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ABSTRACT

Solving recursive domain equations is one of the main
concerns in the denotational semantics of programming
languages, and in the algebraic specification of data types.
Because we are to solve them for the specification of comput-
able objects, effective solutions of them should be needéd.
Though general methods for obtaining solutions are well known,
effectiveness of the solutions has not been explicitly
investigated* The main objective of this dissertation is to
provide a categorical method for obtaining effective solutions
of recursive domain equations. Thence we will pro&ide effective
models of denotational semantics and algebfaic data types. The
importance of considering the effectiveness of solutions is
two-fold. First we can guarantee that for every denotational
specification of a programming language and algebraic data type
specification, implementation exists. Second, we have an
instance of a computability theory where higher type‘computab—

ility and even infinite type computability can be discussed

very smoothly.

*While this dissertation has been written, Plotkin and Smyth
obtained an alternative to our method which worked only for

effectively given categories with universal objects.



INTRCDUCTION

T.1 Historical Remarks

Recursive domain equations play a crucial role in the
denotational semantics of programming languages as developed
by Scott and Strachey [21] and their followers (Tennent [27]
and Stoy [25]). For example in denotational semantics of a
language which allows commands to be stored,:the following
domain equations should be solved as a recursive specificat-
ion of the domain of stores:

S =LI»([S+S]+V')] = —e———ee (1)
where L is the domain of locations, V' is the domain of other
store values and [S+£] is the domain of commands which is the
space‘of functions from S to S.

If we interpret + and -+ set theoretically, then by a
straightforward cardinal argument, we can observe that there
is no solution to (1l). Indeed the right side becomes much
bigger than the left side. Scott [16] indicated that if we
restrict functions allowed in the function spaées so that
we can make the cardinal of [S+S] the same as that of S, we ocould
solve equations like (1). This calls for structuring domains

rather than regarding them as plain sets.

In fact Scott [16] regardea domains"gé complete
lattices where the partial ordering acb means that the comp-
utaion a approximates the computation b. Thence he allowed
only continucus, in the sense of directed limit preserving,
functions ih function spaces. This idea of Scott is based on
a principle that every computable object should be a limit

of a chain of finite approximations to itself. Indeed every



partial recursive function 1is such an object (see Kleene [61).

Later several authors (Milner [7],Markowsky and Rosen [15],
Plotkin [10], Smyth [22]) pointed out that complete lattices
are too rich and a sufficient structure is the structure used
by Scott in his earlier work (1969 private comunication).
Roughly the structure is a poset with the least element which
admits a lub for each directed subset. This structure is the

so called cpo (complete partial ordering).

In order to discuss computability, the partial ordering
structure is not sufficient. We need some kind of effectiveness

structure. - .

Scott [iG] proposed a notion of effectively given domains
to tackle this problem. The essential idea of this approach
is to handle only those cpo's (countably continuous cpo's)
each of which has a countable substructure called a basis s.t.
the whole structure can be fegained from the basis by means
of completion, i.e. by means of taking lub's of directed sub-
sets of the basis. Then assuming computability of the finite join
operation on the basis, we define the computable elements to be
the lub's of r.e. directed subsets of the basis.‘Roughly
speaking, we regard an element to be computable iff it éan be
approximated effectively. In case the basis is the set of‘all
compact (finite) elements of the cpo, we call such an effectively

given cpo as effectively given algebraic cpo.

This idea of Scott was further studied, for the algebfaic
vcasé by Egli and Constable [1],and Markowsky and Rosen [15],

and for the continuous case by Tang [26] and Smyth.[22].

The firs' solution by Scott [18] and Tang [26], for



sclving recursive domain equaticns like (1) used the idea of
universal domains. They showed that a solution of the
eéuation:

D =[D+D]
obtained as the limit T, of:

To = the two poin£ lattice.

Tn+1 = [Tn+Tn]'
is a universal domain for the class of countably continuous
lattices, i.e. every element of this class is a retract of
T,- They developed a retract calculus which yields a
continuous lattice solution to each recursive domain equation
as the range of an idempotent which is a least fixed point
of a functional associated with the domain equation. Scott [15]
also showed that Pw is a universal domain for the class of
bcountably continuous lattices and developed a retract calculus
which provides countably continuous lattice solutions to
recursive domain equations.

Furthermore Plotkin [12] and Scott [20] independently

obtained a universal domain for the class of countably

continuous bounded complete cpo's.

Scott [17] sugcested that there should be a categorical
method for obtaining lattice solutions to recursive domain
equations. This idea was made explicit by Reynolds [131 and
wand [29]. Smyth [24] proposed a theory of w-categofies which
guarantees fhe initiality of the solutions of the domain
equations. This theory relates.to the leastness of the solu-
tions via retract calculus. Smyth and Plotkin [24] studied

several interesting relations between the categorical approach



and the retract calculus aporoach.

Even though not made precise, effective methods for
obtaining solutions of recursive domain equations were .

considered for the retract calculus approach as in Scott [18],
Scott [20], and Plotkin [12]. On the contrary there has been

no known categorical method for effectively solving domain

equations.

I.2 Recent Developments

All methods, obtained sé far, for yielding
solutions to recursive domain equations like (1) used a
mathematical device to reduce the cardinality.of the right-
hand side to that of the left-hand side by restricting func-
tions to be coﬁtinuous. Recently the author [3,4] showed that
we can play this game at the cardinality w. He proposed to
handle only those partially ordered sets each of which can be
recovered from its basis by means of "effective completion”.
This guanﬂﬁees each structure to be countable. He then showed
that these structures can be characterized as the sets of com-
putable elements of effectively given domains. Then by allow-
ing only effective functions from D to D' in [D+D'J], he showed
that the resulting function space is also such a structure.
Notice  that we have reduced both sides of (1) to count-

able sets. We call such structures effective domains. -

Furthermore the author [3,4] proposed a theory of
effective w-categories (he called it "effective categories")

which is an effective version of Smyth's w-categories and

showed this categorical theory provides effectively initial



effective domain solutions to recursive domain equations. Also
the author and Park [ 5] showed that this theory can be applied
to obtain effectively initial solutions, which are effectively
given domains.

In parallel to these effectiveness results Smyth and
Plotkin [24] developed an effective retract calculus in
categorical setting.

Apart from a denotational semantics, recent develop-
ment of Lehmann and Smyth [23] showed that the recursive
domain specifications play an essential role in the algebraic
specification of data types. In connection with this, the
relation betweeﬁ Wand's )-categcry and Smyth's w-categoxy
appeared to be important. Smyth and Plotkin [24] studied this

problem in great detail .

But they doubted the possibility of introducing effect-
‘iveness to O—cafegories in general. 1Instead thev observed
that every O-category with a universal object has a unique
ordered monoid representation. Thence by introducing effect-
iveness to the ordered monoid representation they managel to
consider effectiﬁely given O—categories with a universal
object. Thus they developed an effective retract calculus.
However following an idea of Park on_effectiveness of
O-categories, the author recently obtained a very natural
notion of effective O-categories in general. He then studied

relations between effective w-categories and effective

O-categories.



I.3 The Objective of This Dissertation

In this thesis, we will be concernedrmdnlyvdthiie recent
results ' of effective O-categories and effective w-categories.
As a concrete -instance of these effective categories, we
will review the class of effectively given bounded complete

algebraic cpo's (called effectively given (algebraic).

domains) and emphasize a crucial point which has been over-
looked in the previous works. Namely the dependence of the
computablity of elements on the indexing of the basis, as
discovered by Park and the notion of effective embeddings
and effective isomorphisms as developed by the author (see
Kanda and Park fSJ). Furthermore we will s*udy the class of

effective domains as an effective category.

So far the effectiveness of domains is studiéd only for the
bounded complete case. Plotkin [10] showed that this condit-
ion'imposed to make function spaces of algebraic domains
algebraic, can not be preserved under his power domain const-
ruction, and proposed the so called SFP condition to compen-
sate for this deficiency. This condition is more gene-
ral than bounded completeness. We observe that the SFP
condition is more natural than bounded completeness on account
of effectiveness. Thence we will study effectively given

SFP objects and observe that they form an effective category.

It has been.:said that one of the biggest demerits of the
categorical approach is lack of suitable effectiveneés notion. In-
this dissertation, we will present an answer to this critic-
ism. Furthermore we argue that the categorical approach, as
it is here, has generality in ité application. In fact there

is no known way of solving recursive domain equations



which involve Plotkin power domain constructor, by means
of the retract calculus. But the categorical method enables
us to do so.

We admit that the categorical approach still is not so
-developed as £he universal domain approach, in the sense that
it lacks in natural notation for the computable elememnts. This
problem is left open.

Finally notice that the results in this dessertation
supply an effective version of Lehmann and Smyth (23]
data types. Also they provide a natural way of discussing

computability over higher types and infinite types.



CHAPTER 1: NON-EFFECTIVE SOLUTIONS

I have not indicated in which
degree the results in this work are
original, which is always a difficult
problem when a uniform approach to a
subject is presented.

J. Engelfriet

In this chapter, before we study effectiveness, we briefly

review results already known on non-effective domain theory.

1.1 Complete Partial Ordering

By a nartially ordered set (poset), we mean a pair (D,r)

where D is a set and G is a partial ordering, i.e., reflexive,
anti-symmetric, and transitive relation on D. An element x of D

" is an upper bound of a subset ScD, in symbols sex iff xay for

all yeS. Mn upper bound z of S is a least upper bound (lub) of
S, in s&mbols s, iff x3S5 implies x1z. A subset ScD is directed
iff every finite subset FcS has an upper bound in S. D is

directed (bounded)complete iff every directed (bounded) subset

has a lub.

Definition 1.1.1

Given posets (D,C) and (D',C'):
(1) A function.f:D+D' is monotone 1ff xcy implies £(xX)Ef(y).

(2) A function f£:D+D' is continuous iff for every directed sub-

set ScD with a lub, f(S)={£f(x)]|xeS} is directed and has a lub,

and £(US)=U'£(S). | 0.
It is stréight—forward to obsérve that every continuous

function is monotone. Given two monotone maps f,g:D+D', we

order them by pointwise ordering, i.e.,

frg iff £(x)eg(x) for all xeD.



Definition 1.1.2

A monotore (continuous) map h:D+D is a monotone (continu-

ous) idempotent iff h=h+h. It is projective (inflative) iff
htidy (hgidD) where idD is the identity map on D. 0

Definition 1.1.3

Let (e:D»D',r:D'»D) be a pair of monotone functions:

(1) (e,r) is a monotone retra~tion pair (from D to D') iff

ree is the identity map on D', r is called a monotone re-

traction and e is called a monotone section. We also say that

D' is a monotone retract of D (via (e,r)). Notice that r is

surjective, thus D'=range(r). Evidently h=e-r is a monotone

idempntent and will be called a monotone retraction idemvotent

of (e,r) .

(2) (e,r) is a monotone projection pair iff it is a monotone Ie-

traction pair s.t. the' monotone retraction idempotent h

is projective. In this case r is called a monotone projection

and e is called a monotone embedding. h is called a monotone

projection idempotent.

k3) (e,r) is a monotone inflation pair iff it is a monotone

retraction pair s.t. h is inflative. In this case, we say that

r is a monotone inflation and e is a monotone infbedding. Also

h is called a monotone inflation idempotent. O

Lerma 1.1.4

(1) A monotone projection determines 4 corresponding mbﬁotone
embedding uniquely and vice Vefsa.

(2) A monotone inflation determines a corresmonding monotone inf-
bedding uniquely and vice versa.

proof (1) Let (e,r) and (e',r) be monotone projection pairs.
Then e'=e'-.r-ege énd-e=e-r-e'5¢'. Thus e=e'. Let (e,r) and

(e,r') be monotone projection pairs. Then r=r'¢«e.rcr' and



r'=r-e-r'cr. Thus r=r',
(2) Let (e,r) and (e',r) be monotone inflation pairs. Then e'=
e'+r-eide and e=e-r-e'de'. Thus e=e'. Let (e,r) and (e,r') be
monotone inflation pairs. Then r=r'se-rar' and r'=ree-xr'dr.
Therefore r=r'. @2
By virtue of this lemma, we will say that e(r) is the
adjoint of r(e) whenever (e,r) is a monotcne projection pair
or a monotone inflation pair.

Lemma 1.1.5

(1) A monotone embedding preserves and reflects all existing

least upper boundsi

{2) A mcnoﬁone inflation preserves all existing lub's.

proof (1) Let (e,r) be a monotone projection pair from D to D'.

Assume lIXeD. Then e(UX)Je(X). Let v'ge(X). Then r(v')ar-e(X)=X.

Thus r(v')3llX. Thus e(UX)Ee:r(v')EV'. Therefore e (LX)=Ue(X)eD'.

Thus e preservés lub's. Now let lle(X)eD'. Then r(Ue(X))gr-e(X

=X. Let uaX. Then e(u)gUe(X) énd r-e(u)=u2r(Ue(X)). Therefore

r (Ue (X))=UX. Therefore e reflects lub's.

(2) Let {(e,r) be a monotone inflation pair from D to D'. Assume

uUx'eD'. Then r(UX')ar(X'). Let var(X'). Then e(v)ae-r(X')ax'.

Thus e(v)3UX'. Thus r(UX')Er-e(v)=v. Therefore r(LUX')=ur(X').

Therefore r preserves lﬁb's. | 7
Notice that 1.1.5 is claiming that all monotone embeddings

and monotone inflations are continuous. But we can not establ-

ish that every monotone projection and every monotone inf-:

bedding are continuous. This calls for the following:

Definition 1.1.6

(1) A continuous retraction pair is a monotone retraction pair

(e,xr) s.t. both r and e are continuous. r is called a continu-

ous retraction and e is called a continuous section. h=e-r is

R,



a continuous retraction idemmectent.

(2) A continuous projection pait, a continuous inflation pailr are

defined similarly. : N
NMotice that a continuous projection (inflation) is a monotone

projection (inflation), which is continuous by 1.1.5, s.t. the

‘corresponding monotone embedding (infbedding) is continuous.

Definition 1.1.7

Given posets D and D', a monotone map f:D»D' is an isomorphism

(from D to D') iff there exists a monotone map £R.p'ap s.t. £ £R=

idD' and fR-£=idD. In this case we say that D and D' are isomorphic

(via f) and denote it by D=D'. 0

Evidently an isoOmorphism f£:D+»D' 1is a monotone'émbedding s.t.
the adjoint fR is also a monotone embedding. Thus by 1.1.5 both £
and fR are continuoﬁs;

The combination of posets and monotone maps is not quite
interesting although it is natural. But the combination of conti-
nuoué functions and the so called cpo's (defined below) is inter-
esting.

. pefinition 1.1.8

A complete partial order (cpo) is a directed .complete poset

with a least element (called bottom). We will denote the bottom
of a cp» (D,C) by lb or simply by |. 0

pefinition 1.1.9

Given posets with bottoms D and D', define DxD', D+D', and
[D+»D'] to be the following posets with bottoms:
(1) Dfo={(d,d')ldeD, d'eD'} together with the coordinate~wise

Ordering, i.e., (dlldi)E(dZ'dé) iff dlt_:_dz and di_c_dé.

(2) D+D'={(0,d) |deDl {(1,d") ]d'eD' {|} together with the

following ordering:



I (i,x) for all (i,x)eD+D’
(i,x) & (jJ,y) iff i=j and xcy.
(3) [D»D'] is the set of all continunus functions together with

the point-wise ordering. n

Fact 1.1.10

If D and D' are cpo's then so are DxD',D+D', and [D»D']. 7

Definition 1.1.11

(1) A family <Dm'(fm’f§)> is an w-sequence of continuous project-

ion pairs of cpo's iff D is a cpo and (fm,fg) is a continuous

projection pair from D to D_.,.

. (2) The inverse limit of an w-sequence <Dm,(fm,f§)> of continuous

. . . 2 an * o~ ] - — wr == R ' n
projection rairs of cpc's is & set Dm_{<xm>|“m"fm(xm+l)} together

with the coordinate-wise ordering. We will denote the inverse limit

R .
by gim <Dm,(fm,fm)> or 11m<Dm>. The universal cocone of <Dm,(fm,f§)>

is a family < (f__,£)> where f__:D D_ is defined by :

R.

R ' R ’
fmm(x)==:fO ..-fm_l(x),..,fm_l(x),X,fm(x),fm+l-fm(x),...>

R . R _
and £ _:D D is defined by fmw(<xn>)"xm' 0

Fact 1.1.12

Given an w-sequence <Dm,(fm,f§)> of continuous projection
pairs of cpo's:
(1) The inverse limit D_ is a cpo.
moo

(2) (fmm,fR ) is a projection pair from Dm to D_. 7

Fact 1.1.13

Let D bg a cpo and h:D+D be a continuous idempotent. Then the
range of h, which is the set of all fixed points of h is a cpo
where the partial ordering is induced from D. 0

Fact 1.1.14

Let D and D' be posets with bottoms 1 and |' respectively.



(1) Let (e,r) be a monotcne projection pair from D to D'. Then
both r and e are strict, i.e., they preserve bottoms.
(2) Let (e,r) be a monotone inflation pair from D to D'. Then x

is strict.

proof (1) r(Na | and e(1)3 |'. Thus |=r.e(})3r(]') and ]' Je.r(l")

oe(l)a 1'. Thus r(l')=] and e(})=]".

(2) r(1")z | and e(])3 |'. Thus | =r;e(l)gr(i'). Therefore r(|')= |.
| 7

Notice that this fact implies that every continuous projection,
continuous embedding, and continuous inflation from a cpo to
another are strict.

Fact 1.1.15

Let Dl,Di,Dz,'and Dé be cpo's s.t. DlgDi and ngDé, then:

oy
(1) DlxDz—DixDé
(2) Dy+D,D]+D}
n , : :
(3) [D1+D2]—[Di+D2] 0

Definition 1.1.16

R R
Let <Dm,(fm,fm)> and <D$,(f$,f$ )> be w-sequences of

continuous projection pairs of cpo's. We say they are isomorxphic, in

R, ~ R
symbols, <D ,(f ,£)>=D}, (£ ,£:7)>, iff there exists an isomorph-

m+l.fm

for each meN; :
: 0

. .. PR - . R .
ism lm'Dm+Dm with the adjoint lm:Dﬁ+Dm s.t. fé-im=1

Fact 1.1.17

R ~ '
<« Do (£ E)> T DL, (), 51 5)s implies D _¥p!. -

1.1.15 and 1.1.17 indicates that the isomorphic relation is

a good criterion for identifying two cpo's.



1.2 Bounded Complete Countably Based Cpo's

'As indicated in Scott (161, the first step towards effective-
ness is to think of those cpo's each of which has a countable sub-
set (called a basis) from which we can recover original structure
by means of completion. Thus the notion of countably based cpo's
appears to be important.

pefinition 1.2.1

Given a cpo (D,L), define a relation € on D by :
x{y 1iff for every directed subset ScD with a lub,
YEUS implies xez for some zeS.
In case X< x, we say that x is compact (or finite). The set of all
compact elements of D will be denoted by ED. O

Fact 1.2.2

In a cpo (D,E) we have:
(1) }<x-
(2) x< ygz implies x<{ z.
(3) xcy< 2 implies x< z.
(4)‘x< y and y<{ z implies x< z.
(5) x¢ y and z<{y implies xlz<{y whenever’xUz exists.
(6) x{y implies xRy.
(7) erD implies xpy iff x.(y. 0

Notice that € is a transitive and anti-symetric relation on D.

pDefinition 1.2.3

(1) A pair (B,4{) is an w-basis of a cpo (D,T) iff B is a countable
subset of D s.t. |eB and for every xeD, Bx={beBlb< x} is directed
and x=UBx. If (D,B) has an w-basis we say that (D,B) is w-basable.
(2) An w-based cpo is a pair ((D,E),(B,{)) where (B,4) is an

w-basis of (D,EK). We will abbreviate this pair as (D,B).



(3) An w-algebraic cpo is a cpo (D,E) s.t. E. is a countable set

D
and for every XxeD, Jx={ecEDIeEx} is directed,and x=UJx. (ED,E) is

called the extension basis of (D,D). 0
Notice that in the prev;ous development of the theory of domains,

the distinction between w-basable domains and w-based domains

was never made explicit. Indeed it looks as though these two

notions were assumed to be identical. We will observe that they

are different and the difference is infrinsic for effectiveness

argumentsf

Fact 1.2,4

(1) 1f (b,E) is an w-basable cpo, then for every deD, Dd={xeD|x<(i}

is directed and a=Dg.

(2) A cpo (D,B) is an w-algebraic cpo iff (Ey,E) is an w-basis

of it. 0
The relation € on an w-basable cpo enjoys more interesting

properties than those listed in 1.2.2.

Fact 1.2.5

Let ((D,B),(B,{)) be an w-based domain.
(1) For every directed subset ScD, we have:
xS iff x{z for some zeS.
(2) x¢y iff x<{b and b{y for some beB.
(3) xcy iff for all beB, b<x implies b{y.
Bzggg (15 Sufficiency is true for.any poset. For necessity we first

prove the following lemma.

Lemma For every directed subset ScD, x{y&yCllS implies there exists

z¢8 s.t. x<42.

proof of the lemma For every zeS, Dz={teD|t<z} is directed and

Z=UDz as observedin 1.2.4. Evidently for every z €S, £z

1'%2 2182,

implies DzlEDzz- Let S*= u.D_ and {a;s...,a } es*. Then az; for



some zies (1<i<n). Since S is directed there is an upper bound zeS
of {zl,..,zn}. Thus DzigD
edness of D,/ there is an upper bound aeD, of {al,..,an}. Evident-

z (lsis<n). Thence {a;,..,a JeD . By direct-

ly aeS*, thus S* is directed. Also evidently US=lIS*. Thus for some

teS*, xgt. But teDz for some zeS. Therefore xEt{z and x<{z. A
Now we resume the proof of (1). Let x{US, then xQUSEUS. Thus

x4z for some zeS by the above lemma.

(2) Sufficiency is (4)-1.2.2. We prove necessity. Let x{y. Since

y=U{beBlb<y}, x{b<y for some beB by (1).

(3) Let xgy, then b<{x implies b{y. Now assume that b<{x implies
b{y. Then Bngy. Thus xRy. 74
The following féct is the reason why we call (ED,E) the
extension basis of (D,E); Also it is the reason why we are mainly

interested in the extension bases of w-algebraic cpo's.

Fact 1.2.6

_ ' -
A poset (D,E) is an w-algebraic cpo iff E_ is countable and

D
for any cpo Q and every monotone map m:ED+Q there is a unique
continuous extension m:D+Q of m. Indeed such extension m is given

by: E(x)=U{m(e)leeED,egx}. @

An w-transitively ordered set (w—toset) is a pair (E,<) where

I is a countable set and < is a transitive relation 6n E. For
w-tosets, we define the notion of upper bounds, lub's, bounded
subsets, directed subsets, as we did for posets. To make the point
that they are for an w-toset (E,<) explicit, we call them <-upper
bounds, <-lub's, <-bounded subsets, and <-directed subsets res-
pectively. Also given w-tosets (E,<) and (E',<'), we say that a

map f:E-E' is t-monotone iff x<y implies £(x)<f(y). Given a pair

of t-monotone maps (i:E+E',j:E'-+E), we say that this pair is an

isomorphism pair iff i-j=ia

E' and j-i=idE. In this case we also

say that E is isomorphic to E' (via (i,j)), in symbols E¥E'.
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Definition 1.2.7

(1) An R-structure is an w-toset (E,<) with the least (w.r.t.< )
element | s.t. for any aeE, the set [al={b¢E |b<a} is directed.
(2) Given two R-structures (E,<) and (E',<'), we say that E is

isomorphic to E' (in symbols E¥E') iff E¥E' as wo-tosets.

(3) A cut of an R-structure (E,<) is a down-ward closed directed
subset of E. More precisely, it is a subset XcE s.t. X is directed

and x<y&yeX implies xeX. The completion of (E,<) is a pair ((E,<),

(E1,4)) where E is the set of all cuts of E and c is the set
theoretical inclusion as a partial ordering, and [El={[el| ecE}
and«( is taken over (E,g). Note [aleE for all acE. ‘ O

It is =27ident tﬁat an w-basis of an w-basable cpo i35 an R-
structure.

Fact 1.2.8

Given two w-basable cpo's (D,2) and (D',E'), (D,E)g%D',E')
iff there are w-bases (B,4) and (B',{') of (D,K) and (D',L') res-
péctively.s.t. (B,4)F(B'K").
proof If (i:B+B;,j:B'+B) is an isomorphism pair s.t. (B,{) and
(B',42') are w-ases of (D,B) and (D',E') respectively, then (1:D-D'
J:D'+D) is an isomorphism pair where i and j are continuous exten-
sions of i and j respectively s.t. 1 (x)=U{i(b) |beB,b{x} and F(x)=
U{3(b') | b'eB',b¥'x'}. Conversely if (D,F) has an w-basis (B,J)
and (?:D+D',§:D'»D) is an isomorphism pair, then (f(B),(') is an
w-basis of (D',E') and (f:B+?(B),g:f(B)+B) is an isombrphism pair

where £=f41B and g=g{f (B). 2

By a strong R-structure (SR-structure)’, we mean an R-structure

(E,<) satisfying:

[alclb]l & b<c implies a<c , and (al=(b] implies a=b.

In (1)-1.2.7, if | <| then [|J={beE|b<|}#6. If we allow the emty set to be
directed, as in Smyth [22], then _l_ is not the bottam wrt < in (E,C).



Fact 1.2.9 (Park [91])

Let (E,<) be a strong R-structure. Then ([E],<{) is isomorphic

to (E,<), where ((E,c),([E]1,£)) is the completion of (E,<).

Fact 1.2.10 (Smyth [22],Park [91)

(1) If (E,<) is an R-structure, then ((E,c),([E1,{)) is an w-
continuous cpo. Furthermore for any x,yeE,

xy 1ff 3acy.xclal . i
(2) Let (D,E) be an w-basable cpo and (B,()Abe an w-basis of it;
Then (B,{) is an SR-structure. Therefore by virtue of 1.2.8 and

1.2.9, (D:E)g(ﬁpc) .

Notice that given an R-structure (E,<), it is not necessarily
isomorphic to ([E],{). It is so whenever (E,<) is an SR-structure.
But it is easy to observe that (E,<)Z(E',<') iff ([E]1{)¥([E'1,{"').
This leads to the following fact:

Fact 1.2.11

Given w-basable cpo's (D,E) and (D',r'). (D,E)gYD',E') iff
there are R-structures (E,<) and (E',<') s.t. (E,E)Z(D,E) and

(E',0)¥(D',B") and (E,<)¥(E',<"). - o

Our arguments about completion seem to suggest that the w=-
bases are redundant representations of w-based cpo's, and R-
structures are rich enough. But later in this section, we will.
observe that R-structures might be too poor to get strong results.
To be prepared for this observation, we notice that the step from
w-bases to R-structure is 'throwing. away & ordering’'.

For w-algebraic cpo's the whole argument about comnletion
is mmuch simpler, since we are interested only in extension

bases.

pDefinition 1.2.12

A strict poset is a poset with the least element. The

~

b



algebraic completion of a strict poset (E,E) is a poset (E,E)

where E is the set of all downward closed directed, w.r.t. K, sub-
setsof E and < is the set theoretical inclusion. We call each

element of E an ideal. 0

Fact 1.2.13

(1) The algebraic completion (E,E) of a countable strict poset
(E,E) is an w—algebraic cpo. There is a canonical map T:E-E s.t.
t(E) is the extension basis of (E,_C_) and (E,E)Q(T(E) ,S) as posets.
Indeed t(x)={ecE|eCx} for all xcE.

(2) Given an w-algebraic cpo (D,E), the extension basis (ED,E) is
a countabl: strict poset and (D,E)E(E,c)

(3) A poset is an w—algebraic cpo iff it is the élgebraic comple-
tion of a countable strict poset.

(4) Given two w-algebraic cpo's (D,K) and (p',E'), they are

isomorphic iff (ED,E)EYED.LE'). : 0

It has been well-known that given two w-basable cpo's D and"
D', The function space'[D+D'] need not be w-based. But if D and D'
are bounded complete, then so is the function space and it has an

w-basis. This leads to the following notion:

Definition 1.2.14

(1) An w-basable domain is an w-basable cpo which is bounded comp-

lete.
(2) An w-based _ domain is an w-continuous cpo (D,B) s.t. D is
bounded complete.

(3) An w-algebraic domain is an w-algebraic cpo which is bounded

complete. : 0

Bounded complgteness of w-basable cpo's can be characterized

in terms of bases.



Fact 1.2.15

(1) An w-continuous cpo ((D,E),(B,{)) is an w-continuous domain
iff every {-bounded finite subset of (B,{) has a lub (w.r.t. E)
in D. |

(2) Given an R-structure (E,<), (E,E) is an w~basable domain iff
for every finite <-bounded subset ScE, u{[x]|xeS} exists in E.

We call such R-structures BR-structures.

(3) An w-algebraic cpo (D,E) is an w-algebraic domain iff the
extension basis (ED,E) has bounded joins ,i.e., every finite

bounded subset of ED has a lub in E Notice that the lub of a

D*
finite subset of ED’ if any, is compact in (D,L), thus is in ED'
EIQQE (l)'cnly if'paft is trivial. We prova‘kf'part. Assume X is

a bounded subset of D with an upper bound z. Then {eeB|e{x for

some xex}=ngBngz. Therefore every finite subset S of _u/B_ is
<-bounded. Thus by assumption USeD. Let Y={US|S is a finite subset
of xQXBX}' and {US;,...,US_}cY. Then Syu...us is a finite subset
of ngBX. Thus U(Slu...usn)eY. Evidently U(Slu"fusn) is an upper
bound of {USl,..,USn}. Thus Y is directed. Thus ﬂYeD. But evidently
ux=UY. Thus D is bounded complete.

(2) Similarly to (1).

(3) Notice that for every eeED, e<x iff ecx. Also remember that

. { ¢
for every finite subset XEED, if UX exists then UXeED. @

there is a quélitativeA. - difference between (1), (2) of
1.2.15 and (3) of 1.2.15. Indeed for non-algebraic case, the argu-
ment is not gquite purely that of bases, since we have to refer to
the completion of the basis in order to talk about the lub's of

bounded finite subsets. This gives rise to a question if the notion

of bases of ‘w-based cpo's is quite adequate,



Fact 1.2.16

(1) Given w-based domains ((D,E), (B,£)) and ((D',E"'),(B',<"))
the following pairs are also g—-continuous domains. ‘

((DxD',Ex),(BxB',{x))

((D+D',E,), (B+B',%,))

((£D+D' 1,12,) , ([B>B' 1,<.))
where ©_,E _,& are partial orderings on DxD',D+D',[D»D']J as in
1.1.9, and <x,<+,<+ are taken over DxD', D+D', [D-D']. BxB' and
B+B' are evident bases of DxD' and D+D' respectively.[B-»B']is the
set of all possible lub's of finite subsets_of the set {[b,b']l|beB,

b'eB'} where [b,b']=ixeD.if b{x then b' else | We call such-

D'®

(b,b'] a step function from (D,B) tc (D',D').

(2) Given w-algebraic domains D and D', so are the following:cpo's:
DxD', D+D', and [D-D'].

Indeed E N ED' ED+D'=ED+ED' , and E is the set of all

[D~>D']
existing finite joins of step functions from (D,ED) to (D',ED,).

DxD' "D

@

For w-basable domains, we are interested only in whether they
have w-bases, and we do not care which bases thzse aré. Therefore
there should be no problem in defining embeddings and projections
of w-basable domains as we did for cpo's. But for w-
domains, we are interested in particular bases, thus it is more

natural to think of those embeddings which 'embed' bases.

Definition 1.2.17

Given w-based domains (D,B) and (D',B'), a pair of

continuous maps (e:D-»D',r:I''»D) is called a strong projectién pair

from (D,B) to (D',B') iff e(B)cB', r is called a

strong projection and e is called a strong embedding.




For w-algebraic domains, strong projection pairs and conti-

nudlus projection pairs coincide. Indeed we have:

Fact 1.2.18

Let D and D' be cpo's and (f:D+D',g:D'»D) be a continuous
projection pair. Then f(ED)EED'° |
proof Let ecEy and X' be a directed subset of D'. Assume f(e)c
X', then e=g-f(e)eg(UX')=lla(X"'). Therefore ecq(x') for soine

x'eX'. Thus f(e)Ef-g(x')Ex'. This means f(e)<E Now let e'cE

D'*
and XcD be directed s.t. g(e')clUX. Then f-g(e')Ef (LX)=Uf(X).

