting cocone of an indexed w-codiagram (G,x) in (K,K,a), 

with an index «a,n>,y> then FJ.l is an effective w-co1imiting 

cocone of an indexed w-codiagrarn (F·G,fa (x,i,j» with an g . 

w-co1imit index <f (i,j,a,n),<I>k(a,n,y,x». cocone 

o 
Notice that in 5.1.5 and 5.1.6, f and f depend on 

co cone dg 

(K,K,a) and (K',K',a'). To make this dependency explicit, we 

may write fcocone(~,K') and fdg(~,K'). 

Definition 5.1.7 

Given an effective category (~,K,a) and an effective 

functor F:K-+K', an F-a1gebra is a pair (A,a) where a:FA-+A. An 

F-homomorphism from an F-a1gpLra (A,a) to another (B,a) is a - . 

K-morphism f:A-+B whir:. Inakes the following diagram COlnIDute: 
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FA -----~') A 

! Ff 1£ 
FB -----------7> B 

If A=K (a) and a=a (fob(F) (a) ,a} (i), we say that (A,a) has an 

algebra index <a,i>. o 

It can readily be seen that the category of F-algebras and 

F-homomorphism? together with the algebra indexing as the 

object indexing and the derived (from a) indexings as morphisIn 

indexings, in symbol A~ is an effective category. Notice that 

id(A,a)=idK(a) where (A,a) has an index <a,i>. 

Definit~on 5.1.8 

Let (K',K,a) be an effective category and F:K+K be an 

effective functor. An F-algebra (A,a) has an initial algebra 

index «a,i>,k> iff (A,a) has an algebra index <a,i> and ~k is 

a recursive function s.t. for any F-algebra (B,8) with an 

algebra ~ndex <b,j>, 

a (a, b) (~k (b, j ) ) 

is the unique F-homomorph:"sm fr-::>m (A,:l) to (B, 8). ,An F-alrJebra 

is an effectively initial F-algebra iff it has an initial 

algebra index. 

It can readily be seen that an initial algebra index is 

o 

an initiality index in AF, thus an effectively initial F-algebra 

(I,l) is an effectively initial object in AF. Furthermore it is 

an isomorphism, thus is a solution of a recursive object equ­

ation F(X)=X. Indeed it is the effectively initial object in the 

category of the solutions (to within isomorphism) of F(X)=X 

together with the induced (from AF) indexings. 
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Theorem 5.1.9 (The effectively initial algebra theorem) 

Let (K,K,a) be an effective category with the effectively 

initial object with an initiality index <i,j>. 

(1) There is a recursive function f s.t •. for every effective 
gn 

functor F:~~K with an index <d,e>, f(d,e) is an index of the gn 

effectively generable w-codiagram ~ defined by: 

/3(0)=1 

/3(o~l)=lFl 

A (n)=Fn(l) 

A(n~n+l)=FnlFl 

where lK(x)=a (i,x) (~j(x» is the uniquemorphism from 1 to K(X). 

(2) Let F:~~~ be an effective functor with an index <d,e>. 

Assume lJ ~A~K (a) is :,m effective w-colim~.ting C0cone of the 

indexed w-codiagram (A,f (d,e)) with an index «a,k>,x>. Also 
gn 

assume that F~:F·A~F(K(a» is an effective w-colimiting co cone 

of (F·/3,fa (f (d,e),d,e» with an index <f (d,e,a,k) ,y>. g gn cocone 

Then the effectively initial F-algebra exists. 

(3) In case (K,K,a) is effectively w-cocomplete, there is a 

recursive function Efin s.t. if F:K~K is an effectively conti-

nuous functor with a continuity index «d,e>,c>, then 

Efin(d,e,c) is an initial algebra index of the effectively 

initial F-algebra. 

proof (1) A(n)=Fnl=K(~~Ci». Also lFl=aCi'~jC~d(i»). 

Thus: A(n~n+l)=Fn(lFl) 

=a(~~(i) ,~~+l(i» 

( ( nC') n+l. n-l. n 
~e ~d 1 '~d Cl.)'~e(~d (l),lj>d(i), ••• 

~e (i, Ij>d (i) , ~j (Ij>d (i») •.• ») • 

Take g(n)=if n=O then <i'~j(lj>d(i»> 
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~~ < <I> ~ (i) , <I> e ( <I> ~ (i) , <I> ~ + 1 (i) , 4> e ( 4> ~-l (i) , 4> ~ (i) , ••• 

4>e(i, <l>d (i) , 4>j (4)d (i») 0 0 0» >0 

Obviously g generates ~o Since g is constructed uniformly in 

d and e, there is a recursive function f Sot. 
gn 

. g =4> f gn (d ,·.e) 0 

(2) Since ~ is an effective w-colimiting co cone of (~,f (d,e» 
gn 

with an index «a,k>,x>, «~n>n~l,<a,sua(k») is .an indexed 

w-cocone of(F·~'fdg(fgn(d,e») where sua is a recursive 

function satisfying: ~ () (x) =<1> (x) +1. sua z z 

Since P~ is an effective w-colimiting cocone of (F·~,fdg( 

f (d,e),d,e) with an index <f (d,e,a,k) ,y>, there is a 
(Tn ao(!one . 

unique morphism a:F(K(a»7K(a) Sot. ~i+1=a·F(~i)o Indeed we have:' 

a=d (4)d (a) ,a) (<I>y (~,sua (k»). 

We claim that (K(a),a) is an effectively initial P-algebrao Let 

~=d(<I>d(b),b) (m) be an F-algebra with an algebra index <b,m>. 

Define \I :pn17K (b) n by: 

\I 0=11( (b) 

\In+1=e·F(\ln) • 

By induction on n, we can show that \I=<\l n > is a cocone of ~. 

We have: \l o=lK (b) =a (i,b) (4)j (b» 

\In+1=e· p (vn ) 

=a (4)d (b) ,b) (m) • d (4)~+1 (i) , cl>d (b» 

(cI>e(~~+l (i) ,b,cI>e(4)~(i) ,b, 0 o4>e(i,b,4>j (b» •• }» 

=a(cI>~+l(i)rb) 

( a - Co mp 0 se (cl> d (b) , b , 4> ~ + 1 (i) , m , 

4>e (4)~+l (i) ,b, •• , 4>e (i,b, 4>j (b» •• » • 



5.18 

Let g(n)=if n=O then <i,~. (b» 
- -- J 

n(.) n+l else <~d 1 ,a-Compose(~d(b),b'~d (i),m, 

~ e (~~+ 1 (i) , b , •• , ~ e (i, b , ~ j (b) ) •• ) ) > • 

Obviously g is recursive and is constructed uniformly in b 

and m. Therefore g=~r(b,m) for some recursive function r. 

Also g generates v=<vn >. Thus (v,<b,r(b,m») is an indexed 

w-cocone of (~,f (d,e». Thus there is a unique morphism gn 

s.t. 

y=a (a,b) (~x (b,r (b,m») 

y·v.=v .. By using the initiality of 1, it can readily be 
1 1 

seen that Y is th~ unique F-homomorphism from (K(a),a) to 

(K(b),S). Now let f be a recursive function s.t. 

4>f(u) (m,n)=<I>u(m,r(m,n». 

Then « a,4>y(a,suc(k»>,f(x» is an initial algebra index of 

(K(a),a). 

(3) In case (K,K,a) is effectively w-cocomplete, we have: 

a=w-CoZim(f (d,e» . gn 

k=w-Cocone(f (d,e» gn 

x=w-Comed(f (d,e». gn 

Since F has a continuity index «d,e>,c>, in the above proof 

we can take y=~ (a,k,x,f (d,e». Thus (K(a) ,a) has an c gn 

initial algebra index: 

«w-CoZim fgn(d,e», 

~~ (w-CoZim(fgnCd,e» ,w-CoconeCf (d,e»,w-Comed(f (d,e»,! (d,e)) 
c . gn gn gn 

(w-CoZimCfgnCd,e»,SucCw-coconeCfgn(d,e»»>, 

. f(w-comed if Cd,e) » >. gn 

Define Efin by: 
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Efin (u, w, z) 

=«w-CoZim(fgn(u,w», 

4>cj> (w-Cotim(f (u,w»,w-Cocone(f (u,w»,w-Comed(f (u,w», 
Z (In (In gn 

f ( » 
(w-Colim(f (U,w»,Bua(w-Cocone f (u,w»»>, 

gn u,w gn gn 

f(w-Corned(f (U,w»». gn 

Definition 5.1.10 

An effective w-category is an effectively w-cocomplete 

category with an effectively initial object. 

Corollary 5.1.10 

Let :K, K, a) be an effective w-category and F: K~!S. b·c an 

III 

o 

effectively continuous functor with a continuity index «d,e>,c>. 

Then Efin(d,e,c) is an initial algebra index of the effectively 

initial F-algebra. III 

5.1.9-(3) and 5.1.11 are concerned with the effective 

construction of the effectively initial F-algebra, for each 

effectively continuous functor F. 

It can readily be seen that the following (indexed), 

categories are all effective categories: 

Cate Names S mbols 

(1) effectively given domains & 
(strict)oamputable maps 

EGD(EqD*) 

(2) effective domains & ED(ED*) 
(strict) f-computable maps 

(3) effectively given SFP objects 
(strict) ccmputable maps 

& EGS(EGS*) 

(4) effective SFP objects & 
(strict) f-computable maps 

ES(ES*) 

where the associated object indexings are acceptable indexings 
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and the morphism indexings are directed indexings. It should 

be noted that before the work of the author, it was not quite 

clear even what should be taken for morphisms for the class 

of effectively given domains etc in order to fonn reasonable 

categories. Indeed without the notion of effective w-category, 

it can hardly be seen that EGD etc behave usefully. 

Furthermore we can easily observe that the following 

categories are all effective categories: 

Catesory names S mbols 

(1) effectively given domains & EGD
P 

computable projection pairs 

(2) ~ffe~tive domains & ED
P 

f-computable projection pairs 

(3) effectively given SFP objects 8. EGS
P 

computable projection pairs 

(4 ) effective SFP objects & ESP 

f-computable projection pairs 

where the associated indexings are as above. 

As we will observe later, in 5.2.23, EGDP,E~P,EGSP, and 

ESP are all effective w-categories. 

A rather simpler example of effective w-categoryds an 

effective domain. Indeed we have: 

Example 5.1.12 

(1) An effective domain X€ (regarded as a category) together 

with the d1rqcted indexing x€ as an object indexing and the 

obvious morphism indexings is an effective category. Furthermore 

it is an effective w-category, for we have 3.1.2. 

(2) An f-computable function is an effectively continuous 

functor. If f:X€~X€ is an f-computable function, then the least 

fixed-point of f given by: 



fix(f)=Ufi(l) 
i 
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is the effectively initial solution of the recursive object 

equation f(x)=x. Notice that by 3.1.2, fix (f) can effectively 

be-obtained from f, an example of 5.1.11. 

Definition 5.1.13 

Given indexed categories (K,K,a) and (R',K',a'), let 

(K,K,a) X(K',K',a') be the following indexed category: 

(K ,K , a) x (K' , K ' , a ' ) = (Kx K ' , K x K ' , a x a ' ) 

where KxK' is the product category of K and K', and 

KXK' (n) =(K (n 1 (n»,K' (n 2 (n») 

axa'(i,j)(n) 

III 

= (a (n 1 (i) ,n 1 (j» (n 1 (n» ,a (IT 2 (i) ,IT 2 (j» (IT 2 (n») • 

n 

Lemma 5.1.14 

Let (K,K,a) and (K',K',a') be effective (w-)categories, then 

so is (K,K,a) x (K',K',a'). 

proof Obviously (K,K,a)x(~',K',a') is effective. There are 

recursiv~ functions Zt and rt s.t. ttt(x)=lTl".x and ~rt(x)=1T2·tx. 

Since (~,K,a) and (K'.K' ,a') are effective w-categories, there 

~rc ~ecursive functions w-Cotim(~),w-Cotim(K') ,w-Coaone(~), 

w-Coaone(K'),w-Comed(K) and w-Cnmed(K') which behave as in 

(4)-5.1.3. Define recursive functions w-CoZim(K K'), 

w-Coaone(K K') - and w-Comed(K K') by: 

w-Co Zim (K K') =<w-Co Zim (~) (It (x) ) , w-Co tim (K' ) (rt (x) ) > 

w-Coaone (K K') =pair (w-Coaone (K) (Zt (x) ) , w-Coaone (K') (rt (x) ) ) - -
w-Comed (K K') =pair (w-Comed (~) (It (x) ) , w-Comed (K' ) (rt (x) ) ) 

where pair is a recursive function satisfying: 

tpair (i, j) (x) =<ti (x) , tj (x) >. 
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G=«A ,A'), (f ,f'» be an effectively generable n n n n 

w-codiagram in (~'K,a)X (K',K',a') with an index d. Then 

GL=<A ,f > is an effectively generable w-codiagram in (K,K,a) n n 

with an index Zt(d), and GR=<A',f'> is an effectively generable n n 

w-codiagram in (K',K',a') with an index rt(d). Since both 

(K,K,a) and (K',K',a') are effectively w-cocomplete, there are 

effective w-colimiting cocones 15 of (.GL
, 7,t (d» and 15' of (G

1
\ 

rt(d» .with indices: 

«w-Colim (K) (Zt (d) ) , w-Cocone (K) (It (d) ) > ,w-Corned (K) (7,t (d» >, - - .' -
«w-Co7,im(K') (rt(d}),w-Cocone(~') (rt{d»>,w-Comed(K') (rt(d»> , 

respectively. It is obvious that if cx&=«o ,15'», then cXc' n n 

is an effective i w-co1imiting cocone of (G,d) with an index: 

«w-Co7,im(KX~') (d),w-Cocone(~X~') (d»,w-Comed(K K') (d». 

Thus (K,K,a)x(K',K',a') is effectively w-cocomplete. Also if 

1 and l' are effectively initial objects of (K,K,a) and 

(K',K',a') respectiv~li then (1,1') is an effectively initial 

object in (K,K,a)x(K',K',a'). 

Lemma 5.1.15 

!ZJ 

Let (K,K,a), (K',K',a') and (K",K",a") be effective. There 

is a recursive function I-Compose s.t. if <a,b> and <c,d> are 

functor indices of effective functors P:K+K' and F':K'-+K" 

respectively, then I-Compose (a,b,c,d) is a functor index of 

p'.P. Also there is a recursive function cf-Compose s.t. if 

F and P' are effectively continuous functors with continuity 

indices «a,b>,x> and «c,d>,y> respectively, then pl.p is 

effectively continuos and has a continuity index 

cf-Compose(a,b,x,c,d,y). 
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proof Define h to be a recursive function satisfying: 

cj>h( )=Ai.Aj.An.4> (cj>Cp( ) (1) ,cj>Cp( ) (j),4> (l,j,n». x,y,z,w w x,z x,z y 

Let' f-Compose(x,y,z,w)=<Cp(x,z) ,h(x,y,z,w». 

We have: fOb(F'.F) (x)=fOb(F,)·fOb(F) (X)=4>c·4>a(x)=4>Cp(a,c) (x), 

fmr(F' .F) (1,j ,n) =fmr(F' ) (fOb (F' • F) (1) ,fOb (F ' of) (j) ,f mr(F) (i, j ,n» 

:=4>d(4)Cp(a,c) (1) ,4>Cp(a,c) (j) '~b(i,j,n» 

=4>h(a,b,c,d) (l,j,n). 

Thus f-Compose(a,b,c,d)=<Cp(a,c),h(a,b,c,d» is a functor index 

of p'·P. Define ef-Compose by: 

ef-Compos,e (e, f,g ,h,i,n) :':<f-Compose (e, f, h, i) ,M-Compose(e, f,g ,m) > 

where M-Compose is a recursive function satisfying: 

cl>M-CompoSe(e,f,g,m) (x,y,z,i) 

=4>m(nl·feoeone(e,f,x,y),n2°feoeone(e,f,x,y), 

cl> (x,y,z,i) ,fA~(i,e,f» ° 
g u.<J ' 

It can readily be seen that M-Compose is the desired one. 

IZI 

Lemma 5.1.16 

Let (!,K,a), (K',K',a') and (K",K",a") be effective 

categories, There are recursive functions f-left and f-right 

s.t. if <x,y> is a functor index of P: (K,K,a)x(K',K',a')+ 

(K",K",a"), then f-left(a,x,y) and f-right(b',x,y) are functor 

:ir..rlices of p(K(a),-):(K',K',:a')+(.!S.".KII,a") and F(-,K'(b»: 

(K,K,a)+(K~;K",a") respectively. Also there are recursive 

functions ef-letf and ef-right s.t. if P is an effectively 

continuous functor with a continuity index «x,y>,z> then 

ef-Zeft(a,x,y,z) and ef-right(b,x,y,z) are continuity indices , 
of p(K(a),-) and F(-,K(b» respectively. 
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proof We prove only for F(K(a),-). Similar proof works for 

F{-,K'(b». Define h to be a recursive function satisfying: 

cf> h ( k) (a' ) =cj> « m, a ' > ) • m,n, n 

Also define g to be a recursive function satisfying: 

cf> ( k) (a' ,c' ,d}=cf>k«m,a'> ,<m,c'> ,<Idt(m) ,d» 
g n,m, 

Notice that we have: 

F {K (a) , -} (K ' (a' ) ) =F (K (a) , K ' (a') ) =K " (cf> (;< a, a ' > ) ) , 
. x 

F(K (a) ,-) (a' (a' ,c') (d» 

=F(a (a,a) (Idt {a»,a' (a' ,c') (d» 

{cj> «a,a'>,<a,c'>,<Idt(a),d»). y 

Therefore f-left ,defined by: 

f-left (m,n,k) =<71. (m,n,k) ,G' (m,n,k) > 

is the desired recursive function, for we have: 

4> h (a, x, y) (a' ) =cf> x « a, a ' > ) , 

cf> ( ){a',c',d}=cf> «a,a'>,<a,c'>,<Idt{a),d»). 
g a,x,y y 

Let (G',i)=«A',f'>,i) be an indexed w-codiagram in (K',K' ,a'). 
n n 

Let.~ be an effective w-colimiting cocone of (G',i) with a 

colimit index «a',k'>,u'>. Then ««A.,A'»,(idA,f'»,t(i» is n n 

an indexed w-codiagram for some recursive function t, where 

A=K(a). Notice that: 

idA idA idA 
A ~ A ~ A--~~ 

i~A/idA 
A 

is an effective w-colimiting co cone in (~,K,a) with a colimit 

index «a,Idt{a»,m> where cf>m(c,e)=cf>e(O). Therefore «idA'~n» 

is an effective w-colimiting cocone of «(A,A'), (id ,f'»,t(i» n A n 

with a colimit index «<a,a'>,p~(k'~,~(m,u'}> where p~ and ~ 
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are recursive functions satisfying: 

4> () (n) =<Idt (a) 14> (n) > I 
pr u u 

4> ( )(c , e , b',e')=<4> ( ),ep (b' I»~. r u,v u c,e v ,e 

Since F has a continuity index «x,y>,z>, F(K(a),-) has a 

colimit index: 

f (F( () »(1Tl·f-left(a.,x,y),1T2·f-left(a,x,y),<a,a'>,k'), cocone K a ,-

4> «a,a'>,pr(k') ,r(m,u') ,t(i»>. z . 

Define cf-left by: 

c!-left(c,d,e,j)=<f-le!t(c,d,e),s(cid,e,j» 

where s is a recursive function satisfying: 

<t> ( d ',)(a',k',u',i)=<t> «c,a'>,pr(k'),r(m,u'),t(!». s c, ,e, J Z . 

It is now obvious that ef-left is the desired one. 

fZJ 

Notice that in the above proof, we have used the effective-

ness of the identity morphism as in 5.1.1. 