Dl

Therefore f-g(e')Ef (x) for some xeX. Thus g(e')=g-f-gle')Eg-£f(x)E

x. This implies g(e')eED. 0

For w-algebraic domains, continuous projection pairs (thus

strong projection pairs) can be characterized in terms of bhases.

Definition 1.2.19

Given w-algebraic domains D and D', a map i:EpER, is an
imbedding from Ej to Eps iff
(1) i is injective,
(2) for every finite subset SEED, US exists iff Ui(S) exists,

(3) i(US)=Ui(S) for every finite subset SSED s.t. US exists. 0

The following theorem establishes that imbeddings and cont-

nuous projection pairs of w-algebraic domains are the same.
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Lemma l.2.20

Let D and D' be w-algebraic domains.

(1) Let i:ED+ED. be an imbedding, then the continuous extension
I:D+D' given by I(x)=l{i(e)lecE ,ecx} is a continuous embedding
with adjoint J:D'+D s.t. ?(x')=U{eeED|i(e)gx'}.

(2) Let (i:D»D',j:D'+D) be a continuous projection pair then the
restriction of 1 to E; is an imbedding from Ep to‘ED..

proof (1) 1 evidently is continuous, well-defined and is an exten-

sion of i. Now let F be a finite subset of {ecEpli(e)Ei(x')}. Then

i(F) is bounded by x', thus Ui(F)€E Since i is an imbedding,

D'*®

UFeE,. Evidently i(UF)=Ui(F)Ex'. Thus UFe{eeEDIi(e)Ex'}. Thus

D*
{eeED|i(e)gx'} is directed. Thus j is well-defined. Let X'cD' be
directed. Then:
?(UX')=U{eeEDIi(e)Eux'i

=U{eeED|i(e)Ex' for some x'eX'}= F(X').

Thus J is continuous. Now:

J-T(x )=li{ecEli(e)CU{i(e) lerx})
'=I{eeE li(e)Ei(e') for some e'cx}
=U{ecE jleEx} =x.
Also 3'3(X')=U{i(e)|eeE6,eEU{eeED|i(e)Ex'}}
=l{i(e) lecE,,i(e)Ex"} Ex'.
(2) Evident. 14}

Note that if i is an imbedding then i preserves al; existing
(in Ep) lub's of Eps for iis a continuous embedding. This suggests
the following prospective notion of imbeddings among bases of w-
based domains. Given w-continuous domains (D,B) and (D',B'),

an ‘'imbedding' from B to B' is an injection i:B+B' s.t. for every

ScB, USeB iff Ui(s)eB', and i(US)=Ui(S) once lIS exists in B.
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Evidéntly for every (weaker) strong projection pair (i,3)
from D to D', the restriction of I to B is such an imbedding.
Conversely, given an imbedding i from B to B', let 1i:D>D' be
i(x)=U{i(b)|beB,b{x}, then i is a continuous extension of i,
since for beB,

I(b)=Ui(By)=1i(UB,)=i(b).
Thus I(B)cB'. Furthermore it can readily be seen that T is a
continuous embedding with the adjoint J s.t. J(x')=U{beBli(b)ex'}.
Therefore imbeddings of bases characterise strong nrojection

pairs among w-based domains.

At this point; the idea of bases and that of R~structures
seem to differ. Let E and E' be BR-structures. Define i:E-E' to
be an injection s.t. u([S])eE iff uli(S)]e¢E' for every ScE; and
i(uls1)=uli(S)] once u([S])cE. Notice that this map i was used
as an embedding of BR-structures in Smyth{22]. But we do not know
if T(TENCLE'] where i:E-E' is defined by i(x)=u{i([al)laex} =
uilx] for all xeE. |

Given w-based . domains (D,B) and (D',B'), let (i,j) be
a continuous projection pair w.r.t. £ (not ) from B to B'. Then
it can readily be seen that i is an imbedding and (L,3) is a
strong projection pair from D to D'. Thus continuous projection
pairs omong w-bases characterize strong projection pairs.

So far we nava observed that the strong projection péirs
can be characterized in-terms of bases. But we do not know

if this can be done in terms of R-structures vet. All we can

say is that it would potentially be problematic to get rid of
£ ordering from the w-bases and obtain R-Structures. Precisely

speaking a basis seems to be (B,{,C) rather than (B,{).



Fact 1.2.21

R . .
Let <Dm,(fm,fm)> be an w-sequence of continuous projection
pairs of w-basable domains. l.e inverse limit D_ of it is an
w-basable domain. Indeed if‘Bm is an w-basis of Dm for each meN,
then Bm=%fmw(Bm) is an w-basis of D_. Evidently £ (Bp) €B, - But

fim(Bw) is not necessarily a subset of B - 4

Definition 1.2.22

R
Let <(Dm,Bm),(fm,fm)> be an w-sequence of .strong
nrojection pairs of w-pased * domains. By the inverse limit
of it, we mean (D_,B_) where Bw=%fmm(Bm). 0

Fact 1.2.23

R .

If <\Dm,Bm),(fm,fm)> is an w-sequence of strong
projection pairs of w-based domains, then (D_,B_) is an
w-based domain. Furthermore (fmm,fﬁm) is a strong
projection pair. _ , @

Things are much simpler for algebraic cases since continuous

projection pairs and strong projection pairs coincide.

Fact 1.2.24

If <Dm'(fm’f§)> is an w-sequence of continuous projection
pairs of w-algebraic domains, the inverse limit D_ is an w-

algebraic domain. Indeed EDQ=HEPm. _ i

By almost the same argument as for cpo's, we can easily

observe that . - isomorphism is a good criterion for identify-

ing two w-basable (w-algebraic) domains.

Given two w-based domains (D,B) and (D',B') we say they
are isomorphic iff B¥B'. Notice that by virtue of 1.2.8, (D,Bﬂg
(D',B') implies D¥D'. It is now very easy to observe that this

isomorphic relation is a good criterion for identifying two w-

based domains, for it is preserved under domain’'constructors.

2



Fact 1.2.25 (Scott [20],Plotkin [12],Smyth [221)

A poset D is an w-basable domain iff it is isomorphic to
h(X) for some w-algebraic domain X and some continuous idemnotent
h:X+X. Indeed D has an w-basis h(EX), and there is a single
w—-algebraic domain, say P, s.t. every w-basable domain is iso-

morphic to h(P) for some continuous idempotent h:P»P. We call

such P a universal domain of the class of w-basable domains. A

At this point, the notion of w-based domain seems to
be less interesting than that of w-basable domains. In fact
| it is not known yet if such a universal domain exists for the
class of w-based . domains. The point here is that, given
an w-based domain (D,B), even if we have h:P»P satisfyiag

h(P)¥D, we do not know if we have h such that h(EP)g% or not.

One could argue that if we require bases to be closed under
finite joins , we could avoid this difficulty and at the same
time we could solve the problem for bounded completeness. But
why (intuitively) must this be so? Can we find any convincing

motivation (rather than technical reason) for this restriction?

We have observed several problems on w-~based | domains.
We claim that all of these problems are essentially due to the
lack of concrete examples of w-based domains. So far most
domains which appearb to be important for computer science are

. (See Scottl[32])
w-algebraic, Only the interval lattice,_seems to be the one which -

N

indicates the necessity of w-based domains. Indeed there
should always be some problems in obtaining abstract notions from
only a few examples. In other words such attempts tend to be too
arbitrary.

We hope that.these Observations will justify our omission of

the non-algebraic case in the rest of this dissertation.



1.3 SFP Objects

Remember that in the previous section, bounded complete-
ness was introduced as a sufficient condition for making function
spaces basable. But as Plotkin showed this condition is not pre-
served under Plotkin's power domain construction [10]. Further-
more he showed that there exists a weaker condition which can be
preserved under all interesting domain constructions and which

makes function spacesbasable. We will review this condition in

this section.

" Definition 1.3.1

(1) Let D be a poset and X be a subset of D. We say ueD is a mini-

mal upper bound (mub) of X iff u is an upper bournd cf X and for

every upper bound v of X, VLU implies v=u. We will write UD(X)
to denote the set of all mub's of X. Furthermore UB(X) denote the

least subset of D satisfying:
UE(X)jX, and
M %* *
Up(¥)cUE(X) for all Ycuk(X).
(2) UD(X) is said to be complete iff whenever v is an upper kound
of XcD, then there exists ueUD(x) s.t. ucv.

(3) A posct D is said to be bounded m-complete iff UD(X) is com-

plete for every subset XcD. Also D is said to have bounded m-joins

iff Ub(x) is complete for every finite subset X of D. ' N

“Notice that if XcD has a lub |JX, then Uy (X)={UX}. Therefore
bounded m-completeness is a generalization of bounded completeness

and bounded m-join is a generalization of bounded join.

pefinition 1.3.2

A countably algebraic cpo D is an SFP object iff for every

finite subset X of E., U (X) is complete and Ux(X) is finite.



According to this definition, every finite cpo is an SFP

object.

Lemma 1.3.3

Let D be an algebraic cpo and E, be the basis of D. Then

we have:
(1) For every finite subset X of ED, UD(X)S_ED and in case D is
an SFP object, yg(X)cEj.
(2) For every finite subset X of Ej, UD(X)=UED(X).
(3) For every finite subset X of ED, UD(X) is complete in D
iff it is complete in ED. ’
proof (1) Let ueUD(X), By algebraicity, {eeEDIeEu} =Ju is
directed ard u={JJu. Since u is an upper bound of X, X is a finite
subset of Ju. Thus there exists an upper bound v of X in Ju. Thus
vgu. By minimality of u, u=v. Thus ueEj. Therefore v (X)cE, . Now
define: Ug(Y)= )

vp = (1) 1Y DT (v) oy

where YEED' Then by induction on r we have:

+
v S enx ().
r,,,_.r+l -~ * r .
Also if L (Y)=y (Y), then y*(Y)=y_(¥). If D is SFP then U*(X)
D D D D D
is finite, therefore UB(X)=U§(X) for some reN. Therefore UB(X)EED'
(2) Evident.

(3) Evident. )

Now we have the following alternative characterization of

SFP objects, as an immediate corollary to 1.3.3.

Corollary 1.3.4

A countably algebraic cpo D is an SFP object iff E,_. has bound-

D

ed m-joins and for every finite subset X of ED’ Uﬁ (X) is finite.
D

m,



Remerwer that an algebraic cpo D is bounded complete
iff ED has bounded joins. Furthermore we have observed that
bounded join property implies bounded m-join property. Thence
showing "every w—algebraic domain is an SFP object" amounts

to showing that for every finite subset X of ED, uv* (X) is

L
D
finite. But bounded join property of ED yields:

v () =u§D(X)=xU{umg(xU{_|}) }

for every finite subset X of ED. Therefore Uﬁ (X) is finite.
D

Also the following finite cpo is not bounded complete:

>
NS

In summary, we have established:

» G o
' emaname

Fact 1.3.5

The class of SFP objects properly contains the class of

w—algebraic domains. , ]

The following alternative characterization of SFP objects
due to Plotkin [10] is more comprehensive (at' least intuitively)

and easier to handle in many situations.

Fact 1.3.6

A cpo D is an.SFP object iff it is the inverse limit of
an w-seguence <Dm;(fﬁ,f§)> of continuous projection pairs of
‘finite cpo's. ' 1)
Readers aré refered to Plotkin [10] for the details of
this proof. Here ve will draw readers attention to the canonical
sequence of projections which Plotkin introduced to prove 1.3.6.

Assume we are given an STFP object D with an indexing e:N»ED of



the basis ED s.t. e(O)=l. By the canonical sequence of D w.r.t. ¢
we mean the w-sequence <Dm;(fm,f§)> of continuous projection pairs
. N 1 —=]/% . .
of finite cpo's where Dm UED({C(O),..,e(m)}) and fm‘Dm+Dm+l is a
continuous cmbedding defined by fm(x)=x with the corresponding
. . R . e .
projection £ :D ,,+D, s.t. g (y)=li{xeD_lxgy}. Notice that D _cD ..<
D and DgDm‘via Q:ED +ED s.t. Q(<Xm>)=Uxm. It is obvious that the

adjoint (inverse) of @ is QR:EDeED given by Q3(x)=fmm(x) where

m=pk.EXeDk].

A countable poset E is called a finitary poset iff it has

bottom and bounded m-joins and for every finite subset X of E,

UE(X) is finite. By. 1.3.4 we have the following completion theorem.

Theorem 1.3.7

(1) 1f (E,E) is a finitary poset then the algebraic completion
(E,c) is an SF? object.

(2) 1£f (D,C) is an SFP object then (ED,E) is a finitary poset and
(E,g)=(D,E) -

(3) A cpo is an SFP object iff it is isomorphic to the algebraic

completion of a finitary poset.

R R
Let <Pm,(rm,rm)> and <Qm,(sm,sm)> be w~sequences of continu-
ous projection pairs of cpo's s.t. P=gim<Pm> and Q=lim<Qm% Assume

R )> and < (s

‘ R
ve f <P >
<(rm”,rmw )> are universal cocones o m,(rm,rm)

SR
me ' “meo

R . : .
and <Qm,(sm,sm)> respectively. Define continuous maps:
Pt CP O I TP 17 Qgn )

R P QP 1*9ne1
U P o P 1 941

_ R
by F()=s .f.x

R =r xs
m m*"m



Then they are continuous embeddings with the adjoints:

FR(f)=sR-f'r

m m
R_R R
Rm— e Sm '
m m m

R R R
< -> >
Therefore <[P Qm],(Fm,Fm) <P xQ ,(R ,R)>, and <Pm+Qm((Um,Um)>
are w-sequences of continuous projection pairs of cpo's.

Fact 1.3.8

oo R '
(1) 2im<{ Pm+Qm] , (Fm,Fm) >¥[ p+Q].
R
(2) lim <meom,(Rm,Rm)>§PxQ.
(3) Lim <P_+0 , (U_,U%)>¥p+0.
proof (outline) Assume <(TF °°,F )> <(R ,Rﬁw)>, and <(Umm;uﬁm)>

are universal cocones.

’ R
(1) For each felr»Ql let f(m)=s -f-rmm.lThen f(m)e[Pm+Qm]and

e
<f(m)>€&£m<[Pﬁ+Qm]'(Fm’F§5>' Define ¢:[P+Q]f&iﬂ<[Pm+Qm]> by ¢(f)=
<Eim” Furthermore define @R:lim<[P Q> P>Ql by: sR(£) (x)=
Usm -f (x ) where f F L(f)elp +Q 1 and xm—r (x)er. It can
readily be seen that (¢,? ) is an isomorphism pair.
(2) Given (x,y)ePxQ, evidently (x Yo )eP xQ . Furthermore < (x ,ym)>
belongs to 11m<P XQ ¥ Define 1 :PxQ>1im<P XQ > by ﬂ((x,y))—<(x Y ) >
Conversely for every <(am,bm)> in.é£§<meQm> define 1 (<(am'bm)>)=
(Hrmw(am),Hsmw(bm)). Evidently (ﬂ,ﬂR) is an isomorphism pair.
(3) Define o :P+Q »P +Q  by:
9 ((1,x))=if i=0 then (i, r L (x)) else (i, s L (x)).

pefine Z:P+Qigim<Pm+Qm> by 2((i,x))=<om((i,x))>; Furthemore define
gR:1im<p_+Q >>P+0 by:

R(<(i,c)>)=if i=0 then i (o)

else (i %S (c)) .

. Ry .
Then evidently (Z,I") is an isomorphism pair.



In the above assume Pm and Qm are finite cpo's, this means
SF ] . ide
P and Q are P objects. Evidently [Pm+Qm], PmXQm, Pm+Qm are
finite cpo's. Thus by 1.3.8, [P+Ql, PxQ, P+Q are SFP objects. In
summary we have established:

Fact 1.3.9

The class of SFP objects is closed under the domain

constructors +,x, and +.

Even though the proof of 1.3.9, which used the alternative
characterization 1.3.6 of SFP objects is very simple, it does
not tell much about how the domain constructors =+, x, and + ope-

rate on bases. In the next theorem we will study this:

Theorem 1.3.10

Let P and Q be SFP objects. Then we haves:s
(1) The basis of [P»Q] is the set of all possible finite joins of
step functions
(2) EPXQ =EP><EQ
=F_+F ..
(3) EP+Q Ep EQ
proof Let <Pm,(rm,r£)> and <Qm'(sm,sg)> be w-sequences of cont-
inuous projection pairs of fiqite cpo's s.t. P?lim<Pm,(rm,r§)> and
M. R
Q=llm<le (Smr Sm) >
(1) Let @,@R, Fm' Fﬁ be as in 1.3.8. It can readily be seen that
¢([rmw(a),smm(b)J)=me([a,b]) for every acP  and beQ . Notice that
every compact element of ;im<[Pm+Qm],(Fm,Fi)> is me(f) for some
fe[pm+Qm] and some meN. But evidently for every fe[Pm»Qm] we have:
£=U{lx3,£(x) 0,00, Ix , £(x ) 1))
where Pm={x1,..,xn}. Therefore we have:

e=F (£)=F_ (U{Ix},£(x{) 1,00, 0x ,£(x ) 1)

=UCF, (D £ ) e o B (D, £(x ) D) )



R R
Thus ¢ (e)=ll{¢ -me([xl,f(xl)]),..,¢R~me([xn,f(xn)])}
=U{[rmm(xl),smm-f(xl)],..,[rmm(xn),smw-f(xn)]}.
Therefore every compact element of [P»Q] is a finite join of step’

functions.

Conversely every step function of [P+Q] is compact in [P-+Ql.
Therefore every'finite join which exists of step functions is
compact in [P-=Q].

(2), (3) Evident. 7

The following lemma is a generalization of (1)-1.1.5.

TLemma 1.3.11

Let D and D' be cpo's. Let (i:D+D',j:D'+D) be a monotone

projection pair. Then for every XcD:
UD.(i(X))=i(UD(X))-

proof Let ueUD.(i(X)). For every xeX, uli(x). Thus j(u)3j.i(x)=x.
Thus Jj (u)3X. If vaX and vej(u) then i-j(u)ai(v). Thus uzi(v). But
i(v)ai(X). Thus by the minimaiity of u, u=i(v). Therefore v=j(u).
Thus j(u)eUD(X). Since i-jEidD., i-j(u)ru. But i+j(u)2i(X) for
j (u)3aX. Thus by the minimality of u, i<j(u)=u. Therefore Uei(UD(X))
for u=i*j(u) and j(u)eU,(X). Thence we have established UD.(i(Xi)g
i(UD(X)). Conversely let ueUD(X)L Evidently i (u)3i(X). Let v3i(X)
and vEi(u). Then j(v)Ej-i(u)=u.'Evidently j(v)2x=i-j(v). By the
minimality of u, u=j(v). Thus i(u)=i:j(v)Ev. Thus i(u)=v.
Therefore i(u) is a minimal uvper bound of i(¥). Therefore we

have 1 (U, (X))clUp, (1(X)). | o

We will define continuous projection pairs among SFP objects
as we did for cpo's, since every SFP object is a cpo. By virtue
of 1.2.18, every continuocus enbedding does embed bases of SFP

objects which it embeds.



Fact 1.3.12

R . . .
Let <Dm,(fm,fm)> be an w-sequence of continuous projection

pairs of SFP objects. Then the inverse limit Dw=.im<Dm,(fm,fﬁ)>

) where <(fm £R ) >

0! “mw

is again an SFP object. Indced EDm= Hfm (EDm
is the universal cocone of <Dm,(fm,f )>. 1]

3%

By the same arguments as for cpo's, it can readily be seen
that the isomorphic relation is a good criterion for identifying

two SFP objects.

It shoud be noted that the continuous projection pairs can

be characterized as "imbeddings" of bases.

Definition 1.3.13"

Let D and O' be SFP objects. A map i:EE,, is an imbedding from

ED to ED' iff

(1) i is injective,

(2) For every finite subset ScED, Card(U_ (S))=Card(U (1 (s))),
- Ep Epe

(3) eclU, (S) iff i(e)eUE (i(s)). a

D -p!

Notice that this definition coincides with 1,2.19 if D and

E

D' are w-—-algebraic domains.

Lerma 1.3.14

Let D and D'lbe SFP objects.
(1) Let i:ED+ED. be an imbedding, then the continuous extension
T:0+D" given by I(X)=U{i(e)leeED,eEx} is a continuous embedding
with the adjoint J:D'»D s.t. J(x')=U{ecE li(e)Ex"}.
(2) i=§1ED'is an imbedding if I:D+D' is a continuous émbedding.
proof Except the well-definedness of J the proof is the same as
for 1.2.,20. Let F be a finite subset of'RX,={eeED|i(e)Ex'}. Then
there is a mub m'.of i(F) and m'eE,,. Since i is an imbedding
there is a mub m of F s.t. meED and i(m)=m', Since m'=i(m)ex',
meRx,. Thus RX,.is Qirected. 0

2




Now we review Plotkin power domain construction [10].

Definition 1.3.15

non-empty
Let D be an w-algebraic cpo and T be EAlPode—)labeled

finitary tree satisfying:

(l) For each node t, the label Z(t)EED;

(2) T has no terminating branches; .

(3) If t' is a descendant of t in T then 1 (t)El(t').

Let L be the function which assignes to each (infinite) path

m through, the lub of labels occuring along n. We say that T

is a generating tree over D, which generates the set Sp=
{L(x)!n is a path through T}ecD. A set ScD is finitely

generable (f.g.) if it is generated by some tree T. The class

of f.g. subsets of D is denoted by f (D). ' 0
Notice that every finite subset of D is in F(D). By M(D),

we denote the set of all non-empty finite subsets of ED.

Definition 1.3:16

Let D be an w—-algebraic cpo, AeM(D) and S,S'ef (D).
Defire:
(1) ALyS < (VxeS.3aeA.arcx) & (VaeA.3xeS.aLx) ;

(2) SE,8'&> VAM(D) .AL,S = AL,S’ o -

It can readily be seen that for A;A'eM(D), AE&A' iff
AEMA'. Also (F(D),EM) is a pre-ordered -set. Given a pre-ordered
set (P,<), [P].deéotes the quotient poset (P/gp,s/ap) vhere
EP is the canonical ecguivalence relétion over FP. [x]denotes the

equivalence class of x and for ScP, [S}={[x]] xeS}elP]. For

every monotone f:P+P', [£]1:[F]+.I'Jis given by L£1ix]I=[{f(x)].

i



Theorem 1.3.17

[(F(D),EM)], in short fi(DJ, is an w=-algebraic cpo with
the basis [ (M(D),E,)], in short M.D]. We call f.D] the.

(strong) power domain of D.

Smyth [30] presented a weaker power domain construction
which has the advantage of preserving the bounded complete-
ness. But this construction identifies ﬁoo many elements.
Plotkin power domain construction does preserve not

bounded completeness but SFP condition.

Theorem 1.3.18

If D is the inverse limit of an w-sequence <Dm,(pm,pﬁ)>
of projection pairs of w-algebraic cpo's, then <F[Dm],
([pm],[p§])> is an w-sequence of projection pairs of w-
algebraic cpo's and fFLD] is isomorphic to the inverse limit

of it.

Corollary 1.3.19

If D is an SFP object, then so is F[D].



1.4 Initial Non-effective Solutioﬁs

In the previous sections, we studied several classes
of domains, namely cpo's, w-basable domains, w-algebraic domains,
and SFP objects. All of these classes admit danonical solutions
to recursive domain equations. Smyth and Plotkin [24] developed
" a categorical theory which unifies the arguments for all of these

classes. We will briefly review their theory.

pefinition 1.4.1

Let K be a category and F:K+X be an endofunctor. A fixed
noint of F is a pair (A,q) where A is an object of K. and a:FA+A
is an isomorphism of K. An F-algebra is a pair (A,q) where AcK

and o:FAsA is a K-morphism. Given TF-algebras (A,q) and (A',q'),

an F-homomorphism f:(A,q)+(A',q') is a K-morphism f:A>A' s.t.:
£ a=a' ‘FE,
It can readily be seen that the class of F-algebras and the class

of F-homomorphisms form a category. 0

Fact 1.4.2

The initial F-aigebra, if it exists, is also the initial

fixed point of F. 0

Fact 1.4.3

Suppose K has the initial object |. Let A be an w-codiagram
<Fn(l)’Fn(lEl)> where lEl is the unique K-morphism from | to F].
Also suppose that<nn:FnL+A) is a colimiting cocone. Suppose tod

_ + . C oy :
that <Fun:Fn 113FA> is a colimiting cocone of the w=-codiagram

+1 n+l -
FA=<F" | ,F lp> - Then the initial F-algebra exists. 2

pDefinition 1.4.4

A category K is an w=-category iff it has an initial object

denoted by |y, and every w-codiagram has a colimit. A functor

——



F:K>L is w=continuous iff it preserves all existing colimits

(more precisely, colomiting cocones). 0

Corollary 1.4.5

Let K be an w-category and F:K+K be an w-continuous functor

then' the initial F-algebra exists. @A

Fact 1.4.6

(1) Let K and L be w—-categories, then so is XxL.-
(2) A functor F:KxL-»M is w-continuous iff it is w-continuous in
both K and L. 0

By CPOP, w-BDP, w—ADP, SFPP we denote the category of cpo's

and continuous projection pairs, the category of w-basable domains
and continuous projection pairs, the category of w-algebraic
domains and continuous projection pairs, and the category of SFP
objects and continuous projection pairs respectively.

It can readily be seen that CPOP, w—BDP, w—ADP, and SFPp are

all w-categories. Indeed for each of them, the initial object is
the singleton, . w-codiagrams are w=sequences 6f continuous
projection pairs, w-colimits are the inverse limits, and the
colimiting cocones are the universal cocones. Furthermore the
domain constructors x,+, and » are all y-continuous functors.

More precisely, for example, the functor +:CPOPxCPOP+CPOP defined
on objects by *(Dl,D2)=[Dl+D2] and defined on morphisms by
+((ps0") DD, (2,™) :D}+D) = (A£c[D,+D} 1.q - £+p%, Ahe[D,+D}1.qR b op)
is an. w-continuous functor. Therefore we can solve recursive

domain equations within CPOP, m-BDP, m-ADP, and SFPP

Let CPO¥, w=BDW, w-AD*), and SFP® denote the category of cpo's
and continuous (strict) functions, the categofy of w-basable domains

and continuous (strict) functions, and the category of w-algebraic
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~domains and continuous (stvict) functions, and SFP objects and
continuous (strict) functions. In the previous section we stressed
that these combinations are very natural and interesting. Also

in the above we showed that CPOP, w—BDP; w-ADP, and SFPP

enable us to solve recursive domain equations. Recent develop-
ment of Smyth and Lehmann [23] showed that initial solutions of
recursive domain equations associate operations toc solution
domains, thence derive data types. In this context, relations
between CPO¥ and CPOP, w-BD* and w—BDP, w~AD%) and w—ADP, and
srp%) and SFPY appear to be important. Smyth and Plotkin [24]

studied this problem in great detail . We will review their work.

Wand [29] noticed that CPOW,.--BDW, ,-ADY and SFPW have richer
information in the morphism sets, and presented a notion of O-

categories which enable us to make use of these informations.

Definition 1.4.7

A category K is an O-cateqory iff every hom-set is a poset

in which every ascendiﬁ@i?ggH§¥h has a lub and the composition
of morphisms is w-continuous w.r.t. this partial ordering. O

Note that if K is an O-category, so is KOP where fOPEEOP

iff f£g for every K-morphism £ and g. Also if L is an O-category

then so is Exg where (f,9)E(f',g') iff fCf' and gCg'.

pefinition 1.4.8

Let K be an O-category and let A § B 9da be arrows s.t.

g.f=id, and f-gEidB. Then we say that (f,g) is a projection pair

from A to B. g is called a projection and f is called an embedd-

ing 0

Note that this categorical formulation of projection pairs
reflects the remarks just before 1.1.6. First we fix up a cate-
gory K and define projection pairs in this category. Therefore

~

kS
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we will not obtain a pair (£,g) of monotone maps s.t. g-£=id, ,
f.gEidB and g is not continuous from the category CPO*, as
a projection pair. Indeed in CPO* the projection pairs are

exactly continuous projection pairs.

Fact 1.4.9

Let (f,g) and (f',g') be projection pairs from A to B in an
o~categbry K. Then fEf' iff g'Cg. O

Notice that it follows from 1.4.9 that one half of a
projection pair uniquely determines the other. Thus if (f,9)

is a projection pair in an O-category K then we say that g is

the (right) adjoint of £ and £ is the (left) adjoint of g.

Definiticn 1.4.30

Given an O-category K, the catégory of projection pairs

of K, in syﬁbols 5? is defined by:
ob (K¥)=0b (K)
HomKP(A,B)=the set of all projection pairs from A to B,

-—

R KP . ’
idg; = (i, id,),

(£',9")+(£,9)=(£'-£,9"-g). v 0
Notice'that.in the definition of O-categories,the lub of the empty
chain is not considered. If we take this into account we have the

foliowing notion; An O-category is said to be empty chain complete

“iff (i) Hom(A,B) has a least ele@ent lA,B for eve;y A,BeK.

(2) lB,c'f=lA,C for all f:A-+B.
obviously lA,B is a lub of the empty chain in Hom(A,B). (2) is
concerned with the continuity of composition wrt the empty chain.
EEEE_ﬁLlLll Let K be an empty chain complete O-category with a
terminal object | then | is an initial object in K'. @

pefinition 4.1.12

An O-category K has the S-property iff for every w-codiagram
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R . P . R R
A=<An,(fn,fn)> in XK', there is a cocone <u,u >=<un:An+A,un:A+An>
of A s.t. u =<u§:A+An> is a limiting cone of the w-diagram

R_ .
AP=<An’f§> in K. <p,u > is called an S-cocone of A. 0

Note that Plotkin and Smyth [24 ] emphasized the O-categories

which admit limits for every w-diagram, to gaurantee w-colimit for.
the projection- pair categories.. But thisz restriction is too strong
for w-BD*,w-AD*,SFP* arc not this typme of categories, while they
have S-property. As can be seen in the next fact, the notion of

s-property reflects the limit-colimit coincidence of Scott [17].

Fact 1.4.13

Every
Let K be an O-category with S—property:/\ w-codiagram A=<An, (fn,fi) >

in KP has a colimiting cocone. Indeed if <u,uR>=<un:An+A,u§:A+An>
is a coconc of A then the following statements are equivalent:
(1)<u,uR> is a colimiting cocone of A in EP

(2) u=<un:An+A> is a colimiting cocone of AL=<An,fn> in K.

(3)_uR=<u§:A+An> is a limiting cone of AR=<An,f§> in K.

R_ . . . R
(4) <u + w > is an w-chain in Hom(A,A) s.t. idA=Uun-un Vi

Definition 1.4.14

An O-category K is said to have locally determined colimits

of embeddings iff whenever A is an w-codiagram in 5? and <u,uR>

:A+A is a cocone of A in KP, then <u,uR> is a colimiting cocone

R, . i 4 c 3 1 J.R

CAff <pcup> is an w chain in Hom(A,A) s.t. 1dA—Uun By

It immediately follows from 1.4.14 and 1.4.13 that every
O-category with S~property has locally determined colimits.

We will consider three

a covariant functor T:E?PXL+M.

O-categories K,L, and M and

‘pDefinition 1.4.15

The functer T is locally monotone iff for every f,f':A+B

in _rgOP and g,g"':C»D in L; fEf' & gpg' implies T(£,q)ET(f',g').

?
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In case T is locally monotone,

1 kP Por® by

then we can define a functor

—_—

TP (A,B)::T (AIB) ’
8 ((£,£9 , (g, d™)) = (T (£R,q9) ,T(£,6D)).

Definition 1.4.16

The functor T is locally continuous iff it is continuous on

morphism sets, i.e. if <fn> is an w=-chain in HomKOP(A,B) and

<g,> is an w-chain in Yom, (C,D) then T(Ufn,Ugn)=UT(fn,gn) where

T(fn,gn) is an w-chain in HomM(T(A,C),T(B,D)). 0

Fact 1.4.17

Suppose T is locally continucus and both K and L have
locally determined colimits of embeddings, then TP:E?x£P+M?

'is an w-continuous functor.

It immediately follows from 1.4.17 and the remark right
after 1.4.14 that if X and L have S-property then o is an
w—continuous functor.