Example 5.1.17 

Given effective domains (Xl'£l)' (X 2 '£2) and (X3 '£3)' 

(Xl'£1)x(X2~£2) is an effective domain as established in 

chapter 3. Also if f:Xl xX2+X3 is f-computable, then it is 

f-computable in both the first and second arguments. Further­

more the process of obtaining f(x,-) and f(-,y) is recursive 

in directed indices of x,y and f, uniformly in the domain 

and codomain of f. IlJ 

Lemma 5.1.18 

Let (K,Kld) and (K',K' ,d') be effective categories. There 

~~ a recursive function f-dup s.t. if <a,b> is a functor index 

of F:KxK+K' then f-dup(a,b) is a functor index of AS.F(S,S) :K+K' 

defined by: 
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AS.F(S,S) (A)=F(A,A), 

AS.P(S,S) (f)=F(f,f). 

Also there is a recursive function cf-dup s.t. if «a,b>,c> 

is a continuity index of F, then cf-dup(a,b,c) is a continuity 

index of AS.P(S,S). 

proof Let f-duPl be a recursive function satisfying: 

f-dup 1 (x,y) (Z)=<I>x(Z'z). 

Let f-duP2 be a recursive function satisfying: 

f-dup ( ) (i,j ,k)=<j> «i,i>,<j,j>,<k,k»'. 
2 x,y y 

Define f-dup by f-dup(x,y)=<f-duPl(x,y),f-duP2(x,y)>. 

It is ohvjous ~ha~ this f-dup is the on~ desire~. L~t 

(<D ,f >,i) be an indexed w-codiagrarn in (!,K,a). Obviously 
n n 

«(On,Dn ), (fn,fn»,p(i» is an indexed w-codiagrarn in (K,K,a) 

for a recursive function p s.t.: 

<I> (.) (x) =< <I> • (x) , <I> . (x) >. p J J. J. 

Let v:<O ,f >40 be an effective w-colimiting cocone with a 
n n 

colirnit index «d,k>,e>. Then (v,v) is an effective w-colirniting 

cocne of «On,On),(fn,fn»,p(i}) with a colimit index: 

«<d,d>,p(k»,p' (e» 

where pi is a recursive function satisfying: 

<l>pl (j) (x,y}=<<I>j (x,y) ,<I>j (x,y». 

Since F has a continuity index «a,b>,c>, AS.F(S,S) (v)=F(v,v) 

has a colirnit index: 

<fcocone(F) (a,b,d,k),<I>c«d,d>,P(k),p' (e),p(i}» • 

Define cf-dup by: 

cf-~~p(x,y,z)=<f-dup(x,y) ,t(x,y,z», 
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wh~re t is a recursive function satisfying: 

4>t(x y z)(d,k,e,i)=<I>z«d,d>,p(k),p'(e),p(i». 
" I. 

It is obvious that this af-dup is the one desired. 

As we will observe later in 5.3.24 5.3.26, the domain 

constructors x,+,+ induce effectively continuous functors 

P P P 2 P P 
x ,+ ,+ :(K,K,d)+(~/K,d) where (~,K,d) is either EGD ,ED , 

EGSP , or ESP. Also. F[] induces an effectively continuous 
p p 

functor F[]: (K,K/d)+(~'K/a) where (K,K,a) is either EGS 

P or ES • Therefore W~ can effectively obtain €~fectively 

initial solutions of recursive domain equations which involve 

P P P P P P only + ,x,+ as domain constructors, over EGD ,ED ,EGS and 

ESP. Also we can effectively obtain effectively initial 

solutions of recursive domain equations which also involve 
p p p 

F[] , over EGS and ES • 
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5.2 category of Recursively EnUrnerable Sets 

Between 5.1.1 and 5.1.2, we studied the category of r.e. 

sets and partially computable functions with two different 

indexing systems, namely RECl and REC2, and observed that they 

are effective categories. In this section, we study a sub-

category, namely the category of r.e. sets and (total) 

computable functions, as a non-domain model of effective 

w-category. We also study even smaller category, namely 

the category of r.e. sets and inclusion maps, and observe that 

Kleene 1st recursion theorem of the enumeration ope~ators is 

an instance of the effectively initial algebra theorem. 

A partially computable function f:W.~W. is a computable 
~ J 

function iff it is a total function. 

Lemma 5.2.1 

f:W.~W. is computable iff either 
1. J 

(1) W.=~ or 
~ 

(2) Wi~~' Wj~~ and there is a total recursive function h:N~N 

s.t. f·~dv2(i)=~dv2(j)·h. 

proof (Sufficiencey) Obviously (1) implies f is total. Assume 

h is as in (2). Obviously f(n)=~dv2(j)(h(l1m·~dv2(i)(m)=n». 

Thus f is total, since 4>dv2(i) is an enumeration of Wi" 

(Neccesity) Assume \'Vi~~ and Wj=~. Then f is not toatl. 

Now assume in (2), h is nut Lutal. Let hex) be undefined. 

Then 4>dV2(j)·h(x) is undefined. But f·4>dV2(i)(x) is defined and 

f" 4> dv2 (i) (x) =~ dv2 (j) • h (x). Thus contradiction. 

IZJ 
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Let RECl' and REC2' be the indexed categories obtained 

from RECl and REC2 by restricting morphisms to computable 

functions. It can readily be seen that both RECl' and REC2' 

are effective ca"-egories, for the class of computable functions 

is closed under composition and the identity function on an 

no-empty r.e.set and the empty function with the empty domain 

are both computable. 

Lemma 5.2.2 

The empty set is an effectively initial object in RECl, 

RECl',REC2 and REC2'. It also is an effectively final object 

in RECl and REC2.'A singleton is an effectively final object 

in RECl' and REC2'. 

proof Let ~i be a recursive function s.t. ~i(y)=k where k is 

a natural number s.t. Wk=~. Then for every jEN s.t. Wj=~' 

<i,j> is an initiality index of ~ in REC1 and REC1'. Thus ~ 

is an effectively initial object in REel and RECl'. By virtue 

of (2)-5.1.1;2, it also is effectively intia1 in both REC2 and 

REC2'. Let ~. be a recursive ,;.unction s.t. ~. (y)=y. Then for 
~ ~ 

every jEN s.t. Wj=~' a(y,j) (~i(Y» is the unique computable 

function from Wy to Wj in REC1. Indeed it is the empty function. 

But unless Wy=~' it is every where undefined. Thus ~ has a 

finality index <j,i> for every jEN s.t. W.=~. Thus by virtue 
J 

of (2)-:-5.1.1.2, ~ is effectively final in both REC1 and REC2. 

Assume that Wm is a Singleton. Obviously Wm={$dv2(m) (O)}. Let 

~. be a partial recursive function defined by: 
1. 

~ i (k) =4> dv2 (m) (0) +ox ~ dv2 (k) (0) • 

It can readily be seen that the following diagram in REC1' 

commutes, regardless of if \']k is empty or not: 
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N 
<PdV2(k) 

~i\ ~il 
~dV2(rn) 

N ~W 
m 

Thus W has a finality index <m,i> in REC1'. By virtue of 
m 

(2)-5.1.1.2, a singleton is an effectively final object in both 

REC1' and REC2'. 

Definition 5.2.3 

Given r.e. sets W. and W., define: 
J. J 

w. xW .={ <n,m> I nEW. ,mEW.} 
]. ] ]. ) 

W.+w.={<O,n>lnEW.}U{<l,m>lmEW.}. 
]. J. J. ) 

o 

Lemma 5.2.4 

~1. xw. and W. +W. are r. e. sets. Indeed there· are recursive 
J. J J. J 

functions Prod and Sum s.t.: 

W~XWj=wProd(i,j) 

W • +w . =WS (. J')' 
1 J urn J., 

Eroof In.lm.< ~. (n),~.{m»=~.x •. is a partial recursive function 
- J. J J. J 

whose range is W.xW .• Thus Prod is a recursive function s.t.: 
J. J 

~Prod(i,j)=~iX~j' 

Let Sum be a recursive function s.t. Sum (i,j) is an acceptable 

index of a program which, in parallel, enumerates W. and W. 
J. ) 

using ~dv2(i) and ~dv2(j)' and which outputs <O,n> once ~dv2(i) 

generates n and <I,m> once ~dv2(j) generates m. 

IZl 

Definition 5.2.5 

Given an r.e. set Wi and a computable equivalence 

predicate E:WixWi~{O,I}, there is a partial recursive function 

lE s.t. 
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where e is a cl index of E. Note that rE is recursive if 

Wi~0, otherwise lE is everywhere undefined. Also notice that 

if Wi=0 then [~dV2(i) (n)]=0 and Wi/E=0. Thus fE(n) contains 

enough infromation to generate [~dv2(i) (n)]. Thus we define: 

w./E=range(fE)· 
1 . 

o 

Lemma 5.2.6 

There is a recursive function Qut s.t. if E is a computable 

e~uivalence predicate E:\lixWi+{O,l} with a cl-index e, then: 

W
Q 

t ( . ) =\'1 . lE . u 1,e 1 

proof Construction of lE is uniform in i and e. 

IZI 

By virtue of (2)-5.1.1.2, in 5.2.5 and 5.2.6, we can take 

e as a c 2-index of E. 

Theorem 5.2.7 

RECl,REC1',REC2 and REC2' are effective binary product 
\ 

and effective binary coproduct closed. 

proof Note that WiXWj=Wprod(i,j). Define 'Ifl:Wi xWj +l'l i by 

n «m,n»~m if H.xW.j,), otherwise the empt.y function. Let. 'lf1: 
1 1 J 

NxN+N be a recursive function s.t. ~l«m,n»=m. Obviously nl 

is the restriction to WixWj of ~l. Define P2
1 

to be a recursive 

function s.t. ~P21 (i,j)=nl· By virtue of (2)-5.1.1.2, we also 

have a recursive function Pl 1 s.t. P1 (i,j) is a Cl-index of 
1 

nl. Let f:Wk+Wi and g:Wk+Wi 'be partially computable function' 

with c 2-index x and y respecr.ively. Define <f,g>:Wk+HixW
j 

by: 

<f,g>(z)=<f\z),g(z» if Wk~~ 

otherp:"bc the empty function. Let <f,g>:N 2+N:ay .. <f(a),g(a» 

where f and g are partial recursive functions and f and g are 

the restriction to Hk of them, i.e. f=~x and g=~y. Obviously 
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<f,g> is a partial recursive function and <f,g> is the restric-

tion to W
k 

of it. Thus <f,g> is a partially computable func­

tion. Since the construction of <f,g> is uniform in f and g, 

there is a recursive function h s.t. h(i,j,k,x,y) is a c 2-

index of <f,g>. By S-m-n theorem, there is a recursive function 

p-Med2:N2~N s.t.: 

~P-Med2(i,j) (k,x,y)=cj>h (i,j,k,x,y)=<f,g>. 

Thus (Wp d (. .)' 'IT l: Wp d (. .) -+ W • , 'IT 2 : Wp d (. .) -+ W . ) 
1'0 1,) 1'0 1,) 1 1'0 1,) ) 

is an 

effective product with a product index: 

«Pl'od(i,j) ,i,j,P2
l
(i,j) ,P2

2
(i,j»,P-med2Ci,j» • 

Note P2 2 is similarly defined, for 'IT 2 in REC2, to P2 l for 'lT2 

in RECl. Thus REC2 is effectively binary product closed. By 

virtue of (2)-5.l~l.2, RECl also is effective binary product 

closed. In the above proof, 'lT l and 'lT2 are obviously total. It 

can readily be seen that <f,g> is total. Thus both RECl' and 

REC2' are effective binary product closed. Effective binary 

coproduct of W. and vI . . is Ws (. .) with il:W. +WS (. .) and 1 ) urn 1, J 1 urn 1,) 

s.t. 

il(n)=<o,n> if 

i
2

(n)=<l,n> if 

Theorem 5.2.7 

otherwise the empty function, 

otherwise the empty function. 

RECl' and REC2' are effectively w-cocomplete. 

IZI 

£roo [ Think of the follwoing effectively generable w-codiagram 

G in REC2' with index k: 
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f .. =f.· ••. ·f .. It can readily be seen that the w-sum 
1.J J 1. 

of G is an r.e. set and for some recursive function du: 

llW . ( . ) 
i g 1. 

Obviously R={«i,x>,<i,y»lf .. (x)=y} is a computable binary 
1.) 

predicate over llW ('). Let E be the smallest equivalence 
i g 1. 

relation over llW (.) containing R. It can readily be seen that 
i g 1. . 

E is a comp'utable equivalence with a c 2-index Equ (k) for some 

recursive function Equ. By 5.2.6, there is a recursive function 

w-Cotim s.t.: 

(ij.\'lg (i» /E=Ww-CoZim (k) • 
1. 

otherwise t.he empty function. 

Define An:N~N by: 

In (x) =f E (llm. <n, x>=<j> dv2 (w-Co Zim (k) ) (m) ) • 

Obviously In is a partial recursive function c.nd An is the rest·-

riction to Wg(n) of it. Also An is total. Thus An is a computable 

function. Since the construction of A is uniform in k, there n 

is a recursive function w-Cocone s.t. <I> C (k) is recursive w- ocone . 

and <l>w-Cocone(k) (n) is a c 2-index of An. Le t < 5 : W ( ) ~W > n g n m 

be an effectively generable w-cocone of (G,k) with an index 

<m,b>. Define e:Nw-Cotim(k)-+Wm by: 

e«<n,x>,Equ(k»)=o (x) if W . . 1\21 
~ w-Col~m(k) 

otherwise the empty function. 

It can readily be seen that e is the unique total computable 
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function which makes the following diagram commutes: 

. . . . . 

Define e:N-+N by: 

Obviously e is p~rtial recursive and e is the restriction to 

W of it. Let w-Comed be the following recursive 
w-Cotim(k) 

function: 

<P<p (m,b) (y)=<P<p (1T '1T (y» (1T 2 °1T l (y». 
w-Comed(k) b 1 1 

Thus we have established that RLC2' 1s effectively w-cocomplete. 

By virtue of 5.1.1.2, REC1' is also effectively w-cocomplet.e. 

Corollary 5.2.9 

Both REC1' and REC2' are effective:w-categorieso 

proof By 5.2.2 and 5.2.8. 

Let REC' be the category of r.e. sets and computable 

functions. Consider the following two functors: 

x: REC' xREC' -+REC' +:RECllxREC'-+REC' 

x (W ,W' ) =WxW' + (W, w' ) =W+W' 

x (f:W-+W' ,g:W'-+W") +(f:W-+W' ,g:W'-+W") 

=fxg :WxW '/+W' xW" =f+g:W+W'~W'+W" 

:<a,b>-)-<f(a) ,g(b» :<i,x>-+if i=O then <i,f(x» 

else <i,g(x». 
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Lemma 5.2.10 

+ and x defined above are effectively continuous functors 

w.r.t. both REC1' and REC2'. 

proof Notice that an object in REC2'xREC2' with an index x is 

(W
nl

{x),W
n2

(X)}' Therefore f ob (x)(x)=Prod(nl(x),n 2 (x». 

a morphism from (W () W (» to (W (),W (» with n l x I TI2 x n l y TI2 Y 

index i in REC2'xREC2' is: 

Also 

an . 

where 3 is the morphism indexing of REC2'. Let r be a recursive 

function satisfying: 

cj> xcj> =<1> ( ):N-+K:<a,b:..t-t<cj> (a),cj> (b~>. x y r x,y x y 

Thus f
mr

(x)(x,y,i)=r(n l (i),n 2 {i». Thus x is an effective 

functor from REC2'xREC2' to REC2'. Let <i,j> be a functor index 

of x. Let (G,k) be an indexed w~codiagram in REC2'xREC2'. Let ~ 

be an effective w-colimiting cocone of (G,k) with an index 

«x,y>,z>. Obviously x(~) is an effectively gcnerable 

w-colimiting co cone of (x'G,fdg(i,j,k». 

Notice ~hat for any indexed w-cocone (5,<a,b» of (x~G, 

fag(i,j,k», S'={nloo,n2oo)=«1Tloon>,<1T2oom» is an effectively 

generable w-cocone of (G,k) with an index s{a,b) for some 

recursive function So Obviously x(~)=oo Remember that 

cj>z{1T1's(a,b),n2os(a,b» is an index of the mediating morphism e 

from ~ to ~. It can readily be seen that x(e) is the mediat­

ing morphism from x(~) to x(S')=~. Notice that x(s) has a c 2-

index: 

r(nlocpz(nl·s(a,b),n2·s(a,b»,n2·cj>z(nl·s(a,b),n2os(a,b)»0 

Let h be a recursive function satisfying: 



</> h ( z) (a, b ) =1' (1T 1 • </> z (1T 1 • s (a, b) , 1T 2 • s (a, b) ) I 

1T 2 ·<I>z(1T 1 ·s (a,b) ,1T 2 ·S (a,b»). 

Then obviously x(~) has a colimiting index: 

<f (i, j ,x,y) ,17 (z) >. 
cocone 
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Thus x is effectively continuous wrt REC2'. By virtue of 

5.1.1.2, x is effectively continuous wrt REC1'. 

Similar proof establishes that + is effectively continuous wrt 

both REC1' and REC2'. fLl 

As a familiar example of the effectively initial a1gebras, 

we can think of Kleene 1st recursion theorem on enumeration 

operators. Let REIl and REI2 be the indexed categories obtalned 

from REC1' and REC2' by restricting the morphisms to inclusion 

maps. It can readily be seen that both RECl and REC2 are 

effective w-categories. Let ~z be an enumeration operator (see 

Rogers[14]) of an index z. We can regard this as an effectively 

continuous functor REI1~REl1 by: 

~ (W. cW . ) =~ (W.) c ~ (W.). z 1- J Z 1 - Z ) 

This obviously is well-defined since t z is monotone wrt c. 

In fact there is a recursive function c s.t. c(z) is a continuity 

index of ~z. The least fixed-point of ~z,·whose existence 

guaranteed by the 1st recursion theorem is the effectively 

lnitia1 ~z-a1gebra. The same argument holds for REI2. In the 

next section, we will study another characterization of the 

Kleene 1st recursion theorem. 
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5.3 Effective O-categories 

As for the case of non-constructive categories, a lot of 

concrete effective categories have some effective po structure 

on their horn sets. This leads to the following notion of 

effective O-category, which is an effective version of 

Wand [29] O-category~ 

Defi"ni"tion 5.3.1 

An effective O-category is an effective category (~,K,d) 

satisfying: 

(1) For each ordered pair (a,b) of object indices, llom(K (a),K (b» 

is a poset which is ':) (a, b) -effect.1. ve cO'1lplete, More spec i fically, 

given any non-empty chain <fn> in Hom(K (a),K (b» s.t. for some 

r ecursive function c, f =a(a,b) (c(n», we have ~f ~llom(K(a) ,K(b». 
"n n 

In case ~.=c, we say that this a (a,b)-effective chain <f > has 
J n 

a chain index j. Furthermore, there is a recursive function 

Lub s.t. if <f > has a" chain index j, then 
n 

Ufn=a (a,b) (Lub (a,b,j». 

(2) The composition of morphisms is effectively continuous, i.e., 

if <f.> and <g.> are a (a,b)-effective chain and a (b,c)-effective 
1. 1. 

chain respectively, then we have: 

(Ugi )· (ufi)=Ugi·fi , 

where g.·f. obviously is a a (a,c)-effective chain, since (K,K,a) 
1. 1. 

1.~ ~n effective category. 

It can readily be seen that EGD(*) ,ED(*) ,EGS(*) and ES(*) 

are all effective O-categories. To observe this, remember 2.1.11, 

3.1.2, etc. It is at least worth while to mention that REel is 

an effective O-category with the extensional ordering as the 

partial ordering on horn sets. 
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To observe this, notice that if f,g:W.~W. are partially 
~ J 

computable and have Cl-indices n and m respectively, then: 

iff <I> c<I> • n- m 

Furthermore if <fn:Wi~Wj> is a () (i,j)-effective chain with a 

chain index k then: 

But there is a recursive function Lub s.t.: 

Definition 5.2.2 

Let (K'K,a) be an effective O-categoryo A pair (f:A4B, 

g:B4A) of K morphisms is a projecLion pair from A to B iff 

fog_id
B 

and gof=idA. We call 9 the E.rojection (of this pair) 

anf f the embedding (of this pair). 0 

It can readily be seen that an embedding f (or a 

projection g) uniquely determines amorphism fR(or gL) s.t. 