Definition 1.4.18

An empty chain complete O-category which has S—proper£y and

a final object is called a Dom-category.

d

Notice that in the definition of empty chain completeness
the right half of the continuity of composition wrt the lub of the
‘empty chain was omitted, namely, '

f'lA,B=lA,C for all f:$+C. |

This céndition has the effect of restricting morphisms to strict
maéS- Given a DOﬁ—Categofy K let K* be the O-category obtained
from X by reétricting morphisms to those satisfying the above
conditionl

Lemma 1.4.19

Let K be a | Dom-category. Then the terminal

object | in K is the initial object in K*.
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proof ll'A:l+A. Let f:lﬁA in K*, Then f°li'l=ll A" But since l
’
is terminal in K and hence in K*, Ll’l=idl. Thus f=li,A° This

implies that | is initial in K*. o

Lemma 1.4.20

If K=L* for some Dom-category L then K=K*. 1

Dom-categories are the.categories which possess a lot of
interesting properties of the concrete categories of .domains
like CPO, w=-BD, w-AD, and SFP. In fact all of these are Dom—-
categories and »,+, x are ldcally continuous functors. For example
‘?:cpoopxCPO+CPO is defined by:
+(A,B)=[A~»B],
+(f:A'+A,g:BfB')=Ahe[A+B].g-h-f.
Also it should be noted that one of the simplest example of
O-category is the category of sets and partial functions with the
set inclusion as the ordering on hom sets.
Notice that if K is a Dom-category then _I§_P=(K*)P is an
w-category. In summary, we have observed how an O-category
yields an w-category and a locally continuous functor yields

an w-continuous functor. The following fact . states this:

Fracts 1.4.21
(1) If K is a Dom-category then §?=£§*)P is an w-category.

(2) If X,L and M are Dom-categories then T‘EQP&E?M is w-continuous

whenever T is locally continuous. 0



CHAPTER 2:

EFFECTIVELY GIVEN DOMAINS

"In order to make a definition precise,
sharp boundaries must be imposed on some-—-
thing. This forces us to become aware of
those areas in which our intuition itself
18 uncertain. This i1s why finding appropri-
ate definitions s so often the major effort
tnvolved in creative scientific work. If a
new definition helps classify objects whose
atatus was formerly uncertain, then some
new notion must be involved. While on the
surface a definition is just a convention,
intellectually its acceptance may have a
much more active role"

Marvin L. Minsky, 1967
in Computation:Finite
and Infinite Machines.

In this chapfer, we will present further developments to

the theory of effectively given domains. This involves the obser-

vation that the notion of computability in an effectively given

domain is dependant on the indexing of its basis, as discovered

by Park. This indicates that we cannot identify two effectively

given domains just because they are order isomorphic. We propose

a suitable notion of effective embedding and effective isomor-

phism to compensate for this deficiency. A less detailed version

of this chapter appeared in Kanda and Park [51].

2.1 Effectively Given Domains

"The fundamental idea of effectively given domains is to

assume effectiveness of finite join operations on a basis of each

w-algebraic domain and to define computable elements as the lub's

of r.e. chains of basis elements. For details of the results,

obtained so far, based on this idea, see Scott [16,20], Tang [261],

Egli and Constable [1], Markowsky and Rosen [15], and Smyth [221].

In this theory it is tempting to avoid questions of indexing.

In fact, it has not been clear whether an effectively given domain



is to be a domain which can be ecffectively given in some unspeci-
fied way or is to be a domain where this is specified. One could
ask if it makes any difference. We will show it does in this
chapter. This calls for a rather "tedious" definition of
effectively given domains.

Throughout, we assume a fixed acceptable indexing <¢i>and

<wj> of partial recursive functions and r.e.sets s.t. Wi=range(¢i).

Definition 2.1.1

(1) Let D be an w-algebraic domain. A total indexing e:N+ED is

effective 1iff there is a pair of recursive predicates (b,7l) call-

ed the characteristic pair of ¢, s.t.:

b(x) 4iff e(fs(x)) is bounded in E and

D'
1(k,x) iff e(k)=Ue(fs(X))
where fs is the standard enumeration of finite subsets of N.

(2) An indexed domain is an ordered pair (D,e) where D is an u-~

_ algebraic domain and e:N=E is a total indexing. An indexed

domain (D,e) is an effectively given domain iff ¢ is effective.

€
We will write D for (D,e). In case D% is an effectively given

domain, the characteristic pair of D¢ is that of «. (En,e) is

called the effective basis of the effectively given domain De.

(3) Given an effectively given domain De, xeD is comnrutable w.r.t.

¢ (or computable in D?) iff for some r.e. set W, e(W) is directed

and x=lle (W). We say that an r.e. set W is e-directed iff e(W) is

directed. The set of all computable elements of DX Qith the
induced partial ordering is denoted by Comp(De).
)

(4) Given effectively given domains p® and D'¢ . @ function f£:D-D°

is computable w.r.t. (e,e') iff the graph of f which is T (f)=

{<n,m>]e' (M)Ef-e(n)} is r.e. 0



It is obvious that there are onlv counvably many effecivelvy
given w-algebraic domains but there are continumly ' manwv
w—algebraic domains. This means most of the w-algebraic domains
are impossible to have effective basés at all. Paterson and

Plotkin independently obtained such examples.

€ e!
In case D and D' have the same characteristic pair, p® is

, w
merely a "renaming" of D'® . More formally, there is an order
isomorphism £:D»D' s.t. f+re=e'. We denote this relation by

r ' r

De‘Z-D'e . To within g, we can introduce the following partial

indexing £ called the acceptable indexing of the class of effect-~

ively given domains s.t. E(<i,j>) is the effectively given domain
whose characteristic pair is (¢i,¢j). Note that if t is a partial

function then we write t(x) iff 1t is defined on x.

Notice that there is a well-known recursive isomorphism
between N and NxN. One way is the pairing function <n,m>=%(n+m)
(n+m+1)+m and the inverse is’ the standard enumeration Pr(n)=
<"l(n)’"2(n)> where mj,and 7, are the associated projections.
We also review howbacceptable indexing provides finite repre-
sentations for the partial recursive functions. For details of

this argument readers are refered to Rogers [14].

We assume a suitable symbolism (i.e. syntax of_p:ograms’
s.t. there is a constructive evaluation'process Eval s.t. given
a k-ary program R and a tuple (nys..,n) of natural numbers,
Eva1>may yield a natural number within finite steps. Thence
definés a partial recursive funétion (via Eval). Let <Ri> be a
constructive enumeration of all programs and ¢; the partial
recursive function defined by Ri' Then:
(1) 1 representé ¢; in such a sense that R; can constructively

be transformed into Rgv1(i) Which conétructively enumerates the



graoh of ¢i. Indeed the .so called "dove tailing" is the construct-

jon needed to do this transformation.
(2) i represents Wi=range(¢i) in such a sense that we can uniform-
ly transform Ri into BdUZ(i) which constructively enumerates Wi.
Essentially the same dove tailing technique is needed to do this
transformation.
In the foliowing we use the usual convention to identify ¢i to Ri‘
Since our indexing 95 is constructive (acceptable) we can regard
dvl and dv2 as recursive functions.

Now <i,Jj> represents<¢i,¢j> which characterizes the effective-

ly given domain E(<i,j>). In this sense <i,j> is a finite repre-

sentatior. of E(<i,j>).

Given an effectively given domain D% and a computable element
% in D s.t. W is e-directed and x={Jc (W), it is quite natural to
regard a program of a recursive function p s.t. W=range(p) as a
representation of x. We will pursue this idea and will introduce

a total indexing to the set of all computable elements of D€,

TLemma 2.1.2

For every effectively given domain D®, there is a recursive

function d€:N+N s.t. for every jeN, Wd (3) is directed and in

£
case Wj is already e-directed U;(Wj)=ue(wde(j)), |
Eroof Remember that ¢a02(j) recursively enumerates Wj' Think of

a recursive function p:N+N defined by:
D(O)=¢dv2(j)(o)
p(n+1)=1if {e(p(0)),eeyelp(n)),elsyyy 5y (M+1))} 1s not
bounded in ED

then p (n)

else uk-E(k)=U{€(p(o))’00’€(¢dv2(j)(n+l))}'
Evidently p enumerates a e-directed set W'. Since this construct-

jon is uniform in dv2(j), there is a recursive function d :N»N s.t.
» €



= L. In case W. is e-~directed evidentl c (W )=le (W . .

Y

We will call de a e-directing function (or simply a directing

function). The above lemma gives us the following total indexing

L, of Comp(De). If x=L|e(Wd (j)) we say that x has a directed index
[

j and denote it by Ce(3)=x. If x=;e(3) then Pdg(j) is a program
which recursively enumerateswd (j)'and x=u(wd (j))' Therefore j
£ €

can naturally be regarded as a finite representation of x.

Egli and Constable introduced an alternative to the directed
indexing. They tried to transform every r.e. set W to another W'
which admits lub's in the sense that Ue(W') exists, by making
every finite subset of e (W') have an upperfbound (not necessarily
in (W')). But the existence of ﬂe(W') can be: guaranteed only if -
D is bounded complete. On the other hand our dirécted indeking
method is based on'the directed completeness of D , hence should
work out eveh for the SFP case. |

Since we took the view that an effectively given domain is
= domain with a specified effective basis, domain constructors
must relate not only po-structure but also effective structure.

Thus we have to be explicit about constructed bases.

pefinition 2.1.3

. Given indexed domains Df and D'e',‘define bexD'ﬁ', D€+D'E',
and Dexb.e' to be the following indexed domains:
(1) szDu€'=(DxD', exe') where EXE'(n)=<e'nl(n),e-n2(n)>.
(2) DE+D' €' = (D+D', e+e')

where e+e'(n)= if n=0 then | else

if n=2m+1 then <O,e(m)> else

.
—
s

if n=2m then <1,e'(ﬁ)>.



(3) (D%+D'E 1= ([D+D'1,[ere'])
where [e+e'J(n)=if o(n) has a lub then ULo(n) else |,
and o(n)={[e(i),e%j)]|<i,j>ePr(n)},.
where Pr is the standard enumeration of finite subsets of

NxN. 0

]
It is well known that if D and D'® are effectively given
€ e’ £ e! € e
domains then so are D xD'~ , D +D'" , and [D »D'" J]. Indeed the
proof of this closure property involves uniform construction
of the characteristic ~ pairs of exe', e+e', and [e»e'] from those

of ¢ and e¢'. Therefore we have:

Theorem 2.1.4

There are recursive functions Prod, Sum, and Func s.t.:

(1) E(1)xE(F)= E(Prod(i,3)).
(2) T(L)+E(I)= E(Sum(i,3)).
(3) [E(1)-E(§) 1= E(Func (i,3)).
proof (1) Let (b,1) and (b',1l') be characteristic pairs of T(1)
and E(j) respectively. The characteristic pair (bxb',lx1l') of
T(i)xE(j) can be défined'by!

bxb' (x)=b (wy (x))&b" (m, (x))

=b (11 (x))xb" (1, (%)),
ZXZ'(k,x)=l(ﬂl(k),wl(x))&l'(wz(k),nz(x))
| =L (my (k) sy (X)) X' (my (k) 7, (X))

where the right side x is the arthmetic multiplicétion’and & is

the logical and. (2), (3) can be proved similarly.

Notice that essentially the above proof involves a rrogram
transformation which yields a program for bxb' from the programs
"for b and b'. In case input to this transformation is not a pair
of pairs of programs for a pair of characteristic pairs, some

program system. is still formally obtained.



Smyth [22] showed that a function £:D»D' is computable
w.r.t. (e,e') iff feCOmp([De+D'€.]). This proof involves a
construction of [e»e'l-directed r.e. set W s.t. f=UUle>e'I (W)
from the graph of £ and vice versa. In order to observe that
this uniformity induces recursive functions between directed
indexing and graph indexing,:which is a partial indexing of the
class of computable functions by means of the acceptable indices

of . the graphs of them, we will examine this proof in detail,

Fact 2.1.5

A function £:D+D' is computable w.r.t (e,e') iff £ is a\
computable élement.of [DE+D' €1,
proof Let F(f)#{<m;n>l§?n)gf-e(m)} be r.c. Notive that there are
rgcursive functions Step and Epr s.t. Pr(SLep(<m,n>)={<m,n>} and
fS(Epr(m,n))={m,n}. Then we have: Lere'](Step (Km,n>) )=
[e(m),e'(n)l. | Remember that e'(n)Ef-e(m) 1£f

[ere'](Step (<m,n>))EEf. Therefore [e+e'l(Step(Tr(£)))cE and

[D»D']
f=[e+e'1(Step(T(£f))). Since r(f) is r.e. Step(r(f)) has a

recursive enumeration TorLyrese o Define a chain'<yn> in

E(p.p'] PY*

yo=lere'1(xy)

Yo+1™ ynU[e+e'](rn+1).
This is well-defined because cvery finite subset of [e+e']1(Step(
r(£))) has a lub in E;p ., for [D+D'] is bounded complete.
Furthermore there is a recursive function p s.t. yn=[e+g'](p(n)).
Indeed p (0)=r, and p(n+l)=yk.[2+1'](k,h(n)) where h is a recur-
sive function satisfying P (h(n))={<p(n),r ,,>} .Therefore <Y,>
is an [e+e']-effective chain. Thus f=ly ' is computable in [D»D'1].
Conversely let W be [e»e'J-directed s.t. f={l[e+e'](W). Evidently

[e(m),e' (n)IEE iff [I+1'1(x,Epr(x,Step(<m,n>)))=0 for some xeW



Thus {<m,n>|le(m),e"(n)] £f} is r.e. Therefore f is computable
w.r.t. (e,e'). Note that [I+1'] is the second coordinate of the

characteristic pair of [e+e']. n

Theorem 2.1.6

There are recursive functions Dg,Gd:N-»N s.t.:
(1) If k is a graph index of f which is computable w.r.t. (£(i),
(2) If f=c[£(i)+g(j)](k) then f has a graph index Gd(k,i,j), where
£ (i) denotes the effective basis of £(i).
- proof (1) Given keN, r=Step-¢dvz(k) recursively enumerate Step(Wk).
Given i,jeN, define p by:
p (0)=r (0),

p (n+1)=uk. 4 ) (k/h(n))
2

*Fune (i,]

where h is as before, i.e. as in the proof of 2.1.5. Then p is

a partial recursive function. Since the construction of p is

uniform in i,j,k, there is a recursive function t(k,i,j) s.t.
s . .\=p. This t is the desired Dg. Notice that if k is a
t(k,i,3)

graph index of a computable function then the above p is recur-

sive and behaves as the p in the previous proof.

(2) Similarly. 0

Notice that in the above proof again a program trans-
[ .
formation was involved. In fact we transformed any given program

P, into P . ... Indeed we can claim that for most cases of
t(k,1,3)

k
constructing an r.e. set from some other r.e. set in a certain
class of r.e. sets, unless we do somehow very sbphisticated
things, involved is a simple always terminating program trans-
formation. So in the rest of this dissertation, whenever weicome

across this sort of situation, we will indicate constructive

transformation of r.e. sets into r.e. sets and omit details of



proofs of results on indices 1like 2.1.4 and 2.1.6.

Given effectively given domains DG,D'E', and D"eu, let
f:D+D' and g:D'»D" be computable w.r.t. (e,e') and (e¢',e") res-
pectively. By uniformly constructing the graph of g-f, we can
show that g<f again is computable w.r.t. (e',e"). The uniformity

of the construction and (1)-2.1.6 establish:

Theorem 2.1.7

There exists a recursive function Compose s.t. :

Cre -5 m 1) g myrg(m)149)
=C[£(k)+g(n)](Compose(i.j,k,m,n))

_ A
Theorem 2.1.8

A continuous function from an effectively given domain to
another is computable w.r.t. their effective bases iff it maps
computable elements to computable elements recursively in directed
indices,
proof (only if part): Notice that if f£:D+D' is computable w.r.t.

(e,e'j, then we can uniformly construct an r.e. set WW (k)
£

{nle'(n)ef-e(m) for some meW, } for every keN. Thus Y¢ is a recur-

sive function. It is evident that if W, is e-directed then W
: Y . (k)
f

is e'-directed.

(1f part): Assume that ¥ . is a recursive function s.t. T (‘*’f(k))
= f(;e(k)). Notice that there exists a recursive function Bd s.t.
e(m)=;€(Bd(m)). Now f-E(m)=ce'-\{lf-Bd(m)_ Therefore ¢! (n)Ef'e(m)

is r.e. Therefore f is computable w.r.t. (e,c'). 0

The proof of 2.1.8 hés a further implication.

Theorem 2.1.9

There exists a recursive function Apply s.t. if k is a graph

index of feComp([E(i)+E(j)]) then:



CE(j)(Appzy(i'j'krm)=f(cg“(i)(m)). U
It is evident that we have a recursive function Apply’

which takes directed indices of functions rather than graph

indices , for we have 2.1.6.

Let CoMPOSE:[E(k)*E(m)Ix [E(m)+E(n)I+[E(k)+E(n)] be defined
by COMPOSE (£,9)=g-f. Then it can readily be seen that (COMPOSE

is computable. Thence we can obtain 2.1.7 as a corollary to 2.1.9.

Before ending this section, we will observe one important
effectiveness result which will play an essential role in the

categorical argument in the last chapter.

Dafinition 2.1.10

Given an effectively given domain De, an effectively directed

(ef-directed) subset of D® is a directed subset ZgComp(DE) s.t.

z=;éw) for some r.e. set'w. We say this W is cc—directed. If Wj

is ;e—directed then we say that ce(w) has a Cc—directed index Jj.

O

Theorem 2.1.11

(1) Let céW) be an ef-directed subset of D°. Then U;E(W) is a
computable element of D®.

(2) There is ahrecursive function Lub s.t. if ce(Wj) has a e
directed index j then cg(Lub(j))=Uce(Wj). Intuitively speaking
taking ef-directed limit is an effective operation.

proof Given an r.e. set Wj, we can cbnstruct an r.e. set W'
-s.t. Y=§e(wx)=e(W'), with xece(wj) and e(Wx)={eee]eEx}. If

Wj is ;e—directed then W' is ce—directed and UY=U;€(Wj). fhus

we have proved both (1) and (2). a

Intuitively, (2)-2.1.11 means that given effective enumeration
of programs each of which effectively approximates an element of

g (W), we can construct a program which approximates Uz (W) .
o
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2.2 Effective Embeddings

In this section, we will observe that po-structure of a
domain can't uniquely determine effective structure, even if

it can be effectively given.

Theorem 2.2.1 (Park)

(1) Thefe is a countably algebraic domain D with two different
effective bases gand e' s.t. Comp(DE)=Comp(D€') but s.t.

Comp ([DE+0"1) ¥ Comp([D€'+o"]) where g is the two point lattice
and 7 is an arbitary effective basis of q.

(2) There is a countably algebraic domain D with two different
effective basesbe and e¢' s.t. Comp(De)?Comp(De').

proof (1) Let (D,E) be the following countably algebraic domain:

l\(ia/' eee

.‘.///
\V2

Note that D has only one limit point e, Thus the basis of D is

the poset obtained from D by removing the limit point. Think of
the following poset (Ny(NxN),E) where iEj iff i<j, iB<m,n> iff
¢m(n) takes at leest i steps, and <m,n>E<m',n's iff m=m' and
n=n'. Then the partial ordering € is decidable in terms of the
Godel numbering of Ny(NxN). Thus this GOdel numbering provides
an effective indexing ¢' of E,+ Now think of the following poset
(Ny (NxN)u ({w} N),E) s.t. iEj 1ff i<j, igcm,n> iff i<m and
«m,n>E<m’,n'> iff m=m' and n=n', Evidently the GSdel numbering
of Ny(NxN)y({w}xN) provides an effective indexing ¢ of Eye |
Obviocusly Comp(D€)=Comp(D€')=D. Now let f£:D+0 be a continuous

map s.t. £(x)=if xJe then T else l. Then f is computable w.r.t.




<g,m> but not so w.r.t. <e',r>. Now let M={helD+ql|{ge[D>gll
'gth} is finite}. Then M={h |X is a finite set of leaves above

compact elements of D} where he=if xgyeX then | else |. It

]
can readily be seen that MgComp([De+0"]) and MgComp([De +0"]).
: '
Let E:Comp([DE—ro“])—)Comp([De +0“]) be an isomorphism. Then

Z (M)=M. Notice that f=[IM. Therefore ﬂMeComp([D€+0“]). Since

£}

t
is an isomorphism, E(ﬂM)=ﬂ'MeComp([De +o“]). But M should

]
have no greatest lower bound in Comp([De *0“]). _ v

Notice that 2.2.1 is more than a counter example to a care-
less definition of effectively given domains. In fact (1)-2.2.1
indicates that Cpmp(DE)=Comp(D€') is not sufficient to identify
t® and Dt'. Remember that in domain theory, domain constructors
must preserve equivalence of domains, more technically, they
must be functors. But if we assume that D® and Del are equ-
jvalent iff Comp(D€)=Comp(De') then "+" does not preserve this

equivalence as shown in (1)-2.2.1. We claim that the following

equivalence of effectively given domains is appropriate.

Definition 2.2.2

t
Let Df and D* be indexed domains. We say that ¢ and €' a

are cffectively equivalent (in symbol ege') iff there are

recursive functions r,s:N+N s.t. e€'=e+*s and e=e'-r. O

It can readily be seen that if either ¢ or e' is effective
thén e€¢' implies both e and e¢' are effective and Comp (D®) =

]
comp (D® ).

Notice that D° and D° of the proof of 2.2.1 are not effectively
equivalent. In fact if ¢ and e' were effectively equivalent
then there could exist a recursive function c:N»N s.t. ¢_(n)

m

terminates iff e(<m,n>)=<m’',n'> with m'#w and we could solve

the halting problem.



We can easily ex:end the notion of effective equivalence
to isomorphisms.

pefinition 2.2.3

~ 1
(1) Let D® and D'® be indexed domains. A function f:ED+ED,

is an effective imbedding from € to e¢' (in symbols f:e+e') iff

1. £ is an inbedding from ED to ED"
2. there is a recursive function re s.t. fie=e'-rf.

Remember "imbedding"” was cefined in’ 1.2.19.

(2) We say that e and €' are effectively isomorphic (in symbols

e
®p'€') iff there exists an effective imbedding f:e-e'

:ED,+ED is also an effa:tive imbeddiag fron e' to e.

- Lermnma 2.2.4

(1) Let D° and D'° be indexed domains and f be an effective
imbedding from ¢ to ¢'. Then the unique continuous extension
F:DsD' of f is a continuous embedding with the adjoint g:D'sD

given by g(y)={eeE | f(e)zy}. Furthermore E1?(ED)=f'l{

, .
are effectively given domains, f is

(2) In case D® and D'
computable w.r.t.(e,e') and g is computable w.r.t. (e',e).
Furthermore f(Comp(DE))EComp(D'e'), in words, f embedds
computable elements.
(3) If DE§D'E' and either of them is effectively given, then
both of them are effectively given and Comp(De)QCOmp(D.e').
proof (1) f=f1E; is obviously an imbedding. Thus by 1.2.20.
(2) e' (mcE-e(n) iff e'(m)ue'*r.(n). Therefore ¥ is computable
w.r.t. (€,€'). Since g'e'(n)=U{E(j)lf‘€(j)Ee'(n)}
Ai{e(3) e’ (2 ¢ (3))Ce ' (M) and € (m) is compact, we have:

e (m)Eg e’ (n) 1ff € (M)Ce(§) for some j s.t. e'er (J)Ee’ (n).

Thus € (m)eg+e'(n) is r.e. in m and n. Therefore g is computable



w.r.t. (e',e).'BY the computability of T and 2.1.9, we
= i
obviously have T (Comp(D))cComp(D'® ).

(3) Evident. n

pefinition 2.2.5
(1) If f:ED+ED, is an effective imbedding from e to e', then

— ?
we say that £:D»D' is an effective embedding from p* to D'C .

. |
(2) Let D and D'® be effectively given domains. A continuous

[}
embedding f:D+»D' is a computable embedding from D® to D'® iff

f is computable w.r.t. (e,e') and the adjoint g:D'+D is comput-

able w.r.t. (e',e). g is called a computable projection and

(f,9) is called a computable projection pair. -

et Wbe an non;recursiQG r.e. set and (N,e),(N',e") be the following

effectively given damains: ?' %' %' e'(O)?l
v L I ase® -
N-q}}'” e(O)= | N'Q\}/z e' (2(n+l))=(n-1)*
| e(n+l)=n , 4 €' (2ntl)=n .

Then £:N+N' defined by £(x)=if x=| then | else if x{W then x else x' is an
enbedding camputable wrt (g€,£'). But it is not an effective embedding since

17 is not a recursive set. This exarmle due to Plotkin indicates that not

all embeddings which are camputable are effective embeddings.

Theorem 2.2,6

Let.D8 and D'’ be effectively given domains s.t. £:D+D"
is a computable embedding, then_f is an effcctivé embedaing.
E£99£ Let g:D'+D be the adjoiﬁ# of £. Then both e' (n)tf-e(m)
and e(n)g-¢'(m) are r.e. in indices,; We will show the exist-
ence of a recursive function r S.t. fee=¢'-p. We claim that
the following terminating program computes such r(m) for meN.

- enumeraﬁe n s.t. e'(n)5ﬁ~e(m),

~ for each enumegated n, enumerate k s.t. E(k)gg°e'(n).

- continue until we obtain a k s.t. € (k)=¢(m).



The n for which this k is produced is the desired r»(h).
By a "dove-tailing" technique, we can compute the above
process. We now check that such r is actually the one desired.
Assume k and n are the values when the above process terminates.
Then e(k)gg-s'(n)Eg-f(e(m))=e(m). Since e(k)=¢(m), we have:
gee'(n)=e(m). But e'(n)Afeg-e’' (n)=£-e(m).

Therefore e¢'(n)=f.e(m). !

In summary, we have observed that the effective embeddings
of effectively given domains are exactly the computable embedd-~
ings. This coincidence indicates the naturalness of the notion
of computable embeddings. It immediately follows from these
observations that an Isomorphism between two effectively given
domains is an éffective isomorphism iff both itself and its
adjoint are computable. Also this coincidence implies that the
composition of two effective embeddings is again an effective

embedding.

The coincidence of effective embeddings of effectively
given domains and computable embeddings is in fact "effective".
civen an effective imbedding f:e»e', if rf=¢j then we say that

f has & racursive index j. Also we say that the effective

embedding £ has = recursive index j. Now we have:

Theorem 2.2.7

(1) There is a recursive function Rd s.t. if i and j are direct-
ed indices of a computable embedding feComp([E(k)-+E(m)]) and

the adjoint geComp([E(m)-E(k)]) respectively then Rd(i,3j,k,m)

is a recursive index of £,
(2) There are recursive functions De and Dp s.t. if i is a

recursive index of an effective embedding feComp ([E(3)~E (k) 1)
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then De(i,j,k) is a directed index of f and Dp(i,j,k) is a
directed index of the adjoint geComp([E(k)+f(j)]),of £.
proof By the effectiveness of the proof of 2.2.4 and 2.2.6.
v
If i and j are directed indices of a computable embedding

f and its adjoint g respectively, then we say that <i,j> is

a directed index of the computable projection pair (f,q).

Remember that we have claimed that the notion of effective
isomorphism gives an appropriate criterion for identifying two

effectively given domains. We can provide quite convincing
e :
evidences for this claim. First, evidently ¥ is an equivalence
: e
is invariant underx

is

relation. TFurthermore we can show that

the domain constructors x,+, and +. More formally we have:

Theorem 2.2.8

e
Let Aa,BB,CY, and D be indexed domains s.t. A%cY and
S5
BBE . Then we have:

e
(1) a%s® 2cYxp

o Bg Yord
(2) A 4B =C'+D

e

(3) [a%8 150cT-1 1.

proof (1) and (2) are easy.

We will prove (3). For the Sake of simplicity we prove.this

theorem fér €, Assume r,r’,s,s'’ are recursive functions s.t.

?=d°r'r § B +s', a=y+r, and 8 =5 +s. Notice that we have assumed

A=C and B=D. Then it can readily be seen that there is a

recursive function Z:N»N s.t.: .
(La(i) 8 (3)T1<i,32€P () I={lyr (1) Ses (3) < (L) ;s (3) >¢P 2 (n))

Thus [a*B](n)=i£1H[aﬁJ(Bﬁ)]|<i,j>€pr(n)} exists then this lub

else | =[y»1(<(n)).

gimilarly we have a recursive j s.t. [y+81(n)=[a~>81(j(n)).
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2.3 Algebraic Completion

smyth [22] characterized effectively given continuous
domains as the completion of computable R-structures. The index-
-ing problem was not considered. We will characterize effectively
given algebraic domains as the algebraic completion of effective

posets, taking care of effective isomorphisms.

Definition 2.3.1

Let (E,L) be a countable poset with bottom and bounded
jdins and €:N+E be a total indexing. We call (E,e) an indexed
poset. In case ¢ is effective, i.e. ¢ satisfies (1)-2.1.1,

we call (E,e) an effective poset. The (algebraic) completion

of an indexed poset (E,e) is an indexed domain (E,€) where E
is the algebraic completion of E and e:N»>t(E) is given by e(n)=

t-¢(n) where 1 is the canonical map from E to E. .

Theorem 2.3.2

(1) Let (E,e) be an effective poset. Then the completion of
it is an effectively given domain.

(2) Given an effectively given domain D¢ « the effective basis

IRH

Eg is an effective poset. and (ED,E)=(D,E) (to within £).

(3) An indexed domain is an effectively given domain iff it is

A r
the completion of some effective poset (to within %). @

The above theorem indicates that the effective bases of
effectively given domains are exactly effective posets. This
point can be made more explicit. It is obvious that we can

introduce the renaming relation on the class of effective posets
r

and to within ¥ associate acceptable indices to each effective

poset. We will use & to denote the acceptable indexing of

effective posets. Now let £(<i,j>) denote the algebraic

[



completion of the effective poset £(<i,j>). Then we have:

Theorem 2.3.3 (The Acceptable Indexing Theorem)

]

E(<1,3>) = E£(<i,j>) (to within %). B

By virtué of the above theorem, we can say that £(<i,j>)

is the effective basis of £(<i,j>).

2.4 Inverse Limits

€ R
Let <Dmm,(fm,fm)> be an w-sequence of cont;nuous project-

ion pairs of indexed domains. By the inverse limit of this

. . € R .
sequence, in symbols lim<D m, (f ,f )> or 11m<D;m>, we mean an
, : . R .
indexed domain (D,,¢,) where D, =1im<D ,(f ,f )> and g, is

given by:

e (0)=E,, (€ (0)) e, (L) =f, (e (1))

Eoo(z):flm(el(o)) €°°(3)=f0°°(60(2))

More precisely, e (n,m>)=f (e (m)).

In case D;m are effectively given domains, even if (f_,fR)

: _ _ ~ m’*m

are computable projection pairs, lim<D;m> need not be so. This
immediately follows from the observation of effectiveness of

SFP objects. For establishing closure under limit, we need the

notion of effectiveness of the seguences.

pefinition 2.4.1

€ £ fR
Let <D m (£ ,£)> be an w-sequence of computable project-
ijon pairs of effectively given domains. In case there exists
- .
a recursive function q:N-»N s.t. n1~q(m) is a recursive index

of fm and “2'q(m) is an acceptable index of D;m , we say that

this sequence is effective. 0
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By virtue of 2.2.7, we inmmediately have the following

alternative characterization of effective sequences:

Lemma 2.4.2

An w—-sequence <D;m,(fm,fﬁ)> of computable projection
pairs of effectively given domains is effective iff there is
a recursive function q s.t. “1'"1°q(m) is a directed index of
£

o nz-nl-q(m) is a directed index of fﬁ, and nzoq(m) is an

acceptable index of D;m. 0

Theorem 2.4.3 (The Inverse Limit Theorem)

Let <D;m,(fm,f§)> be an effective sequence of computable
projection pairs of effectively given domains. Then the inverse
limit (Dm,ew) is an effectively given domain. Also Ymm is an
effective embedding from € to e_, thence (Tmm,fﬁm) is a
computable projection pair. Furthermore there éxist recursive
functions Ad and Gd s.t. kd(m)‘and ad(m) are directed indices

of Tmm and ?ﬁm respectively.