(f,fR) or (gL,g» is a projection pair. We will call fR the 

(right) adjoint of f and gL the (left) adjoint of g. 

One might expect some kind of effectiveness constraint in 

the definition of projection pairs. For example, one might ask 

what if we make the unique correspondence of an embedding and 

its adjoint effective. More precisely, ask the existence of 

recursive functions Lad and Rad s.t. if f=a(i,j) (n) is an 

embedding then fR=a(i,j) (Rad(i,j,n» and if g=a(i,j) (m) is a 

projection, then gL=a(j,i) (Lad(i,j,m». But in our main model 

of effective O-category, which is the category of effectively 

given domains and computable functions with acceptable indexing 
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for the object indexing and the directed indexings for ,the 

morphism indexings, the existence of Rad and Lad is doubtful. 

Defihition S.3.3 

Given an effective a-category (~'K,a), the category of 

projection pairs of (!5.,K,a) , in symbols (K,K,a)P is a triple 

'(KP 'K P ,a P ) where K
P 

is as in 1.4.10, K=K P and if (a (a,b) (i), 

a(b,a) (j» is a projection pair then: 

aP(a,b) «i,j»=(a(a,b) (i),a(b,a) (j». 
p 

We will denote HomKP(A,B) and id~ by HomP(A,B) and id~ 

respectively. o 

I~ can re&diiy be seen that lX,K,a)P is an eff~ctive 

category. 

Defihition 5.3.4 

We say an effective a-category (~,K,a) is effectively 

empty chain complete iff 

(1) Hom(A,B) has the least element lA,B and there is a recursive 

function Bottom s.t.: 

lK (a) , K (b) = a (a, b) (B 0 t tom ( a , b) ) • 

(2) IB,c'f=lA,c for every f:A~B. o 

Notice that (1) is concerned with the effective existence 

of the 1ub of the empty chain, and (2) is concerned with the 

effective continuity of the composition wrt the empty chain. 

To characterise the effective continuity of the composition 

wrt the empty chain, we need one more condition, which we will 

discuss later between 5.3.12 and 5.3.14. 
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Lemma 5.3.5 

If (~'K,a) is an effectively empty chain complete effective 

O-category, then the final object 1, if any, is effectively 

initial in (K,K,a)P. 

proof Let K(i}=l. If f,f':l-+-K (a) are embeddings then they are 

the same, for they have the same right adjoint: 

a (a, i) (B 0 t tom (a, i) ) = ~ ( a) ,1 

for 1 is the final object. It can readily be seen that 11,K(a) 

is the embedding with the right adjoint 1 1 But we have: K (a), • 

11'K (a) =a (i,a) (Bottom (i,a». 
P 

Thus 1 is effectively initial in (~,K,3) , for it has an ini-

tiality index <i,j> where: 

~.(a)=<Bottom(i,a),Bottom(a,i». 
J 

Let (K,K,a) be an effective O-category, then there are 

recursive functions pr and em s.t. if (~=<A ,(f ,fR»,i) is 
n n n 

P 
an indexed w-codiagram in (K,K,3) then: 

(1) 

(2) 

(aP=<A ,fR>,pr(i» 
n n 

(6E~<A ,f >,em(i) n n 

Lemma 5.3.6 

is an indexed w-diagram in (K,K,3). 

is an inde~ed w-codiagram in (K,K,3). 

!lJ 

Let (K,K,3) be an effective O-category and (6=<An , (fn,f~», 

i) be an indexed w-codiagram in (K,K,3)P. If v=<~n:A-+-An> is 

an effective w-limiting cone of (6
P
,pr(i», with an index 

L «a,k>,x>, then vn is a projection for each n and <v ·v > is n n 
a 3 (a,a)-effective chain s.t. idA= v~.v~. In fact there is 

a recursive functio~ La s.t. La(i,a,k,x) is a chain index of 

L 
<I) ·V >. n n 
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R R We use a convention (frnm,frnm)=(fm,fm). For each Am=K (~l·~i(m» 

=K (~l·4>pr (i) (m», define a cone v (m)=<v~m) :Am+An> of b,P by: 

v~m)= .!£ m:5:n then fmn else .f~n. 
It can readily be seen that there is a recursive function l' G.t. 

(v (m) '<~l.~i(m),r(i,m») is an indexed w-cone of (AP,pr(i». 

Since v is an effective w-1imiting cone of (AP,pr(i» with an 

index «a,k>,x>, there is a unique morphism 0 :A +A s.t. m m 
(m) . h I f t v ·a =v for eac n. n ac n m n 

am=a (~l· ~ i (m) ,a) (~x (~l· 4> i (m),r (i,m»). 

It can readily be seen that 0m·~~am+l·vm+l. 

Since v =1 (a'~l·~· (n» (~k(n», we have: n 1 

6 m·vm=a (~l·~i (m) ,a) (4)x(~l·4>i (m) ri" (i,m» 

a (a'~l·4>i (n» (4)k(n)) 

=a (a,a) 

(a -Compose (~1 .4> i (m) , a, ~ 1· <jl i (m) , 

~x (~l· 4>i (m) ,1' (i,m», ~k (m») • 

Thus <8 ·V > is a a (a,a)-effective chain with a chain index 
m m 

Lo(i,a,k,x) where Le is a recursive function satisfying: 

<jl L e ( i , a , k , x) (m) = a - Co mp 0 s e (~ 1 • 4> i (m) ,a, ~ 1 ~ ~ i (m) , 

4>x(~l· 4>i (m) ,1' (i,m», 4>k (m». 

It can readily be seen that U8m·vm=idK(a) and (Om'vm) is a 

projection pair. 

Lemma 5.3.7 

Let (K, K, a) 

i) be an indexed 

IZJ 

be an effective O-category and (A=<A ,(f ,fR», 
n n n 

w-codiagram in (K,K,a)P. Assume that (~,~R) 

=«~n'~~) :An+A> is an effectively generable w-cocone with an 
R 

index <a,k> of (A,i) s.t. <~n·~n> is a (a (a,a)-effective) chain 
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and u~ .~R=idA· There are recursive functions u and v s.t.: 
n n 

(1) (~,~R) is an effective w-co1imiting cocone of (h,i) with 

an index «a,k>,u(a,k,i». 

(2) ~ is an effective w-co1i1miting cocone of (~E;em(i» with 

an index «a,Zt(k»,v(a,k,i», where Zt is as in the proof 

of 5.1.14. 

'proof Let (Jl'=<~~:An+A ,<a',k'» be an indexed w-cocone of 

(6 E ,em(i}) in ·(.!S.,K,a). It can readily be seen that <ll"llR> is .n n 

a a (a,a')-effective chain with a chain index h(a,k,a'k',i) for 

some recursive function h. In fact: 

<Ph (a,k, a' , k ' , i)' (n) =a-Compose (a, 'IT 1· <P i(n) , a I , 'IT 2 • 'IT 2· <P i (n) , 'IT? • <P em (:i , (n) ) • 

R Let e=u~"~ . It can readily be seen that e is the unique mor­
n n 

phism which mediates from Jl to ~'. By the first axiom of the 

effective O-category, we have: 

e = a (a, a ') (L ub (a, a' , h (a, k , a ' , k ' , i) ) • 

Let u be a recursive function satisfying: 

<P u (a, k, i) (a' , k ' ) = L ub (a, a ' , h (a, k , a ' , k ' , i) ) • 

Then Jl is an effective w-co1imiting cococne of (6E ,em(i») with 

an index «a,lt(k»,u(a,k,i». 

For ().J,Jl R),. assume that «).J',ll,R):h+A',<a',k'» is an .indexed 

w-cocone of (6,i). Then (ll'=~).J~:An+A'>,<a',Zt(k'») is an 

E 
indexed w-cocone of (6 ,em(i». Thus 

e=a(a,a') (<Pu(a,k,i) (a' ,It(k'))) 

is the unique morphism mediating from ~ to JlI. R Now <Jl ·ll' > n n 

can readily be seen to be a a (a',a)-effective chain with a 

chain index g(a',k',a,k,i) for some recursive function g. 

Let eR=UlJn·ll~R. Then we have: 
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e R= a (a • , a) CLub (a • , a , g (a • , k • , a , k , i) . 

It can readily be seen that (e,eR) is a projection pair. Now 

let v be a recursive function s.t.: 

4>V( k .)Ca'.k')=<4: ( k .)(a',l.t(k'»,Lub(a',a,g(a',k',a,k,i»> • . a, ,l. u a, ,l. 

Thus (p,pR) is an ef~ective w-colimiting co cone of (6,i) with 

an index «a,k>,v(a,k,i». 

The following effective version of the limit and colimit 

coincidence gives us a sufficient condition for an effective 

o-category to yield an effectively w-cocomplete category. 

Definition 5."3.8 

An ef£ectjve O-cvtegory (K,K,a) haF the effective 

s-property iff for every indexed 

there exists an indexed w-cocone 

w-codiagram (6,1) in (!,K,a)P, 

R 
«lltlJ ) ,<a,k» of (~,i) s.t. 

pR is an effective w-colimiting cone of an indexed w-diagram 

CAF,pr(i» in (K,K,a), with an index «a,rt(k»,x> for some x. 

«((p,pR),<a,k»,x) is called an ~ffective S-cocone of (A,i). 