R ——gr
proof Let £ =T 4E_ ,£°<E 1E_.. £ F_AE_, and f§w=tﬁw1ED .
m m+1l m ©

Assume {e_(i,),..,e (i )}cEj . There are recursive functions

@ and b s.t. e (M=, (1) arey o (Bm). Let Deg({e (iy),ee.,
ew(in)})=max{a(il),..,a(in)}. Then there exists a recursive
function Deg s.t. Deg(il,..,in)=Deg({e®(il),..,gm(in)}). Let

£, =fie...+£; (i<]). Since f are imbeddings, leq(ig)seere (1))

is bounded iff {fa(il)Deg(il,..,in)(ea(il)(b(il))""'

fa(i )Deg(i R | )(ea(i )(b(in))} is bounded. Since the given
sequence is effectlve, there 1s a recur51ve functlon Mrg s.t.
,_.,1 ) is a recursive index of f

1 a(i )Deg(i ,..,in)
for every ken. Thus there is a recursive functlon Red s.t.

Mrg (k,i
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'in)(Red(il,..,in,k))zf (

SDeg (i - att )Deg (i st ) Cati))
b(ik))), for every ksn. Therefo;e "{ew(il),..,em(in)} is
bounded"” is recursive in il,..,in since e are effective bases.
Similarly em(k)=U{em(il),..,em(in)} is recursive in indicies.
Therefore ¢ _ is an effective basis of D_.
By the definition of e We can c¢fféctively find n for each k
s.t. em(n)=fhw-em(k) for some m. Therefore there is a recursive
function r s.t. ew(r(k))=fmm-em(k). Therefore Tmm is an effect-
ive embedding.
The existence of recursive functions Ad and Gd immediately
follows from the definition of € - n
Notice that in tne above proof, we have constructed a
characteristic pair of the inverse limit from a program which .

enumerates the characteristic pairs of the sequence. This

point can be made explicit.

Given an effective sequence <D;m,(fm,f§)> of computable
projection pairs of effectively given domains, we say it has

a sequence index j iff ¢j is a recursive function s.t.

"1’“1'¢j(m)'“2'"1'¢j(m)'are directed indices of fm and fﬁ

respectively, and n2{¢j(m) is an acceptable index of D;m.

Theorem 2.4.4

There is a recursive function Ivlim s.t. if j is a sequence

index of <D;m,(fm,f$)> then Ivlim(j) is an acceptable index of

the inverse limit (Dw,em) 0

To obtain further affirmative evidence for the notion of
effective isomorphisms, let us examine if it is invariant
under the inverse limit construction or not. Notice that unlike

previously studied domain constructors, the inverse limit



construction works not only on domains but also on computable
projection pairs among them. Therefore we need the following

notion to be preserved under the construction.

Definition 2.4.5

Given two effective sequences <D;m,(fm,f$)> and
, .
<D$ehl(félféR)> of computable projection pairs, we say that

[5]
they are effectively isomorphic (in symbols <D;m,(fm,fﬁ)>§

] .
<Dﬁ€m,(f$,fﬁR)> ) iff there are recursive functions u,v s.t.
u(m) is a recursive index of an effective isomorphism im:Dm+D$

and v(m) is a recursive index of the adjoint-jm:Dé+Dm; and

Co_. . R
e TS | £

£ m°3m+l=Jm

R :
. L}
m’ fm ° 0

Theorem 2.4.6

] 1
1 € ] |R . . € M, v €
<Dm m,(fm,fm > implies ;!.:Lm<Dmm>—].1m<Dm m>,

o

€ R
<Dmm,(fm,fm)>

proof For the sake of simplicity we will prove this theorem for
e

ad

€ rather than £. Notice that we have assumed D =D', f =f',
m m m m

R R . .
and £ =f' . Let » , r' be recursive functions s.t. e'=e¢_-r
m m m. m m m m
]

and Em=€$.rm for every m. By the effective isomorphism of the

sequences, there are recursive functions u,v s.t. ¢u(m)=rm

—ant . . .
¢v(m)—rm° Let a and b be as in the proof of 2.4.3. Then:

em(n):f

and

*b(n))

a(m)e %a(n) Fa(n)

= . v ceg =t R__,R
= n)e" Cam) Ta(ny P @) (O£ =fr and £=£'7).

But there is a recursive Emb s.t. e (Emb(n,m))=f'<e" (m).
® n n

Since ¢ r', we have a recursive function r s.t.:
[+ ]

v(m)= m
e (n)=e! (r_(n)).

similarly e:o(n)=gw(p°'°(n)) for some recursive function r .
(> ]
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Notice finally that the proof of 2.4.3 has a further
implication. Indeed we have constructed f_, and fﬁm.from the

effective sequence <D;m,(fm,f§)>. Thus we have:

Theorem 2.4.7

There is a recursive function Ucone s.t. if j is a sequence
R . .
index of <D;m,(fm,fm)> then nl-Ucone(j) is an acceptable index

of Ad and nz-Ucone(j) is an acceptable index of Gd.

2.5 Addendum

It should be noticed that if two effectively given domains
are effectively isomorphic then we can effectively go from an

acceptable index of one to that of the other. More formally:

fheorem 2.5.1

e '
There is a recursive function Trv s.t. if pf=p'¢ via a

computable isomorphism pair (h,hR) with a airected index <i,j>
]
and DY has an acceptable index n, then D'® has an accentable

index Trv(n,i,j). | 7]
The effective isomorphism also has - the following effect:

Theorem 2.5.2

e '
There is a recursive function Trf s.t. if D®=D'® wvia a

computable projection pair (h,hR) with a directed index <i,j>
13 - L] '
and xe<Comp (Df) has a directed index n then h(x)eComp(D'® ) has

a directed index Trf(n,i,j). i



One could ask if our notion of computability is really
adequate. To answer this question, we exhibit how the convent-
jonal notion of computability can be embedded into'our theory
of effectively given domains. |

Definition 2.5.3

Let N be the following w-algebraic cpo:
Q\\l 2

All elements of N are finite and so EN=N. Let us index E_ by

:N+E  s.t.:
€ N _
£(0)=_I_
E(n+l)=n n=0,l,2,.... . D
It is evident that'(N,e) is an effectively given domain

and all elements of N are computable wrt .

The following theorem ensures that the conventional
notion of computability is embedded into our notion of computa-

bility.

Theorem 2.5.4

(1) For every partial recursive function f:N-N, there is a
computable (wrt (e,e)) extension f:N+N of f.

(2) For.every function f?N*N computable wrt (e,e), there is
a partial recursive function f:N»N s.t. f is the restriction
(on both domain and codomain) to N of f.

- proof (1) Let f:N»N be a partial recursive function. Define

f:N>N to be the following function:



f(x)=if x=| then |

~else if f(x)¢ then f(x)

else |.

Then we have:
e (N)E£f (e (m))
e(n)g if m=0 then e (m)
else if f(m-1)+ then e (f (m-1)+1)
else €(0).
Therefore e (n)Lf(e(m)) is r.e. in n and m. Thus £ is a

computable extension of f.

(2) Let f:N-»N be bomputable wrt (e,e). Let f:NsN be the

following partial function:
F(n)=uk.[k#0 & ¢ (K)CE (e (n+1))].

Obviously f is a partial recursive functionand f is a computable

extension of f to N.

Lehmann and Smyth [ 23] proposed the following w-algebraic

domain N' as a substitute to y\.

ssg e
sO - ssl’/
\
o s| 7~

N

l/f

Here we regard s"'0 as a natural number neN. Therefore we have:
N={sn0|n€N}5N'- The basis of N' in symbols EN. is the poset
obtained from p' by removing its limit point . Let us index

EN' by: e':N+EN. s.t.:



e'(2n)=snl
n=0,1,2,...
¢' (2n+1) =s"0. B
It is evident that (N',e') is an effectively given démain

s.t. N'=Comp((Nf,s')).

« reasonable
Can we esfablish result similar to 2.5.4 for (N'/,e")?

N |
Most likely the answer is negative. Indeed we can not show
reasonalble contiquous extension to N' of the number theoretic
subtraction = s.t.:
n-m=if n>m then n-m else O.
This difficulty is essentially due to the fact that, while N'
has a structure which reflects the natural total ordering nsn+l

of natural numbers, most partial recursive functions are not

monotone wrt <.



CHAPTER 3: EFFECTIVE DOMAINS

"In the end the program must still be run
on a machine —-—- aq machine which does not

possews the benefit of 'abstract' human under-
standing, a machine that must operate with

finite configurations."

Dana Scott, 1970 .
in Outline of a Mathematical
Theory of Computation.

For a theory of computation it is at least desirable to
handle only computable objects. In this chapter, we will
observe.that (Comp(DE),e) behaves very well as a domain. A

preliminary version of this chapter appeared in Kanda [3,4].

3.1 Effective Domains

An effectively algebraic (ef-alqebraic).domaiﬁ is a pair

(X,e) where X is a poset and e is a total indexing of EX s.t.:

(1) EX has bounded Jjoins.

(2) If e(Wj) is directed then Ut(Wj)eX. We call such r.e. set

wj e-directed.
(3) For every XeX, there is a e-directed r.e. set Wt s.t.
x=lje (W) .

We assume X has | .“We call e (or Ei) an"ef—alrjebraic basis of X .

pDefinition 3.1.1

An ef-algebraic domain (X,e) is an effective domain iff

the ef-algebraic basis E§ is an effective poset. In this case

E§ is called an effective basis of X. The characteristic pair

of E

; will be called a characteristic pair of (X,e). a

r

Notice that to within the renaming relation ¥, a character-

istic pair uniquely determines an effective domain. Indeed

we have:
r ’ r
(Exrﬁ)g('Exlfe'): iff (X,e)":’ (XI’EI).



In case (¢i,¢j) is a characteristic pair, then we will write
E(<i,j>) to denote the effective domain determined by (¢i,¢j).

We say <1i,j >is an acceptable index of g(<i,j>).

The "directing function" does exist for every effective
domain. Thus we can introduce the "directed indexing" X to
every effective domain as we did for Comp(DE) (See 2.1.2).

More precisely Xe(i)=Ue(Wd (i))'
€

By an effectively directed (ef-directed) subset of an

effective domain X®, we mean a directed subset ZcX s.t. Z=

x_ (W) for some r.e. set W. We say that this W is y_=-directed.
€ . €

If Wy is x ~directed then we say that Xe(wj) has a x_-directed

index Jj.
By exactly the same argument as 2.1.11, we have:

Theorem 3.1.2

(1) An effective domain is ef-directed complete, i.e.

every ef-directed subset has a lub.

(2) There is a recursive function Lub s.t. if ¥ (Wj) has a
. €

-directed index j, then x (Lub(j))=uUy (W.). 14
X€ € e J

Notice that effective domains are not necessarily directed
complete. Indeed RE, the set of all r.e. subsets of N with the
set theoretical inclusion as a partial ordering is an effective
domain but not directed complete, where the indexing of the
basis is Pr'

pDefinition 3.1.3

. ]
Let X% and X'® be effective domains. A function f£:X-X'

is fully computable(f-computable) w.r.t. (e,e') iff T(f) is

r.e. and f is ef-continuous w.r.t. (e,e') i.e. f preserves

jub's of ef-directed subsets. ‘ ' 0



3.2 Effective Isomorphisms

Notice that the D* and D'® used in the proof of 2.2.1 are
not only effectively given domains but also effective domains.
Therefore we need the notion of effective isomorphisms as a

criterion for identifying effective domains.

We define imbeddings‘and effective isomorphisms among the
ef~algebraic bases of ef-algebraic domains exactly as we did
in 2.2.3 for indexed domains. Given ef-algebraic domains X° and
x'e', and an effective imbedding f:e~»e', let f:X+X' be the
following extension: %(UC(W))=Uf(€(W)) for every e-directed W.
Notice that f is well-defined since f is an effective imbedding.

~ L}
We call such f an effective embedding from X to x'° .

For an effective embedding of ef-algebraic domains, we can
not expect more than monotonicity. In fact it could not be even
an embedding though it is called an “effectivg embedding". But
éffective embeddings of effective domains enjoy much more inter-

esting properties.

Definition 3.2.1

. .
Let X° and X'® be effective domains. We say that a funct-

ton f:X»X' is a fully computable (f-computable) embedding from

e to e¢' iff £ is f-computable w.r.t (e,e') and there is a unique

f-computable w.r.t. (e,e') map fR:X'+X s.t. f-fREidx. and

fR.fiidX. fR is called a f-computable projection and (f,fR) is
]
called a f-computable projection pair .from Xetto X'¢ . 0

Theorem 3.2.2

L}
Let X% and X'® be effective domains with an effective
imbedding f:e+e', then the effective embedding ¥ is an .

f-computable embedding.



proof Obviously f is monotone. We have:
~ Vand
Elxg (W) =FWUe g (5)))
=UEre (g (1))

={]e"’ 'rf(wde(i))

=Qe"”f'¢dv2(ds(i))(n)

=Q€'.¢tki)(n) for some recursive function t
=le" (W, 4y)

=U€'(Wd€,;t(i))) (\'Wt(i) is e'-directed)
=X+ (E(1)).

Therefore given any x -directed set W, %(xE(W)) is an effective-
. L}
ly directed subset of X'® . Furthermore:
f(Uxe(W))=f(Ue(iewwde(i)))
=Uf'€(12wwde(i))
=U{Uf°€(wde(i))li€w}

=L F (e (W y)) 1iew}

d_(i
=U%(x€(W))-
Therefore f is ef-continuous w.r.t (e,e'). Let F be a finite
subset of {e(i)lf-e(i)Clle’' W)} where W is e'~direct=d. Thus f(F)
is bounded by lie' (W). Therefore Uf(F)eEx.. Since f is an effect-
- ive imbe iding UFeEX. Evidently f(UF)=Uf(F)=EUe'(W). Thus UFe
{e(i) | £f-e(L)BUe' (W)}. Thus {E(i)lf'e(i)Ehe'(W)} is directed.
Furthermore {ilf'e(i)EUE'(W)}={i|e'-rf(i)Ee'(n) for some neN}.
Thus this set is r.e. Therefore {E(i)lf’g(i)Ehg'(W)} is ef-
directed subset of Ei. Now define %R:X'+X b&:
FR(Ue® (W) )=Ule (1) | £-e (1)EUe" (W) )
where W is e'-directed. Thence we have:

ERF (e (W) ) =ER(UE (e (W)

={e(i) I f-e(i)EUE e (W)}



=1{e (i) |ieW}
=}e (W) .
Also F-E(Ue’ (W))=F (U{e (L) [£-e (i)TUe" (W) })
=u{f-e(i)If-e(i)Eﬂe'(W)}Epe'(W).
It can readily be seen that fR is ef-continuous w.r.t. (e',¢).
It is evident that e'(m)Ef(e(n)) is recursive in m and n.
Therefore %’is f-computable w.r.t. (e,e'). Also we have:
e(mEE €’ (n).
& e(mEU{e(i)£f-e(i)Ee' (n)].
<& e(m)Ee(i) and f+e(i)Ce’'(n) for some i.
&> e(m)pe (i) and e'-rf(i)Ee'(n) for some i.
Therefore e(m)E;Rre'(n) is r.es in m and n.

Thus fR is f-computable w.r.t. (e¢',e). A
By exactly the same argument as in 2.2.6 we have:

Theorem 3.2.3

' .
Let X% and X'® be effective domains s.t. f:X+X' is an
f-computable embedding then f is an effective embedding. 7

Despite discouragingly poor character of effective embedd-

ings of ef-algebraic domains, effective isomorphisms of them

are quite interesting.

Lemma 3.2.4

] . .
Let X% and X'% be ef-algebraic domains s.t. f:e»e' is an

~

effective isomorphism. Then EX;E via f and X:X' via f.

Xl
. -1 'f %-1 . -1
proof Evidently £,f ~,f, are monotone. Since both f and f
-1 . - ‘ '
are injective, £-f '=id, and £ ‘.f=id_ . Thus E =E._. via f.
EX' EX X UxX

Now we have %-%’1(ue'(W))sf(Uf'l-e-(w))=uf-f'1-e'(w)=ue'(W).

~ -

1 ~ - ~
similarly £ “-£(Ue(W))=Ue (W). Thus X=X' via f. Vi)



. L€ e' | . .
In case either X and X' is an effective domain and
e

e
&1 via £ then both of them are effective domains and X=X!

€
via f. Notice that an f~computable isomorphism is an isomorph-

ism which is f-computable as well as its adjoint.

3.3 Effective Completion

In this section, we will observe that every effective
domain can be characterized as (Comp(DE),e) for some effectively

. . €
given domain D”.

pefinition 3.3.1°

The effective completion of an effective poset (B,e) is
a poset (Ee,g) together with a total indexing e:N+t(B) where
e is as in 2.1.1, and EE={E(W)|W is e-directed}. We will write

for B® if e is evident from the context. 0O

fooR]

Theorem 3.3.2 (The Effective Completion Theorem I)

Given an effective poset (B,e) we have:
(1) (B)=Ey and (t(B),c)=(B,e).
(2) For every xeB, there is a e-directed r.e. set W. s.t.:
x=Je (W) =Ut-e (W) .
(3) (B,e)=(Comp(B,z},c).
(4) (B,E) is an effective domain.
proof (1) (t(B),e) is evidently a renaming of (B,e). For t(B)=
Eg notice that 1(B)=Eg and geig.
(2) x={e (i) |1eW} for some e-directed r.e. set W. Let J =t(x)=
{t-e (i) |ieW}. Since t(B)= B, W is e-directed. Also we haves:

x=UT =lle (W) =Ut € (W) .



(3) By (2) we have B®cComp (B,€). But by the definition of B,
Comp (B ,%)cBF.

(4) By (1) and (2). 7

Theorem 3.3.3 (The Effective Completion Theorem II)

Let (X,e) be an effective domain. Then (Ex,e) is an
effective poset and (EX,E)=(X,E).
proof D fine.ezx+ﬁ% by 6(x)={eeExleEx}f Evidently 6 is an iso-

morphism and 6-e=c. Therefore (EX,E)=(X,€). 1A

The following Corollary immediately follows from 3.3.2

and 3.3.3:

corollary 3.3.4 !(The Characterization “heorem;

An ef-algebraic domain is an effective domain iff it is
the effective completion of an effective poset iff it is

" (Comp (D®) ,¢) for some effectively given domain DE.

.Notice that we have observed that effective posets are
exactly the effective bases of effective(ly given) domains.

We can make this more explicit as follows:

Theorem 3.3.5 (The Acceptable Indexing Theorem)

~s g

T(i) =£(i) = Comp (E(i))

Ao

where E(i) is the effective completion of £(i).

S———

x This ¢ is well-defined because E(i)gx=ue(wx) iff e (1)ee(3)

for some jewx;since e (i) is compact.



3.4 Domain Constructors

Let X% and x'e' be effective domains. We define xexx'e'
and x€+x'€' by:
XEXX'E'=(XXX')EXE'.
XE4x & = (xexr) € FE]

where exe' and e+e' are as before, By 3.3.5 x* Comp(EX,e)

o
But evidently Comp(Lx,e)XComp(bX,,e )= Lomp(L LX,) Thus X" xXx'"
l
is an effective domain. Similarly X*4X'® is an effective
domain.

The problem of function gpace is not so straightforward

because effective domains are not necessarily cpo's.

Definition 3.4.1

Let X% and X'E' be effective domains. Define (X€+ X'E')
to be (X+X')(?+87) where (X+X') is t he set of all f~computable
(w.r.t. (e,e')) functions with the pointwise ordering, and
§(E,,€-) is the following total indexing Of By yiyt
(e+e') (n)= if o(n) has a lub then lo(n) else |
where O(D)i{(E(i),E(j))|<i,j>ePr(n)} and

(e,e') (x)= if x3e then e' else |. 0

Lemma 3.4.2

1]
Let X% and X'® be effective domains. h:¥X+*X' ic £~

computable w.r.t (e,e') iff it is the restriction to X=Comp(§§)

of a function E,~E,, which is computable w.r.t. (€,€').

Eroof Nece551ty ie trivial. We prove sufficiency. Assume h:

COmp(E )+comp(EX.) is f-computable w.r.t. (e,€'). Evidently

h1T(EX).T(EX)+EX. is monotone. Thus ¥y EX+EX' s.t. Wh(U?(W))=

(hee(W) - for all ‘c-directed W, is the unique continuous extens-—

ion of h{t(Ey). Since h is f-computable w.r.t. (%,T'), ¥, is

computable w.r.t. (€,e'). Also ¥, (1fe(W))=Lh+E (W) =h(UE(W)) for



every e—directed W. Notice that the second equality is due to

the fact that we can effectively go from the effective index-

ing ¢ to the directed indexing y—. Thus ¥, is the computable

h

evtansion of h. 2.

Theoren 3.4.3

. . | )
Let X% and X'® be effectivé domains. We have:

(x5 x'©')=(Comp (LELES,1) , (5951 ).

]
Therefore (XE+X'e ) is an effective domain.
: -%E ﬁz' ;E %E'
proof Def}ne a:Comp(LEX+EX,])+((Comp(EX)+Comp(hx,)) by a(h)=
h1Comp(E§). Then o is an isomorphism with the adjoint 8 s.t.
by

R

B (h)=¥,. Evidently ale+re']=(e»e'). Therefore up to ¥ we have

established the theorem, 0

By 2.1.4, 2.3.3, 3.4.3. and 3.3.5, we immediately have:

Theorem 3.,4.4

Let Prod, Sum, and Func be as in 2.1.4. Then we have:
(1) E(1)xZ(3)=E(Prod(i,3)).
(2) E(L)+E(3)=E(Sum(i,3)).
(3) (E(1)+E(3))=E(Func(i,3)). D

Y $ 1 3 '——- '_1'—5"-:'
Notice that the directed indexing LIEsT ] of (Comp[hx+hx,],
[e+e']) is equivalent to the directed indexing X(ere') of
!
(x¥+X'® ) in such a sense as a(g(i))=x(i). Therefore from

2.1.7 and 2.1.9 we immediately have:

Lemma 3.4.5

(1) Every f—éomputable function maps recursively in directed

indices. Indeed we have:

Xg(i)(Apng (i'j'k'm))=x(£(i)+£(j))(k)(X )(m))~

g(i

s, Y '
(2) Given- effective domains X® and X'® , an ef-continvous func--

tion X»X' which maps recursively in directed indices is an



f-computable function w.r.t. (e,c').
(3) The composition of f-computable function is recursive in

directed indices uniformly in the ranges and domains of the

functions to be composed. . n

12)-3.4.5 immediately implies that the éomposition of two
effective embeddings is again an effective embedding for we

have 3.2.2 and 3.2.3.

We can introduce the recursive indices of effective em-
beddings of effective domains as we did for effectively given
domains. Remember that in 3.2.2 and 3.2.3, we have estabilish-
ed the equivalence of effective embeddings and f-computable
embeddings of effective domains. Now with directed indexings
for effective domains, by exactly the same arguments as in
2.2.7, we can establish the "effective" equivalence of
effective embeddihgs and f-computable embeddings. Indeed

We have:

Temma 3.4.6

Let Rd, De, ard Dp be as in 2.2.7. Then we have:

(1) If i and j are directed indices of an f-computable embedd-
ing fe(Z(k)»£(m)) and the adjoint ge(Z(m)-% (k)) respectively
then Rd(i,j,k,m) is a recursive index of f.
(2) If i is a recursive index of an effective embedding fe
(E(j)+g(k)), then De(i,j,k) is a directed index of f and
Dp(i,j,k) is a directed index of its adjoint.'

@

It is obvious that we have similar results to 2.5.1 and

7.5.2 for eifective domains.
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3.5 Effective Inverse Limitss

We can characterize the effectiveness of w-sequences of
f-computable projection pairs of effective domains as in 2.4.1
and 2.4.2, Even though an w-sequence of f-computable project-
ion pairs is effective, the inverse limit construction gives
us a poset which is not countable. Therefore we need a notion
of "effective" iﬁverse limits which will cut down the cardinal

of the limits to =<w.

pDefinition 3.5.1

The effective inverse limit of an effective sequence

<x;m,(fm,fﬁ)> of f-computable projection pairs of effective
domains is a pair (X _,e )where X is a poset {<xm>|xm=gm(xm+l),
there is a recursive function q s.t. g(m) is a directed index

of Xn} with the coordinatewise ordering, and e_is defined as

in section 4 of capter 2. We will write ef-1im<X®m, (£ fR)>
. : - . £ R, _.

or ef-lim<X > for (X_,e.). Evidently ef- 1m<xmm,(fm,fm)> is

an ef-algebraic domain. 0

Theorem 3.5.2

Let <Xk“(fm,f§)> be an effective sequence, then the
effective inverse limit of it is an effective domain.

i ' R . =€ \E
proof Evidently ef-lim <X;mp(fm,fm)>=ef-11m<Comp(E;;)eM,
(fm,f§)>. Thus it is sufficient to show:

, =€ 1 E R . =g -
ef—11m<Comp(EX$) m'(fm,fm)>=(COmp(11m<E;$,(me,vf;)>),gw)

where wf is the unique com)>utable extension of fm' To simpli-
m

fy notations we will write f for ¥_ . Let d=<d_>eef-lim -
- R .
<Comp(E§m)Em,(fm,fm)>. There is a recursive function q s.t.
m

dm=XEm(q(m))' Also d=lIf (d ). Notice that fmw=fmJCOmp(E§$).



Also by 2.4.3 there is a recursive function Ad s.t. Ad(m) is

a directed index of ?mm' Therefore we have:

£ o,(d )=f (d)

\

=(g;2 +zm](kd(m))(CE (q(m))
m m

=z, (¢(m)) for some recursive t.

Thus deComp(}im<E;m,(fﬁ,?§)>).

. =€ ,= =R
Conversely let,c=«%€ecompg}1m<E§;,(fm,fm)>). By the
computability of fﬁm, we have: cm=?ﬁw(c)eComp(ﬁ§m). Therefore
‘ | -

m+l) for every m. By 2.4.3. there is a recursive sd i.t.

_eR
= En
§ .{m) is a directed index of fR . Therefore fR ifR 1cOmp(E€m)=

d mee Me Moo Xm

X[€w+ém](kd(m)). Thus we have:

X[z 0% 16 am) (@)

=x[€m+zg](5d(m))(xzm(k))

=x7 (g(m)) for some recursive function g.

o]

where T=X_ (k). Therefore we Have:
ceef- im<Comp(Ezm)Em (£ fR)>
&'—-, Xm ' ml m . m

RO

The invariance of under the domain constructors x,+,-»

and the effective inverse limits can be checked by almost the
game arguments as in the previous chapter,

Also notice that exactly the same recursive function Ivlim
as in 2.4.4 establishes the same theorem for effective domains.
Furthermore the same recursive function Ucone establishes the same .

theorem as 2.4.7 for effective domains.



CHHAPTER 4: EI'FECTIVWNESS IN SFP OBJECTS

In 1.3, we have observed that the class of SFP objects
properly contains that of w-algebraic domains. In this chapter
we will establish a  class of effectively given SFP objects
which properly contains that of effectively given domains.

This generalization has a significance. Our intuitive under-
standing of computability requires every finite object to be
computable in some suitable sense. Therefore every finite cpo
should be effectively given by some suitable effective indexing.
But this is not the case in the theory of effectively given
domains , because most of the finite cpo's are not bounded
complete. Remember that every finite cpo is an SFP object.
Therefore SFP is a more appropriate class on which'éffectiveness
should be studied. Effectiveness arguments for SFP objects were
predicted as routine extensions of those for effectively given
domains by several people, but as we will observe later,ait
turned out to be a far from routine extension and to involve

substantial developments.

4.1 Effectively Given SFP Objects

Since SFP objects can be characterized as w—algebraic

cpo's satisfying‘the SFP condition on bases, the following

definition is natural.

Definition 4.1.1

(1) An indexed SFP object is a pair (D,e) where D is an SFP

object and e:N-E. is a total indexing. e is said to be effective

iff there is a pair (e,d) of recursive predicates (called

the characteristic pair) s.t.



e(x,m) 4iff Card(UE (e(fs(x)))=m
D

d(k,x) iff e(k)ely (e(fs(x)))
D .

(2) An indexed SFP object (D,e) is effectively given iff e is

effective. Eg will be called the effective basis of DF.

(3) Given an effectively given SFP object DY, xeD is computable

w.r.t. € (or computable in D¥) iff for some r.e. set W, e(W) is

directed and x=Ue (W). We say that an r.e. set W is g-directed

if e (W) is directed. The set of all computable elements of
pf will be denoted by Comp (D®).

]
(4) Given effectively given SFP objects D® and D'® , a

~continuous function £f:D»D' is computable w.r.t. (e,e') iff

r(f)={<n,m>|e' (m)ELf-cin)} is r.e.

As for effectively given domains, to within the renaming
relation é, a characteristic pair uniquely determines an effect-
ively given SFP object. If <¢i,¢j> is a characteristic pair, we
will write p(<i,j>) to denote the effectively given SIFP object

determined by this characteristic pair. Also we say that p(<i,j>)

has an acceptable index <i,j>.

Notice that if pD° is an effectively given SFP object, then

the predicate "Card(Uﬁ (e (£ (x)))=m" and "e(k)eU* (e(fa(x)))"
D s ED S

are recursive in (x,m) and (k,x) respectively.

Lemma 4.1.2 There 1is a recursive function Conv s.t. if n is an

acceptable iraex of an effectively given domain then Conv (n) is
an accentable index of it as an effectively given SFP object.
proof Let D® be an effectively given domain with the character-

istic pair (b,1). Card(Up (e(f, (x)))=m>0 iff m=1. And indeed
D

m=1 iff e(f (x)) is bounded iff p(x) is true.



Thus c¢(x,m)<& if m>1 then O else m=1 & b(x).

Thus ¢ is a recursive predicate. Also we have:

d(k,x)<> e(k)elU_. (e(f (x))
ED s

<> E(k)=Uc(fs(X))
&S Lik,x).

Thus d is a recursive predicate. 7|

e have an alternative characterization of the effective
bases of SFP objects. In fact g:NaED is effective iff there are

recursive functions r and s s.t.:

r(m,n) <= e(m)=e(n),

g+f es=U_ -e-f .
S ED S

Lemma 4.1.3

For every -effectively given SFP object D® there is a

recursive function, called the directing function, dezs.t. for

every jeN, Wy (3) is e-directed and if Wj is already e-directed
€
thenUe(Wj)=Ue(Wde(j))-

proof e(f_(x)) bounded iff Card(v_ (e(f_(x))))>0. Also
. D

e(k)=Ue(fs(X)) iff Card(UED(e(fS(X))))=l and e(k)eUED(e(fs(X)))-

Thus the same proof as for 2.1.2 establishes this lemma. In fact

this de is the same as in 2.1.2. 7

By virtue of the above lemma, we can introduce a totil

indexing called the directed indexing to Comp (D®) for every

effectively given SFP object D®. If x= Ue(Wd (5 )) we say that x

has a directed 1ndex j and denote it by x—; (j). Notice that
this indexing coincied with the Ze for effectively given

. L] : € 3 . . )
domains in case D" is an effectively given domain.



By exactly the same arguments, we have the same results
as 2.1.9 and 2.1.11 for effectively given SFP objects. Also
t+e composition of computable functions is recursive in graph

indicies.

4.2 Effective Embeddings & Effective Isomorphisms

Since every effectively given domain is an effectively
given SFP object, the theorem 2.2.1 call for effective em-

- beddings and effective isomorphisms for effectively given

SFP objects.

Definiticn 4.2.1

(1) Let D° and D'® be indexed SFP objects. A function £1E_ 4,
is an effective imbedding from € to €' (in symbols f:e»e') iff.

1..f is an imbedding from Ep to Envy

2. There is a recursive function rf s.t. f'e=s'-rf.

Remember "imbedaings" are defined in 1.3.13.

: ,
(2) Let.D® and D'® be indexed SFP objects. We say that they are

. . . ' e
effectively isomorphic (in symbols DeE'D’e or ¢¥ ') iff there

exists an effective imbedding f:e+e' s.t. f"1 is also an effect-

jve imbedding from e' to €. : _ - ‘ 0

- It is quite clear that 4.2.1 coincides with 2.2.3 whenever
'

De and D'E are effectively given domains.

As for effectively given domains, we can define effective

embeddings to be the unique continuous extensions of effective

imbeddings. Also a computable embedding is an embedding which is -

computable as well as its adjoint, which is called a computable




projection. A computable projection pair is a pair of a comput-

able embedding and its adjoint. Evidently all of these notions

coincide with 2.2.5 whenever we are considering effectively

given domains.

Theorem 4.2.2

L}
(1) Let D and D'® be indexed SFP objects ,and £:E*E, be

D!
an effective imbedding. fhen the continuous extension f of f

to D is a continuous embedding with the adjoint given by:
g(y)=U{eeEle(e)gy}. Furthermore f_l#gﬂ?(ED)-

(2) In cése D ‘and D'e' are effectively given SFP objects, f

is computable w.r.t. (e,e') and g is computable w.r.t. (g',e).
(3) Leu D¢ and D'E' be effectively given SFP opnjects s.t. £:D+D'
is a computable embedding, then f is an effective embedding

from € to €'.

proof Similarly to the proofs of 2.2.4 and 2.2.6. 14}

Note that 4.2.2 immediately'implies that the class of
effective embeddings is closed under composition for the

class of computable maps is closed under it.

e . .
It is quite obvious that if DYD'®’ and either of them
is an effectively given SFP object then both of them are,

» '
and Comp (D) =Ccmp (D'® ).

The coincidence of ecffective embeddings and computable

embeddings is "effective".

Theorém 4.2.3

(1) There is a recursive function Rg s.t. if i and j are graph
indices of a computable embedding f:p (k)+p(m) and its adjoint
£R: 5 (m)+p (k) respectively, then Rg(i,j,k,m) is a recursive

jndex of f.



4.6

(2) There are recursive functions Ge,Gp s.t. if i is a recurs-
ive index of an effective embedding f:p (j)=p (k) then Ge(i,j, k)
is a graph index of £ and Gp(i,j,k) is a graph index of the

adjoint fR:;(k)+E(j). 7

Notice that at this moment, we can not make 4.2.3 as in
2.2.7 because we do not know if the function spaces of effect-
ively given SFP objects are effectively given or not yet. But
4.2.3 is a generalization of 2.2.7 since we can effectively
go back and forth among directed indexing and graph indexing

in effectively given domains.

.3 Algebraic Cohp}ption

Definiticn 4.3.1
A finitary poset (E,E) together with a total indexing

e:N+E is called an indexed finitary poset. An indexed finitary

poset (E,e) is an effective finitary poset iff e is effective

in such a sense that it has a characteristic pair. By the

(algekraic) completion of an indexed poset (E,e), we mean an

indexed SFP object (E,e) where E is the algebraic completicn
of E and e:N=»t1(E) is defined by: e(n)=t-e(n) where t is the

canonical map. from E to E.

Theorem 4.3.2

(1) Let (E,e) be an effective finitary poset. Then the complet-
ion of it is an effectively given SFP object.

(2) Given an effectively given SFP object D¢, (ED,g) is an
effective finitary poset and (D,e)=(ED,Z),

(3) An indexed SFP object is an effectively given SFP object

iff it is the completion of some effective finitary poset. i}



The above theorem indicates that the effective bases of
effectively given SFP objects are exactly effective finitary
posets. We will make this point more explicit. To within the

r

~

renaming relation =, i.,e. having the same characteristic pair,
we can introduce an acceptable indexing of the class of
effective finitary posets. If (¢i,¢j) is the characteristic
pair of an effective finitary poset E®, then we say that E°®

has an acceptable index <i,j> and denote it by E€=p(<i,j>)_

Now let p(<i,j>) denote the completion of p (<i,J>). Then:

Theorem 4.3.3 (The Acceptable Indexing Theorem)

o (<i,35) = pl<i,i>)e

Therefore by virtue of 4.3.3, we can say that p (<i,35)

is the effective basis of ; (<i,js).

4.4 Effectively Given SFP Objects as Effective Sequences

Remember that SFP objects have a characterization in
terms of y~seguences of continuous projection pairs of finite
cpo's. In this section, we will obtain an effective version

of this.

Let <D;m,(fm,fﬁ)> be an y-sequence of computable project-
jon pairs of effectively given SFP objects. If there: is a
recursiye function q :N3N s.t ﬂl.q(m) is a récursive index of fm
and 112.q(m) is an acceptable index of D;m, then we say that
this sequence is effective. Obviously this sequence is effect-
ive iff there is a recursive function q' s.t. “1.“1.q'(m) and
ﬂz‘"l'q'(m) are graph indices of £ and fi respectively and

"z'q'(m) is an acceptable index of D;m.



If an effectively given SFP obhject is a finite cpo,

then we call it an effectively given finite cpo.

Theorem 4.,4.1

An indexed SFP object D is an effectively given SFP
object iff there is an effective sequence <D;m,(fm,f$)> of
computable projection pairs of finite cpo's s.t.:

(o) 2 (D_,e_) .

proof (Sufficiency) By the same arguments as in 2.4.3; we can
establish that e¢_ is an effective basis of D_. Thus (Dm,em)
is an effectively given SFP object.
(Necessity) Assume D® is an effectively given SFP object. We
will construct a» effecéive sequence of effectively given finite
cpb's whose inverse limit is effectively isomorphic to DF.

First notice that for every effective basis e:N-E there is

D'
an effective basis e':N+E, s.t. eZe' and ¢'(0)=]. Therefore

without loss of generality we can assume e(O)=l. Let <Dm,.

o

1

(fm,f§)> be the Plotkin canonical sequence of D w.r.t. e.

Wwe will introduce an effective indexing €m of Dm and show that

e
Y

¢ 1is an effective indexing s.t.e =e¢_. Define e, PY?

sm(i)= izm then e¢(i) else

s 15
+h Hh

{cm(O) F ) ,Em(i—l) }=ICDm then

e (pk.le(k)en %c(k)¢ I]) else

if I=D  then ¢(0O).

Notice that there is a recursive function p s.t. eq(P)=elp(i,m)).

: ®m is an effectivel i :
Evlde?tly D vely given finite cpo. Also fm.Dm+Dm+l
is an effective imbedding (and an effective embedding at the
same time). Indeed fm‘€m=€m+l‘ Effectiveness of the sequence

R . s

<D; ’(fm,fm)> is obvious. Therefore by the sufficiency, (D_se_)

e
is an effectively given SFP object. Now we prove Dimgbe.



Remember ED gED via @ as in ».1.23. First we will show

-]

that there is a recursive function r:N-»N s.t. QR!€=€m'P-
Notice that e(n)EDm is decidable thus there is a recursive
function A:N-N s.t, h(n)=uk.[s(n)eDk]. Also there is a recur-
sive function 7Z:N»N s.t, i(n)=uk.[eh(n)(k)=e(n)]. Thus

we have em(<i(n),h(n)>)=QR-€(n).

Thus Mn.ce(Z(n) ,k(n)) is such r,

Conversely we shall show the existence of a recursive function

r' s.t. Q-e_=e'r'. Remember that there are recursive functions

a,b:N>N s.t. ew(n)=fa(nﬁge a(n)(b(n)). Define r' by:

r'(n)= if b(n)<a(n) then b(n) else

if o={ (0),..,8 (n-l)}:Da(n)'then

ea(n) a(n)

uk.[e(k)eDa(nj&e(k)fJ] else

if JzDa(n) then 0.

——

Since Dm=UE ({e(0) ,.e,e(m)}), »' is recursive. Evidently r°®
D

satisfies Q+e =ec-r’, _ - N 1

pDefinition 4.4.2
Given a finite cpo D, we say that an effective indexing

e :N»D is normalized iff e is under the following constraint:

e(0)=1
e(i)#e(j) if i#j & i,jscard(D)
e(i)=e(0) if i>Card(D).

If ¢ is normalized, we call D° a normalized effectively given

finite cpo. 0

Normalized effectively given finite cpo's enjoy interest-

ing properties some of which will be listed below.



Lemma 4.4.3

(1) Given a normalized effectively given finte cpo De, we can
effectively obtain Card(D). More precisely there is a recursive
function Card s.t. if m is an acceptable index of De, then

Card (D) =Card(m).

(2) Let p® and D'E' be normalized effectively given finite cpo's
s.t.”f:D+D' is an effective embedding from ¢ to e'. Then for
every xeD', we can decide xef (D).

(3) Let f be an effective imbedding from a normalized effect-
ively given finite cpo D° to another D'E', the adjoint fR:D'+D
maps effectively in directed indices , i.e. fR-e'(n)=e-pr(n)

for some recursive function P ¢Re

(4) There exists a recursive function 4pr s.t. if k is a recur-
sive index of an effective embedding f:p (i)-p (j) of effective-

ly given finite cpo’s then peR=¢,,,.(y 4 x)
. 4 4 -

proof (1) Card(D)=pk.[e(k)=e(k+1)].
(2)¢* (M) e£(D) 1ff ¢’ (n)=c-r (m) for some msCard(D).
(3) fR(x')=U{eeD[f(e)Ex'}. Then:
£R.e' () =Uf{e (m) e (rg(m))Ee (n))
=U{e @) e’ (rg(m))Ee’ (n) & m<Card(D) )

=€.pr(n) for some recursive D¢R.

(4) Immediate from the construction in the proof of (3). 1}

In the proof of 4.4.1, we constructed an effective sequ-
ence of computable projection pairs of effectively given finite
cpo's, for every effectively given SFP object. We will present
a normalized version of this. Given an effectively given SFP

. e R .
object D, let <D_ ,(f ,f )> be the Plotkin  canonical

sequence w.r.t. e. Define the following indexing 2 for each D_:
m ¥
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ém(0)=s(0)=l
e ()= if I={¢ (0),..,2 (i-1)}eD_ then
_e(uk.[e(k)eDm & e(k)f£I]) else
if I=D_ then ¢(0).

~Obviously ém is normalized and Em=egcw. We will call the effect-

)

; g R . .
ive sequence <Dmm,(fm,fm)> the canonical effective sequence of

€ A

D- and call emthe canonical effective basis of De.

Corollary 4.4.4

An indexed SFP object D® is an effectively given SFP object
iff there is an effective sequence <D;m,(fm,fﬁ)> of computable
projection pairs of effectively given normalized finite cpo's

.
s.t. D =(Dm,ew).

With 4.4.1 and 4.4.4, we can now present an alternative
characterization of computable elements in effectively given

SFP objects.

Theorem 4.4.5

(1) Let <D;m,(fm,fm)> be an effective sequence of computable
pxojecticn pairs of ifiinite cpo's. Then xaComp(lim<D;m>) iff
there is a recursive function cX:N+N s.t. cx(m) is a directed
~index of fﬁm(x)=xm-

(2) Let D® be an effectively given SFP object with the canonic-
al effective sequence <D;m,(fm,f§)>, then xeComp(De) iff there
is a recursive function cX:N+N s.t. cx(m) is a directed index
of £n_(x)=x.

proof (1) By almost the same arguments as in the proof of 3.5.2.
(2) Immediate from (1). 0

It is at least worthwhile to note that the equivalence in

4.4.5 is "effective".



4.5 Domain Constructors

' .
Let D® and D'® be effectively given SFP objects. Define
) ]
indexed SFP objects D®xD'® , and D®4D'® similarly to 2.1.3.

We will observe that they are effectively given.

" Lemma 4.5.1

Let D and D' be cpo's. '
(1) For every XEDxD', (x,y)eUDxD.(X) iff erD(wl(X)) &
yeUD' (“Z(X)) .
(2) For every XcD+D':
(O,U)eUD+D.(X) iff rl(X)={O} and ueUD(rz(X))
(1'u')EUB+D'(X) iff rl(X)={l} and u‘eUD(rz(X))

where r; ((&,b))=n;((a,b)) and r,({{}D=0 .

Theorem 4.5.2

Let D¢ and D'® be effectively given SFP objects, then so
are DED'®' and DE+D'E . .
proof It is sufficient to show that exe' and et+e' are effective
indexings. First we have:

. . ] ] »
UbeED'({LXS (Xl)p-i-reXe (hn)})

=UED><ED0 ({(e-'rrl(xl) ’ 8"1r2(X1)),. .y (E'"]_(xn) 'ev.,’r2(xn))})

=UED({E.F¥X1)"°'€”Tl(xn)})xUED,

The last line is due to 4.5.1. Therefore exe' is an effective

({e'-nz(xl),..,e'-wz(xn)}).

indexing. For e+te', we.havg three cases to be considered.
(Case 1) X={c+e'(xl),--.e¥e'(xn)} contains no element from

E and E

D De In this case UED+ED'(X)={l}.

(Case 2) X contains no element‘from ED" In this case X=
{(0,e(ky))seer(Orelk ))} where X3=2k +1 (l<ign). Thus by 4.5.1
we have:

Up 41

(X)={(O,u)|ueUE
D D' )

D(e(kl),..,e(kn)}.
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(Case 3) X={e+e'(xl),-., e+e'(xn)} ={(l,e'(kl),..,(l,e'(kn))}

where xj=2kj (1sj<n). By 4.5.1 we have:

U, (X)={(1,u") fu'el, (e'(k,) ,.-,e'(k ))}.
ED+ED, ED' 1% n

Under any of these cases, Card(UE +E (X))=m is recursive in

D D'

L s " .
xl""xn and m. Also e+e (k)euED+ED'(X) is recursive in x

and k. Thus ete' is an effective indexing. [l

ll-olxnl

]
Notice that in case D° and D'® are effectively given

[} [}
finite cpo's then so are D*4+D'®  and DExD'® .

€ R | €' 1 'R : nonical
Let <Dmm,(fm,fm)> and <Dm m,(fm,fm )> be the ca

|}
sequences of D° and D'€ respectively. It is quite straight-

. . ot
forward to observe that <D;me$“m,(f Xf',fof R)> and

'
m m" m m

€ ! v <R, R - .
<Dmm+Dm m,(fm+fm,fm+fm )> are effective sequences of computable

projection pairs of effectively given finite cpo's. Indeed

we have:

o

€ ., &' v € ce! . <R _,R
D xD &i§<Dmmem m,(fmxfm,fmxfm }> and

iR

pE4p' € ‘_l_i_x_n_<DIim+DI'n€r;1 (£ FEL, f§+fr'nR) >
Therefore we caﬁ provide an alternative proof to 4.5.2. But
since the proof of 4.5.2 is very simple, there is very little
point in showing details of this alternative proof.

Given effectively given SFP objects D* and D'E', define
an indexed SFP cbjects [D€+D'€.] by:

| [p%+p' ¢ 1=[p-p’3LE7E"]

where [e»€'] is as in 2.1.3,

In contrast to x and +, the direct attempt to establish
effectiveness of [e+e'] is not easy at all. Remember that
this task was not so easy even for the bounded complete case

(See Egli and Constable [1] and Rosen and Markowsky [151).



]
However it is fairly easy to observe that if D® and D'®  are

: ]
"normalized" effectively given finite cpo's, then [D*+D'® ] is
an effectively given finite cpo. Thence we can establish the

closure under -+ of the class of effectively given SFP objects

using 4.4.1.

ILemma 4.5.3

1
Let DY and D'® be normalized effectively given finite

cpo's. Then [D€+D'€ 1 is an effectively given finite cpo.
proof It is sufficient to show that [e+e'lis effective.
Because DE.and D'e' are normalized, we can effectively obtain
Card(DE) and Card(D'e'). Furthermore we have:

D={e (i) lisCard(Dp")}

b':(e'(i)]iSCard(D'E‘)].

Define a predicate funec by:

L}
func(n)= if Pr(n)ZCérd(De)XCard(D'e } then O else

Cif {(e(1),e"(3)) l<i,j¥ePr(n) }e[p»D'Ithen 1

else O.
Evidently fune is.a recursive preéicate. Now we introduce a
partial indexing y of [D*D'] by: for every felD»D'],

=y (k) if £={(e(i),e(3))1<i,3>eP_(n)}

where n is the kth integer satisfying fune(n). It is straight-
forward to observe that yv(i)ey(j) is recursive in i and j.
since we know an upper bound of the cardinal of [D+D'] , and
there is an effective way of obtéining k from <i,j> s.t.

[e(i) ,e(3)1=y(k); [e+e']l is an effective indexing. @A

Lemma 4.5.4

€ € €] el .
Let Dll,D22,Di l,Dé 2 be normalized effectively given
finite cpo's. Furthermore let u:D,+D, and u':D!+D} be effect-

ive embeddings from e; to €, and €] to e, respectively.



Then (uau'):[Dl+Di]+[D2+Dé] defined by:
(u-}u')(f)=u'-f-uR

is an effective imbedding from [el+ei] to [ez+e'2].

D -———————;Dé
(u+u') (£)

Qroof It is sufficient to show that there is a recursive
N 1 . 1 1= ' .
function r . .y S.t. (u=»u') [el+el] [e2+52] P asut) "

Given neN, we can effectively obtain 1ireeeri =~ sot.
n

vy (L) =Ceq (k) el (kD s e sy (L )=le (k) e} (4, )1, where
n n

n
{<kl’ki>""'<kmn'k%;} € Pr(n). Therefore, from il,..,imn '
we can effectively obtain nl(n)eN s.t. [gl+ei](n)=yl(nl(n)).
By the effectiveness of the construction, we can regard ny
as a recursive function. Therefore we have:
(u*u')([el+6i](n))=u'-yl(nl(n))'uR.

Remember that there are recursive functions r, and p r s.t.

R _
u..ei(m)=eé.ru,(m)‘and u wez(m)=el-puR(m). Therefore there
is a recursive function w:N-N s.t.

(wru') (Leg>e]T(m))=u' vy  (n, (n)) +u®

=y, (w(n)).
However we have a recursive function n2:N+N S.te.
1 =
[e,>e)1(n)=v,(n,(n)).

Now take r(u4u.)(n)=uk-[Yz(nz(k))=Y2(w(n))].

Notice that in the above proof, we have constructed a
recursive function w from r v and p,R. Thence we have const-

ructed r(u+u.) from w. Furthermore puR was constructed from

p via 4.4.3. Therefore we have constructed » from
a - (u»u')
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r, and T More precisely there is a recursive function fu
. ]
s.t. if i,3,i',3j"' are acceptable indicies of Dil,Dgz,Diel,
L
Déez, and k, m are recursive indicies of u and u' respective-

ly then frn(i,j,k,m) is a recursive index of (u»u').

Furthermore it should be noticed that due to the effect-
iveness of the construction for -+, we can effectively obtain
- v
an acceptable index of [D*+D'® ] from the acceptable indices

. . 1
of normalized effectively given finite cpo's D® and D'€ .

These observations establish the following theorem:

Theorem 4.5.5 (The Function Space Theorem I)

. R v
Let <D;m,(fm,fm)> and <D$Em,(fﬁ,fﬁR)> be the canonical
. 1]
effective sequences of p° and D'° respectively. Then
]
'<[D;m+D5€m],((fm+f$),(fm+fﬁ)R)> is an effective sequence of
computable projection pairs of effectively given finite cpo's.
. L ]
Then Aiﬂ<LD;m+Dﬁem],((fm+fﬁ),(fm +f$)R)> is an effectively

given SFP object.

The next theorem ensures that we get the right function

space.

Theorem 4.5.6

'

Let D and D'® be effectively given SFP objects with the

. ; « € R e! )
canonical effective sequences <Dmm,(fm'fm)> and <D& mr(fﬁ:fﬁp)>
respectively. Let Q:E, »Ej and Q':ED,+ED. be effective iso-
morphisms. Then ge[D-D']l is computable wrt (e,e') iff ¢(g)e

. e’ — —

comp(11m<[D;m*D$ mlr((fm+f$),(fm+fﬁ)R)>) where §=0'R.q.d and
¢ is as in the proof of 1.3.8. .

proof g is computable wrt (e,e') iff § is computable wrt

(€ r€a) - Now let <F;m,(hm,h§)>
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be the cannonical effective sequence of_&im<[ D;m+D$€$],
((fm+f$),(fm+f$)R)>. Assume there is a recursive function
NS @m=cYm-cg=h§m(§) where gel_. We will show that ¢%(g)=
Ax.%fém~§h(xm) is cémputable w.r.t. (e_,e!). In fact

R (8) (o (m))=YEL ~§ (£8 +c.(m). Thus ef(n)Ce (§) (e, (m)) iff
e;(n)gfim'gk(fiw-em(m)) for some keN. Before we prove further

we will prove the following lemma:

Lemma 4.5.7

. . . . R _
There is a recursive function v s.t. fmm €€n Y

whenever <D;m,(fm,fﬁ)> is the canonical sequence of DF.

proof There are reccursive functions a,b s.t. ¢_(n)=

fa(n)w. Sa(n)(b(n)). Therefore we have:

fim-ew(n)= if m<a(n) then f§~...-fz(n)_l(ea(n)-b(n))
else if m=a(n) then ea(n)(b(n))
else f ( (b(n))).

m—l""'fa(n) a(n)

But since fm is an effective embedding and 4.4.3 holds we have:

R . .
f o Eu(n)= if m<a(n) then e -pgR+...-pR(b(n))

else if m=a(n) then em(b(n))

else ¢ ‘r ;...-rf (b(n)).
m-1 a(n)

Remember that since <D;m,(fm,fi)> is an effe ctive sequence,

there is a recursive function ¢ s.t.Anl-q(m) is a recursive

index of fm and w2~q(m) is an acceptable index of D;m. Let

Apr be as in 4.4.3, then q':N+N defined by:
q‘(m)=Apr(n2'q(m),nz-q(m+1),nl-q(m))

is recursive and q'(m) is a recursive index of P _R.

Define vm by:

vm(n)= if a(n)>m then ¢cp%m,n)(b(ﬁ))



else if a(n)=m then b (n)

else ¢

(b(n))

cp(m,n)
where ep' (m,n)=4A-ep(q' (m) ,A-ep(...,A~cp(q' (a(n)),q'(a(n)=1))..))
and cp(m,n)=A—cp(qu(m—1),A—cp(..,(A—cp(nl-q(a(n)+l),

'"]_'Q(a(n)))--))v

where A-cp(i,]) is an acceptable index of ¢;-¢..

i Evidéntly

v_ is recursive and fR vg_=g_ V.. [
m me -~ —m -m

Now we resume the proof of 4.5.6. There is a recursive
function 7 s.t. ek(l(k,m))=me-ew(m), indeed Z(k,m)=vk(m).
Also there is a recursive function z s.t. fkwoei(n)=e;(z(k,n)),

A
because of the definition of €. Remember In=Cy -cg(m). Thus:

R
£] 9 Fp e M =E) (U0 (v, (1)) (£ +e_(m)) [ieW }

a, (oy(m))

=ULEY v (1, (1)) (£ e _(m)) |1eW .

de(cx(m))

Thus el (n)Ef] G £, e, (m) iff
1 LY 3 Y R . 3
en, (N)EEL v (1) <y +e(m) for some 1eWs (¢ (m))-
Y X
m .
But Yk(i)(ek(j))=e£(y(k,i,j)) for some recursive function y.
Therefore there is a recursive function x s.t.

| R N
£ Y (L) Ep e (m)=e’ (x(k,m)).

Thus'e;(n)Efim°@k'f§m'em(m) is r.e. in n,m,k.

Thus e;(n)EQR(g)(ew(m)) is r.e. in n and m.

Thus @R(Gﬁ is computable w.r.t. (eprel).

Conversely let g be computable w.r.t. (e_sel). We‘will show

that ¢(G)ecompglim<[D;m+D&E;],((fm+f$),(fm+fﬁ)R)>). Notice

that ¢(§)=<$(m)> (see 1.3.8). By virtue of 5.4.5 it is sufficient to

show that we can:-effectively obtain a procedure which enumerates
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A
the graph of g(m) for every m. Since f&m is an embedding we
have:

en ()G e (m)=£17-8ef e (n)
iff fl;m-e;n(k)gfl'nm-f;ni-c_’}-fmm-em(n).
Therefore we have the following procedure which enumerates
the graph of I (m)*
-—-— enumerate N: 0,1,2,c..c..
-—-- for each n enumerated, enumerate k s.t.:
e;(k)cf' PE1Re Gef ve (n)=£l +£18-Gec wlrg ().
Since f' -f' -g is camputable we can recursively enumerate
such k.
-~-=- for each k enumerated, if aq(k)=m then output (n,b(k))
where k is enumerated for n.

Notice that the above procedure is constructed uniformly in m.

Thus we have established the theorem. 7|

It must be at least mentioned that the equivalence‘
established above is "effective". Indeed we can effectively go
back and forth among graph indicies of g's and the directed

indices of Q(G)'s.

Theorem 4.5.8 (The Function Space Theorem II)

(1) Let D and D'e' be effectively given SFP objects with

the canonical sequences <D m (f fm)> and <D'€m (f- f.R)>
respectively. Then [D €,pre’ ] 11m<[D m+D'€m] ((£ +£1),(£ ) Ry,
Thence [D €50'¢'1 is an effectlvely given SFP object.

(2) geComp ([D +D'e 1) iff g is computable w.r.t. (e,e").

E£99£ (1) ¢ is an effective isomorphism.

(2) By 4.5.7. ”



Theorem 4.5.9

There are recursive functions s~Prod, s-Sum, s-Func s.t.

(1) ()5 (3) = Bls-Prod(i,3))

i

(2) p(1)+p(3) = pls-Sum(i,3))

(3) [p(L)-p(3)] = p(s~Fune(i,3)) 0

The following relations can immediately be observed:
(1) Conv (Prod(i,j))=s-Prod(Conv (i) ,Conv(]))
(2) Conv(Sum(i,j))=s~Sum(Conv (i) ,Conv(j))
(3) Conv(Fune(i,j))=s~-Funec(Conv (i) ,Conv(j)),
where i and j are acceptable indicies of effectively given

STP objects,

Now we have fur.ction swvaces and thus have a directed index-

ing for each Comp([De+D‘€']). Tt can readilv he seen that we
can effectively’go back and forth between directed indexing

and graph indexing of computable functions. This allows us to
have similar results to 2.2.7 for effectively given SFP objects
in place of 4.2.3. Also it can readily be seen that results

similar to 2.5.1 and 2.5.2 hold for effectively given SFP objects.

4.6 Inverse Limits

Effective sequence of computable projection pairs of
effectively given SFP objects can be defined as in 2.4.l. Since
we can effectively go back and forth among reéursive indexing and
directed indexing, we can obtain an alternative characterization
of effective sequences in terms of directed indices of

effective embeddings as in 2.4.2.

By almost the same argﬁments as in 2.4.3, we have:



Theorem 4.6.1 (The Inverse Limit Theorem)

Let <D§m,(fm,f§)> be an effective sequence of computable
projection pairs of effectively given SIFP objects. Then:
(1) ;EEE<D;m'(fm'f§)>=(nm'8m) is an effectively given SFP object.
{2) fmw is an effect%ve embedding from €, O €qe
(3) There are recursive functidns xd and Gd s.t. Ad(m) and

sd(m) are directed indicies of fmm'and fﬁm respectively. @

‘We have theorcms like 2.4.4 and 2.4.7, for effectively
given SIP objects. Turthermore we can define effective isomor-
phisms of effective sequences of computable projection
pairs of effectively given SIP objects and show the

invariance of effecctive isomorphisms under limit construction.

4.7 The Power Domain Construction

In this section, we study that the power domain of an
effectively givenASFP object again is an effectively given SFP
object.

pefinition 4.7.1

Given an indexed SFP object (D,e), define f(e) :N-M(D) and
F{e]:N+M[D]‘bY=
F(g)(n)=e(fs(n))
plel(n)=[F(e) (n)]
'wﬁere M(D) and M[D] are as in 1.3 between 1.3.15 and 1.3.17.
(F[D],F[e]) is called the (strong) power domain of (D,e). We

write F[DSJ to denote (F[Dl,flel). a



TLemnma 4.7.2

Let (D,e) be a:normalized effectively given finite cpo. Then
F[DEJ is.an effectively given finite cpo. In fact there'is a
recursive function f-Power s.t. if n is an acceptable index of
(D,e) then f-Power(n) is an acceptable index of rIDE].
proof It can readily be seen that there is a recursive function
Ml s.t. if n is an acceptable index of an effectively given SFP
object then ¢Ml(n) is a recursive predicate satisfying:

dyg (n) Ke¥)=0 = (£ (x))Epe (£ (¥))-
Notice that (M(D)fEM) is a pre-ordering and so [X]EM/E[YJ iff
XEMY whe;e = is thg canonical equivalence obtained fromﬂgh. Thus
ve have:

[e(fs(a))]EM/s[e(fs(b))]

N e(fs(a))EMe(fs(b))
TR by (n) (@4D)=0.

gince (D,e) is an ¢ fectively given "normalized" finite cpo,
there is a recursive function pr s.h. pr(n)=Card(F[D])- Now
we can decide'EM/a via P41 (n) and we can check if we exhausted
the whole elements of f[D], for EM/E check, via pr(n). Thus

there are: recursive functions % and k.s.t. ¢h(n) and ¢k(n) are
recursive predicates satisfying:

47 (n) (%r¥) =0 &> Card(Uy 1 (FLel(f, (x)))=y

b (n) (X1¥)=0 = FEC](X)iUM[D](F[e],(‘fs(.y)))_.
Let f-Power be a recursive function given by:

f-Power (n)=<h(n),k(n)>. , | N

There is a recursive function Ppr s.t. if (D,e) and (D',e"')

are normalized effectively given finite cpo's and (p;D+D',pR;D'+D)



is a computable projection pair with a directed index x then
(Ep],EpR]):[D]*[D'] is a computable projection pair with a
directed index Ppr(x)°

Eroof IL.et X be a directed index of (p,pR). By the remark after
4.5.9, p has a recursive index R

d(x) for some recursive function

Rd' Thus ¢Rd(x

) is a recursive function s.t. p-e=e'-¢Rd(x).

Remember [pl ([x])=[p(x)]. Thus we have:
[p](F[s](n))=[p]([e(fs(n))])

é[P'e(fS(n))]

=[e'4, (yy (Eg(@))]

Rd(x
— )
_FEG ](¢g (X) (n))

where g is a recursive function s.t. ¢g(x) is 2 recursive firnction

and fs(¢g(x)(n))=¢Rd(x)(fs(n)). Thus [p] has a recursive index

g(X)- By the remark after 4.5.9, we have established the lemma. §

Theorem 4.7.4

Let (D,e) be an effectively given SFP object and <D;m,(fm,f§)>
be the canonical effective sequence of (D,e). Then <F[D;m],
([fm],[fﬁl )> is an effective sequence of computable projection
pairs of effectively given finite cpo's. Thus ;im<F[D;m],
([fm]'[fgl )> is an effectively given SFP object. Furthermore:

g[D®]

o

. € R
| llm<F[Dmm],([fm],[fm])>-
Also there is a recursive function Power s.t. if n is an
acceptable index of an effectively given SFP object then Power (n)
is an acceptable index of the power domain of it.
Erbof By 4.7.2 and 4.7.3, <F[D;m]:([fm] [fﬁ])> is an effective
sequence of computable projection pairs of effectively given

finite cpo's. Thus by 4.4.1, lim<F[D;m]’([fm]’[f§])> is an
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effectively given SFP object. The basis of ﬁ[lggsD;p,(fm,f§)>]
is B=[M(Dw)]=[5fmm(M(Dm))] while the basis‘of‘AiE<F[Dm],
([fm])[f§])> is B'=g[fmm][M(Dm)]. It can readily be seen that
h:B>B' defined by: |

h([fmw(Fm)])=[fmm][Fig
where FmgM(Dm),?is an isomorphism. Since we have:

Fle (£ (x))=le  (£,(x))]

=L (e (E5(x)))]

where m=pk.[ek(fs(x))gnk], we can readily see that h is an
effective isomorphism. Thus we have:

FCDS 1% [ 2imeDEn, (£, £5)5] |

§<}_i_§<F[D§1m], (CE 1,T£.1)>.
Notice that we can effectively obtain a sequence index of
<F[D;m],([fm],[f§])> from an acceptable index n of (D,e).
Therefore by the remarks after 4.5.9 and 4.6.1, we have a
recufsi&e'function Power S.t. Power (n) is an acceptable index
of g[D®]. o ) 1
Theorem 4.7.5
. Given two effectively given SFP objects (D,e) and (D',e'),

for every cbmputable functiqn f:D+D', let EEF(DE)+F(D'€') be
defined by F(X)=£(X)={f(x)|xeX}. Then #=(f1 is a computable
function. Indeed there is a recursive function Ext s.t. if n
is a directed index of a computable function f:DE*D'E' and
i and J are acceptablé indices of D and D'e' respectively,

then Ext(i,Jj,n) is a directed index of £.



proof We have:
Fle'd(x)gy/=£ (FLel(y))
Y [e'(fs(X))]EM./E[f(E(fS(y)))q
=> ' (£ (x))Ruf(e(f (v)))
&> VvzeN.[e' (£ (2))E e’ (f,(x)) implies
E'(fa(z))EM.f°€(fs(Y))]-
&= Forallz s.t. e'(£,(2))C,,e' (£,(x)),
| | €' (Fg(2))Ey fre(F5(y)) .
Notice that there is a recursive function r s.t.
£ (r(x))={zeN|e' (£ (2))Ey " (£ (x)) ).
Furthermore we have:
€' (£ (2T Ere (£, (9))
> Vaefs(z).abefs(y).a'(a)Ef-e(b)‘ &
vbef (v) -3aef_(z).e' (a)ef-e(b).
gince £ is computable, ¢'(a)Cf-e(b) is r.e. in a and b. Thus
s-(fs(z))_c_:M.f-e(fs(y)) is r.e. in z and y. Notice that the above
argument involves a recursive generation of a set {<z,y$|
E.(fs(z))i_:_M.f-e(fs(y))} from that Qf {<a,b>|g'(a)Ef.€(b)}.
Thus we can effectively obtain a graph index of % from

The next theorem states that the power domain constructor

preserves the effective isomorphism.