Such (!, K, a) has theeffec.tive S-complete property iff there 

are recursive functions w-Zim,w-~ocone and w-med s.t. 'for every 

w-codiagram (6,i) in (K,K,a)P, 

« (ll,pR) ,<w-Zim(i) ,w-cocone (i) » ,w-med(i» 

is an effective s-cocone of (6,1). 

o 
,!,heorem c;. hl 

Let (K,K,a) be an effective O-category with the effective 

s-property. Then for every indexed w-codiagram (~,i) of (K,K,a)P, 

if «(p,pR),<a,k»,a) is an effective S-cocone of (6,i) then 

(PI pR) is an effective w-colimiting cocne with an index 
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< < a ,k> ,v (a, k, i) >. Also 1l:1l E+K (a) is an effecti vc w -colimi ting 

cocone of (Il E,em(i» with an index «a,Zt(k» ,u(a,k,i». Note 

u and v are recursive functions defined in the proof of 5.3.7. 

proof (IlP,p~(i» is an indexed w-codiagram in (K,K,a). Since 

« (ll 'llR) ,<a,k» ,x) is an effective S-cocone of (11 ,i), llR:K (a)-'­

Il P is an effective w-limiting cone of (IlP,p~(i» in (K,K,a) 

with an index «a,rt(k»,x>. By 5.3.6, llR is a projection for n 

each n, and <ll ·llR> is a a (a,a)-effective chain with a chain n n 

index Lc(i,a,~t(k) ,x) s.t. idK (a)=Ulln·ll~. thus by 5.3.7, (ll,llR) 

is an effective w-colimiting cocone of (~,i) with an index 

«a,k>,v{a,k,i», .and II is an effective w-colimiting cocone 

of (~E,em(i» in (~,K,:q with an index «a,Zt{k»,u{a,k,i». 

Notice that this theorem indicates the limit and colimit 

coincidence, for llR is an effective w-limiting cone. The 

next theorem is an even stronger reflection of the limit and 

colimit coincidence in effective O-categories with effective 

s-property. 

Let '(~,K,a) be an effective O-category with the effective 

R .. 
s-property and (~=<An,(fn,fn»,1) be an indexed w-codiagram 

in {K,Kfd)P. For an indexed w-cocone «v,vR):A+K(a),<a,k» of 

(11, i), the following satatements are all equivalent: 

(1) (V(~R) is an effective w-colimiting cocone of (A,i) with 

an index «a,k>,j> for some j€N. 

(2) v is an effective w-colimiting cocone of (Il E ,em(i» with 

an index «a,Zt(k»,j> for some j€N. 

(3) <Vn·V~> is a a (a,a)-effective chain s.t.: 
R 

idK(a)=Uvn·vn • 
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(4) v R is an effective w-limiting cone of (~P,pr(i» with an 

index «a,rt{k»,j> for some jEN. 

proof By 5.3.6 (4) "implies (3). By 5.3.7, (3) implies (1) and 

(2). Now assume (1). By the effective S-property we have an 

effective S-cocone ({{~,~R),<x,y»,z) of the indexed 

w -codiaqram (~, i)' in (l< , K , Cl ) p. As we proved in the previous 

theorem, (~,~R) satisfies (I), (2), (3) and (4). By the univer­

sality, we have: K(x)~K(a) via (e,eR}:K (x}+K(a) where 

a=a (x,a) (~v (x,y,i) (a,k)). 

Also v =8·~ for each n. Therefore we have: n n 
R R R 

U" ." =ua·~ .~ ·a n n n n 

R R 
=8· (U~ • ~ )·0 n n 

=O.idK(a)·e
R 

=id ( ). 
" K a 

Therefore (1) impUes (3), thus by 5.3.7, {2}. Notice ~R is 

an effective w-limiting cone of (~P,pr{i)}. Also K(a)~K{x) via 

(S,eR):K(x)+K(a). Therefore by the argument between 5.1.3 and 

5.1.4, "R is an effective ro-limiting cone of (6P ,pr(i» with 

an index «a,rt(x»,j> for some jEN. Thus (1) implies (4). 

Ass~\'" {2}. By universality K {x} ~K Ca}, thus by the argument 

between 5.1.3 and 5.1.4,' (v,,,R) is an effective w-colimitinq 

co cone of (~,i). Th~s (2) implies (1). 

III 

Definition 5.3.11 

An effectively empty chain complete effective O-category 

with the final object and the effective S-property is an 

effective Darn-category. III 



Theorem 5.3.12 
p 

If (K,K,a) is an effective Dom-category then (K,K,a) is 

an effective w-category. 

proof By 5.3.9 and 5.3.5. 

In the above, we have studied when an effective O-category 

induces an effective w-coategory as its projection pair category. 

As we will see later in 5.3.23, EGD(*) ,ED(*) ,EGS(*) and ES<*) 

are all effective Dom-categories and: 

(EGD)P=(EGD*)P=EGDP 

(ED)P=(ED*)P=EDP 

(EGS)P=(EGS*)P=EGSP 

(ES)P=(ES*)P=ESP • 

This indicates that we have properly categorized the process 

of restricting morphisms of effective O-catEgories to projcc-

tion pairs. It should be noted that both RECl and REC2 are 

effective Dom-categories and so, (RECl)P and (REC2)P are 

effective w-categories. Here the morphisms are inclusion maps 

with the partial identity maps as the adjoints. It can readily 

P p 
be seen that (RECl) and (REC2) behave samely as REIl and REI2 

respectively, as effective w-categories. 

So fa)., the only known improtant example of an effective 

w-category which ca!' not "naturally" be obtained from an . 

effective Dom-category is an effective domain as a category 

together with the directed indexing as the object indexing and 

the trivial indexings as the morphism indexings. 

As in case of non-effective O-categories, surveyed in 1.4, 

the empty chain completeness condition of 5.3.4 omitted the 

right half of the effective continuity of the composition wrt 
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the lub of the empty chain, more specifically: 

f'lA,B=lA,c for all f:B~C. 

This condition has the effect of restrciting morphisms to 

strict maps. Given an effective Dom-category (~,K,a), let 

(~'K,a)* be the effective Dom-category ~btained from (~,K,a) 

by restricting morphisms to those satisfying above condition. 

Lemma 5.3.13 

Let (K,K,a) be an effective Dom-category. Then the final 

object 1 is an effectively initial object in (K,K,a)*. 

proof Let K(i)=l. By the same argument as in 1.4.19, 11,A:l~A 

is the unique morphism from 1 to A in (~'K,a)*. But 

11 =a(i,a) (Bottom(i,a» where A=K(a). Therefore 1 has an 
,A 

initiality index <i,j> in (K,K,a)* where $j(a)=Bottom(i,a). 

Lemma 5.3.14 

If (K'K,a)=(~I'Kla')* for some effective Dom-category 

(K',K',a') then (K,K,a)*=(!5.,K,a). 

Definition 5.3.15 

III 

III 

We say that an effective O-category (~,K,a) has locally 

determined effect~ve w-colimi ts of ernbeddings ,iff for every 

R 
indexed w-cocone «v'v ) :6~K(a),<a,k» of an indexed 

p 
w-codiagram (6,i) in (K,K,a) the following statements are 

equal: 

(1) (V,lJR) is an effective w-colimiting cocone of (6,i) with 

an index «a,k>,j>. 

( 2) <~ ·lJR> is a a (a,a)-effective chain s.t. id ( )=UP .pR. 
n n K ann 

o 
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Corollary 5.3.16 

Every effective O-category with the effective S-property 

has locally determined effective w-601imits of embcddings. 

proof By 5.3.7 and the proof of 5.3.9. 

Lemma 5.3.17 

Let (K,K,a) and (K"K',a') be effective O-categories. Then 

we have: 

effective O-category. 

(2) (K,K,a)x(!',K',a') is an effective O-category. 

For the proof of this lemma, remeInber the partial orderings 

of KOP and Kx~'_ as in the remark immediately after 1.4.7. 

We consider throughout the rest of this section, three 

effective O-categories (K, K, a) , (L, n, 1jJ)' and (M, '{ , t;), and 

covariant functors T:KOPX~7~. The reason for doing this is to 

cope with the function space functor which is contravariant on 

the 1st argument. This restriction does not harm the generality 

of arguments, fora pure covariant functor can be obtained by 

taking K to be the one point category and a contravariant one 

can be obtained by taking L to be the one point category. For 

details see P10tkin & Smyth [24]. 

Definition 5.3.18 

A functor T:KOPx~7M is locally effectively monotone wrt 

) ( OP » ~ff T' ff ( OP «KXn,' , d yw,~. ~s e ective wrt «KXn,')' a xljJ,~)} 

and for f,f':A7B in K
OP 

and g,g':C7D in L, fcf' & g£g' 

implies T(f,g)~(f',g') o 
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Lemma 5.3.19 

There is a recursive function Pm s.t. if T:KoPXL+M is a 

locally effectively monotone functor with an index <x,y>, then 
p p p p 

a functor T :(K,K,d) x(L,n,~) +(M,.,~) defined by: 

P T (A,B)=T(A,B) 

TP ( (f , fR) , (g, gR) ) = (T (fR , g) , T (f , gR) ) 

is effective wrt «KXn,')' (aPx~p,~p» and has an index 

Pm«x,y». We will write TP«f,fR), (g,gR»l for T(fR,g) and 

P R R R T « f, f ), (g, g » 2 for T (f , g ). 

proof Obvious. IZJ 

De:f:ini ti0_n 5.3.20 

A functor T:!oPX!!+~ is locall¥. effectively continuous iff 

it is effectively continuous on morphism sets, nlore specifically 

if <fn> is a aOP(a,b)-effective chain and <gn> is a a(c,d)­

effective chain then: 

T(Ufn,Ugn)=UT(fn,gn)~ 

Notice that T(fn,gn) is a • (fob (T) «a,c» '!ob (T) «b,d»)­

effective chain for T is effective. Thus T(Uf Ug) is n, n 

well-defined. o 

Now the following theorer:J. tells when an effective functor 

from an effective O-category. to another induces an effectively 

continuous functor via the construction of 5.3.19. 