Theorem 4.7.6

]
Let D and D'® be effectively given SIP objects s.t.

e '
pfEp'€® . Then we have:

e

]
g[D®1 = FID'® 7.
proof Let (h:D+D',hR:D'+D) be a computable isomorphism pair.
It can readily be seen that (ﬁ,ﬁR) is an isomophism pair from

FlD] to FID']. By the previous theorem (ﬁ,ﬁR) is a computable

isomorphism pair. ‘ 7

By almost the same arguments as in 2.2.8, we can observe
that x,+,+ preserve effective isomorphism..Thus, with 4.7.6,

~ !
we can identify p® and D'®  if they are effectively isomorphic.
In. cheory, we should ba able to prove that the powef cf
an effectively given SFP object is again an effectively given

SFP object, by showing MI[D®] is an effective basis. As far as

+he author can see, our method seems to be simpler.

4.8 Effective SFP Objects

By essentially routine extension of the arguments in

chapter 3, we can obtain the notion of effective SFP objects,

each of which is the set of all computable elements of an

effectively given SFP object, or is the 'effective completion’

of an effective finitary poset.

One outstanding point about effective SFP objects is
that we can characterise this notion as the ‘'effective inverse
1imlit' of effective sequences of computable projection pairs

of effective(ly given) finite cpo's. Notice that every effecively

given finite cop is an effective finite cpo as it is.



CHAPTER 5: EFFECTIVE CATEGORIES ‘

"Was sich iiberhaupt sagen ldsst,
ldsse sich klar sagen; und wovon man
nicht reden kann, dariber muss man
schwetgen. ™"

Ludwig Wittgenstein.

"Whenever I played for Richter, he
looked immovably at my fingures and one
day he said; 'My God! how I am oblidged
to torment szer and sweat, and yet
without obtaznzng applause; and for you,
my friend, it is mere play!"? "Yes' said
I, 'I had to labor once in order not to
labor now."

W. A. Mozart.

Plotkin and Smyth [24] emplasized the importance of cate-
gory theory for solving recursive domain equations. They showed
that a single theory based on categorical notion could allow
us to solve recursi#e domain equations over various classes of
non-effective domains.

This chapter is concerned wifh an attempt to make effective
plotkin and Smyth's categorical approach, Such an attempt is
important for the purpoée of considering solutions of recursive
domain equations over the class of effectively given domains,
‘effective domains, effectively given SFP objects, r.e. sets etc,

which are under the effectiveness cpnstraint.‘

5.1 Effectively Initial Algebras

It immediately fbliéws from the previoﬁs chapters that
effectively given domains & either computable functions or
computable prOJectlon palrs, effective domains & either f-
computable functlons or f-computable projection pairs, effective~
1y given SFP objetcs & either.computaple functions or computable

projection pairs, and effective SFP objects & either f-computable



functions or f-computable projection pairs form categories.
All of them which are undef the constraint of effectiveness,
have indexings associated to their object sets and morphism
sets. Furthermore | we have observed that almost all
interesting effective properties of these categories can be
described only in terms of these indexings. So we will start
with those categories with which are associated indexings of
object sets and morphism sets. Thence we characterize effect-
iveness of categorical constructions in terms of these
indices. The most primitive categorical construction obviously
is the composition of morphisms. This gives rise to the

following noticn:

Définition 5.1.1

(1) An indexed category is a triple (K,x,3) where K is a cate-

gory,k is a partial indexing (called an object indexing) ‘of

Ob(K) and 3 is a partial family of partial indexings (called

morphism indexings) s.t. a partial indexing 3(i,j) is defined

iff both k(i) and «(j) are defined; and it is a partial
indexing of Hom(k (i) ,k(j)) whenever it is defined.

(2) An indexed category (K,k,3) is an effective category iff

there are recursive functions 3-Compose and Idt s.t.
3(ilk) (a_compose(iljlklmln) )=3 (] ,k) (n) *3 (ilj) (m)

1d_4y=3(1,1) (Idt (1))

Notice that we are using the usual convention for equations
involving partial functions. More specifically, if f and g are
partial functions, by f(x)=g(y) we mean that both £(x) and g(y)

are defined and equal, or both of them are undefined.



A possible alternative to the above is to assume that the
indexing of Hom(A,B) is independent to the representations
(indices) of A and B. for our primary models like the category
of effectively given domains and computable functions together
with the acceptable indexing as an cbject indexing and the
directed indexings as morphism indexings, this assumption is
true. But Plotkin [31] indicated that this might lack ih
generality. Indeed the author discovered an interesting example
where this assumption collasps. We can define the notion of
partial computable functions from an r.e. sef to another, thence
obtain a reasonable category of r.e. sets and partial computable
functions. We can present a natural way of indexing this cate-
gory to make it effective and show that it can Héppen.that:

| 3(1,3) (K)#3 (m,n) (k)

even if k(i)=k(m) and «(j)=«k(n).

Before studying this problem, remember that for each
indexd r.e. set Wi' there is a canonical enumeration ¢dv2(i)
s.t. if wi=¢ then ¢d02(i)‘is everywhere undefined and if Wi%¢
then ¢d02(i) is total. Also remember that our acceptable

indexing system satisfies Wi=range(¢i).

pefinition 5.1.1.1

A'fﬁndtion f:Wi-*Wj is partially computable and has a

cl-index k iff the following diagram (of partial functions)

commutes: T
N dv2 (i) Ww.
P
¢"l 6 lf
N dv2(3) Wj



Notice that each k determines a unique partial computable

function from Wi to Wj since ¢dv2(i) and ¢d02(j) are surjective,

There are several cases to be checked. If wj=¢ then ¢dv2(j)
is everywhere undefined and f is an empty function, thus for
each keN the above diagram commutes. In case Wj=¢ and Wi¢¢, £
is everywhere undefuned and is not total. If Wi=¢ then £ is
total and is the empty function. In case Wi=¢ and Wj#¢ then
¢y is the empty function N»N, for ¢dv2(i) is everywhere
undefined.

The following lemma indicates that our notion of partial

computability .s a natural one.

Lemma 5.1.1.2

3 is partially computable iff it is the

restriction to Wi of a partial recursive function FeN+N.

(1) A function f:wi+w

(2) If f=¢k, we say that f has a cg—index k. There are

recursive functions 0t and To s.t. if k is a cl—index of
£:W,>W, then To (k) is a c,-index of £ and if k is a cp~index
of £ then 0t(k) is a c;-index of f. |

proof For each (i,j)eNxN, define To:N-»N and 0t:N»N to be recur-

sive functions satisfying:
b10 (x) PV 0au2 (5) "tk (¥m-Legyp (1) (MI=nD)

%0t (x) (n)=“m°“’du2(j) (m)="’x'¢dv2(i) (n) 1.
Assume f:Wi—>Wj is partially computable and has a cl—indeX'k.

Then ¢5, () is a partial recursive function which extends f

to N. To observe this we show,

bro (k) PV =8 gp2 (55 0k (WM D0 70 (4 (M) =n])

=f{n).



Notice that the above equations are equations of partial func-
tions. Conversely assume that f is the restriction to Wy of a

partial recursive function ¢4 :N*N. Then we have:

a2 (5) " Pot (k) M)
=402 (3) (P LOgpa (3) M= by (1) (MWD
=0k Cave (1) M
=Etgpa ) (M (T egpg gy (MeWy) -
The above proof states that from a cl-index k of a
partially computable function f:Wi+Wj, we can construct a
program f;¢0t(k):N+N which computes f as the restriction to

wi' In this sense 'k is a good finite representation of f.

It can readily be seen that the category REC of r.e. sets
mxipértuﬂly computable functions is well defined. There should
be no objection to indexing'the object set of this category by
the acceptable indexing <Wi>' There are two natural ways of
indexing morphism sets. When we take cl-indexings for the
morphism indexings, we denote the resulting indexed category
by RECl. REC2 denotes the indexed category where cz—indexings

are taken for morphism indexings.

It is very important to notice that in REC2, k(1) =«k(n)
and k(j) =«(m) implies 3(i,3) (k)=3 (n,m) (k). But this is not
the case in RECl. This is an example where the generality of
indexing Hom(x (i) ,x(3)) by 3(i,j) is needed. But by virtue
of 5.1.1.2, we can do every interesting things of RECl in REC2.
Therefore we still are in search of more éonvincing examples

which require the full generality of 5.1.1.



5.6

Theorem 5.1.1.3

Both RECl and REC2 are effective categories.
proof Let Cp be a recursive function s.t. ¢ (m,n)=¢n'¢m'
Define B—Compose(i,j,k,m,n)=0p(m,n). It can readily be seen
that 3(j,k) (n)-3(i,3) (m)=3 (i,k) (3-Compose(i,j,k,m,n)) in
both REC1l and REC2 by easy diagram chasing. Let idN be the
idientity function from N to N. Let Idt be a recursive function

s.t. ¢Idt(n)=ldN' It can readily be seen that idwn=a(n,n)(Idt(n))

in both REC1l and REC2. W

In order to observe the naturalness of the assunption that
the composition of morphisms is recursive in indices, remember
that the composition Qf two partial recursive functions is |
recursive w.r.t. the acceptable indices. In fact the category
whose object is a singieton {N} and whose morphisms afe partial
recursive functions,  together with an obvious object indexing,
say {(n,n)}, and acceptable indexing as the morphism indexing
is an effective category, whose object indexing is not total.

We will write PR to denote this effective category.

Now we will define effectiveness of various universality

of category theory.

pefinition 5.1.2

Let (K,k,9) be an effective category.

(1) An object IeOb(K) is said to have initjality index <i,j>

iff x(i)=I and ¢j:N+N is a recursive function s.t. for every
object index a, 3(i:a)(¢j(a)) is the unique morphism from « (i)

to k(a). An object I is an effectively initial object iff it

it has an initiality index. We sometimes write Int, for ¢..
1 J



Effectively final objects can be défined as a dual to this.

(2) A triple (X,nl:X+A,n2:X+B) has a (binary) product index

;<x,a,b,pl,p2>,j> i£f X=c(x), A=¢(a), B=x(b), m =d(x,a) (py),

nz:a(x,b)(pz), and ¢j is a recursive function s.t. for any

indexed morphisms £=93 (c,b) (m) and g=3 (c,a) (n),
<f,g>=8(c,x)(¢j(c,m,n))

is the unique morphism which commutes the following diagram:

A
AT _<f,g> B
k (c)

We write AxB for X. A triple (X,nl;X+A,w2:X+B) is an effective

(binary) product- (of A and B) iff it has a product index.

(K,x,3) is effective (binary) product closed iff there are

recursive functions Prod,Pl,Pz, and P-Med s.t. for every pair

of object indicies (a,b), ‘
(x (Prod(a,b)),d(Prod(a,b),a) (P, (a,b)),3 (Prod(a,b),b) (P,(a,b)))

is an effective product with a product_ihdex:
<<Prod(a;b),a:b,Pl(é,b),Pz(a,b) yP-Med (a,b) >,

Effective binary coproducts can be defined as dual to this.

(3) Assume (K,k,d) is effective binary product closed. Ah

ordered pair (zeOb(K),apply:ZxD+E) has an exponentiation index

<<z,d,e,ap>,j> iff Z=«(z),D=«c (d) ,E=« (e) ,apply=3 (Prod(z,d),e) (ap),
and for any f=a(Prod(k,d),e)(m),
curry(f)=8(k.2§(¢j(k,m))

is the unique morphism which commutes:



Curry(f)XidD
ZxXD < k (k) %D

apply £

i D E) for Z. Also i
We write ( ) r SO we write Curry<z’d,e'ap> for ¢j'

An ordered pair (Z,apply:ZxD-+E) is an effective exponertiation

of (D and E) iff it has an exponentiation index. (K,«x,3) is

said to be effectively Cartesian closed iff it har effectively
final object and there are recursive functions AppZy,Curry;Exp
s.t. for any pair (d,e) of object indices a pair:
(K(Prod(Exp(d,e),d)):a(Prqd(Exp(d,e),d):e)(Apply(d:e)))
is an effective exponentiation with an exponentiation index:
<<Exp(d,e),d,e,Apply (d,e)>,Curry(a,b) >,
0
It is a common exercise to represent objects subject to
computation as partial recursive functions. For example, an
'r.e. set can be represented by a partial recursive function
whose range is the r.e. set. In this way even the set of
natural numbers can be indexed by a (non-r.e.) subset of
natural numbers whenever we identify n={n}. Our fundamental
philosophy.is that when we talk about effective caﬁegories, we
are essentially talking about systems of partial recursive
functions (or programs). We claim that almost all categorical
constructions are program transformations which always
terminate. This observation support our decision to take
3—Compoée;P1,P2,PP0d:P‘Med,Exp,AppZy,Curry,etc. as "recursive”

functions.



5.9

One might worry about the notion of recursive functions
from non-r.e. set to another, which we might be forced to
consider for ¢k and 3 could be partial. But fhis notion is
quite natural. Indeed this notion is a quite natural extension
of the notion of parﬁially computable functions from an r.e.
set to another. For example, let SjSN‘and Fj={¢i|ies.}, j=1,2.

We know: ¢i-¢ for all i and j. Regardless of whether.

37%p (1,3)

Sl and 82 are r.e. or not, Cp maps from SlXS2 to Cp(slxsz).

This states that the composition of functions in F, and F

1l 2
is recursive -in indices.

Definition 5.1.3
Let (K,x,3) be an effective category.
- (1) An wy~-diagram is a functor G:w+K, where K is the category:

O<l<2<-++++ . It has a codiagram index j iff ¢j is a recursive

function s.t.:_
G(n)=K(w1°¢j(n))
G(nsn+l)=3(wl°¢j(n),ﬂl°¢j(n+l))(ﬂ2'¢j(n))-

The ordered pair (G,j) is called an indexed m-codiagram-

Indexed w—-diagrams can be defined as dual to this.

(2) Given an indexed w- codlagram (G,j), a cocone A=<i_:G(n)+C>
js said to have a cocone index <c,k> iff C=x (c) and ¢k a
recursive function s.t.:

Xn=3(ﬂ1-¢j(n)lc)(¢k(n)).

The ordered pair (i,<c,k>) is called an indexed w—cocone of

(G,j) - Notice that the effective generation of Xn is dependent
on the index of G. As dual to the above, we can define indexed

w-cone of an indexed w-diagram.
——
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o

(3) An w-cocone A of the indexed w-codiagram (G,j) has an

w-colimit irdex <<c,k>,i> iff (A,<c,k>) is an indexed w-cocone

of (G,3j) and ¢i:N+N is a recursive function s.t.: for each
indexed w-cocone (§,<x,y>) of (G,3j),

6=3 (c,x) (¢4 (x,vy))
is the unique morphism which makes the following diagram
commute : *

G(0s1) G(1ls2)
G(0) —— G(1) ——> G(2)—>

um/

An w—cocone of an indexed w-codiagram is an effective

w-colimiting cocone of the indexed w-codiagram iff it has an

w—colimit index. As dual to the above, we can define effective

w—-limiting cones of indexed w-diagrams.

(4) (K,k,9) is effectively w-cocomplete iff there are recursive

functions w—CoZim,w—Cocone, and w-Comed s.t. for every indexed
s—-codiagram (G,j), there is-an effective w-colimiting cocone
with an w-colimit index <<w-Colim(3j),w-Cocone(j)>,u=Comed(3j)>.

As dual to this, we can define effective w-completeness.

0

NOTE To make the dependence of w-Colim,w-Cocone and w~Comed on
(Krks3) expliéit, we write w-Colim(K),w-Cocone(K) and w-Comed (K).
The same convéntién will be applied for PPOd,PZ,PZ,P;Med,AppZy,
Curry,Exp,a-Compose,idt etc.

In non-constructive category theory, it is a common

exercise to identify objects to within isomorphism. The reason



why we can do this is that the universaity is invariant under
the isomorphism. For example, let I be an initial object in K
and f:I+J is an isomorphism with the inverse g:J+I. Let x be

the unique morphism from I to X.

£ obvidusly is the unique morphism from I to J. We claim that
x g:J+X is the unique morphism from J to X. Let c:J+X be a
morphism from I to J. By the uniqueﬁess of x, c-f=x'g-f. Since
f is an isomorphism it is ah epimorphism. Thus c¢=x-g. Therefore

J is an initial object.

.Our question is, when we can identify two objects in
effective categories. Shall we ask some kind of effectiveness
for this purpose? More specifically, need we have recursive
functions Ism, and Ism, s.t. a(i,j)(Ismz(i,j)) ié an isomorphism
from « (i) to k(j) with the inverse (adjoint) 3 (j,i) (Ism,(3,1))?
We claim that this condition is too strong. In fact two
effectively given domains £ (i) and £ (j) are identical iff
there exists a pair (f=E(i)+E(j),fR:E(j)+f(i)) of computable
functions s.tj f-fR=idE(i) and fR-f=idg(j). We do not need to
be able to obtain directed indices of £ and £X from the accept-
able indices i and j. As this case of effectively given domains
indicates, we will identify two objects of an effective category
to within isomorphism. We will demonstrate, in the following,
that this identification is natural. More specifically, we will
observe that effective universality is invariant under the

isomorphism. Rather than proving this claim in general setting,
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we will check an important example.

Let (A=<An,fn>,i) be an indexed w-codiagram of an effect-
ive category (K,k,9). Let u be an effective w-colimiting
cocone of (A,i) with an index <<a,k>,j>. Furthermore let A'=
k(a') be an object isomorphic to A=« (a), via an isomorphism
pair (h,hR):K(a)+K(a'). Then for some recursive function
r:N-N, v=<vn=h-un:An+A'> is an effectively generable cocone of
(A,i)'with an index <a',r(k)>, for the'composition is recursive
in indiceé. Since y is an effective w-colimit with an index
<<a,k>,j>, h is the unique mediating morphism from u to wv.
Also h=e(a,a')f¢jka',r(k))); Now let_(G:A+B{<b.x>) be an indexéd
cocone of (A,i) Then 0=8(a,b)(¢j(b,x)) is the unique'mediating
morphism from p to §. But e-hR is the unique mediating morphism
from v to §. Let hR=B(a',a)(n) for some n. Then we have:
e-hR=3(a',b)(a—Compose(a',a,b,¢j(b,x).n))
=3 (a'sb) (¢, (4 (Brx))
where s is a recursive function s.t.:
¢s(j)(b,x)=8—Compose(a',a,b,¢j(b,x),n).
Therefore v is an effective w-colimitimg cocone of (A,i) with

an index <<a',r(k)>,s(3j)>.

We are now in a position to define effectiveness of
functors. Plotkin and Beynon kindly indicated to the author

an error in the previous definition of effective (it was called

semi-effective) functors.

pefinition 5.1.4

‘Given effective categories (K,x,d) and (K',x',3'), a
functor F:K-+K' is effective (wrt («,3) and («',3')) iff there

are recursive functions fob(F) and fm S.t.:

r(F)



F(K(n))=K'(f0b(F)(n))
F(a(i,j)(m))=3'(fob(F)(i),fob(F)(j))(fmp(F)(i,j.m))-

In case fob(F)=¢i and fob(F)=¢j’ we say that <i,j> is a

functor index of F. We write F:(K,k,3)>(K',x',3') to denote

that F is an effective functor. 0

The following lemma states that an effective functor maps
effectively, indexed w-codiagrams to indexed w-codiagrams and

indexed w-cocones to indexed w-cocones.

Lemma 5.1.5

Let (K,«x,3) and (K',x',3') be effective categories.
(1) There is a recursive function fdg s.t. if F:K»K' is an
effective functor with a functor index <x,y> and (G,1i) is an
indexed w—éodiagram then (F~G,fdg(i,x,y)) is an indexed
w-codiagram in (5',K',af).' |
(2) There is a recursive function fcocone s.t. if (G,i) is an
indexed w-codiagram, (u:G+a,<a,j>) is an indexed w-cocone of
(G,i) and F:¥»K' ics an effective functor with a functor index
<x,y> then Fu:F-G>FA is an effectively generable w-cocone of

(F.G,fdg(i,x,y)) with an index f (x,ysa,j).

cocone
proof (1) F+G(n)=x' (¢ "7 ¢, (n))

F-G(nsn+1)=0 (¢, o7y =4, (0) 10,7y ¢, (n+1))

Gy (o Tyt () byt cdy (nD) s my g ()

Define g'(n)=<¢ 710, ()¢ (¢ my=d (n) s omy=d;(ntl) myd, (1)),
Then we have:

F+G(n)=x'(mn;+g'(n))

 FeG(n<n+1)=3'(my-g'(n),m g’ (n+l)) (v,+g"'(n)).

The construction of g' is uniform in i,x and y.



(2) Fun=3'(¢X'“l'¢i(n)l¢x(a))(¢y(¢x'“1'¢i(n)I¢X(a)l“2°¢j(n)))

=3' (“1.¢fdg(i’x’y) (n), ¢, (a))
(¢y("1'¢fdr(i’x'y)(n)I¢X(a)l¢x(a)lnz'¢j(n)))'

Define fcocone(quﬂhj)=<%ga)ﬁﬂy,jhn . where h(y,j)=Cp(y,Cp(e,j))

and ¢e=n2. Then f is a recursive function and:

cocone
F(un)za'(“l.¢fdg(i,x,y)(n)'"l.fcocone(x'y'a'j))

(¢"2'fCocone(x'y’a’j)(n)L

Definition 5.1.6

Let (K,x,3) and (K',k',3') be effective categories and
F:K»K' be an etfective (wrt (x,3) and (k',3')) functor with a

functor index <i,j>. F has a continuity index <<i,j>,k> iff ¢k

is a recursive function s.t. whenever u is an effective
w-colimiting cocone of an indeked w-codiagram (G,x) in (K,x,3),
with an index <<a,n>,y> then Fu is an effective w-colimiting
cocone of an indexed w-codiagram (F°G,fdg(x,i,j)) with an

w-colimit index <fcocone(i,j,a,n),¢k(a,n,y,x)>.

0

Notice that in 5.1.5 and 5.1.6, f

cocone and fdg depend on

(K,x,9) and (K',x',3'). To make this dependency explicit, we

may write f (K,X') and fdg (X,K').

cocone

pefinition 5.1.7

Given an effective category (K,«x,3) and an effective

functor F:K+K', an F-algebra is a pair (A,a) where a:FA>A. An

F-homomorphism from an F-algebra (A,a) to another (B,g) is a

K-morphism f:A-+B whirli makes the following diagram commute:



o

FA > A
1Ff Lf

: B
B > B .

If A=«(a) and u=3(fob(F)(a),a)(i), we say that (A,a) has an

algebra index <a,i>. ' o 0

It can readily be seen that the category of F-algebras and
F-homomorphisms together wifh the algebra indexing as the
object indexing and the derived (from 3) indexings as morphism
bindexings, in symboi éﬁ is an effective category. Notice that

id(A,u)=idK(a) where (A,c) has an index <a,i>.

Definit‘on 5.1.8

Let (K,x,3) be an effective category and F:K»+K be an

effective functor. An F—algebra (A,a) has an initial algebra

index <<a,i>,k> iff (A,a) has an algebra index <a,i> and 20 is
a recursive function s.t. for any F-algebra (B,8) with an
algebra index <b,j>,

3(a,b) (¢ (b,3))
is the unigue F-homomorphism from»(A,u) to (8,8). An F-algebra

is an effectively initial F—aigebra iff it has an initial

algebra index. o 0

It can readily be seen that an initial algebra index is
an initiality index in AF, thus an effectively initial F-algebra
(I,1) is an effebtively initial object in AF. Furthermore it is
an isomorphism, thus is a solution of a recursive object equ-
ation F(X)=X. Indeéd it is the effectively initial object iﬁ the
category of the solutions (to within isomorphism) of F(X)=X

together with the induced (from é?) indexings.
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Theorem 5.1.9 (The effectively initial algebra theorem)

Let (K,k,3) be an effective category with the effectively
initial object with an initiality index <i,j>.
(1) There is a recursive function fgn s.t.. for every effectivé
functor F:K»K with an index <d4d,e>, fgn(d,e) is an index of the
effectively generable w-codiagram A defined by:
A (0)=| A (n)=F"(])
A(OSl)=lFL A(nsn+l)=Fanl

where lK(x)=a(i,x)(¢j(x)) is the unigue morphism from ] to x(x).
(2) Let F:K+K be an effective functor with an index <d,e>.
Assume y:A->k (a) ié an effective w—-colimiting <ocone of the
indéxed w—codiagram (A’fgn(d’e)) with an index <<a,k>,x>. Also
assume that Fu:F<A»>F(k(a)) is an effective w-colimiting cocone

of (F.A,fdg(fgn(d,e),d,e)) with an index <f (d,e,a,k),y>.

) cocone
Then the effectively initial F-algebra exists.

(3) In case (K,x,d) is effectively m—coéomplete, there is a
recursive function Efin s.t. if F:K»K is an effectively conti-
nuous functor with a continuity index <<d,e>,c>, then
Efin(d,e,c) is an initial algebra index of the effectively
initial F-algebra.

proof (1) a(n)=F"]=c(45(i)). Also lﬂ=a(i,¢j(¢d(i))).

Thus: A(nsn+l)=Fn(lFl)

=3 (45 (1), 4571 (1))

(66 (4 (1) 05 (1), 0 (6271 (1), 00 (1), . .

b irdg(i),65(65(1))).0)).
Take g(n)=if n=0 then <i, ¢, (44(1))>



else <05(1), 0, (65 (1) 45" (1) 0o 6571 (0), 62 (0) 4. ..

‘¢é(il¢d(i)l¢j(¢d(i)))'--))>-

Obviously g generates A. Since g‘is constructed uniformly in
d and e, there is a recursive function fgn s.t.

.9=¢fgn(dﬁe). |
(2) Since yu is ap effective w-colimiting cocone of (A,fgn(d,e))
with an index <<a,k>,x>, (<un>n21,<a,suc(k)>) is an indexed
w-cocone of (F?A,fdg(fgn(d,e))) - where suc is a recursive

function satisfying: ¢ (x)=¢z(X)+l'

suc (2)
Since Fpu is an effective w-colimiting coccone of (F-A,fdg(

fﬂn(d,e),d,e) with an index <jf (€,3,k),y>, there is a

coeonéd

.

unique morphism a:F(k (a))~+«(a) s.t. ui+l=u°F(ui). Indeed we have:

a=d (4 4(a) sa) (9, (a,sue (K))) .
We claim that (x(a),a) is an effectively initial F-algebra. Let
3=a(¢d(b),b)(m) be an F—aigebra with an algebra index <b,m>.
Define v_:F']+« (b) bys: |

vo=Le (b)

Vne1=B Flvg) .
By induction on n, we can show that v=<y > is a cocone of A.
We have: VO=lK (b)=a(llb) (¢j (b))

vh+1=B Flvy)
- . n+l

—3(¢d(b)lb)(m) 3(¢d (i):¢d(b))

(¢e(¢2+1

=a(‘#gﬁl

(1) /b, do (§3(1) by b (41bs 05 (b)) 2 0)))

(i) ,b)

(a-Compose(¢d(b),b,¢g+l(i),m,

n+l

¢o (04 (i)'ba--a¢e(i:br¢j(b))--)).



Let g(n)=if n=0 then <i,¢j(b)>
glgg,<¢3(i),8-00mpose(¢d(b),b,¢g+l(i),m,

n+l . .
¢e(¢d (l)lb’°‘l¢e(llbl¢j(b))"))>'

Obviously g is recursive and is constructed uniformly in b
and m. Therefore g=¢r(b,m) for some recursive function »r.
Also g generates v=<vn>. Thus (v,?b,r(b,m)>) is an indexed
w-cocone of (A,fgn(d,e)). Thus there is a unique morphism
¥=3 (a,b) (4, (b, (b,m)))
s.t. yru;=v,. By using the initiality of 1, it can readily be
seen that y is the unique F-~homomorphism f:om (x (a) ,a) to
(k (b),B8). Now let f be a recursive function s.t.
¢f(u)(m.n)=¢u(m.r(m,n))-
Then << a,¢y(a,suc(k))>,f(x)> is an initial algebra index of
(x(a),a).
(3) In case (K,x,3) is effectively w-cocomplete, we have:
a=w-CoZim(fgn(d,e))
k=m-Cocone(fgn(d,e))
x=m—00med(fgn(d,e)).
Since F has a continuity index <<d,e>,c>, in the above proof
we can take Y=¢c(alklxlfgn(d,e))- Thus (x(a),a) has an
initial algebfa index:

<<w=Colim fbn(d,e)),
¢ Cols _ - '

4 (v Colzm(fén(d,é)).w Cocone(fbn(d,e)),w Cbmed(fén(d,e)),fén(d,e)) ,

(w-CbZim(fén(d,e)),suc(w-cocone(fén(d,e))))>.

" f(m—comed(fén(d,e)))>.

Define Efin by:



Efin(u,w,z)

=<<w‘COZ7:m (fgn (u JW) ) ’
¢¢Z(w—CoZim(fbn(u,w)),m—Cocone(fén(u,W)).m—Cbm@d(fén(u'w))'

fén(u'w))(w~CbZim(fén(u,w)),suc(m—Cocone fén(u,w))))>,
f(w-Comed(fén(u,w)))>.

Vi
Definition 5.1.10
An effective w-category is an effeétively-w—cocomplete
category with an effectively initial object. 0

Corollary 5.1.10

Let K,x,3) be an effective w-category and F:K+K be an
effectively continuous functor with a continuity index <<4d,e>,c>.
Then Efin(d,e,c) is an initial algebra index of the effectively

initial F-algebra. _ o

5.1.9-(3) and 5.1.11 are concerned with the effective
constfuction of the effectively initial F-algebra, for each

effectively continuous functor F.

It can readily be seen that the following (indexed) -

categories are all effective categories:

Category Names | Symbols
(I) effectively given domains & _ EGD (EGD¥*)
(strict) camputable maps ‘ o N '
(2) effective domains & ED (ED*)
(strict) f-computable maps
(3) effectively given SFP cbjects & EGS (EGS*)

(strict) camputable maps

(4) effective SFP cbjects & ES (ES*)
(strict) f-camputable maps

where the associated object indexings are acceptable indexings
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and the morphism indexings are directed indexings. It should
be noted that before the work of the author, it was not quite
clear even what should be taken for morphisms for the class
of effectively given domains etc in order to form reasonable
categories. Indeed without the notion of effective w-category,
it can hardly be seen that EGD etc behave usefully.
Furthermore we can easily observe that the-following

categories are all effective categories:

Category names Symbols

(1) effectively given domains & EGDP
computable projection pairs
(2) effective domains & : ED®
f-computable projection pairs ’

(3) effectively given SFP objects & EGs’
computable projection pairs :

(4) effective SFP objects & ESP
f-computable projection pairs

where the associated indexings are as above.

As we will observe later, in 5.2.23, EGDP,EDP,EGSP, and

EsP are all effective w-categories.

A rather simpler example of e¢ffective w-category :is an

effective domain. Indeed we have:

Example 5.1.12

(1) An effective domain X® (regarded as a category) together
with the directed indexing Xe as an object indexing and the
obvious morphism indexings is an efféctive category. Furthermore
it is an effective w-category, for we have 3.1l.2.