Theorem 5.3.21 

Suppose T: (K'K,d)oPx(L,n,~)+(M,.,~) is a locally effectively 

continuous functor and both (K,K,d) and (~,n,~) have locally 

determined effective colimits of embeddings. Then TP : (K,K,d)P X 

(L,n,~)P~(M'T'~)P is an effectively continuous functor. 
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proof Let (A=«An,Bn ), «fn,f~), (gn,g:}}>,i) be an indexed 

w-codiagram in (~'K,a}Px(L'll'tIJ}P+(!:1'T,r;)P. Also let 

«alaR), (~,~R»:A+(A,B) be an effective w-colimiting coccone 

of (A,i) with an inedx «<a,b>,k>,x>. Evidently (a,a R
) :~L.~A is 

an effective w-colimiting cocone of (AL,Zt(i)) with an index 

«a,Zt(k»,Zt(x». Also (~,~R):AR+B is an effective w-colimitirlC] 

cocone of (AR,rt(i» with an index «b,rt(k»,rt(x», where Zt 

and rt are as in the proof of 5.1.14. By the assumption of the 

theorem,<~ .~R> and <a .oR> are effective chains and 
n n n n 

id =U~ .~R. Let <c,d> be a functor index of T
P

• Then 
B n n 

• . R 
l.dA=lJo .0' , n n 

P 
(T • A I 

P 
fdg(i,c,d» is an indexed w-codiagram in (!:1'T'~) and 

('l,P ( (o,\J'P·) I ~~,6R» :TP.A+'rP(A,B) 'f (c,o,<a,b>,k») is an 
cocone 

indexed w-cocone of (T~A'fdg (i~c,d» I ·~or TP is effective and 

we have 5.1.5. Now we have: 

P R R P R R 
T «an,on)'(~n'~n)}l·T «an'O'n)'(~n'~n»2 

R R 
=T(an·an'~n·~n)· 

Thus 
P R R P R R 

T «an,an),(on,on»l·T «an ,an ),(on,on}}2 is an effective 

chain since T is locally effectively continuous. Furthermore 

it can readily be se~l that: 

p R R P R R 
UT « a n I an) , (0 n IOn) ) 1 • T « an' an) , (0 n ,on) ) 2 

=idT(A,B)' 

P R R Therefore by 5.3.7, T «0',0 ) ,(0,0 » is an effective w-colimiting 

cocone with an index: s(a,b,k,x,i) 

s(a,b,k,x,i) 

= <fcocone(c,d,<a,p>,k), 

u(~l·fcocone(c,d,<a,b>,k) '~2·fcocone(Cldl<a,b>,k),fdg(ilc,d»>. 

s above can obviously be considered as a recursive function. 

P Thus T has a continuity index «c,d>,j> where ~.=s. 
) 



Corollary 5.3.22 

Let (K,K,3) and (~'n'~) be effective O-categories with the 

effective S-property and (~,t'~) be an effective O-category. 

If T: (K'K,a}oPX(~'n'~}4(~'T'~) is locally effectively continuous, 
p p p p 

then T :.(K,K,a) x(L,n,~) 4(~'T,d is an effectively continuolls 

functor. 

proof By 5.3.21 and 5.3.16. !Zl 

Now we will check if we have obtained the right kind 

of abstraction. 

Theorem 5.3.23 

EGD.ED,EGS and ES are all effective Dom-categories. '.T'rus 

p. p p P 
by 5.3.12, EGD ,ED ,EGS and ES are all effective w-categories. 

Eroof We prove this for EGD. Almost the same argument establishes 

this theorem for the others. By 2.1.7, the composition is 

recursive wrt indices. It is evident that from an acceptable 

index <i,j> of an effectively given domain (D,£), we can 

construct the graph of idD, which is {<n,m>I£(m}~£(n)}. By 2.1.6, 

in EGD, we have a recursive function Idt s.t. IdK(a}= 

a(a,a) (Idt(a». Thus EGD ·is an effective category. It is obvious 

that EGD has the final ob~ect, namely the effectively given one 

point cpo. Hom(K(i},K(j}} always has the least element lK(i) ,K(j) 

=~X€K(i).lK(j} where lK(j) is the bottom of K(j). It is obvious 

that there is a recursive function Bottom s.t. a(i,j) (Bottom(i,j» 

=lK(i),K(j)· Obviously lK(i),K(j)·f=lK(m),K(j) for all f: 

K(m)4K(i). Thus EGD is effectively empty chain complete. By 2.1.11 

EGD is an effective O-category. Now let (~=<D€n, (f ,fR»,i) be 
n n n 

an indexed w-codiagram in EGD
P

. Evidently ~ is an effective 

sequence of computable projection pairs with a sequence index i. 



Let (f ,fR) =«f :D -+D ,fR 
:D -+0» be the universal cocone of h, 

0> co moo m 00 moo 00 In 

where (Ooo,e:co ) is the inverse limit of 11. Obviollsly «foo,fIJ, 

<IvZim(i),Ucocone(i») is an indexedw-cocone of (A,i) where 
~ , 

IvZim and Ucocone are as in 2.4.4 and 2.4.7. Thus (fR,<IvZim(i), 
00 

rt(Ucocone(i»» is an indexed w-cocone of (I1
P ,pP(i». 

E R Let (v= <v >:D ~11 ,<a,k» be another indexed w-cocone of n 
p . 

(11 ,pp(i». Let e:~oco be the following computable function: 

e (d) =< v 0 ( d) , •• , v n (d) , • • • •• >. 

It is obvious that e is the unique mediating map from fR to v, 
00 

i. e. , v =fR.e . Remember that e(d)=Uf .v (d). But we have: m m . moo m 

f =a(nl'·<j>, (m),IvZim(i) (nl·<j>u (') (m», moo 1 cocon4 1 

v
m

=;) (a,n l • <l>i (m» (4)k (m». 

Since EGO is an effective category, we have: 

f .\1 =a-Compose(1T1·<j>,(m),IVUm(i),a,1T1·cI>U (') (m),«j>k(m». moo m ~ cocone 1 

Let c be a recursive function s.t.: ' 

cl> (i k) (m) =f 00 • v • c , a, ID m 

It can readily be seen that fmoo·vm~f(m+l)oo·vm+l. Therefore 

<f ·u > is a a (a,IvZim(i»-effective chain with a chain index 
moo m 

c(i,a,k). Thus e=Ufmoo·"m· By the first axiom of the effective 

o-category, we have: 

e=Uf • v moo m 

=d (a,IvZim(i» (Lub (a,IvZim(i) ,c(i,a,k»). 

Let w-med be a recursive function s.t. 

<l>w-med(i) (x,y)=Lub (x,IvZim(i) ,c(i,x,y». 

Let w-Zim=IvZim and w-cocone=Ucocone. Then EGO has the 

effective S-property. In summary, we have established the 

theorem. III 
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Now we will observe that the domain constructors induce 

right kind of functors. 

Let 1 be the single object category and p,n be indexings 

which make (!,p ,n) an effective Dom-category. Define 

x: (l,p ,n ) oPx (EGDx EGD)-+EGD by: 

x (1, (Aa ,Bf3 »=Aa xB f3 

x (id
l

, (f:Aa-+A,a' ,g:BB-+B'S') )=fxg. 

Notice that essentially x is a functor x:EGDxEGD+EGD s.t. 

and x (f,g)=fxg. Then 
p p 

for x :(l,p,n) x 

(EGDxEGD)P4 (EGD)P, we have: 

'x P ( (id
l

; id}) , ( (f, g) , (fR, gR) ) ) 

=(x (idl , (f,g» IX (id!' (fR,gR») 

R R =(fxg,f xg ). 

P a (3 «a B) a (3 P P Also x (1, (A ,B ) )=x 1, A ,B ) =A xB • 'Since (EGD) =EGD and 

P P P P (ECDxEGD) =EGD xEGD , x can be considered as a functor 

,x P :EGDPxEGDP4EGD
P 

s.t.: 

xP (Aa ,BS ) =AaxBS , 

P ,R R R R, x «f, .. ) I (g,g ) )=(fxg,f xg ). 

Theorem 5.3.24 

x is a locally effectively continuous functor. Thus xP is 

an effectively continuous functor. 

proof It can readily be seen that from the graph of f:~(i)-+~(j) 

and g:i(k)4~(m), we can construct the graph of x(f,g). Thus 

is an effective functor for we have 2.1.4. If <fn > and <gn> are 

~(ilj)-effective chain and ~(k,m)-effective chain respectively 

then <x(idl , (fn,gn»>=<fnxgn > is a "t(Prod(i,k),~rod(j,m»­

effective chain. Also Ux(id l , (f ,g »=LJ(f"xg )=uf xUg = n n n n n n 

x(idl,U(fn,gn»· Thus we have established the theorem. IZJ 
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Remember. and 1; are the object indexing and the morphism 

indexings of EGD respectively. Also remember that 5.2.24 

implies that x
P is an effectively continuous functor. 

By almost the same argument as above, we can define an 

locally effectively continuous functor +:(!,p,n)oPx(EGDxEGD)~EGD 

and an effectively continuous fUl1ctor +P, for the domain 

constructor +. 

Definition 5.3.25 

For 

Define a functor ~: (EGD)oPxEGD~EGD by: 

~ ([ (i) ,1" (j ) ) = [~ ( :i.) ~ f, (j ) ] 

(f: 1" (i )'~~ (j) , 9 : f,; (k) ~1" (m) ) =).h £ [~ (i) ~f, (k) J • 9 ·h· f 0 

(+)P=+P:EGDPXEGDP+EGDP, we have: 

+p(Aa,BB)=[Aa~B8] 

+ p ( (f , f R) , (g, gR) ) = ( -+ ( fR , g) , + ( f , gR) ) 

lJ 

=(Ah€ [A+A' ] • 9 -h - fR, AhE [B~B' J. gR -h - f) 

where (f,fR) :A(1-+B 13 and (g,gR):A,a' -+B,8'. 

Theore!!l. 5.3.26. 

+ is a locally effectively continuous functor. Thence +P 

is an effectively continuous functor_ 

proof It can rea~ily be seen that from the graph of f:~(i)+C(j} 

and that of g:C(k)+t{m), we can effectively construct the graph 

of +(f,g). Therefore + is an effective functor, for we have 

2.1.4. Thus given ~(i,j)-effective cnain <fn> and C(k,m}-chain 

<g >, <+(f ,g » is a r;(Func(j,k),Func(i,m)}-effective chain. 
n n n 

Furthermore U+(f ,gn)=U).h E [1(j) +~(k) ].g -h-f :c).h€[1(j) -+f,(k)]. . n nn 

I h • -h of =+( Uf ,ll:J ). IJjn n n n 
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We can define locally effectively contlnuous functors x,+ 

and ~ over ED,EGS and ES. Also we can define effectively 

continuous functors xP,+P and ~P over EDP,EGS P and ESP. Details 

of these arguments i . .ce almost the same as above. 

Definition 5.3.27 
. op 

Definine a functor F[]: (!,p,n) xEGS~EGS by: 

F[] (l,Aa)=F[Aa ] 

a ~ A a 8 F[](idl,f:A ~B )=f:F[A ]~ F[B ]. 

u 
Theorem 5.3.28 

F[] is a loc~lly effectively continuous functor. Thus F[]P 

is an c~ffectively continuous functor. 

proof By 4.7.4 and 4.7.5, F[] is an effective functor. Let 

<f > be an effective chain. By definition of f, <in> is an 
n . 

effective chain. Furthermore: 

" ,-.. 
UF[] (idl,fn)=Ufn=Ufn=F[] (idl,Ufn )· 

Thus F[] is a locally effectively continuous functor. 

IZI 

We can define a locally effectively continuous functor 

F[] over ES. Also we can define an effectively continuous 

functor F[]P over ESP. Details of this is almost the same as 

above. 

P P P P It should be noted that for F[] : (l,p,n) xEGS ~EGS , 

we have: 

F[]P «idl'idl ), (f,fR» 

=(F[] (id!,f) ,F(] (idl,fR» 
A "'R 

=(f,f ). 
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5.4 More on Effectively Initial Algebras 

In the previous section, we observed that if (~,K,a) 

is an effective Dom-category then the final object 1 is an 

effectively initial object in (~,K,a)*. In this section, 

we study a very important implication of this coincidence. 

Definition 5.4.1 

Given an effective Dom-category (K,K,a), define 

EE' Ep.: (K, K , a ) p -+ (K , K , 3) by: 

EE(K)=Ep(K)=K 

EE ( (f , ~R) ) =f 

LeITLTtla 5. 4 .2 

R R Ep«f,f »=f • 

EE is an effectively continuous functor and it effectively 

reflects effective w-colimits~ In fact for some recursive Ref; 

if (6,i) is an indexed w-codiagram in {K,K,3)P, ((v,v R) ,<a,k» 

is an indexed w-cocone of (6
E

,em(i»=EE«6,i» with an 

index «a,Zt(k»,z> then (v,v R
) is an effective w-colimiting 

cocone of (6,i) with an index «aik>,Ref(a,k,z». 

proof Obviously EE is an effectively continuous functor. 

Since (K,K,a) has the effective S-property, there is an 

effective S-cocone (({~,~R) ,<x,y» of (6,i). As proved in 

5.3.9, ~:6E-+K(X) is an effective w-colimiting cocone of 

(6E ,em(i» with an index «x,lt{y»,u{x,y,i». Therefore 

K(x)~K{a) via (e,eR):K(x)-+K(a) where 

e=3 (x, a) (4) u (x, y, i) (a, Zt (k) ) ) and 

e R= a (a, x) (<f> z (x, Z t (k) ) } • 

As observed in 5.3.9, (~,~R) is an effective w-colimiting 



5.57 

cocone of (A,i) with an index «x,y>,v(x,y,i». Therefore by 

the arguments between 5.1.3 and 5.1.4, if (A,AR):h+K(C) is 

an effectively generable cocone with an index <c,d>, then 

(o·eR,e·o R) is the unique mediating morphism from (v,v R) to 

(A,A R) where (o,oR) is the mediating morphism from (~,~R) to 

(A,A R) given by: 

0=3 (x,c) (1T l '<I>V(x,y,i) (c,d»==3(x,c) (4)Zt(V(x;y,i)) (c,d» 

R 
a =3(c,x) (1T 2 '4>V(x,y,i) (c,d»=3(c,x) (4)1't(V(x,y,i)) (c,d». 

Thus we have: 

R' Z a·e =a(a,c) (3-COmpOse(a,x,c,<I>U(V(x,y,i» (c,d) ,4>z(x, t(k»», 
, 

O'l1R.=~(a,~)(a-COn'fi"Sb(c,x,a,<I> ( i) (a,Utk»,4> t( ( i,»(-=,d»). u x,y, l' V x,y, 

Thus we have est:ablished the lemma. 

III 

Note that for the definitions of It, em, and u, readers 

are refered to the proof of 5.1.14, the comment right after 

5.3.5, and 5.3.7. 

Theorem 5.4.3 

Let (!,K,3) be an effective Dom-category, T': (K,K,a)*+ 

p 
(K,K,a)* be an effectively continuous functor and T: (K,K,a) + 

p 
(~'K,a) be a functor satisfying: 

EEoT=T' oEE 

then T is an effectively cont3,nuous functoro Furthermore 

if <j>:TI+I is an effectively initial T-algebra then 

E (<j»:T'I+I is an effectively initial T'-algebrao 
E 

proof Since EE is effectively continuous, T"EE=EEoT is an 

effectively continuous functor. Since EE effectively reflects 
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effective w-colimits, T is an effectively continuous functor. 

Let «d,e>,z> be a continuity index of T. Let (A,f (d,e» be 
gn 

an indexed w-codiagram as in 5.1.9. Let ~:~+K (i) be an 

effectively generable w-colimiting cocone of (~,f (d,e» with 
an 

an index «i,k> ,x>. 'l'hen T(~) is an effective w-colimiting 

cocone of (T.A,fa (f (d,e),d,e» with an index: 
(J gn 

<f (d,e,i,k),t (i,k,x,f (d,e»>. 
aoaone z an 

Thus as shown in ti!e proof of 5.1.9, (K (1) ,a) given by: 

a=a (~d(i) ,i) (~A (i k x f (d e» (i,Dua (k») 
'I' z ", gn ' 

is the effectively initial T-algebra with an index: 

«i,4> .. k f' (d »(i.,suaCk»>,l(X» Z\l., ,x, ,e 
gn 

where f is as in the proof of (2)-5.1.9 and sue is a recursive 

function satisfying: 4> () (x) =.!. (x) +1. Obviously El" (\.1) is sua v 'l'v !. 

an effective w-colimiting cocone of (EE·~'fdg(fgn(d,e) ,j,m» 

with an index «i,tt(k»,tt(x», where <j,m> is a functor 

index of EE. Therefore EE(a) :T'K(i)+K(i) is the unique~­

morphism s.t. EE(~n+l)=(EE(a».T' (EE(~n». Now let S:T'B+D be 

a T'-algebra with an algebra index <b,c>. Define 'V :Tnl-~B by: n 

'VO=EE (lB) 

'Vn+l=S·T' ('V n ) 

where IB is the unique morphism from 1 to B in (~'K,a)P. Since 

EE(lB) is the unique morphism from 1 to B in (~,K,a)*, we can 

readily observe that <'Vn > is a cocone of EL·~. Since the 

definition of 'V n is iterative, it can readily be seen that 

cb,t(b,c» is a cocone index of ~n>' for some recursive t.' 

Thus y=a(i,b) (~~x) (b,t(b,c») is the unique morphism s.t. 

y.EL(vn)='V n • Now by almost the same argument as in the proof 

of 5.1.9, we can show that this y is the unique T'-homomorphism 
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from (K(i),EE(a» to (B,B). Let w be a recursive function 

satisfying: 

<pw(x) (b,c)=<p1.t(x) (b,t(b,c». 

Then (K(i) ,EE(a» is an effectively initial T'-algebra with 

an index: 

«i,<Pm(<P<p (i,k,x,f (d,e» (i,suc(k»»,w(x». 
z gn 

This important theorem states that if we get an 

effectively continuous functor T: (~'K,d)P~(~'K,d)P which 

can be naturally extended to an effectively continuous functor 

T': (~,K,d)*~(~'K;a)*, then the effectively initial T-algebra 

is also an effectively initial T'-algebra over (~,K,d)*. 

Since the initial algebra index of <P is effectively 

obtainable from the continuity index of T, which is effectively 

obtainable from that of T', it can readily be seen that the 

initial algebra index of EE(.) is effectively obtainable from 

the continuity index of T'. 
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TOPICS FOR FURTHER RESEARCH 

TO conclude this dissertation, we consider several 

interesting topics of further research. 

First it should be made clear wheUler non-algebraic continuous 

cpo's have a useful general theory. The only convIncing example 

known so far which suggests the necessity for such cpo's is the 

interval lattice. But recently Weihrauch~ Schreiber [28J 

announced that with the aid of a metric suitably defined on 

algebraic cpo's, we can handle interval lattice without rcqarding 

it as a non-algebraic continuous cpo. 

Roughly speaking, our notion of effective categories is the 

categories whose categorical constructions, like composition 

of morphisms, universality etc, are effective. We observed that 

this notion worked out quite smoothly for the purpose of 

solving recursive domain equations effectively. It should be· 

worthwhile to investigate further" what other applications there 

might be. A similar theme was proposed by Ehrig [2]. 

Compared with the universal domain approach, our categorical 

approach lacks a natural notation for computable objects. 

We conjecture the following on this issue: 

conjecture 

P P P 
Let T:EGD +EGD be an effective functor composed from xP , + , 

each of these functors·is associated 

with ·a collection of computable functions. For 

p 
example, {TII'TI2,cons} for x • We claim that there exists a 
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a suitable function defining schema e s.t. if ~:TA~A is the 

effectively initial T-algebra, then every computable function 

over A can be defined from the collection of functions associ<lt.od 

with T and ~ and .-1 using the schema G. For want is such O. 

Notice that this conjecture is a natural extension of 

J. McCarthy's [8J relative computability thesis. A hint for this 

problem can be found in Plotkin [11]. Readers are requested to 

pay attention-to the-fact that we are making a claim rather 

than a thesis. 

It is a very interesting topic. to search. for a class of 

po-structures for-each of which the notion of computability of 

elements does not depend on the effective indexings of the 

basis. In other words, a class C of po-structures s.t. for every 

£ 'e e: 
CEC, and effective bases E and E' of C, C =C. 
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