(2) An f-computable function is an effectively continuous

€ € .
functor. If f:X"»X" 1s an f-computable function, then the least

fixed-point of £ given by:
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(0] ]

£ix (£) =Uf" ()
i .
is the effectively initial solution of the recursive object

equation f (x)=x. Notice that by 3.1.2, fix(f) can effectively

be -obtained from f, an example of 5.1.11. |

Definition 5.1.13

Given indexed categories (K,k,d) and (K',x',3'), let
(K,x,23) x(K',k',39"') be the following indexed category:
(K!Kra) X(K':K',3')=(§_><5',|<><o<',8xa')
where KxK' is the product category of X and K', and
kxk ' (n)=(k (my(n)),x’ (my(n)))
3x3"' (i,3) (n)
=(3(W1(i),ﬂl(j))(ﬂl(n)),a(ﬂz(i):ﬂz(j))(ﬂz(n)))-
0

Lemma 5.1.14

Let (K,«,9) and (K',x',3') be effective (y-)ategories, then
so ié (Krx,3) x (R',c',03").
proof Obviously (K/k,3)x(K',k',9') is effective. There are
racursive functiohs 1t and rt s.t. ¢Zt(x)="l‘¢x and ¢rt(x)=“2'¢x'
Since (X,k,3) and (K'.x',3') are effective w-cateqgories, there
arc recursive functions w-Colim(K),w=Colim(K') ,w~Cocone (K),
w-Cocone (K') ,u—Comed (K) and'm-Cnmed(E') which behave as in
(4)-5.1.3. Define recursive functions w-Colim(K K'),
w-Cocone (K K') - and w-Comed(X K') by:
m—CoZim(E 5')=<w-CoZim(§)(Zt(x)),w—CoZim(K')(;t(x))>
w-Cocone (K K')=pair(w-Cocone (K) (1t (x)) ,u=Cocone (K') (rt(x)))
w=-Comed (K K')=patir(w-Comed(K) (1t (x)) ,w~Comed(K") (rt(x)))
where pair is a recursive function satisfying:

¢pair(i,j)(X)=<¢i(x):¢j(x)>.



Now let G=<(An,Aﬁ),(fn,fﬁ)> be an effectively generable
w-codiagram in (K,x,3)x(K',x',3') with an index d. Then
GL=<An,fn> is an effectively generable w-codiagram in (XK,k,3)
with an index 1t (d), and GR=<Aé,fA> is an effectively generable
w-codiagram in (K',x',3') with an index‘rt(d). Since both
(K,x,3) and (K',x',3') are effectively w-cocomplete, there are
effective w-colimiting cocones § of (GL,Zt(d)) and §' of (Gg,
rt(d));with indices: |
<<w—-Colim(K) (1t (d)) ,w-Cocone (K) (1t (d))>,w—Com¢d(§) (2£(d)) >,
<<w-Colim(K') (rt (d)) ,u—Cocone (X') (rt(d))>,w-Comed (K') (rt(da))>
respectively. It is obvious that if Gxg=<(6n,GA)>, then §&x§'
is an effectiveim;colimiting cocone of (G,d) with an index:
| <<w=Colim(KxK') (d) ,w—Cocone (KxK') (d) >,w~Comed (K X') (d)>.
Thus (K,k,3)x(K',x"',3"') is effectively w-cocomplete. Also if
| and |' are effectively initial objects of (K,k,?) and
(K',c',3") respectively then (|,]") is an effectively initial

object in (Kyk,3)x(K',x',3").

Lemma 5.1.15

Let (K,k,3), (K',x',3') and (K",k",3") be effective. There
is a recursive function f-Compose s.t. if <a,b> and <c,d> are
functor indices of effective functors F:K-+K' and F':K'-K"
respectively, theh f=Compose(a,b,c,d) is a functor index of
F'-F. Also there is'a recursive function cf-Compose s.t. if
F and F' are effectively continuous functors with continuity
indices <<a,b>,x> and <<c,d>,y> respectively, then F'-F is
effectively continuos and has a continuity index

cf-Compose(a,b,x,c,d,y).



proof Define % to be a recursive function satisfying:

d’h(x,y,z,w):“"j"‘“'¢w(¢6‘p(x,z) (1) .¢Cp(x,z) (3) ,¢y(i,j,n)).
Let f-Compose (x,Y,2z,W)=<Cp(x,2) ;h(X,y,2,wW)>.

We have:  foppr.p) (X)=Fop pr) Fop (p) XV =085 (X) =00, (5, ) (XD

Fom(er ew) Ge3 ™ Lo pr) Sop gt ep) B Fop (prop) 3 T (p) (e 30m)

=¢d(¢cp(a'c) (i) Iq)cvl) (a,C) (j) I¢b(i'jln))

=¢h (a,b,c,d) (1,3,0).

Thus f-Compose(a,b,c,d)=<Cp(a,c),h(a,b,c,d)> is a functor index
of F'-F. Define cf—Coméose by:

ef-Compose (e, £,g,h,1i,n)=<f-Compose (e, £,h,1i) ,M-Compose (e,f,g,m)>
where M-Compose 1is a recursive function satisfying:

¢MLCompose(e,f,g,m)(x’y’z'i)

(e,f,x,y),ﬂz‘fc (e, £,%,¥),

) =¢m("1'féocone

ocone
¢g(lelz:i) Ifdg.(il.el £)).

It can readily be seen that M-Compose is the desired one.

Lemma 5.1.16

Let (K,x,3), (X',«',3") and (K",«x",3") be effective
categories, There are recursive functions f-left and f-right
s.t. if <x,y> is‘a functor index of F:(K,k,3)x(K',k',23")~+
(K",c",3"), then f-left(a,x,y) and f-right(b',x,y) are functor
sjndices of F(k(a),~):(K',x';3")>(K".x",3") and F(-,(b)):
(§,K,3)+(5“)K",3") respectively. Also there are recursive
functions ef-letf and ef-right s.t. 1if F is an effectively
continuous functor with a continuity index <<x,y>,z> then
ef-left(a,x,y,2z) and ef-right(b,x,y,z) are continuity indices

'
of F(x(a),-) and F(-,x (b)) respectively.
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proof We prove only for F(x (a),-). Similar proof works for
F(-,c'(b)). Define & to be a recursive function satisfying:
.l = - )
¢h(m,n’k) (a ) ¢n(<m’a >)‘
Also define g to be a recursive function satisfying:

¢ )(a',c',d)=¢k(<m,a'>,<m,c'>,<fdt(m),d>)

g(n,m,k

Notice that we have:
F(x(a),-) (' (a"))=F(x(a),k"(a"))=x" (s (casa’>)),
F(K(a),-)(a'(a',c')(d)i
~ =F(3(a,a) (Idt(a)),3" (a',c') (d))
‘(¢Y(<a,a'>,<a,c'>,<Idt(a),d>)).
Therefore f-left -defined by:
f-left(m,n,k)=<h(m,n,k),s (m,n, k)>
is the desired recursive function, for we have:
¢h(a’x,y)(a')=¢x(<a,a'>),

¢ ,y) (@'setid) =g (<asat>,<a,ct>, <Idt () ,d>)) .

g(a,x
Let (G',i)=(<Aﬁ,fﬁ>,i) be an indexed w-codiagram in (K',x',3').
Let pu be an effective w-colimiting cocone of (G',i) with a
colimit index <<a',k'>,u'>. Then H<(A,AA)>,(idA,f$)),t(i)) is

an indexed w—codiagram for some recursive function ¢, where

A=« (a) . Notice that:

A A A e ¢0o 00 0 o

\\\/id

is an effective w-colimiting cocone in (K,k,3) with a colimit
index <<a,Idt(a)>,m> where ¢m(c,e)=¢e(0). Therefore <(id,,u )>
is an effective w-colimiting cocone of (<(A,A$),(idA,f£)>,t(i))

with a colimit index <<<a,a'>,pr(k'P»,r(m,u')> where pr and r



are recursive functions satisfying:

¢pr (U) (n) =<Idt (a) [4 ¢u(n) >y

(c,e,b'

¢

'e')=<¢u(c,e)'¢v(b',e')>'

Since F has a continuity index <<x,y>,z>, F(x(a),-) has a

r(u,v)

colimit index:
fﬁocone(F(K(a),~))(ﬁl.szeft(a'x'y)'“2.f;zeft(a'x’y)'<a'a'>'k')'
¢z(<a,a'>,pr(k'),r(m,u'),t(i))>.
Define.cf—left by:
ef-left(c,d,e,i)=<f-left(c,d,e),s(cid,e,5) >
where s is a recursive function satisfying:
bs(c,a,e,q) @ k) =6 (<cpat>pr(k ), 7 (mut) ).

It is now obvious that ecf-left is the desired one.

li

Notice that in the above proof, we have used the effective-

ness of the identity morphism as in 5.1.1.

Example 5.1.17

Given effective domains (Xl,el),(xz,ez) and (X3,e3),
(Xl,gl)x(xzcez) is an effective domain as established in
chapter 3. Also if f:XlXX2+X3 is f-computable, then it is
f-computable in both thg first and second arguments. Further-
more the process of obtaining f(x,-) and f(-,y) is recursive
in directed indices of x,y and £, uniformly in the domain

and codomain of £. ' 7

Lemma 5.1.18

Let (K,k,3) and (K',«k',3') be effective categories. There
15 a recursive function f-dup s.t. if <a,b> is a functor index
of F:KxK»K' then f—dup(a,b) is a functor index of AS.F(S,S) :K»K'

defined by:



AS.F(S,8) (A)=F(A,n),
AS.F(S,S) (£)=F(£f,£).
Also there is a recursive function ef-dup s.t. if <<a,b>,c>
is a continuity index of F, then e¢f-dup(a,b,c) is a continuity
index of AS.F(S,S).
proof Let f—dupl be a recursive function satisfying:
f“dupl(xly)(2)=¢x(z,2)-
Let f—dup2 be a recursive function satisfying:
f—dupz(x,y)(i,j,k)=¢y(<i,i>,<j:j>,<k,k>).
pefine f-dup by f—dup(x,y)=<f—dupl(x,y),f-dupz(x,y)>-
It is obvious tha£ this f-dup is the one desired. Let
(<Dn,fn>,i) be an indexed w-codiagram in (K,k,3). Obviously
(<(Dn,Dn),(fn,fn)>,p(i)) is an indexed w-codiagram in (K,«,9)
for a recursive function p s.t.:
¢p(j)(x)=<¢i(X),¢i(x)>.
Let w:<D_,£ >»D be an effective u-colimiting cocone with a
colimit index <<d,k>,e>. Then (u,u) is an effective w-colimiting
cocne of (<Dn,Dn),(fn,fn)>,p(i)) with a colimit index:
<<<d,d>,p(k)>,p' (e)>
where p' is a recursive function satisfying:

¢ (x.y)=<¢j(X.y),¢j(x.y)>-

p'(3) |
since F has a continuity index <<a,b>,c>, AS.F(S,S) (u)=F(u,yu)
has a colimit index:

<féocone(F)(a'b'd'k)'¢c(<dvd>up(k).p'(e),p(i))> .
pefine ef-dup by:

ef-Zup (Xe¥Ys2)=<f-dup (x,¥) st (x,y,2)>.
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where t is a recursive function satisfying:

b4 (xoy,z) (drkreri)=¢,(<d,a>,p(k),p'(e),p(i)).

It is obvious that this c¢f-dup is the one desired.

As we will observe later in 5.3.24 5.3.26, the domain
constructors x,+,+ induce effeétively continuous functors
2
xP,+P,+P:(§,K,a)+(§,K,B) where (K,k,3) is either EGDP,EDP,

EGS®, or Es’. Also ' fF[] induces an effectively continuous

functor F[]P:(E,K,3)+(E,K,3) where (K,k,3) is either ecs’

or ESP. Therefore we can effectively obtain effectively

initial solutions of recursive domain equations which involve

only +P,xP,+P as domain constructors, over EGDP,EDP,EG

ESP. Also we can effectively obtain effecfively initial

SP

solutions of recursive domain equations which also involve

F[]P, over EGSP and ESP.

and
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5.2 Category of Recursively Enumerable Sets

Between 5.1.1 and 5.1.2, we studied the category of r.e.
sets and partially computable functions with two different‘
indexing systems, namely RECl and REC2, and observed that they
are effective categories. In this section, we study a sub-
category, namely the category of r.e. sets and (total)
computable functions, as a non-domain model of effective
w-category. We also study even smaller category, namely
the category of r.e. sets and inclusion maps, and observe that
Kleene 1lst recursion theorem of the enumeration operators is

an instance of the effectively initial algebra theorem.

A partially computable function f:Wi—>Wj is a computable

function iff it is a total function.

Lemma 5.2.1

f:Wi+Wj is computable iff either
(1) Wi=¢ or
(2) Wi#¢: Wj#¢ and there is a total recursive function X4:N-+N

sete £29 0,0 05) a2 (3) "

Eroof (sufficiencey) Obviously (1) implies f is total. Assume
% is as in (2). Obviously f(n)=¢dv2(j)(h(pm.¢dvz(i)(m)=n)),
Thus £ is total, since ¢dv2(i) is an enumeration of Wi'
(Neccesity) Assume W.#@ and Wj=¢. Then £ is not toatl.

Now assume in (2), % is not total. Let A(x) be undefined.

Then ¢dv2(j)‘h(x) is undefined. But f.¢dv2UJ(x) is defined and

f.¢dv2(i)(x)=¢dv2(j)'h(x)' Thus contradiction.



Let REC1l' and REC2' be the indexed categories obtained
from REC1 and REC2 by restricting morphisms to computable
functions. It can readily be seen that both REC1l' and REC2'
are effective categories, for the class of computable functions
is closed under composition and the identity function on an
no-empty r.e.set and the empty function with the empty domain

are both computable.

T.emma 5.2.2

The empty set is an effectively initial object in REC1,
REC1',REC2 and REC2'. It also is an effectively final object
in RECl and REC2. A singleton is an effectively final object
in REC1' and REC2'. |
proof Let ¢, be a recursive function s.t. ¢i(y)=k where k is
a natural number s.t. Wk=¢. Then for every jeN s.t. Wj=¢,
<i,j> is an initiality index of ¢ in RECl and REC1l'. Thus @
is an effectively initial object in REC1l and RECl'. By virtue
of (2)-5.1.1.2, it also is effectively intial in both REC2 and
REC2'. Let 5 be a recursive .unction s.t. ¢i(y)=y. Then for
every jeN s.t. Wj=¢, a(y,j)(¢i(y)) is the unique computable
function from Wy to Wj in RECl. Indeed it is the empty function.
But unless Wy=¢, it is every where undefinedf Thus ¢ has a
finality index <j,i> for every jeN s.t. Wj=¢' Thus by virtue
of {2)-5.1.1.2, @ is effectively final in both REC1 and REC2.
Assume that Wm is a singleton. Cbviously Wm={¢dv2mﬂ(o)}' Let
¢i be a partial recursive function defined by:

¢i(k)=¢dv2(m)(0)+Ox¢dv2(k)(0).
It can readily be seen that the following diagram in REC1'

commutes, regardless of if Wk is empty or not:



®dv2 (x)

Ny
Ld

k

¢. f

N
ll
¥ 302 (m)

Se—— =

" m
Thus W has a finality index <m,i> in REC1l'. By virtue of
(2)-5.1.1.2, a singleton is an effectively final object in both

REC1' and REC2'. 0

pefinition 5.2.3.

Given r.e. sets Wi and Wj, define:
Wiij={<n,m>|newi,mewj}

Wi+Wj={fO,n>lneWi}U{<l,m>lmewj}. 0

Lemma 5.2.4

wiij and Wi+Wj are r.e.sets. Indeed there. are recursive

functions Prod and Sum s.t.:

WiWa =W od (i,3)

Wit Woum (1,3) °
proof An.im.< ¢i(n),¢j(m)>=¢ix¢j is a partial recursive function
whose range is Wiij. Thus Prod is a recursive function s.t.:
*prod(i,3) " *i%%5°
Let Sum be a recursive function s.t. Sum (i,)) is an acceptable

index of a program which, in parallel, enumerates Wi and Wj

using ¢ z,, (1) and bav2(3)’ and which outputs <O,n> once Sav2 (i)

generates n and <l,m> once ¢dv2(j) generates m.

pDefinition 5.2.5

Given an r.e. set W, and a computable equivalence
predicate E:Wixwi+{0,l}, there is a partial recursive function

fE S.t.

FEM =<gyz (1) WRn-To 4 0 (5) KIES 7 (4) (M D) ve>
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where e is a ¢; index of E. Note that fg is recursive if
wi¢¢, otherwise g is everywhere undefined. Also notice that
if Wi=¢ then L¢dv2(i)(n)]=¢ and W,/E=@. Thus f.(n) contains
enough infromation to generate [¢dv2(i)(n)]. Thus we define:

wi/E=range(fE). : 0

L.emma 5.2.6

There is a recursive function Qut s.t. if E is a computable
equivalence predicate E:wixwi+{0,l} with a cl«index e, then:
R =W./E.
wQut(l,e) i/

proof Construction of fg is uniform in i and e.

@
By virtue of (2)-5.1.1.2, in 5.2.5 and 5.2.6, we can take

e as a c2—index of E.

Theorem 5.2.7

REC1,REC1',REC2 and REC2' are effective binary product
and effective binary coprecduct closed.

Eroof Note that wiij=wProd(i,j)'

Define "l:wiij*wi by
“l(<m,n>)=m if wiij%z, otherwise the empty function. Let ?1:
NxN+N be a recursive function s.t. ?l(<m,n>)=m. Obviously Ty

is the restriction to Wiij of ;l' Define P2_. to be a recursive

1
function s't'¢P21(i,j)="l' By virtue of (2)—5.;.1.2, we also
have a recursive function P1, s.t. P, (i,j) is a c,-index of
_ 1

My Let f£:W, W, and g:W, »W, be partially computable function'
with cz—index x and y respectively. Define <f,g>:wk+wixw_ by:
' J

<f£,9>(2)=<£iz),9(2)> if W, 77
othervise the empty function. Let <f,§>:N2+N:a‘h<f(a),§(a)>

where T and g are partial recursive functions and f and g are

the restriction to W, of them, i.e. f=¢x and §=¢y. Obviously



.32

v

<f,9> is a partial recursive function and <f,g> is the restric-
tion to Wk of it. Thus.<f,g> is a partially computable func-
tion. Since the construction of <f,g> is uniform in f and g,
there is a recursive function A s.t. #(i,j,k,x,y) is a Cy=
index of <f,g>. By S-m-n theorem, there is a recursive function

P—MedZ:N2+N s.t.:

bp-tted2 (i, ) KXY (1,5 ,x,x,y) " 5E 9
Thus (Wp,. o 20i,3) "1 %Prod (1,9) "1’ "2 %pProd (1,5) "Wy} 1s an
effective product with a product index:

<<Prod(i,3) ,i,3.P2,(1,3),P2,(1,3)>,P-med2 (i,3)> .

Note P22 is similarly defined, for wz'in REC2, to P21 for LB
in RECl. Thus REC2 is effectively binary product closed. By
virtue of (2)-5.1.1.2, RECl also isAeffective binary product
closed. 1In the above proof, =, and w, are obviously total. It
Ean readily be seen that <f,g> is total. Thus both REC1l' and
REC2' are effective binary product closed. Effective binary
coproduct of W, and W, -is with i.:W.-W

W s
j Sum(i,3) 195 Woum (1,5) @nd

i W s.t.

2 j*WSum(i.j)
il(n)=<0,n> if Wi#¢ otherwise the empty function,
iz(n)=<1,n> if Wj#¢ otherwise the empty function.

i
Theorem 5.2.7

REC1' and REC2' are effectively w~cocomplete.

nronf Think of the follwoing effectively generable w-codiagram
G in REC2' with index k:
bfo | Afl
—> W - :
wg(O) » 9(1) Wg(2) ——P ese e
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where g=r,-¢, and £ =3(g(n),g(n+1)) (r,-¢, (n)). For i<j let

fij=fj-...-fi. It can readily be seen that the w—sum %Wg(i)

of G is an r.e. set and for some recursive function du:

%Wg(i)=wdu(k)'
obviously R={<<i,x>,<i,y>>|fij(x)=y} is a computable binary

predicate over uwg(i)' Let E be the smallest equivalence
i

relation over [|W (1

g (1) containing R. It can readily be seen that
T :

E is a computable equivalence with a cz—index Equ (k) for some
recursive function Equ. By 5.2.6, there is a recursive function

w—-Colim s.t.:
(%wg(i))/Ezwm-Colim(k)'

Define An=Wg(n)+Wm—CoZim(k) by:

v An(X)=fg(“m-<n'X>=¢dvz(w—CoZim(k)(m)) if wm—CoZim(k)#¢

otherwise the empty function.
Define X _:N-N by:

X (R)=FRume<nsx>=0 3,0\ Cotim(k)) ™) -

Obviously Tﬁ is a partial recursive function e&nd An is the rest-
riction to wg(n) of it. Also A is total. Thus A, is a computable
function. Since the construction of Tn is uniform in k, there

is a recursive function w-Cocone s.t. ¢ is recursive

w—=Cocone (k)

and )(n) is a cz-index of An. Let <8 >

9 u-Cocone (k n:wg(n)+wm

pe an effectively generable w~cocone of (G,k) with an index
<m,b>. Define eéwm—Colim(k)+Wm by:
. k)Y>)= s )
8 (<<n,x>,Equ(k)>) Gn(x) if Wm-COZim(k)#¢

otherwise the empty function.

Tt can readily be seen that 6 is the unique total computable
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function which makes the following diagram commutes:

£5 £
CWooy™ Wy >

g(l) g(z) * e 0 0 0

Define g:N+N by:
0 (Y_>=6.,r1.1,1,(y) (myemq (¥))
= g (nyeny () (T2rm )
Obviously 6 is partial recursive and 6 is the restriction to
Wm-CoZim(k) of it. Let w~-Comed Dbe the following recursive
function:

(m,b) (¥) =9 y Ty (9)).

¢ -
w—Comed (X) ¢b("l ™y (¥)
Thus we have established that RuLC2' is effectively w-cocomplete.

By virtue of 5.1.1.2, RECl' is also effectively w-cocomplete.

@
Corollary 5.2.9
Both RECl' and REC2' are effective w~categories.
proof By 5.2.2 and 5.2.8. 0
Let REC' be the category of r.e. sets and computable
functions. Consider the following two functors:
x :REC ' xREC'+REC" +:REC" xREC'+REC"
x (W, W")=WxuW" +(W,W') =W+W"
x (£:W-W',g:W'>W") +(£:W-W', g:W'W")
=fxg :WxW'bW' xW" =f+g:w+w'hw'+W4
:<a,b>+<f(a),g(b)> :<i,x>+if i=0 then <i,f(x)>

else <i,g(x)>.



IL.emma 5.2.10

+ and x defined above are effectively continuous functors
w.r.t. both RECl' and REC2'.
proof Notice that an object in REC2'xREC2' with an index x is

(W"l(x).W“Z(x)). Therefore fob(x)(x)=Prod(nl(x),n2(x)). Also

a morphism from (le(X)rWHZ(X)) to (W"l(y)'w"z(y)) with an .
index i in REC2'xREC2' is:
(3 (my (x) oy (¥)) (1 (1)) 3 (my (%) sy (¥)) (1, (1))
where 3 is the morphism indexing of REC2'. Let » be a recursive
function satisfying:
¢xx¢y=¢r(x,y):N+N:<a’b>b<¢x(u)'¢y(b:>'
Thus fmr(x)(x,y,i)=r(ﬂl(i).nz(i)). Thus x is an effective
functor from REC2'xREC2' to REC2'. Let <i,j> be a functor index
of x. Let (G,k) be an indexed w-codiagram in REC2'xREC2'. Let
be an effective w-colimiting cocone of (G,k) with an index
<<x,y>,z>. Obviously x(u) is an effectively generable
w—colimiting cocone of (X'G’fdg(i’j'k))- |
Notice +hat fer any indexed w—-cocone (&,<a,b>) of (xG,
fagﬁajﬁd): g=(“l'6'“2'5)=(<"1'5n>'<"2'5m>) is an effectively
generable w-cocone of (G,k) with an index s(a,b) for some
recursive function s. Obviously x (8)=6. Remember that
¢z("l'8(a'b)'"2.8(a'b)) is an index of the mediating morphism 6
from u to 3. It can readily be seen that x(e) is the mediat-
ing morphism from x(u) to X(g)=p. Notice that x(6) has a Cy
index:

r(n ¢, (m -s(a,p),mys(a,b)),m,4 (m -s(a,b),m,*s(a,b))).

Let % be a recursive function satisfying:



q)h(Z) (a’b.)zr("l'q)z(“l.s (a,b) 17"2°3 (a,b)),
"2.¢z(j"]_.s(a'b) l"z's(arb)))-
Then obviously x(u) has a colimiting index:
<f

Thus x is effectively continuous wrt REC2'. By virtue of

cocone(l'J'X'Y)rh(z)>.
5.1.1.2, x is effectively continuous wrt REC1'.
Similar proof establishes that + is effectively continuous wrt

both RECl' and REC2'. 0

As a familiar example of the effectively initial algebras,
we can think of Kleene lst recursion theorem on enumeration
operators. Let REIl and REI2 be the indexed categories obtained
from REC1' and REC2' by restricting the morphisms to inclusion
maps. It can readily be seen that both RECl and REC2 are
effective w-categories. Let °z be an enumeration operator (see
Rogers[14]) of an index z. We can regard fhis as an effectively
continuous functor REI1-REIl by:

¢Z(Wigwj)=®z(wi)g¢z(wj).
This obviously is well-defined since ¢z is monotone wrt c.
Tn fact there is a recursive function ¢ s.t. e(z) is a continuity
index of ¢,. The least fixed-point of ¢ _, whose existence
guaranteed by the lst recursion theorem is the effectively
initial ¢z—algebra. The same argument holds for REI2. In the
next sectlon, we will study another characterization of the

Kleene lst recursion theorem.



5.3 Effective O-categories

As for the case of non-constructive categories, a lot of
concrete effective catecories have some effective po structure
on their hom sets. This leads to the following notion of
effective O-category, which is an effective version of

Wand [ 29] O-category.

- pefinition 5.3.1

‘An effective O-category is an effective category (K,x,3)
satisfying:
(1) For each ordered pair (a,b) of object indices, Hom(x (a),x (b))
is a poset which is 3 fa,b)-effective comnplete. More specifically,
_given any non-empty chain <f > in Hom(k (a) ,k (b)) s.t. for some
recursive function e, fn=3ka,b)(c(n)), we have UfneHom(K(a),k(b)).
In case ¢4=c we say that this 5 (a,b)-effective chain <f, > has

a chain index j. Furthermore, there is a recursive function

Lub s-.t. if <fn> has a chain index j, then

LI£ =3 (a,b) (Lub (a,b,3)).

(2) The composition of morphisms is effectively.continuous, i.e.,
if <f,> and <g;> are 3(a,b)-effective chain and 3 (b,c)-effective
chain respectively, then we have:

where g;°f; obviously is a 3(a,c)-effective chain, since (K,«,3)

is an effective category.

It can readily be seen that EGD(*),ED(*),EGS(*) and Es (™)
are all effective O-categories. To observe this, remember 2.1.11,
3.1.2, etc. It is at least worth while to mention that RECL is

an effective O-category with the extensional ordering as the

partial ordering on hom sets.



To observe this, notice that if f,g:Wi-+Wj are partially
computable and have cl—indices n and m respectively, then:
frg iff ¢nEan
Furthermore if <fn:Wi+Wj> is a 3 (i,j)-effective chain with a
chain index k then:
- £ =3 (1i,3) (a) . where = oy e
L= (1,3) (a) re ¢,=Uty (n)

But there is a recursive function Lub s.t.:

Uerup (1,3,5) g, (n) ™o (n)

pefinition 5.2.2

Let (K,x/,93) be an effective O-category. A pair (f£:A-B,

g :B-»A) of K morphisms is a projection pair from A to B iff

f.g_idB and g-f=idA. We call g the projection (of this pair)

anf f the embedding (of this pair). 0

It can readily be seen that an embedding £ (or a
projection g) uniquely determines a morphism fR(or gL) s.t.
L . : , . .
(f,fR) or (g~,g)) 1is a projection pair. We will call fR the

(right) adjoint of f and gL the (left) adjoint of g.

One might expect some kind of effectiveness constraint in
- the definition of projection pairs. For example, one might ask
what if we make the unique correspondence of an embedding and
jts adjoint effective. More precisely, ask the existence of
recursive functions Lad and Rad s.t. if f£=3(i,j) (n) is an
ombedding then £3=3(i,3) (Rad(i,3,n)) and if g=3(i,3) (m) is a
‘projection, then gL=3(j,i)(Lad(i,j,m)). But in our main model
of effective O-category, which is the category of effectively

given domains and computable functions with acceptable indexing



for the object indexing and the directed indexings for .the

morphism indexings, the existence of Rad and Lad is doubtful.

" Definition 5.3.3

Given an effective O-category (K,x,3), the category of
projection pairs of (K,k,3), in symbols (g,n,a)P is a triple
kP, <%,2F) where K¥ is as in 1.4.10, «=c® and if (3 (a,b) (1),
3(b,a)kj)) is a projection pair then: |

3 (a,b) (<i,3>)=(3 (a,b) (i) ,3 (b,a) (3)).

P

We will denote HomKP(A,B) and id% by HOmP(A,B) and idi

respectively. . 0

It can readily be seen that (5,K,3)P is an effective

category.

" pefinition 5.3.4

We say an effective O-category (K,«x,3) is effectively

empty chain complete iff
(1) Hom(A,B) has the least element |, . and there is a recursive
14
function Bottom s.t.:
Le (ay , x (p) =2 (2sD) (Bottom(a,b)) .

(2) lB,C'f=lA,c for every f:A-+B. 0

Notice that (1) is concerned with the effective existence
of the lub of the empty chain, and (2) is concerned with the
effective continuity of the composition wrt the empty chain.
To characterise the effective continuity of the composition

wrt the empty chain, we need one more condition, which we will

discuss later between 5.3.12 and 5.3.14.
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Lemma 5.3.5

If (K,k,3) is an effectively empty chain complete effective
O-category, fhen the fin&l object |, if any, is effectively
initial in (E,K,B)P-
proof Let k(i)=]. If £,f':]»>k (a) are embeddings then they are
the same, for they have the same right adjoint:

| B(a,i)(Bottom(a:i))=LK(a),L
for | is the final object. It can readily be seen that lL,K(a)
is the embedding with the right adjoint ln(a),L' But we have:
LL,K(a)=3(i,a)(Bottom(i,a)).
Thus L is effectively initial in (K,K,B)P, for it has an ini-
tiality index <i,j> where:

¢j(a)=<Bottom(i,a).Bottom(a,i)>. 1)

Let (X,x,3) be an effective O-category, then there are
recursive functions pr and em s.t. if (A=<An’(fn’f§)>'i) is
an indexed w-codiagram in (K,K,a)P then:

P R

(1) (A =<An,fn>,pr(i)).i5 an indexed w-diagram in (K,k,9).

(2) (8B=<a_,£ >,em(i)) is an indered w-codiagram in (K,«,?).

Lemma 5.3.6

Let (K,k,9) be an effective O-category and (A=<An,(fn,f§)>’
i) be an indexed w-codiagram in (E,K,a)P. If v=<yn:A+An> is
an effective w-1limiting cone of (AP,pr(i)), with an index
<<a,k>,x>, then v is a projection for each n and <v£-vn> is

a 3(a,a)-effective chain s.t. id,= vﬁ'vh. In fact there is

a recursive function lLie s.t. Le(i,a,k,x) is a chain index of

L
. .
“Vn"¥n

. R ,_ R
proof Define (fmn'fmn)~(fn—l'fn-1)"*”(fm:fﬁ)=Am*An for m<n.
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. R
We use a convention (fmm'fmm)=(fm'f§)' For each Am=K(wl-¢i(m))

=K("l-¢pr(i)(m)), define a cone v(m)=<vém):Am+An> of AP

,

by:
= if mc<n then f else fR .

It can readily be seen that there is a recursive function r s.t.

(v(m),<nl-¢i(m),p(i,m)>) is an indexed w-cone of (Ap,pr(i)).
Since v is an effective w-limiting cone of (AP,pr(i)) with an
index <<a,k>,x>, there is a unique morphism em:Am+A s.t.

-, (m for each n. In fact

em—vn

v
n
6m=3(ﬂl'¢i(m)la)(¢x(ﬂ1’¢i(m)rr(irm)))-
It can readily be seen that em'0m56m+1'“m+1'
Since vn=a(a,nl-¢i(n))(¢k(n)),-we have:
A NCPRE FRCONEVRCIC ERE FRUDNG ¢ (i,m))
3 (asmyc¢; (M) (¢, (n))

=3(ala)
(B-Compose(ﬂl‘¢i(m):aoﬂlf¢i(m)'
¢X(ﬂ1'¢i(m)rr(i,m)):¢k(m)))-
Thus <0,°vp> is a 3(a,a)-effective chain.with a chain index

Le(i,ark,x) where Le is a recursive function satisfying:

¢Lc(i’a’k'x)(m)=a-Compose(nl-¢i(m),a,nlf¢i(m),

¢x(“l'¢i(m)lr(ilm))l¢k(m))'

It can readily be seen that Uem-vm=idK(a) and (em,vm) is a

projection pair. ' @

Lemma 5.3.7

Let (K,x,3) be an effective O-category and (A=<An,(fn,f§)>,
i) be an indexed w-codiagram in (g,n.a)P. Assume that (u,uR)
=<(un,u§):An+A> is an effectively generable w-cocone with an

. R
index <a,k> of (4,1} s.t. <y «w > is a (3(a,a)-effective) chain
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and uun-p§=idA. There are recursive functions w and v s.t.:
(1) (u,uR) is an effective w-colimiting cocone of (A,i) with

an index <<a,k>,y(a,k,i)>.

(2) p is an effective w-colilmiting cocone of (AE;em(i)) with

an index <<a,lt(k)>,v(a,k,i)>, where 7t 1is as in the proof

of 5.1.14.

- proof Let (n'=<pl:A +A ,<a',k's) be an indexed y-cocone of

(AE,em(i)) in'(K,Kya)- It can readily be seen that <u$-u§> is
a j(a,a')-effective chain with a chain index z(a,k,a'k',i) for

some recursive function 4. In fact:

¢h(a,k.a',k',i)~(n)=a—cvompose(a'."l.d)i'(n)'a""z'"2'¢i(“).ﬂ2'¢ (n)).

em(i)
Let e=Uuﬁ'u§' It can readily be seen that s is the unique mor-
phism which mediates from y to y'. By the firs£ axiom of the
effective O-category, we have:

6=3 (a,a') (Lub (a,a',n(a,k,a’',k',i)).
Let u be a recursive function satisfying:

b, (a,k,1) @ k")=Lub(a,a',n(a,k,a’ k', 1)),
Then u is an effective w—colimiting cococne of (AE,em(i)) with
an index <<a,lt(k)>,ula,k,i)>.
For (u,uR):-assume that ((u',n'F):a+A",<a',k'>) is an indexed
g—-cocone of (4,i). Then (“'=$“A:An*A'>;<a',Zt(k')>) is an

indexed w-cocone of (4B, em(i)). Thus

g=3(a,a') (¢ y (@tr22(k’)))

u(a'k,i

is the unigque morphism mediating from ﬁ to u'. Now <un'u$R>

can readily be seen to be a 3(a',a)-effective chain with a

chain index g(a',k',a,k,1i) for some recursive function g4.

R
- Let 6R=Uun°v$ . Then we have:
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A3
6%=3 (a',a) (Lub(a',a,g(a',k",a,k,1).
It can readily be seen that (O,OR) is a projection pair. Now
let v be a recursive function s.t.:
) (a'.k')=<¢

(a', 1t (k")) ,Lub(a’,a,gla' ,k',a,k,1))>.

v(.a,k:i) ula,k,i)

Thus (u,uR) is an effective w-colimiting cocone of (A,i) with

an index <<a,k>,v(a,k,i)>. ) "

The following effective version of the limit and colimit
coincidence gives us a sufficient condition for an effective

O-category to yield an effectively w-cocomplete category.

- pefinition 5.3.8

An effectjve‘o—category (K,K,B)Ahas the effective
S-property iff for every indexed w-codiagram (A,i) in (K,K,B)P,
there exists an indexed w-cocone ((u;uR),<a,k>) of (A,i) s.t.
vR is an effective w-colimiting cone of an indexed w~-diagram
(AP,pr(i)) in (K,k,3), with an index <<a,rt(k)>,x> for some x.

(((u,pR),<a,k>),x) is called an'efféctive S-cocone of (A,i).

such (K,k,3) has the effective S-complete property iff there

are recursive functions w-lim,w—cocone and w-med s.t. for every
Py s P
w-codiagram (a,i) in (K,k,3) .,
R . s .
(((uep ) r<w—1Zm(1) yu~cocone (1) >) ,u~med (1))

ijs an effective S-cocone of (a,i).

Thecrem 5.3.9

Let (K,x,3) be an effective O-category with the effective
s-property. Then for every indexed w-codiagram (4,1) of (K,k,3)",
if (((urul),<ask>),a) is an effective S-cocone of (A,1) then

(u:uR) is an effective w-colimiting cocne with an index
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<<a,k>,p(a,k,i)>. Also u:AE+K(a) is an effective w=-colimiting
cocone of (AE,em(i)) with an index <<a,7lt(k)>,u(a,k,1i)>. Note
u and v are recursive functions defined in the proof of 5.3.7.
proof (AP,pr(i)) is an indexed @-codiagram in (K,x,3). Since
(((u,uR),<a,k>);x) is an effective S-cocone of (A,i), uR:K(a)+
AP is an effective w-limiting cone of (AP,pr(i)) in (K,<,3)
with an index <€a,rt(k)>,x>. By 5.3.6, ui is a projection for
each n, and <un-u§> is a 3 (a,a)-effective chain with a chain
index Le(i,a,rt(k),x) s.t. idK(a)=Uun'u§. thus by 5.3.7, (u,uR)
is an effective w-colimiting cocone of (A,i) with an index
<<a,k>,v(a,k,1i)>, .and y is an effective w-colimiting cocone
of (AF,em(i)) in (K,k,3) with an index <<a,lt(k)>,u(a,k,1)>.
)

Notice that this theorem indicates the limit and colimit
coincidence, for uR is an effective w-limiting cone. The
next thgorem is an even stronger reflection of the limit and

colimit coincidence in effective O-categories with effective

S-property.

* Theorem 5.3.10

Let '(K,x,3) be an effective O-category with the effective
R .

S-property and (A=<An'(fn’fn)>'l) be an indexed w-codiagram
in ‘E'K'a)P' For an indexed w-cocone ((v,vR):A+k (a),<a,k>) of
(po, i), the following satatements are all equivalent:
(1) (v,oY) is an effective w-colimiting cocone of (A,i) with
an index <<a,k>,j> for some jeN.
(2) v is an effective y-colimiting cocone of (aE,em(1)) with
an index <<a,lt(k)>,j> for some jeN.
(3) <vn-v§> is a 3(a,a)~effective chain s.t.:

=Uv 'vR.

idK(a) n n
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(4) VR is an effective w-limiting cone of (AP,pr(i)) with an
index <<a,rt (k)>,j> for some jeN.

proof By 5.3.6_(4):implies (3). By 5.3.7, (3) implies (1) and
(2). Now assume (1l). By the effective S-property we have an
effective S-cocone (((u,uR),<x,y>),z) of the indexed
w-codiagram (a,1i) in (K,K,B)P. As we proved in the previous
theorem, (u,uY) satisfies (1),(2),(3) and (4). By the univer-
sality, we have: k (x) %« (a) via (e,eR):K(x)+K(a) where

é=a(x,a)(¢ )(a,k))-

PV (XIYIi

Also vn=e-un for each n. Therefore we have:
: R R R
Uvpovp=U8ny uye8

—_— ® R L ] R

=0+ (Uuy u,) 8

R

=p+1id *9
K (

a)

éidK(a).

Therefore (1) implies (3), thus by 5.3.7, (2). Notice uR.is

an effective w-limiting cone of (AP,pr(i)). Also «(a)=«(x) via
(e,eR):K(x)+K(a). Therefore by the argument between 5.1.3 and
5.1.4, vR is an effective w-limiting cone of (Ap,pr(i)) with
an index <<a,rt(x)>,Jj> for some jeN. Thus (1) implies (4).
Assume (2). By universality K(X)gK(a), thus by the argument

between 5.1.3 and 5.1.4,'(v,vR) is an effective w=-colimiting

cocone of (A,i). Thcs (2) implies (1l).

pefinition 5.3.11

An effectively empty chain complete effective O-category
with the final object and the effective S-property is an

effective Dom-category. 0




Theorem 5.3.12

If (X,x,9) is an effective Dom-category then (K,K,B)P is
an effective w-category.

proof By 5.3.9 and 5.3.5. ‘ n

In the above, we have studied when an effective O-category
induces an effective w-coategory as its projection pair category.

(*)

As we will see later in 5.3.23, EGD ,ED(*),EGS(*) and ES(*)

are all effective Dom-categories and:

(ecp) F=(EGp*) T =reD®

(ED) F= (Ep*) P=ED®

(cs) P=(Ecs*) P=ras®

(£s) F=(ms*) F=gs®.
This indicates that we have properly categorized the process
of restricting morphisms of effective O_cétegories to projec-
tion pairs. It should be noted that both REC1l and REC2 are
effective Dom-categories and so, (RECl)P and (REC2)P are
effective w-categories. Here the morphisms are inclusion maps
with the partial identity maps as the adjoints. It can readily
be seen that (RECl)P and (REC2)P behave samely as REI1 and REI2
respectively, as effective w-categories.

So far, the only known ihprotant example of an effective
w—category which can not "naturally" be obtained from an
effective Dom-category is an effective domain as a category
together with the directed indexing as the object indexing and
the trivial indexings as the morphism indexings.

As in case of non-effective O-categories, surveyed in 1.4,

the empty chain completeness condition of 5.3.4 omitted the

right half of the effective continuity of the composition wrt



the lub of the empty chain, more specifically:

f'LA,B=lA,c for gll f:B>C.
This condition has the effect of restrciting morphisms to
strict maps. Given an effective Dom-category (K,x,3), let
(EIK'Q)* be the effective Dom-category obtained from (K,«x,?)

by restricting morphisms to those satisfying above condition.

T.emma 5.3.13

Let (K,k,3) be an effective Dom-category. Then the final
object | is an effectively initial object in (K,k,3)*.
proof Let k (i)=]. By the same argument as in 1.4.19, lL’A:L»A
is the unique moréhism from | to A in (K,x,3)*. But
li,A=a(i,a)(Bottom(i,a)) where A=¢ (a). Therefore | has an

initiality index <i,Jj> in (X,x,9)* where ¢j(a)=Bottom(i,a).

v
Lemma 5.3.14
If (K,k,3)=(K',c'3")* for some effective Dom-category
(K'sk',3") then (K,kr3)*=(K,k,3) . 2

pefinition 5.3.15

We say that an effective O-category (K,«,3) has locally

determined effective p-colimits of embeddings iff for every

indexed w-cocone ((u'uR):A+K(a),<a,k>) of an indexed

w-codiagram (A,1i) in (E,K,B)P the following statements are

equal:

(1) (u,uR) is an effective w—colimiting éocone of (A,i) with

an index <<a,k>,j>.

(2)~<un-p§> is a 3(a,a)-effective chain s.t. idK(a)=Uun-u§.
0
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Corollary 5.3.16

Every effective O-category with the effective S-property
has locally determined effective w-¢olimits of embeddings.

proof By 5.3.7 and the proof of 5.3.9. 7|

TLemma 5.3.17

Let (K,k,3) and (K',x',3') be effective O-categories. Then
we have:
(1) (Ko »2) OP=(X%%,,2%F) where 3°F(a,b) (m)=3 (b,a) (m) is an
effective O-category.
(2) (R,x,3)x(K',x',9") is an effective O-category.
For the proof of this lemma, remember the partial orderings

of KOP and Exg"as in the remark immediately after 1.4.7.

We consider throughout the rest of this section, three
effcctive O—categqries (Krc,2) s (Len,p) and (M,7,z), and
covariant. functors T:§9Px9+g. The reason for doing this is to
cope'with the function space functor which is contravariant on
the lst argument. This restriction does not harm the generality
of arguments, for a pure covariant functor can be obtained by
téking K to be the one point category and a contravariant one
can be obtained by taking L to be the one point categéry. For
details see Plotkin & Smyth [24].

pefinition 5.3.18

oP . |
A functor T:K  xL-M is locally effectively monotone wrt.

((Kxnlr),(aopxw,c)) iff T is effective wrt ((KXn,T),(aopx$,C))
. P
and for f,f':A»B in 50 and g,g':C»D in L, frcf' & gcg'

implies T(f.g)E'I‘(f':g') 0O



Lemma 5.3.19

There is a recursive function Pm s.t. if T:KOPXE+3 is a
locaily effectively monotone functor with an index <x,y>, then
a functor TP:(E,K,B)PX(E;n,¢)P+(M,T,C)P defined by:

% (a,B) =T (a,B)

™ ((£,£%, (3,60 = (2 (£8, ), 7 (£,0D))
is effective wrt ((Kxn,r),(apxwp,cp)) and has an index
Pm(<x,y>). We will write TP((f,fR):(g:gR))l for T(fR,g) and
™ ((£,£%) , (g,97)), for T(£,g%).

Eroof Obvious. 0

Qgﬁinitiqn_§;3.20

o .
A functor T:K pxg»g is locally effectively continuous iff

it is effectively continuous on morphism sets, more specifically
. o '

if <f > is a d P(a,b)-effective chain and <g,> is a 3(c,d)-

effective chain then:

T (UE, ,Ug, ) =UT (£, ,q,) .

n’’
Notice that T(fn,gn) is a T(fob(T)(<a'c>)'fob(T)(<b'd>))"
effective chain for T is effective. Thus T(LJfn Ug.) is

’ n

well-defined. 0

Now the following theorem tells when an effective functor
from an effective O-category:to another induces an effectively

continuous functor via the construction of 5.3.19.

Theorem 5.3.21

.. o
Suppose T: (K,k,9) px(L,n,w)+(M,T,c) is a locally effectively
continuous functor and both (K,x,3) and (L,n,¥) have locally

determined effective colimits of embeddings. Then TP'(K,K B)Px
s\ ’

P P .
(E'“'¢) +~(M,t,z)" is an effectively continuous functor.
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proof Let (a=<(A_,B_),((f ,£),(g_+9))>,i) be an indexed
w—codiagram in'(E,k,a)Px(g,n,¢)P+(y,r,;)P. Also let
((o,oR),(G,SR)):A+(A;B) be an effective w=-colimiting coccone

of (A,i) with an inedx <<<a,b>,k>,x>. Evidently (o,cR):AL+A is
an effective w-colimiting cocone of (AL;Zt(i)) with an index
<<a,lt(k)>,1t(x)>. Also (6,5R):AR+B is an effective w=colimiting
cocone of (AR,rt(i)) with an index <<b,rt(k)>,rt (x)>, where Lt
and rt are as in the proof of 5.1.14. By the assumption of the

theorem,<ano5§> and <g

’

R . s Ca R
n'on> are effective chains and 1dA-Uon-o

n
idB=U6n°5§' Let <c,d> be a functor index of T'. Then (T'-a,
fdg(i,c,d)) is an indexed w-codiagram in (M.T,;)P and

’ P . ,
(1P ((6,0%) s (6,68)) s TP < 2T (A,B) ,f (c,a,<a,b>,k)) is an

coeone
indexed w-cocone of (TEA,fdg(i,c,d)), “or T° is effective and
we have 5.1.5. Now we have:

P R R. P R R

T ((Unlon)l(anlén))l‘T ((Unlcn)l(ﬁnrsn))z

R R
=T(on-cn,6n'6n)-

P R R P R R . .
Thus T ((o00,) s (86,08,)) T (lopeo ) (8,,8)), is an effective
chain since T is locally effectively continuous. Furthermore

it can readily be seen that:

UTE ((o0p) (8,800 ) 1T ({0 500) 4 (6,080

=idr(a,n)"

P R R ' , |
Therefore by 5.3.7, T ((o,0),(8§,6)) is an effective w-colimiting
cocone with an index: s(a,b,k,x,1i)

s(a,b,k,x,1)

= <fcocorze(C'd'<‘_"']"'>'k)'

u(“l.fcocone (c,d,<a,b>,k) l“z.fcocone (C,d.<a.b>.k) ,fdg(i,c,d) )>,
s above can obviously be considered as a recursive function.

Thus T° has a continuity index <<c,d>,j> where $5=s-



Corollary 5.3.22

Let (K,x,3) and (L,n,y) be effective O-categories with the
effective S-property and (g,r,;) be an effective O-category.
If T:(KIKIB)OPX(E,n,¢)+(M,T,C) is locally effectively continuous,
then TP;(K,K,a)Px(L,n,w)P»(M.trc)P is an effectively continuous
functor.

Eroovay 5.3.21 and 5.3.16. 0

Now we will check if we have obtained the right kind
of abstraction.

Theorem 5.3.23

EGD.ED,EGS aﬁd ES are all effective Dom-categories. Thus

by 5.3.12, EGDP,'EDP,EGSP and ESP are all effective y-categories.
proof We prove this for EGD.VAlmost the same argument establishes
this theorem for the others. B§‘2.l.7, the composition is
recursive wrt indices. It is evident that from an acceptable
index <i,j> of an effectively given domain (D,e), we can
construct the graph of id,, which is {<n,m>|c(m)Ee(n)}. By 2.1.6,
in EGD, we have a recursive function Idt s.t. IdK(a)=

3(a,a) (Idt(a)). Thus EGD .is an effective category. It is obvious
that EGD has the final ob*ect, namely the effectively given one
point cpo. Hom(k(i),«x(j)) always has the least element ln(i).n(j)
=Axe»<(i)~l,<(j) where _LK(].) is the bottom of k(j). It is obvious

that there is a recursive function Bottom s.t. a(i,3) (Bottom(i,3))

Obviously |

=lx(i).x(j)' K(i)lK(j).f=lK(m),K(j) for all f:

x (m) »x (i) . Thus EGD is effectively empty thain complete. By 2.1.11
EGD is an effective O-category. Now let (A=<D;n,(fn,f§)>,i) be
an indexed w-codiagram in EGDY . Evidently A is an effective

sequence of computable projection pairs with a sequence index i.



Let (fm,ff) =<(fnp°:Dm—>Dm,fII:m :Dm""Dm)ﬁ be the universal cocone of 4,
where (Dm,go) is the inverse limit of A. Obviously ((fm,ff),
<Ivli‘m(i) sUcocone (1)>) is an indexed w -cocone of (A,i) where
Ivlim and Ucocone are as in 2.4.4 and 2.4.7. Thﬁs (f5,<Iinm(i),
rt (Ucocone(i))>) is an indexed w-cocone of (AP,pr(i)).
Let (v= <vn>:De*AR,<a,k>) be another indexed w-cocone of
(AP,pr(i)). Let 0:D+D_ be‘the following computable function:

9 (d)=<vo(d) re .,vn(d) Peeess >

It is obvious that 6 is the unique mediating map from £R to v,

i.e., vm=fR°e . Remember that 6(d)=Ufmm.vm(d). But we have:

m
fmm=a(nl‘-¢i(m),Iinm(i)(Tr (m)),

1’ ¢U¢ocone (i)

v=d(a,myt gy (m)) (4 (m)).
Since EGD is an effective category, we have:

fmm.v m=a—Compose (ﬂ1'¢i (m) ,Tvlim (i) ’a’"l'q)Ucocone (1) {(m), ¢>k (m})) .

Let ¢ be a recursive function s.t.:-

be(i,a k) ™ e Ve
I; can readily be seen that fmm'vaf(m+1)w'vm+1' Therefore
<V is a 3(a,Iviim(i))-effective chain with a chain index
e(i,a, k). Thus 9=Ufmm'“m' By the first axiom of the effective
O-category, we have:

e=Ufmm-vm |

=3(a,Ivlim(i)) (Lub(a,Ivliim(i),c(i,a,k))).

_ Let w-med be a recursive function s.t.

¢w—med(i) (x,y)=Lub (x,Iviim(i) re(i,x,y)).
Let w-l1im=Ivlim and w-cocone=Ucocone. Then EGD has the
- effective S-property. In summary, we have established the

theorem. . 7



Now we will observe that the domain constructors induce
'right kind of functors.
Let 1 be the single object category and ¢ ,n be indexings
which make (l,p ,n) an effective Dom-category. Define
xz (1,0 /) °Px (EGDx EGD)+EGD by:
x (1, (a%,8%))=n"xB P

B

1 L ’
x(idl,(f:A9+A'a ' g:B +B'B ))=£fxqg.

Notice that essentially x is a functor x:EGDXEGD*EGD s.t.

8

x(A?,BB)=A9xB and x(f,g)=fxg. Then for xP:(1,p,n)Px

(EGDxEGD)P+(EGD)P, we have:

WP ((1a id), ((£,9), (£R,9%))

= (x (1}, (£,9)) /% (1d}, (£%,97)))

= (fxq, £xgR) .
Also xP(l,(Aa,BB))=x(l,(AG.BB))=AQXBB.-Since (EGD)P=EGDP and
(EGDxEGD)P=EGDPxEGDP, xP can be considered as a functor
«P:EGD xEGDT+EGD’ s.t.:

<P (a%,58)=a%xB",
FE LR (9005 =(Exg, £R%gR) L

Theorem 5.3.24

x is a locally effectively continuous functor. Thus x P is

an effectively coﬂtinuous functor.

proof It can readily be seen that from the graph of £:E (1)~E (3)
and g:t (k) (m), we can construct the graph of x(f,g). Thus

is an effective functor for we have 2.1.4. If <fn> and <9,> a:e
g (i,3j)-effective chain and g (k,m)-effective chain respectively
then <x(idl,(fn,gn))>=<fnxgn> is a ¢ (Prod(i,k),Prod(j,m))-
effective chain. Also Ux(idl'(fn’gn))=U(fﬁxgn)=Ufnngn=

x(idl’U(fn'gn))‘ Thus we have established the theorem. 7]
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Remember , and ¢ are the object indexing and the morphism
indexings of EGD respectively. Also remember that 5.2.24
implies that XP is an effectively continuous functor.

By almost the same argument as above, we can define an
locally effectively continuous functor +:(l,p,n)OPX(EGDXEGD)+EGD
and an effectively continuous functor +P, for the domain

constructor +.

Definition 5.3.25
. Define a functor -: (EGD)°PxEGD-EGD by:
(T (1), E(3))=LE(1)~E(J) ]
(£:T(1)>F(3),g:E (k)T (m)) =rhe[E (1)+E (k) 1.g-h- £,

0
For (+)P=+P:EGDPXEGDP+EGDP, we have:
P (2%, 88 =1a%5"%]
SPoE R, (g d = (R g) o (£,9T))

=(Ahela+a'1.g h*£R, AhelB+B' 1.gRh 1)

Sl

g *B'" .

1
)

where (f,fR):Aa#B and (g,gR);A

Theorem 5.3.26

+ is a locally effectively continuous functor. Thence »P
is an effectively continuous functor.
proof Tt can readily be seen that from the graph of £:E(1)+E(j)
and that of g:E(k)»E(m), we can effectively construct the graph
of »{(f,g). Therefore » is an effective functor, for we have
2.1.4. Thus given g(i,j)-effective chain <t > and z(k,m)-chain
<gn5: <>(f,,9,)> is a t(Fune(j,k),Fune(i,m))~effective chain.
Furthermore u+(fn'gn)=ulh€rz(j)*€(k)]-gn°h'fn=kheff(j)*€(k)].
Lg, *h £ =>(LE  Ugp) e ‘ | 0
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We can define locally effectively continuous functors x,+
and » over ED,EGS and ES. Also we can define effectively
continuous functors xP,+P and »P over EDP,EGSP and ESP. Details

of these arguments ¢re almost the same as above.

Definition 5.3.27

Definine a functor F[]:(;,p,n)OPXEGS+EGS by:
FL1(1,a%) =p[a™]
FL1(id, £:a%8%) =T:p(a%1> FIBP1.

Theorem 5.3.28

Fl] is a locally effectively continuous functor. Thus F[]P
is an =ffectively continuous functor.
proof By 4.7.4 and 4.7.5, F[1 is an effective functor. Let
<fn> be an effective ¢hain. By definition of £, gfn> is an
effective chain. Furthermore:

» A A ]
UF[](ldl,fn)=Ufn=Ufn=F[](1dl,Ufn).
Thus F[] is a locally effectively continuous functor.
7

We can define a locally effectively continuous functor

FCl over ES. Also we can define an effectively continuous
b ‘

functor L] over ESP. Details of this is almost the same as

above.

It should be noted that for F[]P:(l,p,n)PxEGSP»EGSP,
we have:
P . .
FLI7((idy,1d)), (£,£5))
=(F01(1d,,£) LI (1d,,£%))

NN
=(£,F%y.



5.4 More on Effectively Initial Algebras

In the previous section, we observed that if (K,x,?)
is an effective Dom-category then the final object l is an
effectively initial object in (K,x,9)*. In this section,

we study a very important implication of this coincidence.

Definition 5.4.1

Given an effective Dom-category (K,x,3), define
EE'EP.: (_IS'KIB)P'* (_ISIKIB) by:
EE(K)=EP(K)=K
R
Ep((£,£7))=f Ep ((£,£7%) =€,
0

Lemma 5.4.2

EE is an effecti§ely continuous functor and it effectively'
reflects effective w-colimits. In fact for some recursive Ref;
if (A,1i) is an indexed w-codiagram in (5,K,8)P, ((v,vR),<a,k>)
is an indexed w=-cocone of (AE,em(i))=EE((A,i)) with an
index <<a,lt(k)>,z> then (v,vR) is an effective w=-colimiting
cocone of (A,i) with an index <<a,k>,Ref(a,k,z)>.
proof Obviously EE is an effectively continuous functor.

Since (K,k,9) has the effective S-property, there is an
effective S-cocone (((u,uR),<x,y>) of (A,i). As proved in
5.3.9, u:AE+K(x) is an effective w-colimiting cocone of
(AE,em(i)) with an index <<x,lt(y)>,u(x,y,1i)>. Therefore
K (x) =k (a) via (ereR):K(x)+K(a) where

e=a(x,a)(¢u(x'y,i)(a,2t(k))) and

oR=3 (a,%) (¢, (x,2¢ (X)) .

. R, .
As observed in 5.3.9, (u,u) is an effective w-colimiting



cocone of (A,i) with an index <<x,y>,v(X,y,i)>. Therefore by
the arguments between 5.1.3 and 5.1.4, if (X,XR):A+K(C) is

an effectively generable cocone with an index <c,d>, then
(c-eR,e-cR) is the unique mediating morphism from (v,vR) to
(A,AR) where (o,oR) is the mediating morphism from (u,uR) to
(A,AR) given by:

o=3(x,C)("l'¢ (c.d))=3(x,0)(¢Zt(v(x;y'i))(c,d))

v (XIYI 1)

o"=3(c,x) (m,"4
Thus we have:

c.eR;a<a,c)(3-Compose(a,x,c,¢1t(v(x (c,d) s, (x,LE(K)))),

Y1)

o-gR:a(a,c)(B—Compose(c,x,a,¢ (a,lt(k)),d

u(x,y,i) (c,a))).

rt(v(x,y,1))
Thus‘we have established the lemma.

14
| Note that for the definitions of it, em, and u, readers

are refered to the proof of 5.1.14, the comment right after

5.3.5, and 5.3.7.

Theorem 5.4.3

Let (K,k,?3) be an effective Dom-category, T':(K,«k,?)*»
(K,K,a)* be an effectively continuous functor and T:(K,K,Q)P+
(K,K,a)P be a functor satisfying:

Eg+T=T'-Eg
then T is an effectively continuous functor. Furthermore
if ¢:TI»I is an effectively initial T-algebra then
EE(¢):T'I+I is an effectively initiél T'~algebra.

proof Since En is effectively continuous, T'+Eg=Ep*T is an

effectively continuous functor. Since EL effectively reflects
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effective w~colimits, T is an effectively continuous functor.
Let <<d,e>,2> be a continuity index of T. Let (A,fgn(d,e)) be
an indexed w-codiagram as in 5.1.9. Let p:A+k (1) be an
effectively generable w—colimiting cocone of (A,fgn(d,e)) with
an index <<i,k>,x>. Then T(py) is an effective w-colimiting
cocone of (T-A,fdg(fgn(d,e),d,e)) with an index:

(dreriik) o, (ke f (dre))>.

<f
Y eocone
Thus as shown in the proof of 5.1.9, (kx(i),a) given by:

a=3(¢d(i),i)(¢¢Z(i,k’x’fgn(d,e))(iysuc(k)))

is the effectively initial T-algebra with an index:
i,6. .. i (k))> o f(x)>
<<1'¢Z\llklx'fgn(dle))( ruc (k))> . f(x)
where f is as in the proof of (2)=-5.1.9 and sue 1s a recursive

function satisfying: ¢ )(x)=¢v(x)+1. Obviously EE(“) is

sue (v
an effective w-colimiting cocone of (EE'A'fdg(fgn(d'e)'j'm))
with an index <<i,’t(k)>,2t(x)>, where <j,m> is a functor
index of EE' Therefore EE(a):T'K(i)+K(i) is the unique K-

morphism s.t. EE(u )=(EE(a))-T'(EE(un)). Now let B:T'B-+B be

n+l
a T'-algebra with an algebra index <b,c>. Define vn:Tn +B by:
vO=EE(lB)
V=B T' (vy)
where lB is the unique morphism from l to B in (K,K,Q)P. Since
EE(lB) is the unique morphism from | to B in (K,x,3)*, we can
readily observe that <V, is a cocone of EL-A. Since the
definition of v, is iterative, it can readily be seen that
<b,t(b,c)> is a éocone index of~mn>, for some recursive t.
Thus Y=a(i,b)(%iix)(b,t(b,c))) is the unique morphism s.t.

Y.EL(un)=vn. Now by almost the same argument as in the proof

of 5.1.9, we can show that this y is the unique T'-homomorphism



from (K(i),EE(a)) to (B,8). Let w be a recursive function
satisfying:

¢w(x) (b’c)=¢lt(x) (b,t(b,c)).
Then (K(i),EE(a)) is an effectively initial T'-algebra with
an index:

<<i (i,5uc(k)))>,wx)>.

'%‘%z(i.k.x.fgn(d,e))

This important theorem states that if we get an
effectively continuous functor T:(K,K,B)P+(§,K,8)P which
can be naturally extendgd to an effectively confinuous functor
T': (K,k,3) *>(K,k,9)*, then the effectively initial T-algebra

is also an effectively initial T'-algebra over (K,x,9)*.

Since the initial algebra index of ¢ is effectively
obtainable from the continuity index of T, which is effectively
obtainable from that of T', it can readily be seen that the
initial algebra index of EE(¢) is effectively obtainable from

the continuity index of T'.



TOPICS FOR FURTHER RESEARCH

To conclude this dissertation, we consider several

interesting topics of further research.

First it should be made clear whether non-algebraic continuous
cpo's have a useful general theory. The only convinping_example
known so far which suggests the necessity for such cpo's is the
interval lattice. But recently Weihrauch & Schreiber [28]
announced that with the aid of a metric suitably defined on

algebraic cpo's, we can handle interval lattice without regarding

it as a non-algebraic continuous cpo.

Roughly speaking, our notion of effective categories is the
categories whose categorical constructions, like composition
of morphisms, universality etc, are effective. We observed that
this notion worked out quite smoothly for the purpose of
solving recursive domain equations effectively. It should be:

worthwhile to investigate further-what other applications there

might be. A similar theme was proposed by Ehrig [2].

Compared with the universal domain approach, our categorical

approach lacks a natural notation for - computable objects.

We conjecture the following on this issue:

Conjecture

p P
Let T:EGD ~EGD be an effective functor composed from xP, +P,
P
and > . Then each of these functors is associated .

with -a collection of computable functions. TFor

example, {nl,nz,cons} for xP. We claim that there exists a



a suitable function defining schema 0 s.t. if ¢:TA»A is the
effectively initial T-algebra, then every computable function
over A can be defined from the collection of functions associated

with T and ¢ and ¢_1 using the schema 9. For want is such 0.

Notice that this conjecture is a natural. extension of
J. McCarthy's [8] relative computability thesis. A hint for this
problem can be found in Plotkin [11]. Readers are requested to
pay attention to the fact that we are making a claim rather

than a thesis.

It is a very interesting topic . to search. for a class of
po-structures for each of which the notion of computability of
elements does not depend on the effective indexings of the
basis. In other words, a class C of po-structures s.t. for every

]
Ce(, and effective bases ¢ and e' of C, c® Ect.
